
ABARE CONFERENCE PAPER 2001.8

1

Cost effective management of
animal and plant disease incursions

Stephen Beare and Ray Hinde
Australian Bureau of Agricultural and Resource Economics

GPO Box 1563, Canberra 2601

45th Annual Conference of the
Australian Agricultural and Resource Economics Society,

Adelaide, 22–25 January 2001

ABARE project 1789

Managing the risks of the incursion and spread of plant and animal diseases
is a key component of Australia’s agricultural policy. Establishing the best
mix of preventative, detection, control and eradication instruments in place
presents a complex problem. The level of risk associated with the likelihood
and costs of disease incursions is high, and as a consequence so are the
costs and benefits of a given management strategy. This risk may have a
considerable impact on the choice of an optimal policy response.
In this paper, a stochastic control framework is developed to examine the
impact of risk on the choice of an optimal disease management strategy for
a hypothetical animal or plant disease incursion. The key sources of risk
examined are the likelihood of incursion and the rate of spread. In addition,
it is recognised that the likelihood that a disease is detected amongst the
population is also uncertain. The management instruments considered
include preventative measures, such as border controls, measures to restrict
the spread of a disease, such as quarantine, and measures to increase the
probability of detection. The model is solved numerically using collocation
techniques.
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Introduction

The objective of this paper is to develop an extended framework estimating the net
benefits of alternative plant and animal disease management strategies. The hypothesis
examined is that risk about different management decisions is an important
consideration in determining an optimal response to a disease threat or existing
incursion. Risk in disease management can arise from many sources. For example, the
likelihood of introduction and detection may be relatively difficult to predict, as may be
the rate of spread and the costs of disease. These can all have a bearing on the
appropriate choice of control measure and level of application.

To explore this problem an epidemiological model of a hypothetical disease outbreak is
embedded within a stochastic optimal control framework. Three controls are specified:
first, a border control which limits the likelihood of an incursion; second, a detection
and treatment program; and third, a control which inhibits the spread of the disease.
Given the initial state of the population, the expected costs of an incursion are then
minimised. The model is solved numerically under a number of scenarios using
collocation techniques.

Theoretical framework

The framework is based on a managed animal population or area of crop production.
Abstracting from the animal or plant reproduction dynamics, let there be two observable
states:
• the proportion of the population in which a disease or pest incursion has not been

detected (Snd); and
• the proportion of the population in which a disease has been detected (Sd).

There are correspondingly four actual population states:
• the proportion of the population which is disease or pest free (Sni);
• the proportion of population which is infected or infested but not detected (Sind);
• the proportion of the population which is infected or infested and detected (Sid); and
• the proportion of the population which is not infected but has tested positive.

While the last state is of some potential interest it will not be considered further here (ie
Sd = Sid). Three controls are considered:
• c1 – a border control applied to the general population to reduce the probability of a

disease incursion;
• c2 – a control applied to increase the probability that an infestation will be detected

and subsequently treated; and
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• c3 – a non-targeted control applied to the whole of the population which reduces the
spread of a disease.

In designing an optimal response strategy, the only observable state on which to base a
control decision is the extent to which a disease has been detected. Given that detection
is uncertain there is a corresponding degree of risk about the true and likely future state
of the population. In the case where little is known about a disease it is not possible to
characterise this risk and only a reactive strategy may be pursued. However, given some
understanding of the epidemiology of a disease it maybe possible to characterise both
the expected progress of a disease and the risk associated with that progress. The use of
a stochastic optimal control framework to model management options for a disease
incursion may then provide some useful insights into the design of a cost effective
strategy. A good general reference that outlines the scope of the stochastic control
framework is Mangel (1995).

Model specification

There are a number of mathematical models commonly used to represent the
progression of a disease as discussed by Kranz (1974). This analysis is limited to the
spread of a disease over time for which the most common model is a logistic growth
equation (Madden and Campbell 1986). Here the discrete form of the logistic
progression curve is used:

(1) ( ) ( ) ( ) ( )[ ]tXtXtStS ii −+=+ 11 α

where
( ) ( ) ( )[ ]1,min ttStX i σ+=

and Si is the total proportion of the population infected, α is a parameter and σi is a non-
negative stochastic disturbance representing an incursion from outside the population.
The stochastic disturbance is drawn from a winsorised normal distribution.

