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Abstract

Grabowski, R., Kraft, S., Mehdian, S. and Pasurka, C., 1988. Technological change in Illinois
agriculture, 1982-1984. Agric. Econ., 2: 303-318.

This paper has two main purposes: (1) to develop a method for measuring the extent and bias
of technical change which involves the use of non-parametric production frontiers and does not
require information on prices or factor shares; (2) to apply this method to individual farm data
drawn from a sample of Illinois grain farms for the years 1982 and 1984. The results indicate that
technical innovation is land using in nature and that the rate of technical change is related to the
size of farm.

Introduction

This paper has two main purposes. First, a method for measuring the extent
and bias of technical change is developed. Economists have become increas-
ingly concerned with analyzing the process of technical change. Much of this
work has centered on explaining the rate and bias of technical innovation. The
main problem is that many of the methods require data on factor prices or
shares which are often not available. This paper presents an alternative method
for measuring the rate and bias of technical change which does not require
information on factor prices or shares.

The second purpose of this paper is to apply this theoretical framework to
individual farm data drawn from a sample of Illinois grain farms for the years
1982 and 1984. The extent and bias of technical innovation are determined. In
addition, an analysis of the results assesses whether the rate of technical in-
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novation is related to: (1) the size of farm, (2) tenancy, or (3) the amount of
land set aside in governmental programs. Given the problems confronting
farmers in the United States, it is important to know which of these charac-
teristics influence the rate of technological change.

In the next section, various methods which have been used in the past for
measuring the extent and bias of technical change are discussed. The alter-
native theoretical framework used in this paper is presented in detail. Section
2 presents the empirical results.

1. Methodology

In a recent survey paper, Diewert (1980) discussed four basic approaches to
measuring the rate of increase in total factor productivity or technical change.
For ease of presentation in this paper, two of these approaches are combined
so that three methods are discussed: the econometric approach, the index num-
ber approach, and the non-parametric programming approach. In order to make
the discussion general, the last category is also modified to represent both par-
ametric or non-parametric programming approaches to measuring productiv-
ity increases.

The multiple output econometric approach usually makes use of a joint cost
function c defined as:

¢(y, w, t) =min, {w-x(y, x)eS,} (1)

where y= (y1, s, ..., ¥m) 18 a vector of outputs, w= (w,, w,, ..., w,) is a positive
vector of input (rental) prices that the producer faces, x= (x4, xo, ..., X,) is a
non-negative vector of inputs utilized, wx= > w,x,, and S, denotes the firm’s
period ¢ production possibilities set. The econometric approach to measuring
shifts in the production function rests on a number of assumptions: (1) that
producers competitively minimize cost, and (2) that a conventional functional
form for cost can be specified. Given the assumptions, a system of input de-
mand equations is derived to which error terms are added. The resulting sys-
tem of equations is then used to estimate econometrically the unknown
parameters of ¢. Once ¢ has been determined, summary measures of the shift
in productivity (9 1n ¢/0dt) can be calculated. A more detailed discussion of this
approach is provided in the discussion below concerning the determination of
the bias of technical change.

The second approach involves the use of index numbers. Let y(¢) =f(x(t),
t) be output at time ¢, and let x(t) = (x,(¢), x5(¢t), ..., x,(£) ) denote the vector
of inputs utilized at time ¢. Assuming that the production function f is differ-
entiable, differentiating y(¢) =f(x(t), t) with respect to ¢t and dividing both
sides by f(x(t), t) gives:

y(t) X [GIn f(x(t),t)]xn(t)_l_aln f(x(t),t)

L 0x,, ot

= 2
y(t) n=1 ( )
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where y(t) and x,,(¢) are time derivatives. If the price of output is p(¢) at time
t and the producer pays each input the value of their marginal product so that
the nth input price w,, (t) =p(t) 6f (x(t), t) /dx,, then equation (2) can be rear-
ranged to give:

. . N .
d1n f(g(t), ) _y() 3 Sn(t)x”(t)

t Yy ( t) n=1 Xn (t )
where S, (t)=w,(t) x,(¢t)/p(t) y(t). In other words, the left-hand side of
equation (3) gives the rate of growth in output which is unexplained by the
growth in inputs. If continuous data on output, inputs, and input prices are
available, then equation (3) can be calculated.

