

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART national, byicau of standaris-19g3.a

CONTENTSS

Page
SUMMARY ii
INTRODUCTION 1
Basic Concepts and Def"nitions 2
ECONOMIC STRUCTURE OF THE BEEF AND PORK SECTORS 3
Beef Cattle Sector 8
Pork Sector 9
FSTIMATION OF BASIC BEHAVIORAL RELATIONSHIPS 9
Marketings, Commercial Slaughter and Meat Production. 1.0
Imports and Exports 1.4
Per Capita Supply Available for Consumption. 16
Wholesale Market Demand cnd Foaing Stocks. 17
Primary Market Demand. 20
Supply Response and Livestock Inventories. 21
EMPIRICAL DEVELOPMENT OF THE MODEL 24
Initial Performance of the Model. 25
Developmental Frocedures 25
Operating Rules. 31
Validation of the Model. 49
USES AND LIMITATIONS OF THE MODEL 33
Use as a Projection Model 34
Experiments with Policy Constraints 35
Experiments Involving Structural Change. 35
SELECIED REFERENCES 37
APFENDIX A: DATA AND VALUES PREDICIED BY THE MODEL. 39
APFENDIX B: SIRUCTURAL EQUATIONS FOR DEMAND AND STOCKS SECTION 72
APFENDIX C: OPERATING RUTFS 73
APPENDIX D: COMPUTER FROGRAM. 93

A price-output model of the beef and pork sactors of the livestock meat economy has been successfully constructed and its ability to reproduce price and output decisions validated on the basis of quarterly data of the 195570 period.

By altering its structure, the model may be used in either of two ways: 1) to project prices and outputs to future periods, and 2) to simulate the results of the imposition of policy constraints over either the historical or projection period. The model portrays economic activity satisfactorily, providing the quarterly data of the historical period are reproduced with acceptable accuracy.

Since the model is recursive, the only data given it were the initial conditions existing on and prior to July l, 1955, with the exception of the exogenous variables (population, income, corn price, etc.). Operating characteristics were introduced as needed throughout the validation process to negate error buildup ana to improve estimates involving unique situations. The overall error of the validated model for the 15-year period is in the 2 to 4 -percent range.

In general, the model may be used to simulate the effects of structural change introduced into the model, changes in values of exogenous variables, or changes in initial values of lagged endogenous variables over the historical period. In addition, the model may be initialized as of the current date, say July l, 1970, and projected to any year desired.

Simulation of the economic activity of sectors of the livestock industry, such as this model provides, is an economical procedure for comparing alternatives in the design of public and private ε jals.

A DYNAMIC PRICE-OUTPUT MODET OF THE BEEF AND PORK SECTORS

by Richard Crom
Marketing Economics Division
Economic Research Service
INTRODUCTION

Changes in market organization and technology have transformed the U.S. livestock-meat economy into a complex national retwork of physical movements of livestock and meat, and flows of information in the vertical coordination system. While certain regional adventages (and disadvantages) in livestock production and slaughter are functions of climate and local input availability, mary other regional and national economic characteristics stem from institutional forces. While some of these institutional forces may be rooted in the regional and subregional markets of earlier days, many of our contemporary institutions are national in scope, thereby giving rise to a national livestock mesket.

The maze of combinations of alternative production, processing,and distribution channels through which livestock and meat products find their way from producer to consumer are interconnected within the national market, but are still uniquely defined by local institutional characteristics. The number of these coordinative combinations almost defies description. But with today's communications network, a production and marketing decision in one part of the economy makes an impact on all segments of the livestock-meat economy.

Research efforts must be directed toward investigating the ef.ecis of one sector or portions of a sector upon the entire market for the comodity. Recent advances in automatic data processing have made it possible to construct rather large, comprehensive models of sectors of an economy representing the aggregative price-output decisions and information feedback from the consumer to producer. Such a model, constructed to represent the production and market activity of a commodity, can be operated on a computer to simulate aggregate production and marketing activity over several time periods.

Accordingly, the central objective of this research was to construct a price-output model of the beef and pork sectors of the livestock meat economy and to validate it by testing its ability to reproduce price and output decisions of a recent historical period. The model can then be used in two ways. First, the structure of the model can be altered or policy constraints can be imposed and the results of this new structure simulated over the historical period. Alternatively, the model may be used to project prices and outputs in future periods. In this case, the structure of the model may be altered and the resulting prices and outputs
compared with those of the base projection. The model presented here is an extension of earlier work of the author under the guidance of W.R. Maki (11).1/ Eariier work of Maki in forecasting livestock prices and basic livestock inventories is presented in two journal articles (10, 12). Considerable price and output forecasting has been undertaken throughout the profession for some time (1, 2, 3, 6, 7, 8, 9, 15, 16). However, only a few attempts have been ; wade to cast individual relationships into an ordered framework where the output of one relationship becomes input to others.

Basic Concepts and Definitions

The economic structure of the livestock meat economy car be differentiated from its market structure. The economic structure, in this study, refers to the relationships among such variabies as production, consumption, and prices in a comprehensive system of interdependent events. Market structure includes those attributes of an industry that are relatea in a causal sense to market behavior or conduct: for example, the number, size, and geographical distribution of firms, the degree of specialization or diversification, the economies of size, restrictions to entry, and the quality of market information. The market structure, which is largely a function of institutional forces, conditions the economic structure. Therefore, the numerical values estimated for the parameters of the economic structure of a model over a particular period are indeed conditioned by the market structure under which this economy functioned. If market structure changed, as it did, over the period for which functional relationships were fitted, then the economic structure represents an average effect of the market structure of that period. This ag̈gregative model does not deal explicitly with market structure.

Variables are classified into three types in this report. Endogenous variables are those whose values are determined within the model. Lagged endogenous variables are endogenous variables whose values are detexmined by the model in a prior time period or values of the variables in periods which existed prior to the start of the model development. Exogenous variables are those whose values are detemined outside the model.

Two types of relationships are contained in the model-widentities and functional relations. Identities specify an exact relationship between variables with no error or disturbance term. A functional relation is not necessarily exact, but typically is somewhat blurred by random disturbances. Functional relationships are further subdivided into behavioral and technical relations. Technical relations are the relationships between two fixed quantities; they are essentially engineering data. Behavioral relations describe consequences of human behavior in decisionmaking.

1/ Underscored numbers in parentheses refer to the Selected References, p. 37.

A model is said to be recursive when each endogenous variable in the model is solely a function of either lagged endogenous variables, exogenous variables, or both. If an endogenous variable of the current time period is used as a predetermined variable in another behavior relation of the ss e time period, the recursive relationship can be maintained if the functions are ordered in the proper sequence. For example, quantities may be determined as a function of laggec. endogenous and exogenous yariables, and these estimated quantities may then become predetermined endogenous variables in demand equations determining price.

Simulation is a process of conducting experiments ona model. The obect of simulation is to change tie values of initial conditions, exogenous variables or the relationships embodied in the model, and then to trace out the effect of these changes on the time path of the endogenous variables. The simulated values of the endogenous variables are then compared with the values generated in the validation run of the model. The model is validated when it is able to reproduce the historical time paths of the endogenous variables with acceptable accuracy. The recursive model of the beef and pork sectors of the livestock-meat economy presented In this report is an extension of the earlier work reported by Maki and Crom (11) but differs from the carlier model in three ways: First, the calendar quarter of the year is chosen as the unit of time measurement as opposed to the earlier semiannual model. The quarter presents a more refiled detailed description of temporal economic activity, yet it is long enouich to be free from fluctuations due to very short-run random events. Secord, the structure of the beef sector is now further subdivided into the cattle feeding (fed beef) subsector and the romainder of the beef subsector (nonfed beef subsector). Finally, the model incorporates economic events of the 1955-70 period; the earlier model was developed only through 1964.

A listing of all endogenous and exogenous variable names consistent with the Fortran computer language is presented in table 1.

ICONOMLC SMRUCIURE OF ITER BTLIF AND PORK SECTORS

In developing the model, a basic economic structure was diagramed to show the causel ordering of prices and outputs throughout the livestock-meat economy. Ihis structure was essentially a set of hypotheses to be tested; the acceptance of these hypotheses was based on the significance of these variables in explaining functionally the dependent variables in question. The final structure is presented in figure 1. The basic concept underlying this recursive economic structure was the time-honored cobweb theorem. That is to say, components of per capita consumption were estimated and ageregated; this output was priced at the appropriate level; derived demands were establiched through margin relationships; and subsequent production in light of these primary market prices was then determined, thus maintaining the recursiveness of the system.

Table l.--Description of variables

Fortran
variable name

Unit of
measure

Endogenous variables

H21 H22R

H23

CBCS
XMFC
AWIF $_{j}$
CSFC_{j}
${ }^{B P F}{ }_{j}$
XMNFC_{j}
BPNF $_{j}$
AWTNF ${ }_{j}$
$X I B_{j}$
$X B B_{j}$
$P^{P C F B C}{ }_{j}$
PNFBS $_{j}$
${ }^{\mathrm{CHS}}{ }_{j}$
PP_{j}
$X I P_{j}$
$X{ }_{\mathrm{j}}^{\mathrm{j}}$
PCPS $_{j}$

1,000 head
1,000 head
1,000 head

I,000 head
1,000 head pounds
mil. lb.
mil. 1b.
mil. 16.
mi1. lb.
pounds
mil. 16.
mil. lb.
pounds
pounds
mil. 1b.
mil. 1 b .
mil. ib.
mil. lb.
pounds

Other $1 /$ calves less than 1 year old on hand Jan. 1.
Other heifers 1-2 years old on hand Jan. 1, not on feed.
Other cows and heifers over 2 years old on hand Jan. 1.

Commercial beef cow slaughter (annual).
Marketings of fed cattle, 39 States Average weight of cattle qrading Prime, Choice and Good at selected markets.
$\left(\mathrm{MFC}_{\mathrm{j}} \times \mathrm{AWTF}_{\mathrm{j}}\right)$
Commercial fed beef production, carcass weight.
Other (nonfed) commercial cattle slaughter, liveweight.
Other (nonfed) comercial beef production, carcass weight.
Average weight of nonfed commercial cattle slaughter.
Beef imports, carcass weight.
Beef exports, carcass weight.
Per capita civilian consumption of fed beef, carcass weight. Per capita civilian supply of other (nonfed) beef for consumption, carcass weight.
Commercial hog slaughter, liveweight.

Commercial frirk production, carcass weight.
Pork imports, carcass weight.
Pork exports, carcass weight.
Per capita civilian supply of pork available for consumption.

Table 2.--Description of variables--Continued

Fortran variable name	Unit of measure	Description
PRFBW ${ }^{\text {j }}$	dollars	Wholesale price per 100 lb . of Choice-grade beef carcasses. Weighted average of prices at New York, Chicago, Los Angeles, San Francisco, and Seattle (LCL)
PrNFB^{5}	dollars	Price per 100 Ib . of utility-grade cow beef prices at New York City.
PRPW_{j}	dollars	Weighted average of wholesale prices of individual pork products at onicago.
FSB_{j}	mil. 2 l .	Ending stocks of beef, carcass weight.
$\mathrm{ESP}_{\mathrm{j}}$	mil. Ib.	Ending stocks of pork, carcass weight.
$\mathrm{PREBL}^{\text {L }}$	dollars	Weighted average price of Choicegrade steers at 20 markets.
PRPL_{j}	dollars	Weighted average price of barrows and gints at 8 markets.
PRFC $_{j}$	dollars	Price per 100 lb. of Good-and Choice-grade 500-800 lb . feeder steers at Omaha.
SF_{j}	1,000 head	Sows farrowing (quarters are Dec.-Feb., March-May, June-Aug. and Sept.-Nov.)
PL_{j}	1,000 head	Placements of cattle on fee $\bar{\alpha}$ in 39 States.
Exogenous variables		
H23	3,000 head	Dairy cows 2 years old and older on hand Jan. 3.
PSPS_{j}	head	Pigs saved per sow.
$P_{\text {PRC }}{ }_{j}$	dollars	Price of No. 3 com at Chicago.
$\mathrm{XM}_{\mathrm{XI}}^{\mathrm{j}}{ }_{\mathrm{j}}$	mill Ib.	Military consumption of beet, carcass weight.
XMIIP ${ }^{\text {j }}$	mix. 1.b.	Military consumption of pork, carcass weight.
CN_{j}	nim. ${ }^{\text {2 }}$ [b.	U.S. civilian population.
RNGE ${ }_{j}$	units	Index of range conditions in 17 Western states.

Table 1.--Description of variables--Continued

Fortran variable name	Unit of measure	Description
T_{j}	units	Time ($\mathrm{T}=1$ in 3rd quarter, 1955)
DPH_{j}	percent	Ratio of commercial pork production to commercial hog slaughter.
Y_{j}	dollars	Per capita disposable personal income.
$\mathrm{BPCB}_{\mathrm{j}}$	do11ars	Byproduct credit for beef, per 100 lb., liveweight.
$\mathrm{BPCP}_{\mathrm{j}}$	dollars	Byproduct credit for pork per 100 lb., liveweight

QUARTERLY MODEL OF BEEF AND PORK SECTORS OF THE LIVESTOCK-MEAT ECONOMY

In figure l, endogenous variables are depicted by circles while exogenous variables are depicted as rectangles. Causal ordering is indicated by the direction of the arrows. The lagging of values of variables are indicated by concentric circles. Current period values are inside the center circle (heavy line). Each succeeding concentric circle depicts a time lag of one quarter. The pie at the bottom of the figure contains the January l inventory structure; here, each concentric circle depicts a time lag of 1 year.

Beef Cattle Sector

Beef calves on hand January 1 are determined from the calf-crop (derived from the beef cow inventory the previous year) and the average annual feeder cattle price. The inventory of beef heifers for herd replacement (not those on feed) which makies up the future input to cow inventories depends on the number of beef calves on hand a year earlier and the feeder cattle price. Beef cow slaughter throughout the previous year is determined by the number of beef cows slaughtered from previous inventories and the feeder cattle price. The number of beef cows on hand January 1 is then a function of the previous year's inventory plus inputs from heifers on hand the previous year minus the outflow of cows in the inventory through cow slaughter.

In the fed beef subsector, the fed cattie marketed any quarter is determined by the placements of cattle on feed in previous quarters. These cattle form the basis of cormercial slaughter of fed cattie. Commercial slaughter of fed cattle on a liveweight basis is, of course, affected by the average weight of fed cattle slaughtered, which, in turn, depends to some extent on the beef-corn ratio at the time the cattle were placed on feed (indicated here as a two-quarter lag). The beef-corn ratio plays an important role in determining the feeding program and the weight of cattle put on feed. Military consumption is then subtracted from fed beef production and the remaining quantity converted to a per capita consumption basis. The wholesale price of fed beef is considered to be a function of per capita consumption, per capita consumer income, the per capita supply of nonfed beef available, and a trend term representing a shift in consumer demand. Cattle prices, on a liveweight basis at primary markets, are subsequently derived from the wholesale price and the byproduct value (considered exogenous to this study). Feeder cattle prices are subsequently determined by fed cattle prices, but are also conditioned by earlier feeder cattle price levels which form part of the gross feeding margin realized from cattle just sold. Finally, placements in the next period are drawn from inventories of feeder cattle on hand January 1 subject to changes in feeder cattle and corn prices.

In the nonfed subsector of the beef economy, commercial slaughter on a liveweight basis depends on both beef cow slaughter and dairy cow cull.

In addition to cow cull, this slaughter is affected by the status of range conditions in the Western States (indicating the carrying capacity of the range), corn prices (representing the cost of feed inputs), feeder cattle prices, and average weights. In addition to seasonal variation, average weights of nonfed cattle have shown an upward trend over time. Foreign trade is hypothesized to take place primarily in the nonfed beef sector. Both imports and exports are shown to be functions of previous values of nonfed beef supplies and wholesale prices. The per capita supply available for consumption is then determined as a summation of nonfed production, military consumption, imports, exports, and beginning stocks divided by civilian population. Ending stocks are still included in supply inasmuch as they theoretically could be consumed at a price. The wholesale price is then determined as a function of per capita nonfed beef supply, per capita supply, and per capita fed beef consumption (supply). Exogenous variables determining wholesale prices of nonfed beef are time (representing shifts in consumer tastes) and income. Ending stocks are determined simultaneously with the wholesale prices.

Pork Sector

The pork sector differs from the beef sector in that January 1 inventories are not reported for breeding stock. The inventory is represented by the number of sows farrowing. Farrowings are wholly a function of lagged variables. The previous period's sow farrowings are adjusted by the corn-hog ratio existing at breeding time. Cormercial hog slaughter is a function of lagged values of sows farrowing and pigs saved per sow, and a lagged corn-hog ratio. Pork imports and exports, although minor, are hypothesized as tunctions of the wholesale pork price and earlier per capita supply. Imports, exports, and ending stock minus military consumption are added to domestic pork production to determine per capita supply for consumption. This becomes an initial input into the price equation along with per capita supplies of nonfed beef, consumer income, and a trend term as proxy for consumer taste. Ending stocks are determined simultaneously with pork price, as in the case of beef. Finally, live hog prices are a function of the wholesale price and the byproduct credit.

ESTTMATION OF BASTC BEHAVIORAL REIATIONSHIPS

The basic functional relationships embodied in the model were estimated initially by ordinary least-squares procedures. In general, the data used for estimating the least-squares relationships covered the 1955-66 period; relationships for which different time periods were used are indicated individually. In choosing among alternative behavioral relations, the selection was generally made on the besis of ability to explain variance (R^{2}) and the level of significance of the coefficients.

In general, coefficients were accepted if they were of the right economic sign and if they were significantly different from zero at the 10 -percent level.However, some relationships were uspia where significance occurred only at the 25-percent level. When a set of seasonal dummy variables was used, the entire set of coefficients was employed regardless of their individual significance.

Marketings, Commercial Slaughter, and Meat Production

Functions estimated for domestic production are presented individually for the fed beef subsector, the nonfed beef subsector, and the hog sector. After several different formulations had been tried, it was decided to estimate domestic production of meat on a carcass weight basis.

Fed beef subsector; Marketings of fed cattle from feedlots in the United States (39 States) were estimated in l,000-head units. The average weight of fed cattle was subsequently estimated with the product of weight and head indicating conmercial slaughter of fed beef (liveweight equivalent); the last term is an identity. Tnasmuch as the original data development involved the assumption of a 60-percent dressing percentage for all fed beef, liveweight conmercial slaughter was converted to a carcass weight basis using the coefficient of 0.6 .

Marketings of fed beef cattle in the United States were estimated separately for each quarter because the explanatory variable used involved differing time lags. The quarterly marketing functions (equations 1-4) were developed from data on placements and marketings from mid-1957 through mid-1968.

$$
\begin{equation*}
M F C 1_{t}=514.0+\underset{(0.008)}{0.3748} \operatorname{PL}(\Sigma 1,2,3)_{t-1} \tag{1}
\end{equation*}
$$

$$
\mathrm{R}^{2}=.99
$$

$$
\begin{equation*}
\left.\mathrm{MFC}_{t}=-441.0+0.3340 \mathrm{PL}(\leqslant 3,4)_{\mathrm{t}}-1+1\right)_{\mathrm{t}} \tag{2}
\end{equation*}
$$

$$
R^{2}=.99
$$

$$
\begin{align*}
\mathrm{MFC}_{t}=676.0+ & \underset{(0.5426}{(0.022)} \quad \operatorname{PL}\left(\Sigma_{-1}, 2\right)_{t} \tag{3}\\
& R^{2}=.99
\end{align*}
$$

$$
\begin{equation*}
\mathrm{MrC}_{\mathrm{t}}=501.0+\underset{(0.341 \mathrm{I}}{0.341} \mathrm{PI}(\mathrm{~K} 1,2,3)_{\mathrm{t}} \tag{4}
\end{equation*}
$$

$$
R^{2}=.99
$$

In each case, 11 observations were involved. In the first quarter of the year, marketings of fed cattle were a function of cattle placed on feed the first three quarters of the previous year. Initially, placements from each quarter were used as separate explanatory variables, but owing to high intercorrelation, the three variables were summed into one explanatory variable. Although several different combinations of lagged quarters ware tried, the combination used explained the highest percentage of the variance in the dependent variable. This average lag in the time span of the explanatory variable indicates the approximate length of time on feed. Economic indicators of lagged steer prices and beef-corn ratios were not considered significant.

