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Climate Risk Management Strategies in Agriculture – The Case of Flood Risk 

 

Abstract 

We develop a theoretical and empirical framework to analyze farmers’ responses to extreme 

climate events. Our analysis extends earlier research by investigating measures taken at the 

whole farm level including on- and off-farm decisions as well as their interactions. To this 

end, a theoretical model capturing on- and off-farm decisions of farm households under risk is 

developed and used to derive hypothesis for empirical applications. Our empirical analysis 

focuses on the case of floods in UK agriculture and makes use of farm-level panel data for the 

period 1990-2011. Dynamic panel models are estimated for off-farm income and the diversity 

of on-farm portfolios following the Arellano and Bover/Blundell and Bond GMM system 

approach. In these models, the effect of floods as well as interactions between farm and 

farmer’s characteristics and risk-reducing strategies are estimated by controlling for 

biophysical, economic and policy conditions. We find that both on- and off-farm risk 

management strategies are followed by farmers in response to flood occurrences. These 

strategies are, however, not independent from each other. Higher off-farm employment is 

found to be associated with less diverse, i.e. more risky, on-farm portfolios. Thus, on-farm 

adaptation responses to flood risks are ambiguous. Our analysis thus also reveals general 

implications for adaptation behavior. Increasing risks and the more frequent occurrence of 

extreme climate events, e.g. in the context of climate change, may not necessarily lead to an 

increased use of on-farm risk management strategies. In contrast, if farmers can allocate more 

resources off the farm, adaptation behavior may even result in more risky production systems. 

Keywords: extreme events, flood, risk management, GMM estimator, UK 

JEL codes: Q12, D81, C23 

 

1. Background and Motivation 

Effects of climate variability and climatic extreme events on agricultural production and the 

agricultural sector at large receive particular attention (e.g. Goodwin 2008; Gornall et al. 

2010; Tack et al. 2012). Next to its economic and policy relevance, this topic is also central 

for the analysis of potential impacts by climate change on agriculture (e.g. Lobell et al. 2011; 

Ortiz-Bobea and Just 2013; Schlenker et al. 2005). It has been highlighted that the 

consideration of adaptation responses is crucial in order to realistically assess potential 

impacts of (changes in) climate risks (Di Falco et al. 2011; Risbey et al. 1999; Robertson et al. 

2012), and thus is necessary for the development of policies supporting climate risk 

management. However, the current understanding of if and how adaptation is taking place is 

still very limited (Berrang-Ford et al. 2011).  

In order to investigate potential adaptation responses of farmers with respect to climate related 

extreme events such as droughts or floods, existing research often relies on surveys and 

modeling approaches (see e.g. IPCC 2007; Smit and Skinner 2002, for overviews). 

Furthermore, and important for this study, there has been a focus on the identification of 

revealed adaptation responses taken by farmers to extreme events (e.g. Alem et al. 2010; Dang 

et al. 2009; Smit et al. 1997). This approach has been motivated by the fact that most 

adaptation activities have been reactive in response to a shock (Orlove 2005; Zilberman et al. 

2012). It has been shown that long-term changes in objective probability distributions, e.g. 

caused by climate change, are usually not the primary motivator for adaptation action 
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(Berrang-Ford et al. 2011). In contrast, extreme events are often the main trigger for 

adaptation responses. This observation is explained by the fact that extreme events act as an 

‘availability heuristic’ (Tversky and Kahneman 1974) altering the perception of risks (Slovic 

1987)1. This formation of risk perception is in line with the finding of Menapace et al. (2013) 

that farmers that have experienced substantial losses usually have a higher perception of 

(climate) risk probabilities, which is finally shaping their adaptation responses (IPCC 2007; 

Smit and Skinner 2002).  

Empirical evidence underlines the relevance of climate extreme events for inducing adaptation 

responses of farmers. For instance, Ding et al. (2009) find that the occurrence of droughts 

increases the adoption of conservation tillage practices in subsequent years. Along these lines, 

Smit et al. (1997) showed that the selection of corn varieties was influenced by weather 

conditions in previous years. Moreover, an increase in farmers’ participation in hail insurance 

after a major hail event was observed by Finger and Lehmann (2012). Alem et al. (2010) find 

that rainfall levels in previous years but also the variability of rainfall influences farmers’ 

fertilizer use decisions. Smit et al. (1996) consider a wider set of adaptation responses by 

farmers and could show that the frequency of dry years was the key climatic stimulus to 

adjustments of farm-plans, even though economic forces (e.g. changes in prices) were the 

main driver of changes of farm plans. Also counter-intuitive actions taken by farmers in 

response to higher (climate) risks have been observed. For instance, Bradshaw et al. (2004) 

find that, despite increasing climate risks, Canadian farmers increased the riskiness of their 

on-farm portfolio by using less diverse crop portfolios over time. 

Even though a wide range of evidence exists for farmers’ adaptation responses to climate 

stimuli in form of climate related extreme events (see e.g. by Anwar et al. 2012; Bryan et al. 

2009; Mechler et al. 2010; Smithers and Smit 1997, for overviews), the current literature in 

this field reveals significant shortcomings. First, there is a lack of empirical studies based on 

household level data, which is even more apparent regarding the use of panel data (Alem et al. 

2010; Bryan et al. 2009). Second, the relevance of economic drivers for adjustments in farm 

management decisions has been often neglected (e.g. Alem et al. 2010). Third, these studies 

focus on specific adaptation responses at the field scale (e.g. changes in tillage intensities or 

input use), and do not evaluate adjustments at the whole-farm level by focusing on the on-

farm use of resources. However, we expect that considering wider sets of on- and off-farm 

adaptation responses is of crucial importance because farmers tend to adjust their entire farm 

portfolio in response to potential extreme events (e.g. Pivot and Martin 2002). Thus, 

adaptation in response to shocks includes the entire set of activities available to the farmer 

(Zilberman et al. 2012). Such adaptation responses may comprise decisions on capital use as 

well as land market and farm exit decisions. Furthermore, and important for our study, this 

also comprises adjustments in off-farm labor allocation decisions, which are an important 

determinant of farmers’ risk management decisions (e.g. Mishra and Goodwin 1997, 1998).  

To fill gaps in this literature we provide a conceptual and empirical framework to investigate 

adaptation measures in response to climate related extreme events at the household level 

including on- and off-farm decisions made by farmers. To this end, a theoretical model of on- 

and off-farm decisions under risk at the household level is developed and is used to derive 

hypotheses for empirical analyses.  Moreover, an econometric framework is developed that 

allows us to investigate farmers risk adaptation decisions using dynamic panel models and is 

used in an empirical application. More specifically, we focus our analysis on adaptation 

strategies followed by farmers in the UK to cope with flood events. Floods are of exceptional 

                                                           
1 Along these lines, Shafran (2011) provides evidence that decision makers weight recent outcomes more heavily 

than older outcomes.  
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importance for the UK and its agricultural production as it has been among those EU 

countries mostly affected by flooding (e.g. Hall et al. 2005; Wheater 2006). Our analysis is 

based on a comprehensive farm-level panel data set covering the period 1990-2011 

comprising about 15,000 observations. The use of a panel dataset enables us to identify lagged 

adaptation responses and to account for a wide array of drivers that potentially influence 

farmers’ behavior. To this end, financial and business data is enriched by site-specific 

information on environmental conditions and dynamics. In particular, we account for the 

timing and severity of flood events and their impact on farmers’ decision making.  

