

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

THE MOSQUITOES OF THE NORTHWESTERN UNITED STATES

By C. M. GJULLIN and GAINES W. EDDY

Technical Bulletin No. 1447

Agricultural Rescarch Service
 UNITED STATES DEPARTMENT OF AGRICULTURE

PREFACE

The purpose of this bulletin is to supply useful information to organizations facing mosquito problems in Washington, Oregon, Idaho, and adjacent States. This information should assist them in determining the magnitude of their mosquito problems and the advisability of undertaking a control program. Organizations already engaged in mosquito control in these States should also find the bulfetin useful in identifying species of mosquitoes found there.

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered by appropriate State and/or Federal agencies before they ean be recommended.
CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildife-if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

Trade names are used in this publication solely to provide specific information. Mention of a trade name does not constitute a warranty or an endorsement of the product by the U.S. Department of Agriculture to the exclusion of other products not mentioned.

CONTENTS

Page
Species found in Washington, Oregon, and Idaho 1
Mosquito literature 2
Mosquite-control organizatious 4
Mosquito-abatement laws 4
Natural history of mosquitoes 5
Eggs 5
Larvae 5
Pupae. 6
Adults. 6
Mating 6
Flight habits. 7
Longevity of aclults S
Hibernation S
Mosquitoes and diseases 8
Encephalitis. $\$$
Matarin 9
Other disenses 9
Natural enemies of mosquitoes. 9
Mosquito surveys 10
Egy collections 11
Larval collections II
Hand collections of adults. 11
Trap collections of adults 12
Collecting, preserving, and identifying specimens 12
Cullection. 12
Preservation. 13
Identification. 14
History of mosquito control. 14
Common types of control problems 15
Floodwater 15
Page
Irrigation water 16
Tidal waters. 16
Snow whter 16
Ponds and artificial containges. 16
'Tree holes 18
Control of mosquito larvae 18
Elimination of breeding phaces 18
Use of insecticides 19
Conversion tables for larvieide applications. 20
Control of adult mosquitoes. 21
Coutrol in buildings 21
Control outcloors. 21
New materials tod mi*hods in mosquito control 22
Lnsecticide dispersal equipment 23
ivosquito resistance to insecticides 23
Mosquito repellents 24
Precautionary measures in using insecticides 25
Information about insecticides and poison control centers. 25
Keys and notes for mosquito identification 25
Keys to generit 29
Genus Anopheles Meigen 29
Genus Aedes Meigen 33
Genus Culex Linnaeus 69
Genus Culiseta Felt 80
Genus Coquillettudia Dyar 86
Genus Orthopodomyia Theobald 87
Literature cited 89
Appendix. 100
Index 100

THE MOSQUITOES OF THE NORTHWESTERN UNITED STATES

By C. M. Guvisin and Gmes W. Eddr, entomologists. Entomology Researeh Division, Agricultaral Research Service ${ }^{\text {L }}$

This publiration deals with the mosquitoes recorded from Wishington, Oregon, and Idaho. A handbook on the mosquitoes found in these States (254) was published in 199°. Since then many new data have been obtained. Widely scattered information is included here on the species, their biology, taxonomy, distribution, cconomic importance, and methods used for control. Several sections not included in other (T.S. Department of Agriculture publications on mosquitoes have also been added.

Most of the data on species distribution were
compiled from collections made by the Entomology Research Division during 1930-67. However, some records were furnished by Washington Staie University, Oregon State University, the University of Idaho, and the U.S. Public Health Service, and some recent records by the Washington and Oregon State Health Deparinents through the courtesy of Roy Myklebust and LaVerne Miller, respectively. Limited records available from literature have also been included when they provided additional information.

Species found in washington, oregon, and idaho

Six genern and 53 species of mosquitoes have been recorded from Washington, Oregon, and Idaho. Forty-one species have been collected in Washington, 45 in Orgon, and 45 in Idaho. These are listed in table 1. Distribution of the species in these States is shown on the maps in the appendix. An attempt has been made in the table to provide a rating on the basis of species abundance, distribution, and importance as pests or disease carriers to man or animals. Athough for many species this cannot be done with any degree of accuracy, due simply to lack of information, the data indicate whether a species is common, rare, or absent.

Some of the more important pests and disease carriers are as follows:

Aedes commonis oceurs in many mountain areas

[^0]and in some places is a serious handicap to recreational interests, lumbering, and road building.

Aedes dorsalis breeds in boith flooded salt- and fresh-water areas. It is an abundant and troublesome pest of man and animals in some coastal and many inland areas.

Aedes hexodontus is very numerous and annoying in some mountain areas.

Aedes increpitus occurs in many semiwooded areas from sea level to 6,000 feet but is usually most numerous and annoying in mountain areas.
Aedes melanimon is present in large numbers in many inland areas and is an important pest. The larvae develop in irrigation and floodwaters.
Aedes sticticus breeds mainly in flooded willow and cottonwood flats bordering river and lake margins. It is a severe pest of man and livestock, especially along the lower Columbia River.

Aedes vexans develops in fioodwater and irrigated areas. It is one of the most important pest species and is particularly numerous and annoying along the lower Columbia River.

Culex pipiens pipiens is present in large numbers in some communities in western Washington and Oregon but is seldom found in Idat, or the eastern half of Washington and Oregon. It is considered the most important house pest in most areas where

Calex tarsalis is one of the most important known vectors of St. Louis and western equine encephalitis. It is also one of the most widely distributed species in the Northwest. Birds ard livestock are its preferred hosts, but it will also reably attack man and other mammals. Large numbers of this species are produced in \log ponds as well as in a variety of other permanent and semipermanent waters.

Other important species include Aedes cinereus, A. fichii, A. nigromaculis, Anopheles freeborni, Culiseta incidens, and C. inornata.

Table 1 -Distribution and relative importanse ${ }^{2}$ of mosquito species in Northuestern States

Sperizes	Weshington	Oregon	Idato
Anopheles:			
eartei	3	-	3
frevorni.	2	2	2
occilentatis........	3	3	3
pseviopmanctipennis	-	3	-
punctipennis	2	$\underline{2}$	2
dedes:			
aborigitis.	2	2	3
aloponotum.	3	3	
compestris...	3	3	3
canaloasis canadensis.	2	-	2
catuphyllar	3	2	$\stackrel{2}{2}$
cincreas.	$\underline{1}$	2	2
commtunis. .	'2	2	2
dorstis. . . .	1	1	1
ercrurims	'2	2	2
fitchii..	2	2	'2
Haresems	2	2	2
hendersomi.	--	-	3
hexatomas. .	2	2	2
impiger...... .	2	2	2
impticatus.......	$\stackrel{\square}{2}$	2	2
increpitus.....	$\underline{2}$	1	1

Table 1.-Distribution and relative importance ${ }^{2}$ of mospucto species in Northwestern Stales-Continued

Spucies	$\begin{gathered} \text { Washing- } \\ \text { ton } \end{gathered}$	Oregon	Idaho
intrutens.........	2	3	2
medunimon........	2	2	2
nitromathis......	2	2	
miphadopsis.......	-	3	-
pionips..........	3	3	3
millaths.........	2	3	2
pancter..........	3	\cdots	3
schizopinax......	-	3	3
sierrenstis........	$\underline{2}$	2	3
spencerii utahoensis	2	3	2
sticticus.	1	1	$\stackrel{3}{3}$
vtimutans........	-	-	3
trichurus.........	3	\cdots	2
mivithatas........	-	\ldots	3
ventrovittis.	3	1	1
Culcx:			
${ }_{\text {aphertis. }}$. ${ }^{\text {a }}$. . .	-	3	-
boharli...........	-	3	\cdots
crythroherax......	-	-	3
pens............	$\stackrel{\square}{2}$	$\stackrel{2}{2}$	
mipiens mipiens....	2	1	2
restuans......		3	$\stackrel{2}{2}$
salinarius....	"	3	$\stackrel{ }{2}$
tarsalis.....	1	1	1
territans....	$\underline{2}$	2	2
Culiseto:			3
imputiens.. incidens...	2	2	2
inorutht.	2	2	,
mimnesotac	3	3	3
prarticeps.	-	3	-
Coquilletlidia perturben:	3	2	3
Orthopothmpin signifert.	. -	3	-

- Based on numbers, distribution, and importance as pests or disense carriers: $1=$ most important; $2=$ less important; $3=$ uncommon or rare; $-=$ not recorded.

MOSQUITO LITERATURE

The literature on mosquitoes is extensive and inereases as more mosquito-control operations are undertaken in many parts of the world. Probably no other group of insects has received so much study. Some of the more noteworthy publications are
mentioned here. Others are listed at the end of the bulletin.

A four-volume monograph by Howard et al. (147) was the first comprehensive publication on the mosquitoes of the Western Hemisphere. It con-

Bains much iviormation on the biology, distribution, and taxonony of these species. The taxonomic part of this work was later extensively revised and condensed by Dyar (84).

Matheson's handbook (190), revised in 1944, gives much information on the taxonomy, biology, and control of mosquitoes of North Americ: Excellent tavonomic and anatomical illustras ons are included. A valuable book on "The Nrtural History of Mosquitoes" has been published by Bates (19).

The taxonomy, biology, distribution, and medical importance of North American mostesitoes are covered in an athoritative, well-illustrated book by Carpenter and IaCasse (57), which appeared in 1955.

An illustrated monograph with diagnostic characters of the medically important mosquito species of the world has been published by Foote and Cook (98).
A catalog of the mosquitoes of the world, published in 1959 by Stone et al. (261), and its supplements ($258-260$) provide a standard reference on nomenclature and classification.

Carpenter (56) also reviewed the literature on the tixonomy, distribution, and bionomics of North Americtm mosquitoes from $195 \overline{5}$ through 1967 , starting with the publication of "Mosquitos of North America (North of Dexico)" by Carpenter and La('asse (5π).

A book on the physiology of mosquitoes by Clements (75) includes much information on this subject. The anatomy of the mosquito is described and iltustrated in a publication by Snodgrass (250).
"A Handbook of the Mosquitoes of the Southeastern L'nited States" by King et al. (17O) contains information on some of the species found in the Northwest.
L.s. Department of Agriculture Handbook 46 (25.7), now out of print, was the most useful publication concemed with the species found in the Northwest. The bresent bulletin updates this carlier publication and adds much new information.

A book of histovical interest by Herms and Gray ($/ f 1$) deats with all phases of organizing and opcrating mosquito-abatement distriets. It includes information on laws and agencies, education of the public, and methods of mosquito abatement.

A publication by the American Mosequito Control Association (\tilde{r}) gives information on methods of organizing, type of personnel, and methods of fi-
nancing mosquito-control districts. It also contains information on types of statewide enabling legislation and the type of assistance available from research agencies.

Engineering aspects of mosquito control are discussed in the "Engineering News-Record" (89) and in a paper by the National Malaria Committee (200).

Information on ground equipnent and insecticides for mosquito control (δ) and for aircraft application of insecticides (6) is available in two publications by the American Mosquito Control Association. U.S. Department of Agriculture Circular 977 (272) also contains much information on mosquito repellents, insecticides, formulat:ons, and application equipment. The results of screening more than 19,700 organic chemicals as mosquito larvicides, adult sprays, and repellents are reported in Agriculture Handbooks 69 (169) and 340 (274).

Several State bulletins and Canadian reports will be found useful in a study of the mosquitoes of the Northwest: California: Freeborn (94) and Freeborn and Bohart (95); Montana: Mail (187); Citah: Nielson and Rees (205); Ontario: Steward and McWade (257); lower Fraser Valley of British Columbia: Hearle (138); western Canada: Rempel (230) ; and Alasia: Gjuilin et al. (114). State bulletins on mosquitoes have also been issued by Arkansas (50), Illinois (235), Minnesota (16), Nevada (68), Oliahoma (237), Wisconsin (82), and Wyoming (207).

The following serial publications will be of interest to students of Culicidac: "Mosquito News," published quarterly by the American Mosquito Control Association at, Albany, N.Y., and the "Proceedings," published each year by the New Jersey Mosquito Extermination Association, the California Mosquito Control Association, the Florida Anti-MIosquito Association, and the Utah Mosquito Abatement Assoriation. The "Procecdings" of the Northwest Mosquito and Vector Control Association covers many subjects pertaining to pests of man and animals.

Articles on mosquitoes also appear in many other entomological, medical, and scientific journals and in the "U.S. Public Health Reports." Abstracts of the mosquito literature of the world are published in "The Review of Applied Entomology, Series B, Medical and Veterinary." A quarterly list of current mosquito fiterature appears in each issuc of "גlosquito News."

MOSQUITO-CONTROL ORGANIZATIONS

There are a number of State or regional mosquitocontrol associations in the United States, but of most interest to those in the Northwest is the Northwest Mosquito and Vector Control Association organized in 1960.

There is also the American Mosquito Control Association, which is international in scope and has
over 1,200 members. It is a nonprofit professional association composed of entomologisss, sanitary engineers, control officials, medical personnel, and laymer, who are charged with or heve an interest in mosquito control and related work. Annual meetings are usually held jointly with those of the State associations.

MOSQUITO-ABATEMENT LAWS

Local mosquito-control agencies are commonly ealied mosquito-abatement districts. Laws in most States have been enacted to facilitate organization of such districts. These laws vary considerably in the different States. A comprehensive discussion of laws, financing, persomel, and other matters relating to organization of mosquito-control districts has been published by the American Mosquite Control Association (\%).

The Washington State law provides for the organization of mosquito-control distriets in Adams, Benton, Franklin, Grant, Kititas, Walla Walla, and lakima Counties. Petitions containing the signatures of 10 percent of the registered voters of the area must be presented to the county commissioners of the county in which the largest area of the proposed district is located. The petition must deseribe the boundaries of the district, which may include sections or all of several counties.

Distriets may also be formed by a resolution of the county commissioners, which must also describe the boundaries of the proposed district.

A publie hearing on the district proposed by the petition or resolution must be heid within 2 months. If the commissioners find that the formation of a district is in the public interest, its formation must be approved by the voters of the district at an election to be held not sooner than 30 days and not later than 60 days after the hearing. Approval for formation of the district requires a majority vote. The voters must also approve suthorization of a 1-mill tax levy by a three-fifths majority at this election to provide funds for operation of the district.

A board of five trustees is appointed by the county commissioners if formation of the district is approved by the voters. The trustees manage the affairs of the district, employ personnel, and de-
termine the amount of money required to carry on its operations. Taxes based on their estimate are collected at the same time as other county taxes. The district may also levy taxes twice a year of not more than 2 milis in excess of the 40 -mill limitation if approved in special elections by three-fifths of the voters.

The law also contains a number of provisions that assist the Director of the State Health Department in establishing a statewide program for the control of mosquitoes as a health hazard. Provisions of the Washington law are given in Revised Code of Washington, chapter $17.28,1959$.

In Oregon a mosquito-abatement district may include all or any part of a county. A petition containing the signatures of not less than 25 taxpayers of the proposed district must be presented at a regular mecting of the county court. The need for such a district is determined by the county court at a hearing that must be held not sooner than 30 days and not later than 60 days after the petition is presented. Creation of the district must be approved by the voters in the district at a special election to be held not more than 5 days after the hearing.
A board of five trustees appointed by the county court manages the affairs of the district, employs persor del, and estimates the annual budget. Taxes for the operation of the district are levied after approval by the county court and the health officer on the board. These taxes may not exceed $11 / 2$ mills per dollar of assessed valuation within the district.

Counties may also contract with cities, vectorcontrol districts, and other counties on any matter incident to control of public-health vectors. The provisions of the Oregon Vector Control law are given in Oregon Revised Statutes, chapter 452, 1959.

The Idaho Mosquito Abstement Act requires
that a petition signed by 10 percent of the qualified residents of the proposed district be presented to the board of county commissioners. A district may include one or more counties or sections thereof. If, after publication of this petition, no written protests are received within 30 days, an election is then held. If protests are received, an election must be held 15 days after a public hearing. A board of five trustees is appointed by the county commissioners
if the district is approved by a majority vote. The trustees manage the affairs of the district, employ personnel, and estimate the required budget for the next year. Taxes for operation of the district are levied after approval by the county commissioners and the State Department of Health. Taxes may not exceed 5 mills per dollar of assessed property valuation. Provisions of the Idaho laws are given in Idaho Code, chapter 29, 1959.

NATURAL HISTORY OF MOSQUITOES

All mosquitoes have two wings, a body partially covered with seales, and an elongated proboscis used in feeding. Another common characteristic is that they spend part of their life eycle in water. The types of water in which the larve are found vary widely. Some genera such as Culer, Culiseta, and Auopheles lay their eggs on permanent or semipermanent bodies of water, whereas others such as Aedes usually deposit their eggs on moist soil or areas above the water level in temporary pools or marshes.
All mosquitoes pass through a complete metamorphosis consisting of four stages-the egg, the larse or wriggler, the pupa or tumbler, and the adult or imago.

EGGS

Mrosquitens lay their eggs in batches of about 50 to 200 . The eggs of Culet (fig. 1), Coquillettidia, and Culiseta are laid in rafts on the surface of the water. The female rests on the water and cements eadh egr in an upright position in the raft is it is laid. The cgos of these three genera usually hateh in about 2 to 4 days depending on the temperature. The eggs of A nopheles are laid singly on the surface of the water and hatch in about the same period of time.

The eggs of most Aeches species are laid on moist sail in areas where they will be flooded by waters from irrigation, rising rivers, rain, or melting snow, Eges of some Aedes species may remain viable for as long as 4 years if they are not flooded (104). On flooding they may hatch in minutes. Some Aedes species may lay eggs several times during a season if frvorable locations for egg deposition are available.

Eggs of many Aedes species do not hatch mless the oxygen level of the water in which they are im.
mersed is lowered (107, 156). The reduction of the oxygen to the required level occurs in nature in shallow water containing organic debris and bacteria. Food for the newly hatched Iarvae is often more abundant in shallow water, and the lowered oxygen requirement insures that the eggs will usually hatch in this environment and not in running water or deep water where the larvae would not survive. A reduction in the oxygen level of the water is not effective in causing hatching of some Aedes species until a summer diapause is broken by exposure to rather low temperature (188). Some mosquitoes require a blood meal before they will lay eggs, but several species are able to deposit eggs without it (66).

LARVAE

The larvae of all mosquitoes are aquatic and nearly all are free swimming. Larvae usually obtain air through a tube, which extends through the surface of the water, or by means of a shorter type of

Figore 1.--Mosquito eggs: A, Cudex; B, Aedes; C, A nopheles.
air-intake apparatus. About 4 to 14 days are required for larval development of most species. During this period the larva grows and sheds its skin four times. Larvae of Coquillettidic perturbans, which attach to the roots of acquatic plants, and Aedes sierrensis, which oceur in tree holes, usualiy overwinter in the larval stage.

The lood of moequito larvae consists of minute plants, animals, and organic debris and is obtained by using the mouth brushes. The larrae can also utilize pure cultures of various organisms (18). Some species such as l 'sorophora ciltata (l^{2}.) are predaccous on other mosquito larvae. The nutritional requirements have been reported lor only a few species (240)

PLPAE

The pupa or tumbler (fig. 2) is also aquabie and appears with the fourth molt. In most species air is obtaine through a pair of trumpets at the surface of the water. ('oquillellidia species have breathing tubes adapted to penetrate submerged plant tissue, where they attach until ready to emerge. Pupal development is usuallv completed in aboui 's days but raties considerably with the species and water temperature. Pupac fake no food.

ADELTS

A sories of six stylets partially enclosed in the labium of the proboseis (fig. 3) is used by the lemale to penetrate the skin and draw the blood of the host. The , haxilhe are the man piereing organs. The tube through which the blood is drawn is formed by the labrum. The labium does not enter the wound but atets as a guide for the stylets. Salivary fuid diseharged through a canal in the hypopharyox prevents the blood from coagulating. The itching sensation resulting from the bite is caused by this fluicl.
bemales may also feed on flower nectar and varions phant juices (40). Newly emerged Acdes dorsalis aduits have been observed feeding in large numbers on willow eatkins and other flowers in castern Oregon. Simitar feeding habits have been noted in other species ($12 \frac{1}{4}, 125,212$). Certain plants have increased the longevity of mosquitoes in the laboratory (20S). The behavior of mosquitoes in relation to blood feeding has been reviewed by several workers (148, 158, 198).

The male mosquito does not have mouth parts capable of piercing the skin. Males can usually be distinguished from females by their bushy antennae and differences in the length and shape of the palpi (fig. 4). Most males apparently obtain their food from flower nectar and plant juices. Both mule and female mosquitoes can be kept alive in the laboratory for considerable periods on sugar or honey-water solutions or raisins. Some mosquitoes can also utilize dry sugar (87).

MATING

Most mosquitoes usually mate from 1 to 3 days after emergence. Their age and conditions under which they mate vary considerably with the species. Males of many genera fortn compact swarms when the light reaches a certain intensity in the morning and evening. These swarms, which may be of several well-defined shapes, have been commonly referred to as "mating swarms." However, based on many observations of mosquito matings and from an analysis of the literature on the subject, Nielsen and Hacger (202) suggested that mating may occur when the female is in flight for a number of reasons and that male swarms are not a major oceasion for mating. Mating has been observed in male swarms of many species, but this occurs only when the females fiy near or into the swarms. The flight sound of a female has been shown by Roth (236) to be

Figure 2.-Mosquito pupa.

Fiores: 3. - Ifend and mouth patts, with aross section of proboselis, of femate mosquito.
neerssary before the male of Aedes aegypti (L.) will attempt to mate. Niewer et al. (17/) found that the femmes of Culiseta inornata produced a sex pheromone that attracted the males. Nales were found to produce a pheromone that attracted the females in a study of three species of Cuder by Gjullin et al. (/15).

Male swarming occurs in several species of Aedes, Cules, Anopheles, Coquillellidia, and Culisela, but several investigators indicate that males of Culisela inornata do not swarm. lees and Onishi (224) found that males hatched from the same egg rafts as the females, emerged from 6 to 12 hours earlier, and mated sometimes within 1 or 2 minutes after the female had emerged. Females of this species have been shown by Kliewer et al. (171) to produce a volatile substance that attracts the males.

FLIGHT IIABITS

The flight behavior of mosquitoes depends on the species, population pressure, food supply, weather conditions, and other factors. Information is available for only a few species. Aedes vexans and A. sticticus females marked with a stain shortly after emergence near the Columbin River were recovered 5 miles away 24 hours later (255). In
observations made along a canyon road these two species were numerous at 15 miles but present only in small numbers at 30 miles from the nearest breeding places. Studics on the fight range of A. vezans and several other species have bcen made by Clarke (74). Aedes species marked with fluorescent dye in a Califomia test were recovered 20 miles or more from the area whore the dye was applied (248). Males of Coquilleltidia perturbans and A. vexans were collected in a New Jersey light trap placed on a lighthouse $S .2$ miles from the nearest land (185).

Bailey et ai. (11) found that Culex tarsalis in California had an effective flight range of 10 miles
A

B

D

Figure 4.--Head and appendages: A, Acdes female; B, Anopheles female; C, Aedes male; D, A nopheles male.
in 48 hours with downwinds at 2 to 7 miles per hour and a maximum range of 15.75 miles with downwinds at 0.3 to 3.5 miles per hour. Limited upwind movement of this species against winds as high as 5 miles per hour was also observed. They estimated a likely dispersal of 20 to $2 \overline{2}$ miles in the sacramento Valley in Californin. In studies of the dispersal of adults of this species into an area undergoing latvieite treatments the maximum recovery distance was 9.6 miles (83).

In (Feorgia and Florida, females of Aedes tacniorhynchus (Wiedemam)-a species not oceurring in the Northwest were marked with modonetive phosphorus as larvac. They migrated a maximum of 0.5 miles, wherens males moved a maximum of 3 miles ($88,2 / \pi$). Females of this specties feed extensively on flower nectar before migrating (120) . Many species fiy between sunset and sumrise (1/2). Further information on tlight habits is given under each speries description.

LONGEVITY OF ADCLTS

The lifespan of the mosquito moder matural conditions depends härgly on availability of food and shelter and prevailing weather conditions. Esually males emerge somer and also die sooner than females. During the regular breeding season the
average mosquito probably lives only a few weeks. Species that hibernate naturally live for several months.

The longevity of Aedes vexans and A. sticticus has been studied by staining newly emerged adults near their breeding areas (2038). There appeared to be no great difference in their longevity. Numerous femates of both species were laken after 30 to 60 days and a low of each were captured 104 to 113 days after being stained. The longest record for males was a single specimen of A. sticticus taken 94 days after staining. In the laboratory mumerous species have remaned alive for a month or more.

HIBERNATION

Most. Culex, Anopheles, and Culiseta females hibernate in food-storage cellars, subfioor spaces, bascments, ofd mines, caves, mammal burrows, rock piles, and similar phaces (64,244). In Nevada, Culer erybhrothorar overwinters as larvae (61).

Most A celes species found in the Northwest overwinter as eggs in soil and debris. Aedes sierrensis overwinters in the egg stage in the colder parts of its range but may also overwinter as larvac or eggs in warmer areas (6π). In the Southern States no true hibemation occurs in some species.

MOSQUITOES AND DISEASES

ENCEPHALITIS

Westem equine and st . Louis encephalitis are mosquito-bome virus diseases of the central nervous system. Symptoms of severe infections may include stiff neck, high lever, headache, drowsiness, and coma. Small chiklen may suffer severe delayed physical and mental aftereffects. The mortality rate for western equine encephatitis (WEE) ranges from 5 to 15 percent for humans and 20 to 30 pereent for horses (22). A 3 - to 11 -percent mortality rate for humans has been reported for St. Louis encephalitis (SLE).

WTES and SLE were frrst isolated from fieldcollected mosquitoes in an epidemic area during the Lakima Valley outbreak in 1940 by Hammon et at. (130). They were isolated from Culex tarsalis and C. pipiens pipiens. WEE and SLE have since been isolated from several other species. Isolations from species occurving in the Northwest include

WEE and SLE from Actes dorsalis (127, 128, 131, 268), which probably includes the subsequently restablished A. melanimon species (36), and WEE from Culiseta inomata (129). Many other species of several genera have been capable experimentally of transmitting WIEE and SLE ($59,32,126$). C. iarsalis is considered the primary vector of these viruses and is apparently a very efficient transmitter of WEE (266). C. p. pipiens was also a vector of SLE in six States, and Culex nigripalpus Theobald has been an important vector in Florida (23). Calim formia encephalitis has also occurred in several States in the Midwest.

Man and horses usually contract all these diseases under conditions that include high prevailing temperatures, large mosquito populations, and an adequate bird population with a high rate of virus infection. Thomas and Eklund (267) demonstrated that garter snakes may serve as natural overwintering mechanisms for WEE virus.

MAlaria

Malaria is no longer an important disease in the l'nited States. In 1955 there were 477 cases reported by the Public Health Servire and four of these were indigenous. In 1956 there were 234 cases and the number of indigenous eases was not reported. In 195 there were $7:$ confirmed and presumptive cases, of which three were indigenous. Four cases resulted from blood transfusions and the others ocemed in foreign civilians and military personnel on foreign duty (45).

This disense was probably brought into the Northwest about 18330° (242, 252). It was fatal to a large number of the mative population that contracted it and had an important bearing on the early history of the region. Apparently it is not known how it first reached the Northwest, but it was most likely brought by wagon trains coming to the Oregon teritory from Independence, Mo.

Malaria was first required to be reported to the State Health Officer in Washington in 1915 and in Oregon in 1018 . A total of a78 cases, exclusive of those with histories of recurrence or infection from outside the stute, had been reported in Oregon by $1944(/ / 6)$. Thirty-four cases were reported in Washington between 1935 and 1944 and 20 cases in ldaho between 1936 and 1944.

Lnopheles frechorni has been consitered the main vertor of malaria in the area, but A. punctipennis may also have been a vector (123).

OTHER DISEASES

Mosquitoes have also been incriminated in the transmission and maintenance of several other diseases or parasites of man and animals. The viruses include yellow fever, dengue, fowl pox of poultry, rabbit myxomatosis, and lift Valley fever (enzootic hepatitis) of sheep and other animals. Apparently fowl pox is present in the Northwest. Several species are apparently capable of transmitting fowl pox of chickens (192). However, present poultry management practices have reduced its importance.

Filariasis (Wuchereria spp.) of humatis and filarial heartworm (Dirofilaria immitis (Leidy)) of dogs and other carnivores are also transmitted by mosquitoes. Only the dog heartworm is present in the United States, except in persons arriving from the Tropics. and it is apparently rare in the Northwest. Other diseases include tularemia of man and other animats and anaplasmosis of cattle. Anaplasmosis is a very important disease and is present over most of Washington, Oregon, and Idaho. However, little is known about the importance of mosquitoes in its transmission.

Although each disease is often transmitted by a different mosquito species, Culcx pipiens pipiens, Aedes vexans, and especially A, acgypti are known to be important transmitters of several maladies. It would seem likely that mosquitoes are more important in the transmission and maintenance of diseases of man and animals than is presently known or suspected.

NATURAL ENEMIES OF MOSQUITOES

Mosquitoes have many natural enemies. The adults are attacked by birds, bats, dragonflies, pathogenic organisms, and various other animal and plant species. However, none of these have been highly effective. The larval and pupal stages are eaten or destroyed by phants, larval or nymphal stages of other insects, and many species of pathogenic fungi und bacteria ($142,160,189,191$).

The mosquito fish or top minnow (Gambusia affinis (Baird it Girard)) has been used intermittently since 1910 for the control of mosquitoes. Its ef-

[^1]fectiveness as an exterminator of mosquito larvae is determined by abundance of food, kind and amount of vegetation, physical and chemical properties of the water, and other factors. Rees (221) examined the stomach contents of 259 field-collected Gambusia specimens and found more than 50 kinds of plant and animal species. His observations indicated that the selected food of the fish is not always the mosquito larva. The fish is not effective in dense vegetation and often avoids shaded areas. Under most conditions Giambusia cannot be relied upon as a single control agent. However, it can be of much value.

Mosquito larvae are also preyed upon by their own kind. Psorophora ciliata (F.) and P. howardii

Coquillett will readily attack other harvae. Species in the genus Tororhynchites (Megarhinus of some authors) also attack other mosquito larvae, and one species, T'. brevipalpus Theobaid, was introduced into Hawaii by Bomet and $\mathrm{Fu}(37)$ as an aid in the control of Aedes albopictus (Skuse). Members of the midge famity Chnoboridne also feed on mosquito larvac. Bucorelhra underteoodi Underwood, for example, is common in the Northwest and breeds in association with Aedes sierrensis and several other specics. Bomet and Iffukaida (38) showed that the copeporl (Mesocyclops obsoletus (Kioch)) was an effective larval predator in the laboratory. Some plants such as bladderwort (Utricularia) capture and destroy mosquito larvae but apparently not in sufficient numbers to be of much value. Larvae and aduits are also parasitized by various species of mites ($72,91,145$), but they do not appear to affect mosquito populations to any extent.

There are at least three dozen pathogenic and nompathogenic organisms of mosquitoes in the United States. The pathogenic species such as are found in the fungal genus Coelomomyces are of interest in the control of mosquitoes. This group is highly specialized, attacking the larval and adult stages of mosquitoes and a lew other insects. An excellent review by Couch and Emphlett ($\% 8$) points out the possible use of the organisms in mesquito controi. Species of Coelomomyces infect numerous species and several genera of mosquitoes (7) .

Mosquitoes are also subject to protozoan infections. According to Weiser (27S), both Culex and Anopheles have been parasitized by Caulleryella anophelis Hesse and C. pipicntis Bresslau \& Buschkiel. Some species are also attacked by Lankesteria culicis Ross. Several ciliates attach a number of species and genera of mosquitoes. Some of them are
sufficiently pathogenic to have potential value in controlling mosquitoes. Information on many of the ciliated protozoa splecies has been reported by Corliss (76, 77), Kelien et al. (166), and Lipa (183).
Not much is known about viruses of mosquitues. The encephalitis viruses do not appear to affect the adult female mosquitoes that transmit them (260). The same is also apparently true of yellow fever, dengue, and other viruses (255). However, viruses pathogenic to the larvae of certain Aedes spp. have been reported by Clark et ail. (78), Chapman et al. (69), and Kellen et ai. (161, 162).
Little research was conducted on diseases of mosquitocs of the west coast prior to about 1960. According to Kellen (160), for example, there was only one record of diseased mosquitoes in Califormia prior to his observations in 1959. During that period he found a number of microsporidian parasites (Thelohania spp.) attacking several mosquito species. Several new species of Thelohania (Nosematidae) have been described or characterized by Kellen and Lipa (163) and Kellen and Wills (165). Research by Keilen and Myers (164) on Bacillus sphaericus Neide indicates this organism also has certain potential value in mosquito control. Although the bacterium was isolated from larvae of Culisela incidens, it was later shown to be pathogenic to a number of other genera and species. Tanada (264) reviewed the microbial control of insect pests.