The border control is introduced as a modification to the stochastic incursion process:
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where β1max is the maximum detection rate expressed as a proportion, β11 is the
inflection point of the response function and β12 determines the curvature of the
response function about the point of inflection. Similarly, the infected proportion of
population which can be treated is given by:
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where σd is a stochastic disturbance, drawn from a normal distribution, representing the
risk associated with detection. The control function for the rate of spread is given by:
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The modified equation specifying the spread of the disease through time is:

(5) ( ) ( ) ( ) ( ) ( )[ ]tXtXttStS ii −+=+ 11 α

where

( ) ( ) ( ) ( )[ ]1,min tztStStX di +−=

Without loss of generality the annual cost of an outbreak affecting the entire population
can be normalised to one and a linear cost function specified as:

(6) ( ) ( ) ( )∑
=

++=
3

1i
ddiii tSwcwtStCost

where wi is the per unit cost of the ith control and wd is the treatment cost per decimal
per cent of the population infected.

The problem is then to minimise the expected cost of a disease outbreak through the
choice of the controls:
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E is the expectation operator and r the discount rate.

Solution method

The approach adopted here is to find an approximate numerical solution to Bellman’s
equation for the stochastic control problem through collocation. The technique is
discussed in detail by Von Stryk (1993), Miranda and Fackler (1997), Beare and Bell
(1999). Bellman’s equation for the problem given by equation (7) is:
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A Galerkin approximation is used to replace the Bellman functional equation (8), such
that:



ABARE CONFERENCE PAPER 2001.8

6

(9) ( ) cSSV ii Φ≈

where Φ is an n dimensional interpolation matrix and c is an n-vector of basis
coefficients which are to be determined. The discrete approximation to Bellman’s
equation is then:
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A search algorithm is employed to find values for the vector of basis coefficients which
solves equation (10) at each of the n nodes. Equation (9) is then utilised to interpolate
the solution for states falling between nodes. Random sampling through Gaussian
quadrature was used to incorporate the stochastic components of the model (Judd 1997;
Rust 1997). In a Gaussian quadrature scheme each continuous random variable in the
state transition function is replaced with a set of discrete approximates, the value of
which the variable takes on with an assumed known probability. The full procedure is
specified in the appendix.

Experimental design and results

A baseline solution to the model is developed in which all three controls are cost
effective. That is, even if only one of the three controls were available it would still be
cost effective to use on its own. In addition, the costs in the baseline were chosen so that
border controls are relatively low cost.

The assumed values for the model parameters in the baseline scenario are given in
tables 1 and 2. While the parameter values are chosen arbitrarily and are only for
illustrative purposes, the disease control function is fairly linear about the point of
inflection.

Table 1: Non–stochastic parameter values

Parameter Value
α 1.0
βimax i=1,3 1.0
βi1 i=1,3 10
βi2 i=1,3 5
wi i=1,3 0.005
wd 10
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Table 2: Stochastic parameters

Disturbance Mean Standard Winsorised
Deviation Percentile

σi 0 0.05 50
σd 0 5 na

na: not applicable.

The baseline scenario is then compared with two counter experiments. In the first
counter experiment the costs of detection and treatment are higher than the direct cost of
the disease, excluding the cost due to the increased spread of the infection. Specifically,
the cost of treatment was increased from 10 to 25 units. The net present cost if the
current population remained totally infected is, only 20 units at a discount rate of 5 per
cent.

In the second counter experiment the maximum efficacy of all the controls is reduced
from 100 per cent to 90 per cent. That is, at most 90 per cent of incursions can be
intercepted at the border, 90 per cent of the infected population can be detected and the
rate of spread can be reduced by a maximum of 90 per cent.

Discussion

The phase diagrams for the base and two counter experiments are shown in figure 1.
The initial proportion of the population infected is plotted against the expected
proportion of the population infected in the next period, given the optimal choice of
controls.

In the base case the solution is for complete control. In the first counter experiment
where the costs of treatment are high, a strategy of complete control is employed at low
levels of initial infection. However, at higher levels of infection, the rate of progression
of the disease is not fully arrested. In the second counter experiment, with reduced
efficacy, a strategy of maximum control is employed but again the progress of the
disease is not fully controlled.

