

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

-

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963 A MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A ł

DEPARTMENT OF AGRICULTURE · ECONOMIC RESEARCH SERVICE · TECHNICAL BULLETIN NO. 1426

30. 3-1 14-26

a dynamic price-output model of the beef and popkd by subject Sectors

CONTENTS

<u>به</u>

	Page
SUMMARY	ĩi
INTRODUCTION Basic Concepts and Definitions	1 2
ECONOMIC STRUCTURE OF THE BEEF AND PORK SECTORS. Beef Cattle Sector. Pork Sector.	3 8 9
ESTIMATION OF BASIC REHAVIORAL RELATIONSHIPS. Marketings, Commercial Slaughter and Meat Production. Imports and Exports. Per Capita Supply Available for Consumption. Wholesale Market Demand and Ending Stocks. Primary Market Demand. Supply Response and Livestock Inventories.	9 10 14 16 17 20 21
EMPIRICAL DEVELOPMENT OF THE MODEL. Initial Performance of the Model. Developmental Procedures. Operating Rules. Validation of the Model.	24 25 25 31 49
USES AND LIMITATIONS OF THE MODEL. Use as a Projection Model. Experiments with Policy Constraints Experiments Involving Structural Change.	33 34 35 35
SELECTED REFERENCES	37
APPENDIX A: DATA AND VALUES PREDICTED BY THE MODEL	39
APPENDIX B: STRUCTURAL EQUATIONS FOR DEMAND AND STOCKS SECTION	72
APPENDIX C: OPERATING RULES	73
APPENDIX D: COMPUTER PROGRAM	93

Washington, D.C. 20250

September 1970

For sole by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402

SUMMARY

A price-output model of the beef and pork suctors of the livestock meat economy has been successfully constructed and its ability to reproduce price and output decisions validated on the basis of quarterly data of the 1955-70 period.

By altering its structure, the model may be used in either of two ways: 1) to project prices and outputs to future periods, and 2) to simulate the results of the imposition of policy constraints over either the historical or projection period. The model portrays economic activity satisfactorily, providing the quarterly data of the historical period are reproduced with acceptable accuracy.

Since the model is recursive, the only data given it were the initial conditions existing on and prior to July 1, 1955, with the exception of the exogenous variables (population, income, corn price, etc.). Operating characteristics were introduced as needed throughout the validation process to negate error buildup and to improve estimates involving unique situations. The overall error of the validated model for the 15-year period is in the 2 to 4-percent range.

In general, the model may be used to simulate the effects of structural change introduced into the model, changes in values of exogenous variables, or changes in initial values of lagged endogenous variables over the historical period. In addition, the model may be initialized as of the current date, say July 1, 1970, and projected to any year desired.

Simulation of the economic activity of sectors of the livestock industry, such as this model provides, is an economical procedure for comparing alternatives in the design of public and private gals.

A DYNAMIC PRICE-OUTPUT MODEL OF THE BEEF AND PORK SECTORS

by Richard Crom Marketing Economics Division Economic Research Service INTRODUCTION

Changes in market organization and technology have transformed the U.S. livestock-meat economy into a complex national network of physical movements of livestock and meat, and flows of information in the vertical coordination system. While certain regional advantages (and disadvantages) in livestock production and slaughter are functions of climate and local input availability, many other regional and national economic characteristics stem from institutional forces. While some of these institutional forces may be rooted in the regional and subregional markets of earlier days, many of our contemporary institutions are national in scope, thereby giving rise to a national livestock market.

The maze of combinations of alternative production, processing, and distribution channels through which livestock and meat products find their way from producer to consumer are interconnected within the national market, but are still uniquely defined by local institutional characteristics. The number of these coordinative combinations almost defies description. But with today's communications network, a production and marketing decision in one part of the economy makes an impact on all segments of the livestock-meat economy.

Research efforts must be directed toward investigating the effects of one sector or portions of a sector upon the entire market for the commodity. Recent advances in automatic data processing have made it possible to construct rather large, comprehensive models of sectors of an economy representing the aggregative price-output decisions and information feedback from the consumer to producer. Such a model, constructed to represent the production and market activity of a commodity, can be operated on a computer to simulate aggregate production and marketing activity over several time periods.