Although much remains to be learned about host-parasite relationships, many of the pathogens appear to attack only the larval stage of the mosquito and to be rather host specific. Some of the species also appear to be sufficiently pathogenic to be of interest to mosquito-control agencies, and some of them may prove valuable if methods can be fourd to successfully manipulate them in the field.

MOSQUITO SURVEYS

Mosquito surveys of the areas to be controlled must be made before control measures are begun. They should be conducted by an entomologist or specialist familiar with the biology and habits of mosquitoes. Larvae and adults should first be collected and identified at intervals during the season so as to obtain as much information as possible on the species present, their abundanee, and importance as a pest. Information should be recorded on location
of breeding places, accessibility to them, type of terrain, and other factors that might affect the control program.

Control of important breeding places in the area may be practical before extensive surveys have been completed, but large-scale operations without adequate information can be wasteful and may result in the loss of public confidence and support. Surveys of the area should be repeated in succeeding years
until a thorough knowledge of the problems has been obtained.

EGG COLLECTIONS

The amount of Aedes breeding can be determined to some extent by sampling the top layer of soil and debris for eggs. This method can be of value in special locations but is often more time consuming and less accurate than larval sampling. Several methods have been devised for this purpose. In one method the soil sumples are run through a series of three concentric sereen cylinders, which operate in a water bath, and then through a salt flotation proress in a machine devised for egg surveys by Horslald (146). A vacumm cleaner has also been used to piek up eggs from the soil, and shaker sereens remove the bulk of the soil in equipment described by Fusbands (150). A modified grain cleaner removes the eggs from soil samples in a method employed by Gjullin (108). A microscope is used to recover egrs from the final product in all three methods.

Information on species and their abundance can also be obtained by flooding soil and debris samples from suspected breeding areas. Eggs of many species will hatch within minutes after they are flooded in summer. Samples taken in spring and fall will usually lave to be held at warmer temperatures for a week or more betore flooding. Drying and reflooding may also be neressatry to obtain complete hatching of these samples. Several species that develop in snow water pools produce only one generation a year, and samples taken in the fall may require exposure to cold temperatures in order to hatch.

LARVAL COLLECTIONS

Lavae are collected to obtain information on the locations of breeding places, the species present, and their abundance. A series of dips at each location will provide information on the species, and rounts of the larvae per dip will give an estimate of abundance. Locations of breeding places in rural areas can be recorded on sections of large-scale maps showing the township and the section. Colors or symbols can be used to indicate light or heavy breeding and other important data. A file of such information is a quick reference and serves as a vaiuable record if kept up to date.

Breeding places are generally permanent or temporary. However, the status of a given area
may change over a period of time. Anopheles, Culex, Culiseta, and Coquillettidia develop typically in permanent breeding places and Aedes species in places that are normally flooded only for short periods. Most of these floods occur only once a year and produce one brood of Aedes, but additional hatches of some species may occur if they are flooded more than once as in irrigation practices.

HAND COLLECTIONS OF ADULTS

Collecting mosquitoes while they are attempting to bite is one of the simplest methods of obtaining information on abundance and biting habits of some species. Collections may be made with a ehloroform tube or some other type of killing bottle. An effective method is to collect as many mosquitoes as possible as they alight to bite during a 10 -minute period. Comparative information may be obtained if collections are made in a series of selected locations at the same time of the day or night. A flashlight or other light source will be helpful if night collections are to be made.

If collection on humans is for comparative purposes, the attraction potential of the individual should be determined, since differens individuals do not attract the same number of mosquitoes. The same kind and color of clothing should be worn for each sampling period. The number of mosquitoes collected may also be affected by the dexterity of the collector.
Landing counts on humans are also useful for obtaining information on mosquitoes that attack during daylight. The usual procedure is to count the number of mosquites resting on the front of the trousers at each location. Two people working together may obtain similar information by counting the mosquitoes landing on each other.

Culex and Anopheles adults rest in dark corners of buildings, in subfloor spaces, under bridges, and other similar places during daylight. Collections of mosquitoes from each of such locations with a suction tube will yield information on species and abuudance. One-foot-cube wooden boxes with one side left open have been used to provide uniform resting stations for this type of mosquito survey. The boxes are painted red inside and out and are usually placed on the ground in shaded locations (121). Mosquitoes should be collected in the morning because heat may cause them to move to cooler locations. An 18 -inch square of Plexiglas to which
a handle has been attached can be placed over the open end of the box (12). The mosquitoes may then be readily collected after chloroform has been intro. duced.

Information on some species of Culex can also be obtained by coliceting the mosquitues as they alight on the collector. Other species do not ordinarily leave their shelters before sunset, and they begin to retum to them before sumrise (112). Collections made during the day would therefore yield less information.

TRAP COLLECTIONS OF ADULTS

The New Jersey-type light trip is very useful for sampling populations of many mosquito species. The traps are plated in strategic places throughout the area and are operated one or more nights a week. They shoukd be hun.; in open spaces with the light 5 or 6 fect alove the ground and in locations where the light from the trap will not compete with other lights. The current for operating the light and fan in these traps can be switehed off and on manually. but it is usually more convenient to equip the trap with an electric eye or time clock switch.

If weather conditions vary considerably, the numbers taken in trap collections may be variable and maty not reflect the actual populations present unless the traps are operated more than once a week. Factors affecting the collecting efficiency of this type of trap have been studied by Barr et al. (18). Large numbers of mosquitoes and other insects will often be collected in these traps.

To reduce the time required for handling mosquitoes in large collections, one-half or one-fourth of the eatch can be identified to give reasonably accurate totals (39). The traps often do not give reliable data on the relative aboundance of different species since some are more attracted to light than
others (149). Also, in some arens or at certain times the mosquitoes are not active at night because of lower temperatures.

A portable light trap operated by a car battery may be used where line current is not available (245). Smaller traps of this type are operated by dry cell or 6-volt car batteries (201, 262).

Carbon dioxide is stimulating to many species of mosquitoes, and the numbers taken in light traps can be increased by placing a piece of dry ice on or near a trap. A significant increase in the numbers collected is produced by the release of 125 ml . of this gas per minute (49).

Mospuitoes may also be captured alive in a large trap mounted on a two-wheeled trailer (228). This trap is ar modification of the New Jersey-type light trap, but the mosquitoes do not have to pass through the blades of a fan.

Chamberlain and Lawson (58) designed a rotating trap operated by a gasoline or electric motor with two or four projecting arms to which screen nets are attached. Cloth bags are fastened to the small open end of the fumel to hold the captured insects. The nets may be adjusted to operate at various levels. By mounting one cone of this trap on the feader of an automobile, continuous samples of the mosquito population can be taken. A 2 - by 8 -foot screen funnel trap mounted on the cab of a pickup truck has been used by lrovost (217) to collect mosquitoes.

Several animal-baited traps have been used to collect mosquitoes (186). Data on Anopheles species that do not remain in accessible shelters during the day have been obtained in the Tropics by this method. The Malaise trap has also been used successfully for mosquito surveys (41) and has been more effective than animal-baited traps for some species (85). Four sampling methods to measure Culex tarsalis adult populia'ions have been compared by Hayes et al. (136).

collecting, preserving, and identifying specimens

COLLECTION

Specimens to be prepared for study in the laboratory or to be preserved for a reference collection must receive special attention if they are to serve their purpose.

Larvae and Pupae

A white enamel dipper with a smooth stick about 3 feet long inserted in the handle is a convenient implement for collecting mosquito larvae and pupae. They may be removed from the dipper with an eye
dropper. The tip of an ordinary eye dropper is ustailly too small to suck in full-grown mosquito larvae or pupae. The opening can be eularged by breaking oft the glass tip. The edges should be firepolished.

The larvae and pupae can usually be reared in the laboratory. Since young larvae are often difficult to identify, they should be reared to the fourth instar. Fer correct identification it is often necessary to rear the larvale individualy so that the larvas und papal skins can be saved and associated witii lie emerging iddults.

Adults

The most useful specimens of adult mosquitoes are those prepared as soon as they are hilled or collected. Those reared from pupac should not be killed for about -4 hours after emergence to allow then time to barden.

Chlorolom is widely used as a killing agent for atults. A satisfactory killing container can be made by plasing a layer of eut rubberbands or other small pieces of rubber ahout one-half inch deep in the bottom of a strong glass tube, 1 to 2 inches in diameter. Pour in enough chloroform to cover the rubber pieces and close with a cork or rubber stopper. When the chloroform has been absorbed by the rubber, tamp in a plug of cotton. On top of the cotton place a perforated disk of stiff paper cut to fill the iube tightly. Such is container witl ustally last several days before it needs recharging with chloroform. A few strips of soft tissue paper placed in the killing tube will help lessen danage to the insects.

Another hand-collection device is a suction or aspirator tube made out of a glass or clear plastie tube, one-balf to three-fourths inch in diameter and 12 to 16 inches long. Over one end of the tube is placed a piece of cheesecloth and a rubber tube over that. Mosquitoes can then be sucked into the aspirator tube and blown into the chloroform tube to be killed.

After a few specimens have been killed in the chloroform tube, they should be transferred to a small container. A pill box containing pieces of soft tissue paper placed over cotton is commonly used. The mosquitoes are placed between the layers of tissue. Without the tissue paper the tarsal cliws may cling to the strands of cotton and may be
broken. With proper care the tissue can be used alone. Care should also be taken with the specimens, as scales and hairs needed for identification are easily rubbed off.

Adults to be retained in permanent collections are best mounted on a minuten pin stuck into a small piece of cork, through which is passed a larger pin. A No. 3 entomological pin is generally the best size for holding the cork. The tip of the minuten pin is then inserted through the thorax from the underside of the mosquito.

The mounted specimens should be carefully labeled and placed in a tightly closed insect box. The stored specimens should be protected from insect pests and dampness. Naphthalene, parudichlorobenzene, or lindane crystals or dichlorvos-impregnated strips placed in a periorated container or cloth bag securely fastened in one comer of the insect box will prevent damage from insect intruders. These fumigants must be renewed occasionally.

PRESERVATION

Ethyl alcohol, 70 to 80 percent, is probably most widely used to kill and preserve mosquito larvae and pupac. Hot, but not boiling, water is usually preferred for killing where feasible. Some workers use the KAAD formula (210) as a killing agent. This formula contains kerosene (l part), 95 percent isopropyl alcohol ($7-9$ parts), glacial acetic acid (1 part) , and dioxane (1 part). Whatever killing agent is :red, it should act rapidly or else the larvae may enew of their lateral hairs or other body parts.

The KAAD formula or Celiosolve (2-ethoxyethanol) kills much more rapidly than alcohol but of course not so fast as hot water. If the specimens are to be stored for any length of time in alcohol, about 2 percent of glycerin should be added. Another solution for killing and storage of larvae has been described by Beirne (25). It contains 95 percent ethyl alcohol (8 parts), distilled water (5 parts), glycerin (1 part), and glacial acetic acid (1 part).

Ethyl alcohol ($70-80$ percent) is also probably the most widely used dehydrating material. However, Cellosolve is being used by a number of workers and in many respects is more useful than alcohol since it can be used as a killing, dehydrating, and clearing agent, Proionged breathing of the vapors should be avoided. There are a number of materials
such as sylene, beechwood creosote, phenol, or tactophenol and the oils of cedarwood, wintergreen, and clove that can and have been used as clearing agents. In any case, dehydration and clearing are improved by puncturing or otherwise opening the body eavity of the larvac. However, if this is not done with care, important identification chameters may be destroyed. Aso, most worke:s rut the abdomen just above the eighth segment during cither the cleating or monting process so as to obtain a haterat riew of the siphon and cod segments. Balsam is probably the most widely used momatant; howerer, cuparal, polyinyt alcohol, and similar materials are often used.

Athough there ate munerous procelures for mounting mosquito larvae, the following will serve as examples. Datheson ($/ 30$) wed hot water to kill the tarvar, aleohol, 30 percent through absolute, to dehydrate, and cuparal as the momantant. He also monlioned using Cellosolve as a dehydating and dearing agent and poly viny atcohot as a mounting meditim.

Burton (:Ta) desubed two methods for making momats of mosquito larvae. One techonique includes 2 hours stomag of the larye in a dehydratingflearing mixture consisting of cither 70 ml . of beedwood crosote and 2.5 mi of 9.5 perent ethy akohol or 70 mb . ot absolute phenol and 25 m . of 95 perent alobol. The harvar are then sleared in bechwood crosote for several mimutes and mounted in cither euparal or diaphane. The second method involves the use of hatophenol as a clearing agent and polyving abohol as a dearing agent and permanent mountant.
(amenter and FaC asse (5in) kill harve in Petersen's K.VAD solution, leave them in the solution owemight, and then transer them to 70 to 80 perrent ethyl atrohol. The harvac are rinsed two or three tinses in akohol, dehydrated, cleared for 10 minutes in Cellosolve, then mounted in basam. These authors stated that "water-soluble ehtoral
gum arabic media and polyvinyl aleohol have not proved satisfactory." They also gave directions for prepuration of pupae, adults, and male terminalia. Mieldekatiff (195) also described a method of making permanent momen of mosruito larvae.

Mosquito terminalia may be permanently mounted by clearing first in cold or hot potassium or sodium hydroxide ($5 \cdot 20$ percent), washing out the alkali by screal distilled-water rinses or neutralizing in acetic or other adid, then dehydrating, and mounting with the materiats or by the procedures previously mentioned. Since several species can be separated onty by thameters of the sexual appendages of the mate atult, proper mounting of the terminalia may be very important. Staining of the terminalia renders many characters more easily seen. In fact, some workers consider that staining is required to scparate some closely refated species. Komp (776) described a method for staining, dissection, and mounting of the mate terminalia of mosquitoes.

IDENTIFICATION

The primeipal adult chamacters distinguishing the different mosquito species are the shape, size, coloration, and sealing of the different body parts. A binoctar dissecting microscope with a magnification up to about $85 \times$ is necessary for satisfartory examimation. For examining certain larval parts and slide mounts of male terminalia, a microscope with a magnification up to $400 \times$ is often required. Good lighting is needed when high magnification is used.

In the field a hand lens with a magnification of 10 or $15 \times$ is satisfactory for provisional identifications. After some experience one may be able to identily some of the species with a hand lens or even with the unaided eyc. The keys in this bulletin, bgether with the illustrations, should help to identify most mosquito species.

HISTORY OF MOSQUITO CONTROL

The mosquito problem along the Columbia and Willamette Rivers has always severely affected the (ity of Portand, Oreg. In 1924 some of the civicminded eitizens requested assistance from D. C. Mote, then head of the Entomology Department of Oregon state lniversity. His advice and gudance at meetings of leading citizens of Portland and

Multnomah County helped to develop what eventually became an effective community mosquitocontrol operation. Note also brought a supply of the mosquito fish (iambusia affinis) from California and released them in the Portland area in March 1926.

IL. I. Riddel, a resident of Skamania County,

Wash., was one of the pioneers in mosquito control in the Northwestem States. His interest in the mosquito problem in this country led him to correspond with 1t. (6. Dy:ir of the Smithsonian Institution. lyar, who hatd collected mosquitoes in Oregon in 1916, provided him with information on the biology and breeding places of the important speceies in this area. In 1927 Riatdel started a smatl! mospuito-control operation in Skamania County, and in 1030 he was in chatge of tield operations for the Porthand Chamber of Commere Mosquito Control ('ommittee. This committee, hetded by Charles Stidel, consisted of the Oregon State entomologist and repesentatives of the eity of l'ortland, Mufthomah County, ated Jantzen Beach. It was responsible for raising fumds for the control program for more than 10 years.
(i, H. Bradley of the Former Bureatu of Entomology and Plant (uarantine, l's. Department of dariculture, visited the lower Columbia River in 1029. He colleeted some of the more important pest speries and made recommendations that stimulated orgmizedation.

Because little was known of the biology and methexts of mosquito control in these western states, the I's. Department of Agricultme was asked to undertake a researeh program. In 1030 Congress appropriated funds for these investigations.

In 19:30 W. V. אing of the former Bureau of Entomology and blant Quamantine opened a labomatory in Porthand and mate a 2 months' survey of the lower Cohmbia River and eastern Oregon. He examined many breeding phaces in several counties along the Columbia liver and made hundreds of larval and adult pollections of mospuitoes for iden-
tiffeation. Aerial pictures of mosquito-breeding areas bordering the Columbia River near Portland, which were made under his direction, were also very useful in investigation and control operations.

An allotment of funds from the Civil Works Adiministration (251) in 1933-34 made it possible to carry on a liuge brush-clearing program, which facilitated mosquito control in many arcas. This work was conducted in Multnomah, Columbia, and Tilhmook Counties in Oregon and in Litsap, Skamania, and Clark Counties in Washington.

An emabling att for the organzation of mosquitoabatement districts in Oregon was passed by the State legislature in 1940. Because of opposition in many areas of the state to any increase in tives at that time, the act stipulated that only counties hatving an assessed valuation of $\$ 100,000$ or more rould form abatement districts under this law. This law was amended in 1959 so that any county can now organize a mosquito-abatement district under its provisions. A state mosquito-control law was passed in Idaho in 1959 and a Washington State law of 1957 wats amended in 1959.

Organized mosquito control has been cirried on contimally in Portland since 1933 and soon after that throughout Atultnomah County. Major mos-quito- and vector-control organizations in 1965 totaled alrout 15 in Oregon and seven in Washington. Idaho had only one organized but inactive district. There were, of course, numerous small communities doing continuous or intermitent control work.
The mosquito-control investigations originally undertaken by the U.S. Department of Agriculture at Porthand in 1930 were transferred to Corvallis, Oreg., in 1946 and continued there until 1968 , when the station was closed.

COMMON TYPES OF CONTROL PROBLEMS

Different types of mospuito-control problems orcur in the Northwest. In some areas they are caused by flowdwater. in others by irrigation, and in some by show water pools. Moscuitoes that breed in permanent or semipermanent pools will usually be found in most localities.

FLOODWATER

Aedes vexans and A. stichicus, which develop in large numberss along the borders of the Columbia and other rivers, create one of the most important
mosquito problems in this region. The larvac hateh in the spring or early summer when the streams overflow areas such as willow and cottonwood swates where the eggs have been laid. The eggs of these species are dormant when temperatures remain below $45^{\circ}-50^{\circ} \mathrm{F}$. ($/ 1 / \bar{\gamma}$). Partial domatney of the eges may continue until some time in June so that only some of the eggs are hatehed by floods oceurring in April or May.

In some seasons the larger rivers may rise, recede, and rise again to cover the same egg beds and produce an additional hatch. In other scasons two or
three successive rises may oecur, each of which is higher than the last. Females that emerge in the first hatch may lay eggs that will hatch in the second or third rises of the river. The Columbia may rise from its nomal level of about S feet to 24 or eren to 30 feet during a flood crest. Most of the eggs are lad between the 10 - and 20 -foot levels, and some of the eggs that are not flooded during a series of low flood erest years remain viable for as long as 4 years (104).

Lame tedes cexans and A. stictious breeding areas have been managed effericatly by controlling water levels otwore the Bonneville Dam. Dikes have prevented fooding in other areas. Clearing of brush has been of value in some spectal loeations. However, eontrol of the major section of these types of breeding areas must often be accomplished with insecticide spays against the larva or with prehateh insecticide applications (281). These applications to dry potential breding areas can be very hazardous to wildlife and mast be avoided except where the need is folly justified by the magnitude of the mosquito problem.

IRRIGATION WATER

Breeding phaces for several mosquito species are provided be imigation water. Aedes dorsalis, A. melanimom, 4. rexuns. and A. nigromaculis are among the most important species that may develop when water is applied and stands for a week or 10 days. Other species such as (yater tarsalis, Culiseta inormata, and Anopheles freeborm may be produced if water remains for longer periods. Tremendous numbers of mosquitoes breed in many areas where uncontrolled irrigation is practiced. Airplane ap. plications of insecticide sprays to control the larvae or adults that have emerged are effective but are not a substitute for proper grading.

On small farms the careful use of water so that it does not stand for more than 4 or "3 clays is effective in preventing development of moscuitoes. Applieation of insecticides may be necessary for breeding places that cannot be drained. For infomation on mosquito prevention on irrigated farms, see Agriculture Handbook 319 (275).

TRDAL WATERS

Acdes dorsalis is the only species that can breed in large numbers in both fresh and satt water in the

Northwest. The larvae develop in some constal areas where potholes are filled by the higher tides or where water levels fuctuate in permanent or semipermanent pools. Leveling, drainage, or similar practices arn elfective in preventing breeding, but such areas must be properly maintained. Insecticide control of the larvae may be necessary where these methods are inadequate or ineffertive.

SNOW WATER

In many high mountain meadows and also at lower levels mosquitoes breed in pools caused by snow melt (fig. i). Development may require several weeks at higher elevations. Aedes commmais, A. herodontus, A. fichii, A. increpilus, and A. cinereus are the most common species found in these locations. Tsually there is only one generation per year, but the large numbers that may be produced are a severe annoynnee to those who are working or seeking recreation in these areas.

Blimination of breeding areas by dramage or maintenance of constant water levels is practical in some situations. Insecticide applications might have to be made by hand or by plane because of inacessibility to heary ground equipment. Prehatch applications of insecticides are used in some locations but should not be considered in areas that drain intolakes or streams.

Relief from atult mosquito populations is often obtained with airplane sprays, but if the mosquito populations are widely distributed, even large-scale insecficide applications may not provide adequate protection (2SO). Some protection may be obtained for smaller areas by applying residual sprays to the vegetation and ground around the area to be protected. However, like prehatch applications, such treatments can be a potential hazard to wildife (144). Hand- or power-operated aerosol equipment can also provide protection for several hours.

PONDS AND ARTIFICIAL CONTAINERS

The mosquitoes that lay their eggs on the water are usually found where water is present continuously during the season or at least for several weeks. Such locations include natural permanent ponds, \log ponds, semipermanent ponds of various types, and artificial containers. Culex tarsalis, C. p. pipiens, C. peus, Anopheles freeborni, A. munctipennis, Culisela incidens, and C. inomala are commonly

Figure 5.-A, Snow-covered mosquito breeding site; B, same arear after snow fad melted Mospuitoen depoit pr-2716 eggs in moist soil after water is gone.
found in such places. C. tarsalis and C. p. pipiens develop in large numbers in log ponds (fig. 6). C. p. pipiens also develops in large numbers in sewer drains, septic tanks, and water leit in artificial containers. Coquillettidia perturbans is found in permanent water in swamps and marshes that have emergent or floating vegetation.

Insectivide sprays are often used effectively to control most of these species, except those breeding in artificial containers. Cesspools shouk! to kept covered, and water stamding in burels, cans, old fires, and other receptades should be emptied. Larsac of (e, perfathans are difiewt to control because they are atfached to the roots of plants. lusecticide gramules are sometimes applied, but eliminating host phants may be the most useful procedure to control this species.

TREE HOLES

Aedes sierrensis, A. hendersoni, and Orthopodomyia signifera are the only species that breed in tree holes in the Northwest. They also may be found in other places. Occasional heary breeding of A. sierrensis

$15-4717$
Figure fi.- Dipping for mosquitoes in large log pond in Oregon.
has been noted in artificial containers, especially rubber tires, though usually not in large numbers. One application of 5 percent DDT spray in such places has prevented development of A. sierrensis for 3 years ($21 \overline{0}$).

CONTROL OF MOSQUITO LARVAE

ELIMINATION OF BREEDING PLACES

Surveys made in conncetion with moscuitocontrol projects should include an engineering survey to determine the possibility of eliminating mosquito breeding places. Drainage, diking, filing, or maintenance of water levels often serve as permanent solutions to the problem. A survey should provide information on the leasibility, cost, and legality of all such improvements. Easements on propertics involved may also need to be obtained. The availability of funds and the relative cost and effectiveness of other methods of control will then determine where permament control of this type can be practical.

Drainage can be a practical method of reducing breeding areas in many places. It has been used effectively to control Aedes dorsalis in tidal marshes of some coustal areas. Potholes filled with water at high tides in these marshes cun be drained by digging interonnecting ditches that let the water drain into main chamels. Such ditches may need cleaning every year or so. Drainage has also been successfully used to remove breeding places in some mountain
meadows (fig. 7). One such area has remained free of mosquitoes since 1935 , when the ditches were blasted with dynamitc. Little or no maintenance of ditches has been required since. The continnous functioning of this system may have been due in part to the dense root system of the vegetation in this area, which helped prevent erosion of the ditchbanks.

Breeding was also prevented along the margins of a spring-fed lake by a 3 -foot dam that maintained a constant water level. Maintenance of water levels in some areas at lower clevations may permit breeding by Culex and Anopheles larvate if water margins are shallow and grassy.

Diking is a very efiective method of controlling breeding places that are flooded by rising rivers. However, it may present financial problems if the reclaimed value of the land is not sufficient to defray a part of the cost.

The effects on fish and wildlife and soil conservation should also be considered before any permanent control measures are begun. In some instances the rossibility of soil crosion and game reduction may be sufficiently important to justify temporary control
measures with insecticides rather than elimination of the breeding area.

Breeding of some mosquito species can also be prevented by eliminating artificial breeding places such as tin cans, barrels, old tires, and unused cisterns and wells and by properly covering septic tanks.

USE OF INSECTICIDES

Where it is not feasible to diminate mosquito breeding plates, the larvae may be controlled with insectieides. The choies of insecticide depends on many factors such as cost, effectiveness, and degree of potentinl hazard to persons, livestock, wildlife, or beneficin! insects. Status of mosquito resistance may also be a factor.
Dita on the amount and kinds of materials ased for mosquito control in the Pacific Northwest are available only for Oregon. A compilation of data on larvicides, adulticides, and prehatch treatments in
actual pounds of toxicants used in 1966 showed the following:
Insecticule Malathion Pounds
D15T 16,758
Fenthion. 4,781
Heptichlor. 3, 194
Partathion 1,005
Dichlorvos (DDV1) 860
Letimane $38 \cdot \mathrm{~s}$ 221
Lindane (includes BHC). 182
Abate 123
Nated 72
Diaziaon 43
Romel 40
Thanite 40
Pyrethrins. 16
TDE (DDD) 12
Alirin 12
Diekdrin 2
Dursban 2

In 1963, the first year in which data were compiled, 42,518 pounds were used. DDT represented about S0 percent of the total for 1963 but only about 17 percent for 1960.

Larvicides may be applied undiluted, as solutions, aqueous suspensions, dusts, or granular formulations. The choice of preparation depends on the purpose intended, presence or absence of desimbie plant and animal organisms, type of vegetation, and other factors. from the standpoint of burning of vegetation and spotting of cars, houses, or other objects, aqueous suspensions are usually less hazardous than oil spmys. However, oil spays are generally less hazardous to fish or fish-food organisms, except for some surface-feeding species. Gramules are usuatly the most costly to use.

The choice of formulation and the amount of toxicant per are depend to some extent on such factors as water depth, amount of aquatic vegetation, and degree of insectiede resistance, if any, Gmanar insecticides easily penetrate vegetation ($90,97,98$, 232), but insecticides in deep water may be diluted too much. 'Therefore, an oil formulation that fioats on the water would probably give better results, though oil might kill the vegetation. Some preliminary experiments may be necessary, but generally one should use the lowest amount of insecticide and the most effective formulation to do the job. Research suggests that smaller amounts of sprays may be required in the future ($170,157,256$). In fact, low-volume (1 10 fluid oz. per acre) spays appear to be not only more effective but less costly than conventional sprays (194).

CONVERSION TABLES FOR LARVICIDE APPLICATIONS

Mosquito-control workers frequently have to convert larvicide applications from pounds of toxicant applied per aere to parts of toxicant per million parts of water or vice versa. Tables 2 and 3 should prove helpful. They were prepared by the late W. W. Yates, Entomology Research Division, and later modified slightly by C. N. Smith, formeriy of this Division.

Table: 2.-Equivalent amounts of insecticides applied to flooded areas based on pounds per acre

Pounds ner acre	Girums per are	Grams per 160 square feet.	Parts per million (wt./wt.) in water	
				I inch deep
0.005.	2.27	0.0052	0.0184	0.02208
. 010.	4.54	. 0104	. 00368	. 0.4416
. 015.	(3.80	. 0150	. 00552	. 0662
. 025.	11.3 \%	. 026	.00020	. 110
. 050.	22.68	. 052	. 0184	. 221
. 075.	34.02	. 078	. 0276	. 331
. 10	45.36	. 104	.036S	. 442
. 15	68.04	. 150	. 0552	. 662
. 20	90.72	. 208	. 0736	. 883
.25	113.4	. 20	. 0920	1.10
. 50	226.8	. 52	. 184	2.21
.75	340.2	. 78	. 276	3.31
1.00	453.6	1.04	. 368	4.42
1.25	507.0	1.30	.460	5.52
1.5	680.4	1.56	. $\frac{5}{} 2$	6.62
2.0	90.2	2.08	. 736	8.83
2.5	1,134.0	2.60	. 920	11.04
3.0	1,360.8	3.12	1.104	13.25

Table 3.-Pounds per acte equivalent to parts per million (wt./ut.) of insecticides applied to flooded areas

Parts per milion	Pounds peracre in water		
	1 inch deep	4 inches deep	12 inches deep
1.0.	0.226	0.904	2.716
. 9.	. 203	. 814	2.444
. 8.	. 181	. 723	2.173
. 7.	. 158	. 633	1.901
. 6.	. 136	. 542	1. 630
.5.	. 113	. 452	1.358
4.	. 090	. 362	1.086
. 3.	. 068	. 271	. 815
. 2.	. 045	. 181	. 343
.i.	. 023	. 090	. 272

CONTROL OF ADULT MOSQUITOES

Effective control of adult mosquitoes in the open and in buildings can be accomplished with aerosols and space or residual sprays. Window screens, repellents, and bed nets also provide effective protection from mosquito annoyance.

Very smail dosages of some of our presently available insecticides are needed for outdoor spraying and some of these can be safely sprayed over inhabited areas. Control of the adults is often more expensive than laveval control, since atults disperse over wide areas aud for considerable distances from their breeding places. However, when the adults are concentrated in small areas, control of adults is preferable to larviciding.

CONTROL IN BUILDINGS

Mosquitoes can be largely kept out of dwellings by screening all windows and air vents. Screen size should be about 18 by 18 mest, or smaller (θ).
terosols and sprays may be used to kill mosquitoes in buildings. Droplets having a diameter of 0.1 to 50 microns have been classed as aerosols and fogs and those of 50 to 400 microns or larger have been considered as sprays. Pressurized containers sold to control flying insects usually contain pyrethrum or certain other insecticides and can be used effectively. Sprays produced by hand or poweroperated equipment may also be used, but the larger droplets will settle much more rapidly and are thus lesselfective.

Residual sprays applied to the interior of duellings are very effective against adult mosquitoes. DDT applice at about 200 mg . per square foot has been successfully used in worldwide control campaigns against disease-carrying mosquitoes. Generally the spray has been applied as an emulsion at the rate of 1 gallon of 5 percent DDT for each 1,000 square feet of surface. Such applications have been effective for several months.

CONTROL OUTDOORS

Pyrethrum was one of the first materials found to be effective for controlling adult mosquitocs out-
doors. Spraying the ground und vegetation with the insecticide gave protection against mosquitoes in studies made in New Jersey in 1936 (102). New materials and methods now make it possible to destroy mosquiters over large areas much more effectively and at a lower cost.
As space sprays or fogs, DDT has been applied at 0.2 pound per ace and malathion at 0.1 to 0.5 pound per acre (119). Davis and Gahan (80) found that fenthion and maled were more effective than these materials against the DDT- and malathionresistant salt-marsh mosquito Aedes taeniorhynchus. Mosquitoes will rapidily infiltrate sprayed areas if large and widespread populations are present. Respraying at 2 - to 4 -week intervals is often necessary under these conditions (280) but only should be done when needed.

Low-volume ($1-10 \mathrm{oz}$, per acre) aerial insecticide sprays appear promsing for controling adults as well as larvae ($\overline{5}, 119,120,172,197,206)$. The amounts needed in future spray operations will probably be considerably less than those now used.

Mosquito annoyance around buildings in unprotected areas can be reduced by residual sprays applied to the grass and other vegetation to a height of several feet (38). During periods of flight activity such treatments may provide poor protection since infiltrating mosquitoes may cause considerable annoyance before they are killed. Good control has been obtained in Oregon against snow water Aedes with both DDT and lindane (144).

