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Kennedy, J .O.S., 1988. Principles of dynamic optimization in resource management. Agric. Econ., 
2: 57-72. 

The type of resource problem amenable to static analysis is distinguished from that requiring 
dynamic analysis. Possibly due to the apparent complexity of optimal control theory methods, 
often dynamic models have not been applied where they would be appropriate. In this article 
dynamic programming arguments are used to derive optimality conditions directly and simply. 
They are derived for a renewable resource such as a fishery, but they have application to resource 
management in general. The approach is illustrated by examples to the extraction of a depletable 
resource, to feeding for weight gain, and to applying fertilizer when some fertilizer carriers over 
from one crop season to another. Conditions for the optimal replacement of biological units are 
also considered. 

1. Introduction 

The main aim of this article is to explain and illustrate the principles of 
dynamic optimization applied to the management of agricultural and natural 
resource systems. Mcinerney ( 1976, 1978) does this for two-period problems 
using diagrammatic analysis for non-renewable resources, and for renewable 
resources with simple growth functions. The scope of the analysis is extended 
here with the minimum of mathematics ton-period and infinite-period prob
lems and to the use of general growth functions. 

A subsidiary aim of this article is to distinguish the types of problem which 
can be satisfactorily solved with static models from those requiring more com
plex dynamic models. Whilst many management problems are most appropri
ately formulated as dynamic problems, they are too often solved as static 
problems. An optimal control theory approach may be required. Although this 
point has been made before (see e.g. Rausser and Hochman, 1979; Kennedy, 
1981a; Chavas et al., 1985) it is still worth emphasizing. 

0169-5150/88/$03.50 © 1988 Elsevier Science Publishers B.V. 
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It is one thing to formulate an optimal control problem, but another to solve 
it. Efficient solution methods often make use of the necessary conditions for 
optimality, or the maximum principle. For example, Chavas et al. (1985) use 
the optimality conditions in solving a swine production problem. However, 
references to the Hamiltonian, costate or adjoint variables, and transversality 
conditions are likely to discourage some students, if not some potential 
practitioners. 

The novel contribution of this article is to show how the optimality condi
tions can be derived very directly for multistage decision problems using the 
logic of dynamic programming. Dynamic programming arguments are fre
quently employed to derive the maximum principle for continuous time prob
lems (see, e.g., Dorfman, 1969; Intriligator, 1971; Koo, 1977), but the 
mathematics is fairly involved. In practical management settings, however, 
decisions are made at discrete intervals, so that the relevance of the continuous 
time problem is only as a limiting case. The maximum principle for multistage 
problems with discrete time is invariably derived by differentiating a Lagran
gean expression (see, e.g., Dorfman, 1969; Benavie, 1970). In contrast, the 
dynamic programming approach adopted here starts by defining the capital 
value of an asset such as a resource stock, and derives values of the marginal 
value of the asset at all decision stages as a by-product of optimization. The 
directness of the approach should make it a useful pedagogic device in teaching. 

The approach is applied to three finite-stage problems to show how it aids 
the understanding of intertemporal tradeoffs. The applications are to mining 
a depletable resource, feeding livestock and fertilizer provision when there are 
carryover effects. A simple but little-known rule is derived for the last situation. 

For many resource problems there is no natural planning horizon. Examples 
are the harvesting of a renewable resource stock such as fish, and the continual 
replacement of biological units such as trees or livestock. Optimal rules are 
derived for problems with infinite decision stages, but with return functions 
and stock dynamics which are stage-invariant. 

2. Limited scope of static models 

The farm production process has often been characterised by production 
functions relating farm output (y) to dependent variables ( u), categorised as 
controllable or uncontrollable, measurable or unmeasurable. Let the produc
tion function be written as y{u}, and for the moment let u be a scalar repre
senting a controllable input. Profit from the production process is: 

(1) 

where pY and pu are the prices of the output and input, respectively, indepen
dent of y and u. The decision problem is how to set u so as to maximize profit. 
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If y is a concave function of u and there are no constraints on u, the condition 
for optimal u is: 

(2) 

This is the requirement that for optimal u the value of the marginal product 
of the input equal the price of the input. 

