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Abstract 

Pandey, S., 1990. Risk-efficient irrigation strategies for wheat. Agric. Econ., 4: 59-71. 

Agricultural production is risky. When farmers are risk-averse, they are likely to put a premium 
on production methods that reduce perceived risks. Irrigation is generally believed to be a risk­
reducing input. By using the concept of stochastic dominance, risk-efficient irrigation policies for 
wheat grown in central India are identified and quantitative estimates of benefits due to risk 
reduction are obtained. Such benefits were found to be of a large order of magnitude. The more 
common methods such as mean variance analysis tended to over-estimate the benefits. 

Introduction 

Agricultural production processes are inherently risky, one of the major 
sources of risk being the climatic variability. When farmers are risk-averse, as 
is typically the case, they allocate controllable inputs in such a way as to reduce 
the impact of risk. Thus, it may be important to incorporate risk in models of 
farmer behaviour. 

The objective in this paper is twofold. First, risk-efficient irrigation sched­
ules for winter wheat grown in the Raisen district of central India are identi­
fied. This is achieved by applying the concept of stochastic dominance with 
respect to a function (Meyer, 1977a, b). Second, the value of investment in 
irrigation for a group of risk-averse farmers is estimated. For a risk-neutral 
farmer, this is equal to the expected gain in net returns with irrigation over 
that without irrigation. As irrigation generally reduces yield risk, additional 
benefits in the form of reduced risks of low net incomes are obtained by risk­
averse farmers. Such additional gains are quantified. 

1Present address: Department of Agricultural Economics, University of New England, Armidale, 
N.S.W., Australia. 

0169-5150/90/$03.50 © 1990 Elsevier Science Publishers B.V. 
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Decision making under uncertainty 

One of the most widely applied models for studying decision making under 
uncertainty is the expected utility model (Schoemaker, 1982). The implemen­
tation of the model requires that both the probability distribution of outcomes 
and the risk preferences of decision makers be precisely known. The measure­
ment of risk preferences directly by elicitation of utility functions, or indirectly 
by imputation, is subject to large errors (King and Robison, 1981; Schoemaker, 
1982). Stochastic efficiency criteria are useful when risk preferences cannot 
be measured accurately. These criteria satisfy the axioms of the expected util­
ity model but do not require precise measurements of risk preferences. How­
ever, as opposed to the complete ordering achieved when risk preferences are 
precisely known, stochastic efficiency rules provide only a partial ordering. 

Stochastic efficiency rules are implemented by pairwise comparisons of cu­
mulative distribution functions ( CDFs) of outcomes (e.g., of net income) re­
sulting from different actions. If the only restriction that can be placed on the 
nature of the utility function is that more is preferred to less (i.e., the first 
derivative of the utility function is positive), the first degree stochastic domi­
nance rule (FSD) can be applied. Graphically, the rule requires that, for the 
distribution F ( Y) to be preferred to G ( Y), F ( Y) should never be to the left of 
G( Y) but should be to the right of G( Y) for at least one probability point. No 
assumptions are made about risk preferences of the decision maker. The coef­
ficient of absolute risk aversion (Pratt, 1964) may be anywhere between - oo 
to + oo. Thus, the rule has a very low discriminatory power. 

If it is assumed that the marginal utility is positive but decreases with an 
increase in income, the second degree stochastic dominance (SSD) rule is ap­
plicable. The allowed range on the value of the absolute risk-aversion coeffi­
cient is 0 to + oo. This rule is applicable to all risk-averse decision makers. For 
G ( Y) to be dominated by F ( Y), the SSD rule requires that: 

X 

J [F(Y)-G(Y)] dY::;o forall-oo<x<oo 

-co (1) 
<0 for some x 

The SSD criteria, although more powerful than the FSD, may still be inade­
quately discriminatory for many practical applications (Anderson, 1974; An­
derson et al., 1977). 