Marketings in the second quarter (equation 2) employ an average two-quarter lag in placements, while the third-quarter marketings are best estimated by considering only placements of the previous two quarters. Evidently, the bulk of variation in third-querter marketings comes from variations of placements in the first two quarters of the year. This seems logical because fed cattle marketed during the sumer are usually placed on feed to shorten the feeding period.

Marketings in the fourth quarter (equation 4) employ the same placements variable as used in the first quarter of the year. Again, variation in placements in this period is evidently most significantly associated with variations in marketings during the fourth quarter.

Functions for estimating the average weight of fed cattle employ a. lagged dependent variable relationship (equations 5-8).

$$
\begin{align*}
& \text { AWTFI }_{\mathrm{t}}=-204.0+\frac{1.1362}{(0.251)} \text { AWTF }_{\mathrm{t}-1}+\underset{(2.32)}{3.64}\left(\text { PRFBL3 } / \mathrm{PRC}^{2}\right)_{\mathrm{t}-1} \tag{5}\\
& \mathrm{R}^{2}=85 \tag{6}
\end{align*}
$$

$\mathrm{AWTF2}_{t}=271.0+\underset{(0.122)}{0.6958} \mathrm{AWTFI}_{t}+\underset{(1.13)}{2.24}\left(\mathrm{PRFBI}^{(0.1 \mathrm{PRC} 4)_{t-1}}\right.$

$$
R^{2}=91
$$

$$
\begin{equation*}
A W T F 3_{t}=280.0+\underset{(0.170)}{0.6599} \mathrm{AWPF}_{\mathrm{t}}+\underset{(1.35)}{2.84}(\mathrm{PRFBLI} / \mathrm{PRCI})_{\mathrm{t}} \tag{7}
\end{equation*}
$$

$$
R^{2}=87
$$

$$
\begin{equation*}
\text { AWPF4 }_{\mathrm{t}}=478.0+\underset{(0.174)}{0.5304} \mathrm{AWPF}_{\mathrm{t}}+\underset{(.186)}{(0.174)}(\mathrm{PRFBI2} / \mathrm{PRC2})_{\mathrm{t}} \tag{8}
\end{equation*}
$$

$$
R^{2}=75
$$

The values of the dependent vaxiable in the previous quarter is adjusted by the value of the beef-corm ratio two guarters earliex. This beef-corn ratio was the one existing at the time most of the cattle were placed on feed. Feeding programs are planned to carry cattle to heavier weights when the ratio is high ai the time cattle are put into feedlots; conversely, low beef-corn ratios encourage a lighter weight feeding program. The coefficient of the lagged dependent variable is greater or less than unity as the average seasonal pattern over the historical period changed. In other words, during the $1957-68$ period average weights in the first quarter increased over those in the fourth quarter. Still, the average weight in the second quarter was usually lighter than the average weight in the first quarter.

Nonfed beef subsector: Commercial slaughter (marketings) of cattle not on feed includes all other cattle slaughtered. This variable was estimated on a liveweight basis with the average weight of nonfed cattle being one of the explanatory variables. In developing the function, the average cull rate of dairy cows and the seasonally adjusted average cull rate of beef cows was used to delete this cow cull from nonfed cattlle slaughter. The residual was then estimated as a function of the other variable, and the results were then recombined into one function. Thus, the residual nonfed cittle slaughter is a function of the corm price and feeder cattle price lagged one quarter, conditions of ranges in the Western States, the average weight of nonfed marketings, and seasonal ad,justment factors.

$$
\begin{aligned}
& \operatorname{MNFC}(j) t=-770.27+0.0625 \mathrm{HI} 3_{t}+(J) * H 23_{t}+\frac{1568.51}{(405.67)} \mathrm{PRC}(j-1) t
\end{aligned}
$$

$$
\begin{align*}
& \text {-208.8I W1 - } 146.34 \text { W2 - } 318.89 \text { W3 } \\
& R^{2}=.81 \tag{9}\\
& * j=1=0.0389 \quad j=3=0.0490 \\
& i=2=0.0370 \quad j=4=\frac{0.0430}{.1670}
\end{align*}
$$

The function for estimating the average weight of nonfed cattle is:

$$
\begin{array}{r}
\operatorname{AWINF}_{(j) t}=915.0+\underset{(0.133)}{0.783} T_{(j) t}-\underset{(4.77)}{1.41} \mathrm{WI}-\underset{(4.77)}{21.65} \mathrm{~W}-\underset{(4.77)}{19.40 \mathrm{~W}} \tag{10}\\
R^{2}=64
\end{array}
$$

Although many economic variables and production variables were considered, the average weight of nonfed cattle appeared to be best explained as a function of a trend term and seasonal factors. Equation IL, an identity, indicates that the dressing percentage of nonfed cattle varied only seasonally.

$$
\begin{equation*}
\mathrm{DPNFB}_{(j)_{t}} \equiv 0.512 \mathrm{WI}+0.524 \mathrm{~W} 2+0.526 \mathrm{~W} 3+0.511 \mathrm{~W} 4 \tag{II}
\end{equation*}
$$

Dressont coefficients were somewhat higher during the spring and summer whis cattle are in better flesh.

Hog sector: Commercial hog slaughter (equation 12) was also estimated on a liveweight basjs.

$$
\begin{align*}
& \begin{aligned}
\mathrm{CHS}_{(j) t}=-4145.98+ & 0.5273 \mathrm{SF}_{(j-2) t}+\underset{(0.0358)}{0.1721} \mathrm{SF}_{(j-3) t} \\
& (0.0408)
\end{aligned} \tag{I2}\\
& \underset{(12.439)}{-54.0487} \text { PRPI }_{(j-1) t}-\underset{(324.422)}{719.5827} \text { PRC }_{(j-1) t} \\
& \begin{array}{r}
+1168.7608 \\
(308.070)
\end{array} \quad \text { PSPS }(j-2)_{t} \\
& R^{2}=0.87
\end{align*}
$$

Commercial slaughter is a function of pigs produced from sows farrowing two and three quarters previously. The coefficient on the sows farrowing variable lagged three quarters is approximately one-third the size of the coefficient on the sows farrowing variable lagged two quarters. The lower value of this coefficient is probably due to the fact that the three-quarter lag in the explanatory variable estimates slaughter coming from cull sows plus a few hogs which took an above average time to finish. Hog slaughter estimated by sow farrowings lagged two quarters represents most of the barrow and gilt slaughter.

The hog-corn price relationship is divided into the separate effects of the hog price lagged one quarter and the corn price lagged one quarter rather than the more conventional ratio of hog-to-corn price. In this relationship, the magnitude of the coefficient on the corn price is approximately 10 times larger than the coefficient on the hog price variable pecause of the relationship of the magnitude of the mean values of these two variables. Both variables carry a negative sign. An increase in the price of corn reduces slaughter weights the next period as production costs are raised. An increase (decrease) in the hog price increases (decreases) gilt retention and also affects sow cull.

Pigs saved per sow enters into the commercial slaughter relationship because this function needs a variable to indicate productivity per sow. In developing the model, pigs saved per sow is treated as an exogenous variable; in a projection period it can be estimated using a function of the form $Y=a e^{\text {bt }}$. This function is easily estimated in natural logarithms:

$$
\begin{align*}
& \text { In PSPS }(j) t=1.93641+0.0013 \mathrm{~T} \tag{13}\\
&(0.00012) \\
& R^{2}=0.68
\end{align*}
$$

While developing the model, this coefficient was considered as an exogenous variable and reported data were used. The relationship presented in natural logarithms could be usea in a projections period:

$$
\begin{array}{r}
\text { In } \mathrm{DPH}_{(j) t}=4.02091+ \tag{14}\\
(0.00226 \mathrm{~T} \\
(0.00018)
\end{array}
$$

$$
R^{2}=0.80
$$

The dressing percentage of hogs, which is used to convert commercisl hog slaughter to pork production on a carcass weight basis, follows the same functional form as pigs saved per sow.

Imports and Exports

Imports and exports of beef are not separated into fed and nonfed beef components under the assumption that about all foreign trade in beef is of a quality grade less than "Good." A considerable portion of our beef exports does consist of fed beef going to foreign markets patronized by American nationals. However, given the rather small magnitude of this variable, it is expedient to compute it as a nonfed item. Imports and exports of pork are of a considerably less magnitude than imports of beef. Nonetheless, it is necessary to include them as part of the total supply picture. Moreover, the volume of pork imports has been increasing in recent years.

Imports of beef (equation 15) are estimated as a function of the average price of commercial cow beef during the previous two quarters and the average per capita supply of nonfed beef in the past two quarters.

$$
\begin{align*}
& \left.\operatorname{IB}(j) t=761.34-\frac{172.0 W}{(37.67)}-\frac{3.344}{(4.18)}\left(\operatorname{PRNNBB}_{(j-1) t}+\operatorname{PRNFB}_{(j-2) t}\right) / 2.0\right) \tag{15}\\
& \left.\underset{(15.52)}{-37.585}\left(\text { PNFBS }_{(j-1) t}+\operatorname{PNFBS}_{(j-2) t}\right) / 2.0\right)
\end{align*}
$$

The price variable carries the wrong economic sign. However, since it was not a statistically significant variable, its sign was not of great concern. The variable was left in the equation as opposed to a less satisfactory procedure of incorporating it in the intercept at its average value. The lagged supply variable is consistent in its negative effect on imports. As domestic production of nonfed beef increases, importers are signaled to decrease their orders for imported products. The dummy variable, W, has a value of 1 for 1955 through the first quarter of 1958. Beef imports were at a considerably lower level during this time and suddenly shifted upward as the rapid rise in demand for fed beef reduced the available supply of nonfed products.

Exports of beef were considered a function of the same variables as imports:

$$
\begin{align*}
\mathrm{XB}_{(j) t}= & \left.-0.65 \underset{(3.36)}{-1.86 \mathrm{~N}} \underset{(0.386)}{(0.37)}\left(\text { PRNNFB }_{(j-1) t}+\text { PRNFB }_{(j-2) t}\right) / 2.0\right) \\
& +3.977 \quad\left(\left(\text { PNFBS }_{(j-1) t}+\text { PNFBS }_{(j-2) t}\right) / 2.0\right) \tag{1.38}
\end{align*}
$$

In this case, the signs associated with the coefficients are consistent with economic logic. When the lagged wholesale price of beef increases, the supply of beef available for export falls as the profitability of exporting is reduced. Conversely, an increase in the supply of domestic beef increases the amount which can be exported.

Imports and exports of pork are estimated as a function of similar variables--the average two-quarter lagged price of wholesale pork products, the per capita supply of pork lagged one quarter, and a trend term. In these functions (equations 17 and 18), the positive coefficient on the lagged price indicates that, as domestic price increases, imports of pork stimulate increased orders while high domestic prices reduce the amount of pork supplied for export.

$$
\begin{align*}
I P_{(j) t}= & \left.-92.56+\underset{(0.36)}{1.916}\left(\text { PRPW }_{(j-1) t}+\operatorname{PRPN}_{(j-2) t}\right) / 2.0\right) \tag{17}\\
& +0.928 \mathrm{~T}(j) t+\underset{(1.08)}{2.605 \operatorname{PCPS}(j-1) t} \\
& =10)
\end{align*}
$$

$$
\begin{align*}
& \left.X P_{(j) t}=-2.40-0.18(0.56)\left(\operatorname{PRPW}_{(j-1) t}+\operatorname{PRPW}_{(j-2) t}\right) / 2.0\right) \tag{18}
\end{align*}
$$

$$
\begin{aligned}
& -7.48 \text { w2 - } 10.18 \text { w3 } \\
& \text { (5.03) (3.94) }
\end{aligned}
$$

The positive sign on the trend term in both equations indicates a temporal increass in foreign trade in pork. The positive sign on the lagged domestic supply of pork in the export equation indicates that larger domestic production stimulates pork exports. The positive sign on the import function, although statistically significant, appears to be contrary to economic reasoning. This lagged positive value may be associated with a rather high intercorrelation with the price variable or it may be associated with a trend in both variables. The set of dumay variables on the export function indicates a statistically significant amount of seasonal variation, especially in the third quarter.

Per Capita Supply Available for Consumption

Per capita supply available for consumption is equivalent to per capita consumption with the exception that ending stocks have not been excluded. Theoretically, a price exists which will clear the market of all products offered for sale including stocks. Therefore, ending stocks and price are jointly determined (see discussion pp. 17-19') from the entire supply available.

In the case of fed beef supplies, the per capita supply available for consumption is considered identically equal to per capita consumption in that an explicit assumption is made that stocks of fed beef consist only of those in the consumer distribution "pipeline." Therefore, the term "per capita consumption" is used for fed beef in the model. Equation 19 shows per capita fed beef consumption as identically equal to fed beef production minus 50 percent of military consumption. Military consumption of beef is assumed to be divided equally between fed and nonfed beef products.

A per capita figure is derived by dividing total quantity by civilian population.

$$
\begin{equation*}
\left.\operatorname{PCFBC}_{(j) t} \equiv \operatorname{BPF}_{(j) t}-0.5 \mathrm{MLLB}_{(j) t}\right) / \mathrm{CN}(j) t \tag{19}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{PNFBS}_{(j) t} \equiv & \left(\operatorname{SESB}_{(j-1) t}+\operatorname{BPNF}_{(j) t}+\mathrm{TB}(j) t^{-X B}(j) t\right. \tag{20}\\
& \left.-0.5 \operatorname{MILB}_{(j) t}\right) / \mathrm{CN}(j) t
\end{align*}
$$

$$
\begin{equation*}
\left.\operatorname{PCPS}_{(j) t} \equiv \operatorname{EESP}_{(j-1) t}+P P_{(j) t}+\operatorname{IP}(j) t-X P(j) t-\operatorname{MaP}(j) t\right) / C N(j) t \tag{21}
\end{equation*}
$$

Alternatively, the per capita supply of nonfed beef available for consumption is equivalent to the beginning stocks of the period (ending stocks of the previous quarter) plus domestic production and imports, minus exports and 50 percent of military consumption. This quantity is again divided by civilian population to achieve a per capita basis.

The per capita supply of pork available for consumption considers the same variables as in the case of nonfed beef. Of course, all military consumption is excluded from this relation.

Wholesale Market Demand and Ending Stock

The wholesale rather than the retail market is chosen as the appropriate pricing level. Conswners patronizing retail stores are price takers and quantity adjusters; their demand is reflected through the quantities they purchase. Since the buyers representing retail distribution organizations bargain with salesmen representing meat packers and meat processors, the wholesale market level probably represents a true interaction of supply and demand forces in a bargaining sense.

In the preceding section, joint determination of prices and ending stock was discussed. Therefore, a simultaneous system of five justidentified equations (22-26, or appendix B) was developed. The endogenous variables are the wholesale price of fed beef, the wholesale price of commercial cow beef, the composite wholesale pork price, ending stocks c_{i} beef, and ending stocks of pork. The per capita supplies available for consumption of fed beef, nonfed beef, and pork enter into the system as predetermined endogenous variables along with the exogenous variables of income and a trend tem representing consumer taste. An additional set of dunmy variables was employed to differentiate between seasons of the year by shifting the value of the constant term. The structural equations derived from the reduced form system are presented in appendix B. These coefficients may be useful in deriving direct and cross price and income elasticities. The estinating equations for prices and ending stocks presented here are the reduced form system omitting certain insignificant variables. The per capita supply of pork was omitted from the fed beef price equation and the per capita supply of fed beef was onitted from the other two price equations. These variables were omitted either because of a rather low significance in a statistical sense or because of a sign different from that expected from economic theory.

In obtaining the initial least-squares fit, income, consumption of fed beef, and ending stocks of beef were used in deviation-from-trend fom. This eliminated the problem of high intercorreiation with the trend term. The trends were then reincorporated into the coefficients after the initial fit by least squares. Thus, a standard error cannot be reported for the trend term.

Price of fed beef carcasses, comercial cow beef carcasses, and value of wholesale pork products: The wholesale prices of these three products are estimated by equations 22,23 , and 24 . They are estimated as functions of the predetermined per capita supplies available for consumption, income, trend (representing long-time consumer demand), and seasonal intercept shifters.

$$
\begin{aligned}
& \operatorname{PRFBW}_{(\mathrm{j}) \mathrm{t}}=68.30-\underset{(0.405)}{3.3237} \mathrm{PCFBC}_{(\mathrm{j}) \mathrm{t}}-\underset{(0.371)}{3.1563 \mathrm{PNFBS}_{(\mathrm{j}) \mathrm{t}}} \\
& +\underset{(0.005)}{0.02253} \mathrm{Y}_{(\mathrm{j}) \mathrm{t}}+0.1106 \mathrm{~T}_{(\mathrm{j}) \mathrm{t}}-\underset{(0.95)}{0.94 \mathrm{WI}} \\
& -0.21 \mathrm{~W} 2+3.06 \mathrm{~W} 3 \\
& \text { (0.83) (0.68) } \\
& R^{2}=0.83
\end{aligned}
$$

$$
\begin{aligned}
& +\underset{(0.007)}{0.01112} Y_{(j) t}-0.2363 T_{(j) t}-\underset{(1.11)}{6.61} \mathrm{WI} \\
& -3.94 \mathrm{~W} 2+0.53 \mathrm{~W} 3 \\
& \text { (1.05) (1.16) } \\
& R^{2}=0.80
\end{aligned}
$$

$$
\begin{aligned}
& +\underset{(0.006)}{0.03727} \mathrm{Y}(\mathrm{j}) \mathrm{t}-0.6021 \mathrm{~T}(\mathrm{j}) \mathrm{t}-\underset{(\mathrm{i} .00)}{2.76 \mathrm{WI}} \\
& \text { - } 4.94 \text { W2 - } 4.61 \text { W3 } \\
& \text { (0.94) (1.03) } \\
& R^{2}=0.91
\end{aligned}
$$

The high degree of price flexibility, particularly on the own-price supply relation, is interesting. An increase in the per capita supply of nonfed beef appears to have an almost equal effect as an increase or decrease in the per capita consumption (supply) of fed beef on the Choicegrade carcass price. The wholesale price of pork products sems to be influenced more by consumer incomes than are the beef prices. This income effect is estimated after allowing for long-term shifts in consumer tastes (which are positive in the case of fed beef and negative in the case of manufacturing beef and pork products).