Over what period of time is the decision maker interested in maximizing 
profit? For how long does ( 1) apply? A process may consist of applying all of 
the input at one point in time, followed by harvesting all of the output at an
other point in time, as in the case of applying fertilizer for crop production. If 
so, ( 1) applies for the period set by these points in time. Alternatively, the 
input may be applied continually and the output harvested continually, as in 
the case of feeding cows for milk production. Then the longest that ( 1 ) can 
apply is the period over which there is no change inpY jpu ory{ u}. The function 
y{ u} may change because of changes in uncontrollable inputs not included in 
u, or just through the ageing of the biological unit. 

The decision maker is usually interested in maximizing profit over a longer 
period than that for which ( 1) holds. If so, the optimal value of u changes at 
different stages over the planning period. For n decision stages the goal is: 

n 

max I ai-lai{ui} with respect to u1 , ••• , Un (3) 
i=l 

where ai { ui} is the profit at stage i for ui, and a is the discount factor. A crucial 
question is under what circumstances can this goal be met by the independent 
stage-by-stage application of rule ( 2). It is only possible ifthere is separability 
between decision periods, in the sense that ui does not affect p], p 'j nor 
yj { uj} for j > i. In the traditional theory of the firm, and in much applied work 
with agricultural production functions and linear programming, it is assumed 
that separability holds, at least to a reasonable approximation. 

Often in biological management the assumption is not reasonable. For ex
ample, ui may be a two-element vector consisting of a control variable and a 
state variable which is not controllable at stage i, but which is a function of the 
control variable in earlier periods. In resource management problems the state 
variable will often be a stock level such as biomass, or the level of feed, fertilizer 
or water available for allocation in all remaining decision periods. These prob
lems are ones of optimal control. 

If y represents a vector of outputs which are linearly related to a vector of 
controllable inputs, u, in limited supply, maximizing ( 1) is a single-period lin
ear programming problem. If there are no state variables, such as opening stocks 
of cash, livestock or soil status, the more realistic multistage problem ( 3) is 
separable. The solution is obtained by solving the sequence of single-period 
linear programming problems. If state variables do have to be taken into ac
count, the problem can be solved for input levels in all periods simultaneously 
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using multiperiod linear programming. Thus, in the case of linear technology, 
linear programming can be used to solve both a sequence of single-period prob
lems and a multiperiod problem. 

Where input-output relations are non -linear, the marginal analysis under
lying rule (2) does not extend in such a straightforward way to the rule for 
optimal ui in the multiperiod case. Perhaps because the rule is more complex, 
or because there are no perceived market incentives to plan with a horizon 
longer than one period, non-separable problems are sometimes treated as if 
they were separable. However, ignoring carryover effects can lead to serious 
policy problems at the aggregate level, such as applying too much fertilizer, 
mining soil nutrients as if they had zero value and the over-exploitation of 
forests and fisheries. We next consider a simple derivation of the multiperiod 
rule. 

3. Optimality conditions for the dynamic resource problem 

Consider the following general resource problem, which applies to harvest
ing fish but which can be readily reinterpreted to apply to crop, livestock and 
forestry production. The overall problem is to set the level of harvesting, ui, in 
each period i so as to maximize the present value of net returns. The state 
variable is the biomass of the fish stock, xi. The net return from fishing in each 
period is ai {xi, ui}. After the final period return, an { Xn, Un}, allow for the pos
sible realization of the value of the terminal stock, F{xn+d· 

The period net return is: 

(4) 

where Pi is the price of fish and ci {xi, ui} is the cost of harvesting, which de
pends on xi, a measure of the concentration of fish in the sea. The biomass of 
the fish stock at the beginning of period i + 1 is given by the first-order differ
ence equation: 

(i=1, ... ,n) (5) 

where gi{x;} represents autonomous growth in stock as a result of reproduc
tion, natural mortality and fish growth. 

The problem is expressed as: 

n 

max v1 {x1 , u1 , ... , un}= L ai-lai{xi, u;}+anF{xn+d (6) 
Ui, ... ,Un i=l 

subject to ( 5). As a constrained optimization problem the optimality condi
tions could be obtained by differentiating the appropriate Lagrangean expres
sion (see e.g. Benavie, 1970). They can be obtained more directly and simply 
using dynamic programming arguments. 
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Equation ( 6) defines the value of the fish stock as v1 for any harvesting 
sequence u 1 , ••• , un. The usual economic capital valuation which would be given 
to the fish stock is v1 for the optimal harvesting sequence ui, ... , u~ defined as: 

(7) 

Equation ( 7) can be used to rewrite ( 6) as: 

n 

V1 {xr} =max [a1 {x1 , ur}] + L ai-I ai{xi, u')'} + anF{xn+ r} 
Ul i=2 

=max[a1 {x1 , ur}] +avz{x2 , u~, ... , u~} (8) 
UJ 

=max[a1 {x1 , ur}] +aVz{xz} 
UJ 

In this way the problem of setting n harvesting levels is reduced to that of 
setting one harvesting level. Note that the level x2 is related to x1 and u1 by (5) 
for i = 1. Of course, V2 { x2 } is initially unknown, but it can be determined at 
least in principle by a process of backward induction. 

