

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAS OF STAMDARDS-19E3-4

MICROCOPY RESOLUIION TEST CHART Natignal gurcau or standards.1963-A

THE WEST INDIAN SANDFLIES OF THE GENUS CULICOIDES
 (Diptera: Ceratop rgonidae)

By Willis W. Wirth and Franklin S. Blanton

Technical Bulletin No. 1474

Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE

ACKNOWLEDGMENTS

A 3-month stay on the island of Dominica by the senior author from January to March 1965 and our extensive collections from the island were made possible by facilities extented by the Bredin-ArchboldSmithsonian Biological Survey of Dominica under the very able leadership of Horton H. Hobbs of the Smithsonian Insitution, Washington, D.C. We are especially grateful to the sponsors of the Survey, J. Bruce Preclin and John D. Archbold, for making these studies possible. We are grateful to the following entomologists participating in the Survey who collected Culicoides materinl for us: Dale F. Bray, J. F. Gates Clarke, Oliver S. Flint, Jr., Paul J. Spangler, Theodore H. Spilman, and Elward L. Todd. Our Dominican collections are in the U.S. National Muscum (USNM) in Washington, D.C.

The senior author also had the opportunity of making collections in Jamaica for several weeks in February of 1.969 and 1970 . He is grateful to Thomas H. Farr of the Institute of Jamaica in Kingston for assistance. Extensive and productive light trap collections from Jamaica were made available to us by Robert E. Woodruft of the Florida State Department of Agriculture, Division of Plant Industry, and E. G. Farnworth of the University of Florida in Gainesville. To them we express our sinecre thanks.

The junior author was able to collect in Puerto Rico on a U.S. Army Medical Mrpartment survey in June and July 1952, and his material was presented to the U.S. National Museum. We acknowledge the unfailing kindness of Irwing Fox of the University of Puerto Rico in San Juan in responding to our numerous requests for loans of specimens and for information on Caribbean Culicoides during 1952-72. Dr. Fox bas been most helpful, especially in the early years of our work when we most needed assistance.

We also acknowledge the cooperation and assistance of the following individuals and institutions for the collection or loan of West Indian material, personal assistance, advice, and information: Thomas H . G. Aitken of the Rockefeller Foundation, now at Yale University School of Medicine, New Haven, Conn., and R. Martinez and A. Guerra, members of his staff at the Trinidad Regional Virus Laboratory in Port of Spain; Peter R. Bacon of the University of the West Indies in St. Augustine, Trinidad; Fred D. Bennett of the Commonwealth Institute of Biological Control in Curepe, Trinidad; Richard F. Darsie of the University of Delaware, Newark; John B. Davies of the Trinidad Regional Virus Laboratory, Medical Research Council, Port of Spain; M. E. C. Giglioli and John E. Davies, Mosquito Research and

Control Unit, Grand Cayman, Cayinan Islands, West Indies; David J. Lewis of the Medical Research Comeil, British Museum (Natural Hisiory), London, England; John R. Linley, Entomological Research Center, Florios Department of Health, Vero Beach; J. MaldonadoCapriles, University of Puerto Rico, Maynguez; Glemn M. Stokes of New Orleans, La.; Roger W. Williams, Lolumbia University School of Public Health, New York; and the staff of the American Museum of Natural History (AMNH) in New York. Holdings at this museum include extensive material from the Bahamas, mainly from the Van Voast-AMNH Bahamas Experlition of 1953.

Our West Indian Culicoides collections, unless otherwise specified, have been deposited in the U.S. National Museum, Washington, D.C. Whenever possible we have deposited duplic te material in the collections of the British Museum (Natural History) in London, Institute of Jamaica in Kingston, University of Puerto Rico in Mayaguez and the

School of Public Health in San Juan, American Museum of Natural History in New York, University of Florida and Florida State Colicetion of Arthropods in Gainesville, and the University of the West Indies in St. Augustinc, Trinidad.

We have adapted many of the illustrations from our earlier pablications. They have been drawn by the artists of the 406th Medical Laboratory, U.S. Army, in Tokyo, Japan, and by Thomas M. Evans, Linda Heath, and Niphan Ratanaworabhan of our staff. Original drawings for this bulletin were prepared by Gloria Gordon of our staff and the senior author. The wing photographs were made by Sally Craig of the Walter Reed Army Institute of Research, Washington, D.C., and Jack Scott of the Smithsonian Institution. To all these persons we extend our thanks.

This investigation was supported in part by U.S. Arny Medical Department Contract No. DA-49-193-MD-2177.

CONTENTS

Eenomic importance3Adult morphology 4
Biology 7
Adult foor habils ad atogeny- 7
Mating habits $\$$
O-iposition 9
Larmal habitats 9
Comirol measures 10
(icographiml distribution 11
Systomatie mrangement 10
Kine to species 20
Deseriptions of ('ubteoides species 22
archbold Wirth and Blanton. 22
artbor Fox and Foftman 24
barbosei Wiath and Blanton 26
borinqueni Fox and Hoffman.-- 29
bredini Wirlh and Blanton 31
fecor (Williston) 33
dominicans With and Blanton. 36
Prge Prage
fari Wirth and Bhanton 38
floridensis Beek 39
foxi Orliz 41
furns (Poey) 43
puodeloupensis Floch and Abon- nenc 51
heliconiae Fox and Honmma 52
hoffmani Fox 54
insignis Lata 57
jamaicensis Edwards 61
loughnom Edwards 84
mellews (Contillett) 66
penamensis Bartoosa 69
pracersis (Gocldi) 71
phebotomus (Wilision) 73
pusilhus Latz 77
frilinealus los 79
bimidadensis Hoflman S2
Tilemture eited S6

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.
CAUTION: Pestiedes can be impurious to humans, domestic animals, bencficial insects, desirnble plants, and fish or other wildlife-if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

The West Indian Sandflies of the Genus Culicoides (Diptera: Ceratopogonidae)

By Wimbis W. Whrir, Systematic Entomotooy Laboratory, Northeastem Region, Agricultural hesparch Serice, and Fiaskun S. Bunvros, Department of Entomology, Vnicersity of Florida

The first species of Culicoides reported from the West Indies was deseribed from the beaches of northem Cuba in 1851 by Felipe Poey, "the father of Cuban Zoology," as Decacta furens (fig. 1). Poey noted the abundance and bloodsucking attacks of "el jejen" on the Cuban coasts and speculated that it must be brecding in the mangroves or marshes along the seashore.
In the Euglish speaking islands of the Antilles these pests are known as "sandflics." Williston (1896) ' deseribed three species of Culicoides from Saint Vincent as Ceratopogon maculithorax, C'. decor, and C. phebotomus. H. F. Smith, who collecterl material for Williston, added the note on C'. phlebotomus: "This is the common 'sand-fly' about the southem end of the island."
Coquillett (1901) described Ceratopagon melleus from Florida; this bloorisucking species is also a pest in the Bahamas. Little was added to our records of West Indian sandfies

[^0]until Edwards (1922) described Culicoides loughnani and a variety jamaicensis from Jamaica. Hoffman (1025) reviewed the North American, Contral American, and West Indian Culicoide. and described C. trimidadensis.
In 1942 Fox began a concentrated study of the Caribbean Culicoides resulting in a long series of papers (Fox, 1942: 1946, 1947, 1948, 1949, 1952a, 1952b, 1955a, 1955b; Fox and Hollman, 1944; Fox and Kohler, 1.950; Fox and Maldonado, 1955; Fox and Garcia-Moll, 1961; and Kohler and Fox, 1951).
Beck (1951) began her study of Florida Culicoides with the description of a new species, C. floridensis, which also occurs in the Bahamas.

In a far-sighted and effective response to the difficult sandfly pest problem at resort hotel and beach areas on the north coast, the Jamaican Government established a Sandfly Research and Control Laboratory under the Ministry of Health at Montego Bay in 1959. Since then this laboratory has contributed immensely to our knowledge of the biology and control of West Indian

Froure 1.-Culicoides furens: Lateral view of female, left wing and right legs removed, with parts labeled (cx, coxa; em. epimeron; es, episternum; m, meron; pa, pronotum; pp, propieuron; px. precovale; tr. trochanter).
sandfies, beginning with the work of D. S. Kettle and later that of J. R. Linley and John B. Davies (see Literature Cited for their contributions) . A similar laboratory has been established on Grand Cayman Island and staffed by M. E. C. Giglioli and John E. Davies.

The Bahamian Government was never able to establish a coordinated
laboratory such as these, but in the early 1930 's it enlisted the help of J. G. Myers, a government entomologist, from Trinidad. Since 1950 it has relied heavily on the assistance of private entomologists from the United States, two of whom should be mentioned for their important work on the biology and control of Bahamas sandfies-Edwin A. Sea-
brook of the Palm Beach County, Fla., Mosquito Abntement District, and Glem M. Stokes of New Orlemns, La.
Setting the geographic limits of the West Indies is slightly arbitrary and controversial depending on the purposes of the study. Geological, hiologisal, and political considerations result in different limits. For the purpose of this study, we have excluded Trinidad and Tobago from the West Indics because these islands have a sandfy faum essentially the same as the adjacent Venezuelan mamland end because a review of their sandly species is being renorted elsewhere. We will refer oncasiomally to Trinidad as "West Indian" when a few Antillean species are found there but not on the South American mainland. Although the Dutch island of Aruba falls within the same category as Trindad in being elosely related to the Venezuelan
mainland in its biogeography, we have included its only known Culicoides species in our review because it has been neglected in other reports. The Bermuda Islands share some Culicoides species with the Southeastem United States and only one with the West Indies. We are excluding them from our study and we refer the reader instead to the reports of Williams (1956,1957) and Wirth and Williams (1957).
Regrettably our coverage of the West Indics has been extremely uneven, and today we know practically nothing of the Culicoides of the important islands of Cuba and Hispaniola and most of the islands of the Lesser Antilles except Dominica. Perhaps one of the major accomplishments of this bulletin will be to point out these gaps in our knowledge and to provide a tool for filling them in when ficld work can be done in these neglected areas.

ECONOMIC IMPORTANCE

Our knowledge of the biology and biting habits of Culicoides is still so fragmentary that we have scarecly any indication of their importance as veetors of pathogenic organisms, but their role is probably minor as compared with that of mosquitoes, fleas, liee, and ticks. However, Culicoides may have an important role in the transmission of some diseases, mainly as vectors of filarial worms (Sharp, 1987, 1998; Sleward, 1988; Buckley, 1938, 1994, 1938; Dampf, 1986; Heurard and Peel, 1949; Romaña and Wygodzinsky, 1950; Chardrome and Peel, 1951; Hopkins,

1952; Hopkins and Nicholas, 1952; Mirsa et al., 1952; and Duke, 1954, 1956). These species may also transmit certain groups of viruses such as bluctengue of sheep and cattle (du Toit, 1944; Price and Hardy, :954; Foster et al., 1968; Bowne et al., 1964, 1966) ; horsesickness (du Toit, 1944); buttonwillow virus (Reeves ct al., 1970) ; malarialike protozoa including Haemoproteus of birds (Fallis and Wood, 1957; Fallis and Bemnett, 1960, 1961); Leacocytozoon of chickens (Akiba, 1960) ; and He . patocystis of monkeys (Garnham et al., 1961).

By their amoying attacks in tremendous numbers, Culicoides species have gained notoriety as pests on beaches and in constal swamps throughout the world. Recreation areas in the mountains also have their quota of these pestiferous species. In the West Indies the most widesprend and troublesome pest is C. furens, which in some coastal areas is troublesome enough to retarel the development of otherwise magnifient resorts (Myers, 1935; Adanson, 1939; Linley and Davies, 197i). In special areas C. phebotomus, C. barbosai Wirth and Blanton, and ('. melleus are also a problem, along with mother bloodsucking ceratopogr, id, Leptoconops bequacti (Kiefer) (Painter, 1927; Linley and Javies, 1971). Fourteen of the 2at West Indian species have been recorded as biting humans.

Linley and Davies (1971) reviewed the problem of sandflies versus tourism in the West Indies, summarized the hology of the most important species, and made recommendations for control. The man
thrust of their entire article is toward ways of avoiding a sandfy problem whenever possible rather than trying to control an already existing one. They "advise that intending developers shoukd fully investigate the sandfy situation before commencing their projects, since control measures fored upon them later may be very expensive."
Linley and Davies further stated: "One point that should not cscape would-be developers is the following. In fast-growing areas, such as parts of Floridn, small towns are often established in desimable areas, and combined interest ensures the necessary funds to deal with insects on a coordinated basis. An entirely different situation exists in a remote island locality. We saw instances of single hotels sited in complete isolation, literally surrounded by enormous swamps. The tourst in this situation is important only to the promoters, and they alone must bear the entire and frequently formidable cost of insect control."

ADULT MORPHOLOGY

The structure of Culicoides adults has been described by Carter et al. (1920), Jobling (1928), Tokunaga (1937), Gad (1951), Wirth (1952a), Wirth and Blanton (1959), Jammback (1965), and Atchley (1967, 1970). In the following brief descriptions the most important characters used in Culicoides chassification are deffined.
Head.- The head is subspherical, with the anterior surface somewhat
flattened and in line with the anterior surface of the proboscis. The compound eyes are large, reniform. and more or less contiguous above the bases of the antemac. They may be bare or with short pubescence between the ommatidial facets. The degree of eye separation or contact is often useful in distinguishing species. In the angle between the eyes on the frons is an interocular seta, and above this is often a transverse
suture that marks the separation of the frons and werter.

The antema has 15 divisions, termed segments in this bulletin for convenience, athough it is recognized that the 13 divisions of the flagellum are not true segments in the morphological sense. The basal segment or seape is ringlike, incorporated in the head eapsule, and hidden by the greatly colarged pedicel. The first flagellar segment is slightly enlarged and always bears several small sensory pits ench surrotmeded by minute setae. Some or all of the distal segments also bear these sensory tufts; their number, shape, and distribution are of great importance in classification. In the female the first eight flageliar segments are short and bear long verticils basally. The five distal segments are more clongated and without verticils. The ratio of the combined lengths of the five elongatail distal segments diviled by the combined lengths of segments $3-10$ forms the matemal ratio AARI. In the mate the pedied is more enarged than in the female. and the transition in lengths of the hagellar segments occurs between segments 12 and 13 . Of segments 3 12. ench has a whorl of greatly elongated, erectile verticils forming a sparse to dense plume.
The mouthparts are well sleveloped, oiten as long as the head capsule itelf, and stronger in the female than in the male. In females of most species they are fitted for piereing and bloodsucking. They consist of six slenter, distally toothed blades of subecual lengths, including a strong upper labram-epipharynx, a pair of
maxillas, a pair of strongly toothed mandibles, and a median tubular hypopharynx. These parts are enclosed in s protoseis formed by the fleshy part of the labium. The relative length of the proboscis is of value in classification and is expressed as the proboseis/head ratio (P / EI ratio), which is obtained by dividing the distane from the end of the labrumepipharyma to the tormac by the distance from the latter to the interocular setal base. The maxillary palpus is five-segmented, and the third segment is somewhat swollen and on the distal part of the medioventral surface bears a specialized sensory pit or group of sensilia, which forms an important taxonomic character. The palpal ratio (PR) is the length of the third palpal segment divicled by its greatest brendth.
Thorax.-The thorax is moderately broad and convex above, arched anterionly, and projecting slighty over the head. Dorsally it bears a pair of small depressions behind the humeri, known as the humeval pits, which have been assumed to be sensory bat whose exact funetion is obscure. In various species the disk of the mesonotum is omamented with a distinctive pattern, best seen in fresh or dried specimens, but usually visible to some degree in slide-mounted material. The legs are slender without special armature, but the apex of the fore tibia bears a small spur and tuft of modified hairs, and the tip of the hind tibia bears an anterior spur and two transvere rows of modifed spinose hairs. The "hind tibial comb" includes only the longer spines in the distal row
and is of some value in classification. The fourth tarsomere is usually cylindrical but in a few groups is cordiform. The claws are small and equal on all legs, simple in the female but divided at the apices in the male. The empodium is vestigial.
Wing.-The wings bear dense microtrichia, the size and pigmentation of which give rise to the characteristic paitern of dark or light spots, and more or less abundant macrotrichia or longer hairs. The color pattern of spots or bands is characteristic for each species and is of primary importance in classification; however, in some groups of species it is poorly developed or even absent. In the males the wing is longer and marrower than in the female, and the color pattem is less contrasting. The wing length is measured from the basal areulus to the wing tip. The costa usually extends to more than half the wing length. The costal ratio (CR) is the value obtained by dividing the length of the costa by the wing leugth. There are, with rare exeptions, two complete radial cells formed by the more heavily selerotized madial branches; usually the second or distal one (2RC) is broader and longer than the first, which is often slitlike. We used the Tillyard modification of the Com-stock-Needham system of wing renation, in which from front to back the branches of the anterior fork are called M1 and M2 and those of the posterior fork are $\mathrm{M} 3+4$ and Cul. The color of the halter is also useful in species separation.
Abdomen.-The femate abdomen is relatively stout and the apex some-
what tapered, with a pair of small rounded cerci visible below the ninth tergum. Intemally the female possesses from one to three sclerotized spermathecae, which are usually oval to pyriform, with the slender bases of the ducts sclerotized for a short distance. The spermathecae are joined by hyaline ducts to a common duct, and at the juncture there is usually a small sclerotized ring. In most species with two sclerotized spermathecae there is also a small rudimentary third one. The number and shapes of the functional spermathecae and the presence or absence of a ring are important in classification. The length of the spermatheca is measured in the axis of the base of the duct and includes the sclerotized part of the duct.

The male abdomen is slender and bears the prominent genitalia terminally. These are of primary importance in group elassification and species identification. The ninth segment is in the form of an irregular sclerotized ring consisting of the fused tergum and sternum. The ninth tergum forms an expanded plate, convex externally and hollowed out mesally, and bearing the anus flanked by a pair of membranous cerci on the ventromesal face. The hind comers of the ninth tergum are frequently expanded as a pair of apicolateral processes. The ninth sternum is much shorter than the tergum, usually with a caudomedian excavation on its hind margin, where the base of the aedeagus articulates at the lateral comers.

The forcepslike genital appendages or gonopods arise laterally at
the base of the tergum and are twosegmented. The enlarged basal segment or basistyle bears two internal processes at the base, a mesally directed ventral root and an anteriorly directed dorsal root, the latter articulating directly with the base of the paramere. The distal segment (dististyle or clasper) is setose and slightly swollen at the base, slender and noarly bare distally with an incurvel point. When not extended, it is folded mesad across the mesal face of the uinth tergum. The aedeagus is usuatly a Y-shaped structure with a median proeess directed ventrocaudad, forming a selerotized support on the rentral surface of the male genital duct.

The parameres are usually a pair of sclerotized intermal rodike selerites, eaci: with knobbed base and ventrally directed distal point. They are subject to great modifications in the shape and direction of the basal knob, the middle stem, or the distal point. In some groups of species the parameres may fuse mesally in part or completely in a platelike structure. Although morphologists suggest that it is more appropriate to use the term paramere for the primary gonopod, here called the basistyle and dististyle, and the term claspette for the internal sclerite, here called the paramere, we arefer to follow the traditional usage among ceratopogonid taxonomists.

BIOLOGY

Adult Food Habits and Autogeny

The males feed on neetar from flowering plants and females may increase longevity by doing so. Without sugar, laboratory-bred C. barbosai adults were all dead within 4 days, but with sugar available, males lived up to 13 days and females up to 17 days (Linley, 1966b). In C. obsoletus (Meigen) females, longevity increased from 10 to 51 days in New York when they were fed sugar (Jammback, 1961).
Only Culicoides females take a blood meal. In most species a blood meal is required for egg maturation. In some species, which are autogcuous, eggs may be matured on the first gonotrophic eycle without a blood meal. These flies obtain mutri-
tion for egg development from fat bodies stored during the larval stages. Maturation of a second and subsequent egg batches in such species is dependent on a blood meal, and a meal is necded for each batch of eggs. Facultative autogeny takes place to a variable degrec in C. melleus (Linley, 1969), C. furens and C. barbosai (Linley, 1966b; Linley et al., 1970b), C. sanguisuga (Coquillett) (Jamnback, 1965), C. waringi Lee and Reye and C. mackerrasi Lee and Reye (Dyce and Muray, 1967), and other species.

Gluchova (1958) showed that the number of blood meals and ovarian cycles could be ascertained by the number of follicular relicts in the ovaries after oviposition. She identified up to four ovarian cycles in wild-
caught C. grisescens Edwards, but Lewis (195S) found more than one reliet body difficult to observe in C. furens and C. barbosai. Some species with reduced mouthparts (low number of mandibular tecth) are not known to take a blood meal: C. bambusicola Lutz (Eec, 1968), C. circtunscriptus Kieffer tGluchora, 19088), ('. bermudensis Williams (Williams, 1964 , and ('. dendrophilus Amosora (Amosova, 1959).
linley et al. (1970b) found in Florita that (C. farens females that were caught aitempting to bite in nature were all parous (i.e., had reiiet ovariole dilations from previous oripositions). They concluded that this species is probably 100 percent autogenous. They showed that C. furens exhibits a scasonal change in egg productivity of nutagenous fomales in a population, varying from a minimum of 43 eggs per female in the smallest individuals (menn wing lengh 0.91 mm .) energing in $\mathrm{Sep-}$ tember to a maximum of 81 eggs deposited by larger females (wing lengtly 1.15 mm .) energing in March after developing in the cooler part of the year.
The adult feecling habits of the West Indian Culicoides can be summarized as follows:

Feeding on man,-barbosai. floridensis, fori Ortiz, furens, hoffmani Fox, insignis Lutz, loughnani, melleus, panamensis Barbosa, paraensis (Goeldi), phtebotomus, pusilhus Latz, trilineatus Fox, and trinidadensis.

Feeding on horse, donkey, mule.arubas Fox and Hoffman, foxi, fu-
rens, and heliconiae Fox and Hoffman.
Feeding on cattle-insignis.
Feeding on bird.-archboldi Wirth and Blanton and hofmani.

Hosts unknown--borinqueni Fox and Hoffman, bredimi Wirth and Blanton, decor, dominicames Wirth and Blanton, farri Wirth and Blanton, guadeloupensis Floch and Abonnenc, and jamaicensis.

Mating Habits

Mating (Downes, 1955) typically takes place in flight. The males form swarms and as the females fly through the swarms they are captured by the males. A few species will mate without swarming, with both sexes rumning or crawling around on the soil or vegetation near the potential harval babitat and mating on contact (Downes, 1958). C. melleus is a West Indian spocies with this habit (Linley, 1969; Wirth, personal observation). In some species both sexes are attracted to the adult host where the males mate witls the females shortly after the latter have fed (i.c., C. nubeculosus (Meigen) in Russia and C. utahensis Fox in westcon North America).
While swarming the males bring the setac of the antemal plumes to an erect position (Downes, 1955, 1958), where they serve in auditory recognition of the wing beat frequency of the female. At all other times they are folded. The mating posture (Pomerantzev, 1982) is normally end to end facing in opposite directions with the male claspers pointing to the lead of the female and the ventral parts of the genitalia
in contact. In C. nubeculosus this results in a 180° rotation of the male genitalia, but in most other species there is only a gentle torsion of the mate abdomen.
Most species mate only once, but Jones (1966) found that C. varizennis (Coquillett) can mate repeatedly and stored sperm would last for up to three egg batches. Sperm is transferred to the femak in a spermatophore in C. nubeculosus (Pomerantzev, 1932) and in (. melleus (Iinley and Adams, 1971).

Oviposition

Females when not given a suitable choice of oviposition site may refuse to oviposit, but decapitation cme remove this inhibition (Limley, 1965c), and eggs may be deposited frecly for experimental studies. Typically the edgs are bid within a week or 10 days after the females emerge in autogenous species or the same length of time after a blood meal. The eggs are small (0.25 mm . long) and banana shaped, white when newly laid and darkening to brown. They are deposited on a moist substrate and camot survive prolonged drying. The eggs hatch in a fow days ($2-4$ in C. furens and 5-7 in C. barbosai; Linley, 19666). The first-instar larya possesses a functional spine bearing proleg.
Liniey (1965b) found that C. furens and C. barbosai in Jamaica showed : vidence (ovariole reliets) of ability to cleposit one (autogenous) or two (sceond after a blood meal) batehes of eggs. Jones (1967) found that C. variipennis females deposit an egg batch for each blood meal
taken. A single female could live up to 44 days, deposit a maximum of 243 ceggs in a batch, and lay up to 1,143 eggs in as many as seven egg batches during her lifespan.

Larval Habitats

Only the most important works on the life histories and larval habitats of the West Indian species will be mentioned, begiming with the early South American and Centrai American studies of Lutz (1918), Painter (1927), Fox (1948), Carpenter (1951), Woke (1954), and Forattini etal. (1958).

The most intensive study of breeding places of neotropical Culicoides was made by Williams (1964) in Trinidad. He reared 24 species from a wide varicty of habitats, including sandy and muddy margins of streans and ditches with fresh and brackish water, pond and swamp margins, spring secp areas, discarded animal bedding, rain-soaked manure, decaying cacao pocis, bamana stalks, calabash fruits, and flowers of Calathea, Heliconia, and Clusia.
In the West Indies the only intensive studies of Culicoides biology were made in Jamaica by D. S. Kettle, J. R. Linley, and J. B. Darics, who have published a series of papers on larval habitats, biology, and immature stages. Their findings are reviewed here under each species in Descriptions of Culicoides Species.

The West Indies are particularly favorable for those Culicoides species that prefer coastal mangrove swamps and sandy beaches because of the many miles of shoreline, par-
ticularly in the small low islands of the Bahamas. Only the larger islands of the Greater Antilles and Lesser Antilles have area and clevation enough to create constantly wet enviroments suitable for the rain forest and cloud forest species that predominate on the neotropical mainland.
The prefered larval habitats of the West Indian Culicoides species are as follows:
(i) Sandy beaches and constal la-goons-melleus, phlebotomus.
(2) Coastal mangrove swamps and salt marshos-arabae, barbosai,
furens, insignis, trinidadensis.
(3) Wet soil and pond and stream margins, usually with organic mat-ter-foxi, insignis.
(4) Rotting plant materials--foxi. jamaicensis, loughnani, paraensis, pusillus.
(5) Tree hole debris-borinqueni, hoffmani, paraensis, trilineatus.
(6) Leaf axils and bracts of water-holding plants--decor (inferred), dominicanus (inferred), farri (inferred), heliconiae, panamunsis.
(7) Enknown-archboldi, bredini, floridensis: guadeloupensis.

CONTROL MEASURES

Literature on Culicoides control has been reviewed by Kettle (1969a) and Sinley and Davies (1971).

Several workers have recommended control measures for C. furens using a system of dikes and pumps for water-level management and drying up or flooding potential laryal breeding sites (sce Hull and Dove (1955), Hull et al. (1989: 1943), Platts et al. (1948), Rogers (1962), MacLaren et al. (1967), and Linley and Davies (1971)).

Working in Jamaican mangrove swamps producing large numbers of C. furens, C. barbosai, and C. insignis, Davies (1969) found that C. barbosai preferred more heavily shaded habitats than the other two species. Clearing the mangroves and exposing the soil to full sunlight reduced the population of C. barbosai to a tenth of that in the control area but had little effect on C. furens and C. insignis.

Measures for treating the soil with insenticides to control Culicoides larvac have been proposed by Curran and Goulding (1950), Labreque and Goulding (1954), Jamnback et al. (1958), and Wall and Doane (1965). Use of insecticide sprays and fogs for outdoor control of Culicouices adults has been described by Madden et al. (1946), Glasgow and Collins (1946), and Bruce and Blakeslee (1948). Wire or plastic mesh screens have been only partially effective in preventing Culicoides from entering houses because of the small size of the insects (Porter, 1959). Treating the screens with insecticide in kerosene proved helpful (Jamnback, 1963).
With the recent concern about the long range environmental deterioration produced by massive applications or long continued usage of modern pesticides, advisory agencies
have become cautious about recommending chemical control except as a last resort. Emphasis is being
placed on the need for researeh to develop biological and managemental solutions to sandfly problems.