 

2. Theoretical Framework 

The farm-level household income 𝜋𝐻 consists of income generated on- and off- the farm 

denoted by 𝜋𝐹 and 𝜋𝑂, respectively: 𝜋𝐻 = 𝜋𝐹 + 𝜋𝑂. The expected level of income generated 

by on-farm activities is 𝜋𝐹 = 𝑙′𝜋𝑓, where 𝑙 is a vector summarizing the on-farm labor 

allocation to i=1,….,n on-farm activities and 𝜋𝑓 represents the vector of expected profits per 

unit labor input of these activities. The income generated off the farm is 𝜋𝑂 = 𝑜𝑤, where 𝑜 is 

the labor allocated to the off-farm activity and 𝑤 is the remuneration of this activity (e.g. the 

wage level). The total labor resource available to the farm household 𝐿 is allocated either on 

or off the farm2, so that 𝐿 = ∑ 𝑙𝑖
𝑛
𝑖=1 + 𝑜. Off-farm activities are considered to be risk-free3. In 

contrast, income generated from on-farm activities is assumed to be random variable4, with 

variance 𝜎𝜋𝐹
2 = 𝑙′𝜎𝜋𝑓

2 𝑙. The household income 𝜋𝐻 is used for consumption and under the 

assumptions of non-satiation, the utility function of the household can be written as 𝑈(𝜋𝐻). 

We assume this utility function to represent risk aversion so that 𝜕𝑈/𝜕𝜋 > 0 and 𝜕2𝑈/𝜕𝜋2 <
0. Maximizing the expected utility 𝐸𝑈(𝜋𝐻) is equivalent to maximizing the certainty 

equivalent (e.g. Chavas, 2004):  

1 𝐶𝐸 = 𝐸(𝜋𝐻) − 0.5𝑟𝐸[𝜋𝐻 − 𝐸(𝜋𝐻)]2 

E is the expectation operator based on subjective probability distributions of random variables 

(Chavas 2004) and 𝑟 represents the Arrow-Pratt absolute risk aversion coefficient 𝑟 =
−(𝜕2𝑈/𝜕𝜋𝐻

2 )/(𝜕𝑈/𝜕𝜋𝐻), with 𝑟 > 0 for a risk averse decision maker. The second part of the 

right hand side of equation 1 (i.e. 0.5𝑟𝐸[𝜋𝐻 − 𝐸(𝜋𝐻)]2) represents the risk premium 𝑅, i.e. 

the (implicit) costs of risk for the decision maker, which for a risk averse decision maker is 

𝑅 > 0.  

2.1. Farm household model  

Next, we introduce some specifications to the general setup presented above, drawing on 

earlier work by Robinson and Barry (1987) and McNamara and Weiss (2005). The resulting 

simple farm household model allows us to derive hypotheses on farmers’ behavior with 

respect to off-farm allocation of labor and on-farm diversification that will be tested 

empirically. Profits of farm activity i are a function of labor devoted to this activity 𝑙𝑖, i.e. 

𝜋𝑖 = 𝜋𝑖(𝑙𝑖). For illustration purposes, the underlying production functions as well as output 

prices are assumed to be identical across activities. This allows us to express the on-farm 

                                                           
2 We follow Mishra and Goodwin (1997) and assume that leisure decisions are exogenously determined and thus 

do not affect the total labor available at the farm. 
3 See e.g. Kyle (1993) for an analysis that comprises risky off-farm activities.  
4 We focus our analysis on optimal diversification and labor allocation under risk. Analyses of land allocation 

decisions under production risk are surveyed and provided, for instance, by Blank (2001), Collender and 

Zilberman (1985) and Popp and Rudstrom (2000). 
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diversification by the number of farm activities n chosen. Furthermore, we focus on a linear 

production process so that we can express profits for a farm activity i as 𝜋𝑖 =  𝜋𝑓𝑙𝑖. We 

consider costs arising from diversification, for instance, due to costs of establishing new 

activities (such as for learning and supervision) and foregone gains of specialization caused by 

more diverse production by a term 𝑛𝑐(𝑛). These costs of diversification increase in the level 

of n at an increasing rate so that 𝜕𝑐(𝑛)/𝜕𝑛 > 0 and 𝜕2𝑐(𝑛)/𝜕𝑛2 > 0. Following McNamara 

and Weiss (2005), we furthermore assume that variances and covariances are equal across 

activities, i.e. 𝜎𝑖𝑖 = 𝜎𝑘
2, ∀𝑖 = 1,… , 𝑛 and 𝜎𝑖𝑗 = 𝜌𝜎𝑘

2, ∀𝑖 ≠ 𝑗 = 1,… , 𝑛 with −1 ≤ 𝜌 ≤ 1. The 

resulting expected income at the household level containing on- and off-farm profits is 

defined as as follows: 

2 𝜋𝐻 = ∑ 𝑙𝑖𝜋𝑓
𝑛
𝑖=1 + 𝑜𝑤 − 𝑛𝑐(𝑛) = 𝜋𝑓(𝐿 − 𝑜) + 𝑜𝑤 − 𝑛𝑐(𝑛).  

Due to the risk free nature of off-farm income, the variance of household income can be 

expressed as 𝜎𝜋𝐻
2 = 𝑛−1(𝐿 − 𝑜)2[1 + (𝑛 − 1)𝜌]𝜎𝑘

2 (Robison and Barry, 1987). Our model 

thus reflects the valid assumption that household income variance is decreasing in the level of 

on-farm diversification: 𝜕𝜎𝜋𝐻
2 /𝜕𝑛 = −𝑛−2(𝐿 − 𝑜)2𝜎𝑘

2(1 − 𝜌) < 0 (e.g. Di Falco et al., 

2010). Throughout our analysis, we assume that 𝜌 < 1, so that on-farm risk reduction is 

actually feasible. Reflecting farm-level evidence, this risk reducing effect diminishes with 

increasing levels of diversification, i.e. 𝜕2𝜎𝜋𝐻
2 /𝜕𝑛2 = 2𝑛−3(𝐿 − 𝑜)2𝜎𝑘

2(1 − 𝜌) > 0 (Popp 

and Rudstrom 2000).  

The resulting household-level certainty maximization problem is: 

3 𝐶𝐸 = 𝜋𝑓(𝐿 − 𝑜) + 𝑜𝑤 − 𝑛𝑐(𝑛) − 𝑛−10.5𝑟(𝐿 − 𝑜)2[1 + (𝑛 − 1)𝜌]𝜎𝑘
2 

2.2. Off-farm labor allocation  

The certainty equivalent maximizing level of off-farm labor allocation requires the following 

first order condition to hold: 

4 𝜕𝐶𝐸/𝜕𝑜 = −𝜋𝑓 + 𝑤 + 𝑛−1𝑟(𝐿 − 𝑜)[1 + (𝑛 − 1)𝜌]𝜎𝑘
2 = 0 

Based on this first order condition and using the implicit function theorem, optimal labor 

allocation changes in response to changes in other model parameters can be derived in 

comparative static analyses. First, we can show that the optimal off-farm labor allocation, 𝑜∗, 

increases in the off-farm wage level:  

5 𝜕𝑜∗/𝜕𝑤 = −(𝜕2𝐶𝐸/𝜕𝑜𝜕𝑤)/(𝜕2𝐶𝐸/𝜕𝑜2) = −1/−𝑛−1𝑟[1 + (𝑛 − 1)𝜌]𝜎𝑘
2 > 0,  

if 𝜌 > −1/(𝑛 − 1), i.e. the on-farm risk reduction potential is not too large (McNamara and 

Weiss 2005), preventing that risk reduction measures are taken solely on and not off the farm. 

Second, the allocation of labor to risk free off-farm employment increases with increasing risk 

aversion: 

6 𝜕𝑜∗/𝜕𝑟 = −(𝜕2𝐶𝐸/𝜕𝑜𝜕𝑟)/(𝜕2𝐶𝐸/𝜕𝑜2) = −𝑛−1(𝐿 − 𝑜)[1 + (𝑛 − 1)𝜌]𝜎𝑘
2/

−𝑛−1𝑟[1 + (𝑛 − 1)𝜌]𝜎𝑘
2 > 0   

Note that if two farmers have the identical production and off-farm opportunities but differ 

with respect to their risk aversion, the separation theorem states that they will use the same 

on-farm portfolio but differ with respect to the on- and off-farm allocation of labor resources. 