The main difficulty with both approaches is that they require data on factor
shares and/or input price data. Lacking such data makes it impossible to mea-
sure the extent of technological change using these approaches. Even assuming
that such data are available, there is a more fundamental problem with using
these approaches. Both procedures assume that individual operations or ob-
servations are efficient. As a result, all of the shift in the cost function and all
of the difference between output and input growth is attributed to increased
productivity or technological change. When one allows for the possibility that
firms may not be efficient, then part of the increase in output may be due to
improved efficiency of operation, not technical change.

Nishimizu and Page (1982) make this idea clear through the use of a simple
diagram. In Fig. 1, g, and g, represent linear homogeneous Cobb-Douglas fron-
tier production functions with technical progress between periods 1 and 2. A
frontier production function gives the maximum possible output which can be
produced from various quantities of a set of inputs. The word ‘frontier’ implies
that points occur below or on the frontier, but never above it. Points A and C
are observed levels of output y; and y, (in logarithms) for input x; and x, (in
logarithms) at time periods 1 and 2 for the same observation. As can be seen,
observation A lies below the frontier (g;) for period one, i.e., it is producing
less that its potential output in time period 1, 7. Line segment AB is a projec-

(3)

Fig. 1. Technical change and efficiency.
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tion from point A assuming constant returns to scale. Finally, observation C
(time period 2) lies on time period 2’s frontier (g, ). Observation C is producing
the maximum level of output y,=79, (9, is the maximum potential output of
observation C).

The total increase in output between periods 1 and 2 is A’ C. The total factor
productivity approach attributes A’'B of the increase to increased input usage
while the rest, BC, is the result of technical change. Obviously, this is incorrect.
The distance from B to D represents an improvement in technical efficiency
and only DC represents technical change. In order to correctly measure tech-
nical change, Nishimizu and Page (1982) suggest that production frontiers be
constructed for each year. Measuring the shift in the production frontier
through time is used to calculate technical change.

In order to use the approach suggested above, production frontiers are con-
structed for a sample of observations at different points of time. There are four
methods available for constructing these frontiers. The first method is the de-
terministic non-parametric approach (Farrell, 1957) which uses linear pro-
gramming to construct the frontier. No parametric form is specified and the
method uses the entire sample of observations, but constrains all points in
output space to lie on or below the frontier. Although this technique corre-
sponds most closely to the theoretical concept of a frontier, empirically it is
sensitive to errors in observations (the outlier problem). More will be said
below concerning this method.

The second approach involves constructing a deterministic parametric fron-
tier. The only difference between this method and the deterministic non-par-
ametric method is that the frontier is constructed using a specific functional
form. This method was first suggested by Farrell and has been extended by
Aigner and Chu (1968). The principle advantages of this method are the abil-
ity to characterize frontier technology in a simple mathematical form and the
ability to easily accommodate non-constant returns to scale. There are two
main drawbacks. First, the method is deterministic and thus no allowance is
made for noise, measurement error, etc. The second drawback is the inability
to deal easily with multiple outputs.

The third method, in contrast to the previous two, uses statistical techniques
to construct a deterministic frontier. The technique was first proposed by Af-
riat (1972) and has been extended by Richmond (1974) and Greene (1980).
This method involves assuming some sort of functional form for the frontier
and estimating it. The easiest way to estimate it is by using corrected ordinary
least squares (COLS). The functional form chosen (usually Cobb-Douglas)
is first estimated using OLS and then the constant term is corrected by shifting
it up until no residual is positive and at least one is zero.

Another way of estimating the frontier is by maximum likelihood tech-
niques. However, there are several difficulties involved. First, the estimated
parameters depend on the particular distribution assumed for the error term.
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Second, not just any one-sided error term will do. The usual desirable asymp-
totic properties of maximum likelihood estimators hold only if the density of
the error term satisfies certain conditions. Greene has shown that the gamma
density satisfies these conditions. However, it is disturbing that the assump-
tion regarding the distribution of technical inefficiency is governed by statis-
tical convenience.

Overall, the advantage of using the deterministic statistical method to con-
struct frontiers is the possibility of statistical inference based on the results.
The disadvantages are that all deviations in the frontier are attributed to tech-
nical inefficiency and that a functional form must be specified.

