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This paper has two main purposes: ( 1 ) to develop a method for measuring the extent and bias 
of technical change which involves the use of non-parametric production frontiers and does not 
require information on prices or factor shares; (2) to apply this method to individual farm data 
drawn from a sample of Illinois grain farms for the years 1982 and 1984. The results indicate that 
technical innovation is land using in nature and that the rate of technical change is related to the 
size of farm. 

Introduction 

This paper has two main purposes. First, a method for measuring the extent 
and bias of technical change is developed. Economists have become increas­
ingly concerned with analyzing the process of technical change. Much of this 
work has centered on explaining the rate and bias of technical innovation. The 
main problem is that many of the methods require data on factor prices or 
shares which are often not available. This paper presents an alternative method 
for measuring the rate and bias of technical change which does not require 
information on factor prices or shares. 

The second purpose of this paper is to apply this theoretical framework to 
individual farm data drawn from a sample of Illinois grain farms for the years 
1982 and 1984. The extent and bias of technical innovation are determined. In 
addition, an analysis of the results assesses whether the rate of technical in-
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novation is related to: ( 1) the size of farm, ( 2) tenancy, or ( 3) the amount of 
land set aside in governmental programs. Given the problems confronting 
farmers in the United States, it is important to know which of these charac­
teristics influence the rate of technological change. 

In the next section, various methods which have been used in the past for 
measuring the extent and bias of technical change are discussed. The alter­
native theoretical framework used in this paper is presented in detail. Section 
2 presents the empirical results. 

1 . Methodology 

In a recent survey paper, Diewert (1980) discussed four basic approaches to 
measuring the rate of increase in total factor productivity or technical change. 
For ease of presentation in this paper, two of these approaches are combined 
so that three methods are discussed: the econometric approach, the index num­
ber approach, and the non-parametric programming approach. In order to make 
the discussion general, the last category is also modified to represent both par­
ametric or non-parametric programming approaches to measuring productiv­
ity increases. 

The multiple output econometric approach usually makes use of a joint cost 
function c defined as: 

c(y, w, t) =minx{ w· x(y, x) eSt} (1) 

where y= (y1, y2, ... , Ym) is a vector of outputs, w = (wll w2, ... , Wn) is a positive 
vector of input (rental) prices that the producer faces, x= (x1, x2 , ••. , Xn) is a 
non-negative vector of inputs utilized, WX= LWnXm and st denotes the firm's 
period t production possibilities set. The econometric approach to measuring 
shifts in the production function rests on a number of assumptions: ( 1) that 
producers competitively minimize cost, and (2) that a conventional functional 
form for cost can be specified. Given the assumptions, a system of input de­
mand equations is derived to which error terms are added. The resulting sys­
tem of equations is then used to estimate econometrically the unknown 
parameters of c. Once c has been determined, summary measures of the shift 
in productivity (a ln cjat) can be calculated. A more detailed discussion of this 
approach is provided in the discussion below concerning the determination of 
the bias of technical change. 

The second approach involves the use of index numbers. Let y ( t) = f ( x ( t), 
t) be output at time t, and let x ( t) = (x1 ( t), x2 ( t), ... , Xn ( t)) denote the vector 
of inputs utilized at time t. Assuming that the production function f is differ­
entiable, differentiating y(t) =:f(x(t), t) with respect tot and dividing both 
sides by f(x(t), t) gives: 

y(t) =~[a ln f(x(t), t)]xn(t) +a ln f(x(t), t) (2) 
y(t) n=l axn at 
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where y ( t) and xn ( t) are time derivatives. If the price of output is p ( t) at time 
t and the producer pays each input the value of their marginal product so that 
the nth input price wn (t) =P (t) af(x (t), t) ;axm then equation (2) can be rear­
ranged to give: 

a ln f (X ( t) , t ) 

at 
y(t)- IS (t)xn(t) 
Y ( t) n = 1 n Xn (t) 

( 3) 

where Sn(t) =wn(t) Xn(t)/p(t) y(t). In other words, the left-hand side of 
equation ( 3) gives the rate of growth in output which is unexplained by the 
growth in inputs. If continuous data on output, inputs, and input prices are 
available, then equation ( 3) can be calculated. 