This is due to the fact that it is always possible to illustrate the choice set available to the 
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farmer as a combination of a portfolio containing risky on-farm assets and another portfolio 

that holds only the riskless off-farm portfolio component (see e.g. Simmons 2002).  

Third, off-farm labor allocation decreases with increasing profitability of on-farm activities, 

represented by an increase in 𝜋𝑓: 

7 𝜕𝑜∗/𝜕𝜋𝑓 = −(𝜕2𝐶𝐸/𝜕𝑜𝜕𝜋𝑓)/(𝜕
2𝐶𝐸/𝜕𝑜2) = 1/−𝑛−1𝑟[1 + (𝑛 − 1)𝜌]𝜎𝑘

2 < 0   

Next, we investigate how optimal off-farm labor allocation changes due to a shift in the 

perceived riskiness of on-farm production activities. In our example, we expect this to be 

caused by the experience of a flood event5, so an increase of 𝜎𝑘
2. Thus, experiencing an 

extreme event is assumed to lead to a change in the subjective risk from agricultural 

production (e.g. Menapace et al., 2013).  

A higher (perceived) riskiness of the on-farm production leads to an increase in the optimal 

off-farm labor allocation:  

8  𝜕𝑜∗/𝜕𝜎𝑘
2 = −(𝜕2𝐶𝐸/𝜕𝑜𝜕𝜎𝑘

2)/(𝜕2𝐶𝐸/𝜕𝑜2) = −𝑛−1𝑟(𝐿 − 𝑜)[1 + (𝑛 − 1)𝜌]/−𝑛−1𝑟[1 +
(𝑛 − 1)𝜌]𝜎𝑘

2 > 0   

This finding also allows us to account for differences across farms with respect to the 

production risks, e.g. due to differences in climate variability.     

The above presented setup can also be used to identify potential differences across farms with 

respect to their adaptation behavior. For instance, we expect adaptation reactions to differ with 

farm size. More specifically, larger farms are expected to have a better return-risk ratio, for 

instance, due to better on-farm risk coping opportunities (Blank and Erickson 2007). Larger 

farms are also expected to have better access to risk-management strategies (e.g. credit 

reserves) as well as better management ability in dealing with risks (Poon and Weersink 2011; 

Velandia et al. 2009). Furthermore, larger farms are usually able to produce with lower risks 

because production risks are not perfectly correlated across space and larger acreages thus 

have an on-farm risk reducing effect (e.g. Marra and Schurle 1994). One possibility to express 

those properties of larger farms may be expressed as decrease in the variance of the on-farm 

production, so equation 8 can be used to show that off-farm labor allocation is decreasing with 

decreasing riskiness of on-farm production. Another way to depict effects of larger farm size, 

is to investigate the effect of better on-farm hedging effectiveness, i.e. a decrease in 𝜌, on off-

farm labor allocation: 

9 𝜕𝑜∗/𝜕 − 𝜌 = (𝜕2𝐶𝐸/𝜕𝑜𝜕𝜌)/(𝜕2𝐶𝐸/𝜕𝑜2) = 𝑛−1𝑟(𝐿 − 𝑜)(𝑛 − 1)𝜎𝑘
2/−𝑛−1𝑟[1 +

(𝑛 − 1)𝜌]𝜎𝑘
2 < 0   

It shows that a better on-farm hedging effectiveness leads to lower provision of labor 

resources for off-farm activities. In summary, we thus expect larger farms to work less off the 

farm6. 

Moreover, optimal off-farm labor allocation is decreasing in the level of on-farm diversity:  

                                                           
5 We, however, assume not necessarily a change in the expected returns because we assume that the occurrence 

of a flood event is inducing only a change in the subjective probability. In contrast, we do not assume a change in 

the actual underlying (objective) probability distribution of flood occurrence. Taking also aspects of transitory 

changes in climate risks into account could be a useful extension of this research related to changes in the 

occurrences of extreme events due to climate change.   
6 Along these lines, larger farms are also expected to react to a smaller extent to increases in risks. 
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10 𝜕𝑜∗/𝜕𝑛 = −(𝜕2𝐶𝐸/𝜕𝑜𝜕𝑛)/(𝜕2𝐶𝐸/𝜕𝑜2) = 𝑛−2𝑟(𝐿 − 𝑜)𝜎𝑘
2[1 − 𝜌]/−𝑛−1𝑟[1 +

(𝑛 − 1)𝜌]𝜎𝑘
2 < 0   

Thus, on- and off-farm risk management strategies are interrelated. In particular, on-farm risk 

management measures lead to a lower use of risk management actions taken off the farm. 

2.3. On-farm diversity  

Next, we investigate the optimal diversity of the on-farm portfolio (expressed by the number 

of activities n). In this situation, the marginal costs of diversity must be equal to the marginal 

risk premium at this diversity level, which represents the benefits for the farmer arising from 

an additional diversification7:   

11 𝜕𝐶𝐸/𝜕𝑛 = −𝑐(𝑛) − 𝑛𝜕𝑐(𝑛)/𝜕𝑛 + 0.5𝑛−2𝑟(𝐿 − 𝑜)2[1 − 𝜌]𝜎𝑘
2 = 0 

Again, we can use the implicit function theorem to derive inferences from our theoretical 

model. First, we can show that optimal on-farm diversification increases with the perceived 

riskiness of on-farm activities:    

12 𝜕𝑛∗/𝜕𝜎𝑘
2 = −(𝜕2𝐶𝐸/𝜕𝑛𝜕𝜎𝑘

2)/(𝜕2𝐶𝐸/𝜕𝑛2) = {−0.5𝑛−2𝑟(𝐿 − 𝑜)2[1 − 𝜌]}/{−2𝜕𝑐(𝑛)/
𝜕𝑛 − 𝑛 𝜕2𝑐(𝑛)/𝜕𝑛2−𝑛−3𝑟(𝐿 − 𝑜)2[1 − 𝜌]𝜎𝑘

2} > 0   

It shows that in response to a higher subjective portfolio risk, the farmer chooses a more 

diverse and less risky portfolio, which also reduces his expected return (because 𝜕𝑐(𝑛)/𝜕𝑛 >
0). Thus, the risk-averse farmer gives up some of his profit to cope with increasing risks8 (e.g. 

Iglesias et al., 2012).  

Recalling our above presented analysis with respect to the expected effects of larger farm size, 

equation 12 also shows that farms facing lower on-farm risk will use less diverse portfolios. In 

contrast, a better on-farm hedging effectiveness of larger farms leads to higher diversification 

levels chosen on the farm: 

14 𝜕𝑛∗/𝜕 − 𝜌 = (𝜕2𝐶𝐸/𝜕𝑛𝜕𝜌)/(𝜕2𝐶𝐸/𝜕𝑛2) = {−
1

2
𝑛−2(𝐿 − 𝑜)2𝜎𝑘

2}/{−2𝜕𝑐(𝑛)/𝜕𝑛 −

𝑛 𝜕2𝑐(𝑛)/𝜕𝑛2−𝑛−3𝑟(𝐿 − 𝑜)2[1 − 𝜌]𝜎𝑘
2} > 0   

Thus, the expected effect of farm size on optimal diversification is ambiguous. Furthermore, 

optimal on-farm diversification increases with increasing risk aversion: 

13 𝜕𝑛∗/𝜕𝑟 = −(𝜕2𝐶𝐸/𝜕𝑛𝜕𝑟)/(𝜕2𝐶𝐸/𝜕𝑛2) = {−0.5𝑛−2(𝐿 − 𝑜)2[1 − 𝜌]𝜎𝑘
2}/{−2𝜕𝑐(𝑛)/

𝜕𝑛 − 𝑛 𝜕2𝑐(𝑛)/𝜕𝑛2−𝑛−3𝑟(𝐿 − 𝑜)2[1 − 𝜌]𝜎𝑘
2} > 0   

Finally, we can show that also on-farm diversification is affected by the level of off-farm 

labor allocation:   