The choices of controls under the three scenarios are shown in figures 2a through 2c. In
the baseline scenario the level of effort spent on detection and control increases with the
level of infection. This is largely due to the fact that effort is related to the proportion
detected. The number detected therefore increases as the percentage of infected
members increases. The optimal level of border controls remains relatively constant.
This reflects the fact that nearly all of the infected population will be treated and the
only new source of infection is through an incursion.
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Figure 1: Phase diagram
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Figure 2a: Controls in baseline scenario

0

10

20

30

40

50

60

0.
00

0.
01

0.
04

0.
07

0.
12

0.
18

0.
24

0.
31

0.
38

0.
46

0.
54

0.
62

0.
69

0.
76

0.
82

0.
88

0.
93

0.
96

0.
99

1.
00

detect and treat
border controls
spread controls

state (st)

units
applied

In the counter experiment where treatment costs are high, detection and treatment is
employed only at low levels of infection (figure 2b). Detection and treatment control is
then replaced by an effort to reduce the rate of spread of infection. This, along with the
effort on border controls, eventually declines if the disease continues to spread through
the population. It should be noted that given the functional form and random variation



ABARE CONFERENCE PAPER 2001.8

9

in detection, some proportion of the infected population is detected even with no
expenditure on detection. It is assumed that all detected members of the population are
treated even if it is not cost effective.

When the efficacy of the controls is reduced all three control measures are again
employed (figure 2c). The use of detection and treatment and border controls increase
with the level of infection while the optimal use of border controls declines. The
increased use of detection and treatment has been discussed previously. The increase
use of spread reduction control reflects the fact that with the reduced effectiveness of
detection and incursion controls, the rate at which the disease can be expected to spread
has increased.

Figure 2b: Controls in high treatment cost scenario
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The expected cost of a given level of disease incursion for each scenario is shown in
figure 3. When compared to the baseline, the reduction in efficacy of the controls shifts
the cost curve upward by a relatively constant amount. There is also a shift in the
strategies employed. That is, spread controls are introduced when efficacy is reduced,
unlike in the baseline scenario where the introduction of spread controls were not
optimal at any population state. However, the net effect is roughly equivalent to an
equal percentage increase in the cost of all controls. The high cost of treatment scenario
produces a significant shift in the cost profile, with cost escalating as it is no longer
efficient to fully control the spread of the disease.
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Figure 2c: Controls in 90% efficacy scenario
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Figure 3: Expected costs of an optimally managed disease incursion
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The shadow costs for each state are shown in figure 4. Shadow costs are high when the
initial state of the population is relatively disease free. A small increase in the level of
infection imposes a substantial increases in either disease or control costs. Under the
assumed conditions of spread, once the diseases is established the shadow costs decline
slowly.
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Figure 4: Shadow costs of an optimally managed disease incursion
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Concluding remarks

The problem of formulating an optimal response to a disease incursion is in theory well
suited to stochastic optimal control. The use of numerical techniques such as collocation
make such an approach operational. The results presented here suggest that relatively
complex management models which integrate the dynamics of both epidemiology and
economics can be specified and solved.

The results highlight the importance of the cost of disease management options in
developing a disease incursion strategy. Further, it should be anticipated that strategies
may need to change given the progression of an incursion because the cost effectiveness
of treatment changes with the status of the disease. For example, in the scenario where
detection and treatment costs were high it was only cost effective to use the control
while the levels of infection are low. When the proportion infected in the initial period
was 38 per cent or higher it was no longer cost effective to use this control. From a
practical perspective, the usefulness of the framework will depend on how well the
incursion, spread and control of a disease of actual interest can be specified.
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Appendix

The problem

A general state space of K dimensions is denoted by ( )Kssss ,...,,~ 21= .

By choosing a 1 x D vector of control variables ),...,,(~ 21 Dxxxx = , a profit of ( )α~,~,~ sxf

is achieved over the one time unit, where α~  is a vector of parameters subject to
stochastic variation and f is known. This results in a state space one time unit later of
( )α~,~,~ sxg  where g is known.

If a discount rate of r applies then the total future value of an initial state space s(0) is
given by

( )( ) ( ) ( ) ( ) ( )( )∑
∞

=

−−=
0

~,~,~10~
t

t ttstxfrsV α

If we choose the control variables to always maximise the expected future value, then
this can be expressed recursively by

( ) ( ) ( )( ){ }ααα
~,~,~)1(~,~,~max~

x
sxgVrsxfEsV −+= (1)

This needs to be solved for x~  simultaneously on the K dimensional space of s~ .

The method is to solve simultaneously on a predefined set of nodes of s~ , and to
approximate V by polynomials in s~ , that allow interpolated solutions to all other
possible values of s~ .

