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Abstract

Presumed portfolio benefits of commodities and the availability of index fund-

type investment products increase attractiveness of commodity markets for fi-

nancial traders. But resulting “index trading” strategies are suspected to in-

flate commodity prices above their fundamental value. We use a Heterogeneous

Agent Model for the corn futures market, which can depict price dynamics from

the interaction of fundamentalist commercial traders and chartist speculators,

and estimate its parameters with the Method of Simulated Moments. In a

scenario-based approach, we introduce index funds and simulate price e↵ects

from their inclusion in financial portfolio strategies. Results show that the ad-

ditional long-only trading volume on the market does not inflate price levels

but increases return volatility.

JEL classification: D84, G15, G17, Q02

Key words: Heterogeneous agents; Agent-based modeling; Commodity index
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1 Introduction

Alleged benefits of commodities in financial portfolio strategies (cf. Ankrim and

Hensel 1993; Anson 1999; Gorton and Rouwenhorst 2006) have sparked interest

in financial commodity investment and promoted the creation of commodity index

funds.1 In the period 2005-2010, assets under management of exchange traded com-

modity index funds increased from 1.2 to 45.7 billion U.S. Dollars (BlackRock 2011).

These funds facilitate market entry for investors who are interested in the return of

a diversified commodity portfolio, but are hesitant to trade single futures contracts.

Nevertheless, the index funds need to replicate the index return, e.g. by engag-

ing in “index trading” activities in the single futures markets, which corresponds

to taking long (buy-side) positions and rolling these positions forward (cp. CFTC

2014a). This has consequences for trading volume on agricultural futures markets.

In the case of Chicago Board of Trade (CBOT) corn futures, volume in the active

contract more than doubled from 31 thousand contracts in the period 2000-2005 to

73 thousand contracts between 2005-2010 (Bloomberg data). And, U.S. Commodity

Futures Trading Commission (CFTC) reports show that long position open interest

in CBOT corn futures and options associated with index trading was at an average

of 25% of total open interest over the period 2006-2013.

The influence of the commodity index trading volume on price levels and volatili-

ties in agricultural commodity markets have been vividly discussed since the 2007/08

food price crisis, without reaching a definite consensus. According to the prominent

“Master’s hypothesis”2, index trading drives commodity price bubbles by creating

a constant artificial demand on the futures markets that is disconnected from mar-

ket fundamentals (cf. Irwin and Sanders 2012; Will et al. 2012). Others reject this

hypothesis, stating that an increase in long positions would only a↵ect price levels

if it were suspected to convey new information, due to the theoretical possibility

to create an infinite amount of futures contracts at a given price (e.g. Irwin et al.

2009). Empirical studies have not succeeded in resolving this theoretical debate.

The analysis of direct price level, return or volatility e↵ects from a change in index

trading volume on futures markets with help of Granger Causality tests (e.g. Robles

et al. 2009; Gilbert 2010; Stoll and Whaley 2010; Sanders and Irwin 2011a,b; Gilbert

and Pfuderer 2014) has led to inconclusive results, and further di�culties arise in

1
We will in the following use the term “index funds” for all financial products that replicate a

commodity index.

2
Authors frequently use this term to refer to the statements of the U.S. hedge fund manager

Michael W. Masters in front of Congressional hearings or the CFTC.
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their interpretation as evidence of presence or absence of a price influence (Grosche

2014). On the other hand, the analysis of indirect e↵ects such as changing return or

volatility interdependencies between commodity and traditional asset markets (e.g.

Diebold and Yilmaz 2012; Ji and Fan 2012; Silvennoinen and Thorp 2013; Mensi

et al. 2013; Gao and Liu 2014; Grosche and Heckelei 2014) or tests for rational bub-

bles (e.g. Gutierrez 2013; Liu et al. 2013; Etienne et al. 2014) do not allow a direct

causal attribution of these e↵ects to specific trading strategies.

We take an alternative approach and investigate price e↵ects from index trading

within a heterogeneous agent model (HAM) that simulates price dynamics emerging

from the interaction of a few stylized heterogeneous trader types. These models have

previously been applied to financial markets (see e.g. Hommes (2006) for a survey)

but there has hitherto been scant application to agricultural commodity markets

(exceptions are Westerho↵ and Reitz (2005); He and Westerho↵ (2005); Reitz and

Westerho↵ (2007); Redrado et al. (2009)) and only Redrado et al. (2009) specifically

consider price e↵ects from financialization. In our model, we first simulate a base

scenario where index funds are unavailable. In a later “financialization” scenario, fi-

nancial portfolio managers include commodities in their portfolio but only via index

fund shares. Parameters for the base scenario are empirically estimated with the

Method of Simulated Moments (MSM) (Lee and Ingram 1991; Du�e and Singleton

1993). Its use in HAM parameter estimation has recently been developed in e.g.

Winker et al. (2007); Franke (2009); Franke and Westerho↵ (2011, 2012). We com-

plement these applications with refinements in parameter validation. The focus is

on CBOT corn futures due the importance of corn in global agricultural production

and its comparatively large futures market. Corn has the highest trading volume

on the CBOT and the largest S&P Goldman Sachs Commodity Index (S&P GSCI)

percentage dollar weight among the agricultural commodities.

In the remainder of the paper we first provide some background on commodity

index funds and on the general setup of few-type HAMs. Second, we describe our

Commodity HAM and the procedure we use for estimation and validation of the

model parameters. We then proceed with a discussion of results and the final section

concludes the analysis.

2
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2 Background

A discussion of strategies and replication schemes of commodity index funds provides

the necessary background to model the portfolio managers’ trading activities. And,

a brief overview of the general setup and previous applications of few-type financial

market HAMs serves as the conceptual basis for our Commodity HAM.

2.1 Commodity index funds and index trading

Index funds are in essence investment products that replicate the performance of a

specific underlying index. Its investors gain exposure to the index return by buying

a share in the fund and thus do not have to trade single futures contracts. The index

fund itself then replicates the index either directly by taking adequate long positions

in the futures markets or synthetically by engaging in an index return swap with a

swap dealer. In the latter case, the swap dealer could then choose to hedge the open

position by taking long positions in the futures market. Both direct or synthetic

replication can thus ultimately lead to an increase in index trading positions in the

single futures markets. The magnitude of these position holdings can be assessed

with the CFTC weekly Commodity Index Trader report, which is a supplement to

the (Disaggregated) Commitment of Traders report. The “index trader” category

groups all positions associated with index trading strategies. Figure 1 shows the

development of long and short position open interest for index traders and other

trader types in the CBOT corn futures and options markets over the period 13

June 2006-31 December 2013. Thereby, “producers/processors/merchants” refers to

those traders that deal with the physical commodity and hedge their positions on

the futures markets. The “other noncommercial trader category” includes hedge

funds or Commodity Trading Advisors and Commodity Pool Operators who trade

on behalf of their clients (CFTC 2014b). Unsurprisingly, “index traders” hold a

sizable share in long position open interest while their short position open interest

share is negligible.

While the overall share of index trader open interest is at a relatively constant

25% level, changes in their position holdings will occur on a daily basis. Reweightings

of the underlying index only play a minor role here.3 The daily fluctuations primarily

stem from changes in the desired replication volume. Such changes are the result of

investors buying or selling shares in the index fund. The more liquidity flows into the

3
E.g. substantial S&P GSCI reweightings only occur annually with smaller monthly reviews

(S&P Dow Jones Indices 2014)

3
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Figure 1: CBOT corn futures and options trader type volume shares

Source: CFTC

fund, the larger the return cash flow that has to be paid out to the investors and the

larger the ultimate long position on the futures market used for return replication.

Thus, even though the index fund itself has a passive strategy and only replicates

the index, a higher (lower) attractiveness of commodities as financial investments

will nevertheless increase (decrease) the size of the total index trader long position.