15 𝜕𝑛∗/𝜕𝑜 = −(𝜕2𝐶𝐸/𝜕𝑛𝜕𝑜∗)/(𝜕2𝐶𝐸/𝜕𝑛2) = {𝑛−2𝑟(𝐿 − 𝑜)[1 − 𝜌]𝜎𝑘
2}/{−2𝜕𝑐(𝑛)/

𝜕𝑛 − 𝑛 𝜕2𝑐(𝑛)/𝜕𝑛2−𝑛−3𝑟(𝐿 − 𝑜)2[1 − 𝜌]𝜎𝑘
2} < 0   

Equation 15 thus shows that the optimal level of diversification decreases if more risk-free 

income is generated from off-farm allocation of labor. In summary, our results from the 

                                                           
7 Recall that we assumed advantages of diversification for the farmer to solely stem from its risk reduction 

property.   
8 Due to the spatial immobility of land resources, complete flood risk avoidance due to relocation is not possible 

for farmers. In contrast, house owners have been found to have a substantial willingness to pay to elevate a new 

house in order to be safe to flooding (Botzen et al. 2013). 



8 

 

theoretical model thus reveal two contrary paths how farmers may react to higher subjective 

on-farm risks after experiencing a flood event: A) Farmers choose less risky portfolios. B) 

Farmers react by increasing the riskiness of their on-farm activities by decreasing 

diversification. Such choice, however, will be accompanied by an increase of the involvement 

in off-farm employment. Thus, not considering farmers’ off-farm opportunities may lead to 

erroneous expectations how farmers react to changes in the riskiness of agricultural 

production due to the occurrence of flood events.  

 

3. Empirical Framework 

To test the empirical validity of our hypotheses derived above we employ microeconometric 

modeling to estimate different functional relationships with respect to risk related farm 

behavior. Especially we are interested in the potential effects of flooding related 

characteristics on off-farm labor allocation and on-farm diversity decisions controlling for a 

variety of financial, economic, policy, climatic, spatial as well as individual farm conditions. 

The formal models we estimate can be described as 

16  𝑦𝑖𝑡 = 𝑓(𝒙𝑖𝑡𝛽) 

with the subscripts relating to farm i at time t, y as the production behavior related indicator 

and x as a vector of a variety of different factors. We expect that farmers’ production choices 

are significantly driven by relative price developments in previous periods (reflecting price 

expectations for the current period), policy changes but also significantly by climate 

conditions and input quality differences. Further, previous production decisions (yit-1) might 

be relevant for current production choices and plans (e.g. representing adjustment costs for 

restructuring farm plans). Beside stochastic influences (єit) also unobserved individual farm 

effects (ui) play a role in explaining variation in production decisions across farms and time. 

Hence, the simple model in (16) can be revised leading to a dynamic specification 

17  𝑦𝑖𝑡 = 𝑓(𝑦𝑖𝑡−1𝛾 + 𝒙𝑖𝑡𝛽 + 𝑢𝑖 + 𝜖𝑖𝑡) 

for i = {1,…,N} and t = {1,…,T}. Applying an OLS estimator on (17) would lead to biased 

and inconsistent results as the lagged regressor is also a function of єit. A fixed-effects 

estimator would be the natural choice when allowing for individual effects. However, Nickell 

(1981) showed that this estimator would lead to biased estimates as the lagged regressor 

would be correlated with the individual farm effects ui. Based on the notion that an 

instrumental variables approach (Anderson and Hsiao 1981) would not exploit all of the 

information available in the data sample, Arellano and Bond (1991) proposed an alternative 

but efficient estimation procedure for the estimation of such dynamic problems. They note 

that in a Generalized Method of Moments (GMM) context one may construct more efficient 

estimates of the dynamic panel data model. The Arellano-Bond estimator, hence, sets up a 

generalized method of moments (GMM) problem in which the model is specified as a system 

of equations, one per time period, where the instruments applicable to each equation can 

differ. Blundell and Bond (1998) suggest making use of additional level information to 

overcome problems with weak instruments. The combination of moment restrictions for 

differences and levels results in an estimator labeled as GMM-system-estimator by Arellano 

and Bond (see also Arellano and Bover 1995). Here, additional moment conditions are used in 

which lagged differences of the dependent variable are orthogonal to levels of the 

disturbances. We apply this GMM based system estimator on the dynamic equation described 

in (17) where the GMM-system-estimator exploits T-2 orthogonality restrictions in levels (see 

also e.g. Behr 2003). Observation t in levels 
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18  𝑦𝑖𝑡 = 𝑦𝑖𝑡−1𝛾 + 𝒙′𝑖𝑡𝛽 + 𝑢𝑖 + 𝜖𝑖𝑡 

 

is used for estimation and differences are used as valid instruments. If we consider the last 

observation T 

 

19  𝑦𝑖𝑇 = 𝑦𝑖𝑇−1𝛾 + 𝒙′𝑖𝑇𝛽 + 𝑢𝑖 + 𝜖𝑖𝑇 

 

and use the corresponding instruments are 𝑑𝑦𝑖1, 𝑑𝑦𝑖2, 𝑑𝑦𝑖𝑇−1, 𝑑𝑥′𝑖1, 𝑑𝑥′𝑖2, 𝑑𝑥′𝑖𝑇. Estimation of 

the instrumented equation is based on the following matrices 

 

20  𝑦𝑖 =

[
 
 
 
 
 
 

𝑦𝑖3 − 𝑦𝑖2

𝑦𝑖4 − 𝑦𝑖3

…
𝑦𝑖𝑇 − 𝑦𝑖𝑇−1

𝑦𝑖3

…
𝑦𝑖𝑇 ]

 
 
 
 
 
 

 𝑋𝑖 =

[
 
 
 
 
 
 

𝑦𝑖2 − 𝑦𝑖1

𝑦𝑖3 − 𝑦𝑖2

…
𝑦𝑖𝑇−1 − 𝑦𝑖𝑇−2

𝑦𝑖2

…
𝑦𝑖𝑇−1

     

𝑥′𝑖3 − 𝑥′𝑖2
𝑥′𝑖4 − 𝑥′𝑖3

…
𝑥′𝑖𝑇 − 𝑥′𝑖𝑇−1

𝑥′𝑖2
…

𝑥′𝑖𝑇 ]
 
 
 
 
 
 

 

 

with the explanatory variables X, the parameters to be estimated 𝜃 and the instruments W as 

follows 

 

21  �̂� = (𝑦−1, 𝑋),   𝜃′ = (𝛾, 𝛽′), 𝑊 = (𝑊1
′,𝑊2

′, … ,𝑊𝑁
′ )′ 

 

The lagged instruments’ 𝑊𝑖
𝐿 matrix and the differenced instruments’ 𝑊𝑖

𝐷 matrix is given by 

 

22  𝑊𝑖
𝐿 =

[
 
 
 
 
[𝑦𝑖1, 𝑥′𝑖1, 𝑥′𝑖2] 0 … 0

0 [𝑦𝑖1, 𝑦𝑖2, 𝑥′𝑖1, 𝑥′𝑖2, 𝑥′𝑖3] … 0
0 0 … 0
… … … …
0 0 … [𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑇−2, 𝑥′𝑖1, 𝑥′𝑖2, … , 𝑥′𝑖𝑇−1]]

 
 
 
 

 

 

23  𝑊𝑖
𝐷 =

[
 
 
 