Ending stocks of beef and pork: Functions estimating ending stocks are shown in equations 25 and 26 .

$$
\begin{align*}
& \operatorname{ESB}_{(j) t}=-430.82+\underset{(7.43)}{26.26} \operatorname{PCFBC}_{(j) t}+\underset{(4.99)}{17.91} \operatorname{PNFBS}_{(j) t} \tag{25}\\
& +\underset{(3.78)}{10.27} \operatorname{PCPS}_{(j) t}-\underset{(0.076)}{0.0115} Y_{(j) t}-0.7872 \mathrm{~T}_{(\mathrm{j}) \mathrm{t}} \\
& \text { - } 28.0 \mathrm{~W} 1-46.7 \mathrm{~W} 2-39.6 \mathrm{~W} 3 \\
& \text { (14.2) (14.4) (14.1) } \\
& R^{2}=0.80 \\
& \operatorname{ESP}_{(j) t}=-852.91+\underset{(8.33)}{19.20} \operatorname{PCFBC}_{(j) t}+\underset{(5.60)}{18.56} \mathrm{PNFBS}_{(j) t} \tag{26}\\
& \begin{aligned}
+ & 42.50 \\
(4.24) & \operatorname{PCPS}_{(j) t}-0.0010 Y(j) t-3.37 T(j) t
\end{aligned} \\
& +111.2 \mathrm{~W} 1+120.4 \mathrm{~W} 2+5.0 \mathrm{~W} 3 \\
& \text { (15.91) (16.17) (15.78) } \\
& R^{2}=0.95
\end{align*}
$$

Income appears in these equations because it is part of the reduced form system. Its effect is minimal and the statistical significance is inconsequential. A price increase for any of the three commodities results in an increase in stock. The negative coefficient on the trend tem indicates that there is a decline in stocks over time, probably due to efficiencies in the "pipeline." Ending stocks of pork also exhibit considerably more seasonal fluctuation than ending stocks of beef. This probably stems from a need to store certain pork products for consumption which differs from seasonal production.

Primary Market Demand

The prices of Choice-grade steers, barrows and gilts, and feeder steers are considered in this subsection, which might also be called a section on margin relations. The functions are estimated statistically; however, these prices could be derived by subtracting a marketing margin from the liveweight equivalent of the wholesale price.

Prices of Choice steers and barrows and gilts: The estimating equations for live animal prices are:

$$
\begin{equation*}
\operatorname{PRFBL}_{(j) t}=-4.51+\underset{(0.020)}{0.6393} \operatorname{PRFBW}_{(j) t}+\underset{(0.235)}{0.8018} \quad \operatorname{BPCB}(j) t \tag{27}
\end{equation*}
$$

$$
\mathrm{R}^{2}=0.98
$$

$$
\begin{align*}
\operatorname{PRPL}_{(j) t}=-7.69+ & 0.4864 \tag{28}\\
(0.026) & \operatorname{PRPW}_{(j) t}+ \\
(0.1967 & \operatorname{BPCP}_{(j) t}
\end{align*}
$$

$$
R^{2}=0.98
$$

The price of Choice steers at 20 major terminal markets and the price of barrows and gilts at eight markets are estimated as functions of the wholesale prices and the national estimate of the byproduct credit. The byproduct credit is taken as an exogenous variable because byproduct prices are determined in a large part by exogenous demand factors (e.g., the demand for shoes).

Feeder animal prices: Individual functions for each quarter were estimated for feeder steer prices (Good and Choice 500-800 pound steers are used as a specific quality level). These equations were estimated by quarters since range conditions are not used in the winter (first) quarter and, additionally, the coefficient on the Choice steer price varies by a substantial amount between quarters. The feeder steer price (equations 29-32) is estimated as a function of the Choice steer price, the range conditions where applicable, and a gross price margin on steers just marketed.

$$
\begin{equation*}
\mathrm{PRFC}_{1 t}=-5.33+\underset{(0.134)}{1.4322} \mathrm{PRFBL}_{1 \mathrm{t}}-\underset{(0.2329}{(0.070)} \mathrm{APM}_{\mathrm{It}} \tag{29}
\end{equation*}
$$

$$
R^{2}=0.95
$$

$$
\begin{aligned}
& \mathrm{R}^{2}=0.97
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{R}^{2}=0.94 \\
& \mathrm{PRFC}_{4 t}=-13.79+\underset{(0.165)}{1.4215} \mathrm{PRFBL}_{4 t}+\underset{(0.059)}{0.110} \mathrm{RNGE}_{4 t}-\underset{(0.067)}{0.2432} \mathrm{APM}_{4 t} \tag{32}\\
& R^{2}=0.95
\end{align*}
$$

The gross price margin (APM) is calculated as an identity weighting the current selling price of Choice steers and the price of feeder animals lagged two quarters. This gross price margin accounts for the 400 -pound gain that would be put on a hypothetical 650 -pound feeder steer during an average feeding period.

$$
\begin{equation*}
\operatorname{APM}_{(j) t} \equiv 2.625 \operatorname{PRFBL}_{(j) t}-1.625 \operatorname{PRFC}_{(j-2) t} \tag{33}
\end{equation*}
$$

The coefficient on the Choice steer price is greater than 1.0 , indicating the capitalization of the value of the initial weight of the feeder animal values at the price of the finished product into the feeder price. The coefficient on range conditions is positive, indicating that as range conditions improve the rancher is in a better bargaining position to hold his cattle for a higher price. The negative sign on the price margin indicates that it functions essentially as an adjusting factor which can be interpreted to mean that, if the price margin is good, feeders tend to expect a less favorable situation to exist in the next feeding period because more people probably will be feeding cattle. Alternatively, a resulting poor price margin may be interpreted as an expectation of better profits for the next batch of cattle.

Supply Response and Livestock Inventories

The feedback of prices into subsequent production decisions, which preserves the recursiveness of the system, comes in the following set of production equations. Once the production decision is made and breeding stock is retained, subsequent production and slaughter of livestock is only a matter of the biologic gestation period and feeding process. Supply response in the hog sector can be measured only in terms
of sows farrowing, because a January 1 inventory of breeding stock is no longer reported. In the case of fed cattle, supply response is measured in terms of placements of cattle on feed. Total supply response in the entire beef cattle sector is measured in teams of the January 1 inventory of breeding stock.

Sows farrowing: The estimating equation employs a lagged dependent variable relationship augmented by the year-to-year change in the dependent variable during the previous quarter:

$$
\begin{aligned}
& R^{2}=0.95
\end{aligned}
$$

This relationship makes use of the serial correlation in the data. The economic explanatory variable of hog price and corn price explains about two-thirds of the variance in sows farrowing. Obviously, an increase in hog prices leads to an increase in sows farrowing, whereas an increase in feed prices (represented by the price of corn) leads to a reduction in sows farrowing. The combination of lagged values of the dependent variables is simply mechanical and represents no economic response. Numerous other economic variables were tested, but none were found that reduced the unexplained variance by a significant amount over and above the hog-corn ratio.

Cattle: Placements of cattle on feed in 39 States are estimated separately by quarter using equations 35-38.

$$
\begin{align*}
& \left.\mathrm{PL}_{1 \mathrm{t}}=-5539.0+\underset{(0.020)}{0.2488} \underset{\mathrm{t}}{\mathrm{O} 23_{\mathrm{t}} \mathrm{I}}+\underset{(32.21)}{86.20} \underset{\left(\mathrm{PRFBL}_{1 \mathrm{t}} / \mathrm{PRC}_{\mathrm{It}}\right)}{ }\right) \tag{35}\\
& R^{2}=0.98
\end{align*}
$$

$$
\begin{equation*}
\mathrm{PL}_{2 t}=-5233.0+\underset{(0.018)}{0.2490} \mathrm{H} 2 \mathrm{I}_{\mathrm{t}}+\underset{(25.99)}{96.61} \mathrm{PRFBL}_{2 t} \tag{36}
\end{equation*}
$$

$$
R^{2}=0.98
$$

$$
\begin{equation*}
\mathrm{PL}_{3 \mathrm{t}}=-4589.0+\underset{(0.019)}{0.3011} \mathrm{H} 2 \mathrm{I}_{\mathrm{t}}+\underset{(48.88)}{75.14}\left(\mathrm{PRFBL}_{3 \mathrm{t}} / \mathrm{PRC}_{3 \mathrm{t}}\right) \tag{37}
\end{equation*}
$$

$$
\mathrm{R}^{2}=0.98
$$

$$
\mathrm{PL}_{4 \mathrm{t}}=-3638.0+\underset{(0.020)}{0.2728} \mathrm{H}_{2} 3_{\mathrm{t}}+\underset{(33.75)}{97.83}\left(\mathrm{PRFBL}_{4 \mathrm{t}} / \mathrm{PRC}_{4 \mathrm{t}}\right)
$$

$$
R^{2}=0.98
$$

These equations are estimated separately for each quarter because different lagged inventory variables are employed for each quarter. In the first and fourth quarters, the appropriate lagged value of the beef cow inventory is used as the major explanatory variable. Here, the beef cow inventory acts as a proxy for the beef calf crop. This inventory relation is subsequently conditioned by the current beef-corn ratio. In the spring and summer quarters, the lagged inventory relation is the January 1 number of calves less than 1-year old. In these seasons of the year, placements come from older cattle as opposed to calf placements. Again the beef-corn ratio is employed in the sumer quarter. However, the steer price alone yielded a better estimate in the second quarter than did the beef-corn ratio.

January 1 beef cattle inventories: The yearend inventory of beef calves less than 1 year of age is based on the current year's calf crop using the previous yearend beef cow inventory as an indicator of calves born:

$$
\begin{aligned}
& +121.22 \text { PRFCA }_{t-1} \\
& \text { (49.49) } \\
& R^{2}=0.99
\end{aligned}
$$

The calf inventory also increases or decreases with the rate of change in the beef-cow inventory (the second difference of beef-cow numbers) and the annual average feeder calf price. As feeder prices increase, more calves are either retained for feeding or for the breeding herd.

The January 1 inventory of beef heifers $1-2$ years oid is based on the previous January 1 calf inventory, but varies directly with the annual average feeder price:

$$
\begin{array}{r}
H 22 \mathrm{R}_{\mathrm{t}}=-117.60+\underset{(0.006)}{0.27791} \mathrm{H} 2 \mathrm{I}_{\mathrm{t}-1}+\underset{(5.93)}{57.5855 \mathrm{PRFCA}_{t-1}+} \begin{array}{r}
809.74 \mathrm{~W} \\
(71.95)
\end{array} \tag{40}\\
\mathrm{R}^{2}=0.99
\end{array}
$$

Replacements for the herd are increased as prices rise. A dummy variable (W) was used in 1955 to improve the general fit of the equation.

Commercial beef cow slaughter during the year was developed in a two-step procedure:

$$
\begin{align*}
& \text { CBCS }_{t}=536.0+\left(\begin{array}{c}
0.1670) \\
\{0.1428
\end{array}\right\} \operatorname{H2} 3_{t}-\frac{1.0636}{(0.104)} \Delta^{2} \mathrm{H} 23_{t}-\underset{(24.97)}{39.39} \mathrm{PRFCA}_{t} \tag{4I}\\
& \underset{(0.895)}{+0.8412} \mathrm{~W} \Delta^{2} \mathrm{H} 23_{t} \\
& R^{2}=0.95
\end{align*}
$$

An average cull rate of 0.167 from the January 1 beef-cow inventory was subtracted from total cow slaughter from 1955 through 1960 and an average cull of 0.1428 was subtracted therearter. Inspection of the data reverled a shift in the average cull rate after 1960 . The residual slaughter (a positive or negative quantity) was then estimated as a function of the second difference of the beef-cow inventory and the current year's feeder price. The inverse variation of this residual with the rate of change in the inventory is logical. A cow cull greater than average occurs when the inventory is increasing at a decreasing rate (a negative second difference). On the other hand, the cow cull will be below average when the inventory is being built at an increasing rate (a positive second difference). Finally, cow cull is reduced somewhat as feeder calf prices increase. The durmy variable W takes on a value of 1.0 when the annual average feeder price exceeds $\$ 28.00$.

Given the estimates of heifer replacement and beef-cow slaughter, the January 3 beef-cow inventory may be estimated as an identity. A 4 -percent death loss is assumed on the beginning inventory.

$$
\begin{equation*}
H 23_{t}=0.96 \mathrm{H} 23_{\mathrm{t}-1}+{\mathrm{H} 22 R_{\mathrm{t}-1}}-\mathrm{CBCS}_{\mathrm{t}-1} \tag{42}
\end{equation*}
$$

EMPIRICAL DEVELOPMENP OF THE MODET

The quarterly estimating equations and identities outlined in the previous section were incorporated into a computer program using the Fortran IV computer language. These equations were ordered to maintain the recursive mechanism of the system. The program commences by estimating relationships for the third quarter followed by the fourth quarter, the January I inventory estimates, the first quarter, and completes I-year's estimates with the second quarter. The program was written to commence as of a July I. "third quarter" so that the most recent January 1 inventory estimate available in mid-February would enter into the relationships as available data. In fact, many Iivestock production decisions are made during the summer months with ensuing production activity carried out during the fall, winter, and spring.

In developing the model, an initial computer mon was made commencing with the values of lagged endogenous variables as of JuIy 1, 1955. The model was operated over a 13-year period to June 30, 1968. Throughout these 13 annual iterations over four quarters, the output of one period
becomes the lagged endogenous values of the next period. Exogenous variables as described in tables 10-12 of appendix A are available for each time period.

The completed price-output computer model is shown in appendix D. The development of the model, including the addition of numerous operating rules, is discussed in subsequent sections. Still, the reader might with to glance at the model at this time to familiarize himself with the general structure of the computer model.

Initial Performance of the Model

The initial estimates of the model as operated for the first time is illustrated by the dashed lines in figure 2. Twelve variables were selected from the 25 estimated to illustrate the predictive ability of the initial run. The dashed Iines indicate the deviation of the predicted values from the historical data.

As the program progressed through time, more error of a cumulative nature occurred. Several variables indicated a countercyclical performance in later years; in some cases, an upward trend in the error is evident. However, during the initial stages of building the model, it was encouraging that the error buildup did not reach magnitudes which produced estimates completely out of the relevant range. Despite the final estimates being some 13 yea:`s away from any reported endogenous data, price estimates were still within the historical range of the data.

Developmental Procedures

The objective of the computer model of the livestock-meat economy is to approximate its price and output performance (the data) of the historical period. After the initial run, the model was allowed to progress first 2 years, then 3 years, and so on up to June 30, 1970. At the first sign of a substantial error in the estimate of a variable, the situation was examined to detemine the cause of this error buildup. At this point, an operating rule was introduced into the model based on an economically logical behavioral relationship which could be postulated to have caused the prediction error. For example, at very low prices, supply response may not fall as rapidly as when prices are in the middle of the historical range.

When an operating rule was introduced, estimation of the endogenous variables was recomenced as of July 1, 1955, in every case. The model was then operated until a new error of substantial magnitude appeared. At that point, a new operating characteristic was introduced and the model. was again restarted as of July l, 1955.

DEVIATION OF PREDICTED VALUES FROM DATA 1955-1970
THOU. HEAD

MIL. LB. MARKETINGS OF NONFED CATTLE

COMMERCIAL HOG SLAUGHTER

MIL. LB. BEEF IMPORTS

SOWS FARROWING

tant 2
deviation of predicted values from data 1955-1970

Wholesale price of utility cow beef

FEEDER CATTLE PRICE

JANUARY 1 "OTHER CALF" INVENTORY
thou. head

dEVIATION OF PREDICTED VALUES FROM DATA 1956-1970

JANUARY 1 BEEF COW INVENTORY

[^0]In some instances, decision rules introduced into the model produced unexpected errors in an earlier period. For example, a new operating rule introcuced at an earlier period was the result of a substantial error later on. When this was the case, a different operating characteristic had to be substituted in the earlier period.

In every instance of a change in an operating characteristic or the introduction of a new operating characteristic, the operation of the computer model was restarted as of July 1, 1955. This type of interaction between the researcher and the computer model was continued until all historical data were satisfactorily reproduced to June 30, 1970. A more comprehensive discussion of the problems in adjusting dynamic models was previously published by the author (13).

Operating Rules

Over 100 operating rules were introduced into the model over the 15-year validation period. The incidence of the necessity for introducing these operating characteristics fell approximately as follows: Six operating rules were introduced on the marketings of fed cattle and nine more were introduced on the average weight functions. Approximately 20 rules were introduced on the estimates of nonfed marketings. Slightly more rules were necessary for the nonfed function, since part of the corrections in the fed cattle sector fell back in the placements equations. Sixteen operating rules were introduced on the commercial hog slaughter function; 15 were introduced on the foreign trade equations for beef. Approximately 20 rules were introduced in the wholesale demand functions and two operating rules were necessary on the ending stock equations. No operating characteristics were introduced in the Choice steer and hog price functions, but seven operating rules were introduced on the feeder price functions. Fourteen operating characteristics were introduced on the sows-farrowing equations with a similar number introduced on placements functions for fed cattle. Ten rules were introduced on January 1 inventory reltations.

The entire set of operating rules introduced into the model are described in detail in appendix C. The operating rules applied fell into three general categories. One type of operating rule is illustrated by equations 43 and 44:

$$
\begin{align*}
& \operatorname{MFC} 2_{t}=a+b \leqslant \text { PL }_{t-k} \tag{43}\\
& \operatorname{IF}\left(\text { PRPL1 }_{t-1}-\operatorname{PRPL1}_{t}\right)>6.00 \\
& M F C 2_{t}=1.05 \mathrm{MFC}_{\mathrm{t}} \tag{44}
\end{align*}
$$

In the original relationship (equation 43), marketings of fed cattle in the second quarter are estimated as a function of lagged placements.

However, if the price of hogs at eight markets in the first quarter fell by more than $\$ 6.00$ from year-earlier levels, then equation 44 would be employed wherein marketings in the second quarter are increased by 5 percent. The justification of a change in economic response is that a rather rapid and substantial drop in hog prices induced a shift to some short-fed cattle feeding operations in the second quarter resulting in marketings above that indicated by lagged placements. (Short-fed cattle are those placed and marketed in the same quarter.) The magnitude of the operating characteristic (a 5-percent increase) reflects the fact that this was the amount necessary to adjust the model for the particular error that occurred. In some instances, operating characteristics functioned on more than one occasion in the historical period. In such cases, the researcher was able to develop a generalization for the rule. However, when the rule functioned only once, a general statement could be made. The year(s) in which the operating characteristics functioned are shown in appendix C.

Another type of operating characteristic is illustrated in equations 45 and 46:

$$
\begin{aligned}
& \text { AWPF }_{t}=a+b A W P F 2_{t}+c(P R F B L 1 / P R C I)_{t} \\
& \text { IF }\left(\text { PRC1 }_{t}<1.10\right) \\
& \text { AWPF3 }_{t}=a+b A W P R 2_{t}+c^{\prime}(P R F B L I / P R C 1)_{t} \\
& \quad \text { where } c^{\prime}<c
\end{aligned}
$$

In equation 45, the average weight of fed cattle marketed in the third quarter is a function of its lagged value in the second cuarter and the beef-corn ratio lagged two quarters (the beef-corm ratio which existed at the time most of the cattle were put on feed). However, if com prices were quite low, in this case less than \$1.10, the program was instructed to shift to equation 46 where a different coefficient is employed. Ir_{i} this case, the value of the new coefficient C^{2} is less than the value of the original coefficient C. This rule (which functioned in both 1962 and 1968) indicated that the high beef-corn ratio (induced by the low corn price) resulted in a tapering off of producer response to the rather high beef-corm ratio. Here, feedlot operators modified the feeding program because they probably did not feel that this kind of a beef-corm ratio would hold for an extenced period of time.

A third type of compound adjustment procedure can be illustrated by the wholesale price equation for fed beef in the fourth quarter:

$$
\begin{align*}
& \text { PRFBW }_{t}=a-b Q_{t}+c Y_{t}+c T_{t} \tag{47}\\
& \text { IF }\left(\text { PCFBC4 }_{t}\right)>16.0 \text { and }(\text { PCPS } 4)>18.0 \\
& \text { PRFBW }_{t}=0.9375 \text { PRFBW }_{t} \tag{48}
\end{align*}
$$

In general, the wholesale price was estimated as a function of the per capita quantity available, income, and time, as shown in equation 47. The operating characteristic introduced took effect if per capita fed beef consumption was greater than 16.0 pounds per capita and pork supplies were greater than 18.0 pounds per capita. When this situation existed, as it did in 1967 and 1968, equation 48 is used and the price is cut $6 \frac{1}{4}$ percent. This cut in price response is based on the combined interaction of a high beef and pork supply reducing the cross-price elasticity. Recall that the per capita pork supply did not normally enter into the beef-price equation.