GEOGRAPHICAL DISTRIBUTION

Hodge (1954) reviewod the Antillear geography and cology. Woodring (1954) reported on the geological history of the Caribbean. Chace and Hobbs (1969) summarized the West Indian biogeograply in a revision of the West Indian terestrial and fresh-water decapod crustaccuns. The maps of the West Indies and Dominica by Chace and Hobbs and the accompanying gazeteers are especially helpful and have been followed in our distribution lists.
The following tabulation summarizes our knowledge of the distribution of the West Indian Culicoides. The format has been adapted from a similar table by Chace and Hobbs. The maps in figures 2-6 illustrate some of these distributions.
The geographic distribution of the faun is as follows:

Antilican endemies (binc species):
Lesser Antilles (five species): Dominica - archboldi, bredini, dominicanus Guadcloupe - guadeloupensis
Dominica, Saint Lucia, and Saint Vincenidecor
Grenter Antilles (two species) :
Jamaica-farri
Jamaica and Pucrto Rico -borinqueni

Lesser Antilles and Greater Antilles (two species):

Jamaica and Cayman Islands to Barbados and Trinidad-hoffmani
Puerto Rico to Barbados and Grenada-trilineatus

Antillean fauna also represented on continental masses (15 species) :

Lesser Antilles, Central America, and South America (one species):
heliconiae-Honduras to Brazil; Grenada
Lesser Antilles, North America, Central America, and South America (two spe(ies) :
arubae-Texas to Colombia and Venczuela; Aruba
paraensis - Eastern United States to Argentina; Grenada
Greater Antilles, North America, Central America, and South America (three species) :
barbosai - Floria.. to Panama and Ecuador; Bahamas, Cuba, Jamaica, Cayman Islands
jamaicensis-Mexico to Panama, Venezuela, and Trinidad; Bahamas, Cuba, Iamaica, Puerto Rico
panmensis-Mexico to Panama; Cuba, Jamaida, Cayman Islands
(ireater Antilles and North America (one species):
loughnani - Florida, Texas; Bahamas, Cuha, Jamaica
Bahamas and North America (two species):
Moridensis-Florida; Bahamas, Bermuda
melleus-Eastem United States (coastal); Bahamas
Lesser Antilles, Greater Antilles, Central America (and/or Mexicot, and South America four species):
fori-Mexico to Argentima; Jamaica, Puento Riso
phebotomus--Mexico to Ecuador and Brazil; widespread in West Indies
pusillus-Mexico to Ecuator and Brazil; widespread in West Indies
trinidadensis-Niearagua to Colombia and Trinidad; Bahamas, Cuba, Faiti
Lesser Antilles, Greater Antilles. North America, Cen-
tral Americe, and South America (two species):
furens-Eastern United States to Brazil and Ecuador; widespread in West modies
insimis-Florida to Argentina; widespread in West Indies
The geographic distribution of the Culicoides species is as follows: *

Astigua-furens, hoffmani," phebotomus.* pusillus *

Arub-arubae
Bahamas-barbosai, floridensis,* furens. jamaicensis, loughnani,* melleus.* trimidadensis

Barlados-furens, hoffmani,* paracnsis, trilinentus
Cayman Islands-barbosai, furens, hofmani." insignis,* panamensis,* pusillus*
Cuba--barbosai, furens, insignis,* jamaicensis," loughnani,* pusillus,* trinidadensis *

Dominica-archboldi, bredmi, decor, dominicanus, fwens, hofmani," insignis," phlebotomus,* pusillus,* trilineatus*

Dominican Republic-furens, insignis, " phlehotomus

Grenada-heliconiae, paraensis, musilhus,* tritineatus*

Guadeloupe-furens, guadeloupensis

Haiti-furens, insigns, trinidadensis

Jamaica - barbosai, borinqueni, farri, foxi,* furens, hoffmani, insignis, jamaicensis, loughnani, panamensis,* phlebotomus," pusillus

[^1]
Montserrat--furens

Pucrto Rico-borinqueni, foxi, furens, hoffmani, insignis, jamaicensis, phlebotomus, pusillus, trilineatus

Suint Croix-furens, hoffmani, jomaicensis, loughnani,* phlebotomus, trilineatus

Saint John-furens. insignis,* phlebotumus *

Suint Lucis-decor, furens, hoffmani." insignis." phlcbotomus,* pusillus.* trilineatus*

Saint Thomas-furens,* trilineatus
stint Vincenl--decor, furens, phlebotomas

Virgin (ordat---furcns *
According to Woodring (1954), large insular masses existed in the Caribbean churing the Cretaceous and some persisted during the Eocene perion. There is no geologieal evitence, however, of any continuous land bridges or evidence that any
existing land masses were continuously in the Antilles back to the Eocene.

Eareiley (1954) postulated that a belt of late Jurassic or Cretaecous orogeny branched castward from Central America through the Greater Antilles and Lesser Antilles to Trinidad and Tenezuela. This belt made a tight. U-shaped pattern and marked two tectogenes, both formed in late Mesozoic and probably in succession one after the other. A third tectogene from Puerto Rico around the Lesser Autilles to the Leeward Islands formed in the Eocene and continues to the present. These orogenic belts were restions of subsidence, heavy sedimentation, igncous activity, and horizontal compression. At times they may have been seaways, at others, superior mountain systems.

Eardley believed the orogenic

Fuecre 2.-Distribution of the Culicoides nigrigenus group in the Caribbean.

Figure 3.-Distribution of some Culicoides (Hoffmema) species in the Caribbean.

Frgure 4,-Distribution of the subgenus Drymodesmyin in the Caribbean.

Fiscra 5.-Distribution of some Culicuides species in the Caribbean.

Fgutu: 6.--Distribution of the Culicoides debilipalpis group in the Caribbean.
cyele generally consisted of (1) general epsirogenic uplife of a central region for a long time and the shedding from it of large amounts of debris to partly surrounding basins; (2) compressional deformation in the partly sutrounding basins to form a belt of major orogeny ; and (3) subsidence of the fomer region of uplift, wilh the creation of a basin having deep water in places. The marginal areas of the new basia soon became sites of heary sedimentation. The Gulf of Mexico is believed to have begrm to subside in the Pemmian pertiod, the westem Caribbean Basin to be due to Cretacoous and eanly Tertiary subsidence. and the eastert (aribbean Basin is thought to have resulted from middle and fate Tertiny subsidence.

According to Chace and Hobbs 11969), most of the present islands of the Antilles are not known to be okler than oligocene or carly Xiocence. Consequently, the anecstors of the present fresh-water and terrestrial fauma on them could not have been established earlies.

Belkin (1962) believed that this "American Mediterranean" region has been an important center of evolution of new types of mosquitoes and probably other terrestrial and fresh-water organisms rather than a barrier to their dispersal. In the course of island formation through fragmentation of a land area, great envirommental stress would be placed on surviving populations and these would be grently reduced and isolated. Eneter these conditions there would be an ideal opportumity for quick fixation of new alaptive types.

These would have a chance to become established and better adapted and they coukd then disperse when the isolated areas became approxinated agran with one or more of the adjoining continental masses. Limited hybridization would probably also ocem when contaet was reestablished and would contribute to futther evolution. Belkin believed that this hypothesis helped to exphan several controversial probiems as emumerated below:
(1) The presence of equaly primitive and distinet members of a phylad both in the Northem and Southem Hemispheres. Tsually it is intrapreted that the phylad origimated in a continental area in one hemisphere and then dispersed to another. According to Belkin as exemplified by the subgenus Ochlerotatus of Aedes, the situation is casily explained if the phylad originated on an intercontinental island and dispersed to both hemispheres where taxa evolved independently. Bram (1967) reported that 47 of the 61 American species of the subgenus Culex ('ulex) are found in the American Mediterranean, which apparently was their primary center of origin.
(2) The presence of annectant types on the larger islands and on the periphery of intereontinental areas. Belkin considered that these might represent relatively unsuccessiul types evolved in isolation that had not been able to radiate and are confined to the immediate vicinity of their place of origin.
(3) The successive replacement of phylads claring evolution of a minor

the west indian sandflies of the genus culicoides

group. This could be accomplisherl by the origin of new dominant types in isolation of the intercontinental ared and their subsequent invasions of continentai areas.
The c'ulicoides furets group may illust mate Belkin's thind type of situation. 'This coastal salt-marsh group romprises five species-(' alahialinus Barbosa, ranging from Pamama to Eenator; ('. barbosai Mest Inties distributies (p . 261); C. furens (p. 13); ('. gorgasi With and Blanton, a Panama entemic; and C. concer Hogue and Wirth, a Costa Rican cralz-hole endemic. ('. furens is ly far th, most clominant, wideranging, and sucesssful species of this group (fig. $\overline{5}$ and may actually be a sister species of the similarly Hominant ('. schultzci (Enderlein) of the Ethiopith-()rental fauna. simee no Aro-Asian species appents to be closely welated to ©. schultzei. it secms on morphologiend grounds that the origin of this species was with the American (., furens group. At the same time that ('. furens whis achies ing dominance, it secms that C. efoneer and ('. gorgasi evolved as cologieally restricted contemies, and (.. barbosai followed C. furens part way in the western Caribhean to Florida (fig. 5) with a much restricted ecological niehe located a little closer to the actual seashore. (. schultaci evolved from this group and is ceen more fresh water tolerant than (. furens, breeding in a wide spertrum of wet soil habitats.

The West Indian Culicoides exhilit an unusual degree of endemism, possibly because of their low ecological ralence in the sense of

Belkin's second situation. Three of the nine endemic species belong to the C. nigrigenus group of the subgenus Anilomyia, a group of neven circur:-Caribbean species that breed, so far as is known, in the leaf axils of bromeliads (fig. 2). This group has one widespread mainland species, C. nigrigenus Wirth an! Blanton, ranging from Mexico to Colombia and Trinidad; two Lesser Antillenn endemies, C. decor and C. dominiconus; (' hayesi Matta from Mexico and Itonduras; C. lutealaris Wirth and Blanton and C. chrysonotus Wirth and Blanton from El Salvator, Costa Rica, and Panama; and ('. farri endemic to Jamaica. We suspect that through isolation the Antillean endemics evolved from mainland ancestors, C. decor and C. dominicanus through Vonezuelan storks, with the ancestor of C. furi coming across the Nicaraguan Swell. Cuba and Hispaniola are terra incognita in this distribution pattern and should yield valuable collection data in this group especially. Absence of Anilomyia species in Puerto Rico, where many insect collections have been made, suggests that this group has invaded the Antilles independently from the west and from the southeast.

The sulgenus Drymodesmyia contains two groups. The C. copiosus group contains 17 species that breed primarily in rotting cacti in the Southwestern United States and in Mexico, with a fow species ranging through the West Indies to Florida and Puerto Rico and through Central America to Pimama, Venezuela, and Trimidad. The three West Indian
species each have a different distribution pattem (fig. th, indieating for each a different anestral pathway to the islands. C. jamaicensis is widely distributed on the mainland from Mexico to Pamam, Venezuela, and Trimidarl and is foumb on the Grenter Autilles and Babramas. Its pathway was probably across the Nicaraguan Swell. C. loughani is probably a cireater Antillean species that reinvaled the mainland through Florida and possibly followed the (iulf ('oast to Texas. More collecting is necessary in Mexico to be sure it does not runge through Yueatan to proximity with westem Cuba. (. panemensis is a Contral American speries that has crosect the Nicamguan swell to Jamaica and the ('aymatn Islands. It is reasonable to deduee that ('. jamaicensis erolvet on the mainland and migrated to the Greater Antilles; C. loughnan probably taveled from the Antilles to the mainland; and the ancestral home of ('. panamensis may have been cither place, but more likely the mainland.

The sceond group of Drymodesmyju is the C'. daedalas group, which contains two West Indian species breeding in tree holes, c. borinqueni and (.. bredini (fig. t). Both are West Indian endemics; S. borinqueni occurs in Jamaica and Puerto Rico and c. bredini only on Dominica. The former is elosely related to C. hinmoni Khalaf from the Southern Thinted states, whereas the secoud has many similarities to C. daedaloides Wirth and Blanton from Panama. Evolutionary pathways are rather speculative in this group,
but we woukl surmise that the ancestor of C. himmani, C. borinquemi. and C. bredi, ${ }^{\text {; }}$ came to the Greater Antilles across the Nicaraguan Swell from Central America, C. bredini erolvel through isolation in the east, and (C. himmani developed similarly on the Florida mainland, leaving ('. borinqueni in the Antillean heartland.
The distributional pieture of West Indian species of the C. debilipalpis group is complex (fig. 6). C. archboldh is a Dominican endemic related to ('. eublepharus Macfie. It mrobably came to the Lesser Antilles by way of Venczucla and Trinidad, where related species still occur. C. modeloupensis and C. trilineatus are closely related West Inclian endemies, the first species endemic to (iuadeloupe Istand and the second ranging from Pucrto Rico through the Lesser Antilles to Grenada and Barbados. The most interesting distribution is shown by C. hoffmani, a West Indian codemic ranging from famaica and the Cayman Islands in the west to Barbados and Trinidad in the cast. This species is closely related to C. debilipalpis Lutz, a widespread neotropical species ranging from Maryland to Florida and Texas in the ETnited States and from Honduras in Central Ameriea to Trinidad and to Brazil and Argentima in South America (sec Wirth and Blanton, 1971). The closely reiated C. eadsi Virth and Blanton is allopatric with C. debilipalpis in southern Texas and in Mexico, whereas in the West Indies C. hoffmani replaces it except in Trinidad where both species occur.

SYSTEMATIC ARRANGEMENT

Our systematic classification of the West Indian Culicoides (table 1) shows their arrangement in sia subgenera and summarizes the mean ralues for certain numerical characters of the females. For greater
convenience in using this bulletin, we have arranged the species descriptions and illastrations alphabetically without regard to natural classifieation.

Table 1.-. Systematic arrangement of West Indian species of Culicoides with mean valups for certain numerical characters of females
Subgenas
and
species
Wing
lempth
matio
matemal
Antenanl
smasory

Proboseis/ hond Patpu? ratio matio
subtats Hoffania Fox: Mm .

fori	1.21	0.68	1.10	3.11-15	3.2	1.15
hehemaice	1.60	. 71	1.06	3,11-15	3.6	1.33
insignis	1.11	65	1.32	3.5.7.9,11-15	2.8	1.05
trindodensts	1.12	6_{6}	1.22	3.5. $\mathrm{i}_{5} 9.11-15$	3.1	1.08
cenas Anilompia \argas:						
decor	1.20	. 60	1.25	3. $5.10-55$	3.2	. 85
dominieanus	122	. 62	1,85	3-15	2.3	. 75
Jarra	1.25	. 60	1.35	$3.10-15$	2.0	. 68

Subgents aterilin Fox:

pusilhus	64	.53	1.15	$3.13-15$	2.6	1.08

Subgents Drymodesmyia Vargas:

bominqueni	1.05	.62	1.46	$3.5 .7 .9,11-15$	2.0	.62
bredini	1.00	.62	1.60	$3.5 .7,11-15$	1.8	.80
jomaicensis	.97	.51	1.21	$3-15$	2.2	.95
longlnani	1.21	.55	1.17	$3-15$	2.4	.98
ponamensis	.$\$ 7$.55	1.12	$3.11-15$	2.0	.75

Subgenus Oeracla Pory;

archboldi	S ${ }^{5}$.74	1.70	3,11-14	2.3	. 87
arubar	1.17	. 52	. 87	3-10	2.3	. 90
barbosai	.ss	. 58	. 3	3.7-10	2.2	. 68
floritensis	77	. 65	1.21	None	2.0	. 71
furens	91	. 58	1.28	3,7-10	2.4	. 74
pundicloupansis	1.17	. 67	1.65	(?)	1.4	(?)
hofmand	. 76	. 59	. 79	3.8-10	1.6	. 70
melleus	1.05	. 60	1.10	3.10-14	2.7	. 63
pararnsis	.78	. 59	.77	3,8-10	2.1	. 52
Intineatus	.97	. 57	. 86	3.6-10	2.6	. 83
sens Macfella Fox: phlebotomus	1.03	. 55	1.19	3,6-10	2.2	. 83

KEY TO SPECIES

(manty for fematm)

1. Second radial cell wholly or mainly inchuted in a fate sistal spot..........-- $\quad 2$

2. Cell M1 with two pale spots distal to the double spot straddiling vein M2; small black spot present on vein Ret +5 near end of 2 RC ; latger species. wing 1.21 mm . long-
foxi Ortiz

… Cell Mll with only one pate spot distal to double spot stradding vein M2; no

mm . long
4. Yoin RA + 5 blackenet into adjoment distal pate arem up to a point where vein lums abrupty forward to meel costa; mesonotum wide proniment patiern; palpal segment 3 with defimite. irrequdat, sensory pit

\qquad
insignis Lutz

- Vein Ra + 5 not blarkrned into adjacent distal pale area; mesonotum with. out prominent patera; malpal segment 3 without sensory pit but with sensilla seatered on surface.

\qquad
irinidedensis Hoftman
5. Apices of weins M1 and al2 pald at wing margin; paipal segment 3 long and slenter, without sensory pit, sensilla seatered on surface; lame blackish specils, wing 1.58 mm . long: legs mostly hackish_...helic sutiac Fox and HoftmanAbiese of veins Ml thal Ma dark at wing margin; patpal segment 3 withdefinite rond sensory pit; smaller yellowish species, wing 1.11-1.25 mm,long: legs extensively sellowish with blackish knee spots6
(i. Hind femur palte. a conspichous that band only on midportion (AR 1.25; antennal sensory patern $3.5 .10-1 \overline{5}$; spermathente hage and thequal)
-- Hind femur data, with only a whapical pate band7
7. AR 1.35; : ontonal sensory pattern 3.10-15; spermathecte small and sub-equal.Jarri Wirth and Blanton

- AR 1.S5; antemal sensory motem 3-15; spermathecae moderately samall and slighly unefual. dominicomas Wirih and Blanton
S. Pate spots at perighery of wing faint or absent 9
-- Pale spols at periphery of wing well defined 12

9. Small blackish species, wing 0.0t mom. long; wing without macrotrichia; 2RC shorl, as broad as long. CR 0.53: third palpal segment with samald, round. tieep sensory pil -pusillus Lutz

- larger yellowish or brown speries, wing 0.90-1.05 mm. long; wing with nbundant macrotrichial; 2RC lonker. CR 0,60-0.74; third palpal segment with seatered sensilla, irregular pit. or shallow round pit 10

10. Pale yellowish species; two spermathecae present 11- Dull brownish weries; one spermathect present (autennat
$3.11-14 ;$ AR 1.70 ; third palpal segment with irregular pit)
archboldi Wirth and Blanton
11. Mesonotum yellow with pula grayish pollinosity; third palpal segment with sphsilla seaflered on surface: spermathecae heavily selerotized dark brown; antennal sensory pattern 3,10-14 \qquad melleths (Coguillet t)

- Mesonotum shining yelow; thial pulpal segment with definile round pit; spermathecan pale yellowish. lighty selerotized; anteanal sensoria indistinguislable
floridensis Beck

12. Wing with a pale spot stadding midportion of vein M2, or veins M1 and N2 entirely pale margined. including this trea

- Wing with no pale spot stradding vein M2, this vein usually dark to apex-a-- 19

- Wing with pule markings less examsive, veins not pale margined except at :prices

10
14. Mesonothon thark brown with narow whitish longitudinal lines; cell R5 with two pole areas between mol of costa and wing tip; spermathecte elongate, satike; halter knob pme- \qquad loughnami Blwards

- Mesonotum with pnttern of punetiform brown dots; cell R5 with three paie areas betwern end of rosta and wing tip; spermathecae short, ovoid; hater knol) (lark -ardabe Fox and Hoffman

15. Veit Al! with pate spot strulding basal portion or lying immediately anterior to it near base

- Vein M1 without pale spot striddling basal purtion or lying immediately anterior to it near base

16. Vein Ml with pale spot stadding baen portion; anal eell with (wo pale spots in tistal portion; spermathece oral withoul selerotized necks.
jomaicensis Edwards
-- Yein 311 with basml pale epol eonfined to unterior side of vein; nal eell with one pale spot in distal portion; spermathecare unequal. retort shaped, with long neeks atising obliquely- \qquad
17. Mesonotun uniformly grayish-green pellinase; thixd palpal segment without sensory pit. sensilla seattered on surface of segment-a---phebotomus (Williston)

- Mesonolum yellowish with dark-brown patern; third palpal segment with small, round sensory pit
1S. Wing veins $13+4$ and Cut with apices pale at wing margin; antennal sensory pattero 3,5.7.9.11-15; hather deeply infuseated; male aedeagus with fasal weh to 0.12 of totat lengith, basal arms stouter; parmeres shorter and more abotptly tapered on main portion borinquemi Fox and Hoffman
- Wime voins $M 3+1$ and Cul dark at wing margin; antennal sensory patern $3,5,7.11-15$; hatter pate to sliphty infuscated; : tedergus with basal areh to half of total length. basal aros slender: parmeres longer and gradually

19. (ell Alt with three pale spols; cell R5 with two pald spots in distal half_-.-- 20

- Cell M1 with two pale spots; cell R5 with one pale spot in distal halc.....-- 21

20. Anat eell with one pate spot in distn portion; mesonotum withonl pattern of punctifora dots; cell Re with npieal pale spot small and round
paracmsis (Gocldi)

- Anal cell with iwo pale spots in distal portion; mesonotum wilh patern of punctiform brown dols; cell R5 with apical pale spot obliquely hourglass shaped, subapical pale spot emall and ronoded furens (Pocy)

21. Cell M2 with one pale spot distal to level of mediocubital fork, not counting any spot lying immedintely anterior to base of fork

- Cell M2 with two pule spolit lying distal to level of medioenbital fork (unal cell with two distal pale spois; mesonotum with pattern of punetiform brown alots) barbosai Wirth and Blanton

22. One spertatheen present; third palpal segment with irregilar sensory pit;

- Two spermathecae present; third malpal segment with definite round pit; distal notenal segments not clongate

23. Smaller species, wing 0.76 mm . long; macrotrichin scanty, mostly confined to distal half of wing; third palpal segment broad, PR I. 5 \qquad hoflnami Fox

- Larger species, wing 0.97 mm . long; macrotrichia abundant, extending to base of wing; third paipal segment long and slender PR 2.6 -trilineatus Fox

DESCRIPTIONS OF CULICOIDES SPECIES

Culicoides archboldi Wirth and Blanton

(Figs. 6 and 7)

('alicoides archboldi Wirth and Bhaton, 1970n, p. 39 (male, female; Dominica; illus.).
Female.--Wing length 0.59 mm .
Heat: Byes (fig. 7, a) narrowly separated, with long interfacetal pubescence. Anterna (fig. $7, b$) with lengths of flagellar segments in proportion of $30-20-20-20-20-20-21-$ 23-55-55-55-60-70; AR 1.70; five distal segments greatly elongated; sensory pattern 3,11-14. Third palpal segment (fig. 7, c) short and modcrately ewollen, with an open sensory
area in an irregular concavity on distal half; PR 2.3. Proboscis moderately long, P / H ratio 0.87 ; mandible with 18-20 teeth.
Thorax: Uniformy dull dark brown; mesonotun without prominent pattern. Legs (fig. 7, f) brown; knee spots blackish; all tibiae with faint narrow basal pale bands; tibial comb with four spines, the one nearest the spur longest.
Wing (fig. 7, d): Dark brown without prominent pattern; radial ceils, margins of veins, and an indistinct area midway on anterior margin of cell R5 darker brown; a small pale spot present at anterior margin of cell R5 just past tip of

Figune 7.-Culicoides archboldi: a, Female eye separation; b, female antenna; c, female palpas; d, female wing; e, spermathecn; f, hind fomur and tibia; a, male parameres; h, male genitalia, parmeres removed.
costa. Macrotrichia long and coarse: relatively sparse but covering most of wing except in radial field; CR 0.74 ; 2RC with moderately broad lumen. Hatter brownish.

Abdomen: Dark brown. Spermatheca (fig. \bar{i}, e) single, short, oval, with long slender neck; measuring 0.053 by 0.035 mm .; sclerotized ring present.

Male Genitalia (fig. 7, h).-Ninth sternum with shallow caudomedian excavation, ventral membrane not spiculate; minth tergum short and tapering, with small, slender, apicolateral processes, caudal margin between them nearly straight. Basistyle with ventral root "foot-shaped," but posterior "heel" not well developed, dorsal root slender; dististyle slender and curved to bent pointed tip. Aedeagus with basal arch extending to half of total length, basal arms curved; distal portion tapering to rather stout, rounded, simple tip. Parameres (fig. 7, g) separate; each with small basal knob, proximal portion slender, with distinct dorsal swelling at midlength, without ventral lobe; distal portion slender and bent ventrocephalad, tapering to blunt-pointed tip.

Distribution.-Dominica (fig. 6).
Types.-Holotype, female, allotype, male, Clarke Hall, Dominica, 21-29 April 1964, O. S. Flint, light trap (USNM 70640).

West Indian Records.-

DOMINICA: Cabrit Swamp, 23
February 1965, W. W. Wirth, at light, 2 males, 6 females; same, 18 October 1966, E. L. Todd, 9 females; Clarke Hall Estate, April, May 1964,
O. S. Flint, light trap, 14 males, 36 females; same, August 1964, T. J. Spilman, light trap, 28 males, 10 females; same, January-March 1965, Wirth, light trap, 1 male, 13 females; same, 21 January 1965, Wirth, malaise trap, 1 male; same, 30 March 1960, R. J. Gagne, at light, 1 female; d'Leau Gommier, 17 March 1956, J. F. G. Clarke, at light, 24 males, 95 females; Fond Figues River, 20 January, 9 February 1965, Wirth, light trap, 5 males, 7 females; Grand Bay, 13 March 1964, D. F. Bray, at light, 3 females; La Plaive, 17 February 1964, Bray, at light, 1 female; Layou River mouth, 15, 20 January 1965, Wirth, light trap, 5 females; Macoucheri, river mouth, 14 January 1965, Wirth, 10 females; Manets Gutter, 5 March 1965, Wirth, light trap, 1 male; Pont Casse, 22 June 1965, T. H. G. Aitken, chick-baited trap, 6 females; same, May-June 1964, O. S. Flint, at light, 5 males, 20 females; same, January 1965, Wirth, at light, 2 males, 6 females; Portsmouth, 24 June 1965, Aitken, chick-baited trap, 1 female; South Chiltern Estate, 20 February 1965, Wirth, light trap, 1 female; Trafalgar Hydro Plant, 10 May 1968, P. C. Drummond, light trap, 2 females. ${ }^{3}$
Discussion.-This species was dedicated to John Archbold in appreciation of his support of the Biological Survey of Dominica and his keen interest in the scientific exploration of the island.

[^2]c. archboldi is probably most closely related to C. eublepharus among the neotropicalspecies. Points of similarity include the marrowly separated, hairy eyes; long distal antennal segments and sensory pattem 3,11-1-1; single spermatheca; and general structure of the male genitalia, especially the shape of the parmmeres. However, C. eublepharus receseribed by Wirth and Blanton, $1059, p$. 424, under the name C. transforrons Ortiz) has a distinet wing pattern and a defmite, round palpal pit.

Larval Habitan.-Unknown.

Biting Habits.-The species was collected twice by Dr. Aitken at a chick-baited trap and it is probably omithophilie.

Culicoides afubae Fox and Hoffman

(Figs. 5, 8, and 30)

('ulicoides arubas Fox the Hofmman, 1944. p. 109 (male, female: Arubn I.; fig. wing) - Barbosa, 1947, p. 11 (distribution; fig. malpus, male genitalia).Ortiz and Mirsa, 1952, p. 260 (redeseribed; Venezucla; illus.).-Jones and Wirth, 1958, p. S6 (larval habitat; Texas).-With and Blanton, 1959, p. 464 (redescribed; Panama; illus.).Jones, 196ia. p. 702 (larval habitat; Texas),-Jones. 1961 t, p. 742 (pupa, in key).
Culicoides sp. 1, Fox, 1942, p. 420 (pupa; Dutch West Indies; from erab holes; illus.).

Female.-Wing length 1.17 mm .
Head: Eyes narrowly separated, hare. Antema (fig. $8, a$) with lengths of flagellar segments in proportion of 22-13-13-13-13-12-12-11-15-15-

16-17-32; AR 0.87 ; sensory pattern 3-10. Palpal segments (fig. S, e) with lengths in proportion of $15-30-48-$ 11-11; PR 2.3; third segment with broad, shallow sensory pit. Proboscis long, P / H ratio 0.90 ; mandible with 14-16 teeth.

Thorax: Dark browa; mesonotum (fig. S, c) densely pale grayish pruinose with median and sublateral rittac indistinctly yellowish-brown fumose; pattem of numerous punctiform brown dots at seta bases; scutelium dark brown in middle, pale on sides. Legs dark brown with distinct amulations; knees narrowly pale, then narrow blackish rings succeeded by narrow pale rings on each side on femom and tibiae; femora narrowly pale at bases; fore femur with narrow pale ring at midlength; tibial comb (fig. $8, d$) with seven to eight spines, the one nearest the spur longest.