The main difficulty with both approaches is that they require data on factor 
shares and/or input price data. Lacking such data makes it impossible to mea­
sure the extent of technological change using these approaches. Even assuming 
that such data are available, there is a more fundamental problem with using 
these approaches. Both procedures assume that individual operations or ob­
servations are efficient. As a result, all of the shift in the cost function and all 
of the difference between output and input growth is attributed to increased 
productivity or technological change. When one allows for the possibility that 
firms may not be efficient, then part of the increase in output may be due to 
improved efficiency of operation, not technical change. 

Nishimizu and Page ( 1982) make this idea clear through the use of a simple 
diagram. In Fig. 1, g1 and g2 represent linear homogeneous Cobb-Douglas fron­
tier production functions with technical progress between periods 1 and 2. A 
frontier production function gives the maximum possible output which can be 
produced from various quantities of a set of inputs. The word 'frontier' implies 
that points occur below or on the frontier, but never above it. Points A and C 
are observed levels of output y 1 and y 2 (in logarithms) for input x1 and x2 (in 
logarithms) at time periods 1 and 2 for the same observation. As can be seen, 
observation A lies below the frontier (g1 ) for period one, i.e., it is producing 
less that its potential output in time period 1, )\.Line segment AB is a projec-

Fig. 1. Technical change and efficiency. 
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tion from point A assuming constant returns to scale. Finally, observation C 
(time period 2) lies on time period 2's frontier (g2 ). Observation Cis producing 
the maximum level of output y 2 = y2 (:92 is the maximum potential output of 
observation C). 

The total increase in output between periods 1 and 2 is A' C. The total factor 
productivity approach attributes A' B of the increase to increased input usage 
while the rest, BC, is the result of technical change. Obviously, this is incorrect. 
The distance from B to D represents an improvement in technical efficiency 
and only DC represents technical change. In order to correctly measure tech­
nical change, Nishimizu and Page ( 1982) suggest that production frontiers be 
constructed for each year. Measuring the shift in the production frontier 
through time is used to calculate technical change. 

In order to use the approach suggested above, production frontiers are con­
structed for a sample of observations at different points of time. There are four 
methods available for constructing these frontiers. The first method is the de­
terministic non -parametric approach (Farrell, 1957) which uses linear pro­
gramming to construct the frontier. No parametric form is specified and the 
method uses the entire sample of observations, but constrains all points in 
output space to lie on or below the frontier. Although this technique corre­
sponds most closely to the theoretical concept of a frontier, empirically it is 
sensitive to errors in observations (the outlier problem). More will be said 
below concerning this method. 

The second approach involves constructing a deterministic parametric fron­
tier. The only difference between this method and the deterministic non-par­
ametric method is that the frontier is constructed using a specific functional 
form. This method was first suggested by Farrell and has been extended by 
Aigner and Chu ( 1968). The principle advantages of this method are the abil­
ity to characterize frontier technology in a simple mathematical form and the 
ability to easily accommodate non-constant returns to scale. There are two 
main drawbacks. First, the method is deterministic and thus no allowance is 
made for noise, measurement error, etc. The second drawback is the inability 
to deal easily with multiple outputs. 

The third method, in contrast to the previous two, uses statistical techniques 
to construct a deterministic frontier. The technique was first proposed by Af­
riat (1972) and has been extended by Richmond ( 197 4) and Greene ( 1980). 
This method involves assuming some sort of functional form for the frontier 
and estimating it. The easiest way to estimate it is by using corrected ordinary 
least squares ( COLS). The functional form chosen (usually Cobb-Douglas) 
is first estimated using OLS and then the constant term is corrected by shifting 
it up until no residual is positive and at least one is zero. 