By similar reasoning, ( 8) generalizes to: 

V;{xi} =max[ai{xi, ui} +a Vi+ I {xi+d] 
u; 

=max zi{xi, ui} (9) 
u; 

(i= 1, ... , n) 

with 

(10) 

Equation (9) is the fundamental equation of dynamic programming. To
gether with (10) and (5), it may be used for finding u')' for all i by backward 
recursion. The solution process is initiated by solving (9) for the last decision 
stage with i=n. Equation (10) gives the required value of Vn+l {xn+d in (9). 
Values of V nand u~ are found for all feasible values of Xn- With V n { Xn} known, 
(9) may be used to determine u~_ 1 and Vn-I for all x~-I> and so on until ui is 
found. Solutions may be derived numerically for a finite range of values of the 
state variable in each period. Alternatively, they may be derived analytically, 
either exactly for problems with special structures, or by a process of successive 
approximation. 

If the functions in (5 ), (9) and ( 10) are differentiable it is possible to find 
optimality conditions, analogous to (2) for the separable case. It may be pos
sible to use these conditions for solving problems with differentiable functions. 

A necessary condition for ui = u')' to be an interior solution to ( 9) is: 
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azjau; =aajau; +a(dV;+ 1/dxi+1) (axi+1jau;) (11) 
=aa;/au; -a(dVi+1/dxi+1) =0 

The term dV;+ 1/dx;+ 1 in (11) plays a key role in conditions for dynamic op
timization. It is the present value of a marginal unit of the fish stock, evaluated 
at the beginning of period i + 1 when the stock level is X;+ 1 . It corresponds to 
the current value Lagrange multiplier in the Lagrangean derivation, and to the 
costate variable used in the discrete maximum principle. Writing for nota
tional convenience dV;+t/dx;+ 1 evaluated at X;+ 1 as il;+ 1, (11) can be ex
pressed as: 

(12) 

The first and second terms in ( 12) represent the immediate and future con
tributions respectively to the present value of a marginal change in U;. Note 
that ifthe future contribution (ail;+ 1) is zero, (12) is the same as (2). The 
second term can also be interpreted as the marginal user cost of harvesting the 
marginal fish at stage i. The cost is the present value of reduced net returns 
flowing from the lower fish stock at the start of period i + 1. 

If for any stage i, X; and il i+ 1 were known, it would be possible to find 
aajau; and hence u~ from (12). However, values of il;+ 1 are in general not 
directly observable, except when i=n. For i=n: 

(13) 

The relationship between il; and il;+1 is found by differentiating (9) with re
spect to x;: 

(i=1, ... ,n) (14) 

Any change in X; affects u~. However, it can be shown that if ( 11) holds, 
d V; I dx; can be specified without partial derivatives with respect to u;. This 
can also be interpreted as a result of the envelope theorem. 

Equation ( 14) states that for optimality the increase in the optimal value of 
the fish stock resulting from an additional fish must equal the increase in the 
immediate return, plus the value of the increased stock one period later dis
counted one period. As before, backward recursion may be used in principle to 
findil; for i=n, ... , 1, using (13), (14) and (5). 

4. Example applications 

4.1 Mining 

An important result, which Solow (1974) refers to as a "fundamental prin
ciple of the economics of exhaustible resources", can be obtained from ( 14). If 
X; represents the available amount of a depletable resource, u; the quantity 
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mined and a{· } the concave function of net return from mining after deducting 
costs not dependent on xi, then g{x}=O and aa;axi=O. Equation (14) after 
rearrangement yields: 

(15) 

This states that under an optimal mining policy (with u! > 0), the value of the 
marginal unit of the resource rises through time at the rate of interest. The 
marginal user cost of the resource at stage i, aA. i+ 1o also rises through time at 
the rate of interest. Consequently, quantity mined decreases from stage to stage. 