Accordingly, the central objective of this research was to construct a price-output model of the beef and pork sectors of the livestock meat economy and to validate it by testing its ability to reproduce price and output decisions of a recent historical period. The model can then be used in two ways. First, the structure of the model can be altered or policy constraints can be imposed and the results of this new structure simulated over the historical period. Alternatively, the model may be used to project prices and outputs in future periods. In this case, the structure of the model may be altered and the resulting prices and outputs compared with those of the base projection. The model presented here is an extension of earlier work of the author under the guidance of W.R. Maki $(\underline{11})$.¹/ Earlier work of Maki in forecasting livestock prices and basic livestock inventories is presented in two journal articles (<u>10</u>, <u>12</u>). Considerable price and output forecasting has been undertaken throughout the profession for some time (<u>1</u>, <u>2</u>, <u>3</u>, <u>6</u>, <u>7</u>, <u>8</u>, <u>9</u>, <u>15</u>, <u>16</u>). However, only a few attempts have been rade to cast individual relationships into an ordered framework where the output of one relationship becomes input to others.

Basic Concepts and Definitions

The economic structure of the livestock meat economy can be differentiated from its market structure. The economic structure, in this study, refers to the relationships among such variables as production. consumption, and prices in a comprehensive system of interdependent events. Market structure includes those attributes of an industry that are related in a causal sense to market behavior or conduct: for example, the number, size, and geographical distribution of firms, the degree of specialization or diversification, the economies of size, restrictions to entry, and the quality of market information. The market structure. which is largely a function of institutional forces, conditions the economic structure. Therefore, the numerical values estimated for the parameters of the economic structure of a model over a particular period are indeed conditioned by the market structure under which this economy functioned. If market structure changed, as it did, over the period for which functional relationships were fitted, then the economic structure represents an average effect of the market structure of that period. This aggregative model does not deal explicitly with market structure.

Variables are classified into three types in this report. Endogenous variables are those whose values are determined within the model. Lagged endogenous variables are endogenous variables whose values are determined by the model in a prior time period or values of the variables in periods which existed prior to the start of the model development. Exogenous variables are those whose values are determined outside the model.

Two types of relationships are contained in the model--identities and functional relations. Identities specify an exact relationship between variables with no error or disturbance term. A functional relation is not necessarily exact, but typically is somewhat blurred by random disturbances. Functional relationships are further subdivided into behavioral and technical relations. Technical relations are the relationships between two fixed quantities; they are essentially engineering data. Behavioral relations describe consequences of human behavior in decisionmaking.

^{1/} Underscored numbers in parentheses refer to the Selected References, p.37.

A model is said to be recursive when each endogenous variable in the model is solely a function of either lagged endogenous variables, exogenous variables, or both. If an endogenous variable of the current time period is used as a predetermined variable in another behavior relation of the same time period, the recursive relationship can be maintained if the functions are ordered in the proper sequence. For example, quantities may be determined as a function of lagged endogenous and exogenous variables, and these estimated quantities may then become predetermined endogenous variables in demand equations determining price.

Simulation is a process of conducting experiments on a model. The object of simulation is to change the values of initial conditions. exogenous variables or the relationships embodied in the model, and then to trace out the effect of these changes on the time path of the endogenous variables. The simulated values of the endogenous variables are then compared with the values generated in the validation run of the model. The model is validated when it is able to reproduce the historical time paths of the endogenous variables with acceptable accuracy. The recursive model of the beef and pork sectors of the livestock-meat economy presented in this report is an extension of the earlier work reported by Maki and Crom (11) but differs from the earlier model in three ways: First, the calendar quarter of the year is chosen as the unit of time measurement as opposed to the earlier semiannual model. The quarter presents a more refined detailed description of temporal economic activity, yet it is long enough to be free from fluctuations due to very short-run random events. Second, the structure of the beef sector is now further subdivided into the cattle feeding (fed beef) subsector and the remainder of the beef subsector (nonfed beef subsector). Finally, the model incorporates economic events of the 1955-70 period; the earlier model was developed only through 1964.

A listing of all endogenous and exogenous variable names consistent with the Fortran computer language is presented in table 1.