 
[𝑑𝑦𝑖2, 𝑑𝑥′𝑖1, 𝑑𝑥′𝑖3] 0 … 0

0 [𝑑𝑦′𝑖2, 𝑑𝑦′𝑖3, 𝑑𝑥′𝑖2, 𝑑𝑥′𝑖3, 𝑑𝑥′𝑖4] … 0
0 0 … 0
… … … …
0 0 … [𝑑𝑦′𝑖2, … , 𝑑𝑦′

𝑖𝑇−2
, 𝑑𝑥′𝑖2, … , 𝑑𝑥′𝑖𝑇−1]]

 
 
 
 

 

 

combining to the overall matrix of the instruments used in estimation s follows 

 

24  𝑊𝑖 = [
𝑊𝑖

𝐷 0

0 𝑊𝑖
𝐿] 

 

The first-step estimator is then 

 

25  𝑉 = 𝑊′𝐽𝑊 = ∑ 𝑊𝑖′𝐽𝑇𝑊𝑖
𝑁
𝑖=1  
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with 𝐽 = (𝐼𝑁 ⊗ 𝐽𝐷𝐿′)  and  𝐽𝐷 = [

2 −1 … 0
−1 2 … …
… … … −1
0 … −1 2

], 𝐽𝐿 = [

1 0 … 0
0 1 … …
… … … 0
0 … 0 1

] , and  

𝐽𝐷𝐿 = [
𝑊𝑖

𝐷 0

0 𝑊𝑖
𝐿]. The second-step GMM estimator (see also White 1980) is then 

 

26  �̂� = ∑ 𝑊𝑖′𝐽𝑇𝜀�̂�𝜀̂′𝑖𝑊𝑖
𝑁
𝑖=1  . 

 

The resulting final estimator can be denoted as 

 

27  �̂�𝐺𝑀𝑀−𝑆𝑌𝑆 = (𝑋𝑊�̂�−1𝑊′𝑋)
−1

𝑋′𝑊�̂�−1𝑊′𝑦. 

 

As dependent variables we use either off-farm income (model I) or an on-farm diversity index 

(model II) for each farm and year9. Explanatory variables are discussed in detail in the data 

section. 

 

4. Case Study and Data 

The UK has been among those EU countries mostly affected by flooding in the last 20 years. 

Currently, over 5 million people in England and Wales live and work in properties that are at 

risk of flooding from rivers or the sea (Environment Agency 25/01/2011). The most common 

forms of floods in the UK are river flooding, coastal flooding, surface water flooding, sewer 

flooding and groundwater flooding. The devastating impact of flooding was demonstrated 

during the summer 2007 floods in Yorkshire and the Midlands. During these floods 14 people 

lost their lives, 7,000 people were rescued from flood waters by emergency services and 

55,000 properties were flooded. The floods also resulted in a cost of £3 billion to the 

insurance industry. Whilst the focus of attention was placed on the impact on life and urban 

property, an estimated 42,000 hectares of farmland were significantly affected by flooding, 

especially in floodplain areas. As a land-based industry, agriculture is vulnerable to both 

surface and groundwater flooding and is particularly vulnerable in the summer period when 

crops are nearing harvest and grassland for livestock is most productive (Huber, 2004, 

Posthumus et al. 2009). Floods can cause losses of physical production and infrastructure, 

reductions of the quality of agricultural products and can have long-term impacts on farm 

production by affecting soil conditions (Merz et al. 2010). Based on survey data and derived 

cost estimates Posthumus et al. (2009) report total costs of about 1% of the gross value added 

for the agricultural industry in England due to the flooding in 2007. These estimates relate to 

costs of flood damage at farm level including damage to property, loss of expected income 

and increased costs directly attributable to flooding. These include also the imputed cost of 

increased family labor. Most of these costs were uninsured as they related to loss of expected 

income from crops and livestock production rather than damage to property. 

Given its relevance, policymakers are becoming increasingly concerned about flooding and 

flood risk management. Tobin and Montz (1997) have impressively outlined the tied 

relationship between flood disasters and the demand by the public for a policy response. 

Parker (2000) argues that it takes a severe and damaging flood to place flooding on the 

political agenda, at a time when the public and media response is such that a failure to act is 

politically unacceptable. Johnson et al (2005) identify three key phases of incremental flood 

                                                           
9 Off-farm income is measured in relative terms, i.e. per ha.    
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policy change since World War II: land drainage, flood defense and, most recently, flood risk 

management. Each of these phases reflects a changing set of beliefs, values and attitudes 

towards the flood problem, which in turn influences attitudes towards structural flood 

defenses, flood warning systems, public awareness raising, land use planning and 

development control for flood risk areas. Relevant policies introduced in the UK or at the EU 

level have been: the UK improvement and modification of flood warning systems in 1998, the 

EU Water Framework Directive (WFD) in 2000, the UK Floodline Warnings Directive 

(FWD) in 2004, the UK Planning Policy Guidance (PPG) in 2006, the EU Floods Directive in 

2007, the Pitt report in 2008, and the recent Flood and Water Management Act (FWM) in 

October 2010. The requirements of the EU Floods Directive have been met by the UK with 

the Flood Risk Regulations 2009. The Directive requires member states to develop and update 

a series of tools for managing all sources of flood risk, in particular: preliminary flood risk 

assessments (PFRAs), flood risk and flood hazard maps, flood risk management plans, co-

ordination of flood risk management at a strategic level, improved public participation in 

flood risk management, and co-ordination of flood risk management with the WFD. The UK 

Flood and Water Management Act 2010 aims to create a more effective means of managing 

the risk of flood and coastal erosion in the UK. It sets out which bodies are responsible for 

managing flood risk with the Environmental Agency as the lead competent authority (HM 

Government 2010). Based on the relevant literature on UK flood impacts we focus in the 

subsequent empirical analysis on the most relevant flood related policy measures as those 

introduced or applied in the years 1998, 2007 and 2010 (see e.g. Posthumus et al. 2009). 

The dataset we use for estimation purposes relates to flooding events in the UK for the period 

1990 to 2011. Farm production data from the UK Farm Business Survey (Farm Robust Type 1 

‘cereals’ and 2 ‘general cropping’) has been obtained for this period. We augment this 

production and socioeconomic data by altitude and soil quality related data10 as well as 

temperature and precipitation related information based on datasets made available by the UK 

Met Office.11 Further, individual flood event related data is used based on statistics released 

by the Dartmouth Flood Observatory. 

To represent on-farm production diversity we construct a diversity index based on a 

Herfindahl type indexation with the nominator containing the sum of squared incomes related 

to potatoes, vegetables, sugar beet, cereals, (remaining) crops, dairy and livestock12 whereas 

the denominator is the squared total farm income. To ensure that increasing diversification is 

reflected by higher index realizations, we use a Gibbs-Martin index (i.e. 1- the Herfindahl 

index). This index ranges from 0 to 1, values close to 0 indicate a high degree of 

specialization. The degree of financial liquidity of the individual farm is measured by one 

minus the ratio fixed to total assets which means that low values of the ratio indicate a low 

degree of liquidity (corresponding to a high degree of illiquidity).  

Finally, the occurrence and severeness of the flooding events experienced by the individual 

farm in the respective year is measured by an ordered indicator based on the multiplication of 

a binary variable for the flooding event actually occurring or not, and an ordered event 

severeness variable taking the values 1 for minor, 2 for medium and 3 for major severeness of 

the flooding event. The categorization of the individual events follows the constantly updated 

                                                           
10 Also based on the UK Farm Business Survey (see also www.farmbusinesssurvey.co.uk). 
11 The UK Met Office: http://www.metoffice.gov.uk/climate/uk/datasets/ (minimum and maximum temperatures 

which are used to construct a mean temperature, sunshine hours, mm rainfall, raindays per year and region: 

East/NorthEast, NorthWest, Midlands, EastAnglia, SouthWest, SouthEast). 
12 This index has been chosen because next to the number of activities also their relative shares in the portfolio 

are important if profits are not equal.  
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flood statistics released by the Dartmouth Flood Observatory13. It is important to highlight 

that in particular the lagged effects of floods are relevant for our analysis. This is due to the 

fact that we expect actual adaptation responses, such as use of different crops or re-allocation 

of labor resources, to take place in the next agricultural season. Table 1 gives a descriptive 

summary of the data sample. 