Aerosols and fogs are widely used to control adult mosquitoes. These may be produced by a variety of hand-carried, automotive, and acrial equipment. The more commonly used insecticides are malathion and naled. They are prepared mostly as diesel or fuel oil solutions, but other formulations are sometimes used (81,220). Although operation data vary with the machine and materials used, some of the larger fogging units discharge at a rate of 40 gallons per hour.

Aerosol and fog droplets are very small and may remain airborne for long periods after they are emitted. Effective control requires movement of the insecticide clouds by air currents in the desired
direction at speeds not greatly exceeding about 3 miles per hour. High winds will curry the insecticide away before it can destroy the mosquitoes. The ground temperatare should be as cool as or cooler than the air temperature since the droplets will rise rapidly out of range if the temperature conditions
are reversed. Favorable weather conditions oceur more frequently during the late evening and early morning. The wind direction, an important limiting factor with ground equipment, is more easily avoided with aiplane applications since crosswind applications can be made.

NEW MATERIALS AND METHODS IN MOSQUITO CONTROL

The possibility of controlling inseets by introducing sterilized males into matural populations was suggested by Knipling (174) in 1937 38. The first suceessiul eradication experiment utilizing this method was reported for the screwworm fly (Cochliomyia hominiworar (Coquerel)) by Baumhover et al. (20). A scond and even more important successful eradication venture was reported for the same insed by linipling (175). In the serewworm eradieation experiment and progran, male flies sterilized by gamma irradiation were released in suffierent numbers to ontnumber widd males. The eggs of the normal famales that mated with the sterilized males disl not hatel, and complete eradication of the fly was aecomplished (175).

The release of male mosquitoes sterilized by this method in field experiments with Acdes acoypti (196) and Anopheles quadrimaculatus Siy (277) has so far been unsucessinl. Dame et al. (70) conducted extensive liek studies with A. quadrimaculabus and concluded that the laek of success was due to behavioral deliciencies in the colonized males released. lurther studies on mating behavior such as those conducted by Tantawy et al. (265) with Anopheles pharoensis Theobald may provide the information needed for the successful use of this method.

Data to support the possible use of cytoplasmic incompatibility as a means of eradication of Culex pipiens pipiens have been reported by Barr (17) and of Culex pipiens fatigans Wiedemann by Laven. (177). In this technique incompatible strains are crossed. Eggs produced in such a cross result in progeny that die in the embryonic stage.
Much research has been carried on in search for chemieals that can be successfully used to sterilize insects. luformation on insect chemosterilants has been reviewed by Smith et al. (246). Further research is needed; however, controlling mosquitoes
by the sterility principle may hold promise for the future, as shown by studies by Patterson et al. (209).

Comparatively little research has been devoted to the role of attractants in mosquito behavior, but some intriguing evidence of the importance of attractants has been developed. There is evidence that female mosquitoes may be assisted in finding their blood host by eertain chemicals emanating from the host. Other chemicals may lure opposite sexes together and thus facilitate mate-finding. Still another set of chemicals may attract female mosquitoes to their oviposition sites.
l-Lactie acid, emanating from the human skin, is attractive to females of Aedes acoypli that are seeking a blood meal (3). Lysine and alanine have also been reported attractive to this and to certain other species (44).

Females of Culisela inornala produce a substance that is attractive to males (171), and males of some species of Culex produce a substance attractive to femaies (115). Attraction of males to females may be more usual. Thus, females of several kinds of insects, including certain flies, moths, bees, and cockrouches, are known to release chemicals that lure the males $(155,154)$. However, the presence of this lure may be difficult to demonstrate. For example, female house flies prodeced a substance that fured males into an olfactometer though it was not very active. More attraction occurred when the extracted material was presented in "pseudo-flies," or knots of string about the size and shape of a female fly (234).

Ovipositing mosquitoes prefer waters containing certain chemicals (or gases) to waters otherwise similar but lacking these substances (106, 109, 110). Further research might provide stronger attractants that could yield new approaches to mosquito control.

New developments pertaining to the use of lowvolume acrial applications of insecticides in mosquito control have been discussed previously (pp. 21-22).

INSECTICIDE DISPERSAL EQUIPMENT

Many types of hand-operated, automotive, and nerial equipment are avaitable for dispersing insecticides for the control of mosquitoes. Publications by the Li.S. Department of Agriculture and the American Mosfuito Control Association provide much information on this subject (6,5). The liquefied gas aerosol bomb is very useful for killing nospaitoes in buidings. A simple dispenser for granular insecticides consisting of a shouker-supported bug and comected tubular wand is also very useful (2/S). Two types of compressed-air guns have been developed for distributing granules from whiches ($/ 68,2 / 9$). The maximam effective throw is approximately 40 feet for 16 -mesh sand core granules.

Motor-driven hytmalic and compressed-air sprayers mounted on piekup trucks are widely used for applying larvicides and residual sprays to vegetation. [saak and Hong (I52) obtained constant autornatic pressure for compressed-air sprayers by installing a different type of compressor. In mist blowers the spray is released into the airstream of a fan, which imparts greater velocity to the droplets so that wider swath widths can be covered. This type of equipment is used for lavviciding and for residual and space-spray applientions. There are also a number of power-driven mist spriy machines and dusting machines that can be earried by hand or on one's buck. They ean be used for larviciding or adulticiding and are very useful for small jobs such as around parks and compsites.

Aerosols or logs are produced in some machines by dry heat and in others by steam. Some machines use compressed air for this purpose (151, 279). Most of these are ciesigned to be transported by vehicle or by boat, but small types are carried by hand. Aerosols may be produced by introducing the in-
secticide solution into the hot exhaust gas of a motor vehicle (155). The exhaust method has also been used to disperse aerosols by plane (241).

The use of airplanes represents a very effective and economical method of distributing insecticides where sufficient area is boing treated to justify their use. In Cilifornia, which uses more mosquito-control insecticides than any other State, the materials are applied mostly by airplane. Information on aireralt use in Califomia mosquito control such as kind of airplane, hours flown, acres treated, cost per acre, and other data can be found in the California Mosquito Control Association Year Book (48).
Several different planes ranging from Piper Cubs to the twin-engined $C-47$ have been used. A jetpropetled plane has also been found to function effectively for this purpose (185). Much mosquitocontrol work has been done with the PT-17 Stearman plane, which became available as surpius after World War II. Commercial planes built for spraying and dusting have also been used.
In nearly all these planes the spray is delivered from nozzles spaced at intervals on a spray boom, which is attached to the underside of the wings. A single rotating brush turned by a free propeller has also been used to produce the spray. The insecticide enters the brush from a pipe projecting beneath the aircraft. Insecticide granules have been applied from planes with various types of distributors, but improved distribution has been obtained with wing airfoils and conveyor belts that move the granules from the hopper to the wing (278, 282).

Helicopters are useful and highly effective in many locations, but so far they have proved too expensive for general use. It is very likely that the kind or type of plane and equipment used will change significantly because of changes in the amounts of insecticide applied and improvements in formulations $(5,194)$.

MOSQUHTO RESISTANCE TO INSECTICIDES

The resistance of Culex tarsalis to DDT in Oregon Was apparently the first case of mosquito resistance reported in the Northwestern States (Eddy et al. 86). Resistance at that time was apparently confined to one area, but since then it has been found in several other areas of Oregon. Some slight resistance to DDT, dieldrin, and heptachlor has also been found in Culer pipiens pipiens and C. puw but
not in other species. Several reports have been reveived on resistance of C. tarsalis to malathion, but so far there has been no real resistance to this or other organophowhates. However, in view of developments in other States, resistance to at least some of the materials could be expected.

Mosquito resistance to insecticides is apparently greater in California than in any other State. Re-
sistance of Culex tarsalis to DDT was reported by Smith (2/77). Resistance in both Culex and Aedes was noted by Gjullin and Peters (118) and involved DDT, adria, heptachlor, toxaphene, and lindane. Resistance to these materials forced mosquitocontrol agencies to switch to organophosphate compounds. However, by 1956 C. tarsalis had developed considiorable resistance to malathion (Gjullin and Isaak 108). At that time there appoared to be no resistance of Aedes to malathion or Aedes or Culex species to parathion or EPN. However, resistance of Aedes migromaculis to parathion was reported by Lewallen ($17 S$) aud Lewallen and Brawley (179) and to malathion, methyl parathion, and lenthion by Brown et al. (46) and Gillies (101).

In tests with organophosphorus-resistant Aedes nigromatalis in California, Lewallen and Peters (180) stated that "Dursbun offers the best prospect of reestablishing control of A. migromaculis resistant to ethyl and methyl parathion and also fenthion." These authors further stated that "there appears to be some cross-resistance to Abate in this species. However, it would not seem unreasonable to assume resistance to these materials will develop if they beeame widely used."

Florida has aiso experienced a mosquito-resistance
problem, especially the resistance of Aedes laeniorhynchus to the chlorinated hydrocarbons (167). According to Rogers and Rathburn (238), by 1955 several Florida mosquito-control districts were reporting failures with BHC and dieldrim, the most widely used substitutes for DDT. Resistance of A. taeniorhynchas to malathion (sixfold to fourteenfold) was reported by Glancey et al. (118). This apparently represents the first confirmed resistance of mosquitoes to an organophosphorus compound in Florida. Further resistance of A. aeniorhynchus to malathion was reported by Gahan et al. (96).

Resistance in one or more mosquito species of the Northem States has developed at a slower rate and is less extensive than in California or Florida (263).

Some progress has been made in nulifying organophosphate resistance in mosquitoes. For example, resistance to malathion in Culex tarsalis was found to be due to an increased ability of resistant strains to detoxity the insecticide (33). The effect of resistance of this species to malathion has been reduced and the usefulness of malathion restored about fiftyfold by adding materials that block or interfere with degradation of the toxicant (219, 214). Although further resench is needed before their practical use can be ascertained, the information is encouraging.

MOSQUITO REPELLENTS

Research on mosquito repellents during and immediately after World War II by the U.S. Department of Agricalture (272), chemical industries, universities, and others resulted in many new materials that were far superior to citronella oil. Two of the most eliective materials were 2-ethyl-1,3n hexanediol (122) and dimethyl phthalate (200). The more effective mosquito repellents tested at the Orlando, Fla., laboratory during 1942-47 were reported by Travis et al. (27O). Those selected for use on man have been discussed further by Travis and Smith (27). Data on the repellency and insecticide toxicity of several thousand compounds have been compiled by the U.S. Department of Agricultare (169,274).

This research resulted in the synthesis of many new compounds (184), of which N, N-diethyl-m-
toluamide (later shortened to deet) proved outstanding. The effectiveness of this and other materials as skin and clothing treatments was reported by Gilbert (99) and Gilbert et al. (100). Diethyltoluamide is more effective against a wider range of species than either 2-ethyl-1,3-hexanediol or dimethyl phthalate. During World War II the Armed Forces used a preparation containing more than one repellent, mainly because the mixture was effective against a greater number of arthropod species than any of its ingredients alone.

Repellents in current use are irritating to the cyes or more tender areas of the body. They also may damage or affect paints and some synthetic products but not cotton or wool. Many can be used on the skin or outer clothing and may be satisfactorily applied in sprays or rubbed on by hand. Cloth-
ing properly impregnated with solutions or emulsions of repellents will usually give several days' protection against mosquitoes. Some of the commercial
preparations are available in convenient dispensing containers such as those containing deet and ethyl hexanediol.

PRECAUTIONARY MEASURES IN USING INSECTICIDES

The insecticides used to control mosquitoes are similar to other chemicals in that if used improperly they may be injurious to many living organisms. Selection of in insecticide should be made only after fully evaluating its potential efferts against the phant and animal species present in the area to be treated. Both immediate and long-range effects should be carefully considered. Excessive amounts should never be applied. In fact, a dosage lower than ordinarily recommended may often prove adequate.

Mosquito control can be effectively and safely achieved if sufficient precautionary measures are taken. Reading the label and following instructions are important. However, anyone planning to use insecticides in mosquito control should become thoroughly familiar with the product he plans to use. He should obtain as much information as possible about its potential efiects on the equipment operator, the exposed public, pets, livestock, fish and wildlife, and beneficial insects including bees.

INFORMATION ABOUT INSECTICIDES AND POISON CONTROL CENTERS

In most States, information on the toxicity, hazards, and safe use of insecticides can be obtained from the State Board of Health, State Department of Agriculture, or State experiment station, For example, data in Oregon on insecticide identification, foxicology, precautionary measures, protective devices, and so forth are arailable from the occupational heatth or hygiene sections of the State Board of Flealth. Also, excellent and often complete information on specific chemiculs can be obtained from the manufacturer.

Valuable information is available from various Federal agencies. The U.S. Public Health Service has information and facilities for handling actual or suspected cases of poisoning at Wenatchee, Wash., Atlanta, Gar. and Phoenix, Ariz. Poison Control Centers have been established in several cities throughout the country. A "Directory of Poison

Control Centers," U.S. Food and Drug Administration publication (FDA) 72-7001, may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. The publication "Clinical Handbook on Economic Poisons" by Hayes (137) includes many of the more commonly used insecticides. Although it was prepared primarily for the guidance of physicians, it should prove of value to mosquito-control workers and others involved in the use of chemicals.

An up-to-date list of approved protection devices for various insecticides can be obtained from the Entomology Research Division, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Md. 20705. Such a list is important because some equipment will protect against some compounds but not others.

KEYS AND NOTES FOR MOSQUITO IDENTIFICATION

A total of 53 species of mosquitoes, representing six genera, have been collected in Washington, Oregon, and Idaho. Keys for their identification are based on characters provided by many earlier taxonomists who have studied these groups, by more recent contributors (24, $\overline{57}, \mathscr{2 7 6}$), and by the
writers. Only the more essential characters for each species have been included, and recent synonyms are given.

The names and locations of the characters used for identifying these species are shown in figures 8 to 17 .

Figure !).-Mosquito head and thorax, lateral view. he, hypostigial spot of seales; pos, postcoxal scale pateh; cx, cosul. Selerites of thorix: 1, Anterior pronotum; 2, proepistermum; 3, postpronotum; 4, mesunepisternum; 5 , prealar area; 6, sternopleuron; 7, mesepimeron; s, metepisternum; 9, metasternum; 10, metepimeron; 11, postnotum; 12, meron. Setae: apm, anterior pronotal; $p s$, postspiracular; \quad ph, postpronotal; spen, spiracular; $p s p$, prospistain,
postspinacur; $z^{m e}$, prealar; stp, sternopleural; ume, upper
mesepimeral; $/ m e$, fower mesepimeral.

Figure S.-External characters of female mosquito.

Figure 10.-Aetes wing: $H-4$, humeral cross vein; C, costa; $S c$, subcosta; Pt, petiole of vein 2; 1, 2.1, $2.2,3,4.1,4.2,5.1,5.2$, and 6 , longitudinal veins and their branches.

Figurs 11.-- itedes male genitalis, dorsal view: $B S$, hasistyle; Sc. serale; BL, bestal lobe; Mes, mesosome; $L 9$. lobe of ninth tergite; 97 , nintl tergite; DS-C, dististyle chaw; $D S$, dististyle; A L, apien tobe; F, filameat of chaspete; (Copp $_{\text {, }}$ elaspeite; loN, tenth sternite; l^{\prime}, paramerc; $B I^{\prime}$, basol plate.

Flouns: 12.-Aedes thorax, ventral view: $O C$, occiput; $A P N$, anterior pronotum; $P P N$, posterior pronotum; $P B S$, probasisternum; $S P B$, sternoplenral bridge; $P M M$, postmetasternal membrane.

Figute I3.--Side of thorax showing spating: A, tedes imphicatus; B. Aedes communis.

Figule 14.-dedes larva hemi and thorax. Head: 3, Antennal tuit; 4, postclypend hairs; 5 , upper head hairs; 6 , lower head hairs; 7, preantennal hairs. Prothorax (Pro): 1-3, Sulbmedian hairs; $4-7$, dorsal hairs. Mesothotax (Meso): I- \boldsymbol{i}, Dorsal hairs. Metathorax (Metil): $1-7$, Dorsal hairs.

Figute $15 .-$ iedes harva terminal segments.

Figure 17.-Anopheles harva termimal segments VII, VIII, and IX.

Figure 16.-Anopheles larva head and thorax.

KEYS TO GENERA

ADUL's

1. Sentellum tribobed with margimat setae on tohes only; palpi of females much shorter than proboseis 2 scutellans prescent shaped with marginal setate evenly distributed; palpi of females almost as long as pro-
loweis
2. Mesombtum with marrow paired white lincs, converging half lines, am white line around lateral margin ---- Anopheles
Aesonotum without this combination of white lines . Orthopodomyia 3. Postsprathar bristles present. 3
l'ostspimetular bristles absent stedes
3. Sumatuar bristles presend 4
spiracular hristess alsent j
j. Wing seales broud, light and dark intermised
Соquillottidio
LARYAE

- Bighth spament without dorsal siphon or respiratory tube Vighth segment with elongated siphon or respiratory tube Anopheles

2. Air tube without perten 2
Lur tabue with perten 3
3. Distal hath of air tube atfenated with saw-toothed projection at tip adapted for piereing pants. 4
Air luthe cylialsieal and elongated Coquillettidia

- . . dir tube with rentral tufts at base . Orthopotomyia
dir tube with lufts willim pecten teeth or distal to them Culiseta

5. Air tube with sereral pairs of ventral and weeasional latemal tufts, some of which may be represented by single hairsNir ube with single pair of ventral fufts ${ }^{1}$${ }^{2}$ Aetes trichurus ano has several tufts on dorsal and lateral surfaces of air tube.
Genus ANOPHELES Meigen
Keys to Species
ADULTS
6. Wings with yellowish-white spots on costal margin Winges willehat spots on costal margin 2
7. Patin white hated; wings with pale spots on forks and on stem of vein 5 3
preudopunctipentis francisconus, p latpi unbanded; wing seates on rein 5 dark 31
8. Wings with pateh of silvery or bronze seales at apex 32
Wings dark sealed at apex 4
9. Wings with seales ratised on stem of vein 2 between dark spot ind fork frecborni, p. 30
Wings with scales elosely appreseyd on stem of vein ' 2 bet ween dark spot and fork. earlei, p. 30
male genitalia
10. Claspette stem with dorsal lobe bearing two or three loroad leaflets; mesosome with very delicate leatots
pseudopmetipennis fronciscanus, p. 31 31
2
11. Sinth tergite with lohes broad, short, and sightly expanded at apex
carlei, p. 30 Ninth tergite with hobes long and slender. muctipennis, p. 32, occidentalis, p. 31, frecborni, p. 30

LARVAE

. Outer clypeal hair not branched.
2. Inner elypeal hair usually branched distally

$$
\text { Antepaimate hair usually two- or three-branched on abdominal segments } 4 \text { and } 5 \text {. panchpenme, p. } 32
$$

Descriptions of Species

Anopheles (Anopheles) earlei Vargas

Anopheles eurlei Vargas, fra-Amer. Bur. Suat. Bol. 20: S. 1043.

Anopheles carlei Vargas and Matheson, Inst. Salubridad y Fhterm. 'Trop, Rev, 9: 27. 1048.
Female.-Palpi as long as proboscis, dark brown. Mesonotum with broad frosted stripe sparsely covered with short pale-yellow hairs. Wing seales dark brown with darker spots in some areas, seales on stem of vein 2 raised between fork and dark spot; apex of wing with fringe of silver or bronze seales. Tegs blach; apices of femora and tibiae with pale-yellowish seales.

Male genitalia.-Claspettes bilobed with two or three spines on both ventral and dorsal lobes. Mesosome with three or four pairs of leaflets. Ninth tergite lobes short, broad, and slightly expanded at aper.

Larva.-Tmer elypeal hair two- to five-branched distally or rarely unbranched, outer clypeal hair multibranched; postelyper hair two- to fivebranched or arely unbranched. Antepaimate hair on segments 4 and 5 usually two- to six-branched.

Distribution, biology, and importance.Early records of Anopheles occidentalis from the Northern States and Canada were found to be Anopheles earlei after the validity of this species was recognized (57, 238). Early records from southern Idaho probably pertain to A. earlei (4, 183, 254). It also occurs in eastern Washington and northern Idaho (map 1), but it is a relatively rare species of little economic importance. Larvac have been found alone and associated with other anopheline species. They have also been taken with Culex tarsalis and Culiseta inornata larvae.

Anopheles (Anopheles) freeborni Aitken

Anopheles maculipennis frecoorni Aitken, Pan-Pacific Ent. 15: 192. 1939.
Anopheles freeborni King and Bradley, Human Malaria, pp. 63-70. 194 i .

Female.-Palpi as long as proboscis, dark brown. Mesonotum with frosted gray stripe bordered by dark bands; median stripe with hairlike yellowish seales and small tuit of whiter scales anteriorly. Wing scales dark brown and aggregated into spots at junction of first and second veins, forks of sccond and fourth, and at cross veins. Legs black; apices of femora and tibiate with pale-yellowish seales.
Male genitalia (fig. 18).-Claspettes bilobed with two or oecasionally three spines on ventral lobe and usually with two spines on dorsal lobe. Mesosome with three or four pairs of nonserrated leaflets. Ninth tergite with long and slender lobes.

Larva.-Inner clypeal hair single, outer clypeal hair multibranched; postclypeal hair two- or fivebranched. Antepalmate hair on abdominal segments 4 and 5 usually two- or three-branched.

Distribution, biology, and importance.Anopheles freeborni is distributed throughout the

Figure 18.-Anopheles freeborni male genitalia.

Northwestem States (map 1). Comparatively large populations develop in irrigated areas in the Yakima Valley in Washington and in the vicinity of Scappoose, Prineville, and Klamath Agency, Oreg. It has been abundant in the irrigated section of westcentrai Idaho and is fairly prevalent in the Willamette Valley in Oregon. Morphological variations of the larvae have been examined by Abdel-Hab (1). This and certain other anopheline species are difficult to separate ($4,57,9 \overline{0}$).

The females hibernate in cellars, barns, outbuildugs, and other sheltered locations. They emerge from these places by the last part of February in the warmer parts of this region, but few eges are Laid before April or May. Larvae have been taken along the margins of rivers, creeks, and irrigation ditches and in ponds, sloughs, and roadside ditehes from early May until frost.
Eeological studies in California of this and other anophelines have been made by Bailey and Baerg (10). Some of the specimens of A. freeborni they released flew as fur as 17.5 miles and lived for 3 and 4 months.

It was the most important malaria earrier in the Western States before this disease was reduced to its present extremely low level in the United States. Westem equine encephalitis has been isolated from it in nature.

Anopheles (Anopheles) occidentalis Dyar and Knab

Anopheles octitentalis Dyar and Kinab, Wash. Biol. Soc. Proc. 19: 159.1906.

Female--Similar to Anopheles earlei but with wing scales closely appressed on stem of vein 2 between dark spot and fork.
Male-genitalia.-Claspettes bilobed with two or occasionally three spines on ventral lobe and ustaily with two spines on dorsal lobe. Mesosome with three or four pair of nonserrated leaflets. Ninth tergite with long and slender lobes.

Larva (fig. 19).-Inmer clypeal hair single, outer clypeal hair multibranched; postclypeal hair fourto 10 -branched. Antepamate hair on abdominal segments 4 and 5 usually single.
Distribution, biology, and importance.This species occurs along the Patific coast from northern Mexico to Alaska. It is a rare species in Oregon and Washington and is considered to be of no ceonomic importance (tnap 1). In Oregon the

Figure 19.-Anopheles ofcidentalis larva.
larvae were found near the coast in water covered with algae in a residual pond and in an open section of a small creek.

Anopheles (Anopheles) pseudopunctipennis franciscanus McCracken

Anopheles franciscanus McCracken, Ent. News 15: 12. 1904. Anopheles nsewulomuctipennis var. franciscanus King and Bradley, Human Malaria, pp. 63-70. 1941. Anopheles pseudopunctipennis franciscanus Aitken, Calif. Univ. Pubs. Ent. 7: 327.1945.
Fernale.-Palpi as long as proboscis, black sealed with white rings at apices of segments 2, 3 , and 4. Mesonotum with median gray stripe bordered by dark bands; median stripe with hairlike gray scales and tuft of whiter ones anteriorly. Wing scales black with yellowish-white scales forming spots as follows: Costa and subcosta with two on apical half, subcosta with two additional ones on basal half; second vein with small one near cross vein and small one before apex of upper branch; third vein with small one at base and large one in middle; fourth vein with small one at cross vein and small one at apices of forks; fifth vein with
small one at base and large one extending into lower fork, small ones at apiees of forks and a small one near middle of upper fork; sixth vein with long spot at base. Lers bhate; tips of femora and tibiace with pale-yellowish scales.

Mate genitatia (tig. 20).-- (laspettes bitobed with two sletuder spines on ventral tobe and two or three brad leatike spines on dorsal tobe. Mesosome with very small nonserated leaflets. Ninth tergite with low conical processes.

Larva (fig. ep). Woth mer and outer (lypeal hairs single and unbmench; postelypeal hair single and long. Abtominal palmate hair on segments 3 to 7 well dewoped and serate. Antepahate hair onc- to threc-brawhed on segment 4 and usually single on segnent, $\overline{5}$. Posterion spinacular phates not developed into "taits" but rounded.

Distribution, biology, and importamee.-This speces has been found only in extreme south-

 gemtalia.

 larva.
western Oregon (map 1). The females prefer feeding on large mammals such as cows and horses and are seldom known to attack man. The larvac are usuaily associated with Anopheles frecborni along streans in sumy pools containing algae. It is of no economic importance in this area becuuse of its small numbers and limited distribution.

Anopheles (Anopheles) punctipennis (Say)

('uler punctipmuts Kay, Acad. Nat. Sci. Phila. 3our. 3:9. 1823.
Female.- Palpi as long as proboscis, dark brown. Mesonotum with gray stripe bordered by dark bands; median stripe witi hartike gray scales and tuft of whiter ones anteriorly. Wing scales black with yellow ones forming spots as follows: Large one on basal thim of costal margin, which involves base of second vein before fork; smaller one on apex of wing, which involves both forks of second vein; third vein with spot at apex or near middle or completely dark scaled; fourth vein with two spots on base and one spot on each fork; sixth vein with one spot in middle. Legs black; tips of femora and tibiae with pale-yellowish seales.

Mate genitalia (fy. D2). - Simitur to Anopheles freeborni exeept for slightly bronder toless of ninth tergite.

Larva....[mmer sypeal hair single, outer clypeal hair madtibanched; postelypeal hair branched. Antepatmate hair of atolominal segments it and 5 two- or threc-branched. Antenmal tuft usually inserted bedow batsal third.

Distribution, biology, and importance.This is a common spectes throughout Washington, west of the ('tsende Mountains in ()erom, and in the morthem hatf of dato (map) f). Watly the species is not suffichently numerous to be a serious pest. The larve are often associated with A. frecborni in elay shaded pools. A nopheles munctipennis has been considered to be of hitlo importance as a mabaria camier, but (inay (123) beliewed it may have beera an important vector from 1830 to 1800 in (alifornia.

Figura 22.-Anopholes panctipemis male genitalia.

Genus AEDES Meigen

Keys to Species

ADULTS

1. Tarsal segments ringed with white,
Thesa segments not ruged with white
2. Tusi wh

Wugs with more light than dack seales on sixth or anal vein; (tarsal chaw as in for 36)................. melanimon, $p .53$

Alesomotum with varialde pattem of pale yollowish nad dark spots; base of costa with white sealcs e. c. canadensis, p. 39

3. Basal white rings of taral seqments aterow (mesomotum uniformly brown; abdominal pale bands indented centraly,

4. Uulomen whout hatads amel chothed with yellen soales; (mesonotum yellowish brown with darker median
areal

Mewowtum with reddish-hrown seales cecept white seales in presentellar arg. 38). excruciuns, p. 45, fitchii (in part), p. 45 presputher area present or ahsont; (tarsal chaw as in fig. 20s)..... aloponotum, p. 37
5. Tori without white scales on dorsal surface; palpi without hairs on basal haf of apical segment at inner ventralsurface.increpitus, p. 5113
edge; or with both 解fitchii (in part), p. 45
fig. 40) ...-.. stimulans, p. 64 I-wer nesepimeral bristies three or more; tori with or without white scates on dorsal surface 15
6. Wing seabes distinetly bicolored 16
Wing scates uniformly dark or with some white seales on anterior veins 56
7. Lower acsepimeral bristles present; wing seates light and dark, mermixed with dark p
8. Lower acsepimeral bristles present; wing seates light and dark, mermixed with dark p spencerti idahoensis, p. 62 17
Lower mesepimera! bristies nbsent; wing seales bhek or whte on aternating veins
Lower mesepimera! bristies nbsent; wing seales bhek or whte on aternating veins
9. Postcoxal seale pateh present 24
Postcoxal seate patel absent. 18
10. Mesonotum without lines or stripes 19
Mesonotum with complete or partinl lines or stripes S. Aesonotum gray around sides with golden-brown scales in midde that sometimes show fant durk fines. calap
impiner p 40
Mesonotum with dark-browa or bronzy seales, sometimes with pair of lighter spots centrally 50 50
schizopinax, p
schizopinax, p
11. Proboseis with yellowish-gray seales on ventral surface 20
Prohoseis with brown seales on ventral surface implicalus, p. 51
12. Sternopleuron with sexles not extending to anterior border 21
Sternopkeron with scales extending to anterior border. trichurus, p. 65
13. Hypostigin spot of seates present 22
Elypostighil spot of scales nbsent aboriginis, p. 37, punctor (in part), p. 59
14. Posterior area of probasistemum without or rarely with few white seales 23
Prolasisternum with few to many white scales
57
15. Mesonotum yellowish or rarely gray scaled with pared dark-brown stripes narrowed at back and extending to scatellam
pionips 57
Mesonotum golden brown with paired dark-brown stripes that are sometimes joined
herodontas, p. 49, punctor (in part), p. 5925
16. Lower nesepimeral bristles absent 29
Lower mesepimeral bristles present ripe of dark-brown scales broadening posteriorly; sides and anterior margins
17. Mesonotam with broad median stripe of dark-brown scales broadening posteriorly; sides and ante...-... hendersoni, p. 48
with silvery-white scrales. 26
Mesonotum not murked with silvery-white scales 27
18. Mesonotum with lines er stripes 28
Mesonotura without lines or stripes triviltatus, p. 66
19. Abdomen with basai segmental white patches and with or without central white spots sicticus, p. 63
Abdomen with basal segroental white bands.
Coxa of front leg with central aren of brown scales on anterior surface; occiput with dorsal submedina patches cinereus, p. 41
of dark scales face of front leg clothed with white scales; occiput without dorsal submedian67
ventroviltis, p
patches of durk scales communis, p. 42
20. Sternopleuron with scales extending to anterior edge 30
Sternopleuron with scales not extending to anterior edge pullaius, p. 58
21. Mesonotum with paired brown lines; fageilum with white scales on ventral side of first segment andes on
22. Mesonotum with paired brown lines; fageilum with white scales on ventral side of first segment andes on
Mesonotum brownish with margin of gray scales or rarely darker centrally; flagellum without white scales ontrudens, p. 53ventral side of first segment
MALE GENITALIA1. Dististyle inserted before apex of basistyle; unequally bifurcate at basecinereus, p. 41ap in . not branhed at bnse
23. Dististyle broad and fat throughout its length with subapical claw; claspette without filamentrexans, p. 68
3Dististyle tapered to npex with apical claw; claspette with filament
Basistyle without distinct apical lobe. 6 6
24. Busistyle without distinct apical lobe..... endersoni, 48
25. Basistyle with smatl dense patch of long hairs near middle. 5Basistyle without group of long hairs near middle.
26. Basal lobe a raised nurrowly elongate area with many long curved spines at base and short setae extending
apically. .-..
Basal lobe a small slightly raised area with relatively short setae. siertensis, p. 61
27. Fitument of claspette with transverse ridges; basal lobe with two long posteriorly directed spines nigromaculis, p. 55 trichurus, p. 65
Filament of claspatte without transverse ridges; basal lobe with spines not posteriorly directed
Filament of claspatte without transverse ridges; basal lobe with spines not posteriorly directed 7. Apical lobe with short broadened appressed setae 7 7
A pical lobe with long hairs or nearly bare 8
28. Basul lobe partially extended toward apex of basistyle semidetached 10
Basal lobe partially extended toward apex of busistyle not semidetuched 62
29. Stem of claspette pilose to near apex. 9
Stem of elnspette glabrous on distal one-third or more schizopinax, 60
30. Busal Jobe without spines puntor, p. 59, aboriginis, p. 37, hexodontus, p. 49
Basal lobe witls spines 11
31. Filanent of claspette marrow and of approximately exual width 13
Filament of chaspette expanded along one margim c. canadensis, p. 39
32. Busal lobe extending to apienl lobe 12
Basal lobe not extending beyond middle of side piece 37
33. Basal lobe with one spine increpitus, p. 51
Basal lobe with two or more spines. 14
34. Bussil lobe extending almost to apical lobe 23
lasal lobe a small area at base of basistyle 46
35. Filmment of chaspette with sharp retrorse projection on basal third 15 15
Filament of claspette without retrorse projection trinittatus, p. 66 trinittatus, p. 66
36. Filament of chaspette siekle shaped with small notch at base 16
libament of elaspette withont noteh at base fitchii, p. 45
37. Stem of elaspette abruptly bent at midde to form projecting angle. 17
Stem of chaspette not abruptly bent at middle pullatus, p. 58 pullatus, p. 58
1S. Fibament of elaspette slightly expanded forming circular outline
campestris, p. 38
campestris, p. 38
Filament not expanded in cireular outline
19
19
38. Apical lobe of besistyde with setne present in large numbers and with some setae twice length of dististyle claw Apral lobe of basistyle witl) setae present in small numbers and not more than $11 / 2$ times length of dististyleclaw
39. Apical lobe with tuit oi lone hair bolew it A pical lobe without tuft of long hairs at base implicatus, p. 51
40. Filament of ciaspette expanded in gradual curve near base 21
Filament expanded to sharp point near base 40
41. Bnsal lobe with large spine followed by row of weak setae 22 22
Busal tobe with large spine not followed by row of setac impiget, p. 50
42. Stem of claspette with sharj, projection ending in small seta at middle; basistyle with dense tuft of setae near apex intrudens, p. 53
Stem of claspette without sharp projection and basistyle without dense tuft
43. Stem of claspette abruptly narrowed near apex to form rounded angle; filament shorter than stem 24 24
Stem of elaspette gradually narrowed near apex; filament longer than stem dorsalis, p. 43
Larvae
44. Pecten with one or more of distal teeth detached
2
2
Pecten without detached teeth.
Pecten without detached teeth.
15
15
45. Air tube with hair tuft within pecten.
3
3
dir tube with all tuits outside pecten and distal to it
4
4
46. Air tube with several pairs of dorsal and lateral hair tufts
trichurus, p. 65
trichurus, p. 65 Air tube without dorsal and hateral hair tuits Air tube without dorsal and hateral hair tuits
cataphylla, p. 40
cataphylla, p. 40 4. Anal segment ringed by plate. nigromaculis, p. 55 Anal segment not completely ringed by plate 55