4.2 Livestock feeding 

Traditional production function approaches to finding optimal rations for 
producing weight gains have not been entirely satisfactory. Allowance has to 
be made for the changing productivity of feeds fed to an animal as it grows. 
One approach has been to divide total weight gain over the feeding period into 
a number of weight gain intervals. For each interval an isoquant function is 
specified relating the different levels of feeds which produce the same weight 
gain. The time taken to achieve the weight gain is also related to the combi
nation of feeds. Information on these functions for each weight gain interval, 
together with prices and costs, enables optimal feeding regimes to be found 
using heuristic processes (see e.g. Heady et al., 1976; Melton et al., 1978). 

A more direct approach is to view the problem as one of optimal control. 
Weight gain resulting from feed inputs can be specified as the control variable, 
and weight and possibly age as state variables. Suppose initially that the date 
of sale and the returns per unit liveweight of the finished animal are known. 
Let the fattening time be divided into n feeding periods. 

The cost of feeding in the ith feeding period is given by ai {xi, ui}, dependent 
on liveweight xi at the beginning of the ith period, and ui, the weight gain over 
the ith period. In this example the use of subscript ion the cost function allows 
for weight gain to be a function of age as well as liveweight. 

The basic recursive functional equation is: 

Vi{xi} =max[ -ai{xi, ui} +aVi+l {xi +ui}] (i=1, .. , n) (16) 
Ui 

with 

Vn+l {xn+l}=PXn+l 

where Vi {xi} is the present value of net returns from feeding an animal of 
liveweight xi an optimal sequence of rations over the remaining n- i + 1 feeding 
periods, and p is the price per unit liveweight at the end of the nth feeding 
period. 



64 

The rule for optimal weight gain in any feeding period i may be determined 
by inductive reasoning. For period i the rule is to find u1 such that: 

(i=1, ... ,n) 

assuming an interior solution. For i=n, we have: 

-aanfaun +ap=O 

(17) 

Statement of the rule for i < n requires knowledge of d Vi+ d dxi+ 1 • Differen
tiating (16) for i=n with respect to Xn gives: 

(18) 

where the partial derivative on the RHS is evaluated at un = u~. Substituting 
for dVn/dxn in (17) gives the rule for optimal weight gain for period n-1: 

-aan_rfaun-1 +a[ -aan!axn +ap] =0 (19) 

The rule generalizes to: 
n-i 

aaJaui=an-i+1p- L: ex! aai+j;axi+j 
i=1 

(20) 

The result shows that the question of whether to feed for an extra unit of 
weight gain in period i cannot be settled solely by comparing the extra feed 
cost with the present value of the weight gain by the sale date. The future 
changes in ration costs resulting from the extra unit of weight gain have to be 
taken into account also. Assume, as seems reasonable, that ration cost is a 
positive convex function of both weight gain and liveweight. The rule implies 
that the optimal weight gain in period i is less the lower is i (i.e. the greater the 
number of feeding periods before sale), the lower is p, and the greater is the 
increase in ration cost with liveweight. 

Equation ( 16) can also be used to obtain numerical solutions to livestock 
feeding problems. Although the method has not been widely adopted, appli
cations have been reported by Glen (1980, 1983), Hochman and Lee (1972), 
Kennedy (1982), Kennedy et al. (1976), Meyer and Newett (1970), Nelson 
and Eisgruber ( 1970) and Yager et al. ( 1980). These applications are reviewed 
by Kennedy ( 1986a). Chavas et al. ( 1985) have also argued persuasively the 
need for a control theory approach to livestock production, and obtain a nu
merical solution for a swine production problem. Unlike the other applications 
just mentioned, they obtain a solution using a gradient method to solve equa
tions based on (12) and (14). 