Based on Pratt's (1964) proof that the coefficient of absolute risk aversion 
represents risk preferences uniquely, Meyer (1977a, b) has proposed a more 
general stochastic dominance rule, often termed stochastic dominance with 
respect to a function ( SDWRF). If the absolute risk -aversion function of a class 
of decision makers is bounded by r1 ( Y) and r2 ( Y), F( Y) is preferred toG( Y) 
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by all decision makers within the preference interval if the utility function 
u ( Y) which minimises: 

+oo 

f [G(Y)-F(Y)] u'(Y) dY (2) 
-00 

subject to 

(3) 

produces a positive value of the equation. If the minimum is negative, F( Y) 
does not dominate G ( Y). In this case, to check if G ( Y) dominates F ( Y), the 
minimum of the expression: · · 

+oo 

f [F(Y)-G(Y)] u'(Y) dY (4) 
-oo 

subject to (3) is evaluated. If the minimum is positive, F( Y) dominates G( Y). 
If the minimum is again negative, both the distributions are in the efficient 
set. The SDWRF criteria cannot discriminate between the two distributions in 
such cases. 

The discriminatory power of SDWRF depends on the width of the preference 
interval as defined by r1 and r2 • The desired level of precision can be achieved 
by selecting an appropriate range of 'r'. Thus SDWRF allows one to make a 
tradeoff between the probability of Type I error (i.e., incorrect ranking) which 
is high in the explicit utility model and the probability of Type II error (i.e., 
incomplete ranking) which is high in FSD and SSD criteria. Due to these flexi­
bilities, SDWRF has become a popular tool used in both policy research and 
agricultural extension work (King and Robison, 1981; Kramer and Pope, 1981; 
Harris and Mapp, 1986). A comprehensive review of SDWRF is provided by 
Cochran (1986). 

When preferences are nonlinear, SDWRF can also be used to calculate the 
additional benefit resulting from one action over another. The additional ben­
efit is equal to the amount which a class of decision makers would be willing 
to pay, in each state of nature, and remain indifferent between a dominant 
distribution and an inferior alternative (Byerlee and Anderson, 1982). IfF ( Y) 
dominates G ( Y), willingness to pay for using the strategy which generates 
F ( Y) over the alternative generating G ( Y) is equal to the horizontal leftward 
shift in F ( Y) required for both F ( Y) and G ( Y) to be in the efficient set. The 
size of the horizontal shift ( V) is calculated by satisfying the following three 
conditions simultaneously (Bosch and Eidman, 1987): 
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1 

f [ G ( Y) - F ( y- V) ] u I ( Y) d y > 0 (5) 
0 

1 

f [G(Y)-F(Y- V-Z)] u'(Y) dY~O (6) 

0 

and 

(7) 

Z in equation (6) is a small positive number. When the utility function u is 
linear, Vis equal to the difference between the means of the distributions G ( Y) 
and F( Y). If r1 ( Y) = r2 ( Y), i.e., if preferences are precisely known, V is the 
difference between certainty equivalents ofF ( Y) and G ( Y). 

In the context of investment in irrigation, Vis an indicator of benefits that 
farmers derive through the use of water. It is the sum of the expected increase 
in net income made possible by irrigation and the gain in terms of reduction 
in production risk compared to a non-irrigated situation. Although it has been 
generally accepted that irrigation reduces production risks, attempts at quan­
tifying benefits of reduction in risk have been few and generally made under 
more restrictive assumptions of normally distributed net returns and exponen­
tial or quadratic utility functions (Carruthers and Donaldson, 1971; Apland et 
al., 1980; English, 1981; Boggess et al., 1983) .1 While appraising irrigation proj­
ects, no explicit account is generally taken of such additional benefits (Sinha 
and Bhatia, 1982). Hence benefits from irrigation may have been under-esti­
mated in the evaluation of irrigation projects. 

Empirical models 

Distributions of net returns for several exogenously-specified irrigation 
schedules were obtained in this study using a simulation model. The simula­
tion model consists of a simplified soil water balance sub-model for wheat grown 
in the Raisen district of central India, and an equation for predicting yield on 
the basis of transpiration deficit. Thirty years of daily climatic data were used 
to drive the model. 

Wheat was assumed to be sown on the 298th Julian day and harvested on 
the 54th Julian day of the following year. Although these dates vary slightly 

1 However, Meyer ( 1987) has shown that these assumptions are not always necessary for the mean­
variance analysis to be theoretically consistent with the expected utility model. A sufficient con­
dition for the mean-variance analysis to be valid is that net returns be a positive linear function 
of the stochastic variable. 
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from year to year, they represent a typical pattern in the district under study. 
The growing season was divided into four stages, namely: sowing to ear initi­
ation (40 days), ear initiation to flowering (25 days), flowering to soft dough 
(25 days) and soft dough to harvest (31 days). In using this classification, 
response to irrigation is presumed to differ among these stages but to remain 
constant within a stage. 