[^2]5. Epper and hower head hairs usmally single(
l'pur and lower head hats matiple8
6. Air the athout 4 in 1 ; gills smath and buhtike
niphadopsis, 1. 56 6
7. (omb) with six to $1 ; 3$ sestesrentrorillis. 12. 67
suencerit iduhoensis, 1 . 62
(comb with lis (1s 20) seates
 cinercus, p. 41 9
Cperamil lower head hars hess than tive; tuts not inserted in lime with prentemal tufts 10
9. Air tutw 3 be 1 or shorter 12
. Tir the 4 by 1 or longer
innomens, p. $\overline{3}$
11

11. Anal gills longer than ghate; combs reates with long tpieal sime
recoms, p. 68 b. 68
Anal gills shord and brather; emble seates without long apisal spine7

12. Air tube $3^{\prime} y_{2}$ to $:$ by 16 13

 achit (in part), 1atopmotum, 1. 37
14. Lateral ahbminal hais: asably domber on squmets ito fo ехстисinns, 1. 45
 16
16. Am serment ringed by phate 18
Anal segment mot ringed by plate. hexotomlas, 1 49
16. ('onh with fire to nime subes 17
('omb with 10 to 20 semes
('omb with 10 to 20 semes 59 59
17. Cumh with to to 10 seates, cuch sabe thom shated with long entul spine; hatenal spmbes minute
17. Cumh with to to 10 seates, cuch sabe thom shated with long entul spine; hatenal spmbes minute - - 60
as central spine 19
15. Antemat smooth with antemment taft eonsist ing of single hair 20
Antennae spiculated with antemal thit moltiphe. . hendersomi, p. 48
10. (omblh with cistht to te sentes; air tube with wens detacherd sierrensis, D. 61
Comb with il to en seabe; air tulve with acts atheched
Comb with il to en seabe; air tulve with acts atheched 0. Nir tube stouter, 4 by or more; apieal setae of at tube hook shaped and as long as lateral valve 45sevetion

22
2t. Eateral hair mand to or longer than anal phate 24
Luteral hat shorter lhan ant plate 46
2. Prothoracic hair 1 single; air tuhe $3{ }^{2} 2$ by 1 or more 23
Irothoracie hair I dombe or maltiphe; air tube 3 hy t or less schzopinax, p. 60
23. Phate of amat segment with honger spienles on apmat area aborigints, p. 37
Dhate of anal segtaent without longer spicules on apteal areat 25
24. lyper head hairs four to eight, hower three to five 27
Cpuer head hats one to bour, lower one to two. monips, p. 57
25. Comb with wore than 36 seales 26
Comb with less than of scales 38
pulahu
26. Prothoracic hair a unathy taple 39
Prothorack hair s sintic or double impiger, 50
27 . Comb with right to 16 seales 28
('omb with 17 or mere scales communis, p. 42
 29
Smemens without this combimation of characters 30
29. Apicules on amal phate definitely longer at apex of plate 32
Spientes not lomger at apex of plate imphicalus, p. 5130. [mer and lower head haim usuaty single (oceasonally one may he doable bat rarely both)
Ghar heat hats usually double or trible, fower leat hate simele or double increpitus, p. 51
31. Conib with median spue less than t? times as long as subapead spinules. stimulans, p. 04 63
Comb with median spinules about 1 ! thass as long as sulapical spmates
Comb with median spinules about 1 ! thass as long as sulapical spmates
32. Dedian spine of romb seale two or more times length of adjacemt spintes 33
33. ['puger head hatirs two or three, bower head hatirs one or two Ipher hem hates one or two lower heal hatirs usualy single
34. Dorsal hair 1 of mesothomas several tines ats long as 2
borsal hatir 1 of mesothoras approximately same length as 2
...... dorsalis, p. 43

Descriptions of Species

Acdes (Ochlerotathe) aboriginis Dyar

 1917.

Femake.-Mrsonotum veltowish to light golden brown with pared dark-brown stripes and posterior hali lines. Posteoxal seale pateh present. Seales on stemopleuron extending to anterior edge. Posterior area of probasisternum bate or marely with a few sales. Hypostigial spol of seales absent. Jower mesppimetal bristles one ar two. Abdomen black with lasal white bands widening at sides. Wings dadk sealed in abrot 95 pereent of specimens. Legs: dark.

Male genilalia (fig. 23) ---Basistyle thee times as long as brond; apical lobe long and rounded with

Ficives 23, --, 1ctes mboriginis male genitalia.
short curved setac; basal lobe flatly conical with numerous satac and long eurving spine near base. Chaspette stem glabrous on distal one-third to onehatr, slighthe eurved and expanded near tuiddle; filament shorter than stem, slightly expanded at middle, and terminating in blunt curved point.

Larva (fig. - -). - (ppler head hatirs three to five, lower two to four. Prothoracic hatir 1 double or triple. Lateral ablominal hairs single or double. Comb with thout 23 to 35 seales in at pateh; each seale with long central spine and adjacent shorter spines. Air tube about $2 \frac{1}{2}$ by 1 ; pecten fine and even and not reaching middle; tuft consists of four to six large hairs. Amal segment with plate extondiug to new ventral line; lateral hait longer than phate; gills pointed and from one to two times as long as plate.

Distribution, biolory, and importance.This species is present in considerable numbers in some places in the timbered constal areas of Weshington tund Oregon (map 2) but is uncommon in Idaho. It is also common at moderate elevations in the Cascade Range and in other mountain arcas in Washington and northern Idaho. The larvac are found in snow and rain pooks in wooded and semiwooded areas. It is of economic importance only in a few areas.

Aedes (Ochlerotatus) aloponotum Dyar

Actes alophotum Dyar, Insecutor Inscitiate Menstruns 5 : 9世. 1917.

Fentale.-Tori with imer surfaces predominantly white scaled. Mcsonotum reddish brown scaled with white seales in prescutellar area and usually with some white seales around lateral margins, also occasionally with pairod small white scale spots forward of prescutellar arca. Mesepimeral bristles absent or ravely there may be one. Abdomen black with basal segmental white bands and frequently with scattered white scales. Wings predominantly dark sealed with pale scales intermixel. Legs dark with broad basal white bands on all segments of hind tarsi, narrower basal bands on segments 1 to 4 of misldle tarsi, and narrow basal
bands on segments 1 to 3 of front tarsi; tarsal claw with tooth broad, short, and not parallel (fig. 25).

Male genitalia.-The characters of the male genitalia of this species are similar to those of Aedes excrucians (fig. 38).

Larva.-Upper head hairs triple or in fours, lower double or oceasionaliy triple. Antemac spiculated, tufts multiple. Mesothoracie hair 1 two to three times as long as mesothomachair 2 . Lateral abdominal hairs usually double on segments 1 to 6 but occasionally may be single on 6 . Comb with about 17 to 33 suales; each seate from central area of comb with long median spine and lateral spinules usunlly extending more than half length of median spinc. Air tube slender, about 5 by 1 ; pecten not renching middle with two to three large detached teeth; tuft with four to six farge hairs. Anal segment extending about three-fourths distance down sides; lateral hair shorter than plate; gills as long or longer than plate.

Dyar, who named this species, recognized its close relationship to Aedes excrucians when he stated that it could also have been classified as a race of

Figure 24.-Aedes aboriginis larya.

Fuguns 25-Actes abobohom, chaw of remate.
excrucians on the Pacific const. It was considered a synonym of excrucians by Matheson (190), Stage ct $a!$. (251), and Carpenter and LaCasse (57). However, Boddy (85) described additional characters. More recently other chturaters of the larvae and fomale have been found that estroblish this as a distinet species (111).

Distribution, biology, and importance.This species occurs in small numbers in wooded or semiwooded areas in Washington and Oregon (map 3). It has been collected as far east as Spokane, Wash., and as far south as Odell Lake in Oregon. Little is known about its conomic importance.

Aedes (Ochlerotatus) compestris Dyar and Knab

Acder crompestris Dyar and Knab, N.Y. Ent. Soc. Jour. 15: 213. 1007.

Femule.-Mesonotum yellowish white with median brown stripe; sides with narrow brownish margin. Abdomen black with median white line; apical and basal white bands forming small paired segmental dark areas; last two segments frequentiy all white scaled. Wing scales pale and dark intermixed; white scales usually prodominating. Legs with dark and pale scales; tarsi dark with basal and apical white bands, except on last two segments of middle tarsi and last three segments of front tarsi.
Male genitalia (fig. 26).-Basistyle about three times as long as wide; apical lobe low convex with rather long setac; basal lobe rounded, slightly raised, and covered with many setae; large spine and several long spinelike setae at basal margin. Claspette stem with two or three small setae just before apex; flament narrowly and roundly expanded in sickle shape.
Larva (fig. 27).-Upper head hairs two or three, lower one or two. Lateral abdominal hairs usually double on segments 1 to 5 and single on 6 . Comb with 20 to 32 scales in triangular patch. Air tube about 3 by 1 , tapering, with pecten reaching twothirds distance to apex; small tuft near tip; last two or three teeth stouter and slightly detached. Anal

Figune: 2G.-Aedes campestris: A, Male genitalia; B, claw of female.
segment as long as wide; plate lightly spiculated extending nearly to ventral line; lateral hair shorter than plate; gills budlike and shorter than plate.

Distribution, biology, and importance.This species has been found in semiarid areas in southern Idaho and in eastern Oregon and Washington (map 4). The larvac develop in pools where the water is slightly alkaline. Adults are usually not numerous but may develop in sufficient numbers to cause annoyance in localized areas. A fight range of 10 miles has been reported by Rees (222).

Aedes (Ochlerotatus) canadensis canadewsis (Theobald)

Culex canodensis Theobald, Monog. Culicidae 2: 3. I901.

Female.-Mesonotum reddish brown with paleyellow scales around margins. Abdomen black without basal white bands or with narrow indistinet ones; sides with triangular white spots. Wing scales all dark. Legs dark; hind and middle tarsi apically and basally white banded, last segment of hind tarsi entirely white scaled; front tarsi apically and basally banded on segments 1 and 2 .

Male genitalia (fig. 28).-Basistyle slightly more than twice as long as wide; apical lobe large, low, and broadly rounded with short bladelike setae; basal love large with many short setae. Claspette stem cylindrical and setose, larger seta before apex; filament narrow, linear, pointed, and slightly shorter than stem.
Larva (fig. 29). - Upper head hairs four to nine, lower three to six. Prothoracic hair 5 usually single or double. Lateral abdominal hairs usually double on segments 1 to 5 and single on 6 . Comb with 25 to 40 scales in irregular patch; each scale with rounded fringe of spines apically. Air tube 3 by 1 ; pecten even, reaching beyond one-third of tube, followed closely by tuft of four to six medium hairs.

Figure 27.-Aedes campestris larva.

Provar es.--atedes canadensis camadensis made genitaliat.

Anal segment with plate extending about twothirds down sides; lateral hair shorter than plate; gills about one to $1 \frac{1}{2}$ times length of plate.

Distribution, biology, and importance.This species has not been taken in Oregon but has been collected in large numbers in northern Idaho and has also been taken in a aumber of counties in northeastern Washington (map 5). The lavae breed in temporary forest pools left from melted snow. They were also found developing in pools in open meadows. The adults bite avidly and are present in sufficient numbers to be annoying in localized areas.

Aedes (Ochlerotatus) rataphylla Dyar

Acdes rataphyllo Dyar, Insecutor Inseitiac Menstruas 4: sc. 1916.
Actes pearyi Dyar :md Shamon, Wash. Acad. Sici. Jour. 15: is. 1023.
Female.-Mesonotum gray around sides with golden-brown scales in middle, which sometimes show faint dark lines. Sentellum with pale-yellowish scales. Lower mesepimeral bristles two to seven. Posteoxal seale patch present. Sternopleuron with seales not extending to frontal border. Hypostigial spot of scales present or absent. Abdomen black
with basal segmental white bands. Wing scales dark with pale seales at base of costa and first vein. Legs dark with mixture of pale scales; tarsi mostly black.

Male genitalia (fig. 30).-Basistyle about three times as long as wide; apical lobe small, elongated, and narrowly attached with few short setae; basal lobe small, elevated into transverse ridge at base with row of long setace and slender spine it margin. Claspelte stem lightly hirsute except at apex; filament expanded in gradeal curve at basal third.

Larva (fig. 31).-Upper and lower head hairs single. Lateral abdominal hairs usually double on segment 1 to 5 and single on 6 . Conab with about 10 to 25 seakes in two irregular rows; each scale with long median spine and shorter lateral spinules. Air tube about 3 by 1 , taperiug, with evenly spaced pecten teeth to hair tuft; three to five widely spaced teeth beyond tuit. Amal segment with plate reaching about two-thiteds distance down sides; hateral hair shorter than plate; gills as long or longer than phate.

Distribution, biology, and importance.This species has been found in a few places in mountain areas and occasionally at lower levels in all

Figune 29.-Atedes canadensis camadensis larva.

Fiarote 30. . Iedes ctilaphylla mate genitiliti.
three states (maty 6). The larvan have been collected in pooks and roadside ditehes in open and partialy wooded areas. Carpenter (51) found that from i) to 7 weeks were reguired for development of the immature stages at ath elevation of 6,100 feet in (alifornia. Frecborn (94) observed that the adults bite fiercely and will attack man and horses in the ditytime.

Aedes (Aedes) cinereus Meigen

Acules cincress Meigen, System. Beschreibung der Bek:monten Eurbuitischen Zweiflugeligen Insekten 1: 13. 18.8.
Female.-Mesonotum elothed with reddishbrown scales. Lower mesepimeral bristles absent. Posteoxal scale pateh absent. Abdomen black without white bands or with nurrow partial or complete ones; lateral spots usually joined to form line. Wing seales dark. Legs dark brown; coxa of front leg with white seales and a central pateh of brown scales on anterior surlace.

Male genitalia (fig. 32).-Batsistyle about twice as long as wide; wes cone shaped with long setae. Dististyle subapically inserted with forked arms of unequal length; short branch with setac apically, long branch forked at med. Claspette two-branched; Gilament absont.

Larva (fig. 33).-Upper and lower head hairs in tufts of five or more, tufts in nearly straight line with preantemal tuft. Lateral abdominal hairs double on first and second segments, single and long on thired to sixth. Comb with nine to 15 scales in double row. Air tube slender, about 4 by 1 ; peeten extending past middle of tube with about three detached teeth; tuft small. Amal segment with plate extending about three-fourths clown sides; lateral hair ustally double and shorter than plate; gills two or more times length of plate.

Distribution, biology, and importance.This mosepuito is found throughout the partially wooded areas of all three States (mip 4). It breeds in woodland and open meadow pools. Larvae have been colleted from early April at lower levels to late June at higher elevations. In some mountain areas it is the predominating species and is a serious pest; it is found in smaller numbers at lower elevations. In Nevada it is apparently found only in

Figuse 31.-Aedes cataphylla larva.

Froune 32.-. Iedes cinereus male genitalia.
foothill and valley areas (63). The females attack both during the day and at dusk. They are known to rest near the ground in the grass or underbrush or other phaces near their breeding sites.

Aedes (Ochlerotatas) communis (DeGeer)
Culex communis Defeer, Mon. Pour Servir Hist. des Insects 6, fil 17, figs. 3 and 5.1776.

Fermale-Mesonotum dull yellow or gray scaled with narrow pale median line separating paired dark-brown lines and with posterior brown half lines. Coloration is variable and may be brown scaled centrally with mixture of pale scales and border of grayish-yellow scales. Lower mesepimeral bristles two to five. Postcoxal scale patch absent. Sternopletron with scales extending to anterior edge. Hypostigial spot of scales absent. Abdomen dark brown with basal white bands. Wings dark sealed; patch of two or three to many pale scales at base of costa in about 85 percent of specimens. Legs dark; femora partially pale.

Male genitalia (fig. 34).-Basistyle about three times as long as wide; apical lobe large rounded with many long sctae; basal lobe smali, quadrilateral in outline, partially detached at base, surface with some small setac, several larger curved ones, and stout spine on margin. Claspette stem lightly hirsute on basal half; apical half more slender; filament angularly expanded to its maximum width near base, top with groove created by flange along its sides.

Larva (fig. 35). -Upper and lower head hairs single. Lateral abdominal hairs double on first to fifth segment and single on sixth. Comb with about 28 to 70 scales in triangular patch; each seale with central spine and adjacent spines or spintules of variable length. Air tuibe stout and about $21 / 2$ by 1 ; pecten tecth evenly spaced to near middle of tube; tuft of four to eight hairs. Anal segment with plate extending only about two-thirds distance down sides; spicules minute; fateral hair shorter than phate; gills about twice length of plate.

Examination of comb scales of larvae from locations in Washington, Oregon, and Idaho has shown

Fiovie 33.-Aedes cinereus larva.

Figere :3.t.- Aedes communis male genitalia.
that in severat of these locations larvae with the three types of comb seales were present in the same pooks ($/ 1 / 1$). The two most divergent types of scales are shown in figure 35. No other differences were seen in these larvac (111).

Distribulion, biology, and importance.This is one of the most widely distributed speeies in high mountain areas of the Northwest (map 4). In many localities it is present in large numbers and is a serious pest. It breeds in flooded mountain meadows and woodland poois left by melting snow and around the margins of mountain lakes. The larvae may be found alone or in association with other speeics such as Aedes pullatus, A. calaphylla, A. intrudens, A. fitchii, or A. hexodontus. In Oregon it is numerous throughout the Cascade Range and Bhe Mountains. It is abundant in the Caseade and other mountain ranges in Washington and northern Idaho and is present in smaller numbers in central and southeru idaho. The adults are sometimes seen late in May and may occur until mid-August. The females are persistent biters, and although they will attack during the day, they are generally more active at lusk.

Aedes (Ochlerotatus) dorsalis (Meigen)

Culex dorsalis Meigen, Systern. Beschreibung der Bekunnten Europäischen Zweifligeligen Insekten 6: 242. 1830.
Female.-Palpi tips usually dark sealed. Mesonotum yellowish white with median brown stripe or with only few brown scales medianly; posterior brown half lines and side lines may or may not be present. Abdomen predominantly white sealed with median white stripe and transverse sogmental white bands; last one or two segments may be entirely white scaled. Wing seales dark and light, light predominating; sixth or anal vein with more light than dark scales. Legs with dark and pale

Figune 35.-Aedes communis larva.
scales; tarsi dark with ipical and basal white bands on all but last two segments of middle tarsi and last there segments of front tarsi,

Dale genitalia (fig. 36).-Basistyle about three times as long as wide; apical lobe rounded and somewhat shortened apically, surfaec elothed with straight setae of medium length; basal lobe prominent, slightly constricted at base, and covered with short setae, a stout spine on margin, and a smabler adjacent spine followed by several setac. Claspette stem straight and constrieted just before apex with fow setac at constriction; filameut broadly expanded in rounded rectangular shape near midalle.

Larva (fig. 37).--l'pper and lower head hairs single or oceasionally uppers may be double. Dorsal hair 1 of mesothorax three or four thenes as long as hair ${ }^{2}$. Lateral abdominal hairs triple on segments 1 and 2 and double on rest. Comb with about 20 to 31 sales in patch. Air tube tapering, about 3 by 1; pecten evenly spaced to near middle of tube; multiple luft set close to end of peeten. Anal segment with plate extending about hallway down sides: lateral hair shorter than anal plate; gills from! ! to 1 Co bengeth of plate.

A datk winged form of Aedes dorsalis has been eported by Chapman and (rodhus (ro) from Humboldt County, ('ilif. This population has more dark than light scales on the sixth wing vein. Two such specimens from Nernville and two from North Bend on the Gregon eoast have been found on reexamination of our pimed collection of about 800 specimens of A. dorstlis and A. melanimon from the

Figete: 3b. - - ledes dorsalas: . 1 , Male genitatia; B, daw of fentale.

Figure 37.-Acies dorsalis larya.

Northwistern States. The claw eharacters appear to be adequate for separating the dark winged form of A. dorsalis from A. melanimon. Characters for separation of this species from A. melanimon are given by Bohart (36), Chipman and Grodhaus (70), and Richards (\$31).

Distribution, hiology, and importance.This is one of the most important and widely distributed species in the Northwest (map 5). It is the only species in this region that breeds naturaily in brackish or salt-water marshes and is also one of the most abundant and troublesome species in irrigated areas and in flooded grasslands. The larvae are frequently associated with those of A. melanimon. The females will bite at any time of the day or night but are most active in the evening. Natural infections of western equine encephalitis and St. Louis enecphatitis have been isolated from this species. Migratory flights of 22 miles in Utah aud 30 miles in California have been recordod for this species (223).

Aedes (Ochlerotuths) pxcrucions (Walker)

Culex exerncints Walker, Insecta siandersinat. Diptera i: 129. IS:

Femake.- Tori with inner whences predominantly white serbed. Desonotum yellowish white with median brown stripe, varied patemon brown and white seakes. Desepimeral bristles absent or rarely one. Ablemen bheck with basal seqmental white bands and frequently with scattered white sales. Winges predominantly dark sealed with pale seales intermixe bl. Legs dark with broad basal white bands on all segments of hind tarsi, narrower basal bands on serments 1 to tof midde tarsi, and notrow basal bamis on segments I to 3 of front tams.

Mate genitalia (fig. 38,. Basistyle about there times ats long as witle; apical lobs prominent with small setan; hasad lube shightly rated, rugose, and extuding to base of apieal loter, surface covered with short setare. Chaspotte stem himuter exept at upex: filament angularly expanded to sharp point near base.
tarva fise 391. - I pper and lower head hairs nawally double the wecesionally uppers may be triple and lowers sivgle. Stresthoracic hair itwo or thore times as long ats mesothoratio hair 2. Jateral ahdominal hairs double or amments 1 ared 2 and sughe or domble on rest. (comb with aloout 13 tu 38 scales; path seale from central area of comb with long modians spine and lateral spimules not expmbing mow than half length of median spine. Air tube - bember. about 5 by 1 ; mecten not reaching midele with fwo or three large detached teeth; tult with four to six hage hatrs. Anal segment with plate extembing about three-fourthe distance down side; gills ats long or longer than plate.
Distribution. biohogy, and importance.This speries is widely distributed but usually does not ocrur in large numbers (map 7). It has be n faken in coastal areak of Washington and also at higher inhand rlevations. The larvae develop in rombside ditelose, meadows, and other temporary pools. The specins may bo a pest in lucalizod areas in the erming and will also bite at any time of day in shatedarsats.

tedes (Onflerotenthe) jitchii
 (Felt and Young)

Pemale. Tors with white scales on dorsal half. Mewonotuan rellowish white to light brown with
broad median brown stripe or variable pattern of brown and light seales. Lower mesepimeral bristles none to two, rarely three or four. Abciomen black with basal white batads and sometimes with apical white seales that may extend into medan white line. Wings dath sealed, usually with mixture of white seales along costa and oceasionally with pale scales seattered over rest of wing. Iegs dark; tarsi with basal white bands on all execpet last two segments of front tarsi and tirst segment of midde tarsi, white bands broader on hind legs; tarsal daw with short tooth not parallel with claw.
Male genitalia (fig. 40).-Basistyle about three times as long ats wide; apical lobe prominent and slightly elongated, surface clothed with long setae

Figore 3s. dedes cacrucians:- I, Male genitalia; B, claw of femate.

Figure 39.-Aches excrucians harva.
bordered by several shorter odes; basal lobe triangular with many setae, those at margin of base longer and preceded by spine. Claspette stem lightly hirsute except at aper; filament short and sickle shaped with notch at base.

Larva (fig. 41).-Upper head hairs three to four, lower two to three. Mesothoracie hair l about 15 times as loug as mesothoracic hair 2. Lateral abdominal hairs usualiy double. Comb with about 12 to 30 scales; each scaic with median spine about twice as long as subapical spines. Air tube slender, tapering, about $41 / 2$ by 1 ; closely set pecten teeth to middle of tube, oceasionally with one or more teeth slightly detached; apical setac hook shaped and as long as lateral valve. Anal segment with plate ex-
tending nearly to ventral line; lateral hair longer than plate; gills about $11 / 2$ times as long as plate.

Distribution, biology, and importance.hedes filchii is most prevaient in mountainous regions but is also found near sea level (map 4). First-instar larvace have been taken in early Fobruary in the Willamette Valley of Oregon. The larvac develop in flooded meadows or potholes in semiwooded areas. It is in important pest and is present over most of Washiugton, Oregon, and Idaho whereever suitable breeding arcas are found.

Aedes (Ochierotatus) favescens (Miller)

('uler flarescens Milliler, Fuana lnsectorum Firidrichsdalina...., 1. 87.1764.

Femaie.-Mesonotum with yellowish-brown scales and broad median stripe of slightly darker brown scales, which may blend so that stripe is indistinct. Lower mesepimeral bristles usually absent. Abdomen covered with dull-yellow sames or with dark median line and sides partially black scaled anteriorly. Wing with mixture of yellowish and dark scales. Legs brown with mixture of yellow scales; tarsi with basal white band on all except

Figute 40.-Aedes fitchii: A, Male genitalin; B, claw of female.

Ficuuts 4.-Aedes filchii larva.
last segment of front and middle tarsi, white bands broader on hidd leg; tarsal claw with short blunt tooth.

Male genilalin (6g. 42).-Basistyle more than twice as long as wide; apical lobe prominent rounded with many setae; basal lobe a rugose, slightly olevated area with many setae, a stout spine, and severat long setat near base; lobe extending nearly to base of apical lobe. Claspette stem with three stoud setae on inner margin of base; filament angularly expanded to rounded point near base.

Larva (fig. 43).-Upper head hairs usually three to four, lower usually double. Prochoracic hair I
single. Lateral abdominal hairs double on segments 1 to 6 . Comb with about 20 to 35 scales in patch; median spine of individual scale about twice as long as lateral spinules. Air tube tapering, about $31 / 2$ to 4 by I ; pecten reaching middle with or without one or two detached teeth, followed by tuft of four to six hairs. Anal segment with plate extending down about two-thirds; lateral hair about as long as plate; gills from one to two times length of plate.
Distribution, biology, and importance.This is one of the larger species found in the Northwest. It is a typical plains specics and has been taken in limited numbers in widely separated places east of the Cascade Range (map 2). However, it rarely occurs in sufficient numbers to be a serious pest. Larvac have been found in meadow pools and

Figbre 42--Aeies favescens: A, Male genitalia; B, claw of female.

Fintide 43. - Aedes fatescens larva.
marshes in the vicinity of alkaline flats. It has been observed to atiaek in bright sunlight and during a breeze of about 7 miles per hour. Hearle (189) reported on its life history.

Aedes (Finlaya) hendersoni Cockerell'

Actes trinerioths var. hendersoni Coekerelt, Johr. Eeon. Ent. 11:10!1. 191心. dedes trisericths hendersoni Cockerell, Ent. Loo. Amer. Amn. 53: 600 - $10 \mathrm{Hi} . \quad 1900$.
Female.-Mesonotum with stripes of darkbrown scales that become broader posteriorly;

[^3]stripes separated by narrow partial or complete white stripe; sides and preseutellar space with white scales. Postcoxal scale patch absent. Lower mesepimeral bristles absent. Abdomen dark scaled; segments with lateral basal white spots. Wings dark scaled. Legs dark sealed; tips of femora white scaled.

Mate genitalia (fig. 44) --Basistyle about three times as long as wide; apica! lobe absent; basal lobe represented by group of sctac near base of basistyle; small dense patch of long hairs near middle. Claspette stem long, hirsute to near apex with small setace on inner surface; filament long, narrower than claspette, and gradually tapered to slighty recurved point.

Larva (fis. 45).-Antemme smooth with single hair near middle. Upper head hair single or rarely double, lower two to five. Lateral abdominal haits clouble or triple on segments 1 and 2 and double on segments 3 to 6 . Comb with ought to 12 scales; each saile evenly fringed with short spinules. Air tube slightly less than 3 by 1 ; one or more pecten teeth frequently extending below selerotized area of tube;

Figule $14 .-$ itades henderroni male genitalia.

Fisure tha Aches hetuersoni larva.
acus detached from base of tube. Anal segment with small phate extending less than halfony down sides; latemt hair one to three branched and attached on edge or on adjacent nonselerotized area; anal gills blunty rounded, about equal in length, and about thre times ats long ats plate.

Distribution, bioloyy, and importance.Aedles hendersoni breeds in tree holes but little is known of its cology: Tatrve are found in association with A. triseriatus in some areas, but Broland (43) believes that A. hendersoni is a western species and that A. triserialus is predominantly an castem and sontheastem species. Nielsen et al. (20.4) found that specimens from Ada (ounty, Ldaho (map 7), which were originally reported as triseriatus, are typical hendersoni. Their observations support Breland's separation of the two speeies. The three collections made in Etaho are the only records reported for this species.

derles (Ochlerotatus) hexodontus Dyar

Aedes herexiontus Dyar, Inverutor Inseitite Menstruns I: s3. 1916.
Acdes emplocerculus Dyar, ibid. s: 3 . 1020 . "(in part)." Acdes leuconotips Dyar. bbid. s: 24. 1920. "(in part)."

Female.--Mesonotum yellowish to light golden brown with paired dark-brown lines and posterior half lines. Postcoxal scate patch present. Scales on sternopleuron extending to anterior margin. Posterior area of probasisternum with white scales. Lower mesepimeral bristies two or three. Abdomen black with basal segmental white bands. Wings dark scaled with patch of two or three to many pale scales at base of costa in about 95 percent of specimens. Iegs dark; fomora partially palo scated.
Male genitalia (fig. 46).- Basistyle three times as long as broad; apieal lobe long and rounded with short curved setae; basal lobe flatly conical with numerous setae and long curving spine near base. Claspette stem pilose on basal half, slightly curved and expanded near middle; filament shorter than sten, slightly expanded at middle, and terminating in blunt curved point.