Validation of the Model

The price-output model was considered a valid representation of the economic activity of the beef and pork sectors when the historical data were reproduced with acceptable accuracy. The deviations of the final simulated values from historical date are shown by the solid line in figure 2 。

In general, deviations were minimal. The absolute values of the predicted and historical data are shown in appendix tables 1-10.

Since this is a behavioral model, no attempt was made to obtain simulated values which minimize the error for the entire system. If this were attempted, one would not have constructed a behavioral model of these subsectors. A test statistic similar to a correlation coefficient for evaluating the accuracy of forecasted values was developed by Thiel (13).

In a perfect forecast, the value of this statistic would be zero since the value of the numerator would vanish. The values of the test statistic for a.ll of the variables estimated are shown in table 2. In general, errors were in the magnitude of $2-4$ percent.

USES AND LIMITATIONS OF THE MODET:
The complete model validated over the $1955-70$ period is shown in appendix D using the FORTRAN IV computer Ianguage. It may be operated over the historical period by entering the appropriate values of the lagged endogenous variables and the necessary values of exogenous variables. Also, an initial first data card specifying the maximum value of the parameter
K (which controls the number of years (iterations) the program operates) must be specified. If the program is to be initialized at any period other than July l, 1955, certain control statemants for the initial years of the model must be changed. In general, these statements involved adjustment of intercept values fixed by the original least-squares estimates for early years through the use of a dummy variable. These changes were usually operated in the model by "if statements" which specified use of different functions during the first few iterations of the model. Obviously, if the model is initialized at any other date, appropriate lagged values of endogenous variables and appropriate current values of exogenous variables must be read into the computer as data.

Table 2.--Values of "U-statistic" calculated for 1955-70

$\mathrm{MFC}=0.0172$	FRF'BW $=0.0247$
$\mathrm{AWTFF}=0.0064$	ERNFB $=0.04{ }^{4} 4$
$\mathrm{MNFC}=0.0416$	PRPW $=0.0238$
AWINF $=0.0188$	ESB $=0.1437$
$I B=0.1467$	$E S P=0.1150$
$\mathrm{XB}=0.3074$	PRFBL $=0.0265$
PCFBC $=0.0173$	PRPL $=0.0335$
PNFBS $=0.0304$	$\mathrm{PRFC}=0.0257$
CHS $=0.0192$	$\mathrm{SF}=0.0489$
$I P=0.1268$	$\mathrm{FL}=0.0412$
$\mathrm{XP}=0.2189$	$\mathrm{H} 21=0.0089$
PCPS $=0.0187$	H22R $=0.0124$
	$C B C S=0.0398$

In general, the model may be used to simulate the effects of structural change introduced into the model, changes in values of exogenous variables, or changes in initial values of lagged endogenous variables over the historical period. In addition, the model may be initialized as of the current date, say July 1, 1970, and projected to any year desired. Values of exogenous variables for the projection period would need to be derived from alternative sources. Usually, independent estimates of population and income can be derived from several Government planning agencies. Values of stochastic exogenous variables such as range conditions probably could be entered at mean seasonal values.

When simulating alternatives, the simulated values should always be compared with the estimated values of the validation run if the simulation is over the historical period. If the simulation is over a projected period, the simulated values should be compared with the simulated base run.

Use as a Projection Model.

Because of the recursive structure of this model, it can be used to project values in future seriods. The parameters of this model estimated
over the historical period quantify the economic activity of that period which developed under the existing market structure. In this case, the existing market structure may be defined as governmental policies, existing institutions, and attitudes of people involved in daily economic activity in the beef and pork sectors. Therefore, this rodel has the limitations of any other econometric model in that the economic structure which developed under this set of historical institutions and attitudes is projected into the future. This being the case, such a model cannot forecast institutional change. If the user wishes to use the model as a short-term forecasting tool, he should realize that his forecasts may be in exror because of fluctuations in prices and outputs introduced by random effects of institutional change. Thus, it is the author's opinion that such a model may be of more value in making longer-run .- rather than short-term -- prognoses of economic activity in the beef and pork sectors.

Since "the past is prologue," projections are more interesting than studies of historical changes in structure. However, initial experiments with this model will be with policy constraints or structural change over the historical period and then projections of apparent significant and timely changes will follow.

Experiments with Policy Constraints

The effects of either governmental or private policy are, by definition, the constraints on or manipulation of the system in an exogenous sense. These policy effects may be introduced through changes in exogenous variables or through limits imposed upon the behavioral aspects of the system.

Experiments which might be performed on this model through changes in values of exogenous data include a change in the price of feed inputs supported through Government action (indicated in the model by a change in the price of corn), or changes in consumer income through some type of income support payments. Shifts in Government purchase programs might be simulated by subtracting the amount of the per capita Government purchase from per capita consumption at a fixed price, allowing the remainder to be priced in the demand equation, and then calculating a new wholesale price as the weighted average of these two prices.

Examples of institutional policy limits might involve a ceiling on imports of beef and pork or specification of a higher level export program. Price-support operations might be introduced into the model by not allowing either wholesale or live prices to fall below a specified level.

Experiments Involving Structural Change
One form of experimenting with a change in structure which might be initiated from institutional change would involve new values of coefficients,
constant terms, or both. As mentioned earlier, the model cannot predict changes of this nature, although it can trace out the effects of such changes when they are made in the model. Independent research studies might be designed to specify the exact changes in coefficients or constant terms for tracing out the effects over time. One form of experimentation with structural change might invoive making only percentage adjustments in coefficients or constant terms. While this type of experimentation might show the sensitivity of the model, one could not relate results directly to a changed institutional setiing.

One very important consideration when simulating the results of experiments on the model is to make the user vitally aware of all changes that were made and of any and all assumptions involved. For example, if an experiment involving a 10 -percent increase in corn prices is assumed, the user must be aware of the basis for this assumption. If he agrees, he can accept the results of the simulated situation. If he does not agree, the user may altematively wish to specify his own set of assumptions.

SELECTED REFERENCES

(1) Bean, L.H.
1929. The Farmer's Response to Price. Jour. Farm Econ. 11: 368-385.
(2) Breimyer, Harold
1955. Demand and Price for Meat. U.S. Dept. Agr. Tech. Bul. 1253.
(3) Coase, R.H. and Fowler, R.F.
1937. The Pig Cycle in Great Britain: An Explanation. Economica 4: 55-82.
(4) Crom, R.J. and Maki, M.R. 1965. A Dynamic Model of a Simulated Livestock-Meat Economy. Agricultural Economics Research Vol. XVII, No. 3, July.
(5) Crom, R.J. and Maki, W.R.
1965. Adjusting Dynamic Models to Improve Their Predictive Ability. Jour. Fann Econ. 47: 962-972.
(6) Harlow, Arthur A.
1960. The Hog Cycle and the Cobweb Theorem. Jour. Farm Econ. 42: 842-853.
(7) Hayenga, Marvin and Hacklander, Duane
1970. Short-Run Livestock Price Prediction Models. Michigan State University Agricultural Experiment Station, East Lansing, R.B. 25.
(8) Hildreth, C. and Jarret, F.G.
1955. A Statistical Study of Livestock Production and Marketing. John Wiley and Sons, New York.
(9) Lorie, J.H.
1947. Causes in the Annual Fluctuations in the Production of

Livestock and Livestock Products. University of Chicago,
Studies in Business Administration 17: 1-103.
(10) Maki, Wilbur R.
1962. Decomposition of the Beef and Pork Cycles. Jour. Farm Econ. 44: 731-743.
(11) Maki, W.R. and Crom, R.J.
1965. Evaluating Alternative Market Oxganizations in a Simulated

Livestock-Meat Economy. Iowa State University of Science and
Technology, Ames, Agriculture and Home Economics Experiment Station R.B. 541, Oct.
(1.2) Maki, WiIbur R.
1963. Forecasting Livestock Prices and Supplies With an Econonetric Model. Jour. Farm Econ. 45: 612-624.
(13) Suttor, R.E. and Crom, R.J.
1964. Computer Models and Simulation. Jour. Farm Econ. 46: 1341-1350.
(14) Theil, Henry
1961. Economic Forecasts and Policy. North-Holland Publishing Co., Amsterdam, Netherlands.
(15) Wells, O.V.
1933. Farmer's Response to Price in Hog Production and Marketing. U.S. Dept. Agr. Tech. Bul. 359.
(16) Wright, Sewall
1925. Corn and Hog Correlations. U.S. Dept. Agr. BuI. 1300.

Appendix A
Data and Values Predicted
by the Model
(tables I-In)

Table l.--Quarterly marketings, average weight, and commercial slaughter of fed beef, 1954-70

Year	: Quarter	Marketings (MFC)			Average weight (AWIF)			Commercial slaughter fed beer (CSFC)		
1954	: \quad :	:			-m-- pounds		----	---- Mil. lb .		
	: 3	:	-	-	---	---	---	---	---	---
	: 4	: ---	---	---	---	---	---	-	--	---
1955	: 1	: ---	---	---	--"	---	---	---	---	---
	2	: ---	---	---	1025	---	---	---		---
	: 3	: 2700	2705	5	1005	1004	-1	2714	2716	2
	: 4	: 2725	2744	19	1032	1036	4	2812	2843	31
1956	: 1	: 3013	2958	-55	1044	1050	6	3146	3106	-40
	2	: 2952	3028	76	1044	1040	-4	3082	3150	68
	: 3	: 2619	2661	42	1011	1011	0	2648	2691	43
	: 4	: 2747	2821	74	1029	1035	6	2827	2920	93
1957	1	- 3073	3041	-32	1042	1045	3	3202	3176	-26
	2	: 2804	2737	-67	1028	1033	5	2883	2828	-55
	$: 3$: 2784	2990	206	1007	1008	1	2803	2944	141
	: 4	: 2624	2747	123	1038	1042	4	2724	2861	137
1958	1	: 2836	2960	124	1031	1028	-3	2924	3043	119
	: 2	: 2837	2805	-32	1035	1032	-3	2936	2895	-41
	- 3	: 3150	3176	26	1036	1038	2	3263	3296	33
	: 4	: 2964	2933	-31	1087	1078	-9	3222	3161	-61
1959	1	: 3174	3163	-11	1104	1094	-10	3504	3460	-44
	: 2	- 3216	3160	-56	1078	1084	6	3467	3360	-107
	$-\quad 3$ $-\quad 4$: 3358	3382 3246	24 102	1064	1064	0	3573	3598	25
	: 4	: 3144	3246	102	1072	1078	6	3370	3498	128
1960	: $\quad 1$: 3501	3504 3370	3 -3	1088	1078	-2	3809 3619	3635	-16
	: 3	: 3454	3470	16	1061	1054	-7	3665	3659	-6
	: 4	: 3293	3275	-18	1075	1073	-2	3540	3514	-26
1961	: 1	: 3571	3535	-36	1094	1091	-3	3907	3857	-50
	\cdots									tinued

Table l.--Quarterly marketings, average weight, and commercial slaughter of fed beef, 1954-70--Continued

Table l.--Quarterly marketings, average weight, and commercial slaughter of fed beef, 1954-70--Continued

Year	$:$ $:$: Quarter:	Marketings (MFC)			Average weight (AWITF)			Commercial slaughter fed beef (CSFC)		
1968	: 1	: 5858	5847	-11	: 1065	1075	10	: 6239	6289	50
	: 2 :	- 5968	5943	-25	: 1067	1072	5	: 6368	6373	5
	: 3 :	: 5816	5782	-34	: 1030	1020	-10	: 5990	5900	-90
	: 4	: 5662	5697	35	: 1052	1059	7	: 5956	6032	76
1969	: 1 :	- 6243	6174	-69	: 1044	1054	10	: 6518	6505	-13
	: 2 :	: 6090	6133	43	: 1056	1059	3	: 6431	0493	32
	: 3	- 6282	6210	-72	: 1035	1044	9	: 6502	6487	-15
	: 4 ;	; 6315	6296	-19	: 1065	1067	2	: 6725	6716	-9
1970	: 1 :	: 6490	6416	-74	- 1088	1104	16	: 7060	7085	25
-	: 2 :	: 6535	6514	-21	: 1088	1103	15	: 7110	7187	77

Table 2.--Average weight, commercial slaughter, and beef production from nonfed cattle, 1954-70

Table 2.--Average weight, commercial slaughter, and beef production from nonfed cattle, 1954-70--Continued

Table 2.--Average weight, commercial slaughter, and beef production from nonfed cattle, 1954-70--Continued

Table 3.--Imports and exports of beef, per capita fed beef consumption, and per capita nonfed beef supply for consumption, 1954-70

Table 3.-Imports and exports of beef, per capita fed beef consumption, and per
capita nonfed beef supply for consumption, 1954-70--Continued

Table 3.--Imports and exports of beef, per capita fed beef consumption, and per capita nonfed beef supply for consumption, 1954-70--Continued

Table 4.--Commercial hog slaughter, perk production, and ending stocks of pork, 1954-70

Table 4.--Commercial hog slaughter, pork production, ard ending stocks of pork, 1954-70--Continued

Table 4.--Commercial hog slaughter, pork production, and ending stocks of pork, 1954-70--Continued

Table 5.--Imports and exports of pork and per capita pork supply, 1954-70

Table 5.--Imports and exports of pork and ner capita pork supply, 1954-70

Table 5.--Imports and exports of pork and per capita pork supply, 1954-70--Continued

Table 6.--Wholesale prices of choice 600-700 pound carcasses, utility cow carcasses and 100 pounds of pork products

Table 6.--Wholesale prices of choice 600-700 pound carcasses, utility cow carcasses and 100 pounds of pork products--Continued

Year	: Quarter	(PRFBW) Choice 600-700 1b.			(PRNFB) Utility cow			(PRPN) Pork products		
	:	:Reported:	Predicted	Pred. -Rptd.	:Reporte	redicte	Pred. -Rptd.	:Report	redict	Pred. -Rptd.
1961	1	: 44.52	45.89	1.37	: 33.87	36.26	2.39	$: 43.20$	43.71	. 51
	2	: 40.77	40.83	. 06	: 32.53	33.22	. 69	$: 41.24$	41.65	. 41
	3	: 40.18	42.70	2.52	: 33.09	31.30	-1.79	: 43.74	42.17	-1. 57
	4	: 42.22	44.68	2.46	: 32.92	33.64	. 72	$: 41.72$	41.89	.17
1962	1	: 44.33	45.04	. 71	: 33.66	33.67	. 01	$: 41.64$	41.76	. 12
	2	44.00	44.12	. 12	: 33.59	35.55	1.96	: 41.08	40.65	-. 43
	3	: 45.94	45.74	-. 20	: 34.16	34.15	-. 01	: 45.56	44.80	-. 76
	4	: 47.21	46.26	-. 95	: 33.53	36.79	3.26	$: 42.72$	43.51	. 79
1963	1	: 43.14	43.76	. 62	: 32.01	32.87	. 86	: 39.28	39.50	. 22
	2	: 40.41	40.36	-. 05	: 32.23	33.85	1.62	: 39.00	38.48	-. 52
	3	: 42.49	42.71	. 22	: 31.45	31.59	. 14	: 43.32	41.62	-1.70
	4	: 40.19	40.55	. 36	: 30.14	28.66	-1.48	: 39.75	37.43	-2. 32
1964	1	: 38.95	39.42	. 47	: 28.81	27.19	-1. 62	: 38.89	38.44	. .45
	2	: 37.88	37.29	-. 59	: 30.14	28.55	-1.59	: 38.74	39.12	. 38
	3	: 41.81	41.06	-. 75	: 29.97	25.72	-4.25	: 42.88	42.67	-. 21
	4	: 40.64	41.17	. 53	: 26.63	26.63	0	: 39.65	39.71	. 06
1965	1	: 39.75	39.60	-. 15	: 26.60	28.81	2.21	: 41.34	40.94	-. 40
	2	: 43.53	43.61	. 08	: 30.81	33.51	2.70	: 46.21	45.88	-. 33
	3	: 44.67	45.45	. 78	: 31.14	32.08	. 94	: 54.16	52.62	-1. 54
	4	: 42.86	41.64	-1.22	: 30.43	28.96	-1. 47	: 56.20	55.88	-. 32
1966	1	: 44.88	45.07	. 19	: 33.99	34.33	. 34	: 59.16	57.47	-1. 69
	2	: 44.38	44.04	-. 34	: 37.34	34.60	-2.74	: 53.16	53.18	. 02
	3	43.14	44.10	. 96	: 36.62	36.75	. 13	: 55.65	55.55	-. 10
	4	: 42.04	43.16	1.12	: 34.93	35.05	. 12	: 51.25	49.50	-1.75
1967	1	42.36	42.81	. 45	: 35.34	34.27	-1.07	$: 47.53$	47.07	-. 46
	2	: 43.13	42.98	-. 15	: 36.42	34.50	-1.92	: 47.08	46.53	-. 55
	- 3	$: 46.24$	46.49	. 25	: 37.15	38.54	1.39	: 51.40	52.90	1.50
	: 4	: 45.23	44.48	-.75	: 34.56	36.22	1.66	: 46.54	45.53 --Conti	-1.01

Table 6.--Wholesale prices of choice 600-700 pound carcasses, utility cow
carcasses and 100 pounds of pork products--Continued

Year	$:$ $:$:Quarter:	(PRF'BW) Choice 600-700 1b.			(PRNFB) Utility cow beef			(PRPN) Pork products			
	: $\quad:$	Reported	edicte	$\begin{array}{r} \text { Pred. } \\ \text {-Rptd. } \end{array}$:Reporte	redicte	Pred. -Rptd.		eporte	redicted:	$\begin{array}{r} \text { Pred. } \\ \text {-Rpta. } \end{array}$
1968	1 :	45.95	44.92	-1.03	$: 36.22$	34.70	-1. 52		47.06	45.98	-1.08
	2 :	- 46.54	47.43	. 89	: 38.89	36.01	-2.88		48.27	47.40	-. 87
	3 :	: 47.52	48.98	1.46	: 38.52	38.48	-. 04		50.61	50.32	-. 29
	4	: 46.66	46.09	-. 57	: 36.07	37.41	1.34		47.81	48.40	. 59
1969	1 :	48.13	47.54	-. 59	: 39.43	36.57	-2.86		49.52	50.09	. 57
	2 :	53.92	52.34	-1.58	: 42.96	41.38	-1. 58		51.99	53.54	1.55
	3 :	: 53.86	51.92	-1.94	: 40.75	43.11	2.36		58.74	57.87	-. 87
	4 :	- 47.60	48.97	1.37	: 38.60	42.52	3.92		58.80	59.40	. 60
1970	1 :	- 50.25	49.48	-. 77	: 45.00	41.99	-3.01		61.12	60.97	-. 15
	2 :	- 52.39	52.56	. 17	: 45.50	44.17	-1.33		57.13	59.93	2.80
	:				:						

Table 7.--Ending stocks of beef, price of choice steers, and price of barrows-gilts, 1954-70

Table 7.--Ending stocks of beef, price of choice steers, and price of barrows-gilts, 1954-70--Continued

Table 7.--Ending stocks of beef, price of choice steers, and price of barrows-gilts, 1954-70--Continued

Table 8.--Price of Good and Choice feeder steers, sows farrowing, and placements of cattle on feed, 1954-70