Yield of wheat is predicted using a transpiration-based model estimated by 
Pandey ( 1985). The specification used is: 

4 

Yt=aJl (TITp):j exp[etl (8) 
i=l 

where Y is actual yield, Tactual transpiration, T P potential transpiration, a, A 
model parameters, i growth stage index, t time index, and e normal random 
variate [E(e) =0, E(e 2 ) =a2 ]. 

For estimating the model, data on T and T p for various growth stages are 
required. Since these data were not directly available, they were estimated us­
ing the soil water balance model. The details of the soil water balance and its 
validation are discussed by Pandey ( 1986). 

Irrigation experiments conducted by Tomar et al. ( 1981) for three years 
(1974/75-1976177) each consisting of four treatments were used as the basic 
data source. TITP for the first stage was close to unity in all twelve observa­
tions as a pre-sowing irrigation was provided to all treatments. Hence A could 
be estimated for the last three stages only. 

A note is in order for the specification of the error structure used in the 
model. Just and Pope ( 1978) have shown that a multiplicative error structure 
such as in equation ( 8) implies that marginal risk increases with an increase 
in TIT P· In the present case, as TIT p approaches unity marginal risk can be 
expected to decrease. Despite the appropriateness of the Just and Pope speci­
fication for the present study, the limited number of data points (only 12) 
precluded any reliable estimation of marginal risk coefficients. 

The estimate of the yield response equation is: 

logY= 1.57 + 0.52 log(TITp) 2 + 0.09 log(TITp)s 

R2 =90 

n=12 

(0.05) (0.24) (0.11) 

+ 0.16 log(TITP)4 
(0.05) 

The estimated standard errors are in parentheses. 

(9) 

The antilog of the intercept provides an estimate of the potential yield of 
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wheat in the absence of moisture stress. Its value for equation (9) is 4.8 t/ha. 
Such high yields are unlikely to be realised on farmers' fields due to poorer 
environmental conditions and inadequacy of complementary inputs in com­
parison to those in experimental plots. Accordingly, the estimated value of the 
intercept was shifted down to represent a more realistic yield of 1 tjha on 
farmers' fields. 

The model was used to predict wheat yield for various irrigation schedules. 
The basic structure of the schedules is presented in Table 1. The range of water 
application was varied from 10 to 60 mm in steps of 10 mm. Thus, there are 
six sets of eight schedules each. The first seven schedules of each set are derived 
using all possible combinations of skipping irrigation in the last three stages. 
The last schedule (i.e., the eighth of each set) corresponds to the existing prac­
tice of irrigating in all four stages. 

In the first set of schedules, the quantity of water applied is 10 mm. For 
example, in the third schedule, 10 mm of water is applied on the first day of 
each of the stages 2, 3 and 4. In the second set, 20 mm of water is assumed to 
be applied when irrigated. Altogether 49 schedules were thus generated by add­
ing a final non-irrigated treatment. The possibility of varying the level of water 
application between stages is not considered in these schedules. 

Lower and upper bounds (r1 and r2 ) on the values of absolute risk-aversion 
coefficient defined over net income for a representative farm are required for 
implementing SDWRF. Evidence indicates that poor farmers in India are mostly 
risk averse (Binswanger, 1980; Antle, 1987). Hardaker and Ghodake (1984) 
have calculated 'r' from the estimates of partial risk-aversion coefficients re­
ported by Binswanger ( 1980). Their estimates range from 1.03 X 10-4 to 

TABLE 1 

Basic structure of irrigation schedules 

Schedule Growth stage 

1 2 3 4 

1 xt !; X X 
2 X !; X 
3 X j j 
4 X X j X 
5 X X X '!; 6 X j X 
7 X X !; '!; 8 j j 

X, if water not applied; j, if water applied. 

t, metric tonne= 1000 kg. 
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2.67X10-3• Based on Anderson et al. (1985, p. 3), Pandey (1986) calculated 
'r' as the ratio of relative risk-aversion coefficient to the total wealth. The 
estimate is equal to 4 X 10-5• In the light of Raskin and Cochrane's (1986) 
comments about the pitfalls in transferring the estimates of coefficient of risk 
aversion estimated in a particular situation to another, four ranges for risk­
aversion coefficients are used. The ranges specified are 0 to 0.000 04, 0.000 04 
to 0.0004, 0.0004 to 0.004, and 0.004 to 0.04. 