Larva (fig. 47). -Upper and lower head hairs usually double, but occasionally one or more tufts

Pigume 46.-Aledes hexodontus male genitalia. (Courtesy of Carpenter and LaCasse 57 .)
may be single or triple. Comb with five to nine seales in row; scales thorn shaped with minute lateral basal spinules. Air tube $21 / 2$ by 1 ; pecten not quite reaching middle of tube. Anal segment ringed by plate; lateral hair longer than plate; gills pointed and about $1 \frac{1}{2}$ to three times length of plate.

Distribution, biology, and importance.Aedes hexotontus is a mountain species usually associated with A. commanis and A. fitchii. It is not so widely distributed (map 2) as these species, but in some arcas it is very abundant and an important pest. Large numbers of the larvae develop in meadows in the Caseade Range in the vicinity of Mount Adans and Mount Rainier National Park in Washington and in the Mount Hood and Diamond Lake areas in Oregon. This species has also been taken in various places in Idaho. It is a persistent biter during the day.

Aedes (Ochlerotatus) impiger (Walker)

Cutex impiger Waker, Lish of Dipterous Insects in Brit. Mus., v, 1, p, 6.18 .48.
Aedes mearcticus Dynr, Canad. Aretic Exped. Rpt. 3 (C), p. 32. 1019.

Aedes "impiger:" Voekeroth, Canad. Ent. Sb: 109. 1954. Not impiger of anthors.
Female.-Mesonotum with brownish seales with or withont mixture of yellowish-white soales around sides and two lighter colored patches of scales centrally, entire surface with many black bristles. Scutellum with palc-yellowish scales. Postcoxal scale patch present. Sternopleuron with scales usually not extending to anterior edge. Lower riesepimeral bristles three to eight. Abdomen black with basal segmental white bands. Wing scales usually dark with patch of pale scales on base of costa. Legs dark; femora and tibiac partially pale scaled.

Male genitalia (fig. 48).-Basistyle about $31 / 2$ times as long as wide; apical lobe rounded, surface with a few small setae; basal lobe conically sloped to basal edge with row of long setae and spine at margin, rest of surface bare or with few small setac. Claspette stem hirsute on basal haff; filament angularly expanded to its maximum width near base.
Larva (fig. 49).-Upper and lower head hairs single. Lateral abdominal hairs multiple on first segment and usually double on second to fifth. Comb with eight to 16 scales; each scale with long median spine and series of smaller basal lateral spines. Air tube about $2 \frac{1}{2}$ by 1 ; pecten on basal third,

Figule 47.-Aedes hezodonius larya.

Figune 48.-Aedes impiger male genitalia.
followed by multiple tuft. Anal segment with plate extending about halfway down sides; fateral hair shorter than plate; gills several times length of segment.

Distribution, biology, and importance.This species oceurs in a few places in the high mountainous areas of Washington, Oregon, and Idaho (map 3). The largest numbers have been found in Mount Rainier National Park in Washington and netr Dianond Lake in Oregon. The larvae hatch with the first melting snow. The species is apparently too rave to be of mutch importance as a pest.

Aedes (Ochlerotatus) implicatus Vockeroth

Aedes impiger Dyar, Insecutor Inscitiae Menstruns 8: 8. 1920.

Aelles (Ochlerothtus) implicalus Vockeroth, Canal. Ent. 86: 110. 105-1.

Female.-Mesonotum with median oblong area of brown scates, usually in form of broad stripe or paired stripes; margins grayish white. Lower mesepimeral bristles one to three or rarely none. Postcoxal scale patch present. Sternopleuron with seales not extending to frontal border. Wing scales dark with patch of two or three to many pale scales at base of costru. Legs dark; femora pale sealed beneath.

Male genilalia.-Basistyle about four times as long as wide; apieai lobe small, elongated, and narrowly attached with few short setae, tuft of long hairs just below base; basal lobe small, elevated into transverse ridge with row of long setae and slender spine at margin. Claspette stem lightly hirsute except at apex; filament angularly expanded to sharp point near basc.

Larva (fig. 50).-Upper and lower hairs single or occasionally with uppers double. Lateral abdominal hairs double on first to fourth segments and single on fifth and sixth. Comb with 17 to 25 scales; each seale with fringe of spines, median spine slightly longer. Air tube about $21 / 2$ by 1 ; closely set pecten tecth not reaching middle, followed by tuft of three or four hairs. Anal segment with plate spiculated apically and extending about halfway down sides; lateral hair shorter than anal plate; anal gills pointed and only about as long as plate.

Distribution, biology, and importance.This species oceurs in small numbers in the Northwestern States (map 6). The harvac are usually associated with other Aedes larvae in pools in semiwooded areas at the higher elevations. It is considered unimportant as a pest.

Aedes (Ochlerotatus) increpitus Dyar

Aedes increpitus Dyar, Insecutor Inscitine Menstruns 4: 87. 1016.

Female.-Tori without white scales on dorsal half. Mesonotum yellowish white to light brown with broad median brown stripe or variable pattern of brown and light scales. Mescpimeral bristles one to five. Wings dark with white scales along costal area. Legs dark; tarsi with basal white bands on all except last two segments of front tarsi and first seg-

Fucue 50. - Ifedes implicatus hava.
ment of middele tarsi, white bands broader on hind lege.

Male genitalia (fig. 51).-Basistyle more than three times as long as wide; apical lobe prominent and bluntly pointed with fow small inwardy directed setue; basal lobe a small rugose elevated area with short setae that extend halfway to apieal lobe. Claspette stem hightly hirsute excent at aper; filament angularly expmated to sharp point near middle.
Larva (fig. 52).-Upper head hairs usatly two or occasionally thee, lower one or tivo. Lateral abdomina hairs one or two long haiss on eneh segment. (omb with about 20 to 40 seales in patcii; each seole fringed with spines, central spine slightly longer. Air tube about, 3 to $3 \frac{1}{2}$ by 1 ; pecten not reaching midde of tube; buft of four to six hairs. Anal phate extending only about two-thirds down sides, apex with well-developed spicuics on apieat area; lateral hair shorter than anal plate; anal gills
pointed and from 19 to about $1 \frac{1}{2}$ times length of plate.
Distribution, biology, and importance.This is a common species that is generally distributed over the plains areas of Washington, Oregon, and Tdaho (map 2). The havae have been taken thso in open meadows and small poots in semiwooded contry from sea level to an elevation of about 6,000 feet, Chapman (68) has collected lavive at S,200 fect in Nevada. Distribution and ecology of the speedes in Cablomia have been statlied by (atpenter (58). (Mr associates, L, F. Jewis and D. M. (hristenson, have shown (unpublished data) that in the Willamette Valley of Oregon dovelopment of larvae and pupac and oven some adult emergence ocpur in winter. This information would indicate that all stages of this species may be involved in carrying it, through the winter in some areas. This species is one of several found at higher elevations that contribute to the serious discomfort of man and unimals.

Ficure 51.-sicdes increpitus mate genitaha.

Aedes (Wchlerotatus) intrudens Dyar
 1019.

Female.--Mesontum uniformly bronze brown or occasionally with indications of median brown stripes. Postcoxal soale patch absent. Stemopieuron with seales not extending to anterior edge. Lower mosepheral bristles one to five. Abdomen black with broad basal white bands; venter completely white sealod. Hing scales dark with or without small patch of pale seales at base of costa. Legs with mixture of pale seales; tarsi mostly black.

Male genitalia (fig. 53).--Basistyte about three times as long as wide, dense tult of setac near apex; apical lobe prominent rounded with numerous rather long setae; basal lobe elongate with large spine at buse and two spines on raised apex. Claspette stem with basal half hirsute and forming sharp projection ending in stout seta at middle; apical half slender; filament angularly expanded to sharp point at toiddie.

Larva (fig. 54).-Upper head hairs usually four, lower two or three. Lateral abdominal hairs usually double on first segment and single on second to sixth. C'omb with 10 to 17 scales in irregular double row. Air tube about $21 / 2$ by 1 ; pecten reaching mid-
de with two or three detached teeth, followed by large multiple tuft. Anal segment with plate extending to near ventral line and ventral margin deeply incised; anal gills longer than segment.
Distribution, biology, and importance.Aedes intrudens larvae have been found in small numbers in pools in open as well as forested areas in the Northwestern States (map 6). The adults differ from those of other forest species in that they frequently enter houses (84). This species does not oecur in suffieient numbors to be of economie importance.

Aedes (Ochlerotutus) melanimon Dyar
Actes meltuimon Dyar, Insceutor Inscitiac Menstruus 12: 196 . 192-

Ferame.-Palpi tips with pale scales. Mesonotum yellowish white with median brown band and posterior brown half stripes; anterior lateral margins also narrowly brown scaled. Abdomen predominantly dark scaled with median white stripe and transverse segmental narrow white bands. Wing scales dark and light with dark predominating on most veins; sixth or anal vein with more dark than light scales. Legs with dark and pale scales; tarsi dark with apical and basal white bands on all but last two

Figure 53.-Aedes intrudens male genitalia.

Ftgule 54.-Aedes intrudens larva.
segments of middle tarsi and last three segments of front tarsi.

Male genitalia (fig. 55),-Basistyle about three times as long as wide; apical lobe rounded and somewhat shortened apically, surface clothed with few straight setae of medium length; basal lobe rises in slope from sidepiece, surface covered with short setae; stout spine on margin and smaller adjacent spine. Claspette stem curved and evenly narrowed with few sctae near apex; filament with long shank and more broadly expanded area near middle.

Larva (fig. 56).-Upper and lower head hairs single or oceasionally double. Dorsal hair 1 of mesothorax approximately same length as 2 but shorter than 3 or 4 . Abdomen with lateral tuits usually double or triple on segments 1 and 2 and double on rest. Comb of 20 to 31 scales in triangular patch; each scale fringed with spines, apical spines longer. Air tube tapering, about 3 by 1 ; pecten
teeth evenly spaced to near middle of tube with multiple tuit set close to end of pecten. Anal segment with plate extending about two-thirds down sides; lateral hair shorter than anal plate; gills $1 / 2$ to $11 / 2$ length of plate.
This species, which had been considered a synonym of Aedes dorsalis, was resurrected in 1955 by Barr (14). Characters for the separation of these two species have been described by Bohart (86), Chapman and Grodhaus (70), and Richards (231).

Distribution, biology, and importance.This species occurs in eastern Washington and Oregon and is also found in smaller numbers in southern Idaho (map 5). The larvae develop in irrigated meadows and flooded grasslands. In many

Figore 55.-Aedes melonimon: A, Male genitalia; B, claw of femaic. (Drawn from specimen of Aedes dorsalis and modified to represent Acdes melanimon.)

Figrire 56. - - A edes mednimon larva. (Drawn from specimen of Actos torsalis and modified to represent Acdes melanimon.)
of these aras the larvae are associated with those of A. dorsalis. The females are an important pest of man and animals. Chapman (62) found that in Nevada this species was much more timid and less inelined to bite than A. dorsalis in the daytime. Richards (281) stated that western equine encephalitis, which was reported from A. dorsalis in Weld County, [tah, prior to the resurrection of Aedes melmimon in 1955, was undoubtedly isolated from A.melonimon.

Aedes (Ochlerotatus) nigromaculis (Ludlow)

(irabhama nigromactis Ludlow, George Wash. Cniv. But. 5: 5.5 .1907.

Female.--Proboseis of female ringed with white, or ring may occasionally be indistinct of absent. Mesonotum with varying shades of yellowish scales, broad median bronze-brown stripe, and brown sides. Ablomen black with basal segmental bands and median stripe of yellowish scales; lateral spots
usuatly concolorous with median stripe. Wing scales pale and dark, dark predominating. Femora and tibite partially pale scaled; tarsi black with basal white bands except on segments 4 and 5 of front and middle tarsi; last segment of hind tarsi oceasionally all white, white band on first segment broadly extended by seatered white scales.

Male genitalia (fig. 57).-Basistyle twice as long as wide; apical lobe absent; basal lobe a small elevated area with many rather short setac. Claspette stem with cylindrical stem and short seta near outer end; filament narrow and as long as stem.

Larva (fig. 58).-Upper and lower head hairs usually single but may be double. Comb with about nine thornlike scales. Air tube about 2 by 1 ; pecten extending well past middle with three stout detached teeth; small tuft near tip. Anal segment ringed by plate; lateral hair single and shorter than plate; gills pointed and from one to two times as long as plate.

Distribution, biology, and importance.This species is often found associated with Aedes dorsalis and certain other species in open irrigated or flooded meadows in prairie or open country. However, it is apparently rather restrictive in its breeding habits. It has been found in south-central Washington and in the semiarid plains of Oregon and Idaho (map 3). It is numerous in the lower

Figure 57.-Aedes nigromaculis male genitalia.

Payette River district of western Idaho. It has recently been found near Eugene, Oreg., and may well establish itself in the Willamette Valley. It is an important pest in some other irrigated sections where new broods may be produced with each flooding. This species is a strong flier. Experimentally it has transmitted western equine, st. Louis, and Japanese B encephalitis viruses.

Aedes (Ochlerotatus) niphadopsis Dyar and Knab
Aedes niphadopsis Dyar and Finb, fasecutor Inscitiac Mentrmes b: 16\%. igis.
Female.-Mesonotum with medirn brown stripe and usually with posterior half lines; margins, sides, and anteseuteliar space with white scales. Lower
mesepinerat bristles two or three, or rarely none. Abdomen black wili basal white bands with or without mediun line of white scales. Wings with mixture of pale and dark scales, dark predominating. Legs with mixture of pale and dark scales.

Male genitalia (fug. 59).-Basistyle about three times ans iong as wide; apical lobe small, congate, marrowly attached, bare or with few small setale; basal lobe small, elevated into transverse ridge with row of three or four stoul setae preceded by short spine at margin. Claspette stem lightly hirsute on basal hatf; flament expanded in gradual curve near basal third.
Larva (fyg. 60)--Upper and lower head hairs usually single, oceasionally double. Comb with 10 to 12 scales in irregular double row. Air tube nearly 4 by 1 ; pecten tecth not extending to middle with last two or three teeth detached, followed by large tuft. Anal segment longer than wide; plate extending about halfway down sides; lateral hair siorter than plate; gills budlike and shorter than plate.

Pigure 50-Actes niphadopwis male genitalia,

Figitat bio - - ledes niphodopsis latrat.
Distribution, biology, and importance.This species has been found in Klamath and Deschutes ('ounties in Oregon and in several counties in southem Idaho (map 6). Adults have been collected in large numbers in some locations in Custer C'ounty, Idiaho. Larvae were collected at the edge of a drainage diteh in the open country below Khanath Falls in Mareh. It has been found in several locations in the southwewtem part of Idaho by limmston and Rees (133). Nielsen and Rees (205) stated that it is an amoying pest in western and northern Utah.

Aedes (Ochlerotatus) pionips Dyar

Aedes piomizs Dyar, Insceutor finseitiac Menstruas $\therefore=19$. 1919.

Female.-Mesonotum with dull-yellow or white scales, two broad, well-defined, dark-brown stripus, and posterior hafl lines; median stripes separated by line of pale seales. Posteoxal seale patch present. Stemopleuron with white scales extending to anterior border. Posterior area of presasisteroum with white seales. Lower mesepimeral bristles one to four or rarely none. Hypostigial spot of scales absent. Abdomen with or without narrow basal white bands. Wing scales dark with small patch of pale
seales at base of costa in about 85 percent of specimens. Legs diark; femora partially pale scaled.

Male genitalia (fig. 61).-Basistyle about three times as long as wide; apical lobe large and rounded with many long setae; basal lobe partially detached at base, surface with some small setae, several larger curved ones, and stout spine on margin. Chasjecte stem lightly hirsute on busal hatf, apical half more slender; filament flat and expanded angularly to its maximum width at base.
Larva (fig. 62).-Upper head hairs asually five, lower four. Prothoracie hair 1 single. Lateral abdominal hats usually double on segments 1 and 2 and single on 3 to 6 . Comb with 60 or more seales; each seale with rounded fringe of spines apically. Air tube about 3 by 1 ; pecten not raching middie, followed by large multiple tuft. Anal segment with plate extending about two-thirds down sides; lateral hair shorter than plate; anal gills about twice length of segment.

Distribution, biology, and importance.This species has been found in Baker County, Oreg., and in Blaine and Bear Lake Counties in Itlaho (map 6). The larvae have been taken in open flooded meadows in semiwooded areas. In Alaska the larvae were found in bogs, roadside ditches, vehicle traeks, and small bodies of water in recently disturbed

Figure 61.-Aedes pionips male genitalia.

lioure 62.- dedes pionips larva.
soil (114). Little is known of its habits, and because of its rarity it is considered of little economic importance.

Aedes (Ochlerotatus) pullatus (Coquillett)

Culex pullatus Coquillett, Wash. Ent. Soc. Proc. 6: 168. 190.4.

Female.-Mesonotum with yeliowish-brown scales; narrow bare median line with parallel stripes of brown scales, each stripe bordered by broader stripe with few dark scales; with or without narrow bare curved posterior half lines. Postcoxal scale patch absent. Sternopleuron with scales not extending to anterior border. Lower mesepimeral bristles one to five. Hypostigial spot of many white seales. Abdomen black with basal white bands. Wings dark scaled with patch of pale seales at base
of costa in about 95 percent of specimens. Legs dark; femora and tibiae partially pale sealed.

Male genitalia (fig. 63).-Basistyle about $31 / 2$ times as long as wide; apical lobe prominent and somewhat elongated, ventral surface covered with numerous long setac; basal lobe represented by large spine at margin and some small setae. Claspette stem with basal half large, pilose, and forming rounded projection at middle, apical half slender; filament angubarly expanded to rounded point near middle.

Larva (fig. 64).-Upper head hairs five to seven, lower usually four; hairs short and tufts set close together. Prothoracie hair 5 usually triple. Lateral abdominal hairs double or triple on first to fifth segment and single on sixth. Comb 29 to 55 scales in triangular patch, each scale fringed with spincs, apical spines longer. Air tube 3 by 1 ; pecten tecth closely set, not reaching middle, closely followed by large six- to seven-haired tuft. Anal segment with plate extending about two-thirds down sides; lateral hair shorter than plate; gills $11 / 2$ to two times length of plate.

Distribution, biology, and importance.Although this species is not too common, it has been taken in a number of places in the high forested

Ftgune b3.-itedes pullahas male genitalia.

Figure 64.-Atedes pullatus harva.
mountainous areas (map 4). The larvae are usually found in melting snow pools associated with a number of other species. The adults emerge rather late and are severely annoying for only a short time. They have been observed to bite in shaded areas during daylight.

dedes (Ochlerotatus) punctor (Kirby)

Culex puntor Kirby. Faunn Boreali-Amer., pt. 4, p. 300. 1837.

Aedes cyctocerculus Dyar Insceutor Inscitise Menstrums S : 23. 1920. "(in part)."
dedes leucionotips Dyar, ibid. S: 24. 1920. "(in part)."
Female.-Mesouotum pale yellow to yellowish brown with paired dark-brown stripes and usually
with posterior submedian half stripes. Postcoxal scales present. Sternopleuron with scales extending to anterior border. Probasisternum usually without or with few white scales on posterior area. Hypostigial spot of scales absent. Abriomen black with basal scgmental white bands. Wings completely dark scaled or with few pale scales at base of costa. Legs dark; femora and tibiac with or without seattered palescales.
A "tundra" variety of punctor was found in the tundra areas of Alaska by Knight (178). This form in which the mesonotum is brown and unlined is not known to oceur in the Northwest.
Male genitalia (fig. 65). -The characters of the male genitalia of this species are the same as those of Aedes hexodontus.
Larva (fig. 66).-Upper and lower head hairs single or double. Lateral abdominal hairs usually single or doubic on segments 1 . to 6 . Comb with 10 to 19 stout seales in irregular row; each scale with long median spine and very short lateral spinules. Air lube $2 \frac{1}{2}$ by 1 ; pecten fine and not reaching middle of tube; tuft centraily placed. Anal segment ringed by plate or narrowly open ventrally; lateral

Ftoune 65.-Aedes punctor male genitalia.

Figure bid. totes punctor harva.
hair longer than plate; gills 1 ! 2 to three times as long tis plate.

Distribution, biology, and importance-This species has been collected in several phaes in northern Washington and northern Idaho (map 7). Myklebust (190) collected biting adults in Chelan County, Wash, Jume 1901, and we collected small numbers of third-and fourth-instar larvae in April 1963 in semiwooded swampy areas in Pend Oreille County, Wash. Ogden ${ }^{5}$ collected adults near Lake Wearehec, Wash. Matheson (100) stated that the larvar may also oreur in grasy bogs and in forest pook containing deenying leaves. This species, which can be an important pest (222), is probably of litite importanee in the Northwest becuse of its limited numbers.

[^4]
Aedes (Ochlerotaths) schizopinax Dyar

Acten schizopinar Dyar, C.S. Nath. Mus. Proc. 75 (23): 1. 1929.

Femate--Probosels with yellowish-gray scales on wentral surface. Mesonotum with bronze-brown stripes separated by golden-brown stripe with bare median line. Postoxal scale patch I resent. Sternopieuron with seake patch extending to anterior edge. lower thesepimeral bristles present. Abdomen dark with basal white bands. Wings dark scaled with patch of two or three to many seales at base of costa. Legs dark; undersurface of femom pale scaled.

MaIe genitalia (fig. 67).-Basistyle length about three times its midwidth; apical lobe long and rounded with short curved setae; basal lobe fiatly conical with mumerous setae, curved spine followed

Fugute 67.--Atedes schzopimax male genitalia.
by row of long slemer setac. Claspette stem slightly curyed, expanded nemp middle, and pilose to near aper; filmment nemry as long as stem, expanded near midde, and terminating in bimet curved point.

Larva (fige 68).- Cpper hord hairs three to five, lower two or thre. Prothoracie hair number I long and three to five-branched. Lateral abdomimal hairs double. (omb with about to seales; each scale with long median spine and short lateral spinules. Air tube about 3 by I: peoten teeth not reaching mikde: tuft of three to five hairs. Anal segment with phate spiculate on apical area and extending to near vental line; lateral hair equal to or longer than plate; gills about as lons as plate.

Distribution. biology, and importance.This is at rave speries of little economie importance in this region. It has beru foum in only two counties in sonthem Idaho and in onty two counties in castern Oregon (map 7). Lavae have been collected in water in catlic tacks and in pook in mountain valleys below 7,000 feet (203). The females did not athek man in arens where the larsae developed, but they roukd be collected in light trups. Carpenter (54) collected harvac in similar types of breeding

Fuaras GS, - dedes schizomintax larva.
areas in ('alifornia mountains at clevations of 5,100 to 7,800 feet. Adults of this species were seen resting on the vegetation in one area, but he was not able to attract or capture them in the daytime.

Aedes (Finlaya) sierrensis (Ludiow)

Thenionhychus vierrensis Ladlow: Camal. Ent. 37: 321,

Cuber varipulpes "Coquilett" Lendow, hbid. 3s: 13'2. Imot. fetes siomensis "(Lathew)" Belkin and Melronate, ('alif. Vertor Viows $3(10)$: 5 . thath.
Female... Palpi black scaled with tip broadly white seaked and few white seales at apex of second segmeni. Mesonotum brown with median anterior patch and narrow posterior curved lines of yellow scales; margins with mixture of pale seales and sculellum with broad white scales. Abdomen black with median triangular patehes of white seales that maty extend narrowly to lateral white patehes to form band. Wing seales dark with pateh of white scales at base of costa. Lecgs dark with white bands involving both ends of all but last two segments of front and middle tarsi, which are black, and last segment of hind tarsi, which is white.

Male genitalia (fig. 69).-Basistyle three times as long as wide; apical lobe absent; basal lobe narrow with long spines basadly and short setac extending to apical fourth of basistyle. Claspette with cylindrical stem; filument narrow, ligulate, and as long as stem.

Larva (fig. 70).-Antennae slender without spines and with single hair beyond middle. Upper bead hairs usually single or sometimes double, lower head hairs usually double or sometimes single or triple. Lateral abdominal hairs usually double or triple on first three segments, double on fourth and fifth, and single on sixh. Comb with about 12 to 23 seales; each scale fringed with short spinules. Air tube about 3 by 1 ; pecten tecth evenly spaced on basal fourth or third of tube; tuft slightly beyond pecten; acus attached. Anal segment with plate extending down about halfway; lateral hair longer than segment; anal gills enlarged, bluntly rounded at aper, about equal in length, and about four times as long as segment.

Distribution, biology, and importance.The species occurs in all the Northwestern States (map $\overline{5}$) but is usually not too abundant, especially in Idaho (52). The largest numbers are found in the foothills of the Coast Ranges and the Olympic Mountains in Washington. It is a rather small
mosquito and breeds in tree holes and in many kinds of artificial containers. Reeves (225) reported finding it also in rock pools and wooden receptacles under trees. In Oregon numerous larval collections have been inade in old automobile tires and tree

Ficcre 69.--A dedes sierrensis male genitatia.

Figere 70.-A ides sierrensis jarva.
stumps. The larvae may be found in midwinter if temperatures below freezing do not prevail for long periods.

Peyton (211) stated that the life cycle may be completed in as little as 15 days under optinum conditions. In unpublished observations on development at approximately $75^{\circ} \mathrm{F}$. we found that about 12 days were required for eggs (conditioning), 10-14 days for larvac, and 4-6 days for pupre. This compares favorably with the data reported by Judson et al. (157). These authors found that the dissolved oxygen required for egg hatching was very low (0.025 p.p.m. or less).

It is a persistent biter but apparently has a restricted fight range. It has been found to be an caperimental vector of western equine encephalitis.

This species was resurrecter in 1956 by Belkin and MeDonald (26). These same authors (27) described a new but closely related species from Arizona, Aedes monticola Belkin \& MeDonaid, and gave separating characters and a general discussion of the "varipalpus" complex.

Aedes (Ochlerotatas) spencerii idahoensis

(Theobald)
Grabhamáa spencerii var. uththoensis Theobald, Monog. Culicidac 3: 250. 1903.
Female.-Mesonotum with broad reddish-brown stripe usually separated by fine line of grayish scales, faint posterior half lines present or absent, sides and antescuteliar space with grayish-white scales. Lower mesepimeral bristles absent. Abdomen black with broad basal white bands. Wings with costa, first, third, and fifth veins dark scaled, other veins with pale scales. Legs mostly paie scaled; femora, tibiae, and some of apical tarsi partially dark scaled outwardly.

Male genitalia.-The characters of the male genitalia of this species are considered the same as those of Aedes sticticus.
Larva (fig. 71).-Upper and lower head hairs single, or occasionally with one or two hairs double. Lateral abdominal hairs usually triple on segments 1 to 3 and single on 4 to 6 . Comb with 13 to 29 scales in irregular patch; each scalc with broad terminal spitie of medium length and short lateral spinules. Air tube stout, about $21 / 2$ by 1 ; pecten of closely set teeth to middie or slightly beyond, last two teeth detached, followed by small tuft. Anal segment with plate nearly reaching to ventral line;

Plevere 71....tedes spencerii idahoensis harva.
laternl hair shorter than plate; gills pointed and about twice length of plate.

Distribution, biology, and importance.This species is more common in Idaho than Washington or Oregon (map 5). It commonly occurs in the treeless phains or in low mountain areas. It has been found in largest numbers in southem Idaho, where it is an importint daytime pest in localized areas. The larvae have been collected in open meadows, flooded areas partially grown up with willows, timbered river bottoms, and roadside ditches.

Aedes (Ochlerotatus) sticticus (Meigen)

Cutex victicus Moigen, Systemb. Beschreibung der Bekannten Europuiishen Zweillügeligen Insekten 7: 1. IS3s.
Cuder hirateron Theobadd, Monog. Culicidne 2: 98. 1001. dedes aditrich Dyar and Nomb, V.s. Natl. Mus. Proc. 25: 5\%. 1908.
Acdes gonimas Dyar and Kunab, [nsecutor Inscitiae Menstruus ${ }^{5}$; 165.1018.
Acdes laterafis (Meigen) Edwards, in Wytsman, Genera Insectorum 104: $1+4.1932$.

Female.-Mesonotum yellowish white with two golelen-brown stripes and posterior half lines; anterior stripes separated by narrow median line of pale scales, which is sometimes indistinct or absent. Postcozal scale patch absent. Lower mesepimeral bristles absent. Abdomen black with basal white bands. Wing scales dark with or without patch of pale senles on base of costa. Legs dark; femora and tibite partially pale sealed.

Male genitalia (fig. 72).-Basistyle nearly three times as long as wide; apical lobe large and rounded with short curved setac; basai lobe expanded, semidetached apically, outer surface with short setae, large spine at base, and adjoining tuft of long setre. Claspette stem cylindrical and slightly tapered at apex with one or two setae above midpoint of inner side; filament short, broad, expanded at middle, and terminating in blunt, curved point.

Larva (fig. 73).-Upper head hairs two or three, lower one or two. Lateral abdominal hairs variable, usually multipie on first segment and double on second to sixth. Comb with about is to 28 scales in triangular patels; each scale with long median spine and short lateral spinules. Air tube stout, $21 / 2$ by 1 ; closely set even pecien teeth to near middle of tube;

Figure 72.-Aedes sticticus male genitalia.

Fitutes ib. - ledes sticticus larva.
multiphe tuft sed close to end of peeten. Anal serment with plate extending nearly to ventral line; spieules minute or absent; lateral har shorter than plate; anal gills pointed and about wiee length of plate.

Distribution, biology, and importance.This is one of the most important mosquito pests in the Northwestern states. It breeds in large numbers in the brushy bottom lands along the Columbia River and in similar places. It also oceurs along some other rivers in northwestern Washington and various locations in Cdaho (map 3). The larvae, which are usually insociated with Aedes vexans, are found in large numbers for about 100 miles below the Bonnevilk Dam when the annual spring flood of the Columbia inundates the bottom lands. The atulds disperse for 15 to 20 miles or more and remain a serious pest to man and livestock throughout the summer. The eggs may remain viable for at least 3 or 4 years if nod reaclrel by normal floods (105). This species has been eapal)le of transmitting westem equine and St. Louis encephalitis viruses.

Aedes (Ochlerotatus) stimulans (Whalker)

Cuder sitmudans W:alker, List of Dipterous Insects in Brit. Mus., pt. 1, B. 4. Ls.ts.
Female--Tori with or without white sales on dorsal half. Mexonotum yellowish white to light brown with broad median brown stripe or variable pattern of brown fud light: seales. Lower mesepimeral bristles three or four, rately one or two. Abdomen blaek with basal segmental white bands. Wings completely dark saled or with admixture of white ones on costa. Lages dark; tarsi with busal white bands on all exeept last two segments of front and last segment of middle talsi, white bands broader on hind tarsi; tarsal daw with short tooth not parallel to claw.

Male renitalia (fig. 74).-Basistyle about three times: as long as wide; apieal lobe with few shor setur; basal lobe low, flatly rounded, with many short setae and stout marginal spine. Claspette stem hirsute exept at ipex; filament thin and angularly expanded near middle.

Larva (fig. 75).-Upper hoad hairs one to three, lower one to two. Lateral abdominal hairs triple on segment 1 , double on 2 to 5 , and single on 6 . Comb with about 25 to 35 seales; each suale with median spine about 1 la times as long as lateral ones. Air

Figure $74 .-$ Aedes stimulens male genitalia.

Ficicore 75. - A edes stimulams larva.
tube 3 to 3 ta by 1 ; peeten teeth extending nearly to middle, followed by small tuft; apical setae shorter than lateral raloc. Amal segment with plate spioutated abically and extending about two-thirds down sides; lateral hair shorter than plate; gills about as fong as plate.

Distribution, biology, and importance.The larvac of thes seceies breed in snow pools and other overfow pools in woolland arcas. They are satd to be persistent biters in areas where they are numprous. Harmston and Rees (133) collected this species in three comfies in southern Idaho (map 7).

Aledes (Ochlerotatns) trichurns (Dyar)

 100)

Female. - Mesonotum with median brown or mixed brown ant gray scaled stripe expanted in with behind midde, sides and margins with grayishwhite seales. Postcoxal scate pateh present. Stemopleuron with scales extending to anterior edge.

Probasistemum with white scales on posterior area. Lower mesepimeral bristles three to six. Hypostigial spot of fow to many white seales. Abdomen black with basal segmental white bands. Wing scales dark, usually with match of two or three to many pale seales at base of costa. Legs black; femora pale sealed bencath.
Male genitatia (fig. 76).-Basistyle three times as long as wide; apical lobe prominent and augularly rounded with few setile; basal lobe small, covered with setar, and benring two long skender posteriorly directed spines. Claspette stem with long eylindrical eurved stem slightly expunded before apex; flament short and conical with series of transverse ridges.