Another way of estimating the frontier is by maximum likelihood tech­
niques. However, there are several difficulties involved. First, the estimated 
parameters depend on the particular distribution assumed for the error term. 
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Second, not just any one-sided error term will do. The usual desirable asymp­
totic properties of maximum likelihood estimators hold only if the density of 
the error term satisfies certain conditions. Greene has shown that the gamma 
density satisfies these conditions. However, it is disturbing that the assump­
tion regarding the distribution of technical inefficiency is governed by statis­
tical convenience. 

Overall, the advantage of using the deterministic statistical method to con­
struct frontiers is the possibility of statistical inference based on the results. 
The disadvantages are that all deviations in the frontier are attributed to tech­
nical inefficiency and that a functional form must be specified. 

The final method involves the estimation of a stochastic frontier. This in­
volves specification of a functional form and uses statistical techniques (max­
imum likelihood) to estimate the frontier. However, in contrast to the 
deterministic statistical frontier method, this method allows the frontier to be 
stochastic. The essential idea is that the error term is composed of two parts. 
A symmetric component permits random variation of the frontier across ob­
servations and captures the effects of measurement error, random shocks, etc. 
A one-sided component of the error term captures the effects of inefficiency. 
This method was first proposed by Aigner, Lovell and Schmidt (1977) and 
Meeusen and Van den Broeck (1977), and has been extended by Schmidt and 
Lovell ( 1980) and Huang ( 1984), among others. 

There are a number of drawbacks to using this method. First, considerable 
structure is usually imposed on the technology. In addition, the distribution of 
the one-sided error term must be specified when the model is estimated. Thus, 
additional structure is imposed on the distribution of technical inefficiency. 
Finally, the method has difficulty in dealing with multiple outputs. 

N ishimizu and Page ( 1982) constructed a deterministic parametric frontier. 
This required them to specify a functional form and they chose the translog 
production function. This function imposes fewer restrictions on the structure 
of production than does the Cobb-Douglas. However, it still imposes a struc­
ture on the technology. They chose not to use the stochastic method because 
the distribution of the one-sided component of the error term must be specified 
and there is little guidance concerning the appropriate specification. 

This paper presents a theoretical framework to measure technological change 
which is an improvement over that derived by Nishimizu and Page. A non­
parametric deterministic method, based on the work of Diewert ( 1980) and 
Diewert and Parkan ( 1983), will be used in constructing the frontiers. The 
advantage of the non-parametric method is that no structure is imposed upon 
the technology. 

A number of different approaches have been used to measure the bias of 
technical innovation. The most popular method involves estimating the trans­
log cost function. For example, Nghiep (1979) estimated a translog cost 
function: 
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n n n 
lnC=v 0 +uyln Y+vrln T+ L: VilnPi+l/2L: L:aijlnPilnPr (4) 

i=l i=lj=l 

n n 

+ L: O"iy ln Pi ln Y + L: O"ir ln Pi ln T+ O"yr ln Y ln T 
i=l i=! 

where au=O"ji• Ii vi= l,Ii O"ij=O, Ii O"iy=O, and Ii O"ir=O. The terms C, Yand 
Tare respectively, cost, output, and time. The share equations are what are 
actually estimated and these are written as: 

a ln c n 

a l P . =vi+ .L au ln Pj +air ln T 
n , J=l 

(5) 

where Pj represents input prices, and Tis time. The latter serves as a proxy 
for technical change. As a consequence, the bias of innovation is determined 
by examining the signs and relative sizes of the coefficients for the time vari­
able in each of the share equations. 

Hayami and Ruttan ( 1985) attempted to measure the bias of technical change 
by using a two-level constant elasticity of a substitution ( CES) production 
function. They specify factor augmenting technical change. Output is assumed 
to be produced by n inputs (X1, ... , Xn) with corresponding factor augmenting 
coefficients (E1, ••• ,En), where Ei represents the efficiency of Xi. The produc­
tion function is written as: 

(6) 

where the production function is assumed to be linear homogeneous and well­
behaved. 

The factor using bias of the technology is evaluated by examining changes 
in factor shares. The expression for the rate of change in factor shares is: 

(7) 

where the dot denotes the time derivative, pi is the price of input i, si is the 
factor share of input i, and O"ij is the Allen partial elasticity of substitution 
between input i andj. All other variables are as defined above. It follows that 
the rate of change in the ith factor share is decomposed into the price induced 
factor substitution effect (the first term on the right-hand side) and the biased 
technical change effect (the second term). 