ECONOMIC STRUCTURE OF THE BEEF AND PORK SECTORS

In developing the model, a basic economic structure was diagramed to show the causal ordering of prices and outputs throughout the livestock-meat economy. This structure was essentially a set of hypotheses to be tested; the acceptance of these hypotheses was based on the significance of these variables in explaining functionally the dependent variables in question. The final structure is presented in figure 1. The basic concept underlying this recursive economic structure was the time-honored cobweb theorem. That is to say, components of per capita consumption were estimated and aggregated; this output was priced at the appropriate level; derived demands were established through margin relationships; and subsequent production in light of these primary market prices was then determined, thus maintaining the recursiveness of the system.

Table 1.--Description of variables

Fortran variable name	Unit of measure	Description		
·excepto namo	······			
Endogenous variables				
H21	1,000 head	Other ^{1/} calves less than 1 year old on hand Jan. 1.		
H22R	1,000 head	Other heifers 1-2 years old on hand Jan. 1, not on feed.		
H23	1,000 head	Other cows and heifers over 2 years old on hand Jan. 1.		
CBCS	1,000 h ead	Commercial beef cow slaughter (annual).		
XMFC _i	1,000 head	Marketings of fed cattle, 39 States		
AWIF	pounds	Average weight of cattle grading		
2		Prime, Choice and Good at selected		
csfcj	mil. 1b.	markets. (MFC _j x AWTF _j)		
BPFj	mil. 1b.	Commercial fed beef production, carcass weight.		
XMNFCj	mil. 1b.	Other (nonfed) commercial cattle slaughter, liveweight.		
BPNFj	mil. lb.	Other (nonfed) commercial beef production, carcass weight.		
AWINFj	pounds	Average weight of nonfed commercial cattle slaughter.		
XIBj	mil. 1b.	Beef imports, carcass weight.		
ХВ _ј	mil. 1b.	Beef exports, carcass weight.		
PCFBCj	pounds	Per capita civilian consumption of fed beef, carcass weight.		
PNFBSj	pounds	Per capita civilian supply of other (nonfed) beef for consumption,		
снз _ј	mil. 1b.	carcass weight. Commercial hog slaughter, liveweight.		
PPj	mil. 1b.	Commercial pork production, carcass weight.		
XIPj	mil. İb.	Pork imports, carcass weight.		
ХР _ј	míl. lb.	Pork exports, carcass weight.		
PCPSj	pounds	Per capita civilian supply of pork available for consumption.		

1/ Other than dairy.

1.1

۰.

Table 1.--Description of variables--Continued

Fortran	Unit of			
variable name	measure	Description		
PRFBWj	dollars	Wholesale price per 100 lb. of Choice-grade beef carcasses. Weighted average of prices at New York, Chicago, Los Angeles, San Francisco, and Seattle (LCL)		
PRNFBj	dollars	Price per 100 lb. of utility-grade cow beef prices at New York City.		
PRPWj	dollars	Weighted average of wholesale prices of individual pork products at Chicago.		
ESBj	mil. 1b.	Ending stocks of beef, carcass weight.		
ESP_{j}	mil. 1b.	Ending stocks of pork, carcass weight.		
PRFBLj	dollars	Weighted average price of Choice- grade steers at 20 markets.		
PRPL_j	dollars	Weighted average price of barrows and gilts at 8 markets.		
PRFCj	dollars	Price per 100 lb. of Good-and Choice-grade 500-800 lb. feeder		
SFj	1,000 head	steers at Omaha. Sows farrowing (quarters are DecFeb., March-May, June-Aug. and SeptNov.)		
\mathtt{PL}_{j}	1,000 head	Placements of cattle on feed in 39 States.		
Exogenous variables				
H13	1,000 head	Dairy cows 2 years old and older on hand Jan. 1.		
PSPSj	head	Pigs saved per sow.		
$\operatorname{PRC}_{\mathbf{j}}$	dollars	Price of No. 3 corn at Chicago.		
XMILB j	mil. lb.	Military consumption of beef, carcass weight.		
XMILPj	mil. lb.	Military consumption of pork, carcass weight.		
CN j	nil. lb.	U.S. civilian population.		
RNGEj	units	Index of range conditions in 17 Western states.		