Larva (fig. 77).-Upper head hairs usually double, lower single. Lateral abdoninal hairs triple on segment 1 , double on 2 and 3 , and single on 4 to 6. Comb with about 12 to 16 thorn-shaped scales in double row. Air tube about 3 by 1 ; pecten reaching basal fourth of tube with four to five widely separated detached teeth; multiple hair tuft within pecten and additional small tufts on dorsal and

Figure 76.-Aeales trichurus matle genitailia.

Woune 7t.-Aedes trichuma larva.
latemal surfaces of siphon. Anal segment with plate neary reaching ventral line; gills stightly longer than segment.

Distribution, biology, and importance.This rather uncommon mosquito occurs in semiwooded areas in Tdaho and northeastern Washington (map (6). The larvac have been found in pools in the nargin of woods, in litge open-flooded areas with sparse small brush, and in cattail ponds. The females have been reported to feed readily on man but are less aggressive than Aedes communis. This species oceasionally may be fairly numerous in small localized areas.

Aedes (Ochlerotatus) trivittatus (Coquillett)

Culex triviltatas Coquillett, N.Y. Ent. Soc. Jour. 10: 193. 1903.

Female.-Mesonotum with pair of yellowishwhite stripes separated by median stripe of brown scales, anterior margins yellowish white, lateral margins brown. Lower mesepimeral bristles absent. Postcoval scale patch absent. Abdomen black scaled with basal white triangular patches and with or without central white spots. Wings dark scaled. Legs dark scaled; first tarsal segments pale.

Male genitalia (fig. 78).-Basistyle about three times as long as wide; apical lobe rounded with few siort setae; basal lobe prominent, bluntly conical with many short setac apically, large spine, and group of long fine setac near base. Claspette stem eylindrical and hirsute; filament expanded into sharp retrorse projection at basal third and terminating in enved point apically, retrorse expar an ocensionally with small spines.

Larva (fig. 79).- Tpper and lower her hairs single. Lateral abolomimal hairs usually a^{2} whe on segments 1 and 2 and singlo on 3 to 5 . (mb with about 17 to 26 seales; each salic with : ian spine slightly longer and somewhat broud than subapiend spines. Air tabe about 2 by peeten extending beyond middle, followed by matiple hair tuft. Amal segment ringed by plat.; lateral hair slightly shorter than plate; gills 2,2 to three times as long as plate.

Distribution, biology, and importance.The larvae of this species bred in floodwater pools in madows and woodlands. Observations on the biology have been made by Abdel-Malek (2). It is an important pest in some arcas in the East, but

Figurs 78.-Aedes trivithatus male genitalia.

Figure $70 .-$ detes trivillatus larva.
in the Northwest it has been found only in small numbers by Harmston and Rees (133) in Canyon and Owyhee Counties of Idaho (map 7).

Aedes (Ochlerotatus) ventrovittis Dyar

Aede; rembrothis Dyar, Insecutor Inscitiae Menstrmus 4: 48. 1916.

Female.-Mesonotum brown, darker centrally, fringe of yellowish scales around margin. Postconal scale patch absent. Lower mesepimeral bristles absent. Abdomen black with basal white bands, which may be narrow or absent medianly. Wing scales dark with or without mixture of white scales extending outwardly from base of veins. Legs dark with mixture of pale scales; tarsi mostly dark.

Male genitalia (fig. 80).-The characters of the male genitalia of this species are considered the same as those of tedes sticticus.
larva (fig. 81).-Upper and lower head hairs single or rarely with one of hairs double. Lateral abdominal hairs usually multiple on segments 1 to 3 , double or single on 4 and 5 , and single on 6 . Comb with six to 12 thornlike scales; each seale with long
median spine and minute lateral spinules. Air tube tapering, about $21 / 2$ by 1 ; pecten reaching nearly to middle of tube with one to four detached teeth; tuft of five to six hairs near middle of tube. Anal segment with plate nearly reaching ventral line; lateral hair shorter than plate; gills about $21 / 2$ times length of plate.

Distribution, biology, and importance.This species has been taken only in a few places at higher elevations (map 6). The larvae have been collected in pools in open meadows and in roadside borrow pits grown up with willows. Adults are seldom present in sufficient numbers to be annoying. Carpenter (55) 'ound the larvae in largest numbers in very small depressions on the sloping ground of mountain meadows in California, where melting sne-ws kept these depressions filled and occasionally earried the larvae along into larger pools.

Figure 80.-Aedes ventrovillis male genitalia.

[Pugura S1.-Aedes mentroviltis larva.
Aedes (Aedimorphus) vexans (Meigen)
('ulex texans Meigen, System. Beschreibung der Bekannten Europiischen Zweifligehgen Insekten 6: 241. 1830.

Female.-Mesonotum clothed with bronzebrown scalcs, paler at base of wings and around antescutellar space. Lower mesepimeral bristles absent. Abdomen black with centrally indented basal white bands. Wing scales brown. Legs with narrow basal white bands on all segments of hind tarsi, first four segments of middle tarsi, and first three segments of front tarsi.

Male genitalia (fig. 82).-Basistyle twice as long as wide; dististyle long, broad, and divided near apex; short arm with stout claw. Claspette stem short and capitate with dense crown of spines; filament absent.

Larva (fig. 83).-Upper head hair two to four, lower two or three. Lateral abdominal hairs two to three on first to third segment, two on fourth and fifth, and single on sixth. Comb with nine to 14 scales in irregular double row; each scale with long central spine and short lateral spinules. Air tube 3 by 1 ; pecten reaching past middle with one to three

Figura 82.-Aedes rexans male genitalia.

Figure 33.-Aedes vexans larva.
detached teeth and small multiple-haired tuit near end of pecten. Anal segment with plate extending almost to midventral line; lateral hair shorter than plate; gills about $11 / 2$ to two times length of plate.

Distribution, biology, and importance.This species is found over the greater part of the Northwestern States (map 3). It is one of the most important pest species in both irrigated and floodwater areas. It is present in overflow areas along many rivers, but it is most abundant on the bottom lands along the Columbia River and its tributaries for about 100 miles below the Bonneville Dam. In
this area the larvae are associated with those of Aedes sticticus in the partially open, brushy, or wooded areas. The adults sometimes disperse for 15 to 20 miles or more from their breeding places and are a serious pest to man and livestock for 3 to 4 months during the summer. Along the Columbia River several hatchings may occur depending on the number of floods, since all eggs may not hateh with the first Hooding. More than one generation may also occur in the irrigated sections. This species has been found naturally infected with western equine encephalitis and has been experimentally infected with St. Louis encephalitis virus.

Genus CULEX Linnaeus

Keys to Species

ADULTS

1. Tarsi and proboselis ringed with white.

Tarsa and proboscis not ringed with white.

 ventral segments of aldomen with median dark-sculed oval inner surfaces of tori without white scales;

Abdominal segments with pale basal hateral patches and partial or complete white or yellowish bands
4. Hind femur with pale posterior stripe ending shortly before apex; palpi about three times as long as flagellar $\quad 6$ segment 4

5. Oeciput with dorsal pale scales ashy white; abdominal segment 5 of unengorged dried specimens about 1.3 times as broad us long
p. 78
6. Mesonotam reddish brown with narrow hailike goden-brown scales; coxae reddish brown. boharti, p. 7I erythrothorax, 1. 72
Mesonotum brown or dark brown with narrow curved seales; coxae brown or dark frown
Mesonotum brown or dark brown with narrow curved seales; coxae brown or dark frown 7. Abcominal segments with narrow to normal basal bands 7
Abdominal segments with few dingy-yellow basal scales or with narrow basal bands; seventh segment partially 8 8or completely covered with jellowish scales

Mesonotum without white spots; abdominal bands narrowed haterally or entirely disconnected from lateralp. pipizas, p.74
male genitalia

1. Tenth sternite crowned with single row of blunt teeth
2
2
Tenth steraite crowned with tuft of short bristles
Tenth steraite crowned with tuft of short bristles
4
4
2. Mesosome plates joined at base but not connected subapically by scierotized bridge. apicalis, p. 70
3. Mesosome phates brotd at midpoint and strongly narrowed to blunt sclerotized point apically 3
Mesosome plates of even width; apex broadly rounded and not heavily sclerotized boharti, p. 71
t. Subapieal lobes of basistyte with eight appendages territans, p. 78 territans, p. 78
Subapieal lobe of basistyle with six or less appendages. 74 74
4. Subnyical lobe of basistyle with one of filaments clublike; 10 th sternite with outer spines on apex blunt. tarsalis, p. 77
Subapien lobe of basistyle with one of flaments broad and leallike; 10th stemite with all spines on apex 6
pointed. 6. Mesosome with one stout blunt tooth 75 7
Mesosome with several teeth.
Mesosome with several teeth.
5. Mesosome with about four stont teeth. 8
Mesosone with six or more teeth S. Mesosome with right angle bend at midde of dorsal arm; most apical tooth nearly straight and much smadlerthan adjacent tecth.
Mesosome with nearly straight dorsal arm; most apical tooth betot and about same size or larger than adjacenttecth
Larvae
6. L'per head hairs one to three, lower single or double. 2 4l'puer head hairs four or more, lawer three or more
2 Air the more than seven times its greatest diameter; basal diameter about twice apien diameter; ventraltafts less than one-half length of air tube...apicalis, p. 70
Air tube less than seven times its greatest dianmeter; basah diancter less than twice its apical diameter; ventral3
tufts about one-hatif as long as air tulbe. Fourth abdominal segment distinetly paler than third or fifth; spicules relatively slender near dorsai apex ofsadulle
territans, p. 78
dorsal apex of saddle
dorsal apex of saddle Air tube with four to six long single irregularly placed hairs and subnpienl tuft of two or three small hairs restumns, p. 75
Air tube with multiple tufts tarsalis, p. 77
7. Air tube with five pairs of tufts in nearly struight line 6
Air tube with four, five, or six pairs of tufts with one or more pairs lateraly out of line 7
8. Air tube + to 5 by 1 ; lower head hairs three or four 8
Air tube 6 to 7 by 1 ; lower head hnirs six or seven
peus, p. 73
9. Mierosetac on dorsal apex of anal pate much larger than those on dorsal milde; lateral abdominal hairs usunlly
10. Mierosetac on dorsal apex of anal pate much larger than those on dorsal milde; lateral abdominal hairs usunllytriple on third and fourth segmentsMicrusetae on dorsal surface of anal plate inconspicuous and of about equal size; lateral abdominal hairsusumlly doubhe on third and fourth segments..ens, p. 748. Air tube with four or five pairs of tufts, subapical pair out of line; comb nsually with more than 65 scaies_... salinarius, p. 76Air tulue with five pairs of tufts, third and fourth pairs usually lateraly out of line; comb usually with 35 to 60scales.

Descriptions of Species

Culex (Neoculex) apicalis Adams

Culce apicalis Adams, Kans. Cniv. Sci. Bul. 2: 26. 1903. Culex apicalis Bohart, Ent. Soc. Amer. Ann. 41:336. 1948.

Female.-Mesonotum with grayish to lightbrown scales and with pale scales around margins; central area scales often forming median line and curved lateral line. Abdomen tark scaled with apical segmental white bands. Wings dark sealed. Legs dark scaled; hind femora with pale posterior stripe ending shortly before apex.

Male genitalia (fig. 84).-Subapical lobe of basistyle with two rods and about six spines. Tenth sternite crowned with short blunt spines. Mesosome
plates relatively narrow and not connected subapically.
Larva (fig. 85).--Upper head hairs two or three, lower one or two. Lateral abdominal hairs multiple on first and sccond segments and double on third to sixth. Comb of many scales in patch. Air tube about 8 by 1 ; pecten teeth on basal third, followed by five or six pairs of tufts beyond pecten.

Distribution, biology, and importance.Larvae of Culex apicalis have been collected only near Cave Junction in Josephine County, Oreg., in 1962 by Hoffman ${ }^{6}$ (map 8). In Nevada the aquatic stages have been found in the vicinity of

[^5]

Pigores S.1.-- ('ules apicalis male genitalia.
fresh water springs by Chapman (68). The females are not known to bite man. linam and Nielsen (182) found that the females overwintered in an abundoned sandstone shaft in one area in Utah.

Culex (Neoculex) boharti Brookman and Reeves

Culer boharti Brookman and Reeves, Pan-Pacific Ent. 26 : 159.1950.

Female.- Occiput with narrow curved yellowishbrown seales and brown forked senles dorsally. Mesonotum brown scaled with paie seales around margins and pair of pale spots near middle. Abdomen dark sealed with apical segmental white bands. Wings dark sealed. Legs dark scaled; hind femora with pale posterior stripe extending to apex.
Male genitatia (fig. S6). Subapical lobe of basist yle with two rods and about six spines. Tenth sternite crowned with short blunt spines. Mesosome

Figtre S5.-Culex apicalis larva.

Figure 86.-Culex boharti male genitalia.
plates broad, narrowing at top, and heavily selerotized apically; plates joined by a selerotized band near apex.

Larva (fig. S7).--Upper head hairs usually double and lowers single. Lateral abdominal hats maltiple on first and second segments and double on third to sixth. Abdomen evenly pignented exeept for fourth segment, which is much paler. Comb with many seales in patch. Air tube about 612 by 1 ; peeten teeth on basal third, usually followed by five pairs of tutts, first tuft oceasionally withon pecten.

Distribution, biology, and importance.-This seecies has been collected as larvae in several counties in (oregon (man s). It is likely more widely distributed than these records indicate. The barvae were found assoetated with Culex territuns along the mangin of a lake formed by a beaver diam and with C. territans, Anopheles freebomi, and ("ulisela incidens in the grasey margin of a spring-fed stream. The females are not known to bite man and littie is known of its economic importance.

Culex (Culex) erythrothorax Dyar

('utes erythrothorax 1)yar, L'S. Nuth. Mus. Proc. 32: 12.4. 1907.

Figuta $87 . \cdots$ Culex boharti larva.

Femate.-Mesonotam with narrow hairlike golden-brown seales, presoutellar area partiatly pale saled. Abdomen with dark-brown seales and with narrow indistinet ycllowish-white basal bands on segments 2 to 7 . Wing seales all dark. Legs dark; undersurfice of femort and tibiae partially pale sealed.

Mate genitatia (fig. 88).--Subapical tobe of basistyle with there rods, a spine, a broad leaf, and a seta. Tenth sternite crowned with many spines; basal arm long and curved. Mesosome plates broad; each plate wifh short slemder vontral arm, long stout dorsal arm, and number of pointed teetio.

Larva (fig. 89).-Upper and lower head hairs multiple. Fateral abdominal hairs usually moltiple on first and second segments and double on third to sixth. Comb with many seales in patch; each scale fringed with short spinules laterally and longer ones apically. Air tube about $6!\frac{2}{2}$ by 1 ; pecten teeth on basal fourth, followed by five pairs of tufts, next to the last one or two pairs more dorsal and out of line.

Distribution, biology, and importance.This species has been taken only in Canyon County,

Figune 88.-Culex erythrothorax male genitalia.

Cikion (his) (map s). Niclsen and Rees (20n) stated that it is atbmedant in the northern valleys of Ctah, where its prefered breeding places are permanent swamps containing considerable vegetation. (hapman (tit) found that in Novada the principal brood dovelops from eggs laid from septimber to November and that the larva overwinter in the second to fourth instars. He also showed that atomenots populations ocem in Nevada, and he (6) studied the biocelogy of the speries. The femakes were found to feed on chickens, mice, rats, stuirmels, and lizards (Ifonderson and senior $/ \%$) They will also readily attack man and may be a pest in some areas.

Culex (Calex) peus Speiser

 11907.

Female. Probosects ringed with white. Tori whont seates and basal segment of flagellum brown sealed. Mesonotum with bronze-brown seales intermingled with paler ones and forming no definite
patierm. Abdomen batek with bawal segmental white bands; vonter pale sealed, each segment marked with median oval dark-sealed spot. Wins seales all dark. Legs dark; tavsi with ring of white scales on both ends of atl segments exeept first one or two of front and middle legs.

Male nemitalia (fig. 90). ...subapical kobe of basistyle with three rods, a seta, a broad leaf, and a seta. Tenth sternite densely erowned with stender spines; hasal arm long, stout, and eurved. Nexosome plates eateh with broally rounded ventral arm, leng pointed dorsal arm, and about four stout teeth.

Larva (fig. 91).--Both pairs of head hairs maltiple. Lateral alofominal hairs triple on first to sixth segments. Comb with many seales in putch. Air tube about 4 to 5 by 1 ; pecten on basal third, followed by four to six, umally five, pairs of hair tufts, subtupieal pair (s) out of line. Position and number of tults on air tube vary considerably (42).
Dislribution, biology, and importance.${ }^{T}$ This species oceurs principally in the southwestern half of Washington and western part of Oregon (map 9). No collections have beon made in Idaho. The larvate develop in targe numbers in log ponds. They also oceur in strect catch basins and in water

Figune 90.-Trulce peus male genitalia.

Fititue 91.---Culex pean harva.
polluted by sewage. The [emales rarely bite man. Although the species is known to feed on chickens, miec, guinea pigs, and man in the laboratory, most specimens that we and our associates collected in Oregon were very reluctant to feed on white miee, chickens, or frogs. However, this is not considered unusual for strains initially brought into the laboratory. Western equine encephalitis has been isolated from wild eaught specimens in California (131).

Culex (Culex) pipiens pipiens (Linnaeus)

Culex pipiens L. Systema Naturae per Regna Tria Naturac, ed, 10: 60: Lins.
Female.-Mosonotum brown sazled. Abdomen black with basal segmental white bands, which are widest at middle and narrowed at sides where they join lateral patches. Wing scales all brown. Legs brown; undersurface of femora and tibiac pale scaled.

Male genitalia (fig. 92).-Subapical lobe of basistyle with three rods, three setae, a broad leaf, and a seta. Tenth sternite densely crowned with
short spines; basal arm short and blunt. Mesosome plate large; ventral arm curved, haterally directed, and tapered to point; dorsal arm straight, truncate, and extending across point of ventral arm; third pointed proeess projecting below ventral arm.

Larva (fig. 93). -Both pairs of head hairs multiple. Lateral abdominal hairs multiple on first and second segments and double on third to sixth. Comb with numerous scales in triangular patch. Air tube gradually tapering, about 5 by 1 ; pecten with about 12 teeth on basal fourth, followed by four pairs of hair tults, subapical pair laterally out of line.

Distribution, biology, and importance.This species develops in largest numbers where human populations provide it with a favorable enviroment. It is apparently more widely distributed in Washington and Oregon than in Idaho (map 9). The distribution of Culex pipiens pipiens and C. p. quinquefasciatus Say in North America has been studied by Barr (15).

The larvat develop in temporary and permanent pools, eateh basins, improperly covered cesspools, and artificial containers. In Oregon large numbers breed in \log ponds. The females commonly enter houses and usually bite after dark. Reeves and Hammon (229) found that of 52 wild caught

Ftgore 92.-Culex pipiens pipiens male genitalia.

frewhy engomged females collected at lakima, Wiakh, 76 percent hatd fed on birds and the rest on homes, cows, or doges, Nielsen and Rees (20n) stated that in "tah the fomales readily enter dwellings bat rarely attempt to bite. In the willamette Valley of Oregon we noted that the species readily enters homes, where it is probably the most important nocturnal pest of man. Of the numerous freshly engerged mosquitoes collected by the juntor futhor in his home at night, all were C. p. pipiens. This spectios was reported to be a serious pest in New dersey by smith (249).

St. Iouis and western equine enceplulitis were recorecel from this species in the Yakima Valley, Wash. (129). It was considered to be the principal vector of encephalitis in the 1933 outbreak in St. Thuis, Mo.
('. p. pipicns, C. p. quinquefasciatus, and C. p. molesius Forskal are very olosely related species. Some information indicates that ('. p. pipiens feeds mainly on birds and that 6. p. quinquefasciatus and (c. p. molestus will feed on man, animals, and birds. Autogenous strains of these species have been
reported by several investigators. The C. p. pipiens complex has been reviewed by several workers such as King et al. (1r0) and Mattingly et al. (198). Much further work will be necessary in the United states to charify the status of this complex group.

Culex (Culex) restuans Theobald

('uler restmons Theobald, Mong. Cubicilan 2: 142. 1901 .
Female.-Mesonotum with hairlike golden-brown soales, grayish scales around margins, and usually with parir of pale scaled spots near middle. Abdomen brown scaled with yellowish-white bands of moderate widh that are continuous with lateral white spots. Wing seakes atl dark. Leegs dark scaled; undersurfuce of femorat and tibiac pale scaled.

Mate genitalia (6ig. 94).-Subrpical lobe of basistyle with three rods, a broad leaf, and two stout setac. Tonth sternite crowned with slender pointed spines; basal arms stout and moderately curved. Mesosome plates broad; each plate with long slender ventral amm, short stout blunt tooth, and short curved dorsal amm.

Figure 94.-Culex restuans male genitalia.

Larva (fig. 95)--Tpper and lower head hairs multiple, Lateral abdominal hairs doubie on first and second segments and single on third to sixth. ('omb with many scales in patch. Air tube about 4! ; by 1 ; peeten teeth on basal third, followed by three pairs of irregularly phaced long single hairs and distal pair of two or three smail hairs.

Distribution, biology, and importance...This speces is reported from five eounties in southern Idaho by Itamston and Rees (130) and from Doughas Comity, Oreg., by liarmston et al. (102) (may) S). The havar develop in permanent and somipermanent pools, ditehes, und artifichal containers. The prefered hosts have been indicated to be birds and livestock, but some athors have reported that it may get into houses and be annoying to man. Westem equine encephatitio virus has been isolated from this species by Norris (206n.

Cules (Culex) smitharius Coquillett

Female-- Mezonotum with golden-brown scales, presentellar area partially pale scaled. Abdomen dark sembed with narrow or indistinet basal bands of yellowish seales joined to lateral patehes of pale

Fugure 95....(ntex restums harva.
scales. Wing seales all dark. Legs dark sealed; undersurface of femora and tibiae purtially pale scaled.

Mate genitalia (fig. 96) - Subapical lobe of basistyle with three rods, a broad leaf, and two setac. Tenth sternite erowned with slender pointed spines; basal arm long and curved. Mesosome plates connetted near base; each phate with bluntly pointed ventral am, group of strong pointed teeth, and stout pointed dorsal am that is bent at right angles at middle.

Larva (fig. 97).-l'per and lower head hats multiple. Lateral abtominal hairs triple on first and second segments and double on third to sixth. Comb usually with 65 or more scales in patch. Air tube 6 to 7 by 1 ; peoten tecth on basal fourth, followed by four or five pairs of tufts, subapical pair out of line.

Figure 96.-Culex salinarius male genitrhia.

Distribution, biologs', and importance.This species has been collected in three counties in southern laho (to3) (maj) S). The larvac are reported to develop in a wide variely of different ensiromments, including grassy pools, ditches, and matshes, and have also oceasionally been found in barrels. Nielsen and liees (205) stated that the females bite reanily and may enter diwellings but are not an important pest in Utah.

Culex (Culex) tarsalis Cotuillett

('ular tarsalis Coquiliett, C'anad. lint. 2n: 43. 1so6.
Female.-Proboscis ringed with white. Tori with inner surfaces and basal segment of Hagelum with ventral surface bearing many white scales, Mewnotum dark brown with white sales around margins and two narrow white liass extending posterionly from nedian white spots. Abdomen black with basal segmental white bands; venter with pale sedts, eath segment marked with dark-sealed V, apex anteriorly directed. Wing seales dark with some white seales on costal veins. Legs black; femora and tibite with line of white scales on sides; tarsi with
ring of white scales at both ends of all segments exeept first one or two on front and middle legs.

Male genitalia (fig. 98). Subapical lobe of bisistyde with two rods, at seta, a narow leal, and a seta. Tenth sternite crowned with short pointed spines medianly and shore broad biunt ones outwardly; basal arm long, stout, and eurved. Mesosome plates each with long ventral arm, several stout teeth, and long dorsal arm.
Larva (fyg. 99). .-. Both pairs of head hairs multiple. Litteral absominal batirs triple on first to sixth segments. ('omb with numerous seakes in triangular pateh. Air fube slender and about, 5 by 1 ; pecten on basal third, followed by five pairs of tufts usually inserted in straight line; distal tufts out of line in some specimens (181).

Distribution, biology, and importance.This is one of the most important and widespread species in the Northwest (map 9). The larvae develop in many types of permanent and semipermanent water such as \log ponds, ditches, and marshes. Other important breeding places are pools formed by floodwaters and irrigation. This species has been found in all counties in Oregon and in nearly all counties in Washington and Idaho. In Utah it has been found at elevations up to 9,000

P'1gure 08 .-Cutex tarsolis male genitalia.

Futese 69.-. (vulex harsatis hrva.
feet (205). The adults seek shetter during the daytime. fo the Central Valley in Califorma the adults remain in resting shelters from 8 am. until sunset (12).

The prefered hosts are domestic and widd birds, but this species will bite man, livestock, and other amimal specios (21). It will feed on rodents, snakes, and frogs when these are restrained (140). This species seldom bites man during daylight but will readily attack soon after sundown (21, 112). Autogenous stains of Culex tersalis were frst reported by Bellamy and Kirdos (2S) and by Chao (60). An autogenous colony in our laboratory has been reared for many gemerations on a sugar-water diet. Hibemating females have been found in late winter in storage cellars (159), in rock piles (239), under rocks on rock-covered hillsides (184), and in abardoned mines 104) or caves (216).

This species is the most important known vector of western equine encephalitis (WEE) and St. Louis encephalitis (SLE). (abifornia encephalitis virus has also been isolated from it. Bhackmore and Dow (34) suggested that it is unlikely it is a winter reservoir of encephatitis virus since less than 0.3 percent of the hibernting femates recovered by them had taken a blood meal. However, Bellamy et al. (30) showed experimental overwintering of SLE virus in this species, Rush et at. (240) found no Whe virus in large populations of winter caught adults. They also reported that it is unlikely the virus overwinters in this pocecs. Studies by Bellamy and Recves (29) in bakersfield, Colif., showed that a diapase, which they believed to be cansed by a decreasing period of daylight, results in an almost complete cessation of blood feeding from October to January.

Considemble information on the flight and dispersal habits of this speeies has been obtained by Reeves (227) and Balley et al. (11). Although the maximum fight distanee recorded by these workers was 15.75 mites, they stated "effective numbers of C. larsalis disperse 2 and 3 miles downwind in one evening and signifieant numbers can travel 7 miles or more in two evenings, with the sid of the wind." They estimated a likely dispersal of $20-25$ miles in the Saeramento Valley of California. In studies on the dispersal of adults into an area undergoing larvicide treatments the maximum recovery distance was 9.6 mites (83).

Culex (Neoculex) territans Walker

Cutex lerritths Walker, Insecta Saundersiana, Diptera 1 : 42s. 18 B
Culex apicalis of authors, not Adams.
Female.-Occiput with narrow curved white to golden seales and brown forked seales dorsally. Mesonotum brown scaled with pale seales around margins and pair of pale spots near middle. Abdomen dark scaled apically with segmental white bands. Wings dark scaled. Legs dark scaled; hind femora with paice posterior stripe extending to apex.

Male genitalia (fig. 100).-Subapical lobe of basistyle with two rods and about five spines. Tenth sternite crowned with row of short blunt spines.

Fiocus 100. -rouex territuns made genitnia.

Mesosome halves forming relatively even oblong outline, terminating apically in rounded serrated margin; halves joined by selerotized band near apex.

Larva (fig. 101).-Head hairs single or double. Lateral abdominal hars multiple on first and second segments and double on third to sixth. Abdominal segments usually evenly pigmented or segment 4 may be pale in some specimens. Comb with numerous seales in tringular patch. Air tube about $6^{2} 2$ by 1 ; pecten teeth on basal third ustally followed by five pairs of tufts, first tuft occasionally within pecten.

Distribuion, biology, and importance.This species is well distributed in the Northwestern

States but occurs only in small numbers (map 8). In California Freeborn and Bohart (95) recorded this species from the northern counties. The larvae are found in swampy areas or in other permanent or semipermanent pools containing considerable aquatic or nonaquatio vegetation. They also occur along the grassy margits of streams. These populations may include boili ciulex territans and C. boharti. The females have been observed to feed on frogs and snakes but are not known to bite man. Little is known about shy eonomic importance of the species.

Figure 101--Culex territans larva.

Genus CULISETA Felt

Keys to Species

ADULI'S

particeps, !. Si

1. Fomorn with distinet preapieal white rings

Fomora without white rings.
2. Stemoplenron with seales extending to anterior border; tori with white senles

Sternopleuron with sules not extending to anterior border; tari withont white seales.
3. Wing somes black with dense patches of dark salates
incidens, i. Bl
Wing swas brown with admixtare of white seales on anterior veias

1. Tarsi with pale white rings at both ends of tarsal joints; wings without spots

Tarsi withont white rings; wings with faint spots

Apienl lobe present
inorinth, p. 83
2. Lobes of ninth tergite with short broad spines
minnesoluc, p. S4 Lohes of nituth lergite with rather bong setae
inornatk, p. 83
minnesolte, p. 84
imputiens. 1. SO

male genitalia

3. Eighth Lergite with row of 20 to 40 short spines an hasal margin; basal bhe lage with single spinelike seta and several smaller ones
imputiens. !. 80
Whath tergite with less than 12 spines on basal margin; basal lobe with two or hree spines...
 Eighth tergite with five to 10 spines at center of busal margin
incidens, p. Sl

LARVAE

1. Air tube with normal pecten teeth on basal fourth not followed by long hairs
minnesotre, p. 84 Air tube with nomal pecten teeth near base followed by series of long hairs extending beyond middle

impotiens, p. 80

2. Lateral hairs of ami segment stout and as long or longer than segment I

Descriptions of Species

Culiseta (Culiseta) impatiens (Walker)

Cultex impatiens Walker, List of Dipterons Insects in Brit. Mus., v. 1, p. .
Female.-Tori without white seales. Mesonotum with brown and yelowish seales, two fine pale lines extending posteriorly from median pale patches, and variable pattern of other pale scales. Sternopleuron without white sales at anterior edge. Abdomen black with basal segmental white bands. Wing scales brown and aggregated to form faint spots at, forks of second and fourth veins and bases of second and third veins. Legs dark brown; femora white tipped.

Male genitalia (fig. 102).-Basistyle stout, conical, about twice as long as wide; apical lobe a small slightly elevated chitinized area with long setac; basal lobe large and conical in outline, apex rounded with one large spinelike seta and several smailer ones. Lobes on ninth tergite only slightly separated and each bearing about 10 long setac. Eighth tergite with row of 20 to 40 short stout spines on basal margin.

Larva (fig. 103).- Both pairs of head hairs multiple and long. Lateral abdominal hairs multiple on first to fifth segment and double on sixth. Comb with numerous scales in triangular patch. Air tube stout, 2 by 1 ; pecten of eight to nine teeth on basal fourth, followed by long hairs that nearly reach apex of tube; paired tufts large and arising close

Ftopre $102 . \cdots$ Culiseta impalians male genitalia.
to base between rows of pecten. Anal segment ringed by plate; gills bluntly pointed and longer than segment.

Distribution, biology, and importance.This species has been found in smatl numbers in the timbered sections of Oregon and Washington and in two counties in Idaho (map 10). The larvae have been taken in roadside ditches, holes left from fallen or uprooted trees, margins of beaver-dam lakes, wheel ruts in logging roads, and other suall pools with bordering brush or trees. The females will bite man but are seldom prevent in sufficient iumbers to be of importance.

Culiseta (Culiseta) incidens Thomson

Culiseta incidens Thomson, Kongliga Svenska Eugenies Resa 6. Diptera; 433. 186s.
Female.-Tori white staled. Flagellum with first segment white scaled ventrally. Mesonotum with dark-brown seales and mixture of yellowish seales som^{-}e of which form partial longitudimal lines
or spots. Sternopleuron with scales extending to anterior edge. Abdomen black with basal segmental white bands. Wing scales dark, aggregated into patches on fork and base of second vein, fork of fourth vein, upper fork of fifth, and middle of sixth veins. Legs dark brown with narrow faint white rings on bases of some tarsal segments; femora and tibia with narrow white rings at their apices.
Male genitalia (fig. 104).-Basistyle more than twice as long as wide; apical lobe a small elevated

Frgure 103.-Culiseta impatiens larva.

Frgure 104.-Cutiseta incidens male genitalia.
area with a number of small setae and a long spine; basal lobe small and conical with small setae, apex with two stout spines. Lobes of ninth tergite slightly separated, each bearing five to eight rather long setae. Eighth tergite with five to 10 spines on ivasal margin.