The major difficulty with the approaches to measuring the bias of technical 
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innovation discussed above is that they require data which are often not avail­
able. Specifically, factor input prices and/or factor share data are required in 
order to be able to measure the bias of technical change. The approach speci­
fied in this paper does not require that information. Instead, the approach 
outlined below only requires data on outputs and inputs. 

As discussed earlier, the method used here to construct the production fron­
tier is based upon he work of Nishimizu and Page (1982). However, in con­
structing the production frontier no parametric specification is imposed on the 
technology. In other words, a non-parametric deterministic approach is used 
to construct the frontier. In addition, instead of constructing an output based 
frontier, an input based frontier is used. 

The method developed here is an extension of Farrell's (1957) work on 
measuring technical efficiency as well as extensions of his work (Fare, Gross­
kopf and Lovell, 1985). In this type of analysis technical efficiency is defined 
as producing the maximum of output for any particular combination of inputs, 
holding technology constant. Farrell provided a methodology by which tech­
nical efficiency is measured. Consider a firm using two inputs x1 and x2 and 
producing output y 1 • Assume that the firms production function (frontier) is 
written as y= f(x 1 , x2 ) and that it is characterized by constant returns to scale. 
As a result, the production function is written as 1 = f(x 1/y, x2 /y). This frontier 
technology is characterized by the unit isoquant which is labeled Io in Fig. 2. 
Assume that A represents an observation for a particular firm. Then the ratio 
OB/OA measures technical inefficiency. This is an input based measure of 
technical inefficiency because it measures the proportional reduction in inputs 
that could occur while still producing the same level of output (F0rsund, Lovell 
and Schmidt, 1980). 

The efficient unit isoquant is not directly observable. However, the free dis­
posal convex hull of the input-output ratios can be constructed using linear 
programming techniques. In this case, a linear programming technique is used 
to envelope all of the observations. All ofthe observations must lie on or above 
the unit isoquant. The methodology is non-parametric in the sense that no 

A 

I o 

0~--------------~ 
x/y 

Fig. 2. Measuring technical efficiency. 
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functional form is specified to construct the efficiency frontier. This program­
ming approach is the last of the approaches mentioned earlier for measuring 
the rate of increase in productivity. 

Given this introduction, several points need to be made. First, this approach 
can be utilized for either pooled data (cross-sectional and time series data) or 
strictly time series data. Second, the assumption of constant returns to scale 
is rather restrictive. However, this assumption has been relaxed in recent work 
on constructing efficiency frontiers (Fare and Lovell, 1978). 

A methodology for measuring the extent and bias of technical innovation 
can now be developed. We assume that cross-sectional data are available for 
years 1 and 2 (a later year) for the same set of firms. Isoquant 11 in Fig. 3 is 
constructed by using the cross-sectional data for year 1. 12 is constructed using 
the pooled data for years 1 and 2. Point A represents an observation for a 
specific farm in year 1. Labor (N) and capital (K) are measured on the hori­
zontal and vertical axis, respectively. 

It is possible to determine the extent of technical change for observation A 
in Fig. 3 by measuring: 

OB-OC 
OB 

oc 
l-OB (8) 

This gives the proportional shift inward of the isoquant along ray OA. Equa­
tion ( 8) is derived by calculating the technical efficiency of observation A rel­
ative to isoquant 11 , OB/OA, and then calculating the technical efficiency of 
observation A relative to isoquant 12 , OC/OA. Dividing the latter by the former 
yields OC/OB. Substituting this result into equation (8) yields the propor­
tional shift inward of the isoquant, given the factor proportions of observation 
A. This procedure is used to calculate the proportional shift in the isoquant for 
each observation in year l's data set. 