2.2 Few-type heterogeneous agent models for financial markets

In the past, few-type HAMs have frequently been applied to investigate price dy-

namics in financial markets. In di↵erence to their many-type counterparts they do

not attempt to explicitly model the multitude of possible real world trading strate-

gies but rather focus on selected stylized trading rules. Existing HAMs di↵er with

respect to their market focus. Some models concentrate on exchange rates and/or

equities (e.g. Bauer et al. 2009; Manzan and Westerho↵ 2005; Franke and Wester-

ho↵ 2011, 2012). For commodity markets, Westerho↵ and Reitz (2005) and Reitz

and Westerho↵ (2007) focus on corn and on cotton, lead, rice, sugar, soybeans and

zinc respectively. He and Westerho↵ (2005) build a HAM for a general commodity

market, Redrado et al. (2009) for a mixed commodity index and Ellen and Zwinkels

4
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(2010) for the oil market. Finally, Alfarano et al. (2005) develop a model applicable

to a broader range of asset markets and base their empirical estimation on gold and

selected German stock (index) price series. The interaction of di↵erent markets is

modeled e.g. in Westerho↵ (2012) for a Keynesian goods and a stock market, in

Chiarella et al. (2005) and Chiarella et al. (2007) for multiple risky and one risk free

asset and in Dieci and Westerho↵ (2010) for two international stock markets inked

via a foreign exchange market. HAMs have also been used for policy analysis. For

example, Anufriev and Tuinstra (2013) model the e↵ect of short-selling constraints,

Westerho↵ (2003) investigate the e↵ectiveness of price limits and resulting trading

breaks, He and Westerho↵ (2005) analyze the e↵ects of a minimum and maximum

price and Westerho↵ and Dieci (2006) investigate transaction taxes.

In a few-type HAM, price dynamics arise from the interaction of selected styl-

ized heterogeneous trading strategies. Commonly, these strategies are either of a

fundamentalist or a chartist nature and their development goes back to e.g. Zeeman

(1974), Beja and Goldman (1980) and Frankel and Froot (1990). While fundamen-

talists expect that market prices will revert back to their fundamental equilibrium

value, chartists believe that prices follow a trend that can be extrapolated. Formally,

a basic expression of the fundamentalist (V F
t ) and chartist trading volume (V C

t ) is

given by:

V

F
t = �F (PF � Pt), (1)

V

C
t = �C(Pt � Pt�1

), (2)

where Pt is the log of the market price in period t, PF is the logged constant funda-

mental price of the asset and�F and �C are positive reaction coe�cients, measuring

how responsive a trader type is to the observed price movement.

Markets can be in disequilibrium and prices are determined from either excess

supply or demand on the market. A positive trading volume equals demand and a

negative volume supply. A simple price-impact function is defined by:

Pt+1

= Pt + (�Ft V
F
t + �

C
t V

C
t ), (3)

Where �Ft + �

C
t = 1 are the relative weights of the respective fundamentalist or

chartist trader groups on the market. These weights are often assumed to be time-

dependent and to vary according to a switching mechanism. The exact design of this

switching mechanism is model-specific, depending on the underlying assumptions

5
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and the desired degree of complexity.

The complexity of the price dynamics that emerge from the traders’ interaction

over time a↵ect calibration and estimation of the model parameters. While some

models may in part allow analytical derivations (e.g. Chiarella 1992; Lux 1997;

Chiarella et al. 2002) or permit direct estimation of their parameters (e.g. Alfarano

et al. 2005; Westerho↵ and Reitz 2005; Reitz and Westerho↵ 2007; Redrado et al.

2009), more complex model setups require a simulation-based solution approach.

Thereby, parameters are sometimes set “by hand” (e.g. Westerho↵ 2003; Manzan

and Westerho↵ 2005) and their simulated return properties ex-post compared to

empirical returns. Recently, progress has been made in the area of simulation-based

estimation with the MSM where a part of the model parameters is estimated by

simultaneously setting parameter values and considering di↵erences between simu-

lated and empirical returns. Building on Gilli and Winker (2003), Winker et al.

(2007) demonstrate how to set up an objective function, Franke (2009) extends the

work by more explicitly considering the quality of moment-matching, and recently,

Franke and Westerho↵ (2011, 2012) demonstrate the use of measures of model fit in

evaluating the quality of model parameters and comparing models.

3 Commodity market HAM

Our Commodity HAM is from a market perspective most closely related to the corn

model in Westerho↵ and Reitz (2005). But while their direct parameter estimation

approach necessitated a relatively simple model setup, estimation with the MSM per-

mits more complex dynamics. For our base scenario HAM we follow the “structural

stochastic volatility” (SSV) approach developed in Franke and Westerho↵ (2011,

2012). Our base scenario models the time period before 2006, i.e. before the strong

growth of commodity index funds. Its setup closely follows the “DCA-TPM” model

introduced in Franke and Westerho↵ (2012) but in formulating the basic commodity

trading strategies we draw some connection to the CFTC trader categories. The fi-

nancialization scenario then simulates the market entry of a portfolio manager who

uses commodities as portfolio diversifiers but does not trade directly on the futures

markets but only via index funds.

6
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3.1 The base scenario

The “producers/processors/merchants” from the CFTC reports can be interpreted

as “commercial traders” (CO) who have some idea about the fundamental value of

the commodity (from their primary business operations) and will use this knowledge

to trade accordingly. Their trading volume (V CO
t ) is generated by a fundamentalist

strategy, such that:

V

CO
t = �CO(PF � Pt) + ✏

CO
t , ✏

CO
t ⇠ N(0,�2CO). (4)

The first term in the volume equation represents the deterministic volume that

stems from deviations between the fundamental price and the current market price.

The reaction coe�cient �CO determines how strong the commercial traders’ volume

reacts to such perceived deviations. The second term is a stochastic volume. In our

Commodity HAM this component could capture random shocks due to the traders’

di↵erent estimates of the fundamental value.

The “other noncommercial traders” are assumed to be trading on price data

rather than on fundamentals. They follow trends and can thus be interpreted as

“speculators” (S). Their trading volume (V S
t ) is represented by a chartist strategy:

V

S
t = �S(Pt � Pt�1

) + ✏

S
t , ✏

S
t ⇠ N(0,�2S). (5)

Again, the first term in the volume equation represents the deterministic volume,

which depends on daily price changes and the reaction coe�cient �S determines how

strongly the speculators react to price trends. The second term adds a stochastic

volume, which accounts for additional variation in the trading rules (cf. Wester-

ho↵ 2003). The commercial traders’ and speculators’ stochastic volumes are fully

independent.

Both trader types trade directly on the commodity futures market.4 The to-

tal contract trading volume is composed of fundamentalist volume (V F
t ) from the

4
Even though trading volume corresponds to contract holdings, we will not consider any rolling

e↵ects over the time period but assume that trading out of the active and into the first deferred

contract can be achieved without any transaction costs, which is equivalent to holding an artificial

active contract over the full simulation period.

7
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commercial traders and chartist volume (V C
t ) from the speculators, such that:

V

F
t = �

F
t V

CO
t ,

V

C
t = �

C
t V

S
t ,

(6)

where �Ft and �Ct are the market weights of the respective trading strategies. The

price-impact function is given by:

Pt+1

= Pt + �MM

�
V

F
t + V

C
t

�
. (7)

The coe�cient �MM is a positive reaction coe�cient from a “market maker” who

somewhat balances supply and demand by releasing inventory in case of excess

demand and taking inventory in case of excess supply to avoid extreme spikes (cf.

Westerho↵ 2003; Franke and Westerho↵ 2012).

We allow the market weights �Ft and �

C
t to vary based on relative strategy

attractiveness. For our commercial trader-speculator setting, we can imagine that a

higher attractiveness of a fundamentalist strategy induces more commercial traders

to enter the market and speculators to leave, and vice versa. In determining relative

strategy attractiveness, we follow the “DCA-TPM” model approach in Franke and

Westerho↵ (2012) and compute an attractiveness index of a fundamentalist strategy

(↵t) as:

↵t = ↵p + ↵h(�
F
t � �

C
t ) + ↵m(Pt � PF )

2

, ↵h,↵m > 0. (8)

The first summand is the predisposition parameter (↵p), which measures whether

traders have an à priori strategy preference, whereby a positive (negative) value

indicates preference for fundamentalism (chartism). The second summand accounts

for the tendency of the traders to follow the herd, i.e. join a group that is already

dominating the market. Thus, if �Ft > �

C
t , the attractiveness of fundamentalism in-

creases and the parameter ↵h defines the strength of the increase. The last summand

accounts for a potential fear of bubbles. The stronger the misalignment between the

current and the fundamental price, the higher the attractiveness of fundamentalism.