Thirty years of daily rainfall and evaporation data were used for predicting 
T and T P for each irrigation schedule. Yield was predicted by substituting the 
estimated value of T and T P in equation ( 9) and allowing for random varia­
tion(s in the error term. Randomness was explicitly incorporated because pa­
ram~ters of the regression equation are themselves random (Anderson, 1976). 
Following Mihram ( 1972), different seeds for generating random numbers were 
used for each of the schedules. Thus, estimated yields incorporate stochasticity 
in the climatic variables and in the estimated parameters of the model. 2 

Net returns were calculated by subtracting all variable costs from gross re­
turns. Variable costs included were of three types: the input costs which were 
fixed for all treatments (fertilizers, labour, etc.); the cost of irrigation which 

TABLE2 

Summary statistics of distributions of yield, net returns and water applied for FSD schedules a 

Schedule Yield Net income Average 
number quantity 

Mean SD Coefficient Mean SD Coefficient of water 
(t/ha) (t/ha) of skewness (Rs./ha) (Rs./ha) of skewness applied (em) 

S22 0.76 0.12 0.18 432 185 0.99 12.0 
S23 0.73 0.13 0.39 391 204 0.35 12.0 
S27 0.85 0.08 0.76 460 137 0.47 19.5 
S28 0.69 0.19 0.73 374 300 0.77 9.5 
S29 0.72 0.16 0.56 418 260 0.45 9.5 
S31 0.79 0.12 -0.53 453 187 -0.61 14.5 
S35 0.91 0.08 -0.25 502 131 -0.16 23.2 
S37 0.75 0.14 -0.02 448 227 0.14 10.7 
S38 0.83 0.08 0.02 484 137 -0.42 17.0 
S39 0.81 0.13 -0.07 445 205 0.04 17.0 
S42 0.87 0.09 0.63 510 161 0.37 19.5 
S43 0.96 0.06 -0.55 531 107 0.01 27.0 
S45 0.80 0.10 0.36 505 151 0.30 12.0 
S46 0.87 O.Q7 0.79 502 118 0.15 19.4 
S49 0.56 0.16 0.36 315 268 0.37 0 

aResults are presented for one unit area. However, all stochastic efficiency analyses were con-
ducted by scaling net returns up to the representative farm size. 

2These are the only sources of stochasticity considered in this paper. 
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varied according to the quantity of water applied and the number of applica­
tions; and the harvesting costs which varied according to the yield of the crop. 
In gross returns was also included the market value of wheat straw. Summary 
measures of distributions of yield, net returns and quantity of water applied 
for 15 schedules that are efficient in the sense of FSD are presented in Table 
2. 

The distributions of yields and net returns are skewed in most cases. This 
agrees with the observations made by Day (1965) and Walker and Subba Rao 
( 1982). The usual assumption of normality hence seems inappropriate. 

Analysis 

A microcomputer program developed by Goh et al. (1987) was used for sto­
chastic efficiency analyses. The program also allows for the identification of 
quasi-first- and second-degree stochastic dominance. The distributions pre­
sented in Table 2 are quasi-FSD. For quasi-FSD, the bounds on r( Y) are set 
wide enough to include essentially all observed risk-preference behaviour. For 
quasi-ssn, the lower bound is set equal to zero. The bounds are set automati­
cally by the program such that the absolute size of the relative risk-aversion 
coefficient never exceeds 100. 

Results 

Ofthe 49 distributions considered, 15 were quasi-FSD (Table 2). The sched­
ule of irrigating in all four stages, which is recommended by extension workers 
in the region, was dominated in the sense of FSD. Only four schedules (835, 
843, 845, 846) were quasi-ssn. It is not possible to discriminate among these 
schedules on the basis of the usual SSD criteria. All four schedules have a com­
parable average net income but average water use for schedules 845 and 846 is 
much lower compared to that for schedules 835 and 843. Thus schedules 845 
or 846 may be preferable if reduced water usage is also one of the objectives. 