The actual derivation involves solving two linear programming problems. 
Since there are n observations in year 1's data set, the first linear programming 
problem is: 

Fig. 3. Technological change. 
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Min A. 

subject to 

Nizi +N~d +Nld. + ... +N;z; ~A.Nl 

Kizi + K~z~ +Klzi + ... +K;z; ~A.Kl 

yizi +y~z~+ylzl + ... +y;z;~yl 

The subscripts refer to a specific observation and the superscript indicates that 
all observations are drawn from year 1. This program calculates the efficiency 
of observation A relative to I1• The first two constraints are input constraints 
for labor, N, and capital, K. The constraint for capital is discussed in detail in 
order to give the reader an economic interpretation of the constraint. The left­
hand side of the constraint represents the theoretically technically efficient 
observation. This is composed of a weighted sum of all observations, including 
observation A. The z's are weights assigned to each observation by the LP 
problem. The right-hand side is the actual level of Kl, for observation A in the 
year 1, multiplied by the level of inefficiency, A.. If the observation is technically 
efficient, then A.= 1 and the left and right-hand sides are equal. In this case, 
level of usage of capital, Kl, is the same as the theoretically efficient level 
(A.= 1). If the observation is inefficient, A.< 1, meaning that capital actually 
used can be reduced without reducing output. 

The last constraint in ( 9) is the output constraint. In this model, a single 
output approach is used, there is only one y-product by n observations. The 
left hand side is the theoretically technically efficient level of output to which 
the actual output of observation A in year 1, y l, is compared. The theoretically 
efficient observation is a linear combination of all observations in the data set, 
including observation A. This constraint says that the efficient level of output 
must be equal to or greater than the amount produced by observation A. In 
summary, the solution to this program will give, in Fig. 2, OB/OA. 1 

The above linear programming procedure could be easily expanded to the 
case of multiple outputs. For each additional output an additional output con­
straint is added to ( 9). Thus if two outputs y and w were used, an additional 
output constraint for w is added and the linear programming problem is: 

Min A. 

subject to (10) 

Nizi +N~z~ +Nlzl + ... +N;z; ~A.Nl 

1ln this simple one output, two input case the isoquant could actually be plotted graphically. 
However, in the multiple input case used in this paper this will not be possible. 
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Kizi +K~z~ +Klzl + ... +K;.z;, ~A.Kl 

Yizi +y~z~ +ylzl + ... +y;.z;. 2:y}. 

wizi +w~d +wlzl + ... +w;.z;. 2:wl 
The second program measures the technical efficiency of observation A rel­

ative to isoquant 12 • The linear programming problem is: 

Min fJ 

subject to (11) 

Nizi + ... +Nlzl + ... +N;.z;, +Nizi + ... +N~z~ + ... +N~z~ ~fJN},. 

Kizi + ... +Klzl + .. .K;,z;, +Kizi + ... +K~z~ + ... +K~z~ ~fJK},. 

yizi + ... +y}.zl + ... y;,z;. +yizi + ... +y~z~ +y~z~ 2:y},. 
where the subscript refers to the specific observation and the superscript in­
dicates the sample year. Thus N l and N ~ represent the amount of labor used 
by observation A in year 1 and year 2, respectively. The first two constraints 
are again input constraints. However, note that the linear programming prob­
lem involves pooling the observations for the same set of firms for two different 
years. As a result, the solution to this program yields OC/OA.2 Note that this 
procedure also can handle additional outputs by adding additional output 
constraints. 

Taking fJ and dividing by A yields OC/OB. Substituting this into equation 
( 8) determines the proportional shift in the isoquant along ray OA. If equation 
( 8) is positive, then the isoquant has shifted inwards and technical change has 
occurred. The same procedure is used for each observation and the rate of 
technical change is calculated for each observation. 

Once the above procedures are completed, it is possible to investigate the 
bias of innovation. This involves estimating regression equations in which the 
rate of technical change for each observation is specified as the dependent 
variable, while measures of relative factor intensities are used as independent 
variables. In the two input (Nand K) example, labor and capital intensities 
are writen as N / (N + K) and K/ (N + K) (Nand K are measured in dollars). 
By examining the sign and level of significance for each coefficient, one could 
determine whether technical change is in any way related to factor intensities. 