Year		: Feeder price (PRFC)			Sows farrowing (SF)			Placements (PL)		
	:Quarter:	:Reporte	redicted	$\begin{aligned} & \text { Pred. } \\ & \text {-Rptd. } \end{aligned}$	rted	dicted		orted	edicted	$\begin{array}{r} \text { Fred. } \\ \text {-Rptd. } \end{array}$
	:	: - -	\$/cwt.			000		-	, 000 hd	- - -
1954	$: 3$: 19.00	+	---	2758	---	---	---	---	
	$: 4$	$=19.25$	---	---	2556	---	---	---	---	--
1955	1	: 21.50	---	---	2497	---	---	2010	---	---
	2	: 20.87	---	---	5850	---	--	1729	---	
	3	: 20.34	20.11	-. 23	2965	2963	-2	2565	2781	216
	4	: 18.65	19.10	. 45	2634	2623	-11	4600	4566	-34
1956	1	: 18.26	18.74	. 48	2539	2568	29	2003	2048	45
	2	: 18.16	17.84	-. 32	5116	5251	135	1911	2007	96
	3	$\text { : } 19.08$	17.97	-1.17	2641	2516	-125	2945	2685	-260
	4	$: 18.53$	16.66	-1.87.	2540	2354	-186	4678	4379	-299
1957	1	: 18.95	18.95	0	2387	2435	48	2028	2175	147
	- 2	: 21.35	20.91	-. 44	4807	4881	74	1931	1960	29
	3	: 22.63	22.47	-. 16	2677	2439	-238	2298	2391	93
	: 4	: 22.64	23.03	- 39	2435	2459	24	4794	4470	-324
1958	1	: 25.29	25.15	-. 14	2680	2620	-60	2594	2576	-18
	2	: 27.90	28.22	. 32	4601	4814	213	2150	2031	-119
	3	: 27.88	27.42	-. 46	3141	3172	31	2402	2461	59
	: 4	: 28.35	28.27	-. 08	2746	2754	8	5382	5251	-131
1959	: 1	: 28.95	28.61	-. 34	3053	2992	-61	2662	2581	-81
	2	: 30.48	29.67	-. 81	4943	4869	-74	2455	2406	-49
	- 3	- 29.53	28.35	-1.18	3346	3146	-200	2970	2990	20
	: 4	: 26.56	26.49	-. 07	2782	2693	-89	5466	5476	10
1960	: 1	: 25.92	26.04	. 12	2507	2466	-41	2916	2613	- 303
	: 2	: 26.56	26.39	-. 17	4275	4211	-64	2273	2537	264
	: 3	: 24.35	23.80	-. 55	3035	2801	-234	2975	$\begin{aligned} & 2911 \\ & \text {--Cont. } \end{aligned}$	-64

Table 8.--Price of Good and Choice feeder steers, sows farrowing, and placements of cattle on feed, 1954-70--Continued

Year	: $:$ $:$ $:$ $:$	Feeder price (PRFC)			Sows farrowing (SF)			: Placements (PL)		
	4	24.37	25.29	. 92	: 2804	2578	-226			
1961	1	25.47	25.68	. 21	; 2521	2479	--42	$\begin{aligned} & : \quad 5935 \\ & : \quad 2974 \end{aligned}$	$\begin{aligned} & 6070 \\ & 3071 \end{aligned}$	$\begin{array}{r} 135 \\ 97 \end{array}$
	2	24.99	24.68	-. 31	: 4497	4464	-33	: 2380	2267	-113
	3	24.61	24.79	. 18	: 3081	2969	-112	: 3487	3387	-100
	4	25.01	25.12	. 11	: 2837	2833	-4	: 6160	6206	46
1962	: 1	25.33	25.65	- 32	- 2850	2625	-225	- 3124	3135	11
	2	25.90	26.64	. 74	: 4416	4368	-48	: 2618	2712	94
	: 3	26.54	27.98	1.44	3141	3532	391	- 3933	3821	-112
	: 4	27.28	27.75	.47	: 2957	3001	44	- 6940	6715	-225
1963	1	25.83	26.10	. 27	- 2593	2593	0	: 3103	3518	415
	2	24.99 25.20	25.38 24.40	.39 -80	: 4506 $: 3125$	4264	-242	3010	2906	-104
	: 4	25.20 23.80	24.40 23.17	-.80 -.63	: 3125	3359	234	4155	4054	-101
1964	1	22.94	22.34	-. 60	2366	2524	-45	6683	6705	22
	2	21.19	21.60	. 41	: 4230	3987	-243	3015	3105	-49
	3	21.07	21.12	. 05	2903	3116	213	4554	4440	-114
	4	20.59	21.81	1.22	2622	2660	38	7119	7257	138
1965	1	20.70	21.27	. 57	: 2178	2322	144	3922	3906	-16
	2	23.01	23.10	. 09	3712	3753	41	3619	3608	-111
	3	24.40	24.77	.37	: 2548	2671	123	- 4569	4582	13
	4	23.93	24.30	. 37	2458	2428	-30	7429	7096	-333
1966	1	26.25	26.04	-. 21	2221	2562	341	4823	4709	-114
	3	26.91	26.44	-. 47	3980	4116	136	3831	3833	2
	4	26.53 25.89	25.44 26.12	-1.09	3009	3203	194	4823	4868	45
1967	1	25.30	24.85	-. 45	2802 2451	2695	-107	7817	7846	-29
	2	25.58	25.78	. 20	4140	4091	-49	3991	4378	-287

Table 8.--Price of Good and Choice feeder steers, sows farrowing, and placements of cattle on feed, 1954-70--Continued

Year	Quarter	Feeder price (PRFC)			Sows farrowing (SF)			Placements (PL)		
		Reported: Predicted: Pred.			Reported: Predicted: -Rptd.			Reported: Predicted: Pred.		
	3	: 27.22	27.30	. 08	: 2947	2914	-33	: 5285	5295	10
	4	: 25.70	25.45	-. 25	: 2873	2834	-39	: 8051	8146	95
1968	1	: 25.27	24.96	-. 31	- 2549	2866	317	: 5229	5117	-112
	2	: 26.67	26.84	. 17	: 4131	4116	-15	: 4575	4294	-281
	3	: 27.14	26.89	-. 25	: 3162	3025	-137	: 6042	5691	-351
	4	: 26.64	26.72	. 08	: 2994	3008	14	: 8620	8745	125
1969	1	: 27.46	27.86	. 40	: 2614	2919	305	: 5230	5332	102
	2	- 31.50	31.89	- 39	: 3797	3744	-53	- 5400	5413	-13
	3	: 31.27	31.64	- 37	- 2939	3058	129	: 6046	6164	128
	4	: 30.75	31.23	. 48	- 2790	3048	-258	: 8955	9079	124
1970	1	: 31.50	31.18	-. 32	- 2600	2640	40	: 5365	5602	237
	2	: 33.00	33.82	. 82	: 4423	4378	-45	: 5518	5611	93
		:			:			:		

Table 9.--January 1 inventories of beef cattle, 1953-70

Beef calves (H2l)			if			Beer cows (H23)		
(Jan. 1): Reported:	Predicted	$\begin{aligned} & \text { Pred } \\ & \text {-Rptd } \end{aligned}$	Reporte	Preãic	$\begin{array}{r} \text { Pred. } \\ \text {-Rptd. } \end{array}$	Reporte	Predic	$\begin{array}{r} \text { Pred. } \\ \text {-Rptd. } \end{array}$
: - - - -	1,000 head			1,000		.- -	1,000	
1953....: 17440	- --	-..-	---	-	---	23291		
1954.... : 17978	---	---	---	---	---	: 25050	---	---
1955....: 18804	---	---	5938	---	---	: 25659	---	---
1956....: 18869	18956	87	5178	52.24	46	: 25371	25330	-41
1957....: 18405	18476	71	5162	5117	-45	: 24534	24478	-56
1958....: 18275	18397	122	5114	5188	74	: 24165	24278	113
1959....: 19407	19637	230	5537	5507	-30	: 25112	25123	11
1960....: 20425	20747	322	5787	5910	123	: 26334	26240	-104
1961....: 20814	20925	111	6057	6051	-6	: 27327	27471	144
1962....: 22300	21888	-412	6046	6083	37	: 28691	29074	383
1963....: 23747	23700	-47	6529	6462	-67.	: 30589	30765	176
1964.... : 25243	25257	14	6906	6939	33	32794	32831	37
1965....: 26181	26401	220	7100	7094	-6	34238	33991	-247
1966....: 26879	26866	-13	7375	7506	131	34433	34292	-141
1967....: 27294	27482	188	7800	7788	-12	34685	34705	20
1968....: 27559	27390	-169	7950	7950	0	: 35405	35391	-14
1969....: 27920	28148	228	7820	7954	134	: 36097	36292	195
1970....: 29064	29335	271	8033	8024	-9	37433	37547	114

Derived series

Table 9a--January 1 inventory of dairy cows, annual commercial beef cow slaughter, and annual average feeder cattle price, 1953-70

[^1]** Derived series

Table 10.--Exogenous variables, 1954-70

Table 10.--Exogenous variables, 1954-70-Continued

Table 10.--Exogenous variables, 1954-70--Continued

Year	Quarter	:	Pigs saved per sow				Byproduct credits			Dressing percentage for hogs
				Beef	Pork		Beef	Pork		
1969	3	:	7.55	156	74		2.67	3.16		63.0
	: 4	:	7.55	145	53		2.66	3.08		63.5
	: 1	:	7.23	153	64		2.69	3.33	-	64.1
	: 2	:	7.23	162	60		3.00	3.90		64.0
1970	: 3	:	7.34	110	48		3.08	4.90	:	63.4
	: 4	:	7.34	130	50		3.00	3.80		63.6
	: 1	:	7.40	140	60		3.45	3.75		64.0
	: 2	:	7.40	150	75	:	3.75	3.80		64.0
	:	:								

∞

Table 11.--Exogenous variables, 1954-70

Table 11.--Exogenous variables, 1954-70--Continued

Table 11.--Exogenous variables, 1954-70--Continued

Appendix B--Structural Equations for Demand and Stocks Section

$$
\begin{align*}
& \text { PRPBW }_{j t}=15.70+0.786 \text { PRNFB }_{j t}-0.298 \text { PRPW }_{j t} \tag{A}\\
& -3.082 \text { PCFBC }_{j t}+0.025 \Psi_{j t}+0.077 T_{j t} \\
& +3.16 \mathrm{w} 1+1.28 \mathrm{w} 2+1.42 \mathrm{w} 3 \\
& \mathrm{PRNFB}_{j t}=50.03+0.232 \mathrm{PRFBW}_{j t}+0.281 \text { PRPW }_{j t} \tag{B}\\
& -3.433 \text { PNFBS }_{j t}-0.002 Y_{j t}-0.0165 T_{j t} \\
& \text { - } 4.70 \text { W1 - } 1.52 \text { W2 }+1.85 \text { W3 } \\
& \text { PRPW }_{j t}=29.12+0.09 \text { PRFBW }_{j t}+0.16 \text { PRNFB }_{j t} \tag{c}\\
& -3.05 \operatorname{PMPS}_{j t}+0.034 X_{j t}-0.545 T_{j t} \\
& -1.26 \text { W2 - } 3.82 \text { W2 - } 3.46 \text { W3 } \\
& \text { ESB }_{j t}=-5199.0-36.66 \text { PRFBW }_{j t}+129.6 \text { PRNFB }_{j t} \tag{D}\\
& -40.35 \text { PRPW }_{j t}+438.0 \text { NNFBS }_{j t}+0.05 \mathrm{~T}_{j t} \\
& +570.0 \mathrm{WL}+137.0 \mathrm{~W} 2-270.0 \mathrm{~W} 3 \\
& \operatorname{ESP}_{j t}=-604.0-5.35 \text { ERFBW }_{j t}-1.18 \text { PRNFB }_{j t} \tag{E}\\
& +3.86 \mathrm{PRPN}_{j t}+55.3 \text { PCPS }_{j t}-0.70 \mathrm{~T}_{j t} \\
& +93.0 \mathrm{wl}+13 \mathrm{u} .0 \mathrm{w} 2+44.0 \mathrm{~W} 3
\end{align*}
$$

APPENDIX C

Operating Rules
The 128 operating rules incorporated in the computer program （appendix D）are listed in the order they appear．They are also identi－ fied with the estimating equation number as it appears in the text． The calendar year（s）in which a zule was effective is shown along with the underlying economic basis．

Three statistics are calculated to condense identification of the situations they represent．

$$
\begin{aligned}
& Z(I)=0.5\left[\left(\text { PRFBL3 }_{t} / \text { PRC3 }_{t}\right)+\left(\text { PRFBL }_{t} / \text { FRC }_{t}\right)\right] \\
& \text { 子兵 }(I)=1.0 \text { when } \text { PRPW }_{t}{ }_{\mathrm{t}}<40.0 \\
& \text { and PRPNI }{ }_{t-1}<40.0 \\
& \text { and } \text { PRPWI }_{\text {t-2 }}<40.0 \\
& Y Z(I)=1.0 \text { when }\left(\text { PRFCA }_{t-1}-\text { PRFCA }_{t}\right)>2.75 \\
& \text { and } \text { PRFCA }_{t}<22.0
\end{aligned}
$$

Function estimating	$\begin{aligned} & \text { Eq. } N C \\ & \text { in } \\ & \text { text } \end{aligned}$		Operating rule	$\begin{array}{r} \text { Year }(s): \\ \text { effective: } \end{array}$	Economic basis
(31)	MNFC4	9	If $\left(\mathrm{RNGE}_{\mathrm{t}}\right)>83.0$ change coeff. to 20 from 24	58	Nonfed production does not increase proportionately to range feed at higher level.
(32)	$\mathrm{MNFC4}$		If $\left(\mathrm{PRC}_{t}\right) \leq 1.11$ change coeff. to 1485 from 1568	$\begin{aligned} & 62 \\ & 68 \end{aligned}$	Very low corn prices result in more feeding and less nonfed marketing.
(33)	MIVFC4	9	If $\left(\mathrm{z}_{\mathrm{t}-1}\right)>24.0$ cut estimate 13%	$\begin{aligned} & 63 \\ & 69 \end{aligned}$	Very favorable beef-corn ratio stimulated cattle feeding first half of year, resulting in less grass-fed stock for fall cull--also less cow cull.
(34)	MNFC4	9	$\begin{aligned} & \text { If }\left(\text { PRC2 }_{t-1}-\text { PRC2 }\right) \geq 0.13 \\ & \text { raise estimate } 15 \% \end{aligned}$	65	More feeders were kept as grass cattle in the spring because of sharp increase in feed costs; then sold in fall.
(35)	MNFC4	9	$\begin{aligned} & \text { If }\left(\mathrm{H}_{2} 2 \mathrm{~K}_{t} / \mathrm{H}_{2} 3_{t}\right)>0.215 \\ & \text { and }\left(\mathrm{PRNFB}_{t}\right)>38.0 \\ & \text { raise estimate } 7 \% \end{aligned}$	$\begin{aligned} & 67 \\ & 68 \\ & 69 \end{aligned}$	(See operating rule 6)
(36)	MVFC4		$\begin{aligned} & \text { If }(30) \text { holds } \\ & \text { and if }\left(H 22 R_{\text {, }} / \mathrm{H} 23_{t-1}\right)>0.22 \\ & \text { raise estimate additional } 14 \% \end{aligned}$	68	Moje than Everage replacement heifers avetrable 2 fears in row increases cow cull further.
(37)	IB4	15	If $\left(\mathrm{PRNFB}_{\mathrm{t}}-1-\mathrm{PRNFB}_{t}\right)>6.0$ cut estimate 30%	60	Sharp drop in domestic cow beef price results in diversion of shipments to other countries.

Function : estimating:			Operating rule $\begin{aligned} & \text { a } \\ & \vdots \\ & \vdots\end{aligned}$	$\begin{aligned} & \text { Year (s) } \\ & \text { effective } \end{aligned}$	Economic basis
(59)	H2I			68	Beef-com ratio is not good enough to result in increased inventory and cow herd is getting disproportionately old, so calf crop reduced.
(60)	H21	39	If $\left(\mathrm{CBCS}_{\mathrm{t}} / \mathrm{H}_{2} 3_{\mathrm{t}-\mathrm{2}}\right) \leqslant 0.105$ change coeff, on $\overline{\mathrm{H}} 3_{\mathrm{t}-2}$ from . 597 to .547	70	(See operating rule 67)
(6I)	н२2R		If $\left(z_{t-1}\right)>24.0$ raise estimate 1.5%	$\begin{aligned} & 63 \\ & 69 \end{aligned}$	More heifers retained for herd than usual because of very favorable feeding situation.
(62)	H22R	40	$\begin{aligned} & \text { If }\left(\text { RRFCA }_{4}\right)>30.0 \\ & \text { cut estimate } 6 \% \end{aligned}$	70	More heifers put on feed than usual.
(63)	CBCS	41	$\text { If }\left(z_{t}\right)>24.0$ cut estimate 18%	$\begin{aligned} & 62 \\ & 68 \\ & 69 \end{aligned}$	Cow cull reduced substantially as very favorable feeding situation results in cows being saved for one more calf.
(64)	CBCS	41	```If ((PRFCA })<22. and (PRFCAt-1 - PRFCA raise estimate 12.5%```	5^{64}	Low feeder calf price coupled with further decline stimulates cow cull.
(65)	CBCS		If $\left(\right.$ RNGE $3_{1}-$ RNGE3 $\left._{t}\right)>7.0$ and (RNGEZ ${ }^{1}-$ RNGE3 $\left._{t}\right)>2.0$ raise estimate 7.5%	66	Drought in West increases cow cull.