The final method involves the estimation of a stochastic frontier. This in-
volves specification of a functional form and uses statistical techniques (max-
imum likelihood) to estimate the frontier. However, in contrast to the
deterministic statistical frontier method, this method allows the frontier to be
stochastic. The essential idea is that the error term is composed of two parts.
A symmetric component permits random variation of the frontier across ob-
servations and captures the effects of measurement error, random shocks, etc.
A one-sided component of the error term captures the effects of inefficiency.
This method was first proposed by Aigner, Lovell and Schmidt (1977) and
Meeusen and Van den Broeck (1977), and has been extended by Schmidt and
Lovell (1980) and Huang (1984 ), among others.

There are a number of drawbacks to using this method. First, considerable
structure is usually imposed on the technology. In addition, the distribution of
the one-sided error term must be specified when the model is estimated. Thus,
additional structure is imposed on the distribution of technical inefficiency.
Finally, the method has difficulty in dealing with multiple outputs.

Nishimizu and Page (1982) constructed a deterministic parametric frontier.
This required them to specify a functional form and they chose the translog
production function. This function imposes fewer restrictions on the structure
of production than does the Cobb-Douglas. However, it still imposes a struc-
ture on the technology. They chose not to use the stochastic method because
the distribution of the one-sided component of the error term must be specified
and there is little guidance concerning the appropriate specification.

This paper presents a theoretical framework to measure technological change
which is an improvement over that derived by Nishimizu and Page. A non-
parametric deterministic method, based on the work of Diewert (1980) and
Diewert and Parkan (1983), will be used in constructing the frontiers. The
advantage of the non-parametric method is that no structure is imposed upon
the technology.

A number of different approaches have been used to measure the bias of
technical innovation. The most popular method involves estimating the trans-
log cost function. For example, Nghiep (1979) estimated a translog cost
function:
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InC=vo+vyln Y+vrln T+ Z V:In P; +1/22 ZJAInP,-lnPf (4)

i=1j=1

+ ZO’iylnPiln Y+ ZO‘iTlnP,-ln T+O'YTln YInT
i=1 i=1

where o;=0j;, >, 0,=1,2,0,;=0, 2, 0;y=0, and 2; 0;7=0. The terms C, Y and
T are respectlvely, cost, output and time. The share equations are what are
actually estimated and these are written as:

dlnC
dln P;

=v; +ZaAlnPj+aiT1nT (5)

where P; represents input prices, and T is time. The latter serves as a proxy
for technical change. As a consequence, the bias of innovation is determined
by examining the signs and relative sizes of the coefficients for the time vari-
able in each of the share equations.

Hayamiand Ruttan (1985) attempted to measure the bias of technical change
by using a two-level constant elasticity of a substitution (CES) production
function. They specify factor augmenting technical change. Output is assumed
to be produced by n inputs (X3, ..., X,,) with corresponding factor augmenting
coefficients (E,, ..., E,), where E,; represents the efficiency of X,. The produc-
tion function is written as:

Q=f(E1X1,..., Ean) (6)

where the production function is assumed to be linear homogeneous and well-
behaved.

The factor using bias of the technology is evaluated by examining changes
in factor shares. The expression for the rate of change in factor shares is:

P P; E E,;
ST_@S(” )<P P>+,§l8” "“(E E> D

where the dot denotes the time derivative, P; is the price of input i, S; is the
factor share of input i, and o; is the Allen partial elasticity of substitution
between input ¢ and j. All other variables are as defined above. It follows that
the rate of change in the ith factor share is decomposed into the price induced
factor substitution effect (the first term on the right-hand side) and the biased
technical change effect (the second term).

The major difficulty with the approaches to measuring the bias of technical
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innovation discussed above is that they require data which are often not avail-
able. Specifically, factor input prices and/or factor share data are required in
order to be able to measure the bias of technical change. The approach speci-
fied in this paper does not require that information. Instead, the approach
outlined below only requires data on outputs and inputs.

As discussed earlier, the method used here to construct the production fron-
tier is based upon he work of Nishimizu and Page (1982). However, in con-
structing the production frontier no parametric specification is imposed on the
technology. In other words, a non-parametric deterministic approach is used
to construct the frontier. In addition, instead of constructing an output based
frontier, an input based frontier is used.