Fortran variable name	Unit of measure	Description
Тj	units	Time (T=1 in 3rd quarter, 1955)
DPHj	percent	Ratio of commercial pork production to commercial hog slaughter,
Υ _j	dollars	Per capita disposable personal income.
BPCB. j	dollars	Byproduct credit for beef, per 100 lb., liveweight.
BPCPj	dollars	Byproduct credit for pork per 100 1b., liveweight

Table 1.--Description of variables -- Continued

FIGURE 1

QUARTERLY MODEL OF BEEF AND PORK SECTORS OF THE LIVESTOCK-MEAT ECONOMY

U.S. DEPARTMENT OF AGRICULTURE

HEG. ERS 5648-68(5) ECONOMIC RESEARCH SERVICE

In figure 1, endogenous variables are depicted by circles while exogenous variables are depicted as rectangles. Causal ordering is indicated by the direction of the arrows. The lagging of values of variables are indicated by concentric circles. Current period values are inside the center circle (heavy line). Each succeeding concentric circle depicts a time lag of one quarter. The pie at the bottom of the figure contains the January 1 inventory structure; here, each concentric circle depicts a time lag of 1 year.

Beef Cattle Sector

Beef calves on hand January 1 are determined from the calf-crop (derived from the beef cow inventory the previous year) and the average annual feeder cattle price. The inventory of beef heifers for herd replacement (not those on feed) which makes up the future input to cow inventories depends on the number of beef calves on hand a year earlier and the feeder cattle price. Beef cow slaughter throughout the previous year is determined by the number of beef cows slaughtered from previous inventories and the feeder cattle price. The number of beef cows on hand January 1 is then a function of the previous year's inventory plus inputs from heifers on hand the previous year minus the outflow of cows in the inventory through cow slaughter.

In the fed beef subsector, the fed cattle marketed any quarter is determined by the placements of cattle on feed in previous quarters. These cattle form the basis of commercial slaughter of fed cattle. Commercial slaughter of fed cattle on a liveweight basis is, of course, affected by the average weight of fed cattle slaughtered, which, in turn, depends to some extent on the beef-corn ratio at the time the cattle were placed on feed (indicated here as a two-quarter lag). The beef-corn ratio plays an important role in determining the feeding program and the weight of cattle put on feed. Military consumption is then subtracted from fed beef production and the remaining quantity converted to a per capita consumption basis. The wholesale price of fed beef is considered to be a function of per capita consumption, per capita consumer income, the per capita supply of nonfed beef available, and a trend term representing a shift in consumer demand. Cattle prices, on a liveweight basis at primary markets, are subsequently derived from the wholesale price and the byproduct value (considered exogenous to this study). Feeder cattle prices are subsequently determined by fed cattle prices, but are also conditioned by earlier feeder cattle price levels which form part of the gross feeding margin realized from cattle just sold. Finally, placements in the next period are drawn from inventories of feeder cattle on hand January 1 subject to changes in feeder cattle and corn prices.

In the nonfed subsector of the beef economy, commercial slaughter on a liveweight basis depends on both beef cow slaughter and dairy cow cull.

In addition to cow cull, this slaughter is affected by the status of range conditions in the Western States (indicating the carrying capacity of the range), corn prices (representing the cost of feed inputs), feeder cattle prices, and average weights. In addition to seasonal variation, average weights of nonfed cattle have shown an upward trend over time. Foreign trade is hypothesized to take place primarily in the nonfed beef sector. Both imports and exports are shown to be functions of previous values of nonfed beef supplies and wholesale prices. The per capita supply available for consumption is then determined as a summation of nonfed production, military consumption, imports, exports, and beginning stocks divided by civilian population. Ending stocks are still included in supply inasmuch as they theoretically could be consumed at a price. The wholesale price is then determined as a function of per capita nonfed beef supply, per capita supply, and per capita fed beef consumption (supply). Exogenous variables determining wholesale prices of nonfed beef are time (representing shifts in consumer tastes) and income. Ending stocks are determined simultaneously with the wholesale prices.