4.3 Fertilizer carryover 

The determination of the optimal level of fertilizer application is usually 
defined as a static problem of maximizing net returns, a, in ( 1), where y{ u} 
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specifies crop level as a function offertilizer application u. Equation ( 2) then 
describes the condition for optimal fertilizer application. It is implicitly as
sumed that applying fertilizer in period i has no significant consequences for 
period i + 1. In fact there is always some carryover effect, the extent depending 
on the fertilizer, soil characteristics, crop type, crop yield, and the weather. 
Heady and Dillon (1951, pp. 524-525 ), Fuller (1965) and Anderson (1967, pp. 
53-54) mentioned carryover and its relevance to calculating optimal applica
tion rates but gave no general rules. A general rule was given by Kennedy et 
al. ( 1973) and Dillon ( 1977) for the case where fertilizer carryover from period 
i to period i + 1 is proportional to the fertilizer carried over to period i plus the 
fertilizer applied in period i. The rule was derived by backward induction. Rules 
were subsequently derived in the same way for more complex carryover func
tions (Kennedy, 1981b) and for the general stochastic case (Taylor, 1983). 
Recently Kennedy ( 1986b) has shown how these rules can be derived more 
directly. The argument is outlined below as another illustration of the appli
cation of the optimality conditions (12) and (14). Suppose there are to ben 
successive applications of fertilizer to n successive crops. The basic recursive 
functional equation is: 

u; 

where x; is the level of fertilizer carried over to the start of period i, and b is the 
proportion of fertilizer available in period i (x; + u;) carried over to period i + 1. 
Differentiating the RHS of (21) with respect to u; gives (for an interior 
solution): 

p:>j ayjau; -pi+ ab(dV;+ 1 /dx;+ 1 ) =0 

Differentiating (21) with respect to X; gives: 

dV;/dx;=PY ay;/ax;+ab(dV;+ddxi+l) 

Combining (22) and (23) gives: 

dV;/dx;=P't 

(22) 

(23) 

a result which is easily rationalized. If applications are optimal, the value of an 
additional unit of fertilizer carried over to period i must equal the cost of pro
viding an additional unit of fertilizer in period i. This means that ( 22) can be 
rewritten as: 

(24) 

which is the same as the rule when there is no carryover except for the sub
traction of the second term on the RHS. Assuming that crop yield is a positive 
concave function of available fertilizer, recognition of carryover reduces the 
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optimal marginal product of available fertilizer, and hence increases the opti
mallevel of available fertilizer. The value of the marginal product of fertilizer 
is equated with the cost of provision, only with carryover this is the price of 
fertilizer less the present value of the fertilizer that will not need to be applied 
in the next period. 

Note that (24) shows that the optimal level of fertilizer to apply in period i 
does not depend on fertilizer prices beyond period i+ 1, nor on crop prices or 
crop production functions beyond period i. In other words, in this particular 
case, the multiperiod problem can be solved as a sequence of separable one
period problems with parameters relating to the current and next period only. 
If the price of fertilizer is the same in all periods, ( 24) becomes: 

(25) 

which is the same as (2) with the price of fertilizer discounted by the factor 
(l-ab). 

As an example, consider the determination of the optimal level of phosphate 
fertilizer to apply each year for 6 years in growing sorghum in the Northern 
Territory of Australia. The example is investigated in more detail in Kennedy 
(1986a). The sorghum response function is: 

y=2129(1-exp( -0.04(x+u+8.8))) (26) 

where y is yield of sorghum in kg/ha, u is the rate of phosphate application per 
year in kg/ha, and x is phosphate carried over from the previous year in kg/ 
ha. It is assumed that 8.8 kg/ha of phosphate are always accessible in the soil 
whether fertilizer is applied or not, and that no fertilizer has been applied prior 

TABLE 1 

A comparison of outcomes for each rule when there is carryover 

Year i No carryover rule 

1 
2 
3 
4 
5 
6 
Totals 

U; 

(kg/ha) 

41 
41 
41 
41 
41 
41 

246 

Net revenue (kg/ha) 539 

X; 

(kg/ha) 

0 
24 
37 
45 
49 
52 

Carryover rule 

Y;{x;+u;} U; X; 

(kg/ha) (kg/ha) (kg/ha) 

1844 60 0 
2018 26 34 
2064 26 34 
2081 26 34 
2089 26 34 
2092 7 34 

12188 171 

566 

Y;{x;+u;} 
(kg/ha) 

1992 
1992 
1992 
1992 
1992 
1884 

11844 
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to year 1. Prices .are pY = $0.08 per kg and pu = $0.83 per kg. The rate of discount 
is 10% per annum which makes a= 0.9091. The proportion of fertilizer carried 
over is b=0.57. 