Speculators would leave the market in expectation of a bubble. The parameter ↵h

measures how strongly price misalignment a↵ects attractiveness of fundamentalism.

The functional relation between the market weights and the attractiveness index

is modeled with a “Discrete Choice Approach” (DCA) (Brock and Hommes 1998),

8
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where the attractiveness index directly a↵ects the level of market shares:5

�

F
t =

1

1 + exp(��↵t�1

)
,

�

C
t = 1� �

F
t ,

(9)

where � is the “intensity of choice” parameter that could be used to scale the level

of the attractiveness index in the above equation (Franke and Westerho↵ 2012).

Inserting the above equations into equation (7), leads to:

Pt+1

= Pt + �MM (�Ft (�CO(PF � Pt) + ✏

CO
t ) + �

C
t (�S(Pt � Pt�1

) + ✏

S
t )),

,Pt+1

= Pt + �MM (�Ft (�CO(PF � Pt)) + �

C
t (�S(Pt � Pt�1

)) + ✏

P
t ,

✏

P
t ⇠ N(0,�2P,t),

�

2

P,t = (�Ft )
2

�

2

CO + (�Ct )
2

�

2

S .

(10)

Thus, the variance of the stochastic trading volumes and the trader weights a↵ect

the time-dependent variance of the stochastic price component, which is key to the

SSV model approach (Franke and Westerho↵ 2011, 2012).

3.2 The financialization scenario

We assume that the portfolio managers’ decision on the level of investment in com-

modity index funds will depend on both idiosyncratic returns of the single com-

modities in the index and on commodity index return or volatility correlations with

other portfolio assets. Trading volume associated with single commodity returns

stems from an underlying weighted fundamentalist-chartist strategy, similar to the

portfolio manager in Redrado et al. (2009), while trading volume as a result of port-

folio correlations is modeled as a stochastic component. Total portfolio managers’

trading volume (V PM
t ) is expressed as:

V

PM
t = �PM [�̃Ft (PF � Pt) + �̃

C
t (Pt � Pt�1

)] + ✏

PM
t , ✏

PM
t ⇠ N(0,�2PM ) (11)

where the first two summands show the deterministic volume and �̃Ft and �̃Ct repre-

sent the relative fundamentalist and chartists volume weights and �PM determines

5
An alternative is the Transition Probability Approach (TPA) where the e↵ect on the rates of

change of the trader-type population shares is modeled. As demonstrated in Franke and Westerho↵

(2012), if ↵t is composed of the same elements (↵p, ↵h, ↵m), there will be no major di↵erence

in results between DCA and TPA and we choose DCA due to its comparative popularity in the

literature.

9
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the reaction strength to price deviations. ✏PM
t is the stochastic volume and assumed

to be independent of either the stochastic commercial traders’ and speculators’ vol-

umes.

Since portfolio managers’ trading volume ultimately reaches the futures market

via index fund replication volume, the total position has to be net long. Therefore,

in any period t contract demand is equivalent to the volume derived from equation

(11). But contract supply cannot exceed the total long position that has been built

up until period t. Formally, this restricted volume (Ṽ PM
t ) is expressed as:

Ṽ

PM
t =

8
<

:
max

h
V

PM
t ,�

Pt�1

i=1

V

PM
i · (1� �)

i
, if V PM

t < 0

V

PM
t , otherwise.

(12)

As a total position holding of zero would strictly mean that index funds go out of

business, the parameter � is introduced as a percentage minimum position holding

leading to a moving lower bound for Ṽ PM
t .

The combined deterministic trading volume of all three trader types is still only

associated with either a fundamentalist or a chartist strategy, whereby total funda-

mentalist and chartist volumes are calculated as:

V

F
t = �

F
t V

CO
t + �̃

F
t Ṽ

PM
t ,

V

C
t = �

C
t V

S
t + �̃

C
t Ṽ

PM
t .

(13)

This assumes that the fundamentalist/chartist shares in Ṽ

PM
t are the same as in

V

PM
t and that size of �̃Ft and �̃Ct , i.e. the weight of the fundamentalist and chartist

components in the portfolio managers’ volume, are also determined with a DCA

approach from the attractiveness index ↵t. But, the herding component within ↵t

now needs to take into account the additional portfolio managers’ fundamentalist

and chartist volume, which is why we now use absolute fundamentalist ( F
t ) and

chartist ( C
t ) volume shares, calculated as:

 

F
t =

�

F
t |V CO

t |+ �̃

F
t |Ṽ PM

t |
(�Ft |V CO

t |+ �

C
t |V S

t |+ |Ṽ PM
t |)

,

 

C
t =

�

C
t |V S

t |+ �̃

C
t |Ṽ PM

t |
(�Ft |V CO

t |+ �

C
t |V S

t |+ |Ṽ PM
t |)

,

(14)

10
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such that ↵t becomes:

↵t = ↵p,+↵h( 
F
t �  

C
t ) + ↵m(Pt � PF )

2

, (15)

Inserting the above trading volumes in the price impact function leads to:

Pt+1

= Pt + �MM (�Ft (�CO(PF � Pt)) + �

C
t (�S(Pt � Pt�1

)) + ✏

P
t + Ṽ

PM
t ,

�

2

P,t = (�Ft )
2

�

2

CO + (�Ct )
2

�

2

S + �̃

2

PM ,

(16)

where the tilde in �̃2PM indicates that the variance will be a↵ected by the short-selling

constraint as it truncates the distribution.

4 Base scenario parameter estimation

With the MSM, model parameters are chosen such that moments calculated from

simulated returns come close to their empirical counterparts from daily relative re-

turns of CBOT corn. We use price data for the trading days 01/05/1970-12/31/2013

from which we split o↵ the base scenario sample ending on 12/31/2005 with a total

number of 9,085 observations. This base period is used for later parameter esti-

mation. Prices are Bloomberg’s first generic contract prices where expiring active

futures contracts are rolled to the next deferred contract on the last trading day of

the active contract (“relative to expiration” rolling procedure). We calculate rela-

tive returns (Rt) as Rt = lnPt � lnPt�1

,, where Pt and Pt�1

are the closing prices.

Squared returns (R2

t ) are used to approximate short-term price volatility. Figure 2

shows the development of closing prices in U.S. Dollars, squared returns and trading

volume (in thousand contracts) until 12/31/2013. The vertical dashed line indi-

cates the end of the base period. The price level and short-term volatility markedly

increase in the period after 2006 while trading volume surges.

4.1 Selection and calculation of moments

We first select and calculate the moments before we set up the objective function

and continue with its minimization and parameter validation. Moments are chosen

to capture important stylized facts of the corn futures prices. Commonly, finan-

cial market HAMs aim to replicate the overall volatility level in the price data,

the non-autocorrelation property of returns, fat tails in the return frequency dis-

tribution, volatility clustering and long memory e↵ects (cf. Franke and Westerho↵

11
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Figure 2: Price, volatility and volume development

Source: Bloomberg

2011, 2012). While overall volatility is market specific, most of the stylized facts

of other financial markets will also be found in commodity returns (Westerho↵ and

Reitz 2005). Our selection of moments follows suggestions in Franke and Westerho↵

(2012) and Winker and Jeleskovic (2007) and calculated empirical moments for both

the baseline and the full observation period are presented in Table 1.

The overall volatility level is captured by calculating the absolute value returns,

which show a similar behavior to squared returns (Franke 2009) and can also be

used to calculate the autocorrelation function, as illustrated below.