Wing (fig. 8, $b ; 30, i$) : Pattern as figured; membrane milky white, with limited dark-gray markings, giving appearance of blackish spots on whitish ground; 2RC b'ackish; veins pale margined; cell R5 with a large pale spot surrounding a small black spot behind 2RC, a broad, V-shaped mark and a small distal round pale spot in apex of cell; cells M1 and M2 with three small round pale spots past level of forks; two pale spots in cell M4 and two in distal portion of anal cell; base of wing extensively pale. Macrotrichia sparse but well distributed over wing including anal cell; CR 0.52 ; 2RC with distinct humen. Halter knob infuscated.
Abclomen: Dark brown. Sperma-
theeac (fig. S, fl two (occasionally three, as figured plus rudimentary third and selerotized ring; functional ones slightly unequal, ovoid, measuring 0.043 by 0.038 mm . and 0.038 by 0.029 mm .; without sclerotized neeks.

Male Genitalia (fig. S, h), -Ninth sternum with shallow caudomedian exeavation, ventral membrane not spieulate; minth tergum short and
tapering with large triangular apicolateral processes and deep causlomedian noteh. Basistyle with dorsal and rentral roots simple, slender; dististyle nearly straight, tajecring to slender, bent, pointed tip. Aedeagus broad and stont, basal arch extending to half of total length; distal portion with broad truncate tip. Parameres (fig. 8, g) separate;

Figure S.-Gobicoides arubac: a, Femate antenna; b, iemale wing; c, thoracic patern; d, tibial comb; c, fomale palpus; j, spermathene; θ, male parameres; h, male genitalia, parameres removed.
rach with large, laterally directed basal arm bearing a lateral knob; main body short, slightly crooked, tapering to simple, ventrally bent, distal filament.

Distribution--Aruba I., Colombia, Panama, Texas, Venezuela (fig. i).

Type.--Holotype, female, Aruba I.. Netherlands Antilles, Augastseptember 1929, W. A. Hoffman (Thisersity of Puerto Rico collection).

West Indian Records.-

ARCBA ISLAND: Holotype iemake, allotype male, one paratype male, data ns above (For and Hofiman, 1944).

Discussion.-- The correct systematic position of $($ ' arubae is not readily apmarent. It is similar in wing patten, the punctiform mesonotal pattern, and presence of frontal tubereles to C. Drrïipennis, the North American member of the subgenus Monoculicoides that shares its coastal habitat with C. arubae in Texas. ('. aruboc differs from C. variipennis, howewer, in number of spermathecac and in the separate male parameres, two important subgeneric characters excluding C. arubae from Monoculicoides and bringing it within our concept of the subgenus Oecacta. This species is included in the West Indies list because it occurs on the ishand of Aruba off the coast of Venezuela (fig. 5).
Larval Habitat.--The type series was reared by Hoffman from crab holes on Aruba Island. Jones and Wirth (1958) and Jones (1961a) reared C, antbae from the margins
of salt-water pools in pickleweed and grassy salt marshes and a nonvegetated fresh-water slough in the Aransas National Wildlife Refuge, Arumsas County, Tex., where associated Culicoides taxa were C. bermudensis and C. variipennis tustralis Wirth and Jones.

Biting Habits.-Wirth and Blanton (1959) reported ('. arubae taken from the car of a mule, Corozal, C.Z., Panama.

Culicoides barbosai Wirth and Blanton

(Figs. 5, 9, and 30)

('aticoides barbosai Wirth and Blanton, 1956c, p. 161 (male, female; Panamu, Florida, Bahamas, Ecuador; illus.).Iewis, 1958, p. 721 (Jamaicti; intemal anatomy; illus.).-Wirth and Blanton, 1959. p. 400 (redescribed; illus.).Davies, 1964, p. 33 (biology; Jamaica). -Linley, 1965a, p. 58 (pupa; Jamaica; ilhs.)--Linley, 1966b, p. 1 (ovarian eycle; Jamaica).-Linley and Davies, 1971, p. 264 (biology and control; Fiorida, West Indies).

Female.-Wing length 0.88 mm .
Head: Eyes (fig. 9, d) nearly contiguous, bare. Antenna (fig. 9, a) with lengths of flagellar segments in proportion of 18-13-13-13-13-13-13-13-15-18-20-20-28; AR 0.93; sensory pattern 3,7-10. Palpal segments (fig. 9, c) with lengths in proportion of 7-17-21-8-8; PR 2.2; third segment moderately swollen, with a small deep sensory pit. Proboscis moderately short, P / H ratio 0.68 ; mandible with 16 teeth.

Thorax: Mesonotum (fig. 9, e) pruinose gray with pattern of darkbrown punctiform dots at bases of
mesonotal hairs, these dots irregularly fused in some areas, principally in two sublateral, longitudinal bands; sentellum narrowly dark in middle, yellowish on sides. Legs (fig. 9, g) dark brown; knce spots blackish; all femora with subapical, all tibiae with subbasal, and hind tibia with apieal, narrow pale rings; tibial comb with four spines, the one nearest the spar longest.
Wing (figs $9, b ; 30, a$): Pattern as figured, 2 R(dark to tip; large yellowish anterior spots at wing base and orer r-m crossvein; two longitudimuly elongate poststigmatic pale
spots in ceil R5 narrowly fused to form an bourglass-shaped spot; distal pale spot in eell R5 large, rounded, and broadly meeting anterior wing margin; two pale spots in cell M11, the proximal one streaklike and lying adjacent to vein M2, the distal one usually connected by a marrow pale line to wing margin; veins M 1 and M 2 very faintly pale margined on distal haves; a pale line running through cell M2 to pale spot at apex of cell; large pale spot in cell M4; two pale spots, more or loss coalesced, in distal part of anal cell. Macrotrichia numerous on distal

c

g

h

Ficure 0.-Culicoides barbosai: a, Female antenna; b, female wing; c, female palpus; d, female eye separation; e, thonacic pattern; f, spermathecae; a, hind femur and tibia; h, male parameres; i, male genitalia. parameres removed.
half of wing and a few in anal cell; (PR 0.5s. Halter dark.

Abdomen: Dark brown, cerci pale. Spermatherae (fig. 9, fi two plus selerotized ring and rudimentary third; spermatherae ovoid with short, slender neeks; subequal, each measuring 0.0 .55 by 0.030 mm .

Male Genitatia (fig. 9, i),-Ninth stemum with broad caudonedian exeavation, ventral menbrane not spiculate; ninth tergum long, apicohateral processes moderately long and slender. Basistyle with slender, "foot-shatpel" ventral root, dorsal root slender; dististyle long and slender, with bent apex. Acdeagus with hasal arels extending to 0.7 of total length, basal arms slender abd slightly curved, distal portion tapered to slender, rounded point with an indistinct lateral pair of pointed hyaline processes near juncture with areh. Parameres (fig. 9, h) soparate; each with strongly sclerotizes basal knob, stem slender and curved near base, distal portion gralually more swollen, with a distinct low ventral lobe, then distally lecoming quite slender, tapering to a fine point with a few minute hateral fringing spines.
Distribution.-Bahamas, Cayman Islanils, ('osta Riea, Cuba, Eeundor. Floricta, Jamaica, Panama (fig. 5).

Type--Holotype, female, Mojinga Swamp, Pamama Camal Zone, Janary 1953 , F. S. Blanton, light trap (T'SNME 63157).

West Indian Records.-

Bahamas: Abaco, Marsh Harbour, 13 April 1968, O. M. Stokes, light trap, + females; Grand Cay,

November 1957, R. Arundel, annoying man, 7 females; same, 25 January 1969, Stokes, biting man, 10 females; Grand Turk Island, May 1968, M. E. C. Giglioli, 2 females; Nassam, to date, Bishop, No. 14902, 30 females; New Providence Island, Coral Harbour, 24 November 1968, Stokes, biting man, 5 females; North Bimini Istand, Paradise Point, 30 November 1968, Stokes, light trap, 2 fomales; South Bimini Island, Junc-July 1951, M. Cazier, C. and P. Vauric. Berlese trap, 1 male, 3 females (AMNH) ; same, 1 Decenber 1968, Stokes, biting man, 1 fcmale.
CAYMAN ISLANDS: No locality, November 1967, M. E. C. Giglioli, l female; Driftwood Village, 1 January 1970, J. E. Davies, light trap. 4 females.
CLBA: Guantanamo Bay, 21 February 1962 . E. R. Turner, light trap, 1 male, 3 females; same, 3 September 1964, T. S. Joscy, light, 1 female; same, February-April 1970, J. E. Tisdate, light trap, 1,000's.
JAMAICA: Reading, 4 miles east Montegg Bay, reared from larvae (Linley, 1965a; Davies, 1967).Porthand Ridge, PWD Fish Lodge, Clarendon Parish, 21 August 1967, E. G. Farnworth, biting $\operatorname{man}, 17$ females.
Discussion.-A complete review of our current knowledge of the biology and control of C. barbosai was published by Linley and Davies (1971). This species can readily be distinguished from C. furens, with which it is usually found, by the lack
of the smail round pale spot in the middle of wing cell R .
Larval Habitat.--Breeland (1960) reared C. barbosai numerous times in Panama from coastal mangrove areas where it showed a preference for coral sand habitats near the ocean shorcline. Linley (1965a) described the pupa reared from the banks of a small spit projecting into a mangrove swamp at Reading, near Montego Bay, Jamaica. Larvae were found in yellow mud, drier than that yielting ('. insignis, more toward the landward side of the spit. C. Jurens was also fomad breeding at this spot. Daviss $1,9,671$ reported that (C . barbosai in Jamaica is almost entirely confined to the tidal watcers of the seaward edge of mangrove swamps and is most numerous in the red mangrove habitat (Rhizophora mangle L.I. The energenee rate is inversely proportional to the mean tides, and outbreaks may be expected in April- Shay and Oetober-November when the sen levels are minimal. C'. barbosni habitats are generally at about 0.2 of a foot lower level than those of C . furcis.
Biting Habits.-Studies on the biting habits of C, barbosal in Jamaica were reported by Kettie and hinley (1969a). This species was found to prefer the arm to the leg when biting humans. Kettle (1969b) found that biting activity was erepuscular and nocturnal with a peak at dawn. He (1969c) reported that moderately high windspeed fabove 3 m.p.h. reduced the biting rate.

Culicoides borinqueni Fox and Hoffman

(Figs. 4, 10, and 30)

Culicoides borinqueni Fox and Hoffman. 1944, p. 110 (mate, femaic; Puerto Rico; fig. wing),-Fox, 1946, p. 252 (Puerto Rico).-Fox 1949, p. 30 (redescribed; Puerto Rico; illus.).-Fox and Kohler, 1950, p. 342 (Pucrto Rico).-FFox and Maldonado, 1953, p. 165 (Puerto Rico)-Linley, 1965a, p. 58 (pupa; Jamaica; illus.).
('ulicoides species 2.-Fox, 1942, p. 417 (pupa; Puerto Rico; illus.).

Female.- 1 ing length 1.05 mm .
Head: Eyes (fig. 10, c) contiguous, bare. Antemna (fig. 10, a) with lengths of flagellar segments in proportion of $25-20-20-20-20-20-20-$ $20-42-42-50-50-58$; AR 1.46; five distal segments elongated; sensory pattern 3,5,7,9,11-15. Third palpal segment (fig. 10, d) broad, PR 2.0; sensory pit round, shallow. Proboscis short, P / H ratio 0.62 ; mandible with 12-15 minute tectl.
Thorax: Golden brown pollinose on scutellum and disk of mesonotum; pleuron and margins of mesonotum (lark brown. Legs (fig. 10, f) dark brown; knces with prominent broad yellowish hands covering apices of femora and bases of tibjac on all legs; knee spot blarkish on fore leg only; tip of hind tibia broadly palc; tibial comb with four spines, the one nearest the spur longest.
Wing (figs. 10, b; 30, b) : Pattern as figured; 2RC dark to tip; wing deeply infuseated due to coarse mierotrichia; with prominent pattern of discrete small whitish spots arranged as for C. bredini, but the distal pale spot in ecll R5 usually more obs-
liquely oriented with anterior end directed somewhat distad, anal cell with two well-separated distal pale spots; apices of vems $\mathrm{M} 3+4$ and Cul pale at wing margin in addition to pale apices of weins Ml and M2. Macrotrichia numerous, extending to base of wing except in ratial field; ('R 0.62; eRC with broad lumen. Halter infuscuted.
Ablomen: Dark brown. Spermathecte (fig. 10, e) two plas rudimentary third and short selerotized ring: functional ones oval with short necks; subeepual, each measuring 0.0 .5 by 0.032 mm .

Male Genitalia (fig. 10, h).— Nintil stemum with brond, shallus, caudomeclian excaration, ventral
membrane not spiculate; ninth tergum short and tapering, with long, slender, pointed, apicolateral proctsses, caudal margin between them straight. Basistyle moderately stout with simple, slender ventral and dorsal roots; dististyle slender and nearly straight, with bent, pointed tip. Aedeagus with basal areh extemling to 0.42 of total length, basal arms moderately slender and curved; distal portion moderately slender with simple rounded tip. Paraneres (fig. 10, g) separate; each with slender, moderately long, basal process bearing a well-developed lateral knol ; stem moderately stout at base, rapidly tapering at about midength to slender, ventrally bent, simple filamentous tip.

Figure 10.-Cuhcoudes bornquem: a, female antenna; b, female wing; c, female eye separation; d, female palpus; e, spermathecac; f, hind femur and tibia; u, male parameres; h, mole genitalin. parameres removed.

Distribution.-Jamaica, Puerto Rico (fig. 4).

Types.-Holotype, female, allotype, male, two female paratypes, bred from a tree hole, Palmas Abajo, Pucto Rico, February 1931 (U'niversity of Puerto Rico collection).

Weat Indian Records.-

Jamaica: Brandon Hill, Montego Bay, reared from tree holes; Fwarton, St. (atherine Parish, at light (Iinley, 1960̄al-Askenish, near Dolphin Head, Hanover Parish, 20 Jme 1970, F. G. Farmworth, light trap. 1 female; Bath Fountain, St. Thomas Parish, 18 May 1970, Faraworth, light trap, 3 females; Hardwar (hap, Hollywell. Porthand Parish, 16 June 1970. Farnworth, light trgp, 3 males, 20 females; same, Institute of Jamaica caling, $3,750 \mathrm{ft}$, 16 Jume 1970. Farnworth, light trap, 1 female; same, 20 February 1969, W. W. Wirth, light arap, 1 female; Negrii, Westmoreland Parish, 20 November 1968, R. E. Woodruff, light trap in tropical hammock, 1 female; Reach, 2 mi. w. Manchioneal, Portland Patish, 24 November 196s, Woorlruff, light trap, 1 female; Runaway Bay, St. Ann Parish, February 1969, Wieth, light trap, 3 iemales; Worthy Park, St. Catherine Parish, 11 November 1968, Woodruff, light trap, 2 females.

PCERTO RICO: Guyanila, March 1949, Fox, reared from tree hole, 1 male, 1 female (Wirth and Hubert, 19601.-Yalmas Abajo, February 1931 (Fox and Hoffman, 1944. types 1 -Carolina, 20 September $19+9$, I. Fox, reared from tree hole, 1 male; Fajardo, 1 July 1952, F. S. Blanton, light trap, 1 female.

Discussion.-C. borinqueni is very similar and elosely related to C. bredini from Dominica but can be distinguished by the presence of the pale apices of wing veins $\mathrm{M} 3+4$ and Cul, the presence of a sensory pit on antemai segment 9 as well as on $3,5,7,11-15$, darker halteres, a shorter and stouter basal arch on the acdeagus, and a shorter and more abruptly tapering main body on the parameres.

Larval Halitat.-The type series was reated from a tree hole in Puerto Rico (Fox, 1942; Fox and Foffman, 1944). Tinley (1965a) reared C. borinqueni from tree holes in Jaanaca, in one of which it was associated with C. hofmani.
Biting Habits.-Unknown.

Culicoides bredini Wirth and Blanton

(Figs. 4 and 11)

('uticoides bredini Wirth and Elanton, 1970, p. 41 (male, female; Dominica; illus.).
Female.-Wing length 1 zim .
Head: Eyes (fig. 11, a) contiguous, bare. Antenna (fig. 11, a) with lengths of flagellar segments in proportion of 28-20-20-20-20-20-21-$22-47-50-52-52-73$; AR 1.60; five distal segments elongated; sensory pattern $3,5,7,11-15$. Third palpal segment (fig. 11, b) broad; PR 1.8; sensory pit round, shallow. Proboscis moderately long, P / H ratio 0.50 ; mandible with 12 minute teeth.
Thorax: Golden brown above on scutum and seutellum; humeri and lower plearon dark brown. Legs (fig. 11, f) dark brown; knees with
prominent broad pale area covering apices of femora and bases of tibiac on all legs, knee spot blackish on fore leg only; tip of hind tibia marrowly pale; tibial comb with four spines, the one nearest the spur longest.

Wing (fig. 11, d):]ark gray due to conrse microtrichia, with prominent pattern of diserete small white spots; pale spot over r-m erosscein extending to costal margin; two poststigmatic pale spots in cell Ró small. round and separate, the hind one lying slighty proximat of the other; distal pale spot in cell R5 small and romal, lying near apex of cell but well removed from margin; cell ML1 with two pale spots, the proximal one broadly extending over base of rein Al2 into eell Are; the latter with paie spot lying behind medial fork, another in front of medioculital fork, and a small round pale spot near wing margin; cell Mit with a
large pale spot in distal portion; anal cell with a double (sometimes divided) pale spot in distal portion; apices of veins M1 and M2 with a pale spot at wing margin. Macrotrichia long and coarse, moderately sparse, a few extending to base of wing exeent in radial fied; OR 0.62 ; 2RC with broad lumen. Halter yellowish, base of knob slightly infuscated.

Abdomen: Dark brown. Spermatheeac (fig. 11, e) two plus a rudimentary third and a long, slender, selerotizel ring; functional ones oval with short neeks; subequal, each measuring 0.065 by 0.043 mm .

Male Genitalia (fig. 11, h). Ninth sternum with broad, shallow, caudomedian excavation, ventral membrame not spiculate; ninth tergum short and tapering with long, slender, pointed, apicolateral processes, caudal margin between them straight. Basistyle moderately stout

Figura: 11,-Cudicoides bredini: a. Female eye separation; b, female palpus; c, female antema; d, fenule wing; c, spermatheenc; j, hind femar and tibia; g, maic parameres; h, male genilalia, patmeres removed.
with short, broad, ventral root and slender dorsal root; dististyle slender and nearly straight, with bent, pointed tip. Aedeagus with basal arch extending to half of total length, basal arms slender and slightly curved; distal portion slender with slightly flaring, rounded, simple tip. Parameres (fig. 11, g) separate; meh with well-developed, lobate, laterally directed basal knob; main portion slender, eurved, without ventral lobe, abruptly bent twiee near apex and tapering to shender, pointed $\mathrm{ti}_{\mathrm{i})}$ without fringing spines.
Distribution.--Dominita (fig. 4).
Typer.-Holotype, femaic, allotype, male, paratypes, 44 males, 114 females, Clarke Hall, Dominica, 28 March 1965 , IV. W. Wirth, light trap (ISNM 7064H).

Weat Indian Records.-

DOMINICA: Antrim Estate, 1,000 ft., 15 March 1956, I. F. C. Clarke, 1 female; Cabrit Swamp, 23 February 1905 , W. W. Wirth, light trap, - males; Clarke Hall, May-June 106t, ().s. Flint, hight trap, 3 males, a females; sume. July-September 1964, T. 3. Spilman, light trap, 7 mates, 40 females; same, October 1964. P. J. Spangler, at light, 1 male; same. January-March 1965, Wirth, light trap, 17 males. 33 females; d'Leau Commier, 17 Mareh 1956. Clarke, at light. 5 males, 11 females; Fond Figues River, 13 March 1965, Wirth, light trap, 2 females; Macoucheri, 5 Mareh 1965, With, at light, 2 females; Mancts Gutter, 15 March 1965, Wirth, 1 male, 4 females; Pont Casse, May-Jume 1904, Flint, at light, 6 males. 7 females; South Chiltem Estate, 10 February 1965,

Wirth, light trap, 2 males, 10 females.
Discussion.-This species was mamed for J. Bruce Bredin in appreciation of his interest in, and support of, the Biologieal Survey of Dominica.
C. bredint has a wing pattern very similar to that of C. daedaloides from Panama. In the latter species, however, the distal pale spot in cell R5 is transverse and meets the anterior wing margin. C. daedaloides also has no pale spot lying in front of the medioctubital fork, and the distal pale spot in ecll M2 meets the wing margin. In addition, the antemal sensory pattem of C. daedaloides is $3,8-10$, the mesonotum bears a prominent pattem of pale patches, and the male parameres are shaped differenty.
C. borinqueni from Jamaica and Pucto Rico is also similar to C. bredini, but differs in having the apices of the voins M3+4 and Cu1 pale at the wing margin, the halteres deenty infuscated, the antemal sensory pattern $3,5,7,9,11-15$, the male aedeagus with a shorter basal arch and stouter basal arms, and the parameres shorter and more abruptly tapering in midportion.
Larval Habitat.-Unknown.
Biting Habits.-Unknown.

Culicoides decor (Williston)

(Figs. 2 and 12)

Ceratopogon decor Williston, 1896, p. 281 (female; Saint Vincent, W.I.; fig. wing).
Culicoides decor (Williston),--Johannsen. 1943, 1. 779 (combimation).-Wirth and Blanton, 1956d, p. 227 (notes on type; comparison)-Foratini, 1957,
p. 265 (notes, comparison; fix. wing). -Wirth and Blanton, 1970b, p. 145 (redescribed; distribution; illus.).
Female-Wing length 1.20 mm .
Head: Eyes (fig. 12, c) marrowly separated, bare. Antenoa (fig. 12, a) with lengths of flagellar segments in proportion of $36-25-2 \overline{5}-24-24-23-$ $23-24-45-48-50-50-76$; AR 1.25; sensory pattern $3,8,10-15$. Palpal segunents (fig. 12,6$)$ with lengths in proportion of 20-10-70-20-2̄; PR 3.2: thirel segment lonk. slighty
swollen distally, with a large, deep, round pit opening by a slightly smather prore. Proboseis moderately long. P / H ratio 0.85 ; mandible with lā teeth.

Thorax: Yollowish brown; mesonotum with dense grayish pollen, hameral pits and anterior margin between them dark brown; mesonotum with numerous erect yellowish lairs: pleuron dark brown below. Legs |fig. 12, e) yellowish, knee

Fiotra 12.-(udicoides decor: a, Female antenna; b, femate palpus; c, female eye separatiou; d, fermale wing; e hind fermur and tibia; J spermathecae; 0 , male pmameres; $h_{\text {, male genitalia, paramers removed. }}$
spots blackish; proximal 0.6 of femora and distal 0.6 of tibiae on fore legs and midlegs brownish, hind fenur with prominent dark-brown hand in midportion, and hind tibia with narrow apex brown; tibial comb with four spines, the one nearest the spur longest.

Wing (fig. 12, d): Pattem as figured; distal 0.6 of 2 RC in a pale area; pale meas large, learing the dark areas forming a narrow zigzag pattent (CR 0.60; madal colls both dongate, wilh brond lumens. Maerotwhia numerous, extending to base of wing in anal erll. Hater pale.
Abdomen: Yellowish, becoming brownish distally. Spermathecte (fig. 12, /| two, rudimentary third present, selerotized ring absent; functional ones large and ovoid, with short, slender nocks; uncqual, measuring 0.130 by 0.090 mm . and 0.102 by 0.06 s mo .
Male Genitalia (fig. 12, h)Ninth sternm with shallow caudomeclian exaration, rentral membrane not spiculate; ninth tergun moderately long and tapering, with long, shender, apicolateral processes. Adeagus with basal areh extending to nearly half of total length, basal arms slender and curved; distal portion tapering to long, slender, median point. Parameres (fig. 12, g) separate; each with slender anterolateral proces; main portion long and straight, tapering to slender simple tip abruptly bent latemad and rentract.

Distribution.-Dominica, Saint Lucia, Saint Vincent (fig. 2).
Types.-Threc female syntypes, Saint Tineent, H, H. Smith collector
(British Muscum (Natural Fistory), Ionden).

West Indian Records.-

DOMILNCA: Clarke Half, AprilJune 1964, (). S. Flint, light trap, S mates, 22 females; same, July-Augast 1964, T. J. Spiman, light trap, 18 males, 2.4 females; same, Janu-ary-March 1965, W. W. Wirth, light trap. 40 males, 50 semales; Layou River mouth, 20 Janury 1965, Wirth, at light, 3 females; Macoucheri, 12 February 1965 , Winth, at light, 3 females; South Chiltem Estate, 19 February 1965, Wirth, light trap, 2 females (Wirth and Blanton, 1970h).

SAINT LUCIA: Castries, Fairview, I4 April 1959. R. Darsic, light trap, 1 male; Gros Islet, Yteht Club, 27 October 1967, J. B. D. ${ }^{-1 e s}$, at light, 1 female; Saint Lucia Beach Hotel, 27 October 1967, Davies, at light, 1 female (Wirth and Blanton, 1970b).
Discussion.-The C. migrigenus group was reviewed by Wirth and Blanton (19706), who found it to be circum-Caribbean in distribution (fig. 2). Three of the seven known species occur in the West Indies and are not found elsewhere. Of these, C. farri is endemic to Jamaica, C. dominicanus is endemic to Dominien, and C. decor is known to occur on three islands of the Lesser Antilles.
C. decor is distinguished from the other species of the C. nigrigenus group of the subgenus Anilomyia by its extensively pale hind femur with only midportion dark, its large spermathecac, moderately long proximal antemal segments, and antenmal sensory pattern, 3,8,10-15. Two
other species of this group have been reared from wet debris held in lenf axils of bromeliads in Trimidad and Mexico. Williams' (1964) record of C. decor reared from a bromeliad in Trinidad was a misidentification of (. nigrigenus (Wirth and Blanton, 19706).

Larval Mubitat.-ETnknown.
Biting Hubits.---「nknown.

Culicoides dominicanus Wirth and Blanton

(Figs. 2 and 13)

Crulicoides domimionus Winth and Bhanton, 1970b, p. 140 (male, female; Dominica; illus.).

Female--Wing length 1.22 mm .
Head: Eyes (fig. 13, c) narrowly separated, bare. Antenma (fig. 13, a) with lengths of fagellar segments in proportion of 32-20-20-20-20-20-20-20-50-56-60-60-92; AR 1.85; sensory pattern 3-15. Palpal segments (fig. 13, b) with lengths in proportion of 15-10-52-17-17; PR 2.3; third segment swollen distally, with a large round, deep sensory pit. Proboscis moderately long, P / H ratio 0.75 : mandible with 15 teeth.
Thorax: Yellowish brown, mesonotum yellowish pollinose, dark brown on anterior margin; pleuron dark brown below; mesonotum with abundhat yollowish hairs. Legs (fig. 13, c) brownish; knee spots blackish; fore femur and midfemur with subapical, and fore tibia and midthbia with hasal, broad yellowisla hands; hind femur dark brown with broad subapical yellowish ring, hind thina yellowish exeept at extreme
tip; tibial comb with four spines, the second from the spur longest.

Wing (fig. 13, d): Pattem as figured, as in C. decor; OR 0.62. Macrotrichia numerous, extending to base of wing in anal cell. Halter pate.
Abdomen: Yellowish, becoming brownish distally. Spermathecae (fig. 13, f) two, ovoid with short slinder neeks; moderately small, slightly unequal, weasuring 0.080 by 0.058 mm . and 0.072 by 0.055 mm ; rudimentary third spermatheca present, selerotized ring thsent.
Male Genitalia (fig. 13, h) Ninth stemum with shallow caudomedian exavation, ventral membrane not spiculate; ninth tergum short and tapering, with moderately long, slender, diverging apicolateral processes. Aedeagus with basal arch extending to more than half of total length, rather angulate mesad, basal arms moderately stout and slightly bent; distal portion tapering to long slender median point. Parameres (fig. 13, g) separate; each with short anterolateral amm; midportion straight and moderately swollen at base, tapering distally to slender simple tip abruptly bent laterad and rentrad.

Distribution.-Dominica (fig. 2).
Types.-Holotype, female, aliotype, male, 0.3 mi . e. Pont Casse, Deminica, 6 May 1964, O. S. Flint, at light (USNM 70653).