2. Empirical analysis 

The data used in this paper consist of information on production for a sam­
ple of 92 grain farms in central Illinois. The data contain information on input 

"Note that the z's are constant across all observations in (9). In other words, as the efficiency 
measure for each observation is calculated the weights used to construct the frontier isoquant 
remain unchanged. This also holds for the z's in ( 10) and ( 11). 
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and output for these farms for 2 years, 1982 and 1984. A farm is considered a 
grain farm if the value of feed fed to livestock is less than 25% of the value of 
crop returns and if the value of feed fed to dairy and poultry is not more than 
one-sixth of the crop returns. The data source was the Illinois Farm Business 
Farm Management Farm Business Analysis 1982 and 1984 data tape Annual 
Summary of Illinois Farm Business Records. 

The farms in the sample produce a variety of grains including: corn, soy­
beans, wheat, and double crop soybeans. The inputs in this sample are land, 
labor, fertilizer, pesticides, seeds, equipment, and buildings. The land variable 
is defined as tillable acres multiplied by a soil productivity index (Fehren­
bucher et al., 1978). This gives a measure of effective land. Labor is defined as 
annual paid and unpaid farm labor costs (wages are imputed for family labor). 
Fertilizer, pesticides, and seed are also defined in terms of annual costs. The 
equipment variable includes annual power and equipment fixed costs and the 
building variable is annual building costs. These two are combined and labeled 
capital. Table 1 contains summary statistics of the variables. 

One of the difficulties with the approach outlined in the previous section is 
the existence of outliers which may result from errors in measurement. There 
is no established procedure for dealing with this problem. Timmer ( 1971) sug­
gested deleting an arbitrary percentage of the observations. However, there is 
no underlying statistical rationale for implementing this procedure. In this 
paper, the observations were individually examined to determine whether there 

TABLE 1 

Summary statistics for sample farms inputs and outputs 

Variable Mean Standard deviation 

(bu/acre) (t/ha) (bu/acre) (t/ha) 

Corn 141 8.87 25 1.57 
Soybeans 42 2.82 5.98 0.40 
Wheat 53 3.56 9.29 0.62 
Double crop soybeans 28 1.88 8.08 0.54 

($/acre) ($/ha) ($/acre) ($/ha) 

Capital 41.07 101.50 17.44 43.10 
Labor 36.78 90.88 12.97 32.05 
Fertilizer 34.08 84.21 11.18 27.63 
Pesticide 15.81 39.07 7.46 18.43 
Seed 16.01 39.56 8.00 19.77 

bu, bushel for wheat and soybeans=60 lb~27.2155 kg; for corn=56lb ~ 25.4545 kg. 
acre ~0.404686 ha ~ 4047 m2 • 

t, metric tonne= 1000 kg. 
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TABLE2 

Results of linear programming 

Observation (1) (2) (3) Observation (1) (2) (3) 

1.00 0.96 0.04 46 0.87 0.86 0.01 
2 0.67 0.52 0.23 47 0.92 0.87 0.05 
3 0.77 0.57 0.26 48 0.82 0.66 0.19 
4 0.99 0.78 0.22 49 1.00 1.00 0.00 
5 0.90 0.61 0.32 50 1.00 1.00 0.00 
6 0.85 0.74 0.13 51 1.00 1.00 0.00 
7 0.89 0.82 0.07 52 0.79 0.74 0.06 
8 1.00 0.90 0.10 53 0.69 0.67 0.03 
9 0.89 0.66 0.26 54 0.83 0.74 0.11 