Āt =
1

N

NX

t=1

At, At = |Rt| (17)

The first order autocorrelation coe�cient of relative returns is close to zero (non-

autocorrelation property of returns) while the autocorrelations of absolute returns

should be slowly decaying over the time horizon to demonstrate the long memory

e↵ect in the return data. As pointed out by Franke and Westerho↵ (2012), this prop-

erty is also related to volatility clustering. Autocorrelations of lag k are computed

12
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from the sample autocovariances (ACV ) as:

ACVk = 1/T
TX

t=k+1

(Qt � Q̄t)(Qt�k � Q̄t), (18)

with Qt = Rt, At. The sample autocorrelation for either relative (⇢rk) or abso-

lute returns (⇢ak) is then computed as: ACVk/ACV

0

. For relative returns we only

calculate ⇢r
1

and rely on the finding in Franke and Westerho↵ (2012) that auto-

correlations at larger lags will vanish once ⇢r
1

is close to 0. For absolute returns,

we match the profile of the decaying autocorrelation function (ACF) by comput-

ing ⇢ac
1

, ⇢

ac
5

, ⇢

ac
10

, ⇢

ac
25

, ⇢

ac
50

, ⇢

ac
100

. The exponent ac denotes that these are “centered”

autocorrelation coe�cients of absolute returns. The ACF of Rt may have an auto-

correlation coe�cient at one of our selected lags that contradicts the typical behavior

(e.g. in our corn sample, ⇢a
5

is larger than the ⇢a
1

). Since we would not expect our

simulated returns to match these properties, we follow Franke and Westerho↵ (2012)

and smooth this e↵ect by calculating the mean of the autocorrelation coe�cients at

the selected lag and the two lags surrounding it (or one lag in case of ⇢ac
1

).

The fatness of the tail of the frequency distribution of returns is commonly

measured with the Hill-estimator (⇠) and its corresponding tail index (tail = 1/⇠)

(Hill 1975). The smaller its value, the fatter the tail of the distribution. Also,

moments above the value of the tail index are no longer defined. To compute the

tail index for (Rt), the returns are first ordered and we write the order statistics

from the return sample R

1

, R

2

, ..., RT as RT
1

� R

T
2

� ... � R

T
T . The right tail index

is computed as:6

⇠ =
1

k

kX

i=1

lnR

T
i � lnR

T
k

tail = 1/⇠.

(19)

The Hill estimator is sensitive to the choice of k. Standard choices are either 5%

or 10% of the total observations. We follow Winker and Jeleskovic (2007) and

use the mean of the tail indices for k = 0.05 · N and k = 0.1 · N . Thus, tail =

1/2(tail
5

+ tail

10

).

The moment vector m = [Āt ⇢
r
1

tail ⇢

ac
1

⇢

ac
5

⇢

ac
10

⇢

ac
25

⇢

ac
50

⇢

ac
100

]0 collects the single mo-

6
For our model it is only necessary to include a one-sided tail index as the simulated models will

produce symmetric positive and negative extreme returns (c.f. Franke and Westerho↵ 2012).
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Table 1: Empirical moments

Baseline Full period

Corn Soy S&P 500 Corn Soy S&P 500

Āt 0.0102 0.0114 0.0077 0.0112 0.0116 0.0080
⇢

r
1

0.0503 0.0568 -0.0381 0.0431 0.0515 -0.0580
tail 2.5209 2.8034 2.7516 2.6944 2.9013 2.5272
⇢

ac
1

0.2239 0.2933 0.1807 0.2248 0.2660 0.2545
⇢

ac
5

0.2168 0.2755 0.1969 0.2150 0.2506 0.2705
⇢

ac
10

0.1995 0.2512 0.1685 0.1978 0.2309 0.2424
⇢

ac
25

0.1421 0.2163 0.1342 0.1585 0.1948 0.1770
⇢

ac
50

0.0834 0.1495 0.1338 0.1091 0.1365 0.1417
⇢

ac
100

0.0356 0.0846 0.0835 0.0617 0.0790 0.0979

Notes: Soybean prices are available from 05/20/1970 and S&P 500
prices from 04/21/1981.

ments. In Table 1, we have included the respective moments for CBOT soybeans

and the S&P 500 U.S. equity index next to those for CBOT corn. As indicated

by the level of Āt, commodity volatility is higher than that of U.S. equities and is

higher for the full compared to the base period. The other stylized facts are similar

across markets and time periods.

4.2 Objective function

The objective function used to choose the model’s parameter values is based on a

loss function (J) that considers the squared di↵erence between empirical (memp)

and simulated moments (msim):

J = (msim(✓)�m

emp)0W (msim(✓)�m

emp), (20)

where the vector (✓) collects all model parameters. The optimal parameter vector

(✓⇤) will minimize J . W is a weighting matrix of the deviations between empir-

ical and simulated moments that considers their estimated variance (Winker and

Jeleskovic 2007). We follow Winker et al. (2007) and Franke and Westerho↵ (2011,

2012) and use a block bootstrap (due to the long-memory property of the data)

to estimate the sample covariance matrix of the moments (⌃), which also holds

advantages for later model validation.

14
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First, we block-bootstrap the baseline returns by dividing the Rt series into

blocks of appropriate length. Franke and Westerho↵ (2012) propose blocks of 250

days for short-memory moments and 750 days for long-memory moments. We choose

to test 250, 500 and 750 day blocks for each moment and then select the bootstrap

window length that leads to the smallest deviation between the mean of the boot-

strapped moments and the empirical moments, which builds on the window selection

procedure in Franke and Westerho↵ (2011). Based on these results we select a 250

day window for Āt, a 500 day window for ⇢r
1

, tail, ⇢ac
1

, ⇢ac
5

, ⇢ac
50

, ⇢ac
100

and a 750 day

window for ⇢ac
10

, ⇢ac
25

. In dividing the baseline Rt series by the block size, any residual

observations are cut o↵ at the beginning of the series, leading to 9,000 bootstrapped

outcomes of Rt and 36, 18 and 12 blocks for 250, 500 and 750 day windows, re-

spectively. Random block draws with replacement (number of draws = number of

blocks) are used to construct a new series of Rt from which the bootstrapped mo-

ment vector mb is calculated. This procedure is repeated for B = 10, 000 bootstrap

samples to obtain m

b
1

, ...,m

b
B, from which we calculate the vector of moment means

m̄

b and estimate ⌃ and W as:

⌃ =
1

B

BX

b=1

⇣
m

b � m̄

b
⌘⇣

m

b � m̄

b
⌘0

,

W = ⌃

�1

(21)

4.3 Parameter estimation

Some parameters are fixed à priori and summarized in the upper part of Table 2. We

follow Franke and Westerho↵ (2012) and set the reaction coe�cient of the market

maker to �MM = 0.01 and the intensity of choice to � = 1 since both parame-

ters are essentially “scaling parameters” for the price impact and the attractiveness

index. The middle part of Table 2 shows the parameters to be estimated. The

optimal parameter vector ✓⇤, is derived by minimizing J subject to a specific sim-

ulation period (S) and specific random number seeds (⌫CO,S
t ) that are underlying

the calculation of the stochastic volumes (✏CO
t , ✏

S
t ). S is chosen as 10 · N (Franke

and Westerho↵ 2012).7 Prior to the estimation, the random number seed ⌫

CO,S
t

is drawn from a N(0, 1) distribution and the stochastic volumes are calculated as

✏

CO,S
t = ⌫

CO,S
t �CO,S (Franke 2009). Thus, we can ensure that any variation in the J-

value is exclusively attributable to changes in the parameter vector ✓ and not to the

7
10% of the observations at the beginning of the simulation are discarded to ensure that no

transient e↵ects occur (cf. Franke and Westerho↵ 2011, 2012).
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Table 2: Parameter values

Fixed parameters Value

�MM Reaction coe�cient of market
maker

0.01

� Intensity of choice coe�cient 1
PF Fundamental value of the

commodity
ln100

Estimated parameters Bound Model 1 Model 2 Model 3

�CO Reaction coe�cient of com-
mercial traders

> 0 0.327 0.702 0.659

�S Reaction coe�cient of specu-
lators

> 0 8.823 52.589 25.062

�

2

CO Variance of commercial
traders’ stochastic volume

> 0 19.904 69.459 76.074

�

2

S Variance of speculators’
stochastic volume

> 0 247.88 2.745 15.770

↵p à priori preferences -0.174 -0.279 -2.093
↵h Reaction to herding > 0 2.176 1.746 3.884
↵m Reaction to price misalign-

ment
> 0 0.834 9.390 12.372

J-value Value of the objective func-
tion

1.978 3.120 2.540

random number seed. Also, we select starting values for the price Pt (P1

= ln99.75,

P

2

= ln100.25) and the attractiveness index ↵t (↵1

= 5). The minimization problem

is set up as:

min
✓

J = (msim(✓, S, ⌫CO,S
t )�m

emp)0W (msim(✓, S, ⌫CO,S
t )�m

emp) (22)