In our econometric models we include one lag of the dependent variable (off-farm income or 

on-farm diversity) as a regressor and model as strictly exogenous regressors the following 

variables: the one-period lagged price for crops, the one-period lagged price for general 

agricultural inputs, the one-period lagged regional wage index, agricultural policy indicators 

for the years 1992, 2000 and 2003, flood policy indicators for the years 1998, 2007 and 

201014, a farm size indicator, the organizational form of the farm business, altitude of the farm 

holding, and an indicator if the farm is located in a less-favored area.15 To enable the 

observation of non-linear effects of the farmers’ age on off-farm and diversity related 

decisions (e.g. Serra et al., 2005), we include age as linear and quadratic terms in our analysis. 

Furthermore, standard deviations of mean temperature, the number of sunshine hours, 

precipitation in mm and the number of rain days measured at the regional level and for the 

entire time period considered (1990-2011) are included in the model to account for the general 

climatic variability and thus production risks a farm faces.  

   

Further we model the following variables as endogenous regressors16: an ordered flooding 

occurrence and severeness indicator17, interaction terms of the flooding indicator with farm 

diversity, off-farm income and farm size (depending on the model), a financial liquidity index, 

the share of output subsidies in total farm income (direct quantity of produce related 

subsidies), the diversity index (in the off-farm model), and the share of off-farm income in 

total income (in the diversity model). We also incorporate one-period lagged regressors of all 

endogenously determined variables. To capture finally the effect of nonlinear interactions 

between the size of the farm’s operations and the flood occurrences, we further include a 

corresponding interaction term and its one-period lagged observation as exogenous regressor. 

As instruments for the endogenously determined regressors all exogenous independent 

variables are used following the logic of the estimator applied. To ensure the robustness of our 

estimates we compute the bootstrapped bias-corrected standard errors and test for the quality 

of the chosen instruments by using appropriate test formulas (see e.g. Bowsher 2002). 

 

                                                           
13 Flood data has been obtained at http://www.dartmouth.edu/~floods/Archives/index.html. A list of considered 

flood events can be obtained from the authors upon request.  
14 Flooding policy: 1998 – UK improvement and modification of flood warning system and general public 

awareness rise; 2007 – EU Floods Directive; 2010 – Flood Water Management Act. 
15 The business form is categorized as follows: 1 – sole trader, 2 – partnership (family), 3 – partnership (other), 4 

– farming company, 5 – other. Altitude: 1 - most of holding below 300m, 2 – most of holding at 300m to 600m, 

3 – most of holding at 600m or over; LFA codes: 1 – all land outside LFA, 2 – all land inside SDA, 3 – all land 

inside DA, 4 - 50%+ in LFA of which 50%+ in SDA, 5 - 50%+ in LFA of which 50%+ in DA, 6 - <50% in LFA 

of which 50%+ in SDA, 7 - <50% in LFA of which 50%+ in DA. 
16 Such regressors that are potentially correlated with unobservables relegated to the error term of the model. 
17 Flooding occurrence and severeness indicator is defined as follows: 0 - farm experiences no floodings in the 

respective year; 1 – experience of large flood event (defined by significant damage to structures or agriculture, 

fatalities, and/or 1-2 decades-long reported interval since the last similar event); 2 – experience of very large 

event (defined by greater than 20 yr but less than 100 year recurrence interval, and/or a local recurrence interval 

of at 10-20 yr); 3 - experience of extreme event (defined by an estimated recurrence interval greater than 100 

years. Average severity of flooding events per year if more than one event) Source: 

http://www.dartmouth.edu/~floods/Archives/index.html.  

http://www.dartmouth.edu/~floods/Archives/index.html
http://www.dartmouth.edu/~floods/Archives/index.html
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Table 1. Descriptive Statistics Sample 1990 – 2011. 

Variable  Mean (SD) 

Total income (in GBP) 267837.4 (346703.7) 

Off-farm income (in GBP) 5126.5 (11040.2) 

Diversity index (continuous: 0 to 1) 0.567 (0.232) 

Chemical expenditure (in GBP) 17723.9 (22719.3) 

Variable input expenditure (in GBP) 59763.5 (80771.3) 

Rainfall (in mm) 823.595 (239.674) 

Days of rainfall  129.795 (20.473) 

Hours of sunshine 1537.644 (144.851) 

SD of mean temperature (in °Celsius) 0.465 (0.021) 

SD of rainfall (in mm) 124.557 (23.299) 

SD of days of rainfall  13.538 (1.192) 

SD of hours of sunshine 114.391 (6.712) 

Crop price index 126.548 (22.554) 

General input price index 113.846 (22.068) 

Financial liquidity index 0.203 (0.188) 

Output subsidies as share of income 0.111 (0.101) 

Flooding indicator (discrete: 1 to 3) 0.207 (0.676) 

Agricultural policy indicator 1 (1992) 0.936 (0.244) 

Agricultural policy indicator 2 (2000) 0.539 (0.498) 

Agricultural policy indicator 3 (2003) 0.378 (0.485) 

Flood policy indicator 1 (1998) 0.648 (0.476) 

Flood policy indicator 2 (2007) 0.199 (0.399) 

Flood policy indicator 3 (2010) 0.072 (0.258) 

Size category (discrete: 1 to 3) 2.428 (0.704) 

Age of farmer (in years) 54.459 (65.062) 

Business form (discrete: 1 to 5) 1.848 (0.942) 

Altitude of holding (discrete: 1 to 3) 0.845 (0.373) 

Less favoured area indicator (LFA) (discrete: 1 to 7) 1.081 (0.624) 

Based on 13745 observations. Prices are deflated to base year 1980 using Eurostat indices. Standard 

deviation is given in brackets. The business form is categorized as follows: 1 – sole trader, 2 – 

partnership (family), 3 – partnership (other), 4 – farming company, 5 – other. Altitude categories: 1 - 

most of holding below 300m, 2 – most of holding at 300m to 600m, 3 – most of holding at 600m or 

over; LFA indicator codes: 1 – all land outside LFA, 2 – all land inside SDA, 3 – all land inside DA, 4 - 

50%+ in LFA of which 50%+ in SDA, 5 - 50%+ in LFA of which 50%+ in DA, 6 - <50% in LFA of 

which 50%+ in SDA, 7 - <50% in LFA of which 50%+ in DA. 

 

 

5. Results and Discussion 

All estimated models show a good overall statistical significance, the majority of relevant 

variables are estimated at a satisfactory significance level. The moment conditions of the 

dynamic panel data estimator used are only valid if there is no serial correlation in the 

idosyncratic errors. The Arellano-Bond test results confirm that this assumption holds for all 

models estimated (i.e. the tests fail to reject the null hypothesis of valid moment conditions). 

Further, the dynamic estimator produces only valid results if the overidentifying moment 

conditions are valid. The applied Sargan test results do not provide strong evidence against 

the null hypothesis of overidentifying restrictions. Hence, we conclude that the chosen 

estimation strategy including the choice of instruments is efficient and valid (Tables 2 and 3). 
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Off-farm income (Model I, Table 2). We find that the flood indicator has a negative effect on 

off-farm income in the year of flood occurrence. This may indicate some peak in on-farm 

workload at the time of the flood (e.g. to prevent higher damages) or directly after the flood 

occurrence (e.g. cleaning up, preparing re-seeding). In contrast, we found a higher off-farm 

income in the year after the flood occurrence, showing the expected switch towards the 

riskless asset after the experience of a flood event. The interaction term between farm size and 

the flood indicator variable results in an opposing effect compared to the sign of the 

coefficient by the flood indicator variable. This indicates that larger farms show less 

emphasized adjustment behavior after the flood occurrence with respect to their off-farm 

employment. Furthermore, our results indicate that larger farms are generally characterized by 

lower (relative) off-farm incomes, which is in line with our findings from the theoretical 

model and earlier research (e.g. Bell 2011; Mishra and Goodwin 1997; Poon and Weersink 

2011; Serra et al. 2005). 