The method developed here is an extension of Farrell’s (1957) work on
measuring technical efficiency as well as extensions of his work (Fire, Gross-
kopf and Lovell, 1985). In this type of analysis technical efficiency is defined
as producing the maximum of output for any particular combination of inputs,
holding technology constant. Farrell provided a methodology by which tech-
nical efficiency is measured. Consider a firm using two inputs x; and x, and
producing output y;. Assume that the firms production function (frontier) is
written as y=1{(xy, x,) and that it is characterized by constant returns to scale.
As aresult, the production function is written as 1 =f(x,/y, x»/v). This frontier
technology is characterized by the unit isoquant which is labeled I, in Fig. 2.
Assume that A represents an observation for a particular firm. Then the ratio
OB/OA measures technical inefficiency. This is an input based measure of
technical inefficiency because it measures the proportional reduction in inputs
that could occur while still producing the same level of output (Fgrsund, Lovell
and Schmidt, 1980).

The efficient unit isoquant is not directly observable. However, the free dis-
posal convex hull of the input-output ratios can be constructed using linear
programming techniques. In this case, a linear programming technique is used
to envelope all of the observations. All of the observations must lie on or above
the unit isoquant. The methodology is non-parametric in the sense that no

xo/y

0 x;/y

Fig. 2. Measuring technical efficiency.
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functional form is specified to construct the efficiency frontier. This program-
ming approach is the last of the approaches mentioned earlier for measuring
the rate of increase in productivity.

Given this introduction, several points need to be made. First, this approach
can be utilized for either pooled data (cross-sectional and time series data) or
strictly time series data. Second, the assumption of constant returns to scale
is rather restrictive. However, this assumption has been relaxed in recent work
on constructing efficiency frontiers (Fire and Lovell, 1978).

A methodology for measuring the extent and bias of technical innovation
can now be developed. We assume that cross-sectional data are available for
years 1 and 2 (a later year) for the same set of firms. Isoquant I, in Fig. 3 is
constructed by using the cross-sectional data for year 1. I, is constructed using
the pooled data for years 1 and 2. Point A represents an observation for a
specific farm in year 1. Labor (IN) and capital (K) are measured on the hori-
zontal and vertical axis, respectively.

It is possible to determine the extent of technical change for observation A
in Fig. 3 by measuring:

OB-OC_, 0C

OB ~ OB ®)

This gives the proportional shift inward of the isoquant along ray OA. Equa-
tion (8) is derived by calculating the technical efficiency of observation A rel-
ative to isoquant I;, OB/OA, and then calculating the technical efficiency of
observation A relative to isoquant I,, OC/OA. Dividing the latter by the former
yields OC/OB. Substituting this result into equation (8) yields the propor-
tional shift inward of the isoquant, given the factor proportions of observation
A. This procedure is used to calculate the proportional shift in the isoquant for
each observation in year 1’s data set.

The actual derivation involves solving two linear programming problems.
Since there are n observations in year 1’s data set, the first linear programming
problem is:

N/y A

Iy
I
K/y

Fig. 3. Technological change.

0
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Min A

subject to
Nizi+Nizl+Nizl+..+Nlz! <IN}
Kizi+Kiz+Klzi+...+Klz! <AK}
Yizityi2s+yizat.tynzn 2y

The subscripts refer to a specific observation and the superscript indicates that
all observations are drawn from year 1. This program calculates the efficiency
of observation A relative to I,. The first two constraints are input constraints
for labor, N, and capital, K. The constraint for capital is discussed in detail in
order to give the reader an economic interpretation of the constraint. The left-
hand side of the constraint represents the theoretically technically efficient
observation. This is composed of a weighted sum of all observations, including
observation A. The 2z’s are weights assigned to each observation by the LP
problem. The right-hand side is the actual level of K} , for observation A in the
year 1, multiplied by the level of inefficiency, A. If the observation is technically
efficient, then A=1 and the left and right-hand sides are equal. In this case,
level of usage of capital, K}, is the same as the theoretically efficient level
(A=1). If the observation is inefficient, A <1, meaning that capital actually
used can be reduced without reducing output.

The last constraint in (9) is the output constraint. In this model, a single
output approach is used, there is only one y-product by n observations. The
left hand side is the theoretically technically efficient level of output to which
the actual output of observation A in year 1,y 4, is compared. The theoretically
efficient observation is a linear combination of all observations in the data set,
including observation A. This constraint says that the efficient level of output
must be equal to or greater than the amount produced by observation A. In
summary, the solution to this program will give, in Fig. 2, OB/0A.?