(69)	AWTFI		$\begin{aligned} & \text { If }\left(\text { PRCI }_{t}\right)<1.10 \\ & \text { change coeff. on (PRFBL3/PR } \\ & \text { to } 2.94 \text { from } 3.64 \end{aligned}$	$)_{t}^{62}$	(See operating rule 2)
(70)	AWTIF1	5	$\begin{aligned} & \text { If }(\text { PRPL } 3 \text { t-1 })<15.00 \\ & \text { cut estimate } 15 \mathrm{lbs} . \end{aligned}$	60	Low hog price at time cattle are placed on feed indicates oversupply of pork, so beef supply is restricted through lighter weights.
(71)	AWTFI	5	$\begin{aligned} & \text { If } \left.\left(\text { PRFBL3 }_{t-1}\right) / \text { PRC }_{t-1}\right)>27.0 \\ & \text { cut estimate } \end{aligned}$	69	Feeders fear oversupply situation will develop from high prices received in summer, so feed to lighten weight.
(72)	MNFCL	9	If $\left(\right.$ PRFC4 $_{t}-$ PRFC4 $\left._{t-2}\right)>5.75$ cut estimate 12.5%	$\begin{aligned} & 59 \\ & 70 \end{aligned}$	Iarge long-term increase in feeder cattle price results in shift to cattle feeding

Function estimatin	: Eq. No $:$ in : text		Operating rule	$\begin{array}{r} Y e a r(s): \\ \text { effective: } \end{array}$		Economic basis
(73)	MNFCI		If $\left(\mathrm{PRCl}_{t}-\mathrm{PRC}_{t-1}\right) \geq 0.11$ raise estimate 8%	$\begin{aligned} & 61 \\ & 66 \end{aligned}$		harp seasonal increase in corn rice cuts placements of feeders, o more nonfed marketings.
(74)	MNFCL		$\begin{aligned} & \text { If }\left(\text { PRNFB }_{4}-2-\text { PRNFB }_{t-1}\right)>7.50 \\ & \text { cut estimate } 5 \% \end{aligned}$	64		harp drop in cow beef price educes cow cull (probably in dairy)
(75)	MNFCL		$\begin{aligned} & \text { If }\left(\mathrm{H}_{2} 2 R_{t} / H 23_{t}\right) \leq 0.22 \\ & \text { and }\left(\mathrm{PRNFB}_{t}\right)>37.25 \text { or } \\ & \text { If }\left(H 22 R_{t} / H 23_{t}\right)>0.22 \\ & \text { and }\left(\text { PRNFB4 }_{t-1}\right)>36.0 \\ & \text { raise estimate } 11 \% \end{aligned}$	$\begin{aligned} & 68 \\ & 69 \\ & 70 \end{aligned}$		Cow cull increased when either cow eef price very high or cow-beef price is quite good and lots of replacement heifers are available.
(76)	IB1		If $\left(\operatorname{CBCS}_{t-1}\right)<33.00$ raise estimate 40%	$\begin{aligned} & 63 \\ & 64 \end{aligned}$		ow domestic slaughter the revious year results in import ncrease in following quarters.
(77)	IB1	15	If $\left(\right.$ PRNFB3 $_{t-2}-$ PRNFB3 $\left._{t-1}\right)>6.0$ cut estimate 30%	61		harp summer price drop from year arlier induces curtailment of mport orders two quarters later.
(78)	IB1		Same as 68 raise estimate 50%	70		Excellent price level increases mports.
(79)	IB1		$\begin{aligned} & \text { If }(T) \geq 1967 \\ & \text { raise estimate } 45 \% \end{aligned}$	$\begin{aligned} & 67 \\ & 68 \\ & 69 \\ & 70 \end{aligned}$		See operating rule 11)
(80)	CHS 1	12	If $\left(\right.$ PRPI $\left._{4-1}\right)<12.60$	56		See operating rule 12)

Function estimating	Eq. Mo.: in $:$ text $:$	Operating rule :	$\begin{array}{r} \text { Year(s) } \\ \text { effective: } \end{array}$	Economic basis
(81)	CHSI 12	$\begin{aligned} & \text { If }\left(\text { PRPI } t_{t-1}\right)>25.0 \\ & \text { change coeff. to - } 28 \text { from }-54 \end{aligned}$	70	(See operating rule 13)
(82)	CHSI 12	If $\left(\right.$ PRPI $\left._{t} 2\right)>24.0$ and $\left(\right.$ PRPI $_{t-2}^{2}-$ PRPL $\left._{t-1}^{2}\right)>4.50$ change coeff. to -28 from -54	67	Sharp drop in hog prices from rather high level cuts demand for gilts, so more slaughter.
(83)	CHS1 12	If $\left(\mathrm{PRFCH}_{t}-\mathrm{PRFCl}_{t-1}\right)>4.25$ cut estimate 6.4%	$\begin{aligned} & 58 \\ & 59 \\ & 70 \end{aligned}$	Sharp increases in feeder cattle price increases gilt retention and lowers slaughter.
(84)	PRNFBI 23	$\begin{aligned} & \text { If }\left(\mathrm{PCFBCl}_{t}+\text { PNFBSI }\right)>27.0 \\ & \text { change coeff. on PNFBSI } \\ & \text { from }-4.44 \end{aligned}$	$\begin{aligned} & 62 \\ & 68 \\ & 69 \\ & 70 \end{aligned}$	(See operating rule 16)
(85)	PRPWI 24	If $\left(\mathrm{YI}_{t}\right)>28.00$ change coeff. on Y to 0.03527	$\begin{aligned} & 68 \\ & 69 \\ & 70 \end{aligned}$	(See operating rule 18)
(86)	PRPWI 24	If $\left(\right.$ PCPSI $_{t}-$ PCPSI $\left._{t-1}\right)>2.0$ cut estimate 5%	$\begin{aligned} & 59 \\ & 67 \end{aligned}$	(See operating rule 19)
(87)	PRPWI 24 PRFBWI 22	If $\left(\mathrm{ZZ} Z_{t}\right)=1.0$ cut PRPW estimate 7% and cut PRFW estimate 5%	64	Persistent low pork prices tend to be hard to overcome, so current beef and pork price is reduced moderately; cross elasticity with fed beef shows in extreme situation.

	Eq. No.:		:	
Function :	in	Operating rule	: Year (s) :	Economic basis
estimating:	text :		: effective:	

(96)	PLII	35	$\begin{aligned} & \text { If }\left(\mathrm{PRCl}_{\mathrm{i}}\right) \leq 1.10 \\ & \frac{\text { change coeff }}{\text { on }(\mathrm{PRFBLI} / \mathrm{PRCl})} 76 \text { from } 86 \end{aligned}$
(97)	PL工	35	$\begin{aligned} & \text { If }\left(\text { PRFBLI }_{t} / \mathrm{PRCl}_{t}\right)>24.5 \\ & \text { change coeff. } \\ & \text { from } 86 \text { to } 76 \end{aligned}$
(98)	PLI	35	If $\left(\mathrm{YZ}_{t-1}\right)=1.0$ cut estimate 6%

62 Beef-corn ratio is made artifically high by quite low corn price.
-Second quarter

64 A sharp price decline from a year earlier for two successive quarters leads feeders to hold cattle for a better price.

65 With general drop in fed cattle prices, there were more early sales of "short-feds" from placements made in third and fourth quarters. Also, cattle not on feed too long could have shifted back to grass in spring.

69 Excellent prices of both cattle and
70 hogs result in some cattle being held for further feeding.

Function estimatin	: Eq. No : in Text		Operating rule	$\begin{array}{r} \text { Year(s) } \\ \text { effective: } \end{array}$	Economic basis
(102)	MFC2		$\begin{aligned} & \text { If }(\text { PRPLII } \\ & \text { and }(\text { PRPLI }) \geq 23.0 \\ & \text { raise estimate } 5 \% \end{aligned}$	67	Big drop in winter hog price leads some producers to shift to "shortfed" cattle.
(103)	AWTF2		```If (}\mp@subsup{z}{t-1}{})>22. and (-1RFBL4}\mp@subsup{t}{-1}{}/\mp@subsup{\mathrm{ PRC4}}{t-1}{})>24. change coeff. on (PRFBI4/PRC4) to 2.54 from 2.24```	$\begin{aligned} & 61 \\ & 63 \\ & 69 \end{aligned}$	Very ravorable feeding ratio with improvement coming at end of year leads to initiation of heavier weight feeding program.
(104)	AWTF2		If $(Y Z)=1.0$ cut estimate 1.5%	65	As general level of fed cattle prices fall, feeding programs are aimed at lighter weights.
(105)	MNFC2	9	If $\left(\mathrm{PRCl}_{t}-\mathrm{PRC}_{\mathrm{t}_{2} 1}\right) \geq 0.11$ raise estimate 8%	$\begin{aligned} & 61 \\ & 66 \end{aligned}$	Sharp increase in com price cuts placements on feed and increases nonfed marketings.
(106)	MNFC2	9	$\begin{aligned} & \text { If }\left(\mathrm{PRCl}_{t}\right) \leq 1.10 \\ & \text { change coeff. on } \mathrm{PRCl}_{\mathrm{t}} \text { to } \\ & 1430 \text { from } 1568 \end{aligned}$	62	Very low winter corn prices results in nonproportional shift in response to input-price change.
(107)	MNFC2	9	$\begin{aligned} & \text { If }\left(\text { PRPLI_ }_{1}\right)>23.0 \\ & \text { and }\left(\text { PRPII }_{1}-1-P_{1}\right)>6.0 \\ & \text { cut estimate } 10 \% \end{aligned}$	67	(See operating rule 102). Increase fed placements lower nonfed marketings.
(108)	MNFC2		If $\left(z_{t-1}\right)>24.0$ cut estimate 8%	$\begin{aligned} & 63 \\ & 69 \\ & 70 \end{aligned}$	(See operating rule 5)

Function: estimating	$\begin{aligned} & \text { Eq. No } \\ & : \text { in } \\ & \text { text } \end{aligned}$		Operating rule	$\begin{aligned} & \text { Year(s) }: \\ & : \text { effective: } \\ & \hline \end{aligned}$: Economic basis
(109)	MNFC2		If $(Y Z)=1.0$ cut estimate 13%	65	When feeder price has been down all of previous year indicating liquidation phase of cycle, nonfed marketings are cut in spring for herd rebuilding.
(110)	IB2	15	$\begin{aligned} & \text { If }\left(\text { PRNFBI }_{t}-\text { PRNFBI }_{t}\right)>6.0 \\ & \text { cut estimate } 33 \% \end{aligned}$	61	Sharp drop in price which draws imports results in diversion of shipments to other countries.
(111)	IB2	15	If $(\mathbb{I}) \geq 1967$ raise estimate 35%	$\begin{aligned} & 67 \\ & 68 \\ & 69 \\ & 70 \end{aligned}$	(See operating rule 11)
(112)	CHS2	12	$\begin{aligned} & \text { If }\left(\mathrm{PRCI}_{t}\right) \leq 1.12 \\ & \text { change coeff. to }-400 \\ & \text { from }-720 \text { on } \mathrm{PRCI}_{t} \end{aligned}$	$\begin{aligned} & 61 \\ & 62 \\ & 68 \end{aligned}$	At very low corm price, increase in slaughter is not proportional to price change.
(113)	CHS2	12	$\begin{aligned} & \text { If }\left(\text { PRPL } I_{t}\right)>26.0 \\ & \frac{\text { change coeff. to }}{\text { on PRPLI }} 32 \text { from }-54 \end{aligned}$	$\begin{aligned} & 66 \\ & 70 \end{aligned}$	(See operating rule 13)
(114)	CHS2	12	$\begin{aligned} & \text { If (PRPLI }>23.0 \\ & \text { and (PRPIII } \mathrm{t}-1 \text { PRPLI } t \text {) } 6.0 \\ & \text { change coeff. to }-28 \text { from }-54 \end{aligned}$	67	(See operating rule 82)
(115)	PRPW2	24	$\begin{aligned} & \text { If }\left(Y_{t}\right)>2800 \\ & \text { change coeff. on } Y \text { to } 0.03527 \\ & \text { from } 0.03727 \end{aligned}$	$\begin{aligned} & 68 \\ & 69 \\ & 70 \end{aligned}$	(See operating rule 18)

Appendix D
Computer Program

OUARTFRLY MODFL OF PRICE-OUTPUT DETERMINATION IN BEEF \& PORK, CROM COMMON XMFCI(75), XMFC.7(25), XMFC3(25), XMFG4(25). PL1(25), PL2(25). (P1.3(75). Pl.4175). AWTFI(25). AWTF2(251. AWTF3(25). AWTF4(251, PRFBL1(25)

 4). XMIFB3(25). XMIFB4 (25). PCFBC1 (25). PCFBC2(25). PCFBC 3 (25), PCFBC4(25 51. XMNFCI (25). XMNFG.7(25). XMNFC 3 (25). XMNFC4(25). PRFC1(25).PRFC2(25). 6PRF(3175). PRFC.4(75). AWYNF1(25). AWTNF 2(25), AWINF3(25), AWTNF4(25), XI
 8. PRNFR4 (75). PNFBSI (25). PNFBS $2(25)$. PNFBS 3(25). PNFBS4 (25), XC1(25). 9X87(25). XR3(75). XR4(25).FSB1(25).ESR)(25).ESB3(25).ESB4(25) COMMON CHS1(75).CHS2(251.CHS 3(25).CHS4(25).SF1(25).SF2(25).SF3

 3PRPW2 (75). PRPW3(75). PRPW4(25). PCPS1125). PCPS2(25), PCPS $3(25), P C P S 4$
 5FSP4(75), PRFRW1 (75). PRFRW2(25). PRFRW3(25), PRF8W4(25), PRNFL, (25). PR GNFI $)(75)$. PRNFL $3(75)$. PRNF1 $4(75)$. BPNF 1 (25$), 8$ PNF $2(25)$, BPNF $3(25)$. BPNF 4 7 (75)
COMMON PRFCA(25).H21(25).H22R(25). H23(25).CBCS(25).PRC1(25).

 3. RNGF4175). T1 (25). T7(25).T3125), T4125).PSPS1(25), PSPS2125).PSPS3 4(25). PSPS4(75). DPH1(25), DPH2(25), DPH3(25), DPH4(25), XMILPI(25).
 6f 25). RPCRI (25). BPCB2(25), BPCR3(25), BPCB4(25), BPCP1(25), BPCP2(25). 7RPCP3(75).RP(.P4(75).7(25).2Z(75).YZ(25)
G RFAOI5.7) K
7 FORMAT II?
8 กП $9 \mathrm{~J}=1.3$

 4). PRFRL 4 (I). PRPL. 3 (J). PRFC. 3 (J)

10 FORMAT (RF4. . . 7F4.0.3F5.0.5X.13F4.2.2F4.0.2F4.2.3F3.1.F4.0.4F4.2)
11 กी $17 \mathrm{~J}=1 . \mathrm{K}$

1) RFAD(5.13) HI3(J).PSPSIf1), PSPS2(J).PSPS3(J), PSPS4(J), PRCI(J), PRC2

 5RP(R3(J). RPCR4(J). 8PCPI(J). BPCP2(J).8PCP3(J).8PCP4(J)
13 FORMAT (F5.0.4F4.7.4F3.2.8F3.0.4F4. 1. 7X./8F2.0.4F4.3.4F4.0.8F3.2) CAII TEST \{K\}
76 WRITF(6. 271

วR DO $29 \quad 5=3 . \mathrm{K}$

 1.F4.11.7F7.0.7 11 X.F5.0).3X.F4.11)

31 WRITF(6.37)
3 FORMATI PRFRW3 PRNFB3 PRPW3 FS83 ESP3 PNFBC3 PCPC3: 1.: PPFR13 PRPL7, PRFC.3 PRFPYR3 PRPB3 SF3 PL3:
$330034 \mathrm{I}=3 . \mathrm{K}$

34 WRITF（6．35IPRFRW3（I），PRNFE3（I）．PRPW3（I）．ESB3（I）．ESP3 IT）．PRFBL3（I） 1．PRPL 3if1．PRFC3（I），SF3（I）．PL3（I）

36 WRITF（6．37）
37 FORMATi＇1＇．＇MFC4 AHTF4 C．SFC4 BPF4 MNFC4 AWTNF4 BPNF4． 4 ． 1． 1 B4 4 XB4 PCFRC4 PNFBS4 CHS4 PP4 IP4 XP4 PCPS4＇）
3 3 ПП $39 \mathrm{I}=3 . \mathrm{K}$
 1．B．？NF4（T）．XIB4（I）．XB4（I）．PCFBC4（I）．PNFBS4（I），CHS4（I）．PP4II）．XIP4（I
7）．XP4（I）．PCPS4（I）
 1．F4．11．2F7．0．2（1X．F5．01，3X．F4．1）
41 WRITFi6．471
42 FORMATI＇PRFRW4 PRNFB4 PRPW4 ESB4 ESP4 PNFBC4 PCPC4＇ 1．＊PPFRL 4 PRPL 4 PRFC 4 PRFPR4 PRPB4 SF4 PL4：）
43 DO $44 \mathrm{I}=3 . \mathrm{K}$
44 WRITF 6 6．45）PRFBW4（I）．PRNFR4（I）．PRPW4（I）．ESB4（I）．ESP4（I）．PRFBL4（I） 1．PRPI 4（I）．PRFC．4（I）．SF4（I）．PL4（I）

46 WRITF\｛6．471
47 FПRMATI＇1＇．MFCI AWTFI CSFCI BPFL MNFCI AWTNF1 BPNFI＇， 1 IRI XBI PCFRC．PNFBSI CHSI PPI IP1 XP1 PCPSI＇I
48 Пत $49 \mathrm{I}=3 . \mathrm{K}$
49 WRITF\｛6．50IXMFC．1（I）．AWTFI\｛I）．CSFCI（I）．BPFI（I）．XMNFCIII），AWTNFIII） 1．RPNFI（I）．XIRIII）．XBI（II．PCFBCI（I）．PNFBSI（I），CHSI（I）．PPI（I）．XIPI（I 2）．XPI（I）．PC．PSL（I）
 7．F4．1）．2F7．0．7（1X．F5．0）．3X．F4．11
51．旨RITFIG．57）
57 FORMAY（＇PRFBW1 PRNFB1 PRPWI FSB1 ESPI PNFBCI PCPCI＇． 1．PPFRL． 1 PRPI． 1 PPFCI PRFBR1 PRPBI SFI PLI 1
53 DO $54!=3, \mathrm{~K}$
54 WRITF（fo55）PRFRW1（I）．PRNFR1（I），PRPW1（I），ESBI（I），ESP1（I），PRFBLI（I） 1．PRPIIIII．PRFCI（I）．SFI（II．PLI（I）
55 FORMAT（1HO． $3(4 \mathrm{X}, \mathrm{F} 5.2), 2 \mathrm{~F} 7.0 .16 \mathrm{X}, 3(3 \mathrm{X}, \mathrm{F} 5.2), 16 \mathrm{X}, 2 \mathrm{~F} 6.0)$
56 WRITFI6．57）
57 FORMATI＇1．＇MFC．AWTF？CSFC2 BPF2 MNFC2 AWTNF2 BPNF2＇

58 DO $59 \mathrm{I}=3 . \mathrm{K}$

 2）．XP）（I）．PC．PS？（I）
GO FORMAT（1HO．F7．0． $3 \mathrm{X}, \mathrm{F} 5.0 .3(2 X . F 6.0) .3 X . F 5.0 .7 X . F 6.0 .2(1 X . F 5.0) .2(5 X$ 1．F4．1）．PF7．0．2（1X．F5．0）．3X．F4．1）
61．WRITF（6．67）
6）FORMAT（＇PRFBW7 PRNFB2 PRPW2 FSB2 ESP2 PNFBC2 PCPC2＇． 1＇PPFBI 7 PRPL？PPFC？PRFBR2 PRPB2 SF2 PL2＇）
63 กn $641=3 . \mathrm{K}$
 1．PRPI つ\｛I 1．PRFC．（f）．SF（I）．Pi 2（I）

66 WRITF\｛6．67）
6＇Y FRRMAT（＇1＇．＇PRFCA H21 H27R C．BCS H23．）
69 引の $691=3 . \mathrm{K}$
GO WRIT．iG．70）PRFCA（I）．H2］（I）．H22R（I）．CBCS（I）．H23（I）
7n FOMA！：IIHO．3X．F5．7．4F7．01
in ETOP Q：3999
99 FAn

SUAROUTINF TFST \{KI
C.OMMON XMFC1(25). XMFC.2125).XMFC3(25).XMFC4(25).PL1(25).PL2(25). 1P1 3(75).PL4(75), AWTF1(25). AWTF7(25), AWTF3(25), AWTF4(25), PRFBL1(25) 7.PRFRI.71) 5). PRFBL 3(25).PRFBL4(25), CSFC1(25), CSFC2(25), CSFC3(25), 3CSFC.41251.BPF1\{25), BPF2125), BPF3(25), BPF4(25)。XMIFB1(25), XMIFB2(25 41, XMIFR 7 (75), XMIFR4(75). PCFBC1(25).PCFBC2(25), PCFBC3(25), PCFBC4(25 5), XMNFC.1(75), XMNFC2(25), XMNFC3125), XMNFC4(25), PRFC1(25), PRFC 2 (25), GPRFC.3(?5), PRFC.4(75), AWTNF1(25), AWTNF2(25).AWTNF3(25), AWTNF4(25), XI 781(75).XIR2(75).XIB3(75).XIB4(25), PRNFB1(25).PRNFB2(25).PRNFB3(25) R.PRNFR4(75), PNFRS1(25), PNFBS2125), PNFBS3(75), PNFBS4(25), XB1(25). 9XB21751. XR3(25), XB4(75),ESB1(25),ESB2(25),ESB3(25),ESB4(25)
COMM C.HS1(25).CHS2(25).CHS3(25),CHS4(25).SF1(25i.SF2(25), SF3
 25).PP3(75).PP4(25).XIP1(25).XIP2(25).XIP3(25), XIP4(25), PRPW1(25). 3PRPW2(25).PRPW3(75).PRPW4(25).PCPS1(25), PCPS2(25), PCPS3(25),PCPS4 4(251.XP1175).XP2(25), XP3(25:.XP4125),ESP1(25),ESP2(25),ESP3(25), 5FSP41)51. PRFRW1175), PRFBW2(25), PRFBW3(25), PRFBW4(751, PRNFLI(25). PR
 71751
C.OMM $\operatorname{PRFCA}(25), H 21(25), H 22 R(25), H 23(25), C B C S(25), P R C 1(25)$, 1PRC.2175).PRC.31751, PRC4(25), XMILB1(25), XMILB2(25), XMILB3(25), XMILB4 2175).CN1(75).CN2(75).CN3(25).CN4(25).RNGE1(25).RNGE2(25).RNGE3(25) 3.RNGE4(75).T1425).T2(25).T3(75).T4(25).PSPS1(25).PSPS2(25).PSPS3 4(75), PSPS4(75), DPH1(25), DPH2(25), DPH3(25), DPH4(25), XMILP1(25),