Table 1 shows the results of applying the rule for no carryover when there is 
in fact carryover. This is the rule given by (2). Each year, 41 kg/ha of phos
phate are applied. The amount available to the sorghum plants increases each 
year as fertilizer accumulates and is carried over. Yields therefore rise each 
year. Also shown are the results of applying the optimal rule given by ( 25). In 
year 1, 60 kg/ha of phosphate are applied, and 26 kg/ha thereafter until year 
6. Nevertheless, in each of the years 1-5,60 kg/ha of phosphate are available. 
In the final year, year 6, the application drops to 7 kg/ha. Available phosphate 
is 41 kg/ha, the optimal rate when no value is attached to phosphate carried 
over. Overall, less fertilizer is applied, yields are lower, but net revenue is higher 
by about 5%. 

5. Optimality conditions for renewable resources 

At some point in time the productivity of a biological unit declines with age 
and the unit eventually dies. In the case of natural living resources, such as 
fish and wildlife, the biological units are replaced without human intervention. 
Management of the stock of biological units primarily concerns the optimal 
rate of harvesting in each season. 

In the case of other living resources which are farmed, such as livestock arid 
forests, there is not only the problem of how much input to inject or output to 
extract at each stage, but also the question of whether to replace the biological 
unit. 

In the following two sections optimality conditions are derived for both of 
these problems in turn, using dynamic programming arguments. In both cases 
it is assumed that the planning horizon is infinite, that period net returns are 
discounted, and that net return and growth functions are the same in all pe
riods. This means that the optimal value functions, V{ x}, are finite and the 
same for all periods. Subscripts for periods can be dropped. 

5.1 Optimal sustainable yield 

A yield from a resource stock is said to be sustainable if the yield is just 
balanced by the natural growth of the stock. If sustainable yields are taken 
from a stock, then the stock level remains constant. In many cases the optimal 
policy for a renewable resource is to harvest stocks until some optimal stock 
level is reached and from then on to harvest a sustainable yield. It is simple to 
show the condition which must hold for the optimal steady-state stock, x, and 
harvest level u. For any steady-state stock, autonomous growth g{ x} equals 
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sustainable yield u, so that the basic recursive equation for the general resource 
problem (8) can be rewritten: 

V{x}=a{x, u*}+aV{x} (27) 
= (1+r)a{x, u*}/r 

where a{ x, u*} is the optimal annual sustainable rent and r is the rate of dis
count. The result is the usual formula for the present value of an annuity. 
Differentiating both sides of (27) with respect to x gives: 

A.r= (1 +r) da/dx (28) 

which is equivalent to Munro's Golden Rule of Resource Conservation (1981, 
p. 134). The increase in annual sustainable rent to be obtained from a one unit 
increase in stock must be equal to the interest which could be obtained by 
investing the worth of the unit elsewhere. 

5.2 Optimal replacement 

In the livestock feeding problem considered earlier, the possibility in period 
i of replacing the current animal with another of lower liveweight and feeding 
it to period n was ignored. This is now allowed for, taking the simplest case of 
stationary functions and an infinite planning horizon. For ease of exposition, 
only the number of feeding periods over which the animal has been kept for 
fattening, t, is made a state variable. The liveweight state variable x and change
in-liveweight variable u still apply but are suppressed. Replacement animals 
are all of the same weight and age. 

The recursive equation is: 

{ 
-a{t}+aV{t+1} 

V{t}= max[ -a{t}+aV{t+1}, s{t}+ V{O}] 
s{t}+ V{O} 

t=O 
for O<t< T (29) 

t=T 

where V{ t} is the present value of following an optimal feeding and replace
ment regime for an animal which has been fed over t feeding periods, a{ t} is 
the optimal feeding cost if the animal is kept for further feeding, s{ t} is the 
revenue received from selling the animal, and T is the maximum number of 
periods an animal can be fed before replacement. Thus for t = 0 and t = T there 
is only one option. For all other t, if -a{ t} +a V{ t + 1} > s{ t} + V{ 0}, continued 
feeding is optimal; otherwise, replacement is optimal. 

Typically, for any particular replacement age and liveweight, and optimal 
feeding regime, there is an optimal duration of fattening, t*, such that: 

-a{t}+aV{t+1}~s{t}+ V{O} for t~t* 
:---

(30) 

It is of interest to know what condition must hold for optimal replacement as 
a possible means of identifying t*. The condition can be derived analytically 
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using calculus if the relevant functions are differentiable. It is derived here 
more simply but less formally. 