West Indian Records.-

DOMINICA: Castle Bruce Junetion, 21 March 1956, J. F. G. Ciarke, 4 males; d'Leau Gommier, 17 March 1956, Clarke, at light, 5 males, 2 females; Point Lolo, 25 January

1965 , W. W. Wirth, at light, 3 females; Pont Casse, June 1964, O. S. Flint, at light, 41 males, 15 females; same, 12 March 1965, Wirth, light trap, 9 males, 8 females; South Chiltem Estate, 19 February 1965, Wirth, light trap, 4 males, 9 females (With and Blanton, 1970b).
Disenssion.-This species is very similar to C. decor, which also occurs in Dominica (fig. 2), but cam be distinguished from that species by the
more extensive dark bands on the hind femur, by the sensory pattern $3-15$ on the antenna, and by the much shorter proximal antemal segments, with AR 1.85. On Dominica the endemic species C. dominicanus is found only at the higher elevations, whereas the more widespread C. decor is restricted to lowland habitats.

Larval Habitat.--Tnknown.
Biting Habits.--Unknown.

nct
Figure 13.-Culicordes dominicomus: a, Female antemna b, female palpus; c, female eye separation; d, female wing; e, hind femur and tibia; f, spermathecae; a, male parameres; h, male genitalia, parameres removed.

Culicoides farri Wirth and Blanton

(Figs. 2 and 14)
Culicoides farri Wirth and Blanton, 1970b, p. 148 (male, female; Jamaica; illus.).

Female.-Wing length 1.25 mm .
Head: Eyes (fig. 14, c) narrowly separated, bare. Antemna (fig. 14, a) with lengths of flagellar segments in
proportion of 32-22-22-22-22-22-23-24-45-45-50-54-70; AR 1.35; sensory pattern 3,10-15. Paipal segments (fig. 14, b) with lengths in proportion of 15-30-46-15-18; PR 2.0 ; third segment short and broad, with a large, round, moderately deep sensory pit. Proboseis moderately short, P / H ratio 0.68 ; mandible with 13 teeth.

b

Figure 14.-Culicoides fari: a, Female antenna; b, female palpus; c, female eye separation; d, female wing; e, hind femur and tibia; l, spermathecae; g, male parameres; h, male genitalin, parameres removed.

Thorax: Yellowish brown, pleuron and anterior and lateral margins of mesonotum rlark brown. Leegs (fig. 14, e) brownish; knee spots blackish; fore femur and midfemur with subapical, and fore tibia and midtibia with basal, broad yellowish bands; hind femu! dark brown with broad subapieal pale band, hind tibia yellowish except dark brown at extreme tip; tibial comb with four spines, the one nearest the spur longest.

Wing (fig. 14, d): Pattern as figured, as in C. decor; CR 0.60. Macrotrichia numerous, extending to base of wing in anal cell. Hatter pale.

Abdomen: Yellowish, becoming brownish distally. Spermathecae (fig. $14, f$) oroid with long slender neeks; small and slightly unequal, measaring 0.064 by 0.046 mm . and 0.058 by 0.042 mm ; rudimentary spermatheca present, sclerotized ring absent.

Male Genitalia (fig. $14, h$).-Niath stemum with shallow caudomedian excavation, ventral membrane not spiculate; ninth tergum short and tapering, with long, slender, divergent, apicolateral processes. Aedeagus with basal arch extending to not quite half of total length, basal arms slender and curved; distal portion tapering to moderately slender, bluntly pointed tip. Parameres (fig. 14, g) each with moderately long anterolateral arm; midportion straight and moderately stout, tapering to slender, simple tip, abruptly bent iaterad and ventrad.

Distribution.-Jamaica (fig. 2).
Type.-Holotype, female, Jamaica, Portland Parish, Hardwar

Gap, Institute of Jamaica Cabin, 20 February 1969, W. W. Wirth, light trap (USNM 70654).

West Indian Records.-
JAMAICA: Askenish, near Dolphin Head, Hanover Parish, 20 June 1970, E. G. Farnworth, light trap, 1 female; Hardwar Gap, same data as type, allotype, male, 1 male, 2 female paratypes; same, Hollywell Forest Camp, 16 June 1070, Farnworth, light trap, 1 male, 15 females; Worthy Park, St. Catherine Parish, 20 March 1970, Farnworth, light trap, 1 male, 4 females.

Discrassion.-This endemic Jamaican representative of the Caribbean C. nigrigenus group (fig. 2) can be recognized by the dark proximal half of the hind femur, by the relatively long proximal antennal segments (AR 1.35), and by the antennal sensory pattern $3,10-15$.

Larval Habitat.-Unknown.
Biting Habits.-Unknown.

Culicoides floridensis Beck

(Figs. 5, 15, and 30)

Culicoides foridensis Beck, 1951, p. 135 (male, female; Florida; fig. male gen-italia)--Beck, 1956, p. 134 (Florida). -Williams, 1956, p. 299 (Bermuda; in key)-Williams, 1957, p. 66 (Ber-muda).-Wirth and Williams, 1957, p. 12 (Bermuda; notes),-Beck, 1958, p. 9 (Florida)-Linley, 1970, p. 1016 (pupa; Florida).
Female.-Wing iength 0.77 mm .
Head: Eyes (fig. 15, d) narrowly separated, barc. Antenna (fig. 15, a) with lengths of flagellar segments in proportion of 25-15-15-16-16-17-17-18-26-29-33-34-47; AR 1.21; sensoria not distinguishable. Palpal
segracots ifg. $15, \mathrm{c}$ with lengths in proportion of $10-20-28-13-13$; PR 2.0 ; third semment short, slightly swollen, with round, shallow sensory pit. Proboscis moderately short, P / Fl ratio 0.71; mandible with 14 teeth.

Thoma: Pake yellowish, subshiming in dry epecimens, Legs (fys. 15, f) pale yellowish; tibial comb with four spines, the one nearest the spur longest.

Whag (figs. $5, b ; 30, k):$ Pale yallowish gray, without markings. Amerotrichia sparse, confined to aper of wing; (R 0.65; 2lRC slitlike. Halterpale.

Abdomen: Pale yellowish. Spermatheene (figg. 15, el two plus long stender ring, rudimentary third spermatheea not visible; functional spermatherae pale yellowish, elongate
oval, tapering to long slender neeks; subequal, each ineasuring 0.046 by 0.025 mm . including the neek.

Mate Genialia (fig. 15, h).Ninth stemum with broad, shallow, saudomedian excavation, ventral membrane not spiculate; ninth tergum long and tapering, with short, pointed. apicolateral processes. Basistyle slender, ventral and dorsal roots slender, simple; dististyle long and slender, with bent, pointed tip. Aedeagus with basal arch rounded, extending to nemely hald of total length, basal ams slender, slighty curved; thistal portion tapering to slender, simple tip. Parameres (fig. 15. (0) separate; each with tistinct hasal knob; stem moderately slender, with well- teveloped ventral lobe distally; distal portion beyond lobe slender, bent ventrad, tapering to

Figere 15--(whicoides foride usis: a, Fomale antenna; b, female wing; c, female papus;
 paramores; h, male genitalia, parameres removed.
slender point, and bearing lateral fringing spines.

Distribution.-Bahamas, Bermula, Florita (fig. 5).
Types.--Holotype, male, allotype, Cemale, Englewood, Sarasota Comity, Fla, in light trap) [CSNDI $10092-4$.

Weat Indian Records.-

BAFAMAS: South Bimini, June, July 1951, M. Cazier, (. and P. Vimurie, 1 male. 1 female (ADCNH).
Discussion.-('. Joridensis is a peripherat element in the West Indian Culicodes fama (fig. 51, orcupying only the island nearest to the Florida manland, where it is nobudant in its own restricted area. It can be distinguished from ('. melleus, which it closely resembles, by its shaning yellowish iutegument, more slender habitus, definite round palpal pit, lightly sclerotized spermathecac, and male genitalia with long tapering ninth tergum, distally shonter aedengus, and parameres with a ventral lobe and distal fringing sipines.

Larval Habitat--Linley (1970) sleseriberd the pupa, which he reared in the lahoratory on a nematode diet from eggs obtained by decapitating hlow-fed wild females.

Biting Habits.-('. floridensis is a vicious biter in Florida, attacking man in the daytime (Einley, 1970).

Culicoides for: Ortiz

(Figs. 3 and 16)

('ulicoides foxi Oriz. 1950, p. 461 (male; $\mathrm{P}_{\text {iterto }}$ Rico: yuttatus (Coquillett) of Fox, 1949) -Orliz, 1951b, p. 4 (male, female; Venezuela; illus.).-Fox,

1952a, p. SSS (Puerto Rico)-With and Blanton. 1956 a, p. 309 (redcscribed; distribution; illus.).-Forat(ini, 1957, p. 205 (redescribed; distribution; illus.).-Wirth and Blanton. 1959. p. 293 (redescribed; Pamana distribution; illus.).-Fox and GarciaMoll, 1961. p. 120 (Puerto Rico).
Culicoides guttatus (Coquillett), misiden-lification.-Fox 1949, p. 31 (Puerto Rico; fig. wing, spermatheene, male genitalin).-Wolcott, 1951, p. 426 (Puerto Rico).
Female. Wing length 1.21 mm .
Head: Eyes contiguous, bare. Antenna (fig. 16, a) with lengths of flagellar segments in proportion of 22-17-17-18-18-18-18-20-25-26-30-32-38; AR 1.10; scusory pattern 3, 1i-15. Palpal segments (fig. 16, /f) with lengths in proportion of $10-25-38-20-14$; PR 3.2; third segment with broad, shallow sensory pit. Proboscis long, P / H ratio 1.15 ; marlibie with 16 teeth.

Thorax: Dark brown; mesonotum |fig. 16, cl with prominent pattern, yellowish in center with two distinct, sublateral, blackish, longitudinal vittac. Legs brown with distinct pale bands at midlength and barrow blackisla rings before apices on fore femur and midfemur, fore tinee and midknee narrowly pale; hind tilin with basal and apieal pale bands; tibial comb (fig. 16, d) with six spines, second from the spur longest.
Wing (fig. 16, b): Pattern as figured: 2RC' pale on distal portion, but with small blackish spot just behind apex; r-m rrossvein blackish; two pale spots in cell MI past the pale spot stratding middle of vein M2. Macrotrichia sparse near distal wing margin; CR 0.68. Hater knob deeply infuscated.

Figura 16.-Clulicoides foxi: a, Female antenna; b, female wing; c, thoracic patern; d, tibial comb; e, spermathecae; f, female palpus; a, male parameres; h, male genitalia, parameres removed.

Abdomen: Blackish, cerci pale. Spermathecae (fig. 16, e) two plus rudimentary third and sclerotized ring; functional ones ovoid, tapering, to short slender neeks; unequal,
measuring 0.063 by 0.049 mm . and 0.053 by 0.043 mm .

Male Genitalia (fig. 16, h).Ninth sternum with shallow caudomedian exaration, ventral mem-
brane not spiculate; minth tergum rounded, with small apicolateral processes widely spaced. Aedeagus elongate, sides convexly swollen, apex trumeate rather than with papilliform tip. Parameres (fig. 16, g) fused on proximal fourth, apices with minute fringing hairs.
Distribution.-Mexico through Central America and South America to Colombia and Argentina; West Indies (Jamaica, Puerto Ricol; Trinidad (fig. 3).
Type.-.Holotype, male, Camp Tortuguero, Puerto Rico (University of Puerto Rico collection).

West Indian Records.-

JAMATCA: Bath, St. Thomas Parish, 19 July 1961, Maldonado and Earr, at light, 2 females; Defvey, St. Thomas Parish, 4 December 1962, 7. H. G, Aitken, from donkeybaited trap, 1 female; 2 mi. w. Manchioneal, (ireen Hills, Porthand Parish, 24 November 1968, R. E. Woodruff, light trap, 1 male; Mandeville, Manchester Parish, at April 1970, E. (.) Famworth, light trap, 2 fcmales; Milk River Bath, Clarendon Parish, 19 November 1968, Woodruff, light trap, 1 female; Negril, Westmoreland Parish, 20 November 1968, Woodruff, light trap, 5 males, 10 females; Rumaway Bay, St. Am Parish, 16-28 Fobruary 1969, W. W. Wirth, light trap, 3 mates, 3 emales; Spanish Town, St. Catherine Parish, 28 May 1970, Farnworth, light trap, 1 femile, Worthy Park Estate, St. Catherine Parish, 16 November 1968, Woodiruft, light trap, 1 female; same, Mareh-June 1970, Farnworth, light trap, 1,000 's.

PUERTO RICO: Camp Tortugucro (Fox, 1949; Wolcott, 1951; type of foxi).-.Henry Barracks (Fox, 1952a).-Isla Verde Int. Airport (Fox and Garcia-Moll, 1961) Mayaguez (Wirth and Blanton, 1956a).-Fort Buchanan, 26 June 1952, F. S. Blanton, light trap, 1 female; Mayaguez, 9 January 1969, Walker and Drummond, light trap, 2 females.

Discussion.-In 1950 Ortiz gave the mame Culicoides foxi un. sp. to a mate specimen from Camp Tortuguero, Puerto Rico. It had been misidentified and figured by Fox (1949) as C. guttatus (Coquillett). In 1951 Ortiz redescribed C. foxi from Caracas, Venezuela, and he invalidly designated types from that country. The type locality was erroncously given as Venczuela by Fox (1955a) and Wirth and Blanton (1956a, 1959).

Larval Habitat,-Williams (1964) reared C. foxi in Trinidad from sumy and shaded stream and ditch margins, from rain-soaked horse and cow manure, and from rotting cacao pods.

Biting Habits.-Wirth and Blanton (1959) reported C. foxi from a horse-baited trap in Panama and from an animal-baited trap in Brazill. It has been taken biting man in Trinidad.

Culicoides furens (Poey)

(Figs. 1, 5, 17, and 30)
Occata furens Poey, 1851, p. 236 (female; Cuba; fig. habitus, wing, head, antenna, mouthparts)--Townsend, 1893, p. 381 (Jamaian)-Cockerell, 1894, p,

419 (Jutnaica).-.-Pratt, 1907, p. 2S ('ulicoides furens (Poey)-Lutz, 1912, p. (Cuba, Monlserrat)--Johnson, 1919. p2. 422 (Jumaica).-Stepheus, 1923, !. 368 (Cuba).

16 (combination).-Root, 1922, p. 396
(Pucto Rico)--Hoffman. 1925, p. 287
(redeseribed; Cuba, Puerto Rico, Ba-

Finure 16 -Chaticoides furens: a, Female antena; b, male antenna; c and d, female palpi; e, female wing; f, male wing; a, female head; h, female mandible; i, femora and tibine, left to right. of hind middle, and fore legs; i, tibial comb; k, larsi, top to botlom. of fore. middele, and hind legs; l, fifth inisomere and chaws, left to right, of fore, midde, and hind legs; m, spermathecap; n, mate genitalia, parameres renowed; o, male pacameres.
hamas; ilhs.)-Wolcotl, 1927, 2. 312 (Haiti) --Myers, 1932, 1. 1 (Bnha-mas)-Duckley; 1933, j. 257 (Sainl Viment),-Y'an Volkenberg 1935, p. 17 (1'uerto Rico),-Wolcold, 1936, p. 325 (Puetto Rico)--Macfie, 1937, pr 10 (mate, femate refescribed; 'Trinidad; synovems; dovel, maculithorax). -Rool and Holiman, 1037, w. 162 (redeseribed; ISS. records; fig. malo genitulia),-Wolcott, 1941, p. 109 (Duerto Rico).-Fon, 1942, p. 418 (戶mpa; Puerto Rico; illus.).--Really, 104, D. 14. (Suint Croix)-DBatretto, 104.4, B. 89 (male; Brazil; illus.).Fox, 10.66, is. 255 (Maint John. Dominiean Republic)..-- Barbow, 1947. p. 15 (notes; distibution; fig mate geni-talia)-FFloch and Abomene, 1950, 1 . 1 (Guadeloupe),-rion and kiohler. 1950, 1. 312 (Fuerto Rico).-Woleolt, 1551, p. 425 (Puerto Rico, veonomic netes).-Wohler and foox, 1951, p, 113 (Purrto Rico)-Wirth. 1952b. p. 91 (Larva, pum; Florida; illus.),-Wox and Maldonatio, 1953, 1, 165 (Pueto Rico).-Foote and Prall, 1954, p. 21 (redeseribed; distribution; illus.),Ortiz and Leon, 1954, p. 572 (female; Ecuador; fig. wing, paipms).-Wirth aud Blanton, 1956 c, P. 159 (redeseribect; distribution; illus.)-Lewis. 1058, 1. 321 (Jumaiea; internal amatony: ithes. - Wirth and Blanton. 1950, p. 404 (redescribed; Pamana distribution; illus.).-Fox and GarciaMoll, 1061, p. 120 (Puerto Rico).Jones. 196 Ib, p. 739 (pupa; illus.).Bitlingmayer. 1961, p. 149 (Florida; alult biology),-Davies, 106.4. p. 33 (Jammea; biology),-Einley and Kettle. 1904, b. 129 (harva pupa; Jn-maita)-Lialey, 1966n، p. 385 (Jamaica; biology; immature stages).Linley, 1066b, b. 1 (Jamaica; ovarian cycle)--Linley and Davies, 1971, i. $26-1$ (biolgeg and control).
Cemtopogon maculthome Williston, IS96, p. 277 (female; Saint Viacent; fie. wing).
('wlicnides marnlithornx (Williston).Kiffler. 1906, p. 54 (combination).-.
loughamn. 192L, D. 202 (Jamaica), -Edwards, 1022, p. 164 (Jamaica). Culicoules dovei Hall, 1932, p. 88 (male. female; Georgia; fig. mate genitalia).

Femule.-Wing length 0.91 mm .

Foad: Eyes (fig. 17, g) marrowly separated, bare. Antenna (fig. 17, a) with lengths of flagellar segments in proportion of 16-12-12-12-12-12-$12-12-20-22-24-25-35$; AR 1.28 ; semsory pattern 3,7-10. Palpal segments (fig. 17, c and (i) with lengths in proportion of 11-24-28-10-13; PR 2.4; third segment slightly swollen, with small, shallow sensory pit. Proboscis moderately short, P/H ratio 0.74 ; manlible (fig. $17, h$) with 15 teeth.
'Thorax: Dark brown; mesonotum pollinose grayish, with prominent pattern of numerous senttered punctiform brown dots at seta bases; scutellum brown in middle, grayish pruinose on sides. Legs (fig. 17, i, k, l) brown; knce spots blackish; femora pale at bases, femora with subapical, tibiae with subbasal, and hind tibia with apical, narrow pale rings; tibial comb (fig. 17, j) with four spines, the one nearest the spur longest.

Wing (figs. 17, e; 30, g) : Pattern as figured; 2RC blackish; pale spot over r -m crossvein large; cell R5 with three small, round, poststigmatic pale spots in a triangle, the two next to 2 RC more or less fused, and a large, oblique, double spot broadly meeting wing margin in distal part of cell; cell MI with three pale spots, the clistal one located at the wing margin; vein M1 pale margined from apex nearly to its base, veins M 2 and $\mathrm{M} 3+4$ pale margined
on distal portions; cell M2 with pale streak in basal partion and a wider spot behind medial fork, two pale spots lying past level of mediocubital fork; cell M4 with large pale spot; anal cell with pale area at base and two pale spots in distal portion. Macrotrichia moderately numerous on distal half of wing and in anal cell; CR 0.58. Halter pale.
Abelomen: Dark brown. Spermathecae (fig. $17, m$) two plus rudimentary third and sclerotized ring; ovoid with long slender neeks; subequal, each measuring 0.057 by 0.037 mm .

Male Genitalia (fig. 17, n).Nintle stemum with broad, deep, caudomedian excavation, ventral membrane not spiculate; ninth tergum short and tapering with unusually long, slender, divergent, pointed, apicolateral processes. Basistyle with "foot-shaped" ventral root, posterior heel short, anterior toe long, dorsal root slender; dististyle slender, slightly eurved, with bent pointerl tip. Acdeagus with broad, rounded basal arch extending to about half of total length; basal arms slender; distal portion relatively short and stout, the apex of two types-in one the very slender, medinn, distally striate tip flanked by a prominent pair of lateral points of about the same length; in the other type the lateral points apparently lacking and the striated median tip broader. Parameres (fig. 17, o) separate: each with large basal knob, stem moderately stout and curved, bearing an extromely large ventral lobe; distal portion tapering
to fine point and bearing about five strong, lateral, fringing spines.

Distribution.-Atlantic and Gulf consts of the United States from Massachusetts to Florida and Texas; Caribbean and Atlantic coasts of Mexico, Central America, and West Indies to Brazil; Pacific const from Mexico to Ecuador (fig. 5).

Types--Existence of types of C. furens unknown; described from north coast of Cuba, probably Ha vana. Holotype female of Ceratopogon maculithorax, Saint Vincent (British Museum (Nat. Hist.), Lon(don). Holotype male of dovei, Brunswick, Ga. (USNM 43972, but missing from the USNM collection).

West Indiam Records.-

ANTIGUA: No locality or date, Nos. 878,879, A. H. Jennings, 32 femalcs (Wirth and Blanton, 1956c). -Fitches Creek, 22 September 1965, Martinez and Guerra, biting man 6 PM, 3 females; Jolly Beach Hotel, 2 November 1967, J. B. Davies, biting man, 2 females; Prickly Pear I., 6 April 1958, J. F. G. Clarke, light trap, 1 female.
BAHAMAS: Abaco I., Marsh Harbour, 13 April 1968, G. M. Stokes, light trap, 1 male, 1 female; Andros I., Driggs Hill near South Bight, 27 April 1953, E. Hayden and L. Giovannoli, 3 females (AMNH); Andros I., April 1966, H. J. Bowen, biting man, 2 females; Bimini, 25 January 1968, Stokes, light trap, 1 male, 2 females; Cat I., Bennetts Harbour, 24 March 1953, Giovannoli, 17 females (AMNH); Eleuthera I., James Cistern, 1 April 1953, Hayden and Giovannoli, 12 females (AMNH) ; Exuma Cays, Darby I.,

18 January 1953, Hayden and Giovamoli, 15 females (AMNH); same, Warderick Wells Cay, 10 January 1953. Hayden, 1 female (AMNH); Mayaguana I., near Abraham Bay, 3 March 1953, Hayden, 1 female (AMNH) ; New Providence I., Nassau, 3 Jume 1943, D. G. Hall, 6 females; same, 3 January 1953, Hayden, 1 female (AMNH); North Bimini, Alice Town, 4 February 1968, Stokes, 1 male, 2 females; North Bimini, Paradise Point, 18 February 1968, Stokes, light trap, 2 femaies; South Bimini, May, July 19:1, C. and P. Vauric, M. Cazier, and W. Gertsch, 3 males, 5 females (AMNH) ; Tutks and Caicos I., cays 3.5 mi. sw. North Caicos I., 3 February 1953, Hayden, Giovannoli, and Rable, 13 females (ANLNH).
BARBADOS: No locality or date, No. 853. A. H. Jemings, 10 females.
CAYMAN ISLANDS: Grand Cayman, Red Bay, 11 August 1969, J. E. Davies, light trap, 1,000's; Grand Cayman, South Sound, 16 Eebruary 1970, Davies, emergence trap, 100 specimens.
OCBA: No locality, types of furens (Poey, 1S51),-Wardenas, June, E. A. Schwarz (Pratt, 1907; Hofiman, 1925). -Guantanamo Bay, February-April 1970, J. E. Tisdale, light trap, 1,000 's; same, 21 February 1962, E. R. Turner, light trap, 6 males, 4 females; same, 3 September 1964, T. S. Josey, light, 2 males, 1 female; Havana, no date, J. R. Taylor, 7 females; Isle of Pines, Columbia, no date or collector stated, 7 females; La Victoria, Camaguey Prov., 3 July 1957, J. U. McGuire, 1 female.

DOMINICA: Cabrit Swamp, 23 February 1965, W. W. Wirth, light trap. 10 males, 10 females; Clarke Hall Estate, January-March 1965, Wirth, light trap, 10 males, 12 fcmales; Grande Savane, 1 February 1965, Wirth, 1 iemale; Layou River mouth, 20 January 1965, Wirth, 5 females; same, 6 February 1965, Wirth, reared margin lagoon, 4 males, 1 female; Macoucheri, 12, 14 February 1965, Wirth, at light, 1 mate, seashore, 1 female; Portsmouth, 4 March 1964, D. F. Bray, 7 females.
DOMUNICAN REPUBLIC: San Lorenzo, 14 May 1941, Dr. Mazzotti, biting man, 1 female (Fox, 1946).
JAMAICA: Palisadoes, Port Marin (Townsend, 1898). -No locality (Edwardis, 1922).-Askenish, near Dolphin Head, Hanover Parish, 20 June 1970, E. G. Farnworth, light Lap, 10 females; Baths, St. Thomas Parish, 19 July 1961, Maldonado and Farr, 2 females; Burat Hill, Trehwny Parish, 16 May 1967, R. E. Woodruff, light trap, 1 male; Duckenfield, St. Thomas Parish, 4 December 1962, T. H. G. Aitken, donkey trap, 2 females; Duncans, Trelawny Parish, 25 February 1958, D. J. Lewis, 8 females; Falmouth, Trelawny Parish, 1 March 1969, W. W. Wirth, bay shore, 4 females; Kingston, no date, No. 875, A. H. Jemings, 4 females; Milk River Bath, Clarendon Parish, 11 November 1958 , Aitken, 8 femates; same, 19 November 1968, Woodruff, light trap, 100 females; same, 11 March 1970, Wirth and Farr, biting man 6 PM, 10 females; Mitchell Town, Clarenclon Parish, 12 November

1958, Aitken, 29 fomales; Montego Bay, St. James Parish, 22 June 1957, M. V. King, 5 females; Morant Bay, St. Thomas Parish, 6 Felruary 1937, Chapin and Blackwedder, 1 female; Negril. Westmoreland Parish, 20 November 1968, Woodrufi, light trap, 200 males and females; same, 22 June 1970, Farnworth, light trap, 1,000's; Portland Ridge, PWD Fish Lodige, 21 August 1969, Farnworth, biting man, 1 female ; Rumaway Bay, St. Ame Parish, February 1969, Wirth, light trap, 10 mates, 20 femades; Spanish Town, St. Catherine Parish, 2 February 1937, Chapin and Blackweider, 1 female; same, 28 May 1970, F mworth, light trap, 20 females; T ekenham Park, St. Catherine Parish, 28 April 1970, Farnworth, light trap, 1,000's; Winchester, St. Thomas Parish, 7 De(comber 1962, Aitken, donkey trap, 2 females.
Montserrat: No locality (Pratt, 1907).
PUERTO RICO: Aguirre, August 1921, F. M. Reot (Hoffman, 1925).-Ish Verde Int. Airport, 1958-60 (Fon and Garcia-Moll, 1961).-Rio Piedras, July and September 1921, Root (Hoffman, 1925). -San Juan (Fox, 1942).-Camp Tortuguero, 24 Jule 1952, F. S. Blauton, light trap, 11 females; Fajardo, 1 July 1952, Blanton, light trap, 5 females; Fort Buchaman, 26 Jume 1952 . Blanton, light trap, 3 females; Guanica, 22 June 1952, Blanton, light trap, 5 females; Las Palmas, 20 March 1970, G. M. Stokes, light trap, 3 males, 2 females; San Juan, 8 January 1969,

Walker and Drummond, light trap, 10 females.

SAINT CROIX: Frause Lagoon, June 1938, H. A. Beatty, is females; Salt River, September 1938, Beatty, 8 females; Tagus, June 1938, Beatty, 2 females.

SAINT JOHN: Cruz Bay, 9 September 1937, 3 females (Fox, 1946). -No locality, August-October 1961, R. W. Williams, light trap and emergence traps, 15 males, 30 females; Francis Bay, 25 March 1958, J. F. G. Clarke, at light, 9 iemales.
SAINT LUCIA: Grand Anse, 20 July 1964, R. Martinez, biting man, 1 female; Gros Islet, Yacht Club light, 25 October 1967, J. B. Davies, 1 female; Vilon Estate near Micoud, 28 July 1964, Martinez, biting man, 7 females.
SAINT THOMAS: No locality, 28 November 1957, R. Delgado, biting man, 1 female.
SAINT VINCENT: No locality or date, types of Ceratopogon maculithorax Williston (1896).

Vhrgin gorda: North Beach, 23 March 1970, G. M. Stokes, biting man, 10 females.