The optimization implies considerable challenges including that m

sim cannot

be expressed analytically as a function of model parameters and data (as in more

standard estimation approaches), but requires the full simulation with the HAM

and subsequent calculation of moments in each optimization step. The nature of

the objective function also leads to multiple local minima (e.g. Gilli andWinker 2003;

Franke and Westerho↵ 2011). Frequently, a Nelder-Mead Simplex search algorithm

(cf. Lagarias et al. 1998) is used to locate suitable minima. The error arising from

failing to find the global minimum is considered relatively small and authors suggest

to not put too much strain on its determination (Franke and Westerho↵ 2011, pp.72-
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74). Our focus during the optimization is thus to find a set of parameter values that

constitute a local minimum and lead to a good match between m

sim and m

emp. We

also choose a direct search approach but combine the Nelder-Mead and a Pattern

Search algorithm (cf. Torczon 1997) where we can directly consider the parameter

bounds shown in column 3 of Table 2.

First, we draw 15 random starting values for each of the estimable parameters

from a uniform distribution within the bounds shown in Table 3. We then start

the patternsearch solver in MATLAB and run the optimization for each of the 15

vectors of starting values. The solver allows to start the optimization with the built-

in Nelder-Mead algorithm. Once we find a local minimum we use these parameter

values as starting points for the subsequent pattern search with a large initial mesh

(100), an expansion value of 8 and a contraction value of 0.5 and a full poll. For

the 3 parameter combinations that lead to the lowest local minimum, we restart

the procedure with an even larger initial mesh (10,000), an expansion value of 8, a

contraction value of 0.5 and a full poll. We repeat this previous step and decrease the

tolerances with respect to the mesh size, the improvement of the objective function

and the distance between points chosen during the optimization until there is neither

a significant reduction in the J-value nor a significant change in the parameter size.

The last columns in Table 2 show the three estimated parameters sets that led

to the local minima with the smallest J-values. In model 1, speculators’ stochastic

volume is associated with the larger variance. In models 2 and 3, the opposite is

true. Also, in models 2 and 3, speculators have higher reaction coe�cients than

in model 1 and there is a strong reaction to perceived price misalignments. The

calculated J-value shown in the last row of Table 2 is contingent on the random

seeds ⌫CO,S
t used during the optimization and provides insu�cient information to

select the best parameter set. We will therefore choose two alternative approaches

to assess the quality of the model parameters.

4.4 Evaluation of the model fit

The evaluation of the model fit is first based on how well the combinedm

sim obtained

with the parameter sets match the combined m

emp, which is accounted for by the

J-value. Second, it checks how well each single moment is replicated. We compare

m

sim and m

emp via their distributions. Thereby, we use the 10,000 moment vectors

(mb) from the block-bootstrapped estimation of W to calculate a bootstrapped dis-

tribution for the loss functions Jb = (mb�m

emp)0W (mb�m

emp), for b = 1, ..., 10, 000
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Table 3: Boundaries for sample of starting values

Parameter Lower bound Upper bound
�CO 1 10
�S 1 20
�

2

CO 1 25
�

2

S 1 25
↵p -5 5
↵h 1 10
↵m 1 10

and for each single moment within m

b. We interpret the distribution of Jb and the

moments within m

b as an approximation of the true distribution of J and each em-

pirical moment that would arise if the actual data generation process (DGP) behind

the empirically observed return series were to be repeated 10,000 times to create

10,000 di↵erent return series (Franke and Westerho↵ 2012). The comparison of the

simulated and empirical (bootstrapped) J values and moments first uses the “p-

values” from Franke and Westerho↵ (2012), which we label “percentage coverage”
8 and second calculates the relative entropy, i.e. Kullback-Leibler (KL) divergence,

for the respective distributions.

4.4.1 Percentage coverages

We calculate a total and a moment-specific percentage coverage. If we use the dis-

tribution of Jb as an approximation of the true J distribution, then any simulation

run using the optimal parameter vector ✓⇤ cannot be rejected as not being consistent

with the actual DGP if the obtained value of Jsim falls within the 95% quantile of

the distribution of Jb and thus below a critical value (Jb
0.95) (Franke and Westerho↵

2012). The total percentage coverage calculates the percentage out of 10,000 simu-

lation runs using ✓⇤ and a simulation period T=9,0009 that lead to J

sim
< J

b
0.95. We

use the “p-value” from the “DCA-HPM” model in Franke and Westerho↵ (2012) of

32.6% as a benchmark, as suggested by the authors. Results for the ✓⇤ parameter

sets from the three di↵erent base scenario models are shown in Table 4. Models 1

and 2 both exceed the chosen benchmark value of 32.6%.
8
We use this alternative term to illustrate that we actually calculate a percentage of observations

that fit within a predetermined value bound rather than perform a formal statistical test.

9
This corresponds to the length of the bootstrap return sample used to calculate mb

and ensures

that the return series underlying the calculation of msim
and mb

have the same length.
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Table 4: Critical value, percentage coverages and benchmark value

J

b
0.95 Model 1 Model 2 Model 3 Benchmark

19.68 39.23 42.74 28.51 32.6

Table 5: Percentage coverages for single moments

Empirical estimate Critical values Calculated p-values

m

emp
m

b
0.95 m

b
0.05 Model 1 Model 2 Model 3

Āt 0.0102 0.0111 0.0095 76.27 77.67 74.81
⇢

r
1

0.0503 0.0696 0.0283 72.01 68.23 66.14
tail 2.5209 2.9897 2.3242 90.70 85.45 97.93
⇢

ac
1

0.2239 0.2839 0.1440 97.84 97.33 98.67
⇢

ac
5

0.2168 0.2693 0.1443 98.20 98.12 97.52

⇢

ac
10

0.1995 0.2603 0.1130 99.46 99.48 98.81

⇢

ac
25

0.1421 0.1934 0.0665 98.35 94.61 91.53

⇢

ac
50

0.0834 0.1207 0.0286 86.22 75.06 68.72
⇢

ac
100

0.0356 0.0658 -0.0170 95.69 68.98 63.41

While it permits an overall assessment of the model fit, the total percentage cov-

erage does not measure how well the single moments are replicated. We calculate

moment-specific percentage coverages by comparing the marginal moment distribu-

tions, which may have di↵erent left and right bounds. Thus we calculate both a

critical 95th and 5th percentile moment value (mb
0.95,m

b
0.05). The moment-specific

percentage coverage calculates the percentage out of 10,000 simulation runs using ✓⇤

and a simulation period T=9,000 that leads to m

b
0.05,i < m

sim
i < m

b
0.95,i. We sum-

marize the results in Table 5 where the best fit (value closest to 90%) is indicated

in bold font. Model 1 is best at matching the fatness of the tail, the zero autocor-

relation property of the raw returns (⇢r
1

) and the long memory property of the data

approximated with the autocorrelations of the absolute returns10 while model 2 is

best at replicating the overall volatility level (Āt). Before we decide on a parameter

set, we first use the KL divergence to compare the distance between the sampling

distributions of the simulated and bootstrapped J and moment values.