The above linear programming procedure could be easily expanded to the
case of multiple outputs. For each additional output an additional output con-
straint is added to (9). Thus if two outputs y and w were used, an additional
output constraint for w is added and the linear programming problem is:

Min A
subject to (10)
Nizl!+Nizi+Nizh+..+NLzl <IN}

'In this simple one output, two input case the isoquant could actually be plotted graphically.
However, in the multiple input case used in this paper this will not be possible.
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121+ Kz +Khizh+...+KLz: <IK}

1,1 1,1 1,1 1,1 1
Yizityszatyazat..tyazn2ya
wizitwizi+wizh+..twrzh=wi

The second program measures the technical efficiency of observation A rel-
ative to isoquant I,. The linear programming problem is:

Min 8
subject to (11)

NzZl4 4 NLlzl+. 4Nz +N222+...+N323+..+ N2z <N

Klzl4+. +Kizi+..Klzl +K323+..+ K323 +..+ K222 < fK}

yizl4+ . tylzh+.ylzl+y2ei+. +yih+yizi>ya

where the subscript refers to the specific observation and the superscript in-
dicates the sample year. Thus N 4 and N % represent the amount of labor used
by observation A in year 1 and year 2, respectively. The first two constraints
are again input constraints. However, note that the linear programming prob-
lem involves pooling the observations for the same set of firms for two different
years. As a result, the solution to this program yields OC/OA.? Note that this
procedure also can handle additional outputs by adding additional output
constraints.

Taking S and dividing by A yields OC/OB. Substituting this into equation
(8) determines the proportional shift in the isoquant along ray OA. If equation
(8) is positive, then the isoquant has shifted inwards and technical change has
occurred. The same procedure is used for each observation and the rate of
technical change is calculated for each observation.

Once the above procedures are completed, it is possible to investigate the
bias of innovation. This involves estimating regression equations in which the
rate of technical change for each observation is specified as the dependent
variable, while measures of relative factor intensities are used as independent
variables. In the two input (N and K) example, labor and capital intensities
are writen as N /(N4 K) and K/ (N+K) (N and K are measured in dollars).
By examining the sign and level of significance for each coefficient, one could
determine whether technical change is in any way related to factor intensities.

2. Empirical analysis

The data used in this paper consist of information on production for a sam-
ple of 92 grain farms in central Illinois. The data contain information on input

2Note that the 2’s are constant across all observations in (9). In other words, as the efficiency
measure for each observation is calculated the weights used to construct the frontier isoquant
remain unchanged. This also holds for the 2’s in (10) and (11).
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and output for these farms for 2 years, 1982 and 1984. A farm is considered a
grain farm if the value of feed fed to livestock is less than 25% of the value of
crop returns and if the value of feed fed to dairy and poultry is not more than
one-sixth of the crop returns. The data source was the Illinois Farm Business
Farm Management Farm Business Analysis 1982 and 1984 data tape Annual
Summeary of Illinois Farm Business Records.

The farms in the sample produce a variety of grains including: corn, soy-
beans, wheat, and double crop soybeans. The inputs in this sample are land,
labor, fertilizer, pesticides, seeds, equipment, and buildings. The land variable
is defined as tillable acres multiplied by a soil productivity index (Fehren-
bucher et al., 1978). This gives a measure of effective land. Labor is defined as
annual paid and unpaid farm labor costs (wages are imputed for family labor).
Fertilizer, pesticides, and seed are also defined in terms of annual costs. The
equipment variable includes annual power and equipment fixed costs and the
building variable is annual building costs. These two are combined and labeled
capital. Table 1 contains summary statistics of the variables.