Discussion.-A full discussion of the taxonomy and distribution of this species was presented by Wirth and Blanton (1956c; 1959). The extensive West Indian literature on the specics is listed in the synonymy given on the preceding pages.
Larval Habitat.-Myers' (1995) account of the larval habitat of C. furens in the Bahamas was the first detailed study in the West Indies, and its accuracy and definition, borne out by more recent investigations, warrant repetition:
"In the Bahamas and probably elsewhere the ideal breeding-places for (udicoides forens are areas of waterlogged sand mixed with humus, not subjeet to actual tooding by any exeept unusually high tides, and more or less covered with a growth of mangroves. But even in such loealities the sand-fies by no means breed evenly over the whole extent. A typical sand-fly swamp or 'swash,' as it is called in the Bahmans, may be deseribed as follows from a New Providence example: the sandy, or in places rocky, beach is backed closely by a sea-dane, often of considerable width and slothed with sea-onts (Cniola), coco-plum (Chrysobalanus lacol and low serub. At some distance inland is a line of rock outrops. Between these two milges lies the swamp, into which extend the branches of a narrow arm of the sea, a creek in the origimal sense of the worl. The matgin of the swamp is everyhere clearly defined by distinct zones of vegetation. The lower portion, about the amms of the creck, is corerel almost uniformly with common stilt mangroves (Rhizophora mangle). The upper portions fad the margins are clothed with atmost pure stands of low blach mangrove Avicemia mitida). While the muddy samd between the Rhizophora bushes is invariably bare, that among the Aricennia shrubs is often covered, though not densely, with the low reddish herbaceous plant, Salicornin perennis. On the extreme edge of the swamp, at the foot of the sea-dune and of the landward rock outerop, is a thin line of other vege-
tation, chiefly white mangrove (Laguncularia racemosa) and buttonwood ('onocarpus erecta) with denser beds of Salicomia and of the much greener sampire (Philoxerus vermicularis). Oecasional patches of the salt-marsh grass, Sporobohus tirginieus, also oceur here. The distribution of these different vegetation zones depends upon distance from thelal influence. In the upper part of the swamp are frequent and axtensive patches of bare soil. The soil of the whole area is permmently water-logged, while that in the immerliate vicinity of the creek is nooded by every tide. The proportion of hamus in the sand decreases as one approaches the mouth of the creek, where the sand is pure and almost white.
"In the swamp thus briefly characterised, sand-flies (C. furens) breed in greatest abundance about the meeting-place of the common mangrove (Rhizophora) and the black mangrove (Avicennia) patches, and to a greater extent in the shade of the fommer than of the latier. They breed also, right up to the edge of the swamp, in the shade of white mangroves (Laguncularia), of sampire (Philoxerus) of the grass, Sporobolus virginicus.
"I was able to find none in precisely similar soil in the shade of Salicomia, nor in the bare patches. Neither does the sand-fly breed in the lower part of the common mangrove zone, where every tide covers the surface with several inches of water. To sum up, we may state that for breeding in mumbers sand-fies
(Culicoides furens) require (a) send with a proportion of humus, permanently waterlogged with salt or brackislı water, but not flooded, and (b) shade. It would be presumptaous to assert that odd sand-flics do not breed where some or even all of these conditions are lacking, but we are coneerned here with main sourees of infestation."

Painter (1927) reared C. furens from sand and mud near a tidal camal in Honduras. Garpenter (195s), Woke (1954), and Blanton et al. (1050) reported f^{\prime}. farens as a severe pest in Panama, brecling in the Farfan Swamp nenr Fort Kobloc, C.Z. They devised a system of tidal gates to keep the swamp flooded with fresh water from rainfill. Control was good until the gates deteriorated. Brecland (1960) reared this species in Pamama from numerous collections from at wide variety of saltwater hubitats and found it to be nost nbundant in mangrove swamps or marshes that were only partially shaded. The densest populations wore found in supersaturated muck of tide ditehes with no standing water and partial to full exposure to stulight. This species was virtually absent in densely shaded mangrove swanps. Williams (1964) reared C. fwens in Trimidad not only from tidal and brackish habitats but also from the margin of a fresh-water stream miles from the scacoast.

Linley and Kettle (1964) deseribed the larva and pupa of C. forens, taken at Greenwood, east of Montego Bay, Jamaica. The breeding site was the shaded banks of two
ponds, situated close to the sea, which contained considerable sea water even though they were not connected direetly to the sea. Williams (1962), working on Saint John, compared emergence trap catches from ordinary tiph mangrove swamps (Type I) with those from vegetated margins of brackish ponds receiving some water by scepage from the sea, but with higher levels from periods of heavy rainiall (Type II). Type I habitats produced a nearly constant, moderate emergence of arbults, whereas type II habitats produced larger numbers begiming with the flooding of such ponds by manfall and increasing until about a week after the mud was exposed by drying of the ponds.

Linley (1966a) and Davies (1967) trapped C, furens in Jamaica in the Bogue Swamps east of Montego Bry in emergence cages along transects crossing various vegetation zones and tide levels. They generally found C. furens breeding in those parts of the swamp occupied by white or black mangroves (Laguncularia and Avicennia) at a slightly higher level $(0.2$ foot) than C. barbosai. Its emergence was hardly affected by general water levels, but, unlike that of C. barbosai, the emergence of C. furens was greatly inhibited by high amplitude tides. For this reason the abrundance of C. furens is unlikely to show much seasonal variation in Jamaica, but it is more abundant on a biweekly cycle during neap tides than during spring tides.
Tsing emergence traps, Linley et al. (1970a) compared the seasonal
emergence of C. furens in Florida from three habitat types-tidal ditches, brackish pools, and impoundments. Compared with the other two habitats, impoundments produced relatively fow adults carly in the year (March to June), but therenfter the rate of emergence in impoundments increased and during the cold months (September to Mareh) exceeded that in the other two habitats.

Linley (1968, 1969) described techmiques for colonizing C. furens in Florida and included notes on behavior under laboratory conditions. Barlier be (1960a) reported on the behavior, habitat preicrences, and food preferences of harvae collected. in Jamaica and reared in the Jaboratory. In alternate periods the larvae exhibited two types of activity(1) burrowing through the soil, presumably foraging for food, and (2) inactively lying at the soil surface to secure a better supply of oxygen. Just prior to pupation the larvae migrate some distance to drier soil where contact with air can be made more easily by the pupa.
Biting Habits.--Kettle (19606) found biting activity of C. furens in Jamaica to be crepuscular and nocturnal with a peak at dawn and irregular outbursts through the night. He (1969c) found that moderately high windspeed (above 3 m.p.h.) decreased the biting rate. Kettle and Linley (1969b) found that this species preferred to bite the legs rather than the arms of humans.
This species is rather exceptional among Culicoides species in its habit
of freely entering houses and other buildings in search of a blood meal (Myers, 1980̄; Adamson, 1939; Porter, 1959). Wire screens at windows and doors are only partially effective in keeping them out, but spraying or painting the screens with kerosene to which suitable insecticide has been added is an cffective repellent.
Flight Range.-Williams (1962) found on Saint John in the Virgin Islands that adults of C. furens may be carried by prevailing winds for more than 4 miles over mountains 1,200 feet high. Breeland and Smith (1962) reported that C. furens in Panama was carried downwind a distance of about 2 miles. It seems likely that windborne C. furens may disperse from 3 to 4 miles from their breeding places, whereas upwind dispersal may be limited to several hundred yards. The reliability of prevailing winds or trade winds may be an important factor in planning control mensures for this species (Linley and Davies, 1971).

Culicoides guadeloupensis Floch and Abonnenc

 (Fig. 6)Cullicoides ouadeloupensis Floch and Abonnenc, 1950, p. 2 (female; Guadeloupe I.; fig. wing, palpus, head, eyes, legs, spermatheca, pharynx).

Female.-Wing length 1.17 mm .
Head: Eyes with short jnterfacetal hairs. Antenna with five distal segments elongate, 11 longer than 9 and 10 combined; AR 1.65. Palpal segments with lengths in proportion of $19-52-57-24-33$; third segment
stout, with a large irregular shallow pit on distal portion; PR 1.4.

Thorax: No data given.
Wing: Wing pattern similar to that of C. trilineatus Fox; cell R5 with a single, oblique, poststigmatic pale sjow and a transverse pale spot in distal portion; cell M1 with two pale spots; cell M2 with a pale spot behind medial fork, one in front of mediocubital fork, and one in distal portion of cell at wing margin; a small pale spot in cell Dist; anai cell with a single pale spot in distal portion; vein M1 narrowly pale bordeved on distal half. Macrotrichia abundant over entire wing; CR 0.67.

Abdomen: One spermatheca prescnt, subspherical, with a moderately long, stender neek; measuring 0.064 by 0.055 mm .
Male Genitalia.-Male unknown.
Distribution,-Guadeloupe (fig. 6).

Type.-Known only from the holotype female, collected St,Claude, Guadeloupe, 1944-5, R. Chassignet (slide No. 1944, in coll. Inst. Pasteur de la Guyane, Cayeme).
West Indian Records.-None.
Discussion.-The previous description was taken from Floch and Abonnene (1950). The wing pattern of C. guadeloupensis is practically indistinguishable from that of C. trilineatus. but the hairy cyes, the presence of only one spermatheca, and the markedly elongate distal antenual segments provide means for readily distinguishing C. guadeloupensis.

Larval Habitat.—Unknown.
Biting Habits.-Unknown.

Cilicoides heliconiae Fox and Hoffman

(Figs, 3 and 18)

Culicoides heliconiae Fox and Hoffman, 1944, p. 108 (fomale; Venezuela; fig. wing),-Fox, 1948, p. 22 (male, female; fig. palpus, aedeagus, parnmeres).Wirth and Blanton, 1956e, p. 95 (redescribed; synonym: rozeboomi; illus.), Wirth and Blanton, 1959, p. 2 24 (redescribed; Panama records; illus.),-Williams, 1964, p. 463 (Trinidad; larval habitats). Wirth and Blanton, 196S, p. 205 (redescribed; illus.).-Wirth et al.. 1968, p. 132 (Panama; renred from Heliconia).
Gulicoides rozeboomi Barbosa, 1047, p. 26 (male, female; Trinidad; illus.).

Female.-Wing length 1.66 mm . Head: Eyes contiguous, bare. Antema (fig. 18, a) with lengths of flagellar segments in proportion of $60-50-50-50-50-50-50-50-$ 65-66-80-83-108; AR 1.06; sensory pattern 3,11-15. Palpal segments (fig. 18, f) with lengtlis in proportion of $20-120-140-60-56$; PR 3.6 ; third segment spindle shaped, with sensilla scattered on surface. Proboscis long, P/H ratio 1.33 ; mandible with 23 teeth.
Thorax: Blackish; mesonotum (fig. 18, c) with large median area and other smaller areas dark pruinose gray, lateral margins and a sublateral pair of short bands velvety black; humeri whitish. Legs blackish; miclknee narrowly pale on each side of joint; fore femur with subapical, fore tibia with subbasal, and hind tibia with basal and apical, narrow pale rings; tibial comb (fig. 18, d) with six spines, second from spur longest.

Wing (fig. 18, b): Pattern as fitured; 2 RC with apex included in a pale spot; base of cell M4 ciark where it borders bases of veins M3 +4 and Cu ; pale spet present in cell R5 anterior to base of vein Ml; apices of veins $\mathrm{M1}, \mathrm{M} 2, \mathrm{M} 3+4$, and

Cul with pale spot at wing margin. Macrotrichia sparse on distal haif of wing and extending nearly to base of anal cell; CR 0.71. Halter pale.

Abdomen: Blackish, cerci yellowish. Spermathecae (fig. 18, e) two plus rudimentary third and sclero-

Figure 18.-Cuficoifes heaconite: a, Female antenna; b, female wing; c, thoracic pattern; d, tibinl comb; d, spernathecae; l, female palpus; a, male parameres; h, male genitalis, parameres removed.
tized ring; functional ones ovoid with short slender neeks; unequal, measuring 0.065 by 0.053 mm . and 0.051 by 0.042 mm .

Male Genitalia (fig. 1S, h).Ninth tergum with caudomedian margin slightly produced in a rounded process, sometimes slightly bilobed, apicolateral processes absent. Aedeagus narrow with short basal arch, anterior margin with distinct sclerotized band; distal portion with internal sclerotized anterior projection and round terminal papilla. Parmmeres (fig. $18, g$) fused on proximal portion for about a third of total length, fused portion slightly bronder than long, terminal filaments slender with fine fringing hairs distally.

Distribution.-Brazil, Colombia, Costa Rica, Gremada, Honduras, Panama, Trinidad. Yenczuela (fig. 3).

Types-Holotype, female, allotype. mate, and one female paratype, Maracay, Venczuela, 2 August 1927, with cust pupal skins, reared from bromeliads (University of Puerto Rico collection).

West Indian Records.-

GRENADA: Lake Grand Etang, 2 mi. W., 4-S August 1963, O. S. Flint, 1 female (Wirth and Blanton, 1968).

Discussion.-This large blackish species is distinguished by its slender, spindle-shaped third paipal segment with scattered sensilla, its prominent wing pattern with an isolated pale spot at the base of cell R5, anterior to the base of vein M1, and with the base of cell M4 not pale margined, its pale-colored mid-
knee, and its hind femur which lacks a subapical pale band.

Larval Habitat.-The type series was reared from bromeliads in Venezuela. Aitken (1957) reared this species from Heliconia bracts in Trinidad; Williams (1964) reared it in Trinidad from banana stump, Heliconia bracts, bamboo internode, and Calathet flowers; and Wirth et al. (196S) reared it from Heliconia bracts in Panama.
Biting Habits.-Carjeuter (1951) and Wirth and Blanton (1959) found C. heliconiae abundant in collections from stable traps in Pamama, and the iatter concluded that the species must be strongly attracted to horses.

Culicoides hoffmani Fox

(Figs. 6 and 19)

('ulicoides hoffmani Fox, 1946, p. 251 (female; Trinidad; biting man; fig. wing, mesonotal pattern)-Fox, 1949, p. 29 (male, Female; Puerto Rico; reared, tree hole; fig. palpus, spermathecae, male genitalin).-Fox and Kohler, 1950, p. 342 (Puerto Rico).-Fox and Maldonado, 1953, p. 165 (Puerto Rico).-Wirth and Blanton, 1956b, p. 189 (redescribed; distribution; illus). -Linley and Kettle, 1964, p. 129 (larva, pupa; Jamaica; illus.).-Linley, 1965a, p. 57 (Jamaica; reared from tree hole).-Wirth and Blanton, 1971, p. 36 (notes; separation from debilipalpis and eadsi).
Female.-Wing length 0.76 mm . Head: Eyes moderately separated, with longer interfacetal hairs than in C. debilipalpis. Antenna (fig. 19, a) with lengths of flagellar segments in proportion of 14-11-13-15-15-14 14-15-14-14-15-15-25; AR 0.79; sensory pattern 3,8-10. Palpal segments (fig. 19, c) with lengths in
proportion of 6-11-19-6-7; PR 1.6; third segment short and swollen, with a moderately large and deep sensory pit. Proboscis moderately short, P / HI ratio 0.70 ; mandible with 14 teeth.
Thorax: Dark brown; mesonotum (fig. 19, f) with a sublateral pair of darker brown patehes widest at midlength. Leges dark brown; fore femur and midfemur with subapical, all tibine with subbasal, and hind tibia with apieal, narrow, pade rings; tibial comb (fige 19, c) with four spincs, the one nearest the spur longest.

Wing (fig. 19, b): Pattern as figured; 2RC dark to apex; pale spot over $\mathrm{r}-\mathrm{ml}$ crossvein small; cell R5 with three pale spots, the poststigmatic pair separate, small and round, the posterior one located nearly direetly behind the other, distal pale spot not reaching anterior wing margin, transversely oval; cell M1 with two pate spots; cell M2 with pale spot at basal arculus, pale spot behind medial fork, but none in front of mediocubital fork; only one pale spot in distal portion of cel! M2, located at wing margin; cell M4 with

Figure 19--Cuäcoides hoffmani: a, Female antenna; b, female wing; c, female palpus; d, spermathecae; e, tibal comb; f, thoracic pattern; a male parameres; h, male genitalia, parameres removed.
round pale spot in distal portion; anal ell with one pric spot in distal portion. Aacrotrichia moderately sparse, usually confmed to distal hats of wing, rarcly extending to base of cell M2: CR 0.59. Halter shighty infaseated, flat end of knob whitish.

Abdomen: Datk brown. Spermatheene (fig. 19, a) two plus rudimentary third and sclerotized ring; oral with long slender neeks; slightly anequal, measuring 0.045 by 0.034 man and 0.0 .33 by 0.031 mm .

Male Genitalia (fig. 10, h).Ninth stemum with broad, shallow, cambomedian excavation, ventral membrase not spiculate; minth tergam long and tapering, with harge, triaugular, apicolateral processes. Basistyte with ventral root "footshaped," posterior heel poorly developed, dorsal root sleuder; dististyic slender and nearly straight with hooked tip. Aedeagus with basal areh rounded, extending to slightly more than half of total length, basal arms stender tand curved; distal portion brondly expanded and well sederotized, with three strongly selerotized distal points. Parameres (fig. 19, g) separate; each with hasal knob, stem slender, midportion sinuate, no trace of ventral lobe; distal portion tapering to ventromesally bent distal point with tateral fringe of fine hairs.

Distribution.-Antigua, Barbatos, Cayman Islands, Dominica, Jamaica, Saint Croix, Saint Lucia, Trinidad (fig. 6).

Types.-Folotype, female, paratype, female, Camuto Village, Trinidad, 11 April 1941, biting man (University of Puerto Rico collection).

West Indian Records.-

ANTIGEA: Wallings Dam near Sweets Village, 15 September 1965, R. Martinez, biting man 3 PM, 1 female.
BARBADOS: No locality or date, No, 830 , A. Fl. Jemings, 2 females.
(ADMAN ISLANDS: No locality, June 1970 , J. F. Davies, 2 fcmales; (irand Cayman, Southwest Point, 3 November 1969, Davics, light trap, 1 female.

DOMINICA: Cabrit Swamp, 23 Fobmary 1905, W. W. Wirth, light trap, 1 female; Carholme Estate, 7 Febraary 1965, Wirth, sweeping, 2 males; Clarke Hall, . Iamary-Marci 1960. Wirth, light trap, 1 male, 9 females; d'Lemu Commier, 17 March 1950, J. F. C. Charke, at light, 1 male; South Chiltern Estate, 20 February 1965 , Wirth, light trap, 1 fomale.
JAMAICA: Brandon Hill, Montego Bay, reared from tree hole, larvae (Linley and Kettle, 1964; Linley 1965a).-Caymans Estate, 9 June 1962, A. Ventura, chickenbaited trap, 1 female; Worthy Park Estate, St. Catherine Parish, 11 Norember 1968, R. E. Woodruff, light trap, 1 female.

PTERT() RICO: Garolina, Guyanilla, I. Fox, reared, tree hole (Wirth and Blanton, 1956b).-Mameyes, I. Fox, reared, tree hole (Fox, 1949).-Mayagucz (Fox and Maldonado, 1953).-San Juan, Fort Buchana, Fort Bundy, Henry Barracks (Fox and Kohler, 1950).

SAINT CROIX: No locality, August 1935, II. A. Beatty, 6 femaies (Wirth and Blanton, 19566).

SAINT LuClA: Barre de l'isle, Government Teak Nursery, 14 July 1964, R. Martinez, biting man 3:15 PM, I female; Saint Lucia Beach Hotel, 27 ()ctober 1967, J. B. Davies, at light, 2 males, 1 female; Vilon Estate near Micoud, 28 July 1964, Martinez, biting man 5 PM, 1 female.

Diseussion.-.The separation of C. hofmani from the very similar altopatric species. C. debilipalpis and O. eadsi, was discussed by Wirth and Blanton (1971). (". debilipalpis, which oscurs in the boutheastem U'uited States from Maryland to Florida and Louisiana, in Central America and South Amerier from Honduras to Trimidad, Brazil, and Argentina, has the third palpal segment longer and more slender with a small, deeper sensory pit. In nddition, the wing of C. debilipalpis is hairier and the poststigmatic pale spots are more obligucly oriented, the spermathecae are more unequal in size, the male aedeagus has a slender, simpte tip, and the parnmeres have a distinct ventral lobe. ('. cadsi occurs from Texas to Mexico and is distinguished by a third palpal seguent resembling that of (. debilipalpis. wing pattern like that of (., hoffmani, mate aedeggus like that of c^{\prime}. hofmemi, but parameres with a distinct ventral lobe like those of (C. debilipalpis. The distribution of these closely related species is shown in figure 6 .

Larval Mabitat.-Linley and Kettle (1064) deseribed the tree hole habitat where they found larvae of ${ }^{*}$. hoffme, 'The tree holes contained plant debris of a coarse erumblike
texture and sometimes a layer of standing water on top. Larvac coukl be seen swimming near the surface and adhering to the walls of the hole just below the waterline. These authors deseribed the larvac and pupac. The larvae are easily recognized by the presence of strongly developed periamal bristles on the caudal end. Larvae of C. borinquen, which occurred in one of the same tree holes, could be distinguished from C. hoffmani by the hack of perianal bristles. The respiratory horn of the pupa bears coarse scales in midportion. It has seven to 11 distal and three to four lateral papiliae. It is much longer and more slender than the respirstory horn of C. borinqueni. Larvae of (c. hoffmani feed on protozoa and rotifers (Linley, 1965a).

Biting Habits.-C. hoffmani was colleetef while biting man in Trinidad (holotype) and on Saint Lacia and Antigua. It was taken once in a chicken-baited trap in Jamaica.

Culicoides insignis Lutz

(Figs. 20 and 30)

Culicoides insignis Lutz, 1913, p. 50 (male, femate, pupa; Brazil; fig. wing).Costa Lima, 1937, p. 415 (fig. palpus). - Floch and Abonmenc, 1942, p. I (French Guiama; fig, wing, palpus)Barbosn, 1947, p. 20 (notes on genitalia of male in Lutz collection; fig. mals genitalia from Brazil).-Fox, 1948, p. 25 (notes on female charac-lers),-Barbosa, 1952, p. 16 (Brazil; notes on Lulz collection).-Wirth and Blanton, 1956:3, p. 319 (redescribed; Lutz syntypes restudied; male icctotype designated; synonyms: inamollac, painteri; distribution; illus.).Wirth and Blanton, 1959, p. 285 (redescribed; Panama distribution;
illus.).-Fox and Garcia-Moll, 1961, p. Culicoides inamollac Fox and Hofman,
p. 463 (harval habitat; Trinidad).Linley, 1965a, p. 5 (pupa; Jamaica; illus.).

1944, p. 110 (male, female; Puerto Rico; fig. wing),-Fox, 1948, p. 25 (distribution; fig. palpus, male geni-talia).-FFox and Kohler, 1950, p. 342

(Puerto Rico).-Kohler and Fox, 1951. p. 113 (Puerto Riso),-Wolcot, 1051, p. $\$ 26$ (Puerto Rico).-Fox, 1952n, p. 888 (Puerto Rico).-Fox and Maldonado. 1953, p. 165 (Puerto Rico).
Culicoudes painteri Fox, 1946, 12. 257 (female; Honduras; fig, wing).
Culicoides oliveri Fox and Hofman, 1944, p. 108 (in part, mate only, misidenlified; Haiti).

Fenale,-Wing length 1.11 mm .
Head (fig. 20, g): Eyes contiguous, bare. Antenna (fig. 20, a) with lengths of flagellar segments in proportion of $20-14-14-14-14-14-14-$ 15-24-25-26-29-4.4; AR. 1.32; sensory pattern 3,5,7,9,11-15. Palpal segments (fig. 20, c) with lengths in proportion of $9-23-33-13-17$; PR 2.8; thind segment moderately swollan, with broad, shallow, somewhat subdivided sensory pit. Proboscis long, $P /$ Ii matio 1.05 ; mandible (figs. $20 . h$) with 21 tecth.

Thorax: Dark brown; mesonotum yellowish in center, with two darker subiateral vithe. Legs (fig. 20, i, k, l) dark brown with pale rings on fore knees and midknees and at base and apex of hind tibin; tibial comb (fig. 20, j) with six spines, second from spur longest.

Wing (fg. 20. e; 30, l): Pattern as figured; 2RC included in distal pale spot, but a prominent blackish line following vein $R 4+5$ to the point where it turas abruptly forward to meet costa; crossvein $r-m$ dark on anterior end; pale spot straddling midportion of vein M2; distal pale spot in cell R5 transverse, more or less emarginate on distal side; only one pale suot in distal portion of cell M1; cell M2 with pale streak at
base, irregular pale area between mediat and mediocubital forks, and two pale spots in distal portion; cell M4 with prominent pale lines bordering posterior side of vein $M 3+4$ and distal side of vein Cul, and a round pale spot in distal portion of celt conmected narowly to pale line along vein $\mathrm{M} 3+4$; anal cell with pale area at base and two pale spots in distal portion; apices of veins M1, $\mathrm{M} 2, \mathrm{M} 3+4$, and Cu1 with pale spot at wing margin. Macrotrichia sparse on distal half of wing and in anal ecll; CR $0.65 ; 2 \mathrm{RC}$ clongate with broad lumen. Hafter infuseated.

Abtomen: Blackish, cerci paler. Spermathecae (fig. 20, m) two pius rudimentary third and selerotized ring; functional ones subspherical to ovoid with short slender necks; uncqual, measuring 0.063 by 0.049 mm . and 0.052 by 0.041 mm .

Male Genitalia (fig. 20, o).Ninth stomum with shallow caudomedian excavation, ventral membrane not spiculate; ninth tergum rounded distally, with small, widely separated, apicolateral processes, caudal margin between them transverse. Basistyle with strong spinose setae on mesal margin, ventral and dorsal roots short; dististyle curved, with slender, bluntly rounded tip. Acdeagus with basal areh short, extending to a sixth of total length, anterior margin with sclerotized thickening; distal portion with intemal, anteriorly directed, sclerotized point and slender apex with round teminal papilla. Parameres (fig. $20, p$) connected at bases by a whort selerotized loop; each with
short, stont main body and slender, ventrally dreeted filiform tip with apex bare (West Tndies and South America) or with minute fringing hairs (Central Ameriea).

Distribution.-Florida, Mexico, Central America, South America south to Brazil and Argentim, West Indies, Trinidad.
Types.--Lectotype, male, of insignis tlesignated by Wirth and Blanton, 19006 a), from Latz collection, locality not stated, Instituto Oswakio Cruz collection, Rio de Janeiro, Brazil. Types of inemollec, holotype, fomate, allotype, male, and two fomale paratypes, Mayaguez, Puerto Rico, - Cetober 1935. (i. S. Tulloch, light trap IEniversity of Puerto Rico colleetion). Holotype, female, of painteri, paratype female, Pucrta Castilla, Hondaras, 20,29 April 1926. R. H. Painter (tuiversity of Puerto Rico collection).

West Indian Records.-

CAYMAN ISLANDS: Grand Cayman, Red Bay, 5 December 1969. J. E. Davies, light trap, 50 males, females.
CUBA: Guantanamo Bay, 22 February 1962, E. R. Turner, light trap, 1 male; La Victoria, Lamaguey Prov., 3 July 1957, J. U. MeGuire, 6 males, 8 females.

DOMINICA: Cabrit Swamp, 23 Fobruary 1965, W. W. Wirth, light trap, 3 males, 3 females; same, is October 1966, E. L. Todd, 1 female; Clarke Hall Estate, January-March 1965. Wirth, light trap, 30 males, 15 females; Layou River mouth, 20 Jamuary 1965, Wirth, at light, 8 females.
DOMINICAN REPUBLIC: Rio

Camu, 10 km . ne. Jarabacoa, 12 June 1969, Fint and Gomez, I female.

IAMAICA: Reading, 4 mi e. Montego Bay, reared from larvae (Linley, :965a)-Bath, St. Thomas Parish, Fehruary 1937, Chapin and Blackwelder, 5 females; Blucfields and Calder Estates, Westmoreland Parish, \& December 1969, E. G. Farnworth, light trap, 1 female; Kingston, 29 Janaary 1937, Chapin and Blackwelder, 1 female; Mandeville, Manchester Parish, 4 April 1970. Farnworth, light trap, 2 femates; Negril, Westmorcland Parish, 20 November 1968, 22 June 1970, Famworth, light trap, 500 approx.; Runaway Bay, St. Am Parish, February 1969, W. W. Wirth, 6 males, 11 females; Santa Cruz, 24 February 1937, Chapin and Blackwelder, 1 mate, 8 females; Spanish Town, St. Catherine Parish, 3 February 1937, Chapin and Blackwelder, 1 male, 8 females; same, 28 May 1970, Farnworth, light trap, 100's; Twickenham Park, St. Catherine Parish, 28 April 1970, Farnworth, light trap, 1,000's; Worthy Park Estate, St. Catherine Parish, 17 November 1968, R. E. Woodruff, light trap, 1 female; same, March-June, 1970, Farnworth, light trap, 1,000 's.
PUERTO RICO: Henry Barracks (Fox, 1952a).-Isla Verde Int. Airport, 1958-60 (Fox and Garcia-Moll, 1961).-Mayaguez, 7 October 1935, G. S. Tulloch (Fox and Hoffman, 1944, types of inamollae).-Bosque de Luquillo, 19 January 1969, Walker and Drummond, light trap, 1 female; Camp Tortuguero, 24 June 1952, F. S. Blanton, light trap, 10 females; Caroline, 20 July 1948,

the west indian sandflies of the genus culicoides

H. D. Pratt, light trap, 4 maies, 6 females; Fajardo, 1 July 1952, Blanton, light trap, 2 females; Fort Buchaman, 26 Junc 1952, Bhanton, light trap, 1 female; Guajatara, 3 July 1952, Blanton, light trap, 1 female; Henry Barracks, 21 June 1952, Blanton, light frap, 4 fomales; Mayaguez, 9 Jamuary 1969, Wraiker and Drummond, light trap, 2 females; Rio Piedras, 24 Augusi 1961, Flint and Spangler, light trap, 1 male.