10
The di↵erences to model 2 and 3 coverages for ⇢ac1 , ⇢ac5 , ⇢ac10 are generally small but the coverage

of ⇢ac50, ⇢
ac
100 is best.
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4.4.2 Relative entropy

Compared to the percentage coverage, which only considers how many of the sim-

ulated values fit between the pre-defined bounds, the KL divergence can better

account for di↵erences in the distributional shape, e.g. with respect to skewness or

kurtosis. It is calculated as:

dKL,J =
dX

i=1

Pi(J) ln
Pi(J)

Qi(J)
,

dKL,m =
dX

i=1

Pi(m) ln
Pi(m)

Qi(m)
,

(23)

where P (J), P (m) are the probability density functions of the 10,000 bootstrapped

J-values and moments and Q(J), Q(m) are the probability density functions of

10,000 simulated J-values and moments using the optimal parameter vector ✓⇤ and

a simulation period T , as described above. d = 100 is the number of bins in the

histograms underlying the two probability distributions. In the case of two identical

distributions, dKL = 0, thus, the lower the calculated value, the lower the distance

between the bootstrapped and simulated distributions. The results are shown in Ta-

ble 6 where again the best distributional fit is indicated with bold font. The overall

distance is lowest for model 2. For the single moments, model 1 best replicates the

distribution of the fatness of the tail. Model 2 distances are lowest for Āt, ⇢
r
1

, ⇢

ac
10

and

thus the model performs best at replicating the volatility level and the zero auto-

correlation property of the raw returns. Finally, model 3 shows the lowest distance

for ⇢ac at all remaining lags and is thus best at matching the decaying ACF and the

long memory e↵ects in the return data. Nevertheless, distances for model 2 are in

most cases not drastically di↵erent from model 3.

In summary, model 2 had the best overall percentage coverage and the lowest

distributional distance between J

b and J

sim. Its single moment matching is com-

parable to model 3, which is why we choose model 2 as our main base scenario

parameter set. Nevertheless, we found that the parameter values in model 1 were

quite di↵erent concerning the reaction to price misalignments, the speculators’ re-

action coe�cients and variances of the traders’ stochastic volumes. Since its total

percentage coverage still exceeds the benchmark of 32.6 and the individual moment

matching is quite good, especially for the tail index, we will use model 1 as a compar-

ative base scenario model. This may provide additional insights about the drivers
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Table 6: KL divergence for moment and loss function distributions

Model 1 Model 2 Model 3

J

sim 0.291 0.105 0.114

Āt 0.546 0.011 0.053
⇢

r
1

0.177 0.071 0.223
tail 0.687 1.169 1.152
⇢

ac
1

0.251 0.189 0.164

⇢

ac
5

0.356 0.216 0.193

⇢

ac
10

0.299 0.147 0.234
⇢

ac
25

0.265 0.226 0.166

⇢

ac
50

0.257 0.197 0.118

⇢

ac
100

0.150 0.076 0.056

behind price dynamics and allows for some sensitivity analysis regarding the main

results.

5 Scenario comparison

We simulate first the base scenario over a period of 9,085 trading days, equivalent

to the number of observations in the base period data sample with the model 2

and 1 parameters from Table 2. For both parameter sets we use identical random

number seeds (⌫CO,S
t ) such that any result di↵erences are solely attributable to the

parameter values. In the later financialization scenario we fix the parameter values à

priori in order to better understand sensitivities in the price dynamics with respect

to parameter changes.

5.1 Base scenario results

A graphical summary of base scenario results for model 2 and model 1 is provided in

Figure 3. In both models traders have a very small à priori preference for a chartist

strategy. And, the reaction to herding incentives of the traders is of a similar mag-

nitude (↵h,2 = 1.746 vs. ↵h,1 = 2.176). But, the response of traders to a price

misalignment between the current and the fundamental price is much stronger in

model 2 (↵m,2 = 9.39) than in model 1 (↵m,1 = 0.834). Deviations from the fun-

damental price (horizontal line) increase the attractiveness of fundamentalism and

decrease chartists’ market weight. Due to the size of ↵m, the maximum level of ↵t

in model 2 is higher than in model 1. Also, the stronger reaction to price misalign-
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ment paired with a high reaction coe�cient of speculators (�S,2 = 52.589 versus

�S,1 = 8.823) in model 2 leads to higher fluctuations in the chartist weight (variance

of 0.1 for model 2 and 0.05 for model 1) and deviations from the fundamental price

are less persistent than in model 1. The mean price level is almost identical for both

parameter sets with P̄

1

= 4.67 and P̄

2

= 4.65.

The price volatility e↵ect, measured with R

2

t , is presented in Figure 4. In model

1 an increase in the chartist (speculator) weight and thus a higher chartist trading

volume with a large variance in the stochastic component, leads to an increase in

the level of R2

t . In model 2 a higher fundamentalist (commercial trader) weight and

thus larger fundamentalist trading volume (including the stochastic volume with

its high variance) is associated with a high level of R

2

t . Thus, the trader group

with the highest variance in the stochastic trading volume will carry the largest

information shocks to the market and increase the short-term volatility. From a

theoretical perspective, none of the two scenarios seems implausible. The forecast

of the fundamental price of corn is associated with uncertainty, which could justify

a fundamentalist-chartist variance relation as in model 2. On the other hand, the

trading strategies within the group of speculators may be much more diverse than

within the group of commercial traders, which could motivate the model 1 variance

relation.

5.2 Financialization scenario results

The parameters for the financialization scenario that are set in addition to the base

scenario parameters are summarized in Table 7. The fixed parameters, starting

values and random number seeds are the same as in the base scenario and we use an

identical simulation period length. We can think of it as a period of another 9,085

days that starts after the introduction of index funds and emergence of portfolio

managers on the market. Base scenario reaction coe�cients, variances of stochastic

volumes and the coe�cients in the attractiveness index are assumed to be una↵ected

by the market entry of portfolio managers.

We define three parameter scenarios. Scenario 1 models a “high impact” situa-

tion with a relatively strong reaction coe�cient for the portfolio managers and high

variance in their stochastic volume. Scenario 2 is the “low impact” scenario where

both the reaction coe�cient and the variance of the stochastic volume are signif-

icantly reduced. Scenario 3 shows a situation of a “fast reaction” where portfolio
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Figure 3: Base results overview

Notes: Horizontal (red) line in price charts represents the constant
fundamental price, black lines represent base scenario re-
sults for model 1 and 2 parameter sets.
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Figure 4: Base results volatility e↵ect

Notes: Black lines represent base scenario results for model 1 and
2 parameter sets.
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Table 7: Financialization scenarios

Scenarios

Parameter (1) “High impact” (2) “Low impact” (3) “Fast reaction”

�PM 5 0.5 10
�

2

PM 50 5 5
� 0.2 0.2 0.2

managers’ stochastic volume is still associated with a low variance but the reaction

coe�cient is twice as high as in scenario 1. Minimum position holdings (�) are

always set to 20% of the current total long position. We first show financialization

scenario 1 results for a base scenario with model 2 parameters. There are only few

di↵erences for model 1 parameters and we only mention those that are significant

or provide additional insights. The full set of results for the model 1 parameters are

available from the authors upon request. In the following figures, black bars and

lines will represent the base scenario and grey lines the financialization scenario.

5.2.1 Volume e↵ect

The creation of index funds and the market entry of portfolio managers increases

overall trading volume (Vt) on the market, paralleling the empirically observed vol-

ume increase for CBOT corn futures (see Figure 2). The absolute position size

associable with fundamentalist and chartist trading strategies is calculated as:

|V F,C
t | = �

F,C
t |V CO,S

t |, (24)

|Vt| = |V F
t |+ |V C

t |, (25)

and shown in Figure 5. In the base scenario, the mean overall trading volume

is 5.1 while in the financialization scenario it is 11.4. In the base scenario, the

higher variance in the stochastic commercial trading volume contributes to a higher

fundamentalist trading volume while the new portfolio managers’ fundamentalist

and chartist volume is associated with the same stochastic variance (�2PM = 50).

The total trading position for each trader group sums up the position holdings

in each period t over the full simulation period. A positive (negative) total position

holding equals a total net long (short) position. The total position development is

shown in Figure 6. In the base scenario both commercial traders and speculators
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Figure 5: Volume e↵ect (Model 2, Scenario 1)

Notes: Black bars represent base scenario results with model 2 pa-
rameters, grey bars financialization scenario 1 results.

either take a net long or a net short position, which can change over the course of the

simulation period, depending on the price dynamics. The new portfolio managers’

volume is restricted to a net long position that can at maximum be reduced up

to a percentage level determined by �. In the first few periods, the short-selling

constraint is frequently binding but is later without e↵ect. In the financialization

scenario the commercial traders’ position switches to net short while speculators

are predominantly net long. In model 1, both commercial traders and speculators’

positions are mostly net short. In any case the additional net long position of the

portfolio managers leads to a change of net positions of the other trader groups.