Larva (fig. 105).-Both pairs of head hairs multiple; lower tuits longer than upper. Lateral abdominal hairs mutitiple on first and second segments and double on third to sixth. Air tube stout, about 2 by 1; pecten with few basal teeth that have one or two minute denticles; teeth followed by long hairs to apical third of tube; paired multiple tuft inserted near base between rows of pecten. Anal segment ringed by plate; lateral hair shorter than segment; gills slightly longer than segment.

Distribution, biology, and importance.This species is widely distributed at lower elevations

Figure 105.-Culiseta incidens larva.
in the Northwestern States (map 10). The largest numbers occur in Washington and Oregon west of the Cascade Mountains, but it is common also in Idaho. The larvae breed in both permanent and semipermanent pools and in artificial containers. They are often associated with Culiseta inornata and Culex tarsalis. Only the females hibernate. They will readily attack man but are not considered important as a pest because of their small numbers and breeding habits. The species has been reported as favoring mammals for blood meals, although it is seldom abundant enough to be a pest of livestock. It has been infected experimentally with western equine, St. Louis, and Japanese B encephalitis viruses.

Cutiseta (Culiseta) inornata (Williston)

('ulex inornatus Williston, U.S. Dept. Agr., Div. Ornith, and Mummals, N. Amer. Fanna 7: 253. 1893.
Fermale.-Tori with white scales. Mesonotum with mixture of brown and yellowish scales, usually with two fine pale median posterior half lines and pale obscure longitudinal stripes. Sternopleuron with sazles extending to auterior edge. Abdomen black with broud basal segmental bands widening at sides, last segment entirely pale scaled. Wirg scales dark brown with mixture of pale seales on anterior veins. Legs with mixture of brown and pale scales.

Male genitalia (fig. 106).-Basistyle stout conical, less than twice as long as wide; apical lobe absent or faintiy indicated; basal lobe conical and prominent with two or three spines on apex and smatl setac on sides. Lobes of niuth tergite broad

Finure 106-Culisela inornata male genitalia.
rounded projections with 10 to 14 short thick spines. Eighth tergite without row of spines on basal margin.

Larva (fig. 107).-Both pairs of head hairs multiple; uppers usually slightly shorter with about seven to nine evenly sized hairs; lowers with three to five hairs, inner ones larger. Lateral abdominal hairs multiple on first and second segments and double on thitd to sixth. Comb with many scales in patch; each scale rounded and evenly fringed apically. Air tube 3 by 1; pecten of 10 to 18 stout teeth, followed by long hairs that extend nearly to apex of tube; paired tuft large and arising from base of tube between rows of pecten. Anal segment ringed by plate; gills longer than segment with tips rounded.

Distribution, hiology, and importance.This species is rather widely distributed (map 10). It occurs in largest numbers in poorly drained irrigated areus. However, it has been collected in almost every type of semipermanent and permanent water. The larvae are often found with those of Anopheles freeborni and Culex tarsalis. It is also

Figure 107.-Culiseta inornata larva.
found in shaded pools in forests at elevations up to 6,000 feet. It is not a serious pest of man but can become a pest of livestock because of its long breeding season and wide distribution in irrigated areas. The females hibernate, and Rees (222) believed that some harvae may overwinter, since they are very resistant to low temperatures. Western equine encephalitis bas been isolated from this species in mature. Experimentally the speesies has been shown to transmit St. Lonis and dapanese B encephalitis viruses.

Cutiseta (Culicella) minnesotae Bara

Colisete minnesotec Barr. Wash, Ent. Sow. Proc. 59: 103. 1953.

Female.--Mesonotum integument brown with pair of reddish-brown nearly bare stripes, two stripes separated by narow stripe of darker brown; seales fine, narrow, reddish brown except for pair of siverywhite spots back of middle and pair of posterior silvery-white half lines that enclose additional seattered white scales. Abdomen brown scaled with scattered yellowish-white scales most heavily coneentrated along apices and bases of segment. Wing seales dark with pate seales on base of costa. Legs dark; faint white rings at both ends of first, second, and third tarsal segments and occasionally with rings on other segmentsi.

Male genialia (fig. 108).-Basistyle conical, more than twice as long as wide; apieal lobe absent; basal lobe promiment and conical with three to five spines on apex and swall setae on sides. Lobes of ninth tergite with broad projections, each with six to 12 slender setae. Mesosome sides rising in nearly straight line to rather square dark shoulders, which terminate into slightly higher point centrally. (In Culiseta morsitans (Theobald) the mesosome is funnel shaped and not dark terminally.) Eighth tergite with group of small spines eentrally on basal margin.

Larva (fig. 109).-Upper head hairs multiple, usually five- to eight-branched (range 5-11); lower double or triple. Postantennal tuft usually nine- to 12-branched (range 8-14). Lateral abdominal hairs multiple on frst and second segments and single on third to sixth. Comb with numerous scales. Air tube about 7 by 1 ; pecten of about six to 13 teeth on basal fourth; small paired tuft at base between rows of pecten; tufts in ventral brush usually 17 to

Froure 10S.-(fuhista minnesolac male genitalia.

18 (range 16-19). Anal segment ringed by plate; gills about same length as plate.

Distribution, biology, and importance.This rare species has been found in small numbers in Washington and Oregon and two counties in Idaho (map 10). The larvae have been collected from unshaded pools with scattered grass fed by fresh water. Although little is known of the feeding habits of the adults, they apparently do not readily attack man.

Culiseta (Culiseta) particeps (Adams)

Cutiseta particeps Adams, Kans. Univ. Sci. Bul. 2, p. 26. 1903.

Culiseta maccrackenac Dyar and Kaab, Wash. Biol. Soc. Proc. 19: 134. 1906.
Culiseta particeps (Adams), Stone, Kans. Ent. Soc. Jour. 31: 236. 1958.

Femate.-Mesonotum dark brown with lightbrown median stripe and narrow white posterior half lines; sides, anterior margin, and margins of antescutelha space with misture of white scales. Abdomen black with basal segmental white bands and few scattered white seales. Wing seales dark with few pale seales on costal veins, dark seales forming spots at base of second, forks of second and fourth, upper fork of fifth, and on cross veius. Legs dark sealed; femora pale sealed on unterside with preapical pale ring; tarsi with broad white rings, narrower on distal segments and tusually absent on fif ha segment of front and middle tarsi.
Male genitalia (fig. [10).-- Basistyle about three times as long as wide: apieal lobe a small clevated area with number of long sette; basal lobe smatl and conieal with many small setae, apex with two or three stout spines. Lohes of ninth tergite slightily mised areas with many long setac. Bighth tergite with nome to three spines at center of basal margin.

Larva (fig. 111).-Both pairs of head hairs multiple; bower with about three long hairs, upper more numerous. Postelypeal hair three- to five-branched and about as long as hoad hairs. Comb with many

Precre 109.--Culiseta minnesotae larva.

Figure 110.-Culiseta particeps male genitalia.
scales in patch. Air tube stout, about 2 by 1; pecten with few basal teeth, followed by long hairs that extend nearly to apex of tube; paired tufts near base of tube between rows of pecten. Anal segment ringed by plate with small pateh of short spicules near apex; lateral hair shorter than segment; gills slightly longer than segment.

Distribution, biology, and importance.This species is rare in the Northwest (map 10). The single collection from Washington was represented by larvae taken at Port Townsend, Jefferson County, by Myklebust (199) in July 1961. In southwestern Oregon collections the larvae were associated with larvae of Culiseta incidens and Culex territans in pools overgrown with vegetnition. Little is known of the feeding habits or cconomic importance of the adults.

Genus COQUILLETTIDLA Dyar

Description of Species

Coquillettidia perturbans (Walker)

("ulex perlurbans Walker. Insecta Smudersinna, Diphern 1: 128. 1850.

Mansonia perlurbans (Wriker), Mosquitoes M. Amer., p. 109. 1955.

Female.-Mesonotum with narrow curved palcyellow scales with or without two faint silvery longitudinal lines. Abdomen black with narrow basal segmental white band, sometimes lacking medianly or consisting of scattered black and white seales on last fow segments. Wing scaies broad, black and white intermixed. Legs dark with mixture of white scales; hind tibine with preapical pale ring; frst segments of all tarsi with narrow basal white rings and broad median white ring; all other tarsal segments with basal half white scaled.

Male genitalia (fig. 112).-Basistyle about $1 \frac{1}{2}$ times as long as wide; apical lobe absent; basal lobe
a triangutar raised median section terminating in stout eylindrical blunt rod. Dististyle flattened and broadly expanded beyond middle, apex with short stout claw.

Larva (fig. 113).-Antennae long and slender with large taft beyond middle and short pair of hairs not far bejond tuft. Dorsal head hairs in multiple

Figote 112.--Coquillellidia perturbruns male genitalia.

Figuta 113.-('oquillethidion perturbans larva.
groups. Comb with 10 to 25 scales in single row, some scales out of line. Air tube short, broad at base, attenuated apically, and fitted for piercing; stout spine, single stout hair, and multiple tuft near middle. Anal segment much longer than wide, ringed by plate; multiple lateral tuft before apical margin; anal gills slender and shorter than segment.

Distribution, biology, and importance.Although this species has been collected in all three States, it does not occur in large numbers (map 6). The eggs are laid in rafts in swamps, marshes, or log ponds containing cattails, sedges, or other suitable host plants. The eggs hatch in 4 or 5 days, and the small larvae attach themselves to the roots or stems of the plants by means of the modified tip of their air tube, which is inserted into the root to provide air. The pupa also attaches itself to plants by means of modified air tubes. It comes to the surface when the adult is ready to emerge. The
species usually orerwinters in the larval stage and there is apparently only one generation each year even as far south as Florida (31). Adults have been collected from early June to September in Douglas County, Oreg., by Ifirmston et al. (138) but were most numerous in June and July. The adults readily bite man and animals, but in most areas they do not oceur in large enough numbers to be a serious pest. Mowitt et al. (1/8) showed that this species may transmit enstern equine encephalitis in nature.

Genus ORTHOPODOMYIA Theobald

Description of Species

Orshopodomyia signifera (Coquillett)

('ulex sipmifera Coruillett. Camais, Ent. 28: 43. 1890.
Orthopolompita calijornica Bohart, Eint. Soe. Amer. Ann. 43: 390, 1950.

Female.-Mesonotum brown scaled with narrow paired central white lines, half lines converging over scutellum, and narrow white line around lateral margin. Sides of thorax with lines and patches of white seales. Lower sternopleurai bristles usually four to 10 . Abdomen dark scaled with narrow partial or complete basal white bands. Wing with intermingled white and dark seales. Legs mostly dark scaled; white scales on femora and tibia; front tarsi mostly dark scaled, middle tarsi with narrow apical and basal white rings on first and second segments, and hind tarsi with broad apical and basal white rings on all segments.
Male genitalia (fig. 114).-Basistyle about three times as long as wide; claw of dististyle with many small teeth; apical lobe absent; basal lobe conical with few large spines apically and smaller setae subapically. Tenth sternite heavily selerotized with several apical tecth. Ninth tergite with few setae and no lobes.

Larva (fig. 115).-Upper and lower head hairs multiple. Lateral abdominal hairs multiple on first and second segments. Comb of eighth segment in double row of about 15 to 25 scales. Air tube about 2.5 to 3.5 by 1 ; pecten absent; ventral tuft barbed, five- to 12 -branched, inserted near middle of air tube, individual hairs ranging from 1.7 to 2.3 times as long as section of air tube extending beyond

Furna: $111 . \cdots$ (orhopmdomyia signifera mate genitatia.
point of insertion of tuft. Anal segment ringed by plate; small plate at base of segment; lateral hail single or double and shorter than plate.

Distribution, biology, and importance.In the Northwestern States this species has been collected onty from water in a hollow oak tree in Benton County, Oreg., where it was associated

Figute 115.--Orthopohomyia signifera harva.
with dedes sierrensis (map 8). It occurs in tree holes in several kinds of trees and aiso occasionally in wooden containers (67,226). The females will take blood moals from several species of birds but will not bite man (283). The larvac survive the winter in the Southern states but may be destroyed by freezing in northern climates.

LITERATURE CITED

（1）ABDEL－H14，J．に゙．
 Tribes of hatese of anomelas mathbobsi （Derema，culachane）Fhom The Tviz lo－ cubry．Bht soce Amer．Am，56： $1-276$ ，

 Ecom．Ent．43：951－95－1．
（3）．Lente，F．，Jn，Tornes，K．13．，Goces，H．K．．and others．

 13告官。

What sfombe os The wormelan complex of
 7．pp． 273 3 361.
（5）Anemson，N．B．，Beheorne，W．E．，Mrumems，T．D．． and Putais，K．L ．

 Vector Views 13：63－6t）．

10．S．The ise of nheurfy is pate controt of moserwoes Amer Mospuito Control Assoe． Bul．1． 4 k mp.
（7）\ldots ．

（s）
 Moserow costrol．．Wmer，Mestuito Com－ trol Asue．Bul． 2 （revel． 101 mp ．
（9）Bums，ix．W．
1916．EFrbompantes of insecr whe schating． Mesquilo News b： si ．Ns．

19the semonacu，stemas of chamonnat wo－
 Mosquito Control Assoc．Anu．Conf．Proc． and lapers 34 ： $84-7$ ． 7 ．
（11）．－．Ehatsos．D．A．，and Hoffans，B．I．
 Probx tursuts coocthamer in mith sicha－ MENTO Pliley of chaformia．Higardia 37： 23 － 113.

190．s．some marixi ind recovery Techniotes in cobex ransuis cos．Flathr smpons． Mtostuto Nows 22：1－：10．
（13）Bumarr．M．． 1
 Health som．Rpus．43：11－17．
（1．）Bukn．A．R．
10．3．Tite restrabction of hboes melanimon DYik．Mosquito News 15：170－172．
（15）——．．
1037．The bistibution of culex p．imbiens and c．I．Qungubfaschtus in norril hmemea．
（16） Amer．Jour．Trop．Med．and Hyg．6：153－165．

195s．The mosoumpes of minnesoth（dipteha： Culdelde：culicinar）．Minn．Agr．Expt．
（17）
1066．cytomasme incomphybiaty as a means
 Alosguito Control Assoc．Ann．Conf．Proc．
（18）and Papers 33：32－35．

$$
\mathrm{K} . \mathrm{E}
$$

1963．ENhunvion of some fictons affecting FILE EFFICleNCT OF LABM Thups in Col－ i，ECring mosperroes．Jour．Econ．Ent． 56 ： $12: 3-127$.
（19）3．tres，M．
19．19．THE Nimurnh history of mosquitons． 379 pp．New lork．
（20）Bhumboven．A．A．，Grimas，A．J．，Birmen，B．A．， and others．
1950．SCREW－WORM CONTROL TMROUGH RELEASE OF STEItlized flates．Jour．Econ．Ent． 48 ：
$462-460$.
（21）Beadie，La．D．
1950．Field onservations on the biting habits of Cuiex tarshlis it mitheila，Nebhaskh， and Logan，Urmir．Amer．Jour．Trop．Med．
and Hyg．S： $134+140$ ．
（22）
$\frac{-}{1950}$
 in que enipen stures．t．S．Dept．Health． Eluc．and Welfare Pui）．Health Rpts． 74 ：
8.900 ．
（23）
1906．EMDEMCS OF MOSQUITO－BORNE ENCEPHALITIS IN TaE united STMTES，1960－1965．Mosquito
News $26: 4 S 3-485$.
（24）Beckel．W．E．
1954．The lobntification of adelat female aedes mosqutoes（biptera，culicidab）of the BLACK－legged guour thken in the field
 Zool．32：324－330．
（25）Barne．B．P．
195̈．COh．ECTING，PRDPABING AND PRESERVING insmets．Canada Dept．Agr．Div．Ent．Pub． $932,133 \mathrm{pp}$.
（26）Beakin，J．N．，and McDonadd，W，A ．
1956．A chinge in the scientifie name of the western tree－hole moseuto．Cahf．Vec－
tor Views $3: 54$ ．
(27) Belkin, J. N., and MeDonald, W. A.
1957. A NEN SIECLES OF ABDES (OCHLbrotatus) from thee holes in southern arizona and a discussion of phe varipalites comphex (diprema: cclicidas). Ent. Soc. Amer. Am. 50: 179-191.
(2S) Belchmy, R. E., and Kardos, E. HI.
1959. a stran of culex Thrsabis coo. heproDecing wrmour bloob meats. Mosquito News 18: 132-134.
(29) —..... and Reeves, W. C.
1063. The winter mology of cebbx tarsabis (ourmeat cuacidae) in kelk countr, Chatronnat. Ent. Soc. Amer. Ana. 50: $314-323$.

 bous enchmabrets vaus in chackens and celex mosertmoss throvon a vear. Amer. Jour. Epidemiol. S7: 484-495.
(31) Bidntamarbir, W. L.
 puross in centrah Flomid. Mosquito News2S:51-5t.
(32) -- and Sctoor, H. F.

190̈t. outmoon residen Thentments of premases For conmol or silimansh mosqutoes. Mosquito News 16: 17-19.
(33) Balasy, W, B, and Psare, F. W., Jk.
1962. METADOLEM OF Miththion and mablovon by the mosputo, cubex tarsabis cop. Jour. Insect Phesiol. S; 545-55S.
(3.6) Beackmore, J. S., and Dow, R. P.
1062. Nulabsaity in semmer asd fath robulafions of chbex tabsalis cog. Mosquito News 22: 291-20.1.
(35) Booor, D. W.

Lofs. an anNornted hast of the culicidae of wisungron. Pan-Pacific Ent. 24: 85-94.
(36) Bohatr, R. M.
1950. identifichtion AND disthibetion of aedes mbeanimon ano aboes dorsalis in californis. Calif. Mosquito Control Assoc. Ana. Conf. Proce and Papers 24: 81-83.
(37) Bonnet. D. D., and Hu, S. M. K.
1951. The fwrrodiction of toxomivnchites breMPALAUS Theobald who the tehritory of hawsal. Hawaii. Ent. Soc. Proc. 14, 366 pp.
(3s) - mand Mukaldat T.
1957. A COEBPOD Fabdichous on mosourto tarvade. Mosquito News 17:99-100.
(39) Bundey, C. M., nad Thavis, B. V.
1043. the-savino metrods fok lindoling mosQuiro homthiar conlections. Jour. Econ. Ent. 36: 51-53.
(10) Breeland, S. G., and Pickard, E.
1961. obsebvamions on mosquito feedina acFivity on the flower heads of eupatorium and solidago (composhat). Mosquito News 21:32-34.
(4i) —— and Pickard, E.
1965. The malatise trab-an efficibnt and unhasen moseuro Cohlecting device. Masquito News 25: 19-21.
(42) Bumhnd, O. P.
1857. Vamhmons in the labrae of cunde smaMaTOSOM DYAR WHY NOTES ON BMMLAB spmeles (mapera: cencidae). Ent. Soc. . m er. Ana. 50: 175-178.
(43) -10\%0. bestoramon of the name, abdes fendersoni cockehehl, ind tps mievarion to full spectic rank (dipyera: colicidab). Dnt. Soc. Amer. Ann. 53: 600-600.
(44) Brody, J. A., and Cabmichael, A. G.
1961. Whine and manne as mosquito atrracrantes. Jour. Econ. Ent. 54:317-324.
(45) - and Dunn, F. L.
1950. manbla surviblance in the onited states, 1958. Amer. Jour. Trop. Med. and Hyg. S: 635-639.
(46) Brown, A. W. A., Lemallen, L. L., and Glllies, P. A. 1063. onganophosphorus mesistance in abdes nighomaculis in califolinta. Mosquito News 23: 341-345.
(47) Büron, C. J.
1954. bapld pramanent mounts of moscurto barvab wirh creosote-alcohoh, rhenol ALCOHOL, LACTOPIENOL AND POLYVINYL A.cohol. Moşuito News 14: 72-75.
(48) Caltfornia Mosquito Control Assocmation, Inc. 1908. rem book. 56 pp. Visalia, Calif.
(49) Carestan, I2. R., and Fonner, K. O.
1068. andlysis of comparative effects of sehected CO_{2} yiow rates on mosquitoes USINg cde migt traps. Mosquito News 28: 409-411.
(50) Cabrenter, S. J.
1941. the mosquitoes of arkansas. S7 pp., rev. Ark. State Bd. Health, Little Rock.
(5i)
1961. observations on the distrabution and fcology of mountain aedes mosquitoes in califormia. in. aedes cataphybla dyar. Calif. Vector Views S: 61-63.
(52)
1962. A COLLECTION OF AEDES SIERRENSIS (LUDLOW) from tohno. Calif. Vector Views 9: 3.
(53) - - - ORSERVATIONS ON THE DISTRIBUTION AND ecology of mountain aedes in california. vi. aedes incremptos dyar. Calif. Vector Views 9: 30-44.
(54) -
1962.
(55)
5)
 beblogr of mountuin hades in cabpoknia. 12. Abows ventroyitris dyall. Calif. Vector

- …….. Views 10: 4-10.
 Nombl mente. Calif. Vector Views 1b: 7-0S.
(5i) …c... and LaC.tisen, W. J.

1955. Mosidetrues of sontil imertea (Nomen of mexicol. 3 tio ph. Culif. lniy. lress, Berkeley amt tos Aageles.
(s) ('sumberbun, I. C., and Lawson, li. R.

 5: $: 4-\overline{7}$,
 and suma, V, D.
 Horne ENcerlinimpes. Vi, genammave DEPERMANATIONS OF virt's-vactoh rela-
(60) Cuto, d .

195s. In atroonoors spran on creex pausuls coo, Mosquito News 1 s : 134-136.
(8i) C'llumin. H.C.
 cobex merphromborax in Nevad. Mos(iz) .-.... quito News 10: 24.4-2.46.
1060. onservitions on abdes melanimon and A. dorsulas in Nerid. Ent. Soc. Amer.
(63) …… Am, 33: $706-708$.
1061. Obsemsimons on the snow-Watale mosguroms of Nevida. Mosquito News 21 : SS-92.
(6.1)

196i. Mundonbd mises as overwintering sites FOR MOSQETTOES, ERI'ECMLLY CUIAX Thisalis coc., in Nevida. Mosquito News 21: 324327.
(65)
1962. THE BIO-ECOLOGY OF CULEX ERYTHROTHORLL (66) DYir. Mosquito News 22: 130-134.
[902. A scruyey fon iltooeny in some nevada Mosquitoes. Mosguito News 22: 134-136.
(67) -
1904. onsemvations on mhe biorogy and ecology of onthomodomyla chmfornich bollart (dimment: eclicidae). Mosquito News 24: 433-439.

(6S)

1006. The mospurtoes of nevida. T2, 43 pp. ['S. Depl, Agr. Agr. Res. Serv. and Nev. U.S. Dept, Agr. Agr. Res. Serv.
Thiv. Max C. Fileishmann Col. Agr.
(00) $\frac{\text { W. R. Char, T. B., Woodard, D. B., and Kellene, }}{}$
1007. addmtional mosquito hosts of rue mosocto mablesceng vines. Jour. Inverte-
(70) -_ made Path. S: 545-546.

1063 and Grommas, G.
1063. The shisaration of aduir females of abdes
 in ealmonna. Calif. Vector Views 10: 53-
56 , 56.
(71) - and Woob,ned D. B.
1966. Conlomomyen (rlastoclabines: cobhomomrceraceab) mpecmons in houistana moseurroes. Mosquito News 26: 121-123.
(72) Chmistomers, S. R.
1960. abdes aegriti (i.) The yellow fever Moseurro. 739 pp. Univ. Press, Cambridge,
England. England.
(73) Chahk, T. B., Kbleme, W. R., and Lem, P. T. M.
1965. A Mosquito mandescent vires (my) from abdes TaEniorhynchus (wiedemann). Jour. Invertebrate Path. 7:519-521.
(74) Clarke, J. L.
1943. Studies of the flighy range of mosQuryoes. Jour. Econ. Ent. 36: 121-122.
(75) Clements, A. N.
1963. The pirsiologr of Mosquitoes. 393 pp . Pergamon Press, New York.
(76) Combiss, J. 0 .
1961. the chainted photozon. 310 pp. Pergamon
(77)
1961. Natural infection of tropical moseutoes ISY CLLATED PROTOZOA OF THE OENUS TETRAHmens, Roy. Soc. Trop. Med, and Hyg. Trans. $55: 149-152$.
(7S) Couch, J. N., and UMPH,ETT, C.J.
1963. Coblomomyces infections. In Steinhaus, E. A. (ed.), Insect Pathology, v. 2, pp, 149-188. Academic Press, New York and London.
(79) Dame, D. A., Woodard, D. B., Ford, H. R., and Weidifas, D. E.
1904. Field mehayion of sextally sterile anophelefs Quadmmaculatus males. Mos-
quito News $24: 6-14$.
(80) Davis, A. N., and Gahan, J. B.
1961. NEW INSEGTICiDES FOR THE CONTROL OF Salt-mahelf mospdroes. Fla. Ent. 44: II-
14. 14.
(S1) - - Salmela, J., and Spencer, C. G., Jr. 1060. FIELD tests with Malathion fogs dispersed From an allilane for the controi of adult salt-marsi moseutoes. Mosquito News 21: 281-286.
(82) Dickinsos. W. B.

1944 . the moseryoes of wiscosin. Milwakee, Wis., Pub. Mus. Bul. S: 269-365.
(S3) Dow, R. P, Reerss, W. C., and Behomy, R. E.
4965. dispersha of frande cudex tashats invo a hrvichal mben. Amer. Jour. Trop. Med.

(sit) Drat, H. (i.
fons. the mosertroes of the mbatens. Camegic

 Ghid. the collectos of brang fates in weat rexas with mandse wo whambated тим P .

 mor senemon. Jour. Bron. Ent. 5t: 56-5s.
(s7) Bunson. D. A.
 Snture eno: 89.

 (whemsans) sear samanah, georgh. Dospuite News $23: 1-7$.
(89) Enghamang Nows-Recom.
1936. mosurfte controb exgneerng. 57 pp. New York.
(90) Fens, (. V., Cumathtel, (i. T., Eumone. C. M., Jr., ast Taviou, J. W.
 pehats in mosobro control. Mosquito News 10:238 243.
(91) Fembry, W. 18.
(906. mein obseavithons of sedes vawtho-
 m phenomsts sp, (acmara: thyabide). Musquito Nows 26: $583-58 \mathrm{si}$.
(92) Pergesos, F. P.

19;4. bithogicul factors in the transmishon of mamens abtheorod-borine virus enchanamides. a semmary. [.S. Pub. Heath Serv. Moneg. $23,37 \mathrm{mp}$.
(93) Foore, R. F., and Coos, D. R.
1559. wosputhes of memen inportanes. U.S. Dept. Agr. Agr. Handh. $152,15 \mathrm{spm}$.
(01) Frembors. s . 13.
1923. rat mosourrom of cabfonal. Calif. Univ. Tech. Bui. 3, m. 3. 333-400.
(95) -- and Bomsw, R. M.
105. the mospertoes of calfomma. Culif. Insect survey Bul. 1, pp. 25-78.
(96) Gaman, J. B., Sarmi, C. N., and Gbavery, M. B.
1906. hemstince in flobid. and corntwamensmas inyolving chemeals. Mosquito News 26:330-337.
(97) Gens, A. F.
 sectrodes in the kian mosperto abatementy memacy. Calif. Mosquito Control Astoc. Am, Conf. Proe and Payers 20: 144$1 \cdot \overline{5}$.
 fousa moseryo costrol. Mosquito News 22: 118 - 111 .

 Spere :33 (5): $115-117,129-133 ; 33$ (6): 95 , $97.99,109$.

1955. New mospetro mblblamens. Jour. Econ. Ent 48: 741-743.
(101) (inhame, P.A.
 fonsha moseuro manae. Catif. Mosghito Control Assoe. Ana. Conf. Proc. and Papers 32: $57-642$.
(102) Ginsburg, J. MI.
1933. photscyon of outdoor gathermigs mom tue mosertro pest, N.J. Mosquito Extermin . Assoc. Amn. M1tg. Proc. 23: 166-173.
(103) Gjuban, C. M.

193S. a machine for mbibaming mosqutro eges from sont. R.S. Bur. Ent. and Plant Quar. ET-135. 4 pp.
(10:1) 1946. the survinal of addes vexans and aedes hatermis mags in nature. Calif. Mosquito Control Assoc. Ann. Conf. Proc. and Papers 14:89-92.
(105)- 1947. affect of clothing conor on the rate of artice on aemes mosquroes. Jour. Econ. Ent. 40: 32 $6-327$.
(106) —— ownowion pesponses of cuiex piptens
1061. ovirosition responses of culex piplens gungebenschatus say to witers trbated wrif varhors chemicals. Mosquito News 21: 109-113.
(107) ———neg.mer, C. P., and Bohlen, W. B.
1941. The necessty of al low oxvgen concentramon for the matcung of abdes mosporro eggs. Jour. Ceil. and Compar. Physiol. 17: 193-202.
(10S) -- and Iswak, L. W.
1957. phesent stimus of musquito resistance to insecticides in trie san foaquin vilidey or california. Mosquito News 17: 67-70.
(100) ——and Jounsen, J. O.
1965. the oviposytion uesponses of two species of culex to wathels treated with vamous chemicis. Mosquito News 25: 14-10.

 br fwo sperbs be ol tha. Mosquito News -

 Fhtargon of was woronotes or he wo wode romments the ghath, Wash. Ent.

(11!

 23 20; 210
and lememor, k, F.

 W1:
:111:

 unto.
Ults. atalluts. N: W

 ${ }^{122}$.

 34: (83).

 beromer, Mosquito News 25: 135-137.

 FOR TRE controh of wora mosertroms.

(121) Geonvin. M. 1 .

 Matariasoe. Jamr, 1:93-96.

 HEXWEDtot-1.3. Jour. Econ. Ent. 3s: fith67\%
(123) (intr, H. F.

10:6. TLE confusing mphbamblogy of mblarma w entroasth. Amer. Jeur. Trop. Med.

(12 () It water, J.s.

 shanbel iscanv. flal Musfuito News 15: $21-26$.
(12.24 ….....
 Ster-maksa mosurro, HEDES TaENGOHYN(Gas imbomans). Mosfaito News 20: 130-175.
(123) If whos, If. M, and Rmoves, W. ('.
1963. Laboratomy thansmasion of ser. bovis

(123) -and Remves. W. (Y.

 twormang corran bxome armes. Amer. Jomr. Mab. Ileath 35: $904-1004$.

 Vham, Wasmagron, 1944. Amer. Jour, $11 \mathrm{yg} .16: 326-335$.
 13.
 Wasmacron, 1942, wim form-Nine vaus molathoss (wEstarn wovind and Sy bout pyow) mom mosevtrows, Amer. Med. Assoc. Jour. 128: 1133-1130.
(130) .-a-. Rewns, W. C., Broonmin, B., and others.

 crum Thences mospumoes. Seience 94 : 32×-830.
(13i) --Rmenes, W. C.. and Gamano, P.
 Thit shy magen valimy of califormin, 19\&3. with the isolition of viruses from moseurcoss. Amer. Jour. Hyg. 42: 200-306.
(132) Hmasmon. f. C., Mhemr, L. S., and MeHegh, R. A. 1960. survey of loo ronid mospertoes in douglas cotemy, ombgon, dering 1950 . Mosquito News 20:3i5l-353.
(133) ———and $\mathrm{Rems}_{\mathrm{t}} \mathrm{D} . \mathrm{M}$.
1946. moseumo necombs from wano. Pan-Pacific Ent. 22: 14S-156.
(3:1) Hanwood, R. IF.
1962. Trabilige ovabwintereng adulis of the mospuitoes colex tirsmas and anobheies mubborns. Mosquito News 22: 20-31.
(135) Il.iyden, D. Is.
1900. DISPRERAL OF insecricides from jet-propislefid abcrift. Musquito News 20: 241246.
(136) Hiryes, R. O., Bellimy, R. E., Rebees, W. C., and Wilids, M.J.
1958. Comparison of four sampling mertions for measumembnt of culex tarsalis aduif ropulartons. Mosquito News 18: 218-297.
(137) Hayms, W. J., Jie.
1963. Clinical handbook on economic boisons. lap pi. 'T.S. Pub. Health Serv, Washington, D.C.
(13S) He.atlee, E.
1926. THE MOSQUTTOES OF THE LOWER FRASER VAL hey, BHTISH COLUMBH, iND THEIU CONTROL. Natl. Res. Council [Ottawal Rpt. 17, 94 pp.
(139) - 1029, the life Histony of abdes flavescens muldeit. Roy, Soc. Camada Trans. 23 (ser. 3), 阬. $85-101$.
(140) Ilbndelison, B. E., and Sentor, 1.