SAINT JOHA: No locality, September 1961, R. W. Williams, emergence tap. 10 mades, 15 females; Cancel Buy Plantation, August 1961, Williams, emergenee trap, 1 male; Rendevous Bay, August 1961, Williams, emergence trap, 1 male.

SAINT LUCCA: Castries, Fairriew, 14 April 1959, R, Darsie, light trap, 1 male; Cul de Sae Rd. at MP 9, 29 July 1963, Fint and Cadet, 1 female; Gros Islet, Yacht Chub light, 26 Oetober 1967, J. B. Davies, 1 male; Čnion Agr. Sta., 28 July 1963, (). S. Flint, 1 femaie.

Discussion.-.The females of C. insignis are readily distinguished from other members of the subgenus Hoffmania in the Caribbean by the wing markings, with only one pale spot in ecll M1 past the pale spot straduling rein 12 , a dark r-m erossucin, and a tark line following rein $R 4+5$ into the paice spot at the tip of 2RC to the point where the vein turns abruptly forward toward the costa.

Larval Habitat.-Fox (190̈za) first characterized this species as a cow pasture species, writing that it "oceurs abmendantly around cattle and breeds in their pasturelands,
hence it may feed on them." He also remarked that it "breeds in pasturelands and sugarcane fields." Wirth and Blanton (1959) reported it as being abundant in the muddy cow pastures in Panama.

Lutz (1913) originally reared C. insignis from mangrove swamps in Brazil. Fox and Hoffman (1944) were presumably led in part by the supposed differences in the larval halsitat of C. inamollae in Puerto Ricatr cow pastures to describe it as a distinet species. But Linley (1985a) and Davies (1967) in Jamaica reared C. insignis from both types of habitats and intermediate ones as well. They reared it from extremely glutinous black mud that was shaded ly red and black mangroves and periodically covered by tidal sea water. They also reared it from the margins of drainage ditehes, which flowed from the sugarcane ficlds into the mangrove swamps, and from the waterlogged clay soil of the cancfied themselves.

Biting Kabits.-In Trinidad (Aitken, 1957) and in Jamaica (Davies, 1967) C. msignis is essentially a zoophilic species, biting man occasionally but not in sufficient numbers to be a masance.

Culicoides jamaicensis Edwards

(Figs. 4, 21, and 30)

Culicoides loughnani var. jamaicensis Edwards, 1922, p. 165 (female; Jamaica; lig. wing)--Hoffman, 1925, p. 283 (Panama)-Barbosa, 1947: p. 21 (Jamaica, Baint Croix; fig. male genitalia).

Culticoides loughnani jamaicensis Edwards. -Fox, 1349, p. 32° (Puerto Rico; fig. palpus, mesonolum, male genitalia),Fox and Kohler, 1950, p. 342 (Puerto R(eo),-Kohler and Fox, 1951, p. 113 (Puerto Rico)-TFox, 1052a, p. sss (Puerto Rico).-Fox and Maldonado, 1953, p. 165 (Puerto Rico).
(raticoides jamaicensis Edwards.-Wirth. 1955, p. 112 (Guatemala; fig. male genitalia).-Wirth and Blanton, 1959, D. 339 (redesribed; Panama distribution; illus.) -.Wirth am Eubert, 1960, a. Gr9 (Bahamas, Mexico; fig wing).

Female.-Wing length 0.97 mm .
Head: Eyes narrowly separated, hare. Antemat (fig. 21, a) with lengths of flagellar segments in proportion of 16-10-11-12-12-13-14 14-20-21-21-22-30; AR 1.21; sensory pattem 3-15. Palpal segments (fig. 21, b) with lengths in proportion of $10-20-37-10-10$; PR 2.2 ;
third segment large and swollen to aper, with a large, deep sensory pit opening by a small distal pore. Proboscis long, P / H ratio 0.95 ; manclible with 15 teeth.

Thorax: Dark brown; mesonotum (hig. 21, e) dark pruinose gray, with three broad dark-brown bands bordered by conspicuous narrow whitish lines. Legs dark brown; femora pale at bases, femora with subapical and tibiae with subbasal, narrow pale rings; tibial comb (fig. 21, d) with four spines, the second from spur longest.

Wing (fig. 21, c; 30, d): Pattern as figured; 2 RC dark to tip; pale spot over r-m crossvein small; cell R5 with four pale spots arranged in a rhomboid, the proximal and distal pairs each sometimes fused into oblique double spots, the anterior

portions of which lic at anterior wing margin; small double pale spots present straddling base of vein M1 and midportion of vein M2; one pale spot in alistal portion of cell M1, far from wing margin; cell M2 with pale spot near basal areulus, one lying in front of mediocubital fork, and one far from wing margin in aper of eell; cell M4 with large pale spot broadest aloug posterior margin of vein $\mathrm{N} 3+t$; anal cell with one pale spot nenr base and two in distal portion; a pale spot straddling midportion of mediocubital stem; pale spots at wing margin at apices of veins M1, M2, and M3+4. Macrotrichin long and numerous, covering entire wing; CR 0.57. Halter pale.

Abtomen: Dark brown, Spermathecae (fig. 21, f) two plus rudimentary third and selerotized ring; functional ones oral without selerotized necks; unequal, measuring 0.046 by 0.037 mm . and 0.037 by 0.031 mm .

Male Genitalia (fig. 21, h) Ninth sternum with scarcely perceptible caudomedian excavation, ventral membrane not spiculate; ninth tergum tapered, with extremely long and slender apicolateral processes. Basistyle with ventral and dorsal roots short and slender; dististyle short, and tapered to slender, hooked apex. Aedeagus with rounded basal arch extending to nearly half of total length, basal arms stout and curved; ciistal portion stout and tapered to rather broad, truncated tip. Parameres (fig. 21, g) separate; each with stout basolateral arm; stem short, swollen bubously at
base, tapering rapidly to slender simple tip abruptly bent ventrolaterad.

Distribution.-Mexico to Panama, Venezuela, Bahamas, Greater Antilles, Trinidad (fig. 4).

Types.-Syntypes, 2 icmales, Kingston, Jameica, W. F. M. Loughuan (British Museum (Nat. Hist.), London).

West Indian Records.-

BAHAMAS: Rum Cay near Port Nelson, 16 March 1953, E. B. Hayden, 1 male (AMNH) (Wirth and Hubert, 19601 . South Bimini, June 1951, M. Cazier and C. Vaurie, 1 male, 1 icmale (AMNH).

CUBA: Guantanamo Bay, Scptember 196t, UI.S. Navy, light trap, 1 male, 4 females.

JAMAICA: Askenish, near Dolphin Head, Hanover Parish, 20 June 1970. E. G. Farnworth, light trap, 10 females; Caymans Estate, St. Catherine Parish, 17 November 1968, S. A. Apegi, light trap, 1 male, 1 female; Gordon Town, St. Andrew Parish, 1 February 1937, Chapin and Blackwelder, I female; Negril, Westmoreland Parish, 20 November 1968, R. E. Woodruff, light trap, 1 male, 1 female; Troy, Manchester Parish, 16 February 1937, Chapin and Blackwelder, 1 female; Twickenham Park, St. Catherine Parish, 26 March 1970, Farnworth, light trap, 1 female; Worthy Park Estate, St. Catherine Parish, 17 November 1968 , Woodruff, light trap, 1 female.

PUERTO RICO: Henry Barracks (Fox and Kohler, 1950; Kohler and Fox, 1951; Fox, 1952a; Fox and Maldonado, 1953).-Sabana Seca,

22 August 1948, 1. Fox, hght trap, 1 mate, 1 fomate \{Fox, 1949\}.Auchia, Juma Diaz, 4-10 May 1949. I. Fox, light trap, 3 males, 3 females; Guanico, 22 . Iture 1952, F.S. Blanton, light trap, is females; fosey Fiekd. 23 Jom 1952. Blanton, light trap. 1 female; sadinas, 20 fune 1952. Blanton, light trap, 2 females.
Discuasion.--('. jamaicensis belongs to the ('. copiosus group of the subgemas Drymodismyia, which was revised by Wirth and Hubert (1960). This group consists of small species with hairy wings, the wing pattern usually characterized by pate spots stradlling the midportions of veins Mt and Xle, and the female palpus with the third segment greatly swollen and beamg a deep sensory pit usually opening by a smalier pres. The species within this group tae most readily distinguished by details of the wing pattern in cell Ris and the anal cell and by the shape of the spermathecae.
Larval Habitat.-Most of the species of Drymodesmyia breed in rotting stems of various species of cacti in Mexico and the Southwestem Cnited states, where the most speciation has oceured. C. jamaicensis is atypical in its habits, not having been found in cacti. Hoffman 11925) reported that it was reared from a rotting ealabash (fruit of ('rescentia cujete J.) in Pauma. Wirth and Fubert (1960) reported a rearing from the stem of decaying papaya in Mexico, and Williams 119641 reared it from a decaying calabash in Trimidad.

Biting Habits.-Unknown.

Culicoides Loughnani Edwards

(Figs. 4, 22, and 30)

('ulicoides toughani Edwards, 1022, p. 185 (femnle; Jumaien: fig. wing).-Beck. 1952, p. 10: (mmle; Floridi).--Foote and Prall, 1954, p. 26 (redescribed: distribution; illus.),--jones nend Wirth. 195S. p. 89 (Texas),-Wirth and Hubert, 1960, 3 . 6.99 (redescribed; distribution; lllus.).-Jones, 1962, p. int (Texns; in cneti)--Dyee, 1960, p. 0.4 (redescribed; Australia; biology, in encti).

Fenale.-Wing length 1.21 mm .
Head: Byes (fig. 22, d) moderately separated, bare. Antema (fig. 22. a) with lengths of flagellar segments in proportion of $20-14$ 16-16-17-17-17-17-27-29-30-32-38; AR 1.17; sensory pattern 3-15. Palpal segments (fig. 22, c) with lengths in proportion of $10-24-46-$ 12-13; PR 2.4; third segment moderately swollen to tip, with deep sensory pit tapering to slightly smaller pore. Proboscis moderately long, P / H ratio 0.98 ; mandible with 16 teeth.

Thorax: Dark brown, almost blackish; mesonotum with three dark longitudinal vittae separated by narrow whitish lines. Legs (fig. 22, f) pale; knce spots and tip of hind tibin prominently blackish; narrow pate rings subapically on all femora and subbasally on all tibiac, femora slightly infuscated in broad median portions; tibin comb with \{our spines, zecond from spur longest.

Wing (fig. 22, b; 30, e): Pattern as figured; two very dark anterior spots, one over 2RC and second at middle of anterior margin of celt

Raj; pale markings extensive and interconnected; veins M11, M2, and $\mathrm{M} 3+4$ all pale margined nearly to bases, apex of vein Cu1 dark; distal pale spot in cell R5 double, broadly exteading to anterior wing margin; pale spot in distal portion of cell 3I2 reaching wing margin but distal pale spot in cell M1 not; distal pale spot in anal edl double due to fusion of two spots, contimous with pale area at base of cell. Macrotrichia long and numerous, extending to base of wing; OR 0.55 ; 2 RC short and broad, with distinet lumen. Halter pale.

Abdomen: Pale yellowish above. Spermatherac (fig .22, e) two plus rudimentary third and selerotized ring; elongnte saclike, slightly uncqual, measuring 0.076 by 0.032 mm .
and 0.069 by 0.021 mm ., openings to ducts wide, necks not present.
Male Genitalia (fig. 22, h). Ninth stemum without caudomedian excavation, ventral membranc not spiculate; ninth tergum with apicolateral processes long and slender, tapering to pointed tips. Basistyle with ventral root slender, dorsal root longer and blunt; dististyle nearly straight basally, tapering to slender, slightly hooked tip. Aedeagus with basal areh exteuding to 0.4 of total length, basal arms short and straight; dista! portion stout, gradwally tapering to broad, truncated tip. Parameres (fig. 22, g) separate; each with short, stout, basolateral arm; stem swollen for a short distance at base, tapering in straight midportion, twisted lateroventrally
各 -

Fiotae 22.-Cuhicoides loughnani: a, Female antenna; b, female wing; c, female paipus; d. fermat eye separation; f, spermathene; f, hind femur and tibia; g, male parameres; h, male geoitalin, paranoeres removed.
distad with slender, simple tip.
Distribution.-Bahamas, Cuba, Florida, Iamaica, Texas; Australia (introduced aceidentally) (fig. 4).

Types.-Two syntype females, Kingston, Jamaica, Major \V. F. M. Loughnan (British Museum (Nat. Hist.), London).

West Indian Records.-

BAHAMAS: Great Harbour Cay, Airport Well, 22 December 1968, G. M. Stokes, light trap, 1 female.

CUBA: Guantanamo Bay, 21 Februnry 1962, E. R. Turner, fight trap, 1 female; same, September 1964, U.S. Nuvy, light trap, 1 male, 1 female; sume, 8-19 February 1965, U.S. Navy, light trap, 3 males, 1 female.

JAMAICA: Kingston, W. F. M. Loughnan, 2 females (Edwards, 1922, syntypes). No locality, December 1933 , Dr. Kumm, 1 female (Fox, 1946).-Hardwar Gap, Hollywell Forest Gamp, Portland Parish, 16 June 1970, E. G. Farnworth, light trap, 1 female; Milk River Bath, Clarendon Parish, 19 November 1968, R. E. Woodruff, light trap, 1 femate; Palisadoes, 15 June 1963, E. F. Legner, emerged from decaying barrel cactus, 6 males.

Discussion.-This species is easily recognized by the very extensive pale markings on the wings and legs and by the characteristic elongate, saclike spermathecae. 'The Saint Croix record published by Wirth and Hubert (1960) was in error; the specimen in the USNM is a male of C. jamaicensis Edwards.

Larval Habitat.-Jones (1962) resred C. loughnani from rotting cacti in Texas. Dyce (1969) reared
this species from rotting stems of Opuntia in Australia and concluded that it was introduced into that country from the Americas with cacti infected with rot organisms during the progam for biological control of the prickly pear.

Biting Habits.-Edwards (1922) reported that according to Major Loughnon this species was common in Jamaica, biting all through the afternoon, being most active toward sunset. Dyce (1969) friled to get reared females to feed on the arm of man in the laboratory.

Calicoides melleus (Coquillett)

(Figs. 5, 23, and 30)

Ceratopogon melleus Coquillett, 1901, p. 604 (female; Floride).
Culicoides melleus (Coquillett).-Kieffer, 1906, p. 54 (combination)-FFoffman, 1925, p. 278 (female; Maryland)-Wirth, 1952b, p. 94 (larva, pupa; Florida; illus.)-Foote and Pratt, 1954, p. 27 (redescribed; distribution; illus.). -Jamnback et al., 1958, p. 64 (New York; biology and control; illus.; harva, pupa).-Jamnback and Wall 1959, p. 85 (New York; larval habits). -Jones, 1961 , p. 735 (pupa; illus.).Jamnback, 1965, p. 79 (redescribed, all stages; New York; illus.)-Linley, 1969, p. 709 (habits; Florida).-Linley and Adams, 1971, p. 427 (spermatophore formation).
Female.-Wing length 1.05 mm . Head: Eyes (fig. 23, d) narrowly separated, bare. Antenna (fig. 23, a) with lengths of fiagellar segments in proportion of $25-20-20-20-20-20-$ $20-20-30-30-33-38-50 ;$ AR 1.10; sensory pattern $3,10-14$. Palpal segments (fig. 23, c) with lengths in proportion of $12-25-44-18-15$; PR 2.7 ;
third segment short and only slightly swollen, palpal pit absent, sensilla scattered on surface of segment. Proboscis short, P / H ratio 0.63 ; mandible with 12 teeth.

Thorax: Uniformly pale yellowish, in dry specimens with palc grayish pollinosity. Legs (fig. 23, f) pale straw yellowish; tibial comb with four spines, second from spur longest.
Wing (fig. 23, $b ; 30, j$) : Pale yellowish gray, without markings. Macrotrichia moderately numerous, well distributed, extending nearly to base of anal cell; CR $0.60 ; 2 R C$ short with narrow lumen. Halter palc.

Abdomen: Pale ycllowish. Spermathecae (fig. 23, e) two plus rudi-
mentary third, sclerotized ring absent; spermathecae highly solerotized, dark brown, short ovoid with short, slender necks; subequal, each measuring 0.065 by 0.050 mm .

Male Genitalia (fig. 23, h)-Ninth sternum narrow, with moderately broad and deep caudomedian excavation, ventral membrane not spiculate; minth tergum short, subapically narrowed, apicolateral processes greatly enlarged, divergent, protruding caudolaterad as a pair of prominent, bluntly rounded, digitiform lobes, the caudal margin between them transverse. Basistyle with ventral and dorsal roots short, simple, and pointed; dististyle swollen at extreme base, abruptiy

Fiaure 23.-Culicoides melleus: a, Female antenna; b, iemale wing; c, female palpus; d, female cye separation; c, spermathecae; f, hind femur and tibia; a, male parameres; h, malc genitalia, parameres removed.
narrowed at midlength and markedly curving to slender, pointed tip. Acdeagus with basal areh extending to two-thirds of total length, basal arms slemier, beurly straight; distal. portion broas? and stout, broader than long, with trumeated tip bent ventrally, Parameres (fig. 23, g) separate, short and stont; caeh with lage hasal knoh bearing a distinct materior process, stem stont, nearly straght, ptabaltel sided, tip slighty expanded and abruptly bent ventroInterat in a short, sharp point.

Distribution.--Bahamas, Enited States (Atantic and ciulf consts from Maine to Jouisiana) (fig. 5).

Type.--Holotype, femate, Lake Worth, Fila., Mrs. A. T. Slosson ([5NM 5474).

Weat Indian Records.--

BAFIAMAS: Abaco I., Marsh llarbour, t3 April 1968, G. M. Slokes, light trap, 10 fenales; Andros I., Oetober 1967, Stokes, hight trap, 5 females; Audros I., Driggs Lill near South Bight, 27 April 1953, hayden and Giovannoli, 1 female (AMOH) ; (arand Cay, 22 Jamuary 1969, Stokes, light trap, 1 female; Creat Farbour Cay, 22 Deember 1968, Stokes, light trap, 4 males; North Bimini, Aliee Town, a Febmary 1968 , Stokes, light trap 2 females; North Bimini, April, Decomber 196s, Stokes, light trap, 1 male, 32 females; North Bimini, Paradise Point, 30 November 196S, Stokes, light trap, 2 iemales; Rum Cay near Port Nelson, 16 March 1953, Hayden, 1 female (AMLNE) ; South Bimini. June 1951, M. Cazier, C. and P. Vaurie, 2 femates (AN[NH).

Discussion.-TThis species takes its name from its uniformly honeycolored appearance, which resembles no other West Indian species. C. ftoridensis is a similarly pale yellow, unmarked species but ean be distinguisbed by its shinier mesonatum, slender body, almost complete lack of macrotrichia on the wings, pale spemathecae, slender palpus with a definite round pit, and less massive development of the male genitalin.

Larval Habitat,-Jamoback and Wall (1959) and Jammback (1965) found C. melleus on Long Island, N.'., breeding in intertidal sand, usually on beaches in bays or inlets where the larvae were not exposed to prolonged or heavy wave action. Goulding et all. (195S) reported this same habitat in Florida.

Biting Habits.-C. melleus is a serious biting pest of man on sandy beaches from New England to Florita and the Bahamas (Beck, 1952; Goulding et al., 1953; Foote and Pratt, 1954 ; Jammback et al., 1958; Jammock, 1965 ; and Wail and Doane, 1905).

Biological Notes.-Linley (1969) reported that in Plorida C. melleus is autogenous. This species mates soon after emergence from the pupa, without the ned for flight or swarm formation. Wirtly (personal observation, 1951) observed mating pairs of (. melleus running around on algaecovered rocks at the mouth of the Boynton Canal near Lake Worth, Fla. Linley and Adams (1971) found that the male of C. melleus transfers sperm by m ans of a spermatophore that lies held in his genitalia, with a long mecli protruding into the
common spermatheeal duct of the female.

Culicoides panamensis Barbosa

(Figs. 4, 24, and 30)
C'alicoides panamensis Barbosa, 1017, p. 22 (anale, female; Panama; fig. palpas, male genitalia)--Wirth, 1905, p. 144 (aotes: Ginatemala; fig. palpus,
thale genitalin; synonym: alambicu(urum) -Wirth and Blanton, 1959, p. 334 (redescribed; Pamama distribution; inlus.).
Culicoides alambiculorum Macfe, 1948, p. S1 (female; Mexico; fig. wing).
Female.-Wing length 0.57 mm .
Head: Eyes narrowly separated, bare Antema (fig. 24, a) with lengths of flagellar segments in pro-

Ftetwe 24,-Culicoidcs panamensis: a. Fomale antenna; b, female wing; c_{f} thoracic pattern; d, tibin comb; e spermathecte; f, fomale palpus; o, male parameres; h, male genitalia, parameras removed.
portion of 16-10-10-11-11-11-11-12-18-18-19-20-28; AR 2.12; sensory pattern 3,11-15. Palpal segments (fig. 24, f) with lengths in proportion of $7-12-30-10-10$; PR 2.0 ; third segment greatly swollen, with a deep, large pit opening through a smali pore. Proboscis modcrately long, P / H ratio 0.75 ; mandible with 10 nearly vestigial teeth.

Thorax: Dark brown; mesonotum (fig. 24, c) grayish-brown pruinose with three dark-brown longitudinal bands. Legs dark brown; fore femur and midfemur with subapical and all tibiac with subbasal, narrow pale rings; tibial comb (fig. 24, d) with four spines, the one nearest the spur longest.

Wing (fig. 24, b; 30, c): Pattern as figured; 2 RC dark to tip; pale spot over r-m crossvein small; poststigmatic pale spot in cell R5 extending slightly caudad behind 2 RC ; distal pale spot in eell R5 rounded, not mecting wing margin; vein M1 with small pale spot stradding it near its base, sometimes this spot reduced to anterior portion lying on anterior side of vein; cell M1 with one pale spot in distal portion not reaching wing margin; pale spot stradding midportion of vein M2; cell M2 with pale area in base forming pale spots behind medial fork and in front of mediocubital fork, and one pale spot in distal portion of cell at wing margin; cell M4 with large pale spot across midportion; anal cell with pale area at base and one pale spot in distal portion; apices of veins M1, M2, $\mathrm{M} 3+4$, and Cu 1 dark. Macrotrichia long and abundant, cxtending nearly
to base of wing; CR 0.55. Halter pale.

Abdomen: Brownish. Spermathecae (fig. 24, e) two plus rudimentary third and sclerotized ring; functional ones retort shaped, unequal, measuring 0.048 by 0.046 mm . and 0.035 by 0.028 mm ., the necks oblique and relatively long.

Male Genitalia (fig. 24, h).Ninth sternum with broad, shallow, caudomedian excavation, ventral membrane not spiculate; ninth tergum long and tapering with long, stout, slightly flaring, apicolateral processes. Basistyle with ventral root slender and simple, dorsal root short and stout; dististyle short with stout base and hooked tip. Aedeagus stocky, with basal arch extending to only a fourth of total length; basa! arms nearly straight; distal portion tapering to moderately slender, simple process with truncated tip. Parameres (fig. $24, g$) separate, small and slender; each with large laterally directed basal knob, base of straight portion of stem bulbously swollen, gradually narrowed to simple, filiform, ventrally bent tip.

Distribution.-Cayman Islands, Costa Rica, Cuba, El Safvador, Cuatemala, Jamaica, Mexico, Panama (fig. 4).

Type-Holotype, male, Barro Colorado Island, C.Z., from flowers of Heliconia mariae (USNM 54360).

West Indian Records.-

CAYMAN ISLANDS: Grand Cayman, June 1970, J. E. Davies, 1 female.

CUBA: Guantanamo Bay, 21 February 1962, E. R. Turner, light trap, 1 female.

JAMAICA: Askenish, near Dolphin Head, Hanover Parish, 20 Jume 1970, E. G. Farnworth, light trap, 1 female; Hardwar Gap, Inst. Jamaica cabin, Portland Parish, 20 February 1969, W. W. Wirth, light trap, 1 male, 7 females; 2 m . w . Manchioneal, Green Hills, Portland Parish, 24 November 1968, R. E. Woodruff, light trap, 10 females.

Discussion.-This species has a wing pattem similar to that of its relative, C. jamaicensis, but it has only one pale spot in the distal portion of the amal cell and the pale spot typically straddling the base of vein M1 has present only the portion lying on the anterior side of the vein; the retort-shaped spermathecae are quite distinctive.
Larval Habitat. - Wirth and Blanton (1959) reported a rearing by J. Zetek in Panama from flowers of Heliconia mariae Hooker-F., the beefsteak Heliconia.

Biting Habits.--Wirth (1955) reported this species feeding on horses and mules in Guatemala.

Culicoides paraensis (Goeldi)

(Figs. 25 and 30)
Haematomyidium paraenses Goeldi, 1905. p. 137 (female; Brazil; fig. female, wing).
Culicoides paraensis (Goeldi).-Lutz, 1913, p. 55 (male, iemale; Brazil; fig, wing; combination).-Floch and Abonmenc. IM2, p. 4 (Freech Guiann; illus. wing).-Barretto, 1944, p. 92 (male; Brazil; fig. wing, genitalia).-Ortiz, 1551a, p. 574 (redescribed; Venezucla; ithus).-Turcer, 1952, p. 349 (Bar-bados),-Fox, 1955a, p. 250 (synonyny), Wirth and Blanton, 1959, p. t40 (redescribed; Panama; illis.).

C'uticoidesus undecimpunctatus Kieffer, 1917, p. 307 (female; Argentina).

Female.-Wing length 0.78 mm .
Head: Eyes broadly separated, barc. Antema (fig. 25, a) with lengths of fagellar segments in proportion of 15-11-12-14-14-14-14-15-15-16-16-16-25; AR 0.77; sensory pattern $3,8-10$. Paipal segments (fig. $25, f$) with lengths in proportion of S-17-20-7-10; PR 2.1; third segment slightly swollen with small, deep sensory pit. Proboscis moderately long, P / H ratio 0.82 ; mandible with 14 teeth.

Thorax: Dark brown; mesonotum (fig. 25, c) with dark grayish pollinosity, three somewhat prominent, longitudinal vittae anteriorly, the lateral ones widening at sutural level. Legs dark brown; fore femur and midfemur with subapical, all tibiac with subbasal, and hind tibia with apical, narrow, pale rings; tibial comb (fig. 25, d) with four spines, the second from the spur longest.
Wing (fig. 25, b): Pattern as figured; 2RC dark; pale spot over $r-m$ crossvein narrow, extending to costal margin; cell R5 with four small round pale spots, the two poststigmatic pale spots well separated, the posterior one located slightly proximad of the other, the third spot larger and locsted subapically in cell, the fourth small and located at extreme apex; cell M1 with three small pale spots; cell M2 with pale spot at bassl arculus, a pale spot lying behind medial fork and one in front of mediocubital fork, and one spot in distal part of cell, lying at wing margin; cell M4 with small round pale spot near wing
margin; mal edl with one pale spot in thstal protion; apiess of veins
 Maerotrichith sparse on distal hate of wing, a few in base of cell Me and in amal cell; (R 0.59 ; 2RC with
tistinet lumen. Hater pale, base of knol, brownish.

Abelomen: Dark brown. Spermatheare (lig .25, e) two with ruslimentary thited and selerotized ring; functional onss ovoid with long

 tern; t, tibial conts; e, spermathente; J, female palpus; a, male parmeres; h, thale genitnlia, pirameres removed.
slender neeks; unequal. measuring 0.057 by 0.037 mm . antl 0.048 by 0.029 mm ,

Male Genitalia (fig. 25, h).Ninth sternum with hroad, shallow, enudomedian exayation, ventral membrane not spiculate; minth tergum long and tapering with short, pointed, widely separated, apicolateral processes. Basistyle with ventral root "foot-shaped," ankle slenter and posterior heel well developed. domal root slender; dististyle slenker and curved with bent tip. Aeleagus V-shaped, basal arch extending to two-thirds of total !ength, basal arms nearly straight; distal portion with simple rounded tip. Parameres (fig. 25, g) separate; ench with large basal knob; sten slender, bent at some distance from base, mitportion straight with a well-developed ventral lobe, distal portion abruptly bent and tapered to a fine point with lateral fringe of fine spines.
Distribution.-Widely distributed in Eastern United States, Mexico, Central America, Sonth America south to Argentina aud Bolivia; West Indies (Gremada).