This is possible because the existing traders are as a group not limited in their

possibilities to either take net short or long positions and switch between them as

desired.

5.2.2 Price e↵ect

The price dynamics from the base and financialization scenario are shown in Figure

7. The additional portfolio manager volume does not inflate the price level but rather

has the opposite e↵ect. Apart from the first few periods when portfolio managers

trading volume is very low (and the short-selling constraint is binding), the price
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Figure 6: Position holdings (Model 2, Scenario 1)

Notes: Black lines represent base scenario results with model 2
parameters, grey lines financialization scenario 1 results.

dynamics fluctuate closer around the fundamental value and there is less tendency

for prices to misalign compared to the base scenario. For model 1 parameters, we

obtain the same general results but due to the lower value of the price misalignment

coe�cient ↵m, prices can deviate further away from the fundamental value.

To investigate the volatility e↵ect we use squared returns and the 30-day (V ol(30))

and 90-day (V ol(90)) return-based volatility, which are calculated as:

V ol(m) =

vuut 1

m� 1

mX

n=1

(Rt�n � R̄(m))2, m = 30, 90 (26)

The stochastic portfolio managers’ volume in Scenario 1 is associated with a variance

of �2PM = 50. The SSV model setup implies that the variance inflates the time-

dependent variance of the market price (see equation (16)). We have interpreted

the stochastic volume as a representing portfolio allocations due to correlations

with other assets and as unrelated to stochastic volume from the other traders. If

the variance of this volume is high then it significantly increases volatility levels

in commodity markets by transmitting new information shocks. With model 1

parameters, the volatility increase is even stronger due to the above mentioned
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Figure 7: Price level e↵ect (Model 2, Scenario 1)

Notes: Horizontal (red) line in price charts represents the constant
fundamental price, black lines represent base scenario re-
sults with model 2 parameters, grey lines financialization
scenario 1 results.

larger magnitude of price deviations away from fundamentals.

5.2.3 E↵ects of parameter changes

Figure 9 shows the price dynamics for the three di↵erent financialization scenar-

ios. Comparing the outcome of the “high impact” scenario with the “low impact”

and “fast reaction” scenarios, it becomes clear that the observed overall lower price

levels and lower likelihood of a price misalignment (or bubble) in the financializa-

tion scenario are a result of the size of the portfolio managers reaction coe�cient.

Not only the commercial traders and speculators respond to price misalignment by

entering or leaving the market but also the portfolio managers by readjusting the

weights of their trading strategies. A high reaction coe�cient entails a fast reaction

to any perceived price misalignments and a market price that will fluctuate closer

to the fundamental value. Unsurprisingly, for the model 1 parameter set, where the

reaction to price misalignment is much lower, the e↵ect is also visible but much less

pronounced.

Figure 10 shows the short-term volatility e↵ect. The strongest increase in overall

price volatility is brought about by the “high impact” and the lowest increase by

28



Agricultural and Resource Economics, Discussion Paper 2014:5

Figure 8: Volatility e↵ect (Model 2, Scenario 1)

Notes: Black lines represent base scenario results with model 2
parameters, grey lines financialization scenario 1 results.

Figure 9: Price levels under di↵erent financialization scenarios

Notes: Horizontal (red) line represents the constant fundamental
price, black lines represent base scenario results with model
2 parameters, grey lines financialization results for di↵erent
scenarios.
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Figure 10: Volatility levels under di↵erent financialization scenarios

Notes: Black lines represent base scenario results with model 2
parameters, grey lines financialization results for di↵erent
scenarios.

the “fast reaction” scenario. In the base scenario, the mean of R2

t is 0.019% while

in Scenario 1 it is 0.043%, in Scenario 2 0.026% and in Scenario 3 it is only 0.020%

and thus relatively close to the base scenario mean. It is clear that a higher variance

in stochastic portfolio managers’ volume entails a stronger increase in overall price

volatility. Thus, in times of market crises that a↵ect asset correlations, the volatil-

ity increase on the commodity market could be more pronounced than in tranquil

periods. For a given level of stochastic variance, a higher reaction coe�cient for the

deterministic volume will decrease the volatility level and dampen spikes.

5.2.4 Removal of the short-selling constraint

Finally we investigate the e↵ect of a removed short-selling constraint within scenario

1. The unrestricted trading volume of portfolio managers is determined according

to equation (11). The results are shown in Figure 11. In the first few periods of a

binding constraint its removal leads to a net short position of the portfolio managers

(third graph). While the short-selling constrained new trading volume did not lead

to an inflation of prices above the base scenario levels, price levels are even lower

once it is removed, which can be seen from the two price graphs in Figure 11.
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Figure 11: E↵ects without short-selling constraint

Notes: Black lines represent base scenario results with model 2 pa-
rameters, grey lines financialization scenario 1 results, red
lines are financialization scenario 1 results without imple-
mentation of the short-selling constraint.

6 Conclusions

To investigate price e↵ects on agricultural commodity markets from portfolio inclu-

sion of index funds, we employ a few-type HAM with a SSV approach (Franke and

Westerho↵ 2012) that depicts the price dynamics in the corn futures market pop-

ulated by fundamentalist commercial traders and chartist speculators. We thereby

extend the hitherto econometrics centered analysis on financialization e↵ects with a

simulation model approach that allows to directly consider price level and volatility

e↵ects of specific trading strategies. Our base scenario parameters are estimated

from daily corn futures returns over the period 01/05/1970-12/31/2005 with the

MSM. The selected moments capture the overall volatility level, zero autocorrela-

tion of returns, long-memory e↵ects and fat-tailed return distributions. Parameters

are validated based on their performance in joint and single moment matching. We

thereby extend previous approaches by looking at the whole moment distribution.

In our financialization scenario, we model the situation after the year 2005. The

increased availability of commodity index funds facilitates market entry of finan-

cial portfolio managers who use commodities as portfolio diversifiers and purchase

index fund shares rather than single futures contracts. Thereby, portfolio man-
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agers’ demand depends on individual commodity returns, evaluated with a mixed

fundamentalist-chartist strategy, and on return or volatility correlations with other

portfolio assets, modeled as a stochastic demand component.

In the base scenario, we compare results from two parameter sets and demon-

strate that the trader group with the highest variance in the stochastic volume carries

the largest information shocks to the market and thus directly increases volatility

levels. The price level, on the other hand, is most strongly a↵ected by how fast

traders respond to changes in the factors that a↵ect their deterministic volume and

by the traders’ reaction to price misalignment on the market. Thereby, higher reac-

tion coe�cients decrease the persistence of price deviations and move prices closer

to their fundamental value.

In the financialization scenario, portfolio managers’ trading via index funds cre-

ates new long-only trading volume from the funds’ index replication activities. But,

price levels are not inflated but rather fluctuate more closely around the funda-

mental value when the deterministic demand of portfolio managers reacts to price

misalignments and herding tendencies. Given these model assumptions, the Mas-

ters’ hypothesis of index funds replication volume creating price bubbles on the

market cannot be confirmed. A removal of the short-selling constraint would even

further reduce the occurrence of price deviations. In contrast, the volatility e↵ect is

more pronounced. The information shocks created by the stochastic portfolio man-

agers volume that are assumed to be linked to correlations with other asset markets

directly increase volatility levels. The higher the variance of these demand or sup-

ply shocks, e.g. in times of financial crises, the larger the volatility increase. The

transmission of information shocks a↵ecting volatility is most closely related to the

argument in Irwin et al. (2009) where new volume would a↵ect prices if it transports

new information to the market. In our model, index fund replication volume may

thus increase price volatility but decreases price levels.

Future research could, on the one hand, focus on modifying the model design

and addressing some current limitations. Liquidity constraints for the group of com-

mercial traders and speculators or specific position requirements due to hedging of

primary business activities could influence the price level e↵ect. Time-varying cor-

relations between commodities and other financial assets could be modeled more

explicitly within a multiple market setup and also consider crisis e↵ects. And, spot

and futures markets could be linked via the fundamental value of the commodity.
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Finally, the model could be used for the analysis of regulatory proposals such as

transaction taxes or price limits. One the other hand, model estimation and vali-

dation also hold potential for future research, e.g. by considering di↵erent random

number seeds already during the minimization rather than in an ex-post validation

and extending the current methods used for parameter validation.