The approximation
The Chebychev polynomial functions of scalar s are defined by:

2jfor         )()(2)(

s)(

1)(

21

2

1

>−=
=
=

−− ssss

s

s

jjj ϕϕϕ
ϕ
ϕ

For scalar s define ),( cnsΦ  to be the 1xnC vector of the first nC Chebychev polynomials

of s:
[ ])(),...,(),(),( 21 sssns

CnC ϕϕϕ=Φ

For any nRx1 vector ( )′=
RnsssS ,...,, 21 define ),( CnSΦ  to be the nRxnC matrix defined

by
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( )ijij sS ϕ=Φ )(

ie the ith row of )(SΦ  is ),( Ci nsΦ .

For any nRxK matrix S and 1xK vector ( )Knnnn ,...,,~
21=  define the nR x N matrix

),(...),(),()~,( 2211 KK nSnSnSn Φ⊗⊗Φ⊗Φ=Φ S

where jS  is the jth column of S,

and KnnnN .... 21= .

One dimensional case
An established approximation for solving the one dimensional case of (1), ie
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is to select a set of n nodes of s, ( )′= nsssS ,...,, 21 , and approximate the n by 1 vector

( ) ( ) ( ) ( )( )′≡ nsVsVsVSV ,...,, 21  by
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K–dimensional case
(2) is of the form
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We could extend to the K-dimensional case and assume the approximation to be
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but we choose the more general form

( ) ( ) ( )
[ ]cnsnsns

cssssV

K
K
iii

n

j

n

j

n

j
jjj

K
iKjijiji

K

K

K

KK

~.),(...),(),(

.........)~(

2
2

1
1

1 1 1
...

2

2

1

21

1

1

2

2

21211

Φ⊗⊗Φ⊗Φ=

= ∑∑ ∑
= = =

ϕϕϕ
(2.1)

where
c~  is an N x 1 vector, where
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combination of nodes ),...,,( 21

21

K
iii K

sss  with the 1

1i
s  cycling slowest and K

iK
s  cycling fastest:



















≡





















=

−

−

−

− N
K
N

K
NNN

KK

KK

s

s

s

ssss

ssss

ssss

KK

~
:

~

~

...

:::::

...

...

2

1

121

2
1

1
2
1

1
1

1
1

1
2
1

1
1

121

S

then it can be shown that the N by 1 vector of the )~( isV ’s, is given by

( )cnV ~.~,)( SS Φ=

The solution
The set of Chebychev nodes of sk on [ak,bk] are defined by:
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for i = 1,..., nk

Used in conjunction with the Chebychev polynomial approximation, these yield good
solutions to (1).

(1) needs to be solved at the N nodes and can now be expressed in vector form:

( ) ( ) ( )( ){ }cnrE ~.~,~,,)1(~,,max ααα SXgSXfSV
X

Φ−+= (3)

where 

X is an N x D matrix, row i being the control solution of node i



ABARE CONFERENCE PAPER 2001.8

16

( )α~,,SXf  is the vector of profits ( )α~,~,~
ii sxf  for nodes i = 1,...,N

( )α~,,SXg  is the vector of state spaces ( )α~,~,~
ii sxg  for nodes i = 1,...,N

Solutions need to be found for c~ , X and for ( )SV .

The iterations
The method is to begin with a guess at c~  and then alternate between using c~  to update
( )SV  and then using ( )SV  to update c~ .

1. ( )SV  (and X) is updated by holding c~  fixed and solving (3).

2. c~  is updated by Newton’s method:

( ) ( )[ ] ( ) ( )[ ]SVSSVS −Φ′−Φ−← − cnncc ~.~,~,~~ 1

where ( )SV′  is the N x N Jacobian defined by

( ) ( )

( ) ( )( ){ }

( )( )
( )( )nEr

cn
c

Er

cnrE
c

c

~,~,,)1(

~.~,~,,)1(

~.~,~,,)1(~,,max

α

α

αα

α

α

α

SXg

SXg

SXgSXf

SVSV

X

Φ−=

Φ
∂
∂−=

Φ−+
∂
∂=

∂
∂=′

giving

( ) ( )( )[ ] ( ) ( )[ ]SVSSXgS −ΦΦ−−Φ−← − cnnErncc ~.~,~,~,,)1(~,~~ 1αα

Stochastics
The expectation over the stochastic vector α~  is accounted for by giving it a known
discrete distribution over m=1,...,M shocks. Equation (3) becomes:

( ) ( ) ( ) ( )( ){ }∑
=

Φ−+=
M

m
mmm cnrp

1

~.~,~,,)1(~,,~max ααα SXgSXfSV
X