Types.-Syntypes, Belém, Pará, Brazil. E. Cooldi laccording to (ioeldi (1905, p. 130), syntypes were deposited in the British Museum 1Nat. Hist.I, Londonl.

West Indian Records.-

GRENADA: Boulogne Estate, 8 1) ecember 1968. P. Bacon, biting man on cocon propagating station, 50 fc males: Grecnville, it December 1941, E. M. McCallan, biting man, 14 fomales.
Discussion...-('. paraensis is nearly itentical to C. debilipalpis.
except for the presence of the additional pale spots near the wing margin in the apices of cells R5 and $2[1$, the pale spot present anterior to the mediocubital fork, and small differences in the proportions of the third palpal segment and the shape of the sensory pit. The two species share the tree hole habitat and much of the same geographic range.

Larval Habitat.-Snow et al. (1957) ancl Smith (1965) found this species breeding in tree hole debris in Florida and Tennessec, Breeland (1960) reared it from tree hole debris in Panama, and Williams (19064) reared it from rotting cacao pods and a rotting calabash in Trinidad.
Biting Habits.-This species was reported biting man in Pamama Woke, 1954; Wirth and Blanton, 19591, Guatemala (Wirth, 1955), Brazil (Lutz, 1918; Forattini, 1957), and Argentina (Romaña and Wygodzinsky, 1950). Snow et al. (1957, 1958) and Hair and Tumer (1968) reported it as a troublesome, biting pest of man in the Southeastern Inited states. It is a forest species witl claytime biting habits.

Culicoides phlebotomus (Williston)

(Figs. 5 and 26)

Ceratopogon phecotomus Williston, 1896, p. 281 (female; Saint Vincent; fig. wing, palpus).
Cuhicoidcs phlebotomus (Williston)Kieffer. 1006, p. 55 (combination)Hoffman ing p. 285 (female; Puerto Rico; fig. wast.-Painter, 1927, p. 253 (Honduras; biology).-Ciferri, 1929,
p. $\mathbf{5} 20$ (Dominican Republic).-Fox, 1942, p. 419 (pupa; Viggin Islands; illes.),--Ortiz and Mirsa, 1952, p. 275 (recieserbed; Venezuela; illus.).Wirth and Blanton, 1953, p. 114 (redescribed; illus.; synonym: amazonius) --Forattini, 1957, p. 450 (redeseribed; illus.).-Wirth and Blanton. 1950, p. 460 (redescribed; Panma distribution; illus.),-Fox and (iarciaMoll, 1961, pr. 120 (Puerto Riso).

C'ulicoides amazonius Macfic, 1935, p. 52 (male, female; Brazil; fig. male geni(nlia).

Female.-Wing length 1.03 mm . Head: Eyes contiguous, barc. Antema (fig. 26, a) with lengths of flagelar segments in proportion of 16-11-11-12-12-11-11-11-16-18-20-21-38; AR 1.19; sensory pattern

Figure 26.-Culicoides phebotomus: a, Female antemm; b, female wing; c, thoracic pattern; α, tibinl comb; e, spermathecne; l, female palpus; g, male parame;es; h, male genitaha, parameres removed.

3,6-10. Patpal segments (fig. 26, f) with lengths in proportion of 13-24-26-10-13; PR 2.2; third segment slightly swollen, short, with a large, irregular, open sensory area.
Thorax: Dark brown with dense grayish pollen; mesonotum (fig. 26, c) densely grayish, blue-green pollinose, without prominent pattern. Lags yollowish brown, without distinctive bands; tibial comb (fig. 26, (l) with seven spines, the one nearest the spur longest; fourth tarsomeres cordiform.
Wing (fig. 26, b): Pattern as figured; color smoky brownish with distinct white spots; 2RC blackish, veins surrounding it greatly thickened, cell itself with narrow lumen; cell Ro with four pale spots, three forming a triangle in poststigmatic area, the distal fouth spot large and usually broadly attaining anterior wing margin; one pale spot in cell MI located far from wing margin, pale spot present straddling midportion of vein M2; cell M2 with one distal pale spot located far from wing margin; cell M4 with small round pale spot in center of cell; anal cell with one pale spot in distal portion and a pale streak near base; cell M2 with pale spot lying behind medial fork and one lying in front of mediocubital fork; a pale spot lying just distad of basal arculus in cell M2, and one lying over base of mediocubital stem. Macrotrichia sparse on distal fourth of wing; CR 0.55. Halter pale.
Abdomen: Dark brown. Spermathecae (fig. 20, e) two plus rudimentary third and sclerotized ring; functional ones oroid with short neeks;
unequal, measuring 0.058 by 0.043 mm . and 0.048 by 0.041 mm .
Male Genitalia (fig. 26, h).Ninth sternum with broad, moderately deep caudomedian excavation, ventral membranc not spiculate; minth tergum broad, short, and tapering to small apicolateral processes. Basistyle with ventral root "foot-shaped," with narrow ankle and heet nearly as long as the anterior toe, dorsal root slender; dististyle greatly curved from near base with slender pointed tip. Aedeagus with a stout transverse bridge bearing a posteroventral, curved, pointed hook from midportion; a long, nearly straight, dorsal, rodilike process passing dorsal side of midportion of basal bridge, the pointed anterior end extending well proximad of the bridge, the broad, rounded, flattened, posterior end only slightly longer than the anterior look. Parameres (fig. $20_{2} g$) separate; each with large, faterallv directed, basal knob, main body nearly straight with a small, pointed tubercle on mesal side near base; gradually tapered and distally curved ventrad in a filiform simple tip.

Distribution. - Widespread on

 coastal beaches in Neotropical Region from Mexico to Eeuador and Brazil, throughout West Indies (fig. 5).Types.-Four female syntypes of C. phlebotomus, Saint Vincent (British Museum (Nat. Hist.), London). Syntypes of amazonius, 12 males, $S 2$ females, Tutoia, Brazil, Dr. E. M. Lourie (also in British Museum).

Weat Indian Records.--

ANTMACA: Lafmoon Bay, 30 Septomber 1005, R. Martinez, biting man, 4 femates; , Noty Beach Hotel. 2 November 1967 , d. B. Davies, biting man, 3 females.

DominNt'A: ('abrit Swamp, 23 Fobnary 1965. W. W. Wirth, light Irap. 3 femake; (ablibishie, 27 February than, Wirth, seastore, 1 female; ('arke llall, damary-February latis, Wirth, light trap, 2 fomales; (imade Savane, 20 March 1965, Wirth, hagoon margin, if females; havou Riser mouth, fo Fethruary 1965. Wirth, reame tedal lagoon, 20 mates, 20 fomates; Macoucheri, 14 Fobraty 1005 , With. spahore, 1 femate; Mero, H danaury 1065, Wirth, seashore, 4 fomates.

Whatcel: Negril, Westmorehand Parish, 20 November 196s, R, F. Woadruft, light trap, 1 mak, 1 female; same, 2e fume 1970, E. G. Famworth, hight trap, 1 femak.

PEDERTO RTCO: Fort Buchanan, May 1951, i. Fox, 1 female; Ista Yerde Int. Airport, 1958 -60 (Fox and (hamia-Moll, bo6f.--Mameyes, 11 November 1022, (i. N. Wolcott, biting man at beach (Hofman, 1025)....Pt. (angrejos, on beach Wolcott, 190 H.... Guanica, 22 June $10 \% 2$, 8. S. Blanton, bight trap, 10 females; Las Palmas, 20 March 1970, (i. M. stokes, hight trap, 1 female.

SANT (ROLX: Cotton Valley, is soptember 1937, W. A frofman and II. A. Benty, several females. pupte (Fox, 1942; Fox, 1946).
SALNT JOHN: No locality, November 1059. R. W. Williams, emergenee trap, 9 males, 6 femates;

S'ancel Bay Plantation, 7 September 1061, Whinans, emergence tap, 1 female; Francis Bay, 25 March 1957, J. F. (i. Clarke, at light, 1 mate, 1 female; Lameshur Bay, 15-18 September 1061, Williams, emergence (rap), 1 fomate; Trank Bay, september-(betober 1906, Willians, hight trap. 1 make, 2 fomales.

SANT LCPCA: (iros 1slet, 27 October 10687, J. B3. Davies, 1 male; Reduil 13each, 16 July 1964, R. Martine b, bitug man, 2 femates.

SALTV YINCRNT: No locality, type series (Williston, 1896).

Discussian.--The cordiform fourth iarsomeres and the pecular structure of the mate nedeagus place (. phletotomas in the subgenus Macfiella. The Panama species C. willistom Wirth and Blanton is similar but ean be distinguished by it mesonotal pattern of small brown pancliform cots.

Larval Habitat.-Painter (1927) reared this species from wet low depressions behind a sandy beach in Honduras, receiving sea water by seepage at high tide. Williams (1904) mared it in Trinidad from the sandy margin of tidal streams, open to the sum, with little or no vegetation. We eared it at Fort Kobbe, Pamama, from the sandy margin of a lagoon just back of the beach, and the Dominica specimens from Grande Savane and the Layou River mouth came from just such a habitat.

Biting Hahiss.-Williston (1S96) recorded the notes of I. H. Sinith, who collected the type series on saint Vibent: "This is the common 'sand-fly' about the southem end of the island, but is not very trouble-
some. Bites late in the afternoon, before sunset; sometimes during the heat of the thy". Wolcott (19501) noted that this species is called "las plagas o jcjén" in Puerto Rico. It was taken frequently biting man on the sand beaches in Trinidat, Adamvon 11639) reported that in Trinidad on mosit sea beaches, including some of the best for bathing, this specien bites viciously at almost any hour of the thay except when suflicient wind makes it innetive.

Culicoides pusillus Lutz

 (Figs. 27 and 30)('ulicorides pusillus Latz, 1913, 1. 59 (mutle. fermate; Brazal; fig. wing),-manclic. 1933, p. 165 (Trinidad; fig. mish geniIndia) - Marbosa, 1917. p. 25 (Pamama. Janaica),-Orliz and Milsa, 1951. p. 603 \{redeseribed; Yenezurln; illus.).-Pox, 1952a. p. SSS (Pucto Rico).-Wirth and Blanton, 1050, p. 292 (redeseribet; Panama; illus.), Fox and Garcia-Moll. 1961. p. 120 (Puerto Rico).
Female.... Wing length 0.6 t mm.
Heal: Byes contiguous, with long interfacetal hairs. Antemna (fig. $2 \overline{7}$, al with fagellar segments in proportion of 11-0 $6-6-\overline{7}-\overline{7}-\overline{7}-\overline{7}-7-11-$ $11.1313-20$; AR 1.18 ; sensory pattern 3.13.-ntio. Palpal segments ffig. 27, f) with lengths in proportion of 5-15-19-8.8; PR 2.6; third segment slighty swollen, with small, deep sensory pit. Prohoscis long, P / K ratio u.Ds; mandible with 1.4 teeth.
Thoras: Blackish; mesonotum (fig. ${ }^{7} 7, \mathrm{c}$) densely bluish to grecnishgray pminose, with two narrow, lougitulinal, sublateral, black vittae. Lege pate brown; knee spots blackish; Core femur and midfemur with
subapieal, all tibiae with subbasal, and hind tibia with apical, broad, pale bancls; tibial comb) (fig. 27, d) with five spines, the one nearest the spur longest.

Wing (fig. 27, $b ; 30, f$) : Pattern as figured; large guadrate pale spots at anterior margin over r-m cross. vein and past end of 2 RC , remainder of wing without distinet pale spots, but obscurely paler between the veins. Macrotrichia absent; CR 0.53; 2RC: short, Hatter pale.
Ablomen: Pale brown. Spermathecae (fig. 27, e) two, slightly ovoid, with short sleuder neeks; subequal, each measuring 0.043 by 0.031 mm .
Male Genitalia (fig. 27, h), Ninth sternum with broad, shallow, caudomedian excavation, ventral membrane not spiculate; ninth tergum short, with two broadly rounded, causlolateral lobes, apicolateral processes absent. Basistyle with dorsal and ventral roots short and slender, subequal; dististyle with enlarged, rounded tip. Acdeagus with main body triangular, basal arch low and rounded, extending to about a fourth of total length; distal portion slender with rouncied apex, a distinct internal, basally projecting, sclerotized peg present. Parameres (fig. 27, (g) separate; caich with slender anterolateral arm, main body stout at rery base, tapering and becoming slonder distally, with simple filamentous tip curving ventrally.
Distribution. - Widespread in Neotropical Region from Mexico to Brazil and Ecuador and throughout West Indies.

Types--syntypes of both sexes, Manguinhos, Rio de Janciro, Brazil,

Lutz collection (Instituteo Oswaldo females; Guantanamo, FebruaryCruz, Rio de Janeiro).

West Indian Records.-

ANTIGUA: No. 892, no other data, A. H. Jemings, 1 female.

Cayman Islands: Grand Cayman, Smith Road Swamp, 1 December 1969, J. E. Davit ; light trap, 2 females.

CUBA: Camaguey, 3 December 1957, J. U. McGuire, on grass, 3

April 1970, J. E. Tisdale, light trap, 10 femates.
DOMINICA: Cabrit Swamp, 23 February 1965, W. W. Wirth, light trap, 4 females; Clake Hall Estate, 21-29 April 1964, o. ה' Flint, light trap, 13 malcs, 30 fermates; same, August 1964, T i. Gpilman, light trap, 11 males, ts females; same, January-March 1965 , Wirth, light

Flutra 27.-Cubicoides pusilhs: a, Female antenna; b, fenale wing; c, thoracic pattern; d, tibial comb; e, spermathecne; I female palpus; a, male parameres; h, mate genitatin, parameres removed.
trap, 10 males, 10 females; same, 24 January 1965, Wirth, at mango flowers, 3 males; Layou River mouth, January-February 1965, Wirth, at light, 1 male, 2 females; Pont Casse, June 1964, Flint, light trap, 1 female; Sylvania, 23 January 1965, Wirth, light trap, 1 female.
GRENADA: Bulthazar, 7 August 1963, O.S. Flint, 4 females.

JAMALCA: No locality (Barbosa, 1947) --Annottto Bay, St. Mary Parish, 25 February 1969, W. W. Wirth, swept from marsh, 1 female; Askenish, near Dolphin Head, Hanover Parish, 20 June 1970, E. G. Farnworth, light trap, 50 females; Gordon Town, St. Andrew Parish, 1 February 1937, Chapin and Blackwelder, 1 female; Negril, Westmoreland Parish, 22 June 1970, Farnworth, light trap, 100 specimens; Negril, Crystal Waters, 20 November 1968, R. E. Woodruff, light trap, 10 males, 10 females; Runaway Bay, St. Am Parish, February 1969, Wirth, light trap, 5 males, 10 females; Trinity Ville, St. Thomas Parish, 28 February 1937, Chapin and Blackwelder, $\overline{5}$ females; Twickenham Park, St. Catherine Parish, 28 April 1970, Farnworth, light trap, 500 specimens; Worthy Park Estate, St. Catherine Parish, 17 November 196S, Woodruff, light trap, 300 specimens; same, MarchJune 1970, Farnworth, 500 specimens.
PUERTO RICO: Henry Barracks (Fox, $1952 a$),-Isla Verde Int. Airport (Fox and Garcia-Moll, 1961). -Ramey Field, July 1958, L. T. Sanders, 2 females.

SAINT LUCIA: Castries, Fairview, 14 April 1959, R. Darsie, light trap, 7 males, 5 females; Cul de Sac Road at MP 9, 29 July 1963, Flint and Cadet, 1 male.

Discussion.-Its small size, short costa, poorly marked bluish-black mesonotum, characteristic antennal sensory pattern, barc wing without marginal pale spots, and short, bilobed minth tergum without apicolateral processes characterize C. putsillus as a member of the subgenus Avaritia. C. pusilloides Wirth and Blanton from Central America is similar but can be distinguished by its more distinct wing pattern with marginal pale spots, its pale distal portion of 2 RC , its antennal sensory pattern, $3,12-15$, its only weakly bilobed male ninth tergum, and its much shorter male aedeagus with convex lateral margins.
Larval Habitat.-Williams (1964) reared C. pusillus from a wide varicty of habitats in Trinidad, including a bamboo internode, banana stalks and bracts, rotting cacao pods, the edge of a drainage ditch, macerated coconut fiber animal bedding, horse and cow manure, bracts of Heliconia, and a rotting calabash.

Biting Habits.-This species was taken several times biting wan in Trinidad (Adamson, 1939; Aitken. in litt.).

Culicoides trilineatus Fox

(Figs. 6 and 28)

Culicoides trilincatus Fox, 1946, p. 250 (female; Saint Thomas; biting man; fig. mesonotum, wing),-Fox, 1949, p. 30 (male, female; Puerto Rico; reared, tree hole; illus.).-Wirth and Blanton.

1956b, p. 189 (redescribed; illus.; dis-tribution).-Foraltini, 1957, p. 389 (redescribed; illus.; distribution).
Female.-Wing length 0.97 mm .
Fead: Eyes narrowly separated, bare. Antemma (fig. 28, a) with lengths of flagellar segments in proportion of 19-15-15-17-17-15-15-15-17-1S-19-20-33; AR 0.86; sensory patiern 3,6-10. Palpal segments (fig. 28, 0) with lengths in proportion of 13-24-30-10-12; PR 2.6; third segment moderately swollea toward tip, with moderately swall, round, moderately deep sensory pit. Proboscis moderately long,
P / H ratio 0.83 ; mandible with 18 teeth.
Thorax: Dark brown; mesonotum (fig. 28, f) grayish brown with three prominent dark-hrown longitudinal lines comeeted posteriorly by a transverse line just in front of prescutellar depression, and dark brown along sides. Legs brown; fore knees and midknees dark with narrow pale rings on each side of joint; hind tibia with pale band at base and apex; tibial comb (fig. 28, d) with four spines, the second from the spur longest.

a

Figure 28.-Culicoides trilincatus: a, Femate antema; b, female wing; c, female patpus; d, tibial comb; e spemathecac; f, thoracic pattern; g, male parameres; h, male genitalia, paramere removed.

Wing (fig. 28, b): Pattern as figured; 2 RC dark to tip; pale spot over $\mathrm{r}-\mathrm{m}$ crossvein swall, extending to costal margin; cell R5 with three pale spots, two small poststigmatic spots, sometimes coalesced, the posterior one located slightly proximad of anterior one, distal spot snaall and transverse; cell M1 with two small pale spots, the proximal one sometimes scarcely discernible; cell M2 with pale spot at basal arculus, a male spot behind medial fork, no pale spot lying ahead of mediocubital fork, and a small pale spot in distal part of cell; cell M4 with large round pale spot near posterior margin; anal cell with one pale spot in distal portion. Macrotrichia long, coarse, and abundant, extending to base of wing in cell M2 and anal cell; CR 0.57 ; 2RC with narrow lumen. Halter deeply infuscated.
Abdomen: Dark brown. Spermathecae (fig. 28, e) two plus rudimentary third and sclerotized ring; functional oncs ovoid with long, slender neeks; subequal, ench measuring 0.056 by 0.039 mm .
Male Genitalia (fig. 28, h).Ninth sternum with broad, dcep, caudomedian excavation, ventral membrane not spiculate; ninth tergum long and tapering, with moderately long, pointed, apicolateral processes, margin between them transverse. Basistyle with ventral root "foot-shaped," the anterior toe stout, dorsal root slender; dististyle long and slender, slightly curved, with bent, pointed tip. Aedeagus with rounded basal arch extending to 0,4 of total length, basal arms slender and curveri; distat portion long and
slender, distally parallel sided, apex deeply bifid into two sharp, slender, appressed points. Parameres (fig. 28, g) separate; each with inconspicuous basal knob, basal portion only slightly swollen; curved gently toward midportion and tapering to slender, simple, filamentous tips bent abruptly ventral.

Distribution.-Barbados, Domimica, Grenata, Puerto Rico, Saint Croix, Saint Lucia (fig. 6), Saint Thomas.

Types.-Holotype, female, paratype, female, Red Hook, Saint Thomas, 11 September 1937, biting in afternoon (University of Puerto Rico collection) .

West Indian Records-

BARBADOS: No locality, No. S61, A. J. Jennings (Wirth and Blanton, 1956b).

DOMINICA: Clarke Hall Estate, April-June 1964, O. S. Flint, light trap, 2 males, 8 females; same, JulySeptember 1964, T. J. Spilman, light trap, 8 males, 25 females; same, October 1964, P. J. Spangler, light trap, 1 male, 3 females; same, Janu-ary-March 1965, W. W. Wirth, light trap, 5 males, 5 females; Pont Casse, 15 June 1964, Flint, at light, 1 femalc.

GRENADA: Balthazar, 7 August 1963, O.S. Flint, 1 female.
PUERTO RICO: Henry Barracks (Fox, 1952a); Isla Verde Int. Airport (Fox and Garcia-Moll, 1961); Luquillo, reared from tree hole debris (Fox, 1949; Woleott, 1951).
SAINT CROIX: No locality, May-August 1935, June 1938, H. A. Beatty, 33 females; Diamond School, September 1938, Beatty, 4
females; Sait River, Scptember 1938, Beatty, 15 females; Tagus Pond, May 1936, June 1938, Beatty, 11 females; "Valley of jungles and stream," 1 mile from seacoast, May 1935, Beatty, 1 female (Wirth and Blanton, 1956b).

SAINT LUCIA: Gros Islet, Yacht Club light, 26 October 1967, J. B. Davies, 1 female.

SAINT THOMAS: Red Hook (Fox, 1946, types).
Discussion.-C. C. trilhneatus belongs to the C. debilipalpis group. It can be readily distinguished from other species in the group by its coarsely hairy wings with reduced wing spots, its distinctive mesonotal pattern, its antemal sensory pattern $3,6-10$, and its characteristic male aedeagus and parameres.

Larval Habitat.-Fox (1949) reported this species breeding in tree hole debris in Puerto Rico.

Biting Habits.-C. trilineatus has been recorded once biting man on Saint Thomas in the afternoon.

Culicoides lrinidadensis Hoffman

(Figs. 3 and 29)
Cuticoides trinidadensis Hoffman, 1925, p. 286 (female; Trinidad; fig. wing).Fox, 1946, p. 356 (Trinidad).--Fox, 1948, p. 23 (fig. palpus).-Wirth and Blisnton, 1956a, p. 324 (redeseribed; distribution; illus.; synonyms: oliveri, diminutus).-Forattini, 1957, p. $23!$ (redescribed; illus.) -Wirth and Blanton, 1959, p. 297 (redescribed; Panama distribution; illus.).
Culicoides oliveri Fox and Foffman, 1944, p. 108 (Haiti; male, female; fig. male genitalin).
Culicoides wokei Barbosn, 1947, p. 28 (preoccupied by C. wokei Fox; that por-
tion of type series collected by Woke; male, female; Panama; fig. palpus, male genitalia).
Culicoides diminutus Barbosa, 1951, p. 163 (new name for wokei Barbosa).

Female.-Wing length 1.12 mm .
Head: Eyes contiguous, bare. Antenna (fig. 29, a) with lengths of flagellar segments in proportion of 23-15-15-15-15-1.5-15-16-$27-29-32-33-43$; AR. 1.22; sensory pattern 3,5,7,9,11-15. Palpal segments (fig. 29, f) with lengths in mroportion of $10-27-45-15-18$; PR 3.4 ; third segment without sensory pit, sensilla scattered on surface. Proboscis long, P / H ratio 1.08; mandible with 17 teeth.

Thorax: Dull brown; mesonotum (fig. 29, c) without prominent pattern. Legs dark brown; a trace of pale spots on fore knees and midknees; pale bands at base and apex of hind tibia; tibial comb (fig. 29, d) with five spines, second from spur longest.

Wing (fig. 29, b) : Pattern as figured; 2R.C with apex in a pale spot, vein $\mathrm{R} 4+5$ not darkened past dark area over base of cell; wing grayish brown with pattern of small, dull, grayish-white spots; crossvein r-m dark on anterior end; cell M1 with only one pale spot distal to pale spot straddling vein M2. Macrotrichia sparse, covering distal half of wing; CR 0.66; 2RC with distinct lumen. Haiter infuscated.

Abdomen: Blackish, cerci paler. Spermathecae (fig. 29, e) two plus rudimentary third and sclerotized ring; functional ones subspherical with short neeks; subequal, each measuring 0.058 by 0.046 mm .

Figure 29.-Culicoides trizidadensis: a, Female natenna; b, female wing; c, thoracic pattern; d, tibial comb; c, spermathecae; f, female palpus; a, male parameres; i, male genitalia, parameres removed.

Male Genitalia (fig. 29, h).Ninth sternum with narrow, moderately deep, caudomedian excavation; ninth tergum with disfinct caudomedian eleft and small, submedian, apicolnecral processes. Aedengus stout, basal areh extending to only a fifth of total length; distal portion with a pair of characteristies subapical projections extending ventrolaterad, in rentral view resembling a fleur-delis, Parameres (fig. 29, g) fused on basal halves in a basal plate twice as broad as long, apiees short and slender, without fringing hairs.

Distribution,-Bahamas, Colomhim, Cuba, Eraiti, Nicaragua, Panama, Trinidad (fig. 3).
Types.--Holotype, female, of trindadensis, Craronia River, Port of Spain, Trinidad, 14 June 1906, F. W. ['rich (LSNM 27272). Holotype, femaic, of oliveri, Marsana, Haiti, 7 December 1925 (University of Puerto Rico collection). Lectotype, make, oi wokei, designated by Wirth and Blanton (1956a), Balboa, C.Z., 29 July 1942, P. A. Woke No. 1027 (C'SNM 59363).

West Indian Records.-

BAHAMAS: Abaco I., April 1968, C. M. Stokes, light trap 3 females; Andros I., Driggs Fill near South Bight, 27 April 1953, Hayden and (Biovannoli, t females (AMNFI) (Wirth and Blanton, 1956a).-Cat I., Bemetts Harbour, 24 March 1953, L. Giovanuoli, 2 females (AMNH); Grand Cay, 22 Jamuary 1969, Stokes, light trap. 2 females; Great Harbour Cay, 22 Tecember 1968, Stokes, light trap, 1 male, 5 females.

CUBA: Guantanamo Bay, Febru-ary-April 1970, J. E. Tisdale, light trap, 5 females.
HAITY: Mariana, 7 December 1925 , "biting viciously in sun," 1 femate (Fox and Fiofman, 1944, holotype of oliveri; Wirth and Blanton, 1056a).

Discassion.-This species greatly resembles the Brazilian species, C. maraim Lutz, with its unmarked mesonoturn wing pattern with dark r-m crossvein, undarkened vein R4 +5 and only one distal pale spot in cell $3[1$, dark halter, and third palpal segneent with scattered sensilla. C. maruin is paler with a more yellowish wing, facks the sensoria on antemal segments 3,7 , and 9 , the mate ardeagus lacks the fleur-de-lislike apex, and the parameres are fused only a short distance at bases and taper more gradually to stouter; bare apices.

Larval Habitat.--Woke (1954) reared C. trinidadensis from a tidal salt marsh near mangroves in Panama. Breeland (1960) reared it in Panama from a coral sand mangrove labitat inurdated frequently by high tidewater.
Biting Habits.-This species was reported as a biting pest in Trinidad by Myers (1985), but Adamson (1939) and Aitken (1957) believed that this record probably should be referred to C. diabolicus, C. foxi, or C. insignis. Woke (1954) reported it biting man in Panama, and the Haitian types of C. oliveri were taken biting man viciously in the sun.

Pegre 30.-Culicoides spp., female wings: a, ('. barbosai; b, borinqueni; ε, panamensis;
d, jamaicensis; c, loughnani; 1 , pusillus; g, furens; h, paraensis; i, arubae; i, melleus; k, foridensis; l, insignis.

LITERATURE CITED

Abamson, A. M.
1939. ouservations on biting sandfles (ceratopogonidae) in thinidad, b.w.s. Trop. Agr. 16: 79-S1.
Atrien, T. F. G.
1957. pestiferous trinidad saviflees. Trinidad Field Nat. Club Jour. 1957, pp. 2326.