Results of SDWRF are presented in Table 3. For a low level of risk aversion 

TABLE3 

Results of SDWRF 

Risk aversion 
interval 

0-0.000 04 
0.000 04-0.0004 
0.0004-0.004 
0.004-0.04 

Dominant 
schedules 

843 
843 
843,846 
845,846 
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(O:::::::r:::::::O.OOO 04), the risk-efficient schedule is 843. The schedule is also the 
one which maximises the average net return. At a very high level of risk aver­
sion (0.004:::::::r:::::::0.04), 843 ceases to be risk-efficient. 845 and 846 are prefer­
able due to their risk-reducing effects, even though mean net incomes for these 
schedules are lower. 843 and 846 are risk-efficient schedules if the maximum 
size of 'r' is 0.004. These schedules correspond to the application of 60 mm of 
water in stages 2, 3 and 4 and the application of 60 mm of water in stages 2 and 
4, respectively. 

More risk-averse farmers might be expected to apply a higher quantity of 
risk-reducing inputs, such as water. However, within the risk-preference in­
terval considered in this study, the average level of water application associ­
ated with risk-efficient schedules seems to decrease with an increase in risk 
aversion. This behaviour can be explained on the basis of an increased positive 
skewness of net returns associated with water-conserving schedules ( 845 and 
846) and higher net returns at lower tails compared to 843 (Fig. 1). Both these 
factors increase the utilities of water-conserving schedules (Tsiang, 1972; 
Hammond, 1974). 

The dominance of schedules 843 and 846 implies that farmers using these 
schedules are better off than the ones without an access to irrigation (schedule 
849). The value of irrigation ( V) is the maximum amount the existing users 
of 843 (or 846) will be willing to pay to continue using 843 (or 846). As men­
tioned before, V measures the value to farmers at only one of the end points in 
the preference interval (r1 , r2 ). Farmers at the other end of the preference 
interval will always be willing to pay more than V. Thus, upper and lower limits 

0·8 

~ 0·6 
as 
<1i 
0 
cr 
0.. 

";;! 0·4 
j 
:::> 
:>: 
3 ----· 543 

0·2 ----+ 546 

545 

0 
zoo 400 600 800 

NET RETURNS IRs I hoI 

Fig. 1. Cumulative distribution functions of net returns. 
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on the value of V can be identified. The lower limit VL is as defined above. The 
upper limit ( V u) is the horizontal shift in the CDF ofthe dominant distribution 
required for all users of the dominant strategy to switch over to the undomi­
nated strategy. The two limits converge with the convergence ofthe preference 
interval. If the risk aversion coefficient is precisely defined, V = V u = V L is the 
difference between certainty equivalents of the dominant and the dominated 
distribution. It is common to calculate certainty equivalents as a linear com­
bination of mean and variance (Freund, 1956) under the dual assumptions of 
an exponential utility function and normally distributed net returns. The es­
timates of Vobtained using the exponential utility, moment-generating func­
tion approach (EUMGF) as implemented by Yassouret al. (1981) are presented 
in Table 4 for normal and gamma distributions along with those obtained using 
SDWRF. 

For the first preference interval, VL is Rs.216/ha. This is obtained using 
r1 ~0. It is simply the difference between the means of net returns associated 
with 843 and 849. Both VL and Yu increase with an increase in the coefficient 
of~isk aversion. At low levels of risk aversion, estimates of V under SDWRF are 
similar to those under normal and gamma distribution assumptions. However, 
'with an increase in the risk aversion coefficient, the assumptions of normal 
and gamma distribution resulted in over-estimate and under-estimate, respec­
tively. For example, Yu for the third interval using SDWRF is three times lower 
and 1.5 times higher than the corresponding values under normal and gamma 
distribution assumptions, respectively. SDWRF may be considered to provide a 
better estimate of the true V because no assumptions about the nature of dis­
tribution are made. The assumption of the normal distribution, which is com-

TABLE4 

Lower (VL) and upper ( Yu) limits on the benefits of irrigation 

Risk -aversion Benefits of irrigation• 
interval 

rl r2 SDWRF Normal Gamma 

VL Vv VL Vv VL Vv 
(Rs./ha) (Rs./ha) (Rs./ha) (Rs./ha) (Rs./ha) (Rs./ha) 

0 0.000 04 216 228 216 228 216 227 
0.000 04 0.000 4 228 318 228 337 227 285 
0.000 4 0.004 318 461 337 1429 285 302 

"Dominant and dominated schedules used in these calculations are 843 and 849, respectively. 