Acknowledgements

The authors thank the participants of the IATRC Annual General Meeting at Clearwater Beach,

Florida, December 15-17, 2013 for helpful comments and discussions.

33



Agricultural and Resource Economics, Discussion Paper 2014:5

References

Alfarano, S., T. Lux, and F. Wagner (2005). Estimation of Agent-Based Models: The Case

of an Asymmetric Herding Model. Computational Economics 26 (1), 19–49.

Ankrim, E. M. and C. R. Hensel (1993). Commodities in Asset Allocation: A Real-Asset

Alternative to Real Estate? Financial Analysts Journal 49 (3), 20–29.

Anson, M. J. (1999). Maximizing Utility with Commodity Futures Diversification. The

Journal of Portfolio Management 25 (4), 86–94.

Anufriev, M. and J. Tuinstra (2013). The impact of short-selling constraints on financial

market stability in a heterogeneous agents model. Journal of Economic Dynamics and

Control 37 (8), 1523–1543.

Bauer, C., P. De Grauwe, and S. Reitz (2009). Exchange rate dynamics in a target zone–A

heterogeneous expectations approach. Journal of Economic Dynamics and Control 33 (2),

329–344.

Beja, A. and M. B. Goldman (1980). On The Dynamic Behavior of Prices in Disequilibrium.

The Journal of Finance 35 (2), 235–248.

BlackRock (2011). ETF Landscape: Global Handbook. Q1 2011.

Brock, W. A. and C. H. Hommes (1998). Heterogeneous beliefs and routes to chaos in a

simple asset price model. Journal of Economic Dynamics and Control 22, 1235–1274.

CFTC (2014a). Commitments of Traders (COT) Report – Explanatory Notes.

CFTC (2014b). Disaggregated Commitments of Traders Report – Explanatory Notes.

Chiarella, C. (1992). The dynamics of speculative behaviour. Annals of Operations Re-

search 37 (1), 101–123.

Chiarella, C., R. Dieci, and L. Gardini (2002). Speculative behaviour and complex asset

price dynamics: a global analysis. Journal of Economic Behavior & Organization 49 (2),

173–197.

Chiarella, C., R. Dieci, and L. Gardini (2005). The Dynamic Interaction of Speculation and

Diversification. Applied Mathematical Finance 12 (1), 17–52.

Chiarella, C., R. Dieci, and X.-Z. He (2007). Heterogeneous expectations and speculative

behavior in a dynamic multi-asset framework. Journal of Economic Behavior & Organi-

zation 62 (3), 408–427.

Diebold, F. X. and K. Yilmaz (2012). Better to give than to receive: Predictive directional

measurement of volatility spillovers. International Journal of Forecasting 28 (1), 57–66.

34



Agricultural and Resource Economics, Discussion Paper 2014:5

Dieci, R. and F. Westerho↵ (2010). Heterogeneous speculators, endogeneous fluctuations

and interacting markets: A model of stock prices and exchange rates. Journal of Economic

Dynamics and Control 34, 743–764.

Du�e, D. and K. J. Singleton (1993). Simulated moments estimation of Markov models of

asset prices. Econometrica 61, 929–952.

Ellen, S. and R. C. Zwinkels (2010). Oil price dynamics: A behavioral finance approach

with heterogeneous agents. Energy Economics 32 (6), 1427–1434.

Etienne, X., S. H. Irwin, and P. Garcia (2014). Bubbles in food commodity markets: Four

decades of evidence. Journal of International Money and Finance 42, 129–155.

Franke, R. (2009). Applying the method of simulated moments to estimate a small agent-

based asset pricing model. Journal of Empirical Finance 16 (5), 804–815.

Franke, R. and F. Westerho↵ (2011). Estimation of a Structural Stochastic Volatility Model

of Asset Pricing. Computational Economics 38, 53–83.

Franke, R. and F. Westerho↵ (2012). Structural stochastic volatility in asset pricing dynam-

ics: Estimation and model contest. Journal of Economic Dynamics and Control 36 (8),

1193–1211.

Frankel, J. A. and K. A. Froot (1990). Chartists, Fundamentalists, and Trading in the

Foreign Exchange Market. The American Economic Review 80 (2), 181–185.

Gao, L. and L. Liu (2014). The Volatility Behavior and Dependence Structure of Commodity

Futures and Stocks. Journal of Futures Markets 34 (1), 93–101.

Gilbert, C. L. (2010). How to Understand High Food Prices. Journal of Agricultural Eco-

nomics 61 (2), 398–425.

Gilbert, C. L. and S. Pfuderer (2014). The Role of Index Trading in Price Formation in the

Grains and Oilseeds Markets. Journal of Agricultural Economics 65 (2), 303–322.

Gilli, M. and P. Winker (2003). A global optimization heuristic for estimating agent based

models. Computational Statistics and Data Analysis 42, 299–312.

Gorton, G. and K. G. Rouwenhorst (2006). Facts and Fantasies about Commodity Futures.

Financial Analysts Journal 62 (2), 47–68.

Grosche, S. C. (2014). What Does Granger Causality Prove? A Critical Examination of

the Interpretation of Granger Causality Results on Price E↵ects of Index Trading in

Agricultural Commodity Markets. Journal of Agricultural Economics 65 (2), 279–302.

Grosche, S. C. and T. Heckelei (2014). Directional Volatility Spillovers between Agricultural,

Crude Oil, Real Estate and other Financial Markets. ILR Discussion Paper 2014:4.

35



Agricultural and Resource Economics, Discussion Paper 2014:5

Gutierrez, L. (2013). Speculative bubbles in agricultural commodity markets. European

Review of Agricultural Economics 40 (2), 217–238.

He, X.-Z. and F. H. Westerho↵ (2005). Commodity markets, price limiters and speculative

price dynamics. Journal of Economic Dynamics and Control 29, 1577–1596.

Hill, B. M. (1975). A Simple General Approach to Inference About the Tail of a Distribution.

The Annals of Statistics 3 (5), 1163–1174.

Hommes, C. H. (2006). Heterogeneous agent models in economics and finance. In L. Tes-

fatsion and K. L. Judd (Eds.), Agent-based computational economics, Volume 13,2 of

Handbooks in Economics, pp. 1110–1186. Amsterdam: Elsevier/North-Holland.

Irwin, S. H. and D. R. Sanders (2012). Testing the Masters Hypothesis in commodity futures

markets. Energy Economics 34 (1), 256–269.

Irwin, S. H., D. R. Sanders, and R. P. Merrin (2009). Devil or Angel? The role of speculation

in the recent commodity price boom (and bust). Journal of Agricultural and Applied

Economics 41 (2), 377–391.

Ji, Q. and Y. Fan (2012). How does oil price volatility a↵ect non-energy commodity markets.

Applied Energy 89, 273–280.

Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright (1998). Convergence Properties

of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimiza-

tion 9 (1), 112–147.

Lee, B.-S. and B. F. Ingram (1991). Simulation estimation of time-series models. Journal

of Econometrics 47 (2-3), 197–205.

Liu, X., G. Filler, and M. Odening (2013). Testing for speculative bubbles in agricultural

commodity prices: a regime-switching approach. Agricultural Finance Review 73, 179–

200.

Lux, T. (1997). Time variation of second moments from a noise trader/infection model.

Journal of Economic Dynamics and Control 22 (1), 1–38.

Manzan, S. and F. Westerho↵ (2005). Representativeness of news and exchange rate dy-

namics. Journal of Economic Dynamics and Control 29 (4), 677–689.

Mensi, W., M. Beljid, A. Boubaker, and S. Managi (2013). Correlations and volatility

spillovers across commodity and stock markets: Linking energies, food and gold. Economic

Modelling 32, 15–22.

Redrado, M., J. Carera, D. Bastourre, and J. Ibarlućıa (2009). Financialization of Commod-
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