Aкim, K.
1960. Studes on the leucocytozoon found in the chicken, in bapan. if. on the transmission of e. chellemyt by culicoldes abkawab. Jap. Vet. Sci. Jour. 22-309-317.
Amosova, I. S.
1059. [on the conotromine belithonships within the genus culicomes (bibera, uebmasb). 1 Ent. Oboar., Maskva. 38: 774-780. [In Russinn. 1
Archay, W. R.
1967. the culicomes or new menico (mprera: cerntopogonida). Kans. Uniy. Sci. Bul. 46: 937-1022.
 cematorocontide). Kans. Univ. Sci. Bul. 49: 181-336.
Barbosa. F. A.S.
1947. ellicoldes (uiptera: helaidaz) da neono neotroploa. Pemambuco Soc. Biol. An. 7 : 3-30, 9 plates.

105t, a ciangir of spechic name in the genus culicoides (duptera, helemab). Wash. Ent. Soc. Proc. 53: 163.
1032. Novos sulsidos para o conhecimento dos culicomes neothoricos (biptera: halabas). Imprensa Indus. Recife, 21 pp., 10 piates.
Babketro, M. P.
19月, soure o genero "culicombes" hatrellle, 1809, com a descricho de tres especies (ofptera, ceratopogonides). São Paulo Uniy.. Faculd. de Med. An. 20: 59-105, 4 plates.
Beatry, H. A.
1944, the nsects of st. crom. ソ.I. Puerto Rico Univ. Jour. Agr. 28: 114-172. Ізеск, E. C.
1951. A new culicoldes from plorida (diptera, certtopogonidae). Fla. Ent. 34: 135-136.
1952. Notes on the distmbution of culicomes in floridn (dipterd, cerktopofontank). Fla. Eut. 35: 101-107.
1955. a NEy spectes of cilicoties from florida with additonal distribution data for the genus (diptera: heleidae). Fla. Ent. 39: 133-138.
1958. A population study of the culicoides oh florida (diptera: heleidas). Mosquito News 18: 6-11.
Beline, J. N.
1962. mosquitors of the south pagfic (dimela, culicidae). 2 v . Galif. Univ. Press, Berkeley.

Bidingmayea, W. L.
1961. pield activity stumes of abult culicoides Furens. Ent. Soc. Amer. Ann. 54: $149-156$.
Blanton, F. S., Graham, O. H., and Keenan, C. M.
1955. notes on culcones flrens (yoer) it port hobbe, canal zone. Mosquito News 15: 13-18.
Bowne, J. G.. Lezone, A. J. Fospea, N. M., and Jochnm, M. M.
1966. current aspects of bleytonaue in chtple. Amer. Vef. Med. Asoc. Jour. 148: 1177-1180.
——— Luenke, A. J. Jocmim, M. M., and Foster, N. M.
1964. curbent scatus of bluepongex in shegr. Amer. Vel. Med. Assoc. Jour. 144: 750-784.
Bras, R. A.
1967. chasmbention of chlez subanys cllex in the new wordd (bptera: culdelde). U.S. Natl. Mus. Proc, 120: 1-222.
Breeland, S. G.
1960. obsehyathons on the breeding haritats of some culicones any other helmbein fhe phama canal zonf. Mosquito News 20: 161-167.
———and Smiti, J. P.
1962. obsenvations on the lmbobtance of flight banges in the control of eulcobes in the phama canal zose. Mosquito News 22: 147-154.
Bave, W. G., and Buatslae, E. B.
 Mosquito News S: 26-27.
Buckley, J. J. C.
1033. a note on tie development of filahia ozzarbi in culacomes furens foey. Jour. Helminthol. 11: 257-25S.
1934. on the develobmant in celicoides fureys foey, of filabia (mansonella) ozzardi minson, 1897. Jour. Helminthol. 12: 99-118.

193S. on culcomes as a vectot of onchocera gibsonl (Clehand and jomnson. 1910). Jour. Helminthol. 16: 121-158.
(.arpenter, S.J.
1951. studes of cuicones in the panama canal zone (bitpra, heleidab). Mosquito News 1f: 202-208.
Cakter, H. F., Ingras, A., rud Macfie. J. W.S.
1920. observitions on the ceratopogonine mhges of the cold const with deschirpons of New speches. y-h. Abn. Trop. Med. and Parasitol. 14: 187-274, 5 pintes.
Chicr, F. A., Jr., and Hobas, F. H., Jr.
1969. the freshwater and terresthal pacapod crustacenns of the west indies wiph spechl reffrence to mominich. U.S. Natl. Mus. Bul. 292: 1-258, 5 plates.
Cirnsdrome, M., and Peel, E.
1051. recherches sur la bepartition des filaibs dans la region de coquilhatyille et la transmission de dimetalonema streptorerga par culacomes grabami austen. Kelge. Inst. Roy. Colon., Sect. Sci. Nat. ef Med. Collect, 4° Bruxelies, Mem. 10: 3-83.
Ciferra, R.
1929. Sut un chebrelat parasite me simulides, grubyella ochoterenai n. sp. Ann de Parasitol. Fumaine et Compar. 7; 511-523.

Cockrrell, T. D. A.
 Sat. Sei. Phila Proc d6: 419-120.
Coqualime D. V.
 618.

Cosprimat, A. ba,
 poconides). Insi. Oswaldo (ruz Mom. 32 : 41t-422.
Curans, R. F., and Cormona, R. J.., Ju.
1050. the pholems and methods andohed in sampling salt-atabsa sandely Poprontoss. Fla. Anti-Mospuito Assoc. Amn. Meeting Proc. 21: 113-117.
Dampren.
 comotrangminores de filiblas. Mex. Rey. Med. 16: 227-233.
Dtrres, J. B.
 Inform. Bul. 5: 33-39.

 fothens (pory) and c. hamborat with and hanton. West Indian Med. Jour. 41: 30-50.
1969. efrect of melling maygoves on emebgence of clelocodes spr. in damata. Mospuito News 29:560-571.
Downes. J. A.
1955. oaservations on the swamming flecht ani mating of cubicomes (diptera: (Fiathpogonidal). Roy. Fint. Soc., London. Proc. 106: 213-236, 2 plates.
1958. asembin and mative in the bitisio mematocear. loth Internatl. Ent. Cong. Proc. 2: 425-434,
Dreme. B. O. I.

 and Parasitol. AS: $416-120$.
1956. the intaka of the microflahlate of acanthochemonema perstans by oulicomes ghabam anj c. inohyatipensis ano their subgquent development. Ann. Trop. Med, and Parasitol. 50: 32-38.
de Toit, R.M.
1944. tele tringmishion of blice tonote wio horse sickness by culicomes. Onderstepoort Jour. Vet. Res. 19: 7-16.
Dree. A. I.
1969. biting mides (diptema: ceratorogonidat) reabed from hotting cactus in al'stratha, Mosquito News 29: 644-649.
———and M1'rbar, M. D.

 bremping places and heifavior, Austral. Ent. Soc- Jour. $6:$ 119-126.
Egapley, A. J.
1954. tectonic belations of notitio and south amebte. Amer. Assoc. Petrol. Geol. Bul. 48: 707-773.
fowards, F. W.

Pulats A. M., and Bennetr, G. F.

 \%ool. 39: 215-22s.
-.....and Bennett, (i. F.
 stres. Mosquito Nows 21: 21-28.
.......and Wexab, D. M.
 hasmoriotacs of preks. Canad dour \%ool. 35: 425-435.
Plosit, 11 , and dronsence E.

and Amoneme. E.
 s. sp. Inst. de ha Pastene Guyane Frang, el du Ter, de I'Inini P'ub. No. 203, 5 m.
Foote. R. H. and leatr. H. D.
 Pub. Elealth Monog. No. $18,53 \mathrm{pp}$.
Fommpini. O.P.
 Univ, Fucuk to Fig a Sande Mob. Arq, 11: 161-526.
---- Raneilo, E. X., and Partoli, D.

 Heg. st Sásle Pút. Arof. 12: 1-52.
Fosma, N. M., Jones, R. If, and MeCrany, B3. R.
 is suepp. Amer. Jour. Yet Res 24; 1195-1200.
Fox. I.

 Tros' Med 17: 412-425.
 region (bitera: (fratorotonume). Ent. Sor. Amer. Ann. 39: 248-258.
 poconidet). Kuba 3: 30-91.

194S. hoffmwin, a New nughnes in chicomes (diptera: cermopoconida). Wash. Biol. Noe. Proc. 61: 21-2S.
1049. sotes on bebito mean bitho mbies or cilhcoides (biptera: ceratopocostosa). Brooklyn Ent. Soc. Bul. 44 : 29-34.
 SSO.

Fox. I.
1952b. Six New seothomcal species of crlicomes. Ent. Soc. Amer. Ann. 45: 364-368.
1955a, a chtalogue of the bloodsteking mbges of the ambricas (culicoides, leiroconors and insohelea) with keys to the stboratera and neabctic species, a ceociaphic index and biblography. Puerto Rico Univ. Jour. Agr. 39: 214-285.
 Luis Razelti Bol. 1955: 635-639.
-n-- and (iarcha-Mole, I.
1962. the cilicomes of the intranational amort, isha vehe, peerto hico, as Shown dr lialt trips. Mosquito Nows 21: 120-132.
-.-. ... and Hoffman. W. A.
1914. New neothorbcil atring sanofles of the genus chacomes (biptema: (bamomosonmel. Puepto Rivo Jour. Pub. Healh and Trop. Med. 20; 10s111.
--mand Konlent. C. E.
 culicones in eastean puehto hico, as shown ay helep traps. Puerto Rico Jour. ['ub. Frealth and Trop. Med. 25: 342-349.
-- and Maldonabo Caprones, d .
 Mosquito News 13: 165-166.
Gab. A. M.
1951. the head-chpscle ano moctifparts in the ceratopogontbab. Soc. Fonad ler d'Ent. Buil. 44: 17-75.
Ganviam, P. C. C.. Heisen, R. B.. and Minter. D. M.
1961. the vector of hepatocistis (=plismodium) kocit ; the successful conclesion of ungervations in many parts of tropical hfrica. Roy. Soc. Trop. Med. and Hyg. Trans. 55 : 497-502.
Giascow. R. D.. and Collins, D. L.
196. the thermah arosol yog genebatoh for lathen scale abplichyons of ddt and otien tisecticiues. Jour. Econ. Ent. 39: 227-235.
Gecchos. V. M.
105S. Con tha gonotrophio chcle in midges of the oenus culicomes (diptera; helemay of pie karehan s.s.s.r.] Akad. Nauk SSS.S.R. Zool. Inst. Odtel Parazitol. 18: 239-254. [In Russian.]
Gocmi, E.
1805. os mosquitos no para. Patá Mus. Goeldi Mem. 4; 1-154.

Gombing, R. L.. Curban. R. F., mad Labrecque, G. C.
1953. insecticides for the control of salt-maksin sand fles in florida. Jout. Econ. Ent. 46; 37-43.
Har, J, A.. and Terner. E. C.. Jh.
196S. preliminary host preferbnce studes on vhainia culicodes (diptera: ceratopoconidale). Mosquito News 2S: 103-107.
Eall D. G.
1932. a new bitina culicoines fhom shlmarshes in the southeastern states. Wash. Ent. Soc. Proc. 34: SS-89.
Henrard, C., and Peel, E.
t049. culicoldes chahami husten. vecthur de mpetalonema stherpocerch et non de acanthochmbonema perstans. Soc. Belge de Méd. Trop. Ann. 29: 127143.

Hobce, W. H.
1954. FLons of dominica, bw.w. Lloydia 17 (1-3): 1-238.

Hormani, W. A.
1925. a beview of the spectes of chlicodes of corth and centrab ambica and the west invies. Amer. Jour. Hyg. 5: 274-301, 2 plates.
Hopkins, C. A.
1052. Notes on the ubohy of certain chlicones stedied in the britisil cameboons, West afmea, togmther with obshryations on their posshble rohb as vectons of acanthochemonema perstans. Trop. Med, and Parasitol. Ann. 46: 165-172.
_-_mand Nicholas, W. If.
1952. culcomas austen. phe vercor of achthochamonema imastans. Trop. Med. and Parasitol. Ama. 46: 276-2\$3.
Hewh, J. B. and Dove, W. E.
 69.
———Dove, W. E., and Platts, N. (i.
1939. expermental mhing fon controh of sand fly and mosquito theeding in floblen sat-watea mabshes. Jour. Econ. Ent, 32: 300-312.
———Smambs, S. R., and Platts, N. G.
1943. diking as a mbathe for sivo fly conthol in saltmabsiles. Jour. Econ, Ent. 36 : 405-409.
J.m.nack, H.
1961. omseryations on cuicomes obsoletus (meicen) in the hiboratory (oiptera: (ebatoroconidab). inosquito News 21:48-53.
1963. further odservations on the mfectieness of chemichlly treated screens in kileng biming mboes, cellomes sanousuga (biptera: cebatopocostoas). Jour. Econ. Ent. 56 : 719-720.
1365. The culicomes of New york state (bipmar: ceratopogonides). N.Y. State Mus. and Sci. Serv. Bul. 399: 1-154.

- and Wacl, W. J.

1959. a sambling procedrbe fon culicomes melleus (coq.) (diptera: heleidab) with observations on the life jiftories of two coastal, culicoides. Mosquito News 18: 85-8s.
———Wall, W, J, and Colisss, D. L.
195S. confroh of culfordes mellels (cok.) idiptera: heleidae) in smalh plots, with brief deschiptions of the labvae and purae of two coastal culicomes. Mosquito News 1S: 64-70.
Jobling, B.
192S. the strecture of the head and mouth-parts in culicomes pulicaris l. (dirtera, nemhtocera). Bul. Ent. Res. 18: 211-236.
Jomanasen, O. A.
1960. a genertc smodsis of the ceratopocionibae of the americas, a bibliography, and a list of the north american species. Ent. Soc. Amer. And. 36: 763791.

Johnsor, C. W.
1919. a reyteed list of the piptera of famatca. Amer. Mus. Nat. Hist. Bul. 41 : 421-449.
Joses, R. H.
196La. observations on the larval habitats of some north american species of culicomes (olytema; ceratorogonidas). Ent. Soc. Amer. Ann. 54: 702-710.

Joses, R. H
 Ent. Soc. Amer Amay : 710-746.
 (cosimata). Fht. Boe Amer. Ann. 55 : 72t-722.
 Mas Production. ן 1 P 15-125 Aeademe Press, New Cork.

- and Whrma, W. W.
 Kans Ent. Soc Jome 31 : St-91
Keprice D. S.

-.- ---
 235-248.
 Hhavton, i, the 24-it cyme, with a wore os mperences betwfen col-

 manton. ti, berect of mbreonomeal conmmons. Bul. Bat. Res. 50: 241$25 S$.
---- and hivery, J. R.
 matrons. Bul. Ent. Res. 58 : $\mathbf{7} 20-753.3$ phates.
...... Mad Linem. J. R.
 But Rat. Res. 59 : 1-20.
Kıғғға, ग. J.

1906. bifeas. fsm. pishonombse. $/ n$ Wyisman, P., ed.. Genem Insectomm. Ease. 42. 78 pp.. 4 plates. Benxelles.
 pest. Hungarici Nall. Hist.-Nat. Mus. Ama. 15: 292-364.
Kohlan, C. E. and Fox, I.
1907. the helitive attractivenhes of new setisey heht thars banteid (a) green

Lembecgee, G. C., and Govbmino. R. L.
 Mosquito News 14: 20-22.
Lee. Y. H.
 Foconimas, mitera), Jour. Med. Ent. 5: 91-03.
Fewts, D.J.
 Ann. and Mag. Nat, Hist. (sel, 13) I: 721-732.
lasley, J, R.

 followina combletion of rine cenortoruie erelat. Mosquito News 25: 30G310.

 tema: (erbtobotonidae). Mosiutio News 25: 452-456.
 or culicomes femens fogy (bipteba: cermpogonidah). Jour. Met. Ent. 2: 385-391.
 (peay) (dibtera, ceratopogonidae). Bul. Ent. Res. 57: 1-17.
1908. colosization of ceritoldes ferens. Fint. Soc. Amer. Ann. 61:1456-1490.
 ceratopogonidaf), i, estiblisimant of a standab technique. Ent. Soc. Anver. Ann. 62: 702-711.
1909. veschepion of tha pry of chlicolbes flobivensis. Ent. Soc. Amer. Ann. 63: 1016-1019.

- and ADams, G. M.

1971. fohm and function of the spermatorhohe in cunfomes melleus (cuq.) (birta, eerarologonidate). Bul. Fint. Res. 60: 427-430, 2 plates.
and Dames. A . B.
1972. sindmes and toumbi in floblda ane the bahamas and caribogen amea. Jour. E'con. Ent. 64: 26:1-278.
———Erdns, F. D. S., ami Evans, F. T.
 vemo usach, florida, Ent, Soc. Amer. Ann. 63: 1332-1339.
\longrightarrow Evans, H. T., and Evans. F. D. S.
1970b.i quatitative stevy of attrogent in a Naturaly occubring bopulation of celicomes friens (poni) (dirmena: ceratorogonimab). Jour, Anim. Ecol. 39: 160-183.
——and Kertis, D. S,
1973. A mescription of the havae and putade of culicomes furens yoey and culicomes hoffmant fox (mitteba: ceratopogonidae). Ann, and Mag. Nat. Hist. (ser. 13) 7: 129-149.
Lochinas, W, F. M.
1974. vichashfled Fevers in jamatica, Jour. Troph. Med. and Hyg. 24: 201-204.

Lutz, A.
1912. centribucio pabio o estcdo das "chbatologoninas" hembtozagas encontradas no urasta. Inst. Oswaldo Cruz Mem. 4: 1-33.
1913. conthiotide paba o metcido das cematoroconidas hematofagas no beasha. Inst. Oswaldo Cruz Mem. 5: 45-73, 3 phtes.

Macfie, J. W.S.
1935. ceratopogonidal (dipt.) from the river amazon. Stylops 4 : 49-56.
1937. ceratopoconidat from trinidad. Abn. and Mag. Nat. Hist. (ser. 10) 20: :-18.
1938. notes on ceritopoconidae (diptera). Roy. Ent. Soc., London, Proc. (ser. B) $7: 157-166$.
1948. some species of culicoldes (biptera, creatopogonidae) from the state of chnaras, Mexico. Ann. Trop. Med. and Parasitol. 42: 67-87.
Maclabin, J. P., Hawkins, J. L., Murdoch, W. Pı, and Bush, R. G.
1967. culicoides conthol in the canal zone by water managenent. Mosquito News $27: 513-519$.
Madeen, A. H., Lindquist, A. W., Longcoy, O. M.. and Knipling. E. F.
1946. confrol of adult sandfles by amplane spraying witfe pot. Fla. Ent. 29 : 5-10.
Mifgs, A., Mirss, M., and Ortiz, I.
1952. primer hitliazgo de formas evolutivas de michofilarias en ef torax de culicomes (c. plfanot ohtiz, 1951) en venezuela. Rev. de Sanid. y Asistencir Social 17: 159-162.
Myers, J. G.
1032. meport on the sandfly (culicomes) investigations in the bahamas. 18 pp. Bahamas Govt. Pub. ETassau.
1935. the s nd fly pest (cellcomes). Trop. Agr. 12: 71-73.

Ormiz. 1.
1950. infommes sobre una nueva especif y lista de los maghos cuyas genitallas son conocibas. Rer- de Sanid. y Asistencia Social 15: 461-465.

195ia estudios bn clilicoldes (difterat. ceratoyogonidab). in. sobre los caracteres diferenchles entre culicoides paraensis (coeldi, 1905), c. stellifer (coQullett, 1901), y c. lanei (ortiz, 1950). descripchon de cuatro nuevas espectes con la redescmpcion oe algutias otras poco conocidas. Rev. de Sanid. y Asistencia Social 16:573-501. 8 plates.

1951b. estudios sobre culicoldes (ditera, ceratopogonidae). vir. cultcoides dominicit x. Sp. Y claye para el reconocimiento de las especies venezolanas. Noredades Cient. Contrib. Ocas. del Mus. de Hist. Nat. La Salle, Ser. Zool, No. 5.12 pp .
———and Leon, I. A.
1954. Los culscomes (diptera: ceratopogonidad) de ha republica del ecuador. Bol. de Inform. Cient. Nac. 7 : $564-590$.

- and Mirst, M.

1951. estudios en culicoides (diptera, ceratofogonidae). descripcion de dos nuevas especies; culicoides avilaensis Y c. discrepans, del macho de c. leopoldol ortiz, 1951. rebescripcion de c. limal barbetto, 1944, c. baueri hoffalan. 1925, c. hichyy floch \& abonnenc, 1949, y c. pusillus lutz, 1913. Rev. de Sunid. y Asistencin Social 16; 593-605, 4 plates.
and Mirst. M.
1952. culfoides de venezuela. redescripcion de 10 zspecies con la deschipcion br aliunos sexos no conocidos. Rev. de Sanid. y Asistencia Social 17: 257279.

Panter, R. H.
1927. the hology, mmature Stages, and control of the sandflies (hitinc ceratopogoninae) at puerto castila, honduras. United Fruit Co. Med. Dept. Ann. Rpt. 1926: 245-262.
Plitts, N. G., Shields, S. E., and Hull, J. B.
1943. Diking and pumping yor control of sand flies and mosquitoes in ylorida salt marshes. Jour. Econ. Ent. 36: 409-412.
Pozy, ${ }^{\text {f. }}$
1851. xle el sejen, ofacta fubens poey. Mem. Sobre ha Hist. Nat. de Ia Isla de Cuba 1: 236-243, plate 27.
Pomelantzey, B. I.
1932. [morphology and anatomy of the gentralla of culcoides.] Mag. de Parasitol.3: 183-214. [in Russinn.]
Portea. J. E.
1959. some effects of schens in frarding entry of the common sait-marsit sand fiy culcomas fubens (pomy) (birteks: helfidab). Mosquito News 19: 159-163.
Pritt, F.C.
1907. sotes on "punkies." US. Dept. Agr. Bur. Ent, Bul. 64: 23-28.

Price, D. A., and Hardy, W. T.
1954. isolation of the hleetongue virus from texas sheep-culcoides shown to be \& yector. Amer. Vet. Med. Assoc. Jour. 124: 255-261.
Reeves, W. C.. Scmunni, R. P.. Hardy, J. L., and others.
1970. buttonwillow vhus, a new arbovirus isolated from mammals and culicoldes mides in mern county, chlfornlh. Amer. Jour. Trop. Med, and Hyg, 19: 544-551.
Rogers, A. J.
1962. effects of mpounding and filling on the noduction of sandfles (culicondes) in flohma shit marsites. Jour. Ecou, Ent. 5 : $521-527$.
Romma. C., mid Wygomensky, P.
 tycumana bigheri y arhoz). Thcumán, Atgentida, Uniy. Nac. Inst. de Med. Region. Amn. 3: 29-34.
Reot, F. M.
1922. notes on mosqutroes and other bloonstcking flies from puerto rico. Amer. Jour. Hyg. 2: 394-405.

- and Horfman, W. A.

1937. the nortfi americhe species of culicomes. Amer. Jour. Hyg. 25: 150175, 8 plates.
Shakr, N. A.D.
1938. deyelopment of microfilarla perstans in cultcodens grahami, a preliminary note. Roy. Soc. Trop. Med. and Hyg. Trans. 21: 76.

192S. flabla persthns; tts develorment in culcoides austenif. Roy. Soc. Trop. Med. and Hyg. 21 : 371-396.
Smimi, W. W.
1965. occurbence of culicoides paraensis (coeldi) (dipterl: ceratopoconidae) in norftiern floriba. Mosquito News 25: 65.
Snow, W. E., Pickabd, E., and jones, C. M.
1938. obseryations on the activity of culicomes and other diptera in ansper county, soutit carolina. Mosquito News 18: 18-21.

Snow, W. E., Meckizo. F., mal Moobe. J. B.
 15-36.
Stephens, E. A.
 Navy Med. Bul, 1S: 36S-370.
Stewaro. J.s.
1033. anchocehen (ervichle (rallete wo benbt, 10t0) and its bevenomant in
 272-2St.
Tokinam. M.

Townsend. C. F. T.

Terner, R. W. T.

Vas Voberverg, E. I.
 Agr. Expt. Sta. Bul. 37: 1-19.
Will. W. S., and Donse. (O. W.
1965. conthon of cllicobes nelleys (cor.) (biptera: helmbin) witit granular

Willams. R. W.
1956. the bring midges of the gents celicodeb found in the betmuda islands

1957. ohservitions on the hafeding habithas of some heleldae of the bermuda IShavos (bimemu), Wash. Ent. Soc. Proc. 50: 61-60.
1961. mathenognsesis any attogesy in culicomes bermedensis wilhams. Mosquito News 21: 116-117.
1962. obsenvations on the honomics of culicomes furben (poey) ox st. john.

1964. obeervations on habitats of gllicondes labyan in trinidad, w.i. (diptera: certorogonidne). Ent. Soc. Amer. Ann. 57 : 462-466.
Williston, S. W.
1S96. on the mbteba of st. viceent (west ndies). Ent. Soc. London. Trans. 1596: 253- 446.7 plates.
Wimth, M. O. Wirtin. W. W.. and Blavton, F.S.
196S. platit materlals as breedng plices of panama culfobids (oipteta: certoroconidar). Wash. Enl. Soc. Proc. 70: 132.
Wheri, W. W.
1952a. the heleidae of chlfornin. Calif. Univ. Pubs.. Ent. 9; 95-266.
1952b. the immatere stages of Two species of floriba shbt marsh shid flies (Diptera, helmione). Fla. Eut. 35: 91-100.
1955. reyort on a collection of biting mibges of the genus culicodes from geatemah (bitera, heleidab). Wash. Ent. Soc. Proc. 57 : 109-117.
and Bunyon, F. S.
1953. stlohes in panima celicoides whtera, heleidab). hif, a new species behtre to iflezbotomis (whliston). Eit. News 6: : 113-120.
and Hateron, P. S.
1950a. Studes in phama celicomes. Fil. the neotropich, shecies of the guttafte ghoul of the sebgenus hofpahnia (bitera. helehab). Wash. Ent. Soc. Proc. 58 : 305-320.
_-_mad Banton, F. S.
 bebilfalbis orour (mpreha. helmbah). Wash. Acad. Sei. Jour. 46: 186-190. - and Bravton, F. S.

 condes ratens (foev) (burera, heleione). Fha. Ent. 39 : 157-162.
\rightarrow - and Bentros, $7 . S$.
 pelichas and covagareht greups. Wazh. Ent. Soc. Proc. 58: 211-227.
and Meanton, F.S.
 the slbgeves hofmanta. Wash. Aent. Sci. Jour. 46: 95-99.

- and Beastos, E.S.

1059. biting mhees of the genes culicomes frome manada (biytera: helemab). [TS. Nati, Mus. Proc. 109: 237-tS2.
and Bunton, P.S.
1.968. A reyistox of the veotrohtcil bithig mides of tie hylas group of culicomes (aipter., cenatorocontone). Fla. Ent. 51 : 201-315.
———and Bustos, F.S.
1970n.new species of neotrobical culicoldes (biptera: ceratopoconidae). Fla. Ent. 33 : 39-15.
and Bentor, F.S.
 (ohtern: certropoconibif). Ent. News SI: 141-151.
and Banton, F. S.
1060. new nfotropicil sandeles of the culcomes deblipalpis group. Wash. Ent, Soc, Proc. 73: 34-43.
and Hegert, A, A.
 grour or ctatomes. Amer. Ent. Sec. Ann, 53: 639-658.
-and Willams. R. W.
1061. the hiting mbers of the bermoda ishand, with describtions of five new siecies (biptert, helvidae). Wash. Ent. Soc. Proc. 59: 4-14.
Woke, P. A.
1062. obsemyations on centril amehican bithag midebs (mitera, helemah). Ent. Soc. Amer. Ann. 47: 61-74.
Wolcotr. G. N.
1063. Entonologe dimami. 440 pl. Port au Prince. Haiti.
1064. "hasectar bortnquensis." a revised annotated check-list of the nsects of peerto rico. Puerto Rico Udiv. Jour. Agr. 20: 1-600.
1065. a supplement to 'insegtae bortnquensis." Puerlo Rico Univ. Jour. Agr. 25:33-15S.

Woloritr, G. N.
1951. the insects of pubato hico: Diptera. Puerto Rico Univ. Jour. Agr, 32: 417532.

Woodmes, W.P.
1954. cabibbean bind and sea through the ages. Geol. Soc. Amer. Bul. 65: 719732, 1 plate.

[^0]: The yent in italie atier the athors' mames indientes the roference in liternlure Cited, p. S6.

[^1]: = New records are matked with an naterisk.

[^2]: *Throughout this bulletin all information pertaining to distribution records is given essentially as it appeared on the insect Jabels.