U8$1.00=Rs.10. 
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manly used in risk analysis, tended to over-estimate V, the severity of over­
estimation increasing with the size of 'r'. 

Taking the third preference interval as the relevant one, the estimate of 
VL=Rs.318 is the sum of the benefits from increase in mean net return and 
benefits from risk reduction. The latter is the difference between V L for the 
third and the first preference intervals (i.e., Rs.318-Rs.216=Rs.l02). In the 
present case, benefits due to risk reduction seem to be as high as 4 7% (i.e., 
Rs.102/Rs.216) ofthe benefits in terms of increase in mean net returns. Thus 
risk-reducing inputs such as irrigation can improve farmers' welfare substan­
tially by reducing income risks. Benefits from investments for supplying such 
inputs can be seriously under-estimated if, as is the general practice, only the 
difference between mean net returns is considered. 

Summary and Conclusions 

Risk-efficient irrigation schedules for wheat were identified using a gener­
alised stochastic dominance. The policy of applying 60 mm of water in growth 
stages 2, 3 and 4 was found to be risk efficient at low levels of risk aversion. 
The efficient schedule for a higher level of risk aversion was to skip irrigation 
in the second stage. This contrasts with the extension advice of applying about 
60 mm in each of the four stages. The usual rationale for an intensive irrigation 
as a risk-reducing strategy is not supported by this study. In fact, increased 
risk aversion within the preference interval examined resulted in reduced water 
usage. 

The benefits of irrigation to risk-averse farmers were also calculated using 
the stochastic dominance rule. The results indicate that benefits in terms of 
reduction in risk may be a significant proportion of the difference in mean net 
returns with and without irrigation. Such benefits, of course, increase with an 
increase in risk aversion. The more common mean-variance analysis tended 
to over-estimate benefits from risk reduction. Benefits of irrigation may be 
significantly under-estimated in the appraisal of irrigation projects if nonlin­
earity in risk preferences is not allowed for. 

Acknowledgements 

Assistance from Jock Anderson and Bob Lindner is gratefully acknowledged. 

References 

Anderson, J.R., 1974. Risk efficiency in the interpretation of agricultural production research. 
Rev. Market. Agric. Econ., 42: 131-184. 

Anderson, J.R., 1976. Essential probabilistics in modelling. Agric. Syst., 1: 219-231. 



70 

Anderson, J.R., Dillon, J.L. and Hardaker, J.B., 1977. Agricultural Decision Analysis. Iowa State 
University Press, Ames, lA, 344 pp. 

Anderson, J.R., Dillon, J.L. and Hardaker, J.B., 1985. Farmers and risk. Paper presented at the 
19th Int. Conf. Agricultural Economists, 26 August-4 September, Malaga, Spain. 

Antle, J.M., 1987. Econometric estimation of producers risk attitudes. Am. J. Agric. Econ., 69: 
509-522. 

Apland, J., McCarl, B.A. and Miller, W.L., 1980. Risk and demand for supplemental irrigation: a 
case study in the corn belt. Am. J. Agric. Econ., 62: 142-145. 

Binswanger, H.P., 1980. Attitudes towards risk: experimental measurement in rural India. Am. J. 
Agric. Econ., 62: 395-407. 

Boggess, W.G., Lynne, G.D., Jones, J.W. and Swaney, D.P., 1983. Risk-return assessment of ir­
rigation decisions in humid regions. South. J. Agric. Econ., 15: 135-143. 

Bosch, D.J. and Eidman, V.R., 1987. Valuing information when risk preferences are nonneutral: 
an application to irrigation scheduling. Am. J. Agric. Econ., 69: 658-668. 

Byerlee, D. and Anderson, J .R., 1982. Risk, utility and the value of information in farmer decision 
making. Rev. Market. Agric. Econ., 50: 231-245. 

Carruthers, I.D. and Donaldson, G.F., 1971. Estimation of effective risk reduction through irri­
gation of a perennial crop. J. Agric. Econ., 22: 39-48. 