One of the difficulties with the approach outlined in the previous section is
the existence of outliers which may result from errors in measurement. There
is no established procedure for dealing with this problem. Timmer (1971) sug-
gested deleting an arbitrary percentage of the observations. However, there is
no underlying statistical rationale for implementing this procedure. In this
paper, the observations were individually examined to determine whether there

TABLE 1

Summary statistics for sample farms inputs and 6utputs

Variable Mean Standard deviation
(bu/acre) (t/ha) (bu/acre) (t/ha)
Corn 141 8.87 25 1.57
Soybeans 42 2.82 5.98 0.40
Wheat 53 3.56 9.29 0.62
Double crop soybeans 28 1.88 8.08 0.54
($/acre) (8/ha) ($/acre) ($/ha)
Capital 41.07 101.50 17.44 43.10
Labor 36.78 90.88 12.97 32.05
Fertilizer 34.08 84.21 11.18 27.63
Pesticide 15.81 39.07 7.46 18.43
Seed 16.01 39.56 8.00 19.77

bu, bushel for wheat and soybeans =60 b ~ 27.2155 kg; for corn=56 lb ~ 25.4545 kg.
acre=0.404686 ha~ 4047 m?.
t, metric tonne = 1000 kg.
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TABLE 2

Results of linear programming

Observation (1) (2) (3) Observation (1) (2) (3)
1 1.00 0.96 0.04 46 0.87 0.86 0.01
2 0.67 0.52 0.23 47 0.92 0.87 0.05
3 0.77 0.57 0.26 48 0.82 0.66 0.19
4 0.99 0.78 0.22 49 1.00 1.00 0.00
5 0.90 0.61 0.32 50 1.00 1.00 0.00
6 0.85 0.74 0.13 51 1.00 1.00 0.00
7 0.89 0.82 0.07 52 0.79 0.74 0.06
8 1.00 0.90 0.10 53 0.69 0.67 0.03
9 0.89 0.66 0.26 54 0.83 0.74 0.11

10 0.71 0.71 0.00 55 0.79 0.79 0.00

11 0.93 0.83 0.11 56 0.70 0.69 0.02

12 0.93 0.66 0.29 57 1.00 1.00 0.00

13 0.89 0.66 0.27 58 1.00 1.00 0.00

14 0.88 0.72 0.18 59 0.70 0.70 0.00

15 0.87 0.66 0.24 60 0.86 0.70 0.18

16 0.96 0.96 0.00 61 1.00 1.00 0.00

17 0.70 0.62 0.11 62 1.00 1.00 0.00

18 1.00 1.00 0.00 63 0.70 0.70 0.00

19 0.95 0.95 0.00 64 1.00 1.00 0.00

20 1.00 1.00 0.00 65 0.87 0.84 0.03

21 0.57 0.48 0.15 66 1.00 1.00 0.00

22 0.84 0.71 0.16 67 1.00 0.98 0.02

23 0.98 0.67 0.32 68 0.76 0.62 0.18

24 0.93 0.88 0.05 69 0.92 0.72 0.22

25 1.00 1.00 0.00 70 0.85 .0.85 0.00

26 0.80 0.73 0.08 71 1.00 0.98 0.02

27 1.00 1.00 0.00 72 1.00 1.00 0.00

28 1.00 1.00 0.00 73 1.00 0.85 0.15

29 0.83 0.62 0.26 74 0.85 0.62 0.27

30 1.00 0.82 0.18 75 0.89 0.70 0.22

31 0.85 0.62 0.27 76 1.00 1.00 0.00

32 0.71 0.56 0.22 77 0.85 0.69 0.19

33 1.00 1.00 0.00 78 1.00 0.77 0.23

34 1.00 1.00 0.00 79 0.89 0.87 0.03

35 0.97 0.91 0.06 80 0.79 0.77 0.03

36 1.00 0.99 0.01 81 0.80 0.67 0.16

37 1.00 0.87 0.13 82 1.00 0.75 0.25

38 0.77 0.74 0.04 83 0.85 0.64 0.25

39 1.00 1.00 0.00 84 0.91 0.68 0.26

40 1.00 1.00 0.00 85 1.00 0.80 0.20

41 1.00 1.00 0.00 86 1.00 0.85 0.15

42 0.89 0.84 0.06 87 0.89 0.73 0.18

43 0.99 0.98 0.01 88 1.00 0.84 0.16

44 1.00 0.99 0.01 89 1.00 1.00 0.00

45 0.89 0.88 0.01 90 0.85 0.70 0.17

91 0.71 0.53 0.25
92 0.92 0.71 0.24
Mean 0.90 0.81 0.10
Standard deviation  0.11 0.15 0.10
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were any farms producing output while using zero quantities of an input or
several inputs. These observations were then deleted.?