10 0.71 0.71 0.00 55 0.79 0.79 0.00 
11 0.93 0.83 0.11 56 0.70 0.69 0.02 
12 0.93 0.66 0.29 57 1.00 1.00 0.00 
13 0.89 0.66 0.27 58 1.00 1.00 0.00 
14 0.88 0.72 0.18 59 0.70 0.70 0.00 
15 0.87 0.66 0.24 60 0.86 0.70 0.18 
16 0.96 0.96 0.00 61 1.00 1.00 0.00 
17 0.70 0.62 0.11 62 1.00 1.00 0.00 
18 1.00 1.00 0.00 63 0.70 0.70 0.00 
19 0.95 0.95 0.00 64 1.00 1.00 0.00 
20 1.00 1.00 0.00 65 0.87 0.84 0.03 
21 0.57 0.48 0.15 66 1.00 1.00 0.00 
22 0.84 0.71 0.16 67 1.00 0.98 0.02 
23 0.98 0.67 0.32 68 0.76 0.62 0.18 
24 0.93 0.88 0.05 69 0.92 0.72 0.22 
25 1.00 1.00 0.00 70 0.85 . 0.85 0.00 
26 0.80 0.73 0.08 71 1.00 0.98 0.02 
27 1.00 1.00 0.00 72 1.00 1.00 0.00 
28 1.00 1.00 0.00 73 1.00 0.85 0.15 
29 0.83 0.62 0.26 74 0.85 0.62 0.27 
30 1.00 0.82 0.18 75 0.89 0.70 0.22 
31 0.85 0.62 0.27 76 1.00 1.00 0.00 
32 0.71 0.56 0.22 77 0.85 0.69 0.19 
33 1.00 1.00 0.00 78 1.00 0.77 0.23 
34 1.00 1.00 0.00 79 0.89 0.87 0.03 
35 0.97 0.91 0.06 80 0.79 0.77 0.03 
36 1.00 0.99 O.Ql 81 0.80 0.67 0.16 
37 1.00 0.87 0.13 82 1.00 0.75 0.25 
38 0.77 0.74 0.04 83 0.85 0.64 0.25 
39 1.00 1.00 0.00 84 0.91 0.68 0.26 
40 1.00 1.00 0.00 85 1.00 0.80 0.20 
41 1.00 1.00 0.00 86 1.00 0.85 0.15 
42 0.89 0.84 0.06 87 0.89 0.73 0.18 
43 0.99 0.98 O.Ql 88 1.00 0.84 0.16 
44 1.00 0.99 0.01 89 1.00 1.00 0.00 
45 0.89 0.88 0.01 90 0.85 0.70 0.17 

91 0.71 0.53 0.25 
92 0.92 0.71 0.24 
Mean 0.90 0.81 0.10 
Standard deviation 0.11 0.15 0.10 
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were any farms producing output while using zero quantities of an input or 
several inputs. These observations were then deleted.:3 

The results of solving the linear programs, given in (9) and ( 10), modified 
to incorporate additional inputs and outputs are presented in Table 2. Column 
( 1) contains the results of calculating the efficiency of each observation in 
1982 relative to a production frontier constructed by using only the 1982 sam­
ple. In terms of Fig. 2, this would give us OB/OA for each observation. Column 
( 2) represents the results of calculating the efficiency of each observation in 
1982 relative to a production frontier constructed by pooling the 1982 and 1984 
sample for the 92 farms (total number of observations would then be 184). In 
terms of Figure 2, this gives us OC/OA for each observation in 1982. Finally, 
column (3) contains the measure of technical change which is calculated using 
equation (8). 

As can be seen from examining Table 2, the average efficiency level for the 
farms in 1982 is 0.90. This means that the output level of these farms in 1982 
could have been produced with 90% of the total inputs actually used. In addi­
tion, the average rate of technical change from 1982 to 1984 was 10%. 

In order to determine the bias of innovation, a regression equation was es­
timated with the rate of technical change (column 3 in Table 2) as the depen­
dent variable and measures of the various factor intensities as independent 
variables. In order to measure land intensity, the average of the beginning and 
ending land values for the year 1982 for each farm is used as the measure of 
land. This result is then divided by the sum of the expenditures on all inputs, 
including land. This same approach was followed with each input. Since all of 
the variables on the right-hand side must sum to 1, the regression equation 
was estimated without an intercept. The results are presented in Table 3. 