 7APCP3\{751. RPCP4(25).Z(25).ZZ(25).YZ(25)
14 nO 15 I=4.K
301 XMFC.3(I)=676.0+0.5476*PL.)(I-1)+0.5426*PL1(I-1)
302 IFII-5)530.303.530
303 XMFC.3(II=0.9?5*XMFC3(1)
530 (FIPRFRW)(I-1)-50.0) 304.304.531
531 IF (PRNFRP(I-1)-40.0)304,304.532
$53)$ IF(PRPW) (I-1)-50.0) 304.304 .533
533 XMFC.3 (1) $=0.96$ *XMFC3(t)
304 AWTF3(I) $=280.0+0.6599 * A W T F 2(I-1)+7.84 *(P R F B L 1(1-1) / P R C 1(1-1))$
396 IF(I-7) 305.397 .305
997 AWTFZ(II=AWTF3(I)+10.0
305 IFIPRC.3(I)-1.11) 306.306.307
306 $A W T F 3(1)=A W T F 3(1)-1.44$ (1PRFBLI(I-1)/PRCI(I-1) $)$
307 C.SFC. $3(1)=1$ XMFC3(J)*AWTF3(I) $1 / 1000$.
30R RPF3(I)=0.6*C.SFC3(1)
309 XMIFR3(1)=0.5*XMILB3(1)
310 PCFRC.3(I)=(RPFFI(I)-XMXFR3(()$) / C N 3(1)$
311 AWTNF3(I)=895.640.7824+53(I)
317 XMNFC.3(I) $=-1089.2+0.0625 * H 13(1-1)+0.049 * H 23(I-1)+1568.5 * P R C 2(I-1)$

313 IFI(PRFC.2(I-3)-PRFC.7(I-1))-4.00) 314.317.317
314 IF(\{PRFC. $\{(1-7)-P R F(2\{I-1)\}-3.10) 315.315 .317$
315 IFI(RNGF3IT-1)-RNGF3(:)1-7.0) 318.318.316
316 JF(IRNGF.)(I-1)-RNGF3(I)I-2.0) 318.318.317
317 XMNFC.3(I)=1.14*XMNFC.3(1)
318 IFIT(I-1)-74.00) $320,320.319$
319 XMNFC3(I)=0.90*XMNFC.3(1)

371 IFIPRNFR $P(1-11-36.001373 .373 .20$
30 IFIPRPW 1 (1-11-47.0)323.323.322
$327 \operatorname{XMNF}(3(1)=1.73 * X M N F C 3(1)$

3ク3 RPNF3（I）$=0.526$（XMNFG3（1）
324 XIR31（）$=761.3-1.672 *$＊RNFB1（1－1）－1．672＊PRNFB2（I－1）
1－18．8＊PNFRSI（（I－1）－18．8＊PNFRS2（I－1）
$775 \times$ B3 11 ）$=-0.65-0.34$ 3＊PRNFB1 $(\mathrm{I}-1)-0.343 *$ PRNFB2（I－1）
$1+1$ ． 98 \＆＊PNFRS $1(1-1)+1.988 * P N F B S 2(1-1)$
326 IF（i－5！ 377.327 .378
377 XIR3（f）＝XIR3\｛I）－731．3
GO TП 330
3＞8 IF（I－6）329．329．331

$330 \times R 3(1)=X B 3(1:-1.86$
33）IF（CACS（I－1）－3370．0） 332.332 .334
337 IFIPRNFRI（I－11－30．0） 334.333 .333
$333 \times I 83(1)=1.30 * \times 183(1)$
734 JFIPNFRS4（I－L）－9．53 335．3．35．336

336 1FI\｛PCPS4（i－1）＋PCPS1（I－1）＋PCPS2（I－1））－45．0）337．534．534
$337 \times I R 3(I)=1.35$＊\times 保3（I）
534 ！FiPRNFB？（I－11－40．501338．338．54．3
543 XIB31FI＝1－50＊XIB3（1）
338 IF（I－16） 340.339 .339

340 IF（XIA3（I）） 341.342 .347
341 XIB3（1）＝0．0
347 PNFBS3（I）$=F S B 7(I-1) / C N 3(I)+B P N F 3([) / C N 3(I)+X I B 3(I) / C N 3(I)-X B 3(I) /$ 1CNZ（I）－XMIFB3（II／CN3（I）
343 CHS3（I）$=-4146.040 .57726 * S F 1(I-1)+0.1721 * S F 4(I-1)-54.05 * P R P L 2(I-1)$ 1－719．58＊PRC2（I－1）＋1168．76＊PSPS1（I－1）
346 IFIPRPI．7（I－11－73．00）348．347．347
347 C．HS3（I）＝C．HS3（I）＋ 10.0 ＊PRP\｛2（I－1）
GO TO 35？
348 IFIPRPI． $7(1-1)-19.75) \quad 352.349 .349$
349 IFAPRPL 2（I－21－19．75）352．350．350
350 JFIPRPI $7(I-3)-19.751$ 352．351．351
351 CHS3（I）＝CHS3（I）＋17．0＊PRPL2（I－1）
357 PPヲ（I）＝OPH3\｛I）＊CHS3（I）
757 XIP3（I）＝－97．56＋0．958＊PRPW1 $\{1-1)+0.958$ \＆PRPW2II－1）＋0．93＊T3\｛I\}+2.6* 1PC．PST（I－1）
$356 \times P 3[1)=-17.6-0.09 * P R P W 1(I-1)-0.09 * P R P W 2(I-1)+0.286 * T 3(I)+2.86 *$ （PCPS？（I－1）
357 PCPS3（I）＝FSP7（I－1）／CN3\｛II＋PP3（I）／CN3（I）＋XIP3（I）／CN3（I）－XP3（I）／CN3 1（I）－XMIVPヨ（I）／CNBII）
35R PRFBW3（5）＝71．36－3．3237＊PCFBC3（I）－3．1563＊PNFBS3（I）＋0．02253＊Y3（I） 1＋0．1106＊T3（I）
535 IF（IPC．FRC．3（I）＋PNFRS3（I））－30．01359．359．536
536 PRFRW3III＝PRFBW3（II＋0．OR 4 PCFBC3（I）
359 PRNFR3（I）＝82．07－4．4403＊PNFBS3（I）－1．1698＊PCPS3（I）＋0．01112＊Y3（I）

361 PRNFR3（I）＝PRNFR3（I）＋0．55＊PNFBS3（I）
3G7 PRPW3（I）$=44.75-0.9945 *$ PNFBS3（I）－3．3264＊PCPS3（I） $40.03727 *$ Y3（I） 1－0．6071＊T3（t）
398 IF（I－7）363．399．363
399 PRPW3（I）＝PRPW3（I）＋3．5
363 IFIY3III－7RON．O）365．365．364
364 PRPW3（I）＝PRPW3（I）－0．007＊Y3（I）
365 IFI（PCPS3II）－PC．PS3（I－1））－2．0） 367.367 .366
366 PRPW3（I）＝0．9525＊PRPW3（I）

367 IF:(PCPS4(I-1)+PCPS $1(1-1)+$. PCPSP(I-I) $)-45.0) \quad 368.370 .370$
368 PRNFR3(I) $=1.17$ \#PRNFB3(I)
369 PRPW3(1) $=1.0$)*PRPW3(I)
370 FSB3(1) $=-470.0+26.76 * P C F A C 3(1)+17.91 * P N F B S 3(I)+10.27 * P C P S 3(I)$ 1-0.01[5*Ү3(1)-0.7872*T3(I)
371 FSP3(I) $=-847.9+19.20 *$ PCFRC.3(1) +18.56 *PNFBS3(1) +42.5*PCPS3(I) $1-0.001 * 4311-3.37 * T 3(11$
372 PRFRL $3(T)=-4.51+0.6393 *$ PRFRN $3(1)+0.8018 *$ BPCA $3(1)$
373 PRPI 31I: $=-7.69+0.4864 * P R P W 3(1)+1.20 * B P C P 3(I)$
374 PRFC. 3 (1) $=-23.74+0.9077 *$ PRFBL. $3(1)+0.165 * R N G E 3(1)+0.5044 *$ PRFC1 (1-1)
375 IFIRNGF3(I)-80.0) 377.377.376
376 PRFC.3(1) $=$ PRFC.3(I) +0.01 *RNGE3(1)
377 IF (IPRFC.3(I-1)-PRFC4(I-1))-1.39) 378.378.379
378 IFI(PRG.711-1t-PRC.2(1-2) $)-0.131380 .379 .379$
379 PRFC.3(I)=0.96*PRFC.3(I)
380 $5 F 3(1)=-87.67+0.89764 * S F 3(I-11+45.1754-P R P(1)(I-1)-317.48 * P R C 1(1-1)$
$1 * 0.33541 * S F)(I-1)-0.33541 * S F 2(I-2)$
381 TFPPRCI(1-1)-1..101 386.382.38?
387 TF(IPRPI 1 (I-1)/PRG1f(-1) $1-17.51383 .383 .386$
383 IF(PRPL. $\operatorname{lif}(1)-19.75) 388.388 .384$
384 IF(fPRPLT(I-1)/FRC? (I-1) 1-15.01385.385.386
385 SF3(I) $=0.90 *$ SF3(I)
386 IFIPRC.1(I-11-1.201387.388.388
387 SF3(T)=1. $70 *$ SF3(1)
388 P13(I) $=-4589.040 .3011 * H 21(1-1)+75.14 *($ PRFBL3(I)/PRC3(I))
389 If(I-5) 390.390 .391
390 P1 3(1)=P(3(I)+29.86*(PRFBL3:1)/PRC3(1))
391 IFIPRC.3111-1.701 392.394.394
39) IF(tPRFRI 3(I)/PRC.3(I))-77.01 393.394.394

393 PL3(I)=P(3(1)-15.0*(PRFRE3(1)/PRC3(I))
394 IFI(PRPI 3(1)-PRPL3(I-1))-6.001 537.537.395
395 P1 3if: $=0.93 * P L 3411$
537 (FiPRFRI $\boldsymbol{7}(\mathrm{I}-1)-30.01400 .400 .538$
538 IF (PRFRL 3(1)-30.01400.400.539
539 P! 3(I)=1.05*P1.3(1)

401 AWTF-4(1)=478.0+0.5304*AWTF3(1)+1.61*(PRFBL2(I-1)/PRC2(I-1))
451 FF(I-7)407.499.40)
499 AWTF4(1)=AWTF4(1)+15.0
40) [FI7(I-1)-24.00) 403.403.404

403 TFIIPCPS4(T-1)+PCPS1(1-1)+PCPS2(I-1)1-45.0) 404.540.540
404 AWTF4III=1.015*AWTF4(I)
540 IF(PRFR: 7(I-11-30.0)405.405.54
541 fFiPRFRI 3(I)-30.0:405,405.542
54) $\triangle W$ FF4 (ll $=0.9$ R\# AWTF4 (I)

405 C.SFC.4(T)=(XMFC.4(I)*ANTF4(I):/1000.
406 RPF4(I)=0.6*CSFC.4(1)
407 XMIFR4(1) $=0.5$ स XM(1.R4(I)
408 PCFBC.4(1) $=($ RPF $4(1)-X M J F 84(1)$)/CN4(1)
409 AhTNF4 $(1)=915.0+0.7874 * T 4(I)$
410 XMNFC. $4(\mathrm{I})=-770.3+0.0625 * \mathrm{H}$ (3(I-1)+0.043*H23(I-1)+1568.5*PRC3(I)
1-84.965*PRFC.3(11+24.05*RNGF4(1)-0.39417*AWTNF4(1)
411 IFPRNGF4(I)-83.01 413.413.412
41) XMNFC.4(I)=XMNFC.4(1)-4.0*RNGF4(I)

413 IFIPRC3111-1.111414.414.415
414 XMNFC.4(1)=XMNFC.4(1)-183.5*PRC.3(1)
415 [FI7(I-1)-74.00) 417.417.416
416 XMNFT.411)=0.87*XMNFC.4(I)

41 A XMNFC4！（I）＝1．15＊XMNFC．4i！

470 JFIPRNFRYI！）－38．00） 474.424 .421
471 XMNFC．4（）$=1.07 \neq \times M N F C 4$（I）

4） 4 XMNFC4（I）$=1.14$＊XMNFC4（I）
474 BPNF4 4 I）$=0.51$ 1＊XMNFC．4（II
475×1 R4（5）$=761.3-1.672 *$ PRNFB2（I－1．）－1．672＊PRNFB3（I）
1－18．8＊PNFBS（1－1）－18．8＊PNFRS3（1）
$476 \times R 4(\mathrm{I})=-0.65-0.3434$ PRNFB 2 （I－1）－0．343＊？RNFB3（i）

477 JFII－51 42R．42日．479
$478 \times$ IB4（T）$=X$ IR4（I）－231．7
GO TO 431
479 IF（I－6） 430.430 .437
430 XIR4（I）＝XIR4（I）－11？．3
$431 \times 84\{()=X B 4(I)-1.86$
437 IF（\｛PRNFB3it－1）－PRNFB3（I））－6．01434．434．433

434 IFICRCS（I－I -3370.01435 .435 .437
435 IF（PRNFR2（I－1）－30．0） 437.436 .436
436 XIR4（T）＝1．35＊×184（1）
437 IF（T）（I－1）－74．003 439．439．438
$438 \times 184(\mathrm{I})=1.75 * \times$（R4（I）
439 IF（I－16）441．440．440
440×1 ह4（II $=1.40 \% \times 184(1)$
441 IF（XIR4（I）） 447.443 .443
447 XIR4（TI＝0．0
443 PNFRS4（I）＝FSR3（I）／CN4（I）＋BPNF4 4 I）／CN4（I）＋XIB4（I）／CN4II）－XB4（I）／ 1CN4（1）－XMIFR4（I）／CN4（1）
444 C．FS4（I）＝－4146．0＋0．52776辛SF2（I－1）＋0．1721中SF1（I－1）－54．05＊PRPL3（I）
1－719．58＊PRR．3（I）＋1168．76＊PSPS2（I－1）
446 IF（PRPA）（I－2）－15．25）447．449．449
447 IF（PRPI ）（I－1）－15．25）448．449．449
$44 \mathrm{R} \mathrm{C.HS4(I)=C.HS4(I)+30.0*PRPL3(I)}$
449 IF（ $\mathrm{CPRFC.3(I)-PRFC.3(I-1))-4.90)452.452.450}$
450 （．HS4（I）＝0．975＊C．HS411）
45？IFIPRC3（It－1．10） 453.454 .454
453 C．HS4（I）＝C．HS4\｛I）＋370．0＊PRC3（I）
454 IF\｛PRPI 3\｛1\}-74.001 456.455.455
455 （．HS4（i）＝C．HS4（T）＋71．0＊PRPL3（1）
GO TO 460
456 IFIPRPI 3（1）－77．01 460．457．457
457 IF（PRPL．3（I－1）－22．0）460．45R．458
458 TF（PRPI 3（I－7）－77．0）460．459．459
459 CHS4（1）$=$ C．HS4（I）＋76．0＊PRPL3（t）
460 PP4（l）＝0РH4（I）＊CHS4（I）
461 Х才P4IT $=-97.56 * 0.958 * P R P W 2(I-1)+0.958 * P R P W 3(I) * 0.93 * T 4(I)+2.6 *$ 1PCPSTII
46）XP4f（）＝－2．4－0．09＊PRPW2（I－1）－0．09＊PRPW3（I）＋0．286妾T4（1）＋2．86＊PCPS3（1 II
463 PCPS4III＝FSP3\｛II／CN4\｛I）＋PP4（I）／CN4\｛I\}+XIP4(I)/CN4[II-XP4(I)/CN4(I) 1－XMILP4（I）／CN4（I）
464 PRFRW4（I）＝68．30－3．3737＊PCFAC4（I）－3．1563＊PNFBS4（I）＋0．02253＊Y4（I） $1+0.1$ 106＊T4（1）
465 JF（PC．FAC．4（I）－16．01468．468．466
466 JF（PC．PS4II）－IR．0） 468.46 ． 467

467 PRFRW4（I）$=0.9375$＊PRFBW4（I）
468 PRNFR4（I）＝81．54－4．4403＊PNFBS4（1）－1．1698＊PCPS4（1） 40.01112 （Y4（I） 1－0．7363世T4（I）
469 IF（fPCFRC4（I）＋PNFRS4（I）1－77．01471．470．470

471 PRPW4（I）$=49.36-0.9945 * P N F B S 4(I)-3.3264 * P C P S 4(I)+0.03727 * Y 4(I)$
1－0．60） T4（I）$^{\text {（1）}}$
477，IFGY4（I）－7790．C） 474.474 .473
477 PRPW4（I）＝PRPW4（i）－0．002＊Y4（1）

474 IF（ $(\mathrm{PCPS} 4(\mathrm{I})-\mathrm{PCPS} 4(\mathrm{I}-1) 1$－2．01476．476．475
475 PRPW4（1）$=0.9525 * P R$ PW4（I）
476 FSB4 $(\mathbb{I})=-430.87+26.76 *$ PCFBC4（I）$+17.91 * P N F 3 S 41 I(10.27 * P C P S 4(I)$
i－0．0115＊Y41（）－0．79＊T4（1）
$477 \mathrm{FSP4}(\mathrm{f})=-852.9+19.20$ 世PCFRC4（I）＋18．56＊PNFBS4（I）＋42．5＊PCPS4（I）
1－0．001＊ 1 4（I）－3．37＊T4（I）
478 PRFRE．4（I）$=-4.51+0.6393 *$ PRFBW4（I）＋0．8018＊BPCB4（I）
479 PRPL $4(1)=-7.69+0.4864 * P R P W 4(I)+1.7 * B P C P 4$（I）
480 PRFC4（I）＝－13．79＋0．7831＊PRFRL41I）＋0．11＊RNGE4（1）＋0．3952＊PRFC2（I－1）
481 IF（RNGF4（I）－80．0） 483.482 .482
4 \＆ 7 PRFC． 4 （I）＝PRFC．4（I）＋0．01＊RNGF4II）
483 SF4（I）＝－87．67＋0．89764＊SF4（I－1）＋45．1754PRPL2（1－1）－317．48＊PRC2（I－1） $1+0.33541$＊SF3（I）－0．33541＊SF3（1－1）

486 IFAPRC．2（I－1）－1．111487．487．488
487 SF4（I）＝1．056＊SF4（1）
4RR IF（IPRC？（I－II－PRR．3（T）1－0．115）490．489．489
489 SF4（1）$=1.13 * S F 4$（1）

491 IFIPRFRI 4 （I）－74．50）492．494．494
497 IF（\｛PRC3\｛（）－PRC．4（I））－0．10） 494.494 .493
493 P\｛4（I）＝PL4（I）－78．0＊（PRFBI4（I）／i＇RC4\｛1）\}

$495 \mathrm{PI} 4(\mathrm{~T})=1.04 * \mathrm{PL} 4 \mathrm{II}$ ）
GO TO 501
496 IF（PRFBI 3（T）－78．00150t．497．497
497 IF（PRFBL4（I）－77．001 501．498．498