If the length of each feeding period is made sufficiently small, there is an 
insignificant difference between V{ t} and V' { t}, t = 1, ... , T, where V{ t} is based 
on the optimal total fattening duration oft* feeding periods, and V' { t} is based 
on a total fattening duration oft* + 1 feeding periods. This means in particular 
that there is no significant difference between V{ 0} and V' { 0}, and between 
V{t*} and V' {t*}. Given: 

V{t*}=s{t*}+V{O} (31) 

and 

V' { t*} =-a{ t*} + aV' { t*+ 1} (32) 
= -a{t*} + a(s{ t* + 1} + V' {0}) 

the following equation holds as a reasonable approximation: 

s{t*}+ V{O}= -a{t*}+a(s{t*+1}+ V{O}) (33) 

This can be rewritten as: 

s{ t* + 1} -s{ t*}- a{ t*} =r(a{ t*} +s{ t*} + V{O}) (34) 

which states that t is the optimal number of feeding periods when the gain 
through postponing replacement by one more period (the LHS) equals the loss 
in forgone interest through not investing the proceeds which could be realized 
immediately (the RHS). 

It remains to give a value to V{ 0}. Given the nature of the optimal policy: 

t*-1 

V{O}= - L aja{j} +at*V{t*} 
j=O 
t*-1 

= - L ~a{j} +at*(s{t*}+ V{O}) 
j=O 
t*-1 

= -( L ~a{j}+at*s{t*})/(1-at*) 
j=O 

(35) 

Substituting for V{O} in (34), the condition for the optimal time of replace
ment becomes: 

t* 

s{ t*+ 1} -s{ t*} -a{t*} =r(a{ t*} +s{t*}- L ~ a{j}) / (1-at*) (36) 
j=O 

This is a discrete generalization of the Faustmann formula for identifying the 
optimal rotation of a forest, with s{t} equal to stumpage value, and a{t} equal 
to replanting costs for t=O, and equal to zero for t>O. 
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6. Conclusion 

Other writers have noted the need for modelling the dynamics of agricultural 
resource management. Dillon ( 1977, p. 97) comments that some early work in 
livestock production functions "did not really comprehend the problem of profit 
maximization over time". Johnson and Rausser ( 1977, p. 164) state that "many 
agricultural economists for a number of years have been busily applying static 
neoclassical theory to intrinsically dynamic systems". Heady ( 1981, p. 38) has 
suggested "perhaps conventional optimizing theory has been used more widely 

· in recent decades because theory related to time and stochastic phenomena 
was not yet sufficiently operational". Hanf and Schiefer ( 1983, p. 16) note 
that "in most operational decision models the time dimension of managerial 
decisions is not considered adequately". 

The determination of optimal injections into and harvests from agricultural 
and natural resources is often best specified as an optimal control problem. 
Yield at stage i is commonly a function of both the injection level and a state 
variable such as biomass or age. Values of the state variable at subsequent 
stages depend on the current levels of the state and control variables. It is 
argued that crop and livestock management problems could advantageously be 
more routinely formulated as optimal control problems. Indeed, this argument 
could be extended to other areas of farm management which entail what are 
really dynamic problems, such as advertizing, extension, information acquisi
tion and entering futures contracts. 

Simple example problems have been considered in this article for ease of 
exposition. They involved single state and decision variables, and were deter
ministic. However, it is straightforward to extend the approach to more general 
problems. For example, the fertilizer carryover problem has been reformulated 
and solved for situations in which fertilizer applications in any number of pre
vious periods must be specified as state variables (Kennedy, 1986b). 

If the state variable xi+ 1 is a stochastic function of xi and the control variable 
ui, the methods of stochastic dynamic programming can be applied. The basic 
recursive equation (9) is modified by preceding Vi+I { xi+I} by the expectation 
operator, and interpreting Vi{ xi} as the expected value of managing there
source under an optimal policy. Interest in analytically treating fisheries man
agement problems as stochastic has been increasing recently, and most 
approaches have used stochastic dynamic programming (see, e.g., Andersen 
and Sutinen, 1984; Smith, 1986). 

Since the initial recognition of the scope for dynamic programming as a farm 
management tool by practitioners such as Candler and Musgrave ( 1960), 
Throsby (1964) and Burt (1965 ), the technique's limitations and power have 
been tested over a wide range of applications (see, e.g., Kennedy, 1981a, 1986a; 
Burt, 1982). One message from this article is that it has much to offer to re-
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source economists, not just as a numerical solution technique, but also as an 
analytical device. 
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