10bl. arpack bate of culex tarsalis on reipilles, ampinmans, and smabi mammals. Mosquito News 21: 29-32.
(141) Hehas, W. B., and Gray, F. H.
1044. MOSQUITO CONTROL. IRACTICAL METIODS FOR ahatement of pigease vectors and pests. 419 pp. New York.
(1.12) Hinman, H. E.
1034. lhedators of the culicidae (mosquitoes). 1. The preditors of whyile ind lupae, gxclosive of fish. 11. medertors of adult mosquitoes. Jour. 'Trop. Med. and Hyg. [London] 37: 120-134 (pt. 1) and 145-150 (pt, II).
(1.43) Hockino, 13 .

100\%. THE USE OF ATTRMCTINTS AND REPBLLIENYS in vecron conrrot. Word Health Organ. Sup. Bul. 29, ply. 121-120.
(144) Hofrman, R. A, and Lindeutst, A. W.
1952. residual ndo siace sprays fon time control. of snownater aedes mosquitoes in camp bress. Mosquito News 12: 87-91.
(145) Homsfille, W. R.
1955. Mosquitobs, their blonomics and relation ro pise.nse. 723 pp. The Ronald Press, New York.
(146)
1956. A method for making a seryey of floodwatels mosquitoes. Mosquito News 16: 66-71.
(147) Hownrd, L. O., Diar, HL. G., and Kinab, F.

1912-17. The mosquitoes of north and central amemoa and the west indies. Carnegia Inst. Wash., Pub. 159, 4 v.
(14S) Howity, B. F., Dovae, H. E., Bishor, L. K., and Gome, R. H.
1949. recovert of the virus of eastern equine encerinhomyelitib from mosquitoes (mansonld peltullans) colhegted in georgia. Science 110: 141-142.
(149) Huff.ixent, C. B., and Back, R. C.
1943. A Etudy of meytods of sampling mosõutto ropolations. Jour. Econ. Ent. 36: 561-569.
(150) Husbands, R. C.
1952. SOME TECLINIQUES USED IN THE BTODY OF abdes eggs in matgated bastumes in callfornta. Mosquito News 12: 145-150.
(151) Husman, C. N.
1953. A bigits, inbumatic sidiayer for ingthllaflon on veltches. Mosquito News 13: 134138.
(152) Is.ink, L. W., and Hoad, V. M.
 Mosguito News 22:50-51.
(153) Jaconson ${ }^{\text {M }}$.
1962. RECENT proghess in the chemistay of insect sex atmascinnts. In New Approaches to Pest Control and Eradication, Adv. in Chem. Ser. 41, pp. 1-10. Amer. Chem. Sou., Washington, D.C.
(154) -1965. insect sex atull.ictants. 154 pp. John Wiley and Sons, New York.
(155) Jones, R. W., III, and Howres, J. R.
1949. seep exhaust venteri Aerosol. Mosquito News 9: 161-165.
(156) Jodson, C. L.
1960. TILE physiology of hittening of aedine mosquito eggs: hatcinng stimolus. Ent. Soc. Amer. Ann. 53: 6SS-691.
(157) - Hokama, Y. and Klewer, J. W.
1966. Embrogeny and fatching of aedes slerrensis mggs (didtera: culicidie). Ent. Soc. Amer. Ann. 59: 1181-11S4.
(158) Katmus, K., and Hocking, B.
1960. behaviol of aedes mosquitoes in relatION TO RLOOD-FEEDNG IND REPELLENTS. Ent. Expt. et Appl. 3: 1-26.
(159) Keener, G. G., Jr.
1952. observations on overwintering of colex pansmlis coquiletc (diptera, colicidaE) in westemin nebraska. Mosquito News 12: 205-209.
(160) Kellen, W. R.
1960. the control of mobquitoes by pathogenic macroorganisms. Mosquito News 20: 133135.
(161) - Clank, T. B., and Lindegren, J. E.
1963. A passible fonyhedrosis th culex tarsales coquIldett (diptera; cuatcidae). Jour. Insect Path. 5: 98-103.
(162) -_Clark, T. B., Lindegren, J. E., and Sanders, R. D.
1966. A CYTOPLASMIC-POLYHEDROSIS VIROS OF CULEX tarsalis cogulllett (piptera: culicidab). Jour. Invertebrate Path. 8:390-394.
(163) ——and Laph, J. J.
1960. thelohanta calfornica n. Sp., a microsporidian parasite of culex tarsalis co@uillett. Jour. Insect Path. 2: 1-12.

（16．t）－and MyEus，C．M．
1904．Bacillus shatericus neide as a pathogen of mospurroes．Calif．Mosquito Control
（16is）Assoc．Ann．
1962．NEW Thbzohanil from calfonmit mos－ guiroes（nosem．tidile：michosporidia）． Jour．Insect Path． $4: 41-\overline{5} 6$ ．
（166）－Witis，W．，amble Lindegimen，J．E．
19Gi．Cumtosis in abbes smabensis（ludlow）． Jour．！ssect Path．3：335－33S．
（167）K゙elaer，J．C．，Labreceba，C．C．，Chinman，H．C．， mad D．vis，A．N．

 choss．Mosquito News $16: 20-3 t$ ．
（168）に゙тmb．1．L，J．H．
1062．the use and apicicamion of ghanular haticlabs whet A compressed ma gen． Mosfuito Vews $2=2: 96-100$ ．
（ 160 ）Kwa，W：V．，compiler．
 heprlangen at orlindo，fla，C＇S．Dept． Agr．Agr．Handts．69， 397 pm ．
 1960．A מunobook of the mosentoes of rhe sotmanasten thited stares．U．S．Dept． Agr．Agr．Handb．173，isspp．
（171）K゙lametr，J．W＇．Takesai，M．，Husbindes，R．C．，and Hunst，C＇．H．
6066．sex phemomones wo miting behavior of CUISETM NOLNATA（DiPGera：GUBCIDAE）． Ent．Noe Amer．Non． $50: 530-533$.
（172）KNapp，b．W．，mal Pass，B．C．
10th．The effectiveness of low－volume aemal sprits rur mosquro control．Mosquito News 26： $128-133$ ．
（173）Kincut，K．L．
1951．THE aEdEs（OCHLEROTMTUS）MUNCTOR SUR－ Ghote in nowth mimbic．Ent．Soc．Amer．

（174）Kiniphag，E．F．
1060．CONFKOR．of schewworst fly by atomic mantmon．In Amer．Assoc．Adv．Sci， Sect．Agr．，Control of Plant and Animal Pests； A Symposiam，Indianapolis，Ind．，Mitg．，Dec． 2s－30，195 \mathfrak{t} ，Pub．61，pp．169－1S2．Washing－ ton，D．C．
（175）
1960．TRA ERIDICATION OF THE SCHEW－WORM FLY． Sci．Amer．203：54－61．
（tit）Kome，W．H．W．
19t？．A TECHNigu：for spmining，bissegting，and Movarik the male terminulla of mos－ Quivoes．ぞ．S．Pail．Health Rpts．57：1327－ 13：33．
（177）LIVEN，H．
1964．erkidicition of culex pipiens patigans thaongh eyroplasmic incompatibility． Nature 216：38：3－384．
（178）Lewallen，L．L．
1061．insecticide－resistant mosqutoes in cali－ formia 1949－1961．Mosquito News 21：310－ 315.
（179）and Brawler，J．H．
195S．Paramhton resistan＇aedes nigromaculas． Calif．Vector Views $5: 56$.
（1S0）－and Parers，R．F．
1960．control of california moseuitoes he－ SISNANT TO OLRGNOMOSPHORUS INSECTICIDES． Mosquito News 26：328－330．
（1\＄1）Lincim，J．H，and Nimisen，L．T．
1963．Notes on the idenfthication of some westrizn culex birvae．N．J．Mosquito Estermin．Assoc．Ann．Mtg．Proc．15：411－ 415.
（1S2）－－ind NIELSEN，L．T．
1066．NOTES ON THE DISTMIBUTION，ECOLOGY，AND overwintering mabits of culex apicalis adams in utah．Wash．Ent．Soc．Proc．68： 136－138．
（I83）Lips，J．J．
1963．INFECYONS OF PROTOZOA OTHER THAN SPORO－ zoA．In Steinhaus，E．A．（ed．），Insect Pathology，an Advanced Treatise，v．2，pp． $335 \overline{5}-361$ ．Academic Press，New York and London．
（IS．1）McCabe，E．T．，Barthel，W．F．，Gertler，S．I．，and Hall，S．A．
1954．insect heirelients in．N，n－diethylamides． Jour．Otganic Chem．19：493－498．
（185）MacCreary，D．，and Steahns，L．A．
1937．mosquivo migration across delaware bay． N．J．Mosquito Extermin．Assoc．Proc．24： 188－197．
（186）Magoon，E．II．
1935．A fontible stible thap for capturing mosquitoes．Bul．Ent．Res．20：363－369．
（187）MALL，C．A．
1934．the mospuitoes of montana．Mont．Agr． Expt．Sta．Bul．288， 72 pp．
（1S8）Mallack，J．，Smith，L．W．，Berry，R．A．，and Bickley，W．E．
1964．hatching of egos of three aedine mos－ QUitoes in response to temperature and Flooding．Md．Agr．Expt．Sta．Bul．A 138， 21 pp.
（189）Matheson，R．
1930．The utilization of aquatic plants as aids in mosquito control．Amer．Nat．64：56－ 86.
（190）
1944．A handbook of the mosquitoes of north Ambrich． 314 pp．Comstock Pub．Assoc．， Ithaca，N．Y．
（191）
1050．medical entomology．Ed．2， 612 pp ． Comstock Pub．Co．，Inc．，Ithaca，N．Y．
（102）Mamsson，K．，Burners，B．T．，and Broms，A．L．
 vurotes，phelimanamy Reporze Poultry Sci．11：2ll－293
 and othess．
1951．The mater mpens complax．Ros．Ent． Soc．，budon，Trams．102：131－1s3．
（19月）Messmagra，K゙．
 19： $6 \mathrm{t}-\mathrm{6}$ ．
（103）Mimblek terp W．W．

 － 0 呺
 I．II．

 Nows 29：245－30m．
 others．

 2－5： $10-14$ ．

 Wrom seectes，Mosquito News 27：360－ 3 B .1.

 quito News 3 ： 5 （5－519．
 basambermes．
 Health Serr．B－1210，N1 mp，［Procesed．］

 opernmixg on may cbla intrebres．Mos－ quito News $15: 23-32$.

1900．SWamming and marang in mosperfoes．Ent． Soe Amer．Mise．Pub．1，pp． $71-95$.
（203）Nielsen，L．T．
1961．abdea schazomane dyar in tha western wheo strates．Calif．Alosquito Control． Asoc．Ann．Coni．Proc．and Papers 29：21－24，
（20－4）－Lisust，J．II．aud Rees，D．M，
1063．New bismbmation kicombs for moseutoras is wift rocky mountain states．N．J． Moscquito Extermin．Assoc．Am．Mtg．Proc． 50：424－12s．
（205）－and［2ebs，D．M．
 of what．Ttuh Eniv．Biol．Ser．XIT（No．3）， 63 pp ．
（200）Nomas， 15 ．
 hmis vines from chabe heattans（theob．） （mipmot：cumemab）．（imad．Jour．Res．， Sect．E，24，pp．63－70．
（207）（owns，W．B．，and Cenm noms．R．W．
mat．The mospettome or wronnes．Wyo．Ebiv．

（20n）．．．－Wmanus．D．W．．．Foto，II．R．，and Lomores， （．S．

1970，seprbasmon and mbamatmon of an mband Povamon of ceam Pimans pringut wherntes with sherime mues．science － $\mathrm{s}: 1380 \mathrm{~N}-1370$ ．
（210）Pwersons A．

（211）PBras，E． L ．

 quito News $16: 30-20-1$ ．
（313）PMAD．C．B．
1043．Fhowers as sucgempid sounce of mos－
 inctimerme mosqurto mbeords in tha bit koma is 1941．Jour，Parasitol．29：32s－329．
（213）P3，er，F．W．．Jr．，Betider，W．S．Chapman，C．A．， on．Doprs（i．W ．
 Hocsi：Fhas ino mospuroes．Jour．Econ． Bint．50： 0 ＋33－649．
（234）－－and Lome，C．IV．
196t．SYNERGMA of Mhlathion ag．mast hesis－ parr insucts．Fienee 134： $2043-2044$.
（215）Pontmins，R．li．，and Hisbe，I，L．
1961．mology and contbon of hedes sharmensis is cumponsis Calif．Mosquito Control Assoc．Amn．Conf．Proc．and Papers 29：140－ 14．1．
（216）Patce，R．D．，Olson，T．A．，Roeger，M．E．，and Scilotimas．Is．L．

1960．A sumyey of potential overwinteming simbs of culdi masalis coquiblett in minnesota．Mosquito News 20：306－311．
（217）Provost，M．W．
105\％．Tife bispersal of iedes tabnionimnchus． 11．The smcond mapmament．Mosquito News 17：23：3－2－47．
（215）Raber，T．C．
1961．the onin moving paite is phe oberatom． Mosquito News 21： 142.

1961．A grinule＂shoombr．＂Mosquito News 21： 348 ．

 control of adetar mosturtoes．1961－6j？

（2？1）Reess，13．E．

 Cometrol Asoce Aun．Conf，Pros．and lapers 20：万1－7．
（2ne）Rets，U．M．
 33， 951 p．

 $112 \overline{3}$.
（20）

$\because 2$（6）

027

 qutto Contrul desme．Amo．Conf．Proc．and l＇apers lli：5s．59．
（202）．and flamon．It．Nt．

 cohbecmint buve mospertors．Jour．Infect．

 Led，whanciron．Amer．Jour．Trop．Med． 24：131－13－4．
（230）Remoren．．J．（i．
 Cwind．Cumal．Jour．Res． 2 S ，Sect．D，pp． $206-2 \mathrm{~S}$ ．
（231）Ruchums，C．S．
105t．Vedes melandaton dyab ind reladitud species． Cand．Ent．SS：2（6i－260．
（232）liogens，$\lambda . J$. ，and R．ctimunn，C．B．，JR．
1060．Imploved mariods of formulating grine－ Latr patis omben haryicide．Mosquito News 20；11－14．

 arto control in flombs．Mosfuito Nevs －ti：2St－2m．
（23－1）Rogorw，W．M．，libitz，A．D．，Johnsen，J．O．，aud Pbur：F．IV．

 241.
（23．5）Ross，LI．II．
 Cutorobwe Ill．Nitt．Hist．Survey Bul．ed （l），ple．1－96．
（23（i）Kotat，L． A ．
LoNs．I stide or moserto mehrwor．in bapera－

 Amer．Mirlland Nat．10：26：5－35＇3．
（237）Rozaboom，l．E．
 Bxpt．Sta．Tech．Bul．T＇Iti，itipp．
（23N）－－．

 cober．Amer．Jour．Trop．Med，and Hyg： $1: 475-183$.
（239）Resin．W．A．，L’mensin，J．M．．and Ekblend，C．M．

 cohimata myer basts，wasmagton，Mos－ quito News $18+288-293$.

 by cctax tabsuma Moscuito News $33:$ $285-2 \times 0$.
（2t1）Sitmala，J．，Siblow．A．J．，and D．vis，A．N．
19G0）．I NEW THERMAL－ABUOSOL GENER．ETOR FOR
 Min mbplane．Mosquito News 20：275－280．
（242）Scomy L．M．
 whis shmblement．Oreg．Hist．Soc．Qurrt． 20：1．14－161．
（243）Seamax，EA．
1945．AN insecer t．igit trap for ose with atro vemeles in the field．Mosquito News 5：79—入1．
（2小－1）Silemanclugh，J．A．
 Culiseta inoundel will．and anobuedes Ehrlet vahgis（direrasculicidae）in Albertr．Mosquito News 25：456－ 462 ．
（245）Singtr．K．R．P．，and Brown，A．W．A．
1957．Nothimonil requirements of aedes aEgrptt 1．J．Insect Physiol．1：199－220．
（246）Smith，C．N．，LaBrecque，G．C．，and Bonkoyec，A．B． 1964．Insect chemostemlants．Ann．Rev．Ent． 9：260－254．
(247) Smith, G. F.
1949. kbin mad has chrcumstanthal evimence on bove resispance. (Calif. Mosquito Control Assoc. Monthly Newssheet) Mosquito Buza 3 (8): 2.
(248) ———Gans, A. F., and Isaxk, D. W.
1956. invesmentions of a hecurbent fliomt bateben of rlood water abibs moseutors in kern coundr, californata. Mosquito News 16: 251-256.
(240) Smith, J. 3.
 chavan, sabmament sraton men the monourmes occurasg wimme the state,
 Treaton, N.J.
(250) Snodahass, R. E.
1959. the anamom hate of me mosputco. Smithan. Last. Misc. Collect. 139 (No. S), S7p.
(251) Snace, H. H.
1935. Mospuro control ampertes in the pacime
 Econ. Ent. 28: 1022-1024.
(252)
and Cisulin, C. M.
1935. anomblines and mambin in the pacheic Normwess. Northwest sci.9: $\overline{5}-11$.
(253) - Giullin, C. M., and Yites, W. W.
1037. Flghe range nad tonghvity of floodwater mosquitoes in the lower columbia hivelr valey. Jour. Eeon. Ebl. 30: 340915.
(2ñ) - (isulan, C. M., and Y.tres, W. W.
105's. mosentoes of the northyestran strpes.

(255) Sctunaus, E. A.
19.6. pranchms of insect intuologr. 757 pp . MeGraw-Hill Book Co., hac., New York.
(256) Sterens, L. F... and Stroub, R. F.
1966. control of mospuito adulits and babyae wria fltha-how-volume werhal aplehcamons of baytex and ratyex-baygon mixtore. Mosquito News 26: 124-128.
(257) Stewam, C. C., and MeW.ade, J. W.
1901. the mosquitoes of ontabio. (dittera: culicidae) with keys to the species and notss on dispratation. Ontario Ent. Soc. Proc. 91:121-18s.
(258) Stone, A.
1961. a s.nortic catwog of whe mosquitoss of the worlis, supplement i. Wish. Ent. (259)
1963. a swampic c.ithlog of the mospuitoes of the woul, subplement 11. Wash. Ent. Soc. Proc. 15: 117-140.
(260)
1967. A synortic cathlog of the mosqutoms on mee wotlo, surplement m. Wash. Ent. Soc. Proc. 69: 197-224.
(261) - - liniomt, K. L., and Stacke, H.
1959. a symoretc catalogee of the mosquttoes or the wonld. 358 pp . Ent. Soc. Amer. ('he Thomas Say Foundation), College Park, Md.
(262) Sudi, W. D., and Cuamberdin, R. W.
1862. Bathiny-ombiated inght trai, an improved sonet. Mosquito News 22: 126-129.
(263) Sunuerbini, D. J.

106\%. hesistant morblems with the choomanted ambocabons in the nommbrn states. Mosquito News 20:319-328.
(260) TANaDM, Y
1959. michomb. cowtuoh or insect pests. Ann. Rev. Ent.4:27:-302.
(265) Thephwy, A. O., Abdel-Midak, A. A., and Wakid, A. M.

196it. stumes on the mbabermon of anopieless pharoensis by the sterme-male mechmoue using comiti-60. iv. mamng behavior and its frbquency in the sterblized mospurtors. Jour. Econ. Ent. 60: 23-20.
(26i6) Thomas, L. A.
1963. distrabution of the vibus of western gQuine encepinhomeltis in the mosguro vector, culex parshils. Amer. Jour. Hyg. 7S: 150-105.
(267) - Eklund, C. M.
1960. ovbluintering of western equine encephabomyelitis vhus in exiembentaley infected oabten snakes and transmision ro mospurtoes (26006). Soc. Exp)t. Eiol. and Med. Proc. 105: $52-55$.
(268) Thompson, G. A., Howity, B. F., Gorrme, l2., and Cockburn, T, A.
1951. biceplinlitis in midwist. vi-western bquine emcerbalomyehtis virus isolated from abdes dorgalis meigen. Soc. Expt. Biol. and Med. Proc. 78: 289-290.
(269) Truvis, B. V., and Jones, H. A.
194. insect rephlient composition. U.S. Patent ino. 2,356,801.
(270) - Morton, F. A., Jones, H. A., and Robinson, S. H.
1949. The more mfective mosquito repellents tested at the oblando, fla. laboratory, 1942-47. Jour. Econ. Ent. 42: 686-694.
(271) - - and Smith, C. N.
1951. Mosqutto repellents selected for use on man. Jour. Econ. Ent. 44: 428-429.
(272) U.S. Agmcultural Research Sebvice.
1955. insecticides and hepellents for the control of insects of memical importance to the armed forces. U.S. Dept. Agt. Cir. 077, 91 pp .
(273)
1962. ars spacial revort. oranular insecticides hesearch developments and uses. U.S. Dept. Agr. ARS 22-78, 14 pp .
(274)
1967. Materials eyaluated as insecticides, beDBLLENTS AND CHEmOSTERILANTS AT OREANDO ANd GMNESville, Fla. U.S. Dept. Agf. Agr. Wandb. 340,424 pp.
(275) \qquad and Subcommitee on Vecior Control, Inrer-agency Con.initee on Warer Resources.
1967. MOSQumo mbivention on mmichted filens. ($\mathrm{F} . \mathrm{S}$. Dept. Agr. Agr. Handb. 319, 32 pp.
(276) Vockeroth, J. R.
1954. NOTHS ON TRE BENTHES AND MSTRBETMONS of andes spectes of Nommern cinabs, WITM A KEY TO TIE FBMALES (DIPTERA: comomar). Camad. Eat. S6: 241-205.

1962. Fielb spubth on the aeleatse of stemide males fon the conthoi of anopheles Qmandmaculatus. Mosquilo News 2.2: 2S3291.
(278) Wemen, J.
1963. Srohozonn infecmons. In Steinhath, E. A. (ed.). Insect Pathology, v. 2, pp. 291~33t. Acutemic Press, New York ant Eondon.
(279) Wesley, C., Ju., and Schmitr, R. P.

1才á7. A NEW wheelamounted insectione mist Srrayer. Mosquito News 17: 28f-289.
(280) Winmili, A. E., and Buown, A. W. A.
1961. n.c.a.f. himspray for biting ply control. Canad. Aeronantical Jour. 7:343 354 .
(2SI) Yares, W. W., and Gruman, C. M.
1G47. pre-hatching apphamions of dit labyicides on floodwater aedes mosquitoes. Mosquito News 7:4-6.
(2S2) Young, V. D., Wintermeld, R. G., Deonien, C. E., and Ghiabrdonde, C. W.

19G6. Fhciors influencing the deposit dosition OF GRLNULIR MATERLABA APPLIED BY ARCRAFT Af low flight levels with rixed-wing Mrchary Amer. Soc. Agr. Engin. Trans. 9:365-668.
(283) Zavor'vink, T. J.
1968. A PRODOME OF THE GENUS ORTHOPODOMYIA coneribution of the amehican entomologic.id institute. V. 3 (No. 2), 221 pp. Calif. Univ., Los sageles.

APPENDIX

M..u 1.-Distribution of various anopheles species in the Northwestern Vinited States.

Mar 2.-Distribution of various atedes species in the Northwestern United States.

Mal 3.--Distribution of various Aedes species in the Northwestern United States.

Mar 4.-Distribution of various Aedes species in the Northwestern United States.

Marn - -Distribution of various fleder species in the Northwestern United States.

Mar i.--Distribution of varions Actes species and one Cooquillettidia species in the Northwestern United States.

Mar 7.-Distribution of various Aedes species in the Northwestern United States.

M.II S.-Distribution of various Culex species and one Orthopodomyia species in the Northwestern United States.

Mar 9.-Distribution of three Culex species in the Northwcstern United States.

Mas 10.-Distribution of various Culiseta species in the Northwestern United States.

INDEX

(Valid mosquito species names in romm type; synonyins, genera, and species not occurring in the Northwestern States in italic. Figures in boldface type refer to the main reference for the genus or species.)

Nbate, 15, 24
Netes, $9,7,8,10,11,21,24,26,27,28,29,59$
nowriginis, 2, 34, 35, 36, 37,101
aetppli, 7, 9, 22
albopictus, 10
radrichi, 63
aloponotnin, $2,33,35,36,37,38,102$
camperstris, $2,33,35,36,37,35,39,103$
comadensis cumadensis, $2,33,35,36,89,40,104$
cataphyilm, 2, 34, 35, 40, 41, 43, 105
einerext, $2,10,34,36,41,42,103$
communis, $1,2,16,27,34,35,36,49,43,50,66,103$
cylocitcules., 49, 50
dorsalis, $1,2,6,5,16,18,33,35,37,43,44,24,55,104$
excruciuns, $2,33,35,36,38,45,46,106$
fitehii, $9,16,33,34,35,30,43,45,40,47,50,103$
flavescens, $2,33,34,36,46,47,48,101$
gonimus, 63
hendersoni, $2,18,34,36,48,49,106$
hexalontus, $1,2,16,34,35,36,43,49,50,39,101$
hirsukeron, 63
impuger, 2, 34, 35, 36, 50, 51, 102
implientus, $2,27,34,35,36,54,52,105$
increpifus. $1,2,16,34,35,35,51,52,53,101$
intrudens, 2, 34, $35,36,43,53,54,105$
laterctis. 63
leuconolips, 49, 59
melanimon. 1, 2, 8, t6, 33, 35, 37, 44, 53, 55, 104
monticolu, 62
nigromatulis, 2, 16, 24, 33, 35, 55, 56, 102
niphadopsis, 2, 34, 35, 36, 56, 37 , 105
pearyi, 40
pionips, 2, 34, 3.5, 36, 57, 5S, 10.5
pulatus, $2,34,35,36,43,58,59,103$
punctor, $2.34,35,36,59,60,106$
schizopinax, 2, 34, 35, 36, 60, 61, 106
siemrensis. 2, 3, S, 10, 18, 33, 35, 36, 61, 62, SS, 104
speneerii idahoensis, 2, 34, 35., 36, 62, 63, 104
sticticus, $1,2,7,8,10,16,34,35,36,62,63,64,67,69,102$
stimulans, $2,34,35,36,64,455,100$
taeniorhymchus, S, 21, 24
trichurus, $2,351,35,6 \overline{5}, 60,105$
triseriutus, $4 \mathrm{~S}, 49$
trivittatus, $2,34,35,36,66,67,106$
taripalpus, 61,62
ventrovitis, $2,34,35,30,67,68,105$
vexams, $1,2,7,8,9,16,10,33,34,36,64,68,102$
Alanine, 22
Akcohol, 13, 14

Aklin, 19. 2.4
Anuphamosis, 9
Anopheles, $5,7,8,10,11,12,18,28,29$
carlei, 2, 20, $30,31,100$
frcolami, $2,9,16,29,30,31,32,33,72,83,100$
maculipennis, 30
oecidentalis, 2, 20, 30, 31,100
pharomsis, 22
pseudopunctipennis franciscuntus, $2,29,30,31,32,100$
punctipennis, $2,0,16,29,30,32,33,100$
quadrimacululus, 22

Bacillus sphamericus, 10
Balsum, 14
Becehwood creosote, 14
BHC, 19, 24
Bladelerwort, 10

Carbon dioxide, 12
Canlleryclla anophetis, 10
Caullerycha pipientis, 10
Cedarwood oil, 13
Cellosolve, 13, 14
Chaboridue, 10
Chioral gum arabic, 14
Chioroform, 11, 13
Citronelia oil, 24
Clove gil, 13
Cochliomyia hominivorax, 22
Coelomonyces, 10
Coquilletidia, $5,6,7,14,29,86$
perturbans, $2,6,7,18,36,87,105$
Culex, $5,7,8,10,11,12,18,22,24,29,69$
:spicatis, $2,69,70,71,78,107$
boharli, 2, 69, 70,71, 72, 79, 107
erythrothorax, $2,8,69,70,72,73,107$
fatigars, 22
nigripulpus, S
peus, $2,16,23,69,70,73,74,108$
pipions molestus, $7 \overline{5}$
pipiens pipiens, $1,2,8,9,16,18,22,23,69,70,74,75,108$
pipiens guinquefasciahes, 74,75
restuans, $2,69,70,75,76,107$
sulinarius, $2,69,70,76,77,107$
sligmatosoma, 73
tursalis, $2,7,8,12,16,18,23,24,30,69,70,77,78,82,83$, 108
territans, $2,69,70,72,78,79,85,107$

Culiseta, $\overline{7}, 7,8,11,29,50$
impatiens, 2, $50,8 t, 100$
incidens, ", 10, $16,72,80,51, \$ 2,55,109$
inomata, 2, $7,8,16,22,30,50,82,33,109$
inornuthes, 83
mintiesotac, 2, 80, s.f, 55, 109
morsithas, S.t
particeps, ?, 80, s.f, s.5, \$6, t09
$101)^{\prime} 1^{2}, 18,19,20,21,23,24$
Wengue, 5, 10
Diaphate, is
Diszinon, 10
bichlorver, IR in
Wieldrin, 14, $5.5,2 \cdot 4$
Diesel vil, 2i
A, A - Dethyl-m-colunaide, 24
Dimethyl ,hthatate, e- 1
Hiomatae, 13
Dirohharia immilis, 0
Dursban, 19, 24

Fncephatitis. $2,8,0,10,31,44,56,61,69,74,75,76,75,52$, S4. 8
EPN. M
2-bthyl-1,3-hexanction, 24, 25
tucorethm underwoodi. 10
Euparal. It

Fenthion, 10, 2.
Filatmisis, 9
Fowl pox, 9
Fuel mil. 21

Catnousan athais. 0 , 14
(himetal acetic avid, 13)
(ilyeerin. is
(irabhmma, ox

Heartworm, 9
Hequatas. 9
Hephachlor, 19, 23,24
thouse fly, 2e?
に.NAD formula, 13, 14
Kensene. 13

Latetophenol. If
Lankesteria culicis. 10
Lethane, 19
Light tratas, 12

Lysime: 20
Malase trap, 12
Mataria. $9,31,33$

Manthion, 10, 21, 23, 24
Megarhints, 10
Masocyclops obsoletus, 10
Methyl putathion, 2^{4}
Mierosporidian, 10
Mostuito Esh, 9
Myxomatosis, 9
Nalet, 10, 21
Niphthatene, 13
Nosematatue, 10
Oils. 14
ceder wood, 14
eitronclla, 24
clove, 1.4
thesel, 31
fret, 2 ?
wintergreen, 1.1
Orthopodomyis, 29,57
californicti. St
signifern, 2 , $15,87,88,107$
Pamdichlorobenzene, 13
Parathion, 19, 24
Phenol, 14
Pheromones. 7
Polywingl akohol, 14
Potassimm hydroxide, 14
Psomophora, 6, 9
ciliala. 6, 9
houmotii. 9
Pyrelhrias. 10, 21
Rabbit mywomatosis, 9
Rift Yalley fever, \boldsymbol{O}
Romel, t9
Screwworm, 20
Sorliam hydroxide, 14
TDE (DDD), 19
Thamite, I?
Thelohamia, 10
Toxaphene, 2^{24}
Tororhynchites, 10
beripalpas, 10
Tharemia, 9
Fricuaria, 10
Winteryreen dil, It
Wuchereria, 0
Sylene. 14
Yellow fever, 9, 10

[^0]: ${ }^{2}$ The authors acknowledge the assistance of the following persons in this Division: Alan Stoue, Systematie Entomology Laboratory. for many valuable suggestions and many of the harval and terminalia drawings; L. F. Lewis, A. R. Roth, Jessup dohnson, and D. M. Christenson for information on distribution abundance; Mrs. Pameha Harr and Miss CVhelma Ford for many of the drawings; and W. C. MeDuffe, D. E. Weidhams, and John A. Fhano for their encouragement and assistance in preparing this bulletin.
 ${ }^{2}$ Italic mumbers in parentheses refer to Literature Cited,

[^1]: a Leme, d., and Jeee, D. masicn necom book, Methodist Epise. Chureh, Willamette Stil., Oreg. Ter., N.A. 1834-37, $\left|\|_{\text {anaseript. }}\right|$

[^2]: ${ }^{1}{ }^{3}$ ostcoxal scale patch is present on male pionips and absent on communis.

[^3]: The mesonotum of itedes triseriatus aduta has no sentral white strife and a smaller white sealed presentelar aren. The acus of the ar fube is attached to the selerotized area and the upper and lower gills are of unequal length and shorter than the plate.

[^4]: Sogelen, IV. B. Personal commanieation. 1963.

[^5]: - Hoffman, B. L. Personal communication. June 30, 1967.