Cochran, M.J ., 1986. Stochastic dominance: the state of the art in agricultural economics. In: Risk 
Analysis for Agricultural Production Firms: Implications for Managers, Policy Makers, and 
Researchers, Washington State University, Pullmam, WA, pp. 116-143. 

Day, R., 1965. Probability distributions offield crop yields. J. Farm Econ., 47: 713-741. 
English, M.J., 1981. The uncertainty of crop models in irrigation optimisation. Trans. ASAE, 24: 

917-928. 
Freund, R.J., 1956. The introduction of risk into a programming model. Econometrica, 24: 253-

263. 
Goh, S., Raskin, R. and Cochran, M.J., 1987. A generalised stochastic dominance program for the 

IBM-PC. University of Arkansas, AR, 12 pp. 
Hammond, J.S., 1974. Simplifying the choice between uncertain prospects where preference is 

nonlinear. Manage. Sci., 20: 1047-1072. 
Hardaker, J.B. and Ghodake, R.D., 1984. Using measurement of risk attitude in modelling farmers 

technology choices. Econ. Program Rep. 60, International Crops Research Institute for the 
Semi-Arid Tropics, Andhra Pradesh, India, 15 pp. 

Harris, T.R. and Mapp, H.P., 1986. A stochastic dominance comparison of water-conserving ir­
rigation strategies. Am. J. Agric. Econ., 68: 298-305. 

Just, R.E. and Pope, R.D., 1978. Stochastic specification of production functions and economic 
implications. J. Econometrics, 7: 67-86. 

King, R.P. and Robison, L.J., 1981. An interval approach to measuring decision maker prefer­
ences. Am. J. Agric. Econ., 63: 510-520. 

Kramer, R.A. and Pope, R.D., 1981. Participation in farm commodity programs: a stochastic 
dominance analysis. Am. J. Agric. Econ., 63: 119-128. 

Meyer, J., 1977a. Choice among distributions. J. Econ. Theory, 14: 326-336. 
Meyer, J., 1977b. Second degree stochastic dominance with respect to a function. Int. Econ. Rev., 

18: 477-487. 
Meyer, J., 1987. Two-moment decision models and expected utility maximisation. Am. Econ. 

Rev., 77: 421-430. 
Mihram, G.A., 1972. Simulation: Statistical Foundations and Methodology. Academic Press, New 

York, 526 pp. 
Pandey, S., 1985. Some estimates of an evapotranspiration-based yield response model for wheat 

grown on deep vertisols of India. University of New England, Armidale, N.S.W., 15 pp. 



71 

Pandey, S., 1986. Economics of water harvesting and supplemental irrigation in the semi-arid 
tropics oflndia: a systems approach. Ph.D. thesis, University of New England, Armidale, N.S.W., 
312 pp. 

Pratt, J., 1964. Risk aversion in the small and the large. Econometrica, 3: 122-136. 
Raskin, R. and Cochran, M.J., 1986. Interpretation and transformations of scale for the Pratt­

Arrow absolute risk aversion coefficient: implications for generalised stochastic dominance. 
West. J. Agric. Econ., 11: 204-210. 

Schoemaker, P.J.H., 1982. The expected utility model: its variants, purposes, evidence and limi­
tations. J. Econ. Lit., 20: 529-563. 

Sinha, B. and Bhatia, R., 1982. Economic Appraisal of Irrigation Projects in India. Agricole Pub­
lishing Academy, New Delhi, 487 pp. 

Tomar, S.S., Gupta, R.K. and Tomar, A.S., 1981. Water management of wheat in heavy clay soils 
of Madhya Pradesh. Indian J. Agric. Sci., 51: 493-497. 

Tsiang, S.C., 1972. The rationale of the mean-standard deviation analysis, skewness preference, 
and the demand for money. Am. Econ. Rev., 62: 354-371. 

Walker, T.S. and Subba Rao, K.V., 1982. Yield and net return distributions in common village 
cropping systems in the semi-arid tropics of India. Econ. Program Progr. Rep. 41, Interna­
tional Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India, 33 pp. 

Yassour, J., Zilberman, D. and Rausser, G.C., 1981. Optimal choices among alternative technol­
ogies with stochastic yield. Am. J. Agric. Econ., 63: 718-723. 