We find a significant negative relationship between off-farm income and the diversity index. 

Thus, farms using a less diverse on-farm portfolio (indicated by a lower diversity index) are 

stronger involved in off-farm activities. This underlines our hypothesis that off-farm 

employment and on-farm diversity strategies are substitutes for the farmer. Furthermore, also 

crop- and input prices are found to affect the level of off-farm employment chosen by the 

farmer. More specifically, an increase in the one year lagged crop price (input price) index 

leads to a decrease (increase) in off-farm activities. Thus, increasing on-farm income 

opportunities decrease the attractiveness of off-farm employment and vice versa, which is 

consistent with our developed hypothesis and findings of previous research (e.g. Serra et al. 

2005; Woldehanna et al. 2000). Along these lines, we also find evidence supporting our 

hypothesis of a positive effect of the regional wage level on off-farm allocation of labor 

resources. Further, our results show that with an increasing share of assets of the farm being 

fixed (a lower liquidity index), involvement in off-farm activities is decreasing. This could 

indicate that once investments, potentially with a quasi-sunk character, have been made, on-

farm use of labor resources reacts less to changes in other factors determining off-farm 

activities. 

The estimated coefficient for the organizational form of the farm business indicates that the 

more commercialized the farm business is (i.e. the less family farm type structural 

characteristics play a role) the lower is the importance of off-farm activities. The latter effect 

is also captured by the estimated negative effect of the size of the farm business on off-farm 

income. No significant effect of the factor age was found.  

Finally, we found a strong positive and significant effect of the standard deviations of the 

climate variables. This confirms the conjecture that weather fluctuations increase the riskiness 

of on-farm activities, hence, triggers the use of risk-free off-farm activities (e.g. Serra et al. 

2005). 

Our results further suggest that flood policy measures significantly affected the depth of off-

farm employment. We find that the improvement and modification of the UK flood warning 

system in 1998 in conjunction with measures focusing on a general public awareness rise 

towards flooding led to a higher importance of off-farm activities. On the other hand, the UK 

Flood Water Management Act from 2010 negatively affected the level of off-farm activities, 

which could be due to a significant increase in trust by farmers towards the effectiveness of 

revised flood prevention systems. Finally, EU agricultural policy revisions show an effect 

only for the reform in 2000 (Agenda 2000) which obviously led a lower need for off-farm 

income, e.g. via increased compensation payments. Along these lines, a larger share of 

subsidization to total income is found to reduce off-farm employment. These results are in 
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line with earlier research showing that the use of risk management strategies decreases with 

increasing shares of non-volatile support payments (Finger and Lehmann 2012; Hennessy 

1998).  
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Table 2. System-Dynamic Panel Data Estimates - Off-Farm Income 

Variable Coefficient Robust Standard Error 1 

I) Lagged 

Off-farm income per ha (lag t-1) 0.246*** 0.011 

II) Exogenous 

Crop price index (lag t-1) -0.878*** 0.098 

General input price index (lag t-1) 0.701*** 0.129 

Regional wage index (lag t-1) 0.196*** 0.037 

Agricultural policy indicator 1992 1.942 4.455 

Agricultural policy indicator 2000 -32.045*** 3.344 

Agricultural policy indicator 2003 -4.041 3.021 

Flood policy indicator 1998 19.853*** 3.461 

Flood policy indicator 2007 2.984 3.543 

Flood policy indicator 2010 -19.919*** 3.422 

Farm size class -23.813*** 2.296 

Age of farmer 0.154 0.269 

Age * Age -8.61e-05 1.32e-04 

Business form -18.059*** 4.293 

Altitude -30.277*** 8.821 

Less favoured area -3.613 7.382 

Standard deviation of mean temperature  7932.091*** 1004.284 

Standard deviation of hours of sunshine  0.964*** 0.554 

Standard deviation of rainfall  5.131*** 0.656 

Standard deviation of days of rain  50.351*** 6.757 

Farm size * flood indicator 10.653*** 2.645 

Farm size * flood indicator (lag t-1) -5.726** 2.414 

III) Endogenous 4 

Flood indicator -29.673*** 6.741 

Flood indicator (lag t-1) 15.457** 6.228 

Diversity index -193.379*** 8.158 

Diversity index (lag t-1) -32.511*** 7.995 

Liquidity index 52.067*** 17.351 

Liquidity index (lag t-1) 64.095*** 17.561 

Output subsidies share of total income -107.049*** 18.376 

Output subsidies share of total income (lag t-1) 43.377*** 16.534 

Constant -1584.446*** 255.587 

IV) Model Statistics and Diagnostics 

Number of observations 11078  

Number of groups 1734  

Number of instruments 1600  

Wald chi2(36) 2922.68***  

Sargan test statistic 2 700.207  

Arellano-Bond test statistic 3 
1: -0.3675, 2: 

0.2409 
 

1: ***,**,*: significance at 1, 5, 10%-level; 2: Sargan test statistic of overidentifying restrictions; 3: 

Arellano-Bond test for zero autocorrelation in first-differenced errors. 4: Instruments for endogenously 

determined regressors: exogenous regressors under II).  
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Diversity of on-farm portfolio (Model II, Table 3). The flood indicator has a negative 

coefficient in the on-farm portfolio diversity model for the year of the flood occurrence, 

indicating a reduction in diversity. This result is caused by non-uniform effects of the flood 

occurrence on different activities of the farm. For instance, crop production may be (in terms 

of direct impacts) more likely to be affected by a flood than dairy production. Given the 

Herfindahl type definition of our diversity index, this asymmetry causes a decreasing index in 

the short-run, particularly in the setting of the here analyzed farm with particular focus on 

crop production. More important for our analysis, the lagged effect of the flood indicator 

shows that the diversity of the on-farm portfolio increases in flood occurrence (and intensity) 

in the subsequent period. Thus, choosing a more diverse and thus less risky portfolio seems to 

be – at least for some farmers – an optimal long-term response to cope with higher risks. The 

delay of this response is expected to be caused by the fact that resource allocation decisions 

(e.g. on land use) are taken on an annual basis, so that changes in on-farm portfolios may not 

be realizable within the year of flood occurrence. Also in this model, we find the interaction 

terms between farm size and the flood indicator variable results to have opposing effects 

compared to the sign of the coefficient by the flood indicator variable alone. Thus, larger 

farms show a less emphasized adjustment behavior after the flood occurrence also with 

respect to changes in on-farm diversity. However, larger farms are found to be more 

diversified. These findings underline the ambiguous expectations on the farm size effects on 

diversification derived above. 

The interaction term between off-farm income and the flood indicator variable has a positive 

coefficient. This underlines the above found pattern that in the year of flood occurrence, both 

off-farm employment and on-farm diversity tend to be increased. More importantly, 

considering the interaction of flood occurrence and the (one year) shifted response in off-farm 

income, we find that off- and on-farm risk management strategies are used as substitutes. 

Thus, if a farm increases off-farm employment in response to flood occurrence, a less diverse 

(i.e. more risky) on-farm strategy is chosen by the farmer. More general, the results show that 

farms with higher off-farm employment are characterized by less diverse on-farm portfolios, 

which confirms our hypothesis and is consistent with earlier research (e.g. Blank and Erickson 

2007). 

Furthermore, we found a positive and significant effect of the standard deviations of the 

climate variables (except for sunshine hours). Thus, farmers operating under more variable 

climate conditions tend to choose more diverse on-farm portfolios to cope with these risks, 

which is in line with other empirical research (e.g. Bezabih and Sarr 2012). A negative but 

saturating relationship between the on-farm diversity index and farmers’ age has been found, 

indicating younger farmers to use more diverse on-farm portfolios. We find chosen levels of 

diversification to be smaller (larger) if output (input) prices are high. Thus, a higher 

profitability of on-farm activities triggers specialization responses and vice versa.     