The results of solving the linear programs, given in (9) and (10), modified
to incorporate additional inputs and outputs are presented in Table 2. Column
(1) contains the results of calculating the efficiency of each observation in
1982 relative to a production frontier constructed by using only the 1982 sam-
ple. In terms of Fig. 2, this would give us OB/OA for each observation. Column
(2) represents the results of calculating the efficiency of each observation in
1982 relative to a production frontier constructed by pooling the 1982 and 1984
sample for the 92 farms (total number of observations would then be 184). In
terms of Figure 2, this gives us OC/OA for each observation in 1982. Finally,
column (3) contains the measure of technical change which is calculated using
equation (8).

As can be seen from examining Table 2, the average efficiency level for the
farms in 1982 is 0.90. This means that the output level of these farms in 1982
could have been produced with 90% of the total inputs actually used. In addi-
tion, the average rate of technical change from 1982 to 1984 was 10%.

In order to determine the bias of innovation, a regression equation was es-
timated with the rate of technical change (column 3 in Table 2) as the depen-
dent variable and measures of the various factor intensities as independent
variables. In order to measure land intensity, the average of the beginning and
ending land values for the year 1982 for each farm is used as the measure of
land. This result is then divided by the sum of the expenditures on all inputs,
including land. This same approach was followed with each input. Since all of
the variables on the right-hand side must sum to 1, the regression equation
was estimated without an intercept. The results are presented in Table 3.

There is some suspicion that strong multicollinearity among fertilizer, pes-
ticide, and seed intensity exists. In order to avoid this problem, all three vari-
ables are combined into one intensity variable, which is labeled chem-seed
intensity. The regression analysis is repeated, again without an intercept, and
the results are presented in Table 4.

The results indicate that technological change is positively related to the
land intensity of production. None of the coefficients for the other factor in-
tensities are significantly different from zero. Based upon these results, tech-
nical innovation during this time period is land using in nature.

In addition to the above, we determine whether the extent of technical change
is related to the size of the farm, the tenure status of the farm, and the extent
to which farm operators participated in governmental programs as indicated

3An alternative approach would be to construct stochastic frontiers. This would eliminate the
errors in measurement problem. However, this gain comes at significant cost. Specifically, a func-
tional form must be specified for the production technology and for the one-sided error term. The
authors are currently engaged in research on this topic.
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TABLE 3

Factor intensity regression results

Variable Estimate Standard error T-ratio
Capital intensity 0.004 0.9742 0.03
Land intensity 0.374 0.0004 3.71
Labor intensity 0.089 0.5839 0.55
Fertilizer intensity —0.042 0.8231 —0.22
Pesticide intensity 0.004 0.9888 0.01
Seed intensity —0.481 0.1959 —-1.30
R?=0.55.

TABLE 4

Factor intensity regression results

Variable Estimate Standard error T-Ratio
Capital intensity —0.027 0.128 —-0.21
Land intensity 0.229 0.100 3.79
Labor intensity 0.093 0.158 0.59
Chem-seed intensity —0.114 0.116 —-0.99
R?=0.55.

by set asides for land. Regression analysis is again used with the rate of tech-
nical change, as determined above, being the dependent variable and farm size,
tenure status, and the extent of land set aside (for year 1982) as independent
variables. Farm size is measured in two different ways: gross farm revenue and
area of land. Tenure is measured as the percent of owned farm land divided by
the total land farmed. The extent of participation in governmental programs
is measured by the proportion of total land on each farm which is set aside as

TABLE 5

Role of farm size (revenue and area), tenure, and farm set aside in technical change

Variable Estimate Standard T-Ratio
Error

Constant 0.1402 0.02626 5.34

Gross revenue 0.0004 0.00001 2.03

Area (acres) —0.0001 —0.00007 —2.19

Land set aside —0.0064 0.01158 —0.56

Tenure —0.0533 0.03892 —-1.37

R*=0.10.
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a result of participation in governmental programs. The results are presented
in Table 5.

The larger farms, in terms of gross revenue are associated with more rapid
rates of technical change. However, farm size measured in area is inversely
related to the rate of technical change. None of the other variables are
significant.