 1f1

503 H21fif＝－5637．＋1．4855I＊H23（I－1）－I． $19368 * H 23(I-2)+0.59684$ 辛H23（I－3） $1+171.77173$ 女PRFCATII

505 IFII－09） 506.506 .510
506 IFPPRFR．A（I）－77．001 507．507．508
 1－39．3974＊PRFCA（I）
GO TH 51？
50R CBCStI：＝536．－0．05534＊Hつ3（I－1）＋0．44468＊H23（I－2）－0．22234＊ $\mathrm{H} 23(\mathrm{I}-3)$ 1－39．3934＊PRFCA（I） GCTO 517
 1－39．3934＊PRFCAII
512 1F（7）I－1）－74．00） 513.513 .524
514 IFIPRFCA（1）－77．001514．514．515
$5!4$ IF（\｛PRFCA（I－I）－PRFCA（\｛））－2．75）515．515．518

```
    515 {F((RNGF3(I-1)-RNGE3(I))-7.0) 520.520.516
    516 IF{(RNGF)(I-I)-RNGFY(I))-2.01 5?0.570.517
    517 CACS(I)=1.075*CRCS{I)
    GOTO 5?0
    518 (.RCS(I)=1.175*C.BCS(I)
    519 Y7III= I=0
    5>0 IFI7(I-11-73.00) 571.521.50%
    571 TF({CRCS{1)/H73{I-3))-1.17) 527.52?.5C9
    52? C.RCS(I)=CBCS(I)+0.04*H23(I-3)
```



```
    GП TП 509
    574 {RCS(I)=0.8)*CBCS(I)
    575 HつPR{I)=1.015*HつつR(I)
    526 H21(II=1.0つ*H21tJ)
    509 TF((C.RCS(I)/H23(T-3))-0.105)511,545.545
    511 CRCSIII=CRCSII}+0.05*H23(1-3)
    544 H71(f)=H>1!I)-0.05*H73(I-3)
    545 IF(PRFCAIII-30.00)577.57'7.546
```



```
    577 H73|II=0.96*H23(J-1)+1.0*H27R(I-1)-1.0*CBCS(I)
    101 XMFC1(II=514.0+0.3748*PL3(I)+0.3748*PL?(I-1.I+0.3748*PLI(I-1)
    547 IFIPRFRW4(I)-48.001102.10?.548
    548 IF(PRNFR4(I)-4?.001107.102.549
    549 IFIPRPW4(1)-58.001107.107.550
    550 XMFC.1IfI=0.94*XMFC.1(1)
    107 AWTFIII!=- 204.0+1.1367*4WTF4(I)+3.64*(PRFBL3(II/PRC3(I))
    103 JF(I-5)104.104.105
    104 AWTFIIII=AWTFI\II+18.0
    105 IF(I-6) 107.106.107
    106 AhTFIIIJ=AWTFI(II-20.0
    107 IF(PPRC1(1)-1.10) 108.109.109
    10R AWTF1(I)=AWTF\{I)-0.70*(PRFBL3(I)/PRC3(I))
    109 IF(PRPI.7(I)-15.0)110.19R.198
    110 AWTFI(I)=AWTFI{\)-15.0
    I98 JFI(PRFRL3(i)/PRC3(I))-27.0)111.111.199
    199 A&TFI(I)=0.96*AWTF1:%)
    111 C.SFC.1(I)={XMFC,1(I)*&AWTF1(I))/1000.
    11) RPFI(I)=0.6*C.SFCI\I)
    113 XNIFR1(I)=0.5*XMIIR|(I)
    1}4 PCFAC.1(I)=(RPFI{I)-XMIFR1(1):/CN|(I)
    115 AWTNFI(I)=913.5*0.7874*TI\I\
    116 XNNFC.I(It=-979. { +0.0675*H13(1)+0.038*H23(1)+1568.5*PRC4(I)
    1-84.965*PRF[.4(I)+74.05*RNGE1{[J-0.39417%AWTNFI(I)
117 IF({PRFC4(T)-PRFC4([-7)!-5.75) 119.119.118
118 XMNFC.1(I)=0.875#XMNFC1(I)
11q IF({PRCI{I}-PFC.4{I})-0.11} 1?1.120.120
1>0 XMNFC.|{T:=1.OR*XMNFC.1:I)
171 IFI(PRNFR4(I-1)-PRNFB4(I))-7.50) 123.173.122
177 XMNFC.1(1)=0.95*XMNFC1(I)
```



```
174 IF(PRNFP4\I|-37.251 177.127.176
175 IF(PRNFA4(I)-36.001 127.127.120
176 XMNFC,:{Fi=1.1)*XMNFC1!1)
177 RPNF1(f)=0.51)*XMNFC.1(1)
178 XIR:(I)=761.3-1.67) 4PRNFE3(I i-1.672\starPRNF84(I)-18.8*PNFBS3{[)
    1-18.8*PNFRS4(1)
179 XRI(I)=-0.65-0.343*PRNFB3(I)-0.343*PRNFB4(I)+1.98R*PNFBS3(I)
    1+1.9R8*PNFRS4111
```

130 TF（1－6）131．171．133
$131 \times I 81(1)=X[R 1$（1）－18T．3
$337 \times B I(I)=X R 1(1)-1.86$
137 IFICACS（T）－3300．01 134．135．135
$134 \times$ IR1（T）$=1.404 \times$ ©B1（T）
135 IF（（PRNFB3（i－1）－PRNFB3（I））－6．0）551．551．136
136×1 R1（I）$=0.70$ ※ X B 1（I）
551 IFIPRFRK4！（1－48．00）137．137．552
557 FF（PRP）FR4（1）－47．00）137．137．553
553 IF（PRPW4（I）－58．00）137．137．554

137 IF（X！RItI） 138.138 .139
$138 \times 181(1)=0.0$
179 IF\｛J－151 141．140．140
140 XPR1（i）＝1．45＊XIR1（I）
141 PNFRSI（I）＝ESR4（I）／CNi（I）＋BPNFI\｛I！／CNI（I）＋XIBI（f）／CNI（I）－XBI（II／CN 111I－世MTFR1（I）／CN1（I）
 1－719．58कPR（．4（i）＋1168．76＊PSPS311）
147 IFIPRPI4（I）－1\％．6）144．144．145
144 CHSIII）＝C．HSIII）＋24．05＊PRPL4（I）
GE TO is1
145 TFIPRPI $4(1)-75.001146 .146 .148$
146 IFIPRPI 4 （J－11－74．001149．149．147
147 （FI（PRPI．4（I－1）－PRPE4（I））－4．50）149．149．148

149 TF（IPRFC．411）－PRFC．41I－1）1－4．25）151．151．150
150 CHSIf1）＝0．936＊CHSIIII
151 PP1（I）＝DPH：（I）＊CHSI（I）
157 XIPI（I）＝－92．56＋0．958＊PRPW3（I）＋0．958＊PRPW4（I）＋0．93＊T1（I）＋2．6＊PCPS4 1II
$153 \times P 1(1)=-9.84-0.09$ ¢PRPW3（T）－0．09＊PRPW4（I）＋0．286＊T1（I）＋2．86＊PCPS4（I）

l－XMIIP1（I）／CNI（I）
155 PRFAWI（I）$=67.36-3.3737 * P C F B C I(I)-3.15634$ PNFBSI（I）＋0．02253＊Y1（I） 1＋0．1106＊T1（1）
156 PRNFRI（T）＝74．93－4．4403＊PNFBSI（I）－1．1598＊PCPSI（I）＋0．01112＊Y1（I） 1－0．7363＊T1（1）
157 FFIPCFRC．1（I）＋PNFRSI（：）1－27．0） 159.155 .158
15 R PRNFR1：II＝PRNFRI（I）＋0．40女PNFBSI（I）
159 PRPWI（I）$=46.60-0.9945 * P N F B S 1(I)-3.3264$＊PCPSI（1）＋0．03727＊Y1（I）
1－0．6071＊T1！（！）
160 IF（Y1tI）－78C0．0） 162.162 .161
161 PRPWIITf＝PRPW！（I）－0．002女Y1！I）
16 IFI（PCPSIII $1-P C P S 1(1-1) 1)-2.0) 163.163 .169$
163 JF（PRPW4（i）－40．0）164．170．170
164 IF（PRPWI（I－i）－40．01 165．170．170
165 IF（PRPWI（I－7）－40．0）166．170．17C
166 PRPWI\｛I！＝0．93＊PRPWI（I）
167 PRFRWI（I）＝0．95＊PRFBWI！ 1 ）
16877 （โ）＝1．n Gח Tก 170
1 ©9 PRPWI（I）＝0．955＊PRPWI（I）
170 FSAI（I）$=-458$ ． $\mathrm{H}+76$ ．26＊PCFRC．1（I）＋ 17.91 ＊PNFBSI（I）＋10．27＊PCPSI（I） 1－0．0115＊ 1 （I 1－0．7877＊T1（1）
171 FSPI（I）＝－741．67＋19．70＊PCFBC．1（I）＋18．56＊PNFBSI（I）＋42．5＊PCPSI（I） $1-0.001 *$ Y1（1）－3．37＊T1（！）
177 IF（CPCFACI（I）＋PNFBSI（I）＋PCPSIIII）－46．5）174．174．173

73 FSA11（）＝0．75＊FSA1（I）
174 IF（\｛PCFRC．4（I）＋PNFRS4（I）＋PCPS4（I））－46．5）176．176．175
175 FSPIII $1=0.70 * F S P 1(\mathrm{I})$
176 PRFBLI（1）＝－4．51＋0．6393＊PRFBW1（1）＋0．8C18＊BPCB1（I）
177 PRPL1（I）$=-7.69+0.4$ A64＊PRPW1（I）＋1．2＊BPCP1（I）

179 IF（PRFBII（I）－25．50）182．182．18C
180 IF（ 1 PRFC．3（II－PRFC4（JJ）－1．75）187．182．181
18！PRFC1（1）＝0．94＊PRFC1！It

$1+0.3354$ I＊SF4（T）－0．3354＊SF4（I－1）
560 IFIPRPL 3（I）－76．01193．561．561
56］SF1（I）＝CFI（II－＞0．0＊PKPL3（I）
193 JF（7ifl－74．001 184．184．185
1R4 JFi77（8）－1．0）186．185．186
185 SFI\｛［\}=0.93*SF1\{I\}
186 FF\｛（PRPL3（I－1／－PRPI．3（1））－7．01187．187．188
1R7 TF（IPRC3（I）－FRC． $7(I-11)-0.14) 189.189 .188$
1f8 SFIII：＝0．86＊SF1til
189 PI．1（I）＝－5539．0＋0．24R8＊H23（I－1）＋86．2＊（PRFBLI（I）／PRCI（I））
190 IF（I－4）197．19？．191
191 ［FPPRC．1（Ji－1．10）192．192．562
19）PL1！！）＝P：1！It－10．0＊（PRFRI．1（I）／PRC1（I））
567 IFt（PRFRLI 1（I）／PRC．16（1）－24．50）193．193．563
567 PII（T）＝PI I（II－10．0新（PRFRLI（I）／PRCI（I））
193 IF（Y7（I）－1．01 201．194．201
$194 \mathrm{PI} 1 \mathrm{II}=0.94 * \mathrm{PL} 1$ III
$201 \mathrm{XMFC.7(I)}=-441.0+0.344 * \mathrm{PL} 3(\mathrm{I})+0.344 * \mathrm{PL} 4(\mathrm{I})+0.344 * \mathrm{PL}(\mathbb{1})$
70）IF（I－4）703．203．704
203 XMFC． 7 （i）＝1．085＊XMFC．2（i）
204 IF（IPRFRL4II－I）－PRFRL．4（I））－3．80）207．205．205
205 IFi（PRFRII（I－I）－PRFRL1（I））－2．80）207．207．206
2OA XMFC P（T：$=1.053$ \＃XMFC2（1）
307 IFIY711：－1．001 709.208 .209
208 XNFFC $(I)=0.96 * \times M F C .2 け I)$
204 IF（PRFAW1（I）－46．001 213.213 .710
210 IF（PRNFR1tI）－36．001 213．213．211
211 IF\｛PRPWIIII－49．001 213.213 .212
217 XMFC． 1 （I）$=0.968 * X M F C 7$（I）
217 IF（PRPLIf（－1）－73．01 716.214 .214

715 XMFC． $7(1)=1.05 * \times M F C .7([)$

717 IFI7III－77．90）220．270．218
218 JF\｛（PRFRI 4（J）／PRC4（I）！－24．50J 270．220．219

GG TO 777
270 IFIY7（II－1．01 222.221 .272
2フ1 AWTFつ\｛T）＝0．985＊AWTFつ\｛I！

273 BPFク（II＝0．6＊C．SFC． 1 II
ク24 XMiFR）（I）＝0．5＊XMILR2（I）
275 PCFRC7f（I＝\｛RPF2！ 1 ）－XMIFB2（I））／CN2（I）
226 AWTNF7！I！＝893．＋0．78．24＊T21！
277 XMNFC． $2(\mathrm{I})=-916.6+0.0625 * \mathrm{H} 13(\mathrm{I})+0.037 * H 23(\mathrm{I})+1568.5 \neq \mathrm{PRCI}(\mathrm{I})$
1－84．965＊PRFC．1（I）＋24．05＊RNGE2（I）－0．39417＊AWTNF2（I）
7クR IF（IPRC．I（I）－PRC4（II）－0．11） 230.729 .229
2？9 XMNFCつ\｛！$=1.08 * X M N F C ?(I)$

230 IFIPRCI（I）－1．10）231．731．232
\＃31 XMNFC．21 1 I＝XMNFC． $2(1)-138.5 * P R C 1(1)$
737 IF（PRPI 1（I－1）－73．0）235．235．233
733 IF（IPRPI．1II－1）－PRPLI（f）I－6．60） 235.234 .234
234 XNNFC． 7 （ 1 ）$=0.90 \%$ XMNFC 2 （I）
235 IFI7（I）－24．00）237．237．736

737 IFIV7\｛I）－1．0！739．238．739
738 XMNFC2（T）＝0．87＊XMNFC211）

 1－18．8＊PNFBSI（I）
741 XRつ（I）$=-0.65-0.343 * P R N F B 4(1)-0.343$＊PRNFBI（I）$+1.988 * P N F B 54(I)$ $1+1$－9AR＊PNFBSI（I）
747 IF（1－51 743．743．245
$243 \times$ 昭 $11=X 1$ B？（1）－181．3

GO Tf 2.53
345 IFII－6） 746.746 .747

747 IFI（PRNFBIII－1）－PRNFRIII））－6．0） 249.248 .248
$748 \times$（R）（ $\{1=0.67 * \times$（R）（I）
249 JFiXIR 1 Til 750.251 .251
$350 \times\{$ 昉 $(1)=0.0$
751 IF（I－15）253．752． 252

$\rightarrow 53$ PNFBS（II＝FSBIII）／CNつ（II＋BPNF2II）／CN2（I）＋XIB2II）／CN2（I）－XB2（I）／CN2

 1PRC1I才t1168．76＊PSPS4（I）
255 IFIPRC．I（1）－1．12）256．256．757
256 C．HS？ 1 （1）＝C．HS？（1）＋319．58＊PRC1（I）
257 IFIPRPLIIII－76．001758．258．260
258 IF（PRPII（I－1）－23．0）261．259．259
759 IFIIPRPI．ITI－1）－PRPA11IJI－6．001 261．26C．260

261 PPク（I）＝กPHク\｛I\}*CHS?\{I)
 1（1）

364 PCPSP（I）$=$ FSPI（I）／CN2II）＋PP2（I）／CN2（I）＋XIP7（I）／CN2（II－XP2（I）／CN2（I） 1－XMIIP？\｛I！／ENつ（I）
265 PRFBW $7(I)=63.79-7.3737$＊PCFBC．2（I）－3．1563＊PNFBS2（I）＋0．02253＊Y2（I） $1+0.110$ か＊T 711
クG6 PRNFR（T）$=77.60-4.4403 * P N F R S 2(I)-1.1698 * P C P S 2(1) * 0.01112 * Y 2(I)$ 1－0．2363年Tフ11）
 1－0．6071＊Tフ（i）
195 IF（ $(-6) 768.196 .768$

197 PRPW 1 （I）＝PRPW7\｛IJ＋5．0
26R TFIYフII！－7800．0） 270.270 .269
769 PRPWつII $=$ PRPW2（II－0．002＊Yつ（I）
770 IFI（PCPS？\｛11－PCPSフ（I－1）！－2．0）272．272．271
271 PRPW 7 （I）$=0.955 * P R P W$（I）
27）IF（77（I）－1．0） 275.273 .275
277 PRPW？（I）＝0．97＊PRPW2（I）
274 PRFRWフ（I）＝0．9675＊PRFRW？（II

```
    775 IF{|PRPWIIt-1!-PRPWIf!11-10.001 277.277.276
    7% PRPW7(II=0.90*PRPW2(I)
    77 ESR7(1)=-477.52+26.76*PCFBC2{I)+17.9I*PNFBS2(1)+10.27*PCPS2(1)
    1-0.0115*Y2(!)-0.7877*Tフ!(1)
    778 FSP\(I)=-732.53419.20*PCFBC2(I)+18.56*PNFBS2{1)+42.5*PCPS2(1)
    1-0.001*Y7(I)-3.37*Tつ(I)
    779 PRFBL \II!=-4.51+0.6393*PRFBW2(I)+0.8018*BPCB2(I)
    780 PRPL. ? (I)==-7.69+0.4864*PRPW2(I)+1.2*BPCP7(I)
```



```
    78) IF(fPRFC3(I|-PRFC4(I)1-1.39) ?83.284.284
    783 IF((PRC.7(I)-PRC2(I-1))-0.13) 285.284.284
    784 PRFC.7(1)=0.94*PRFC7(I)
    285 SF7!fl=-82.67+0.89764*SF2{I-11+45.175*PRPL4(I|-317.48*PRC4(I)
    1+0.33541%SFI(I)-0.33541*SFI(I-1)
    7RG IFiPRPL4(1)-13.0) 287.288.788
287 SF2\IJ=SF?(I)-10.0#PRPL4(I)
788 IF(PRC.4{1!-1.05) 285. 289.555
789 SF`(I)=1.075*SF2(I)
555 IF(tPRC4(I)-PRC3(1)|-0.021556.556.557
5':SFつ11|=0.90*SFつ(I|
556 IF((PRPI. ?(I-I) +PRPL 3{I))-49.0)290.290.558
558 IF((PRPI 4(I)+PRPI.)(I) 1-52.0) 290.559.559
559 SF7&I)=1.10*SF2(I)
790 p1 7(I)=-5733.0+0. 749*H21(1)+96.6*PRFBL2(I)
791 IF(I-4) 297.792.793
792 P1. 2(1)=PL)({)+647.0
    GO TO 15
297 IF(I-5)I5.294.795
794 PL %{I|=PL`(I)+316.0
795 IF{{PR(.2{I)-PRC.7(I-1))-0.13) 297.296.296
796 P1 2! (I)=0.95*PL?(1)
297 IF{PRP1 2{I}-73.50} 299.799.298
298 PIT(I)=0.96*PL)(I)
?99 IF(PRPL (1)-77.0) 17.17.300
300 TF{PRFRL`{I\-30.0) 17.17.16
    16 P!.7(1)=1.13*PL`{()
    17 IF{PRP{ /{I-11-73.0)15.15.18
    1% IF{(PPRP{ ?(I-1)-DRPL)(I)\-3.50115.15.19
    19 PL?(1)={.0R5*PL>(1)
    15 C.CNTINUF
        RFTIIRN
        FND
```


[^0]: U.S. DEPARTMENT OF AGRICULTURE NEG. ERS 4849E-70(日) ECONOMIC RESEARGH SERVICE

[^1]: Exogenous variable