Flood policy measures significantly affected the level of diversity. We find that the 

improvement and modification of the UK flood warning system in 1998 in conjunction with 

measures focusing on a general public awareness rise towards flooding led to a higher 

diversity of farm production activities. The same significant effect has been found for the EU 

Floods Directive implemented in 2007. However, the UK Flood Water Management Act from 

2010 shows to negatively affect the level of diversity which could be due to a significant 

increase in trust by farmers towards the effectiveness of revised flood prevention systems. 

These findings are generally in line with those estimated for the importance of off-farm 

income, which holds also with respect to EU agricultural policy revisions represented by the 

agricultural policy indicator variables. Here, again we find only a significant effect with 

respect to Agenda 2000 leading to a lower diversity of farm activities. 



18 

 

Table 3. System-Dynamic Panel Data Estimates – Diversity Index 

Variable Coefficient Robust Standard Error 1 

I) Lagged 

Diversity index (lag t-1) 0.0811*** 0.011 

II) Exogenous 

Crop price index (lag t-1) -0.002*** 2.22e-04 

General input price index (lag t-1) 0.003*** 2.79e-04 

Agricultural policy indicator 2000 -0.042*** 0.006 

Agricultural policy indicator 2003 0.007 0.006 

Flood policy indicator 1998 0.062*** 0.007 

Flood policy indicator 2007 0.019*** 0.007 

Flood policy indicator 2010 -0.048*** 0.007 

Farm size class 0.014** 0.006 

Age of farmer -0.002*** 5.76e-04 

Age * Age 8.59e-07*** 2.38e-07 

Business form 0.004 0.009 

Less favoured area -0.004 0.014 

Altitude -0.101*** 0.019 

Standard deviation of mean temperature  4.926** 2.418 

Standard deviation of hours of sunshine  -0.002* 0.001 

Standard deviation of rainfall  0.003** 0.001 

Standard deviation of days of rain  0.011 0.017 

III) Endogenous 4 

Flood indicator -0.042*** 0.014 

Flood indicator (lag t-1) 0.141*** 0.016 

Off-farm income per ha -6.87e-04*** 1.05e-04 

Off-farm income per ha (lag t-1) 3.08e-04*** 6.46e-05 

Liquidity index -0.071* 0.036 

Liquidity index (lag t-1) 0.076** 0.038 

Output subsidies share of total income -0.558*** 0.039 

Output subsidies share of total income (lag t-1) 0.201*** 0.036 

Off-farm income * flood indicator 4.62e-07*** 4.96e-07 

Off-farm income * flood indicator (lag t-1) 2.00e-07 5.01e-07 

Off-farm income year after flood event -6.67e-04*** 1.02e-04 

Off-farm income year after flood event (lag t-1) -5.22e-05 6.18e-05 

Farm size * flood indicator 0.015*** 0.005 

Farm size * flood indicator (lag t-1) -0.046*** 0.006 

Constant 0.068 0.605 

IV) Model Statistics and Diagnostics 

Number of observations 9129  

Number of groups 1517  

Number of instruments 1700  

Wald chi2(36) 1756.30***  

Sargan test statistic 2 310.385  

Arellano-Bond test statistic 3 
1: -1.7429, 2: 

0.2624 
 

1: ***,**,*: significance at 1, 5, 10%-level; 2: Sargan test statistic of overidentifying restrictions; 3: 

Arellano-Bond test for zero autocorrelation in first-differenced errors. 4: Instruments for endogenously 

determined regressors: exogenous regressors under II).  

 



19 

 

6. Conclusions 

We develop a conceptual and empirical framework to analyze farmers’ adaptation responses 

to climate related extreme events. We extend earlier research by investigating measures taken 

at the whole farm level including on- and off-farm decisions as well as their interactions. Our 

empirical analysis focuses on the case of floods in UK agriculture and uses farm-level panel 

data for the period 1990-2011 enriched by a wide range of biophysical and climatic 

information. Dynamic panel models are estimated following a Arellano and Bover/Blundell 

and Bond GMM system approach, for off-farm income and the diversity of on-farm 

portfolios. In these models, the dynamic effects of flood occurrence and intensity as well as 

interactions between the dependent variables are estimated, by controlling for other 

biophysical, economic and farm specific variables.  

The empirical analysis shows that on- and off-farm risk management are driven by farm and 

farmers’ characteristics, climatic and economic boundary conditions as well as by agriculture 

an flood policies. For instance, off-farm employment and on-farm diversity are higher for 

farms facing more variable climatic conditions. Furthermore, increasing crop price levels lead 

to less off-farm employment and less diverse on-farm production. In contrast, both off-farm 

employment and diversity of on-farm production have been found to increase in input price 

levels. The use of risk management instruments both on- and off- the farm decreases with 

higher subsidy levels and were reduced with the introduction of the Agenda 2000 as well as 

the recent UK Flood Water Management Act. 

We find that both off-farm employment and more diverse on-farm production are strategies 

used by farmers to respond after the occurrence of a flood. On- and off-farm strategies are, 

however, found to be partially mutually exclusive. If increasing off-farm employment is used 

as adjustment to higher risks, on-farm diversification is reduced. Thus, we find ambiguous on-

farm risk adaptation responses depending on the use of off-farm risk management strategies. 

Furthermore, our results show that adaptation responses differ significantly by farm size. 

Larger farms show significantly smaller responses to flood events with regard to on-farm 

diversification and off-farm employment, which is, among others, due to the fact that they are 

characterized by better return-risk ratios and are thus less affected by an increase in perceived 

production risks.  

Thus, our results underline the relevance of whole-farm level strategies to cope with climatic 

extreme events such as floods (e.g. Pivot and Martin 2002). This also implies that the (long-

term) implications of such extreme events for farmers (e.g. Posthumus et al. 2009) should not 

be solely assessed in terms of on-farm performance (e.g. in terms of crop loss or yield 

reduction), but should account for both on- and off-farm resource use. A wide range of 

literature suggests that due to climate change extreme events are likely to occur more 

frequently in the future and agricultural production risks are expected to increase (e.g. 

Beniston et al. 2007; Gornall et al. 2010; Olesen et al. 2011). Against this background, our 

results suggest that higher risk due to climate change may not necessarily lead to more diverse 

production patterns (e.g. Bradshaw et al., 2004), an increase in risk reducing inputs (e.g. Smit 

and Skinner 2002) or, more general, an increased use of on-farm risk management. This is due 

to the fact that farms may also cope with higher risks by allocating assets outside of 

agricultural production. Thus, expectations that climate change may shift farmers towards 

more diverse (potentially more ecological valuable) production patterns (e.g. Lin 2011; 

Olesen et al. 2011) may be not generally valid. More general, tools that consider too narrow 

sets of adaptation responses could result in biased conclusions on climate change impacts and 

adaptation in agriculture.  
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Based on our analysis, future research should consider resource allocation opportunities off 

the farm to derive unbiased pictures of adaptation behavior. Thus, investigations on adaptation 

strategies in the framework of impact and vulnerability assessment as well as the development 

of policies supporting the management of climate risks should not be focused on on-farm 

strategies alone. The adaptation mechanisms revealed in our analysis are, however, only 

applicable if and only if other than on-farm opportunities are available to the farmer. This 

may, for example, not be the case in developing countries. An example is given by Devereux 

(2007) who show that floods in Malawi also cause disruptions beyond the agricultural sector 

and thus prevent applying the here outlined framework for adaptation. Finally, the 

microeconometric approach applied in this study shows that individual adaptation behavior 

with respect to extreme climate events can be robustly analyzed at individual farm level in an 

empirical setting. 
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