Summary and conclusions

In this paper, an alternative method for measuring the extent and bias of
technical change was presented. It involved the construction of several non-
parametric production frontiers. These frontiers were constructed using data
on 92 Illinois grain farms for both 1982 and 1984. The first step involved the
construction of an input based production frontier using only 1982 data for the
92 farms. The technical efficiency of each farm was then measured relative to
this frontier. The second step involved the construction of an input-based pro-
duction frontier by pooling data for 1982 and 1984 for the 92 farms. The tech-
nical efficiency of each farm, given by the 1982 data, was then measured relative
to this pooled frontier. Using the above information it was possible to deter-
mine the extent of technical change for each farm from 1982 to 1984.

The next step was to determine the bias of technical change. This was ac-
complished by estimating regression equations in which the extent of technical
innovation was the dependent variable, and the various factor intensities of
production, one for each input, were used as independent variables. The results
indicated that technical innovation was land using in nature. In addition,
regression analysis was used to determine whether or not the extent of tech-
nical innovation was significantly related to the size of farm, tenure status, or
the extent of the farm’s participation in governmental land set aside programs.
The results indicate that farm size, measured by gross revenue, was signifi-
cantly and positively related to the extent of technical change; while farm size,
measured in area, was negatively related to technical change.

References

Afriat, S., 1972. Efficiency estimation of production functions. Int. Econ. Rev., 13: 568-598.

Aigner,D.J. and Chu, S.F., 1968. On estimating the industry production function. Am. Econ. Rev.,
58: 826-839.

Aigner, D.J., Lovell, C.A.K. and Schmidt, P., 1977. Formulation and estimation of stochastic
production function models. J. Econometrics, 6: 21-37.

Diewert, W.E., 1980. Capital and the theory of productivity measurement. Am. Econ. Rev., 70:
260-267.

Diewert, W.E. and Parkan, C., 1983. Linear programming tests of regularity conditions for pro-
duction functions. In: Quantitative Studies on Production and Prices. Physica-Verlag, Wiirz-
burg-Wien, pp. 131-158.



318

Fire, R. and Lovell, C.A.K., 1978. Measuring the technical efficiency of production. J. Econ.
Theor., 19: 150-162.

Fire, R., Grosskopf, S. and Lovell, C.A.K., 1985. The Measurement of Production Efficiency.
Kluwer-Nijhoff, Boston, MA, 216 pp.

Farrell, M.J., 1957. The measurement of productive efficiency. J. R. Stat. Soc., 120: 253-281.

Fehrenbucher, J.B., Pope, R.A., Jansen, 1.J., Alexander, J.D. and Ray, B.W., 1978. Soil produc-
tivity in Illinois. Circ. 1156, Cooperative Extension Service, College of Agriculture, University
of Illinois, Urbana, IL, 21 pp.

Faersund, F., Lovell, C.A.K. and Schmidt, P., 1980. A survey of frontier production functions and
of their relationship to efficiency measurement. J. Econometrics, 13: 5-23.

Greene, W.H., 1980. Maximum likelihood estimation of econometric frontier functions. J. Econ-
ometrics, 13: 27-56.

Hayami, Y. and Ruttan, V., 1985. Agricultural Development: An International Perspective. Johns
Hopkins University Press, Baltimore, MD, 506 pp.

Huang, C.J., 1984. Estimation of stochastic frontier production functions and technical ineffi-
ciency via the EM algorithm. South. Econ. J., 50: 847-856.

Meeusen, W. and Van den Broeck, J., 1977. Efficiency estimation from Cobb-Douglas production
functions with composed errors. Int. Econ. Rev., 18: 435-444.

Nghiep, L.T., 1979. The structure and changes of technology in prewar Japanese agriculture. Am.
J. Agric. Econ., 687-693.

Nishimizu, M. and Page, J., 1982. Total factor productivity growth, technological progress and
technical efficiency change: Dimensions of productivity change in Yugoslavia, 1965-1978. Econ.
dJ., 92: 920-936.

Richmond, J., 1974. Estimating the efficiency of production. Int. Econ. Rev., 15: 515-521.

Schmidt, P. and Lovell, C.A.K., 1980. Estimating stochastic production and cost frontiers when
technical and allocative inefficiency are correlated. J. Econometrics, 13: 83-100.

Timmer, C.P., 1971. Using a probabilistic frontier production function to measure technical ef-
ficiency. J. Polit. Econ., 79: 776-794.