There is some suspicion that strong multicollinearity among fertilizer, pes­
ticide, and seed intensity exists. In order to avoid this problem, all three vari­
ables are combined into one intensity variable, which is labeled chem-seed 
intensity. The regression analysis is repeated, again without an intercept, and 
the results are presented in Table 4. 

The results indicate that technological change is positively related to the 
land intensity of production. None of the coefficients for the other factor in­
tensities are significantly different from zero. Based upon these results, tech­
nical innovation during this time period is land using in nature. 

In addition to the above, we determine whether the extent of technical change 
is related to the size of the farm, the tenure status of the farm, and the extent 
to which farm operators participated in governmental programs as indicated 

"An alternative approach would be to construct stochastic frontiers. This would eliminate the 
errors in measurement problem. However, this gain comes at significant cost. Specifically, a func­
tional form must be specified for the production technology and for the one-sided error term. The 
authors are currently engaged in research on this topic. 
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TABLE3 

Factor intensity regression results 

Variable 

Capital intensity 
Land intensity 
Labor intensity 
Fertilizer intensity 
Pesticide intensity 
Seed intensity 

TABLE4 

Factor intensity regression results 

Variable 

Capital intensity 
Land intensity 
Labor intensity 
Chem-seed intensity 

Estimate 

0.004 
0.374 
0.089 

-0.042 
0.004 

-0.481 

Estimate 

-0.027 
0.329 
0.093 

-0.114 

Standard error T-ratio 

0.9742 0.03 
0.0004 3.71 
0.5839 0.55 
0.8231 -0.22 
0.9888 0.01 
0.1959 -1.30 

Standard error T-Ratio 

0.128 -0.21 
0.100 3.79 
0.158 0.59 
0.116 -0.99 

by set asides for land. Regression analysis is again used with the rate of tech­
nical change, as determined above, being the dependent variable and farm size, 
tenure status, and the extent of land set aside (for year 1982) as independent 
variables. Farm size is measured in two different ways: gross farm revenue and 
area of land. Tenure is measured as the percent of owned farm land divided by 
the total land farmed. The extent of participation in governmental programs 
is measured by the proportion of total land on each farm which is set aside as 

TABLE5 

Role of farm size (revenue and area), tenure, and farm set aside in technical change 

Variable Estimate Standard T-Ratio 
Error 

Constant 0.1402 0.02626 5.34 
Gross revenue 0.0004 0.00001 2.03 
Area (acres) -0.0001 -0.00007 -2.19 
Land set aside -0.0064 0.01158 -0.56 
Tenure -0.0533 0.03892 -1.37 

R 2 =0.10. 
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a result of participation in governmental programs. The results are presented 
in Table 5. 

The larger farms, in terms of gross revenue are associated with more rapid 
rates of technical change. However, farm size measured in area is inversely 
related to the rate of technical change. None of the other variables are 
significant. 

Summary and conclusions 

In this paper, an alternative method for measuring the extent and bias of 
technical change was presented. It involved the construction of several non­
parametric production frontiers. These frontiers were constructed using data 
on 92 Illinois grain farms for both 1982 and 1984. The first step involved the 
construction of an input based production frontier using only 1982 data for the 
92 farms. The technical efficiency of each farm was then measured relative to 
this frontier. The second step involved the construction of an input-based pro­
duction frontier by pooling data for 1982 and 1984 for the 92 farms. The tech­
nical efficiency of each farm, given by the 1982 data, was then measured relative 
to this pooled frontier. Using the above information it was possible to deter­
mine the extent of technical change for each farm from 1982 to 1984. 

The next step was to determine the bias of technical change. This was ac­
complished by estimating regression equations in which the extent of technical 
innovation was the dependent variable, and the various factor intensities of 
production, one for each input, were used as independent variables. The results 
indicated that technical innovation was land using in nature. In addition, 
regression analysis was used to determine whether or not the extent of tech­
nical innovation was significantly related to the size of farm, tenure status, or 
the extent ofthe farm's participation in governmental land set aside programs. 
The results indicate that farm size, measured by gross revenue, was signifi­
cantly and positively related to the extent of technical change; while farm size, 
measured in area, was negatively related to technical change. 
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