Pork Sector

The pork sector differs from the beef sector in that January 1 inventories are not reported for breeding stock. The inventory is represented by the number of sows farrowing. Farrowings are wholly a function of lagged variables. The previous period's sow farrowings are adjusted by the corn-hog ratio existing at breeding time. Commercial hog slaughter is a function of lagged values of sows farrowing and pigs saved per sow, and a lagged corn-hog ratio. Pork imports and exports, although minor, are hypothesized as functions of the wholesale pork price and earlier per capita supply. Imports, exports, and ending stock minus military consumption are added to domestic pork production to determine per capita supply for consumption. This becomes an initial input into the price equation along with per capita supplies of nonfed beef. consumer income, and a trend term as proxy for consumer taste. Ending stocks are determined simultaneously with pork price, as in the case of beef. Finally, live hog prices are a function of the wholesale price and the byproduct credit.

ESTIMATION OF BASIC BEHAVIORAL RELATIONSHIPS

The basic functional relationships embodied in the model were estimated initially by ordinary least-squares procedures. In general, the data used for estimating the least-squares relationships covered the 1955-66 period; relationships for which different time periods were used are indicated individually. In choosing among alternative behavioral relations, the selection was generally made on the basis of ability to explain variance (R^2) and the level of significance of the coefficients. In general, coefficients were accepted if they were of the right economic sign and if they were significantly different from zero at the 10-percent level. However, some relationships were used where significance occurred only at the 25-percent level. When a set of seasonal dummy variables was used, the entire set of coefficients was employed regardless of their individual significance.

Marketings, Commercial Slaughter, and Meat Production

Functions estimated for domestic production are presented individually for the fed beef subsector, the nonfed beef subsector, and the hog sector. After several different formulations had been tried, it was decided to estimate domestic production of meat on a carcass weight basis.

Fed beef subsector: Marketings of fed cattle from feedlots in the United States (39 States) were estimated in 1,000-head units. The average weight of fed cattle was subsequently estimated with the product of weight and head indicating commercial slaughter of fed beef (liveweight equivalent); the last term is an identity. Inasmuch as the original data development involved the assumption of a 60-percent dressing percentage for all fed beef, liveweight commercial slaughter was converted to a carcass weight basis using the coefficient of 0.6.

Marketings of fed beef cattle in the United States were estimated separately for each quarter because the explanatory variable used involved differing time lags. The quarterly marketing functions (equations 1-4) were developed from data on placements and marketings from mid-1957 through mid-1968.

1-1

$$MFC1_{t} = 514.0 + 0.3748 PL(\xi 1, 2, 3)_{t-1}$$
(1)

$$R^{2} = .99$$
(2)

$$MFC2_{t} = -441.0 + 0.3340 PL(\xi 3, 4)_{t-1} + 1)_{t}$$
(2)

$$R^{2} = .99$$
(2)

$$R^{2} = .99$$
(3)

$$R^{2} = .99$$
(3)

$$R^{2} = .99$$
(4)

$$R^{2} = .99$$
(4)

$$R^{2} = .99$$
(4)

In each case, 11 observations were involved. In the first quarter of the year, marketings of fed cattle were a function of cattle placed on feed the first three quarters of the previous year. Initially, placements from each quarter were used as separate explanatory variables, but owing to high intercorrelation, the three variables were summed into one explanatory variable. Although several different combinations of lagged quarters were tried, the combination used explained the highest percentage of the variance in the dependent variable. This average lag in the time span of the explanatory variable indicates the approximate length of time on feed. Economic indicators of lagged steer prices and beef-corn ratios were not considered significant.

Marketings in the second quarter (equation 2) employ an average two-quarter lag in placements, while the third-quarter marketings are best estimated by considering only placements of the previous two quarters. Evidently, the bulk of variation in third-quarter marketings comes from variations of placements in the first two quarters of the year. This seems logical because fed cattle marketed during the summer are usually placed on feed to shorten the feeding period.

Marketings in the fourth quarter (equation 4) employ the same placements variable as used in the first quarter of the year. Again, variation in placements in this period is evidently most significantly associated with variations in marketings during the fourth quarter.

Functions for estimating the average weight of fed cattle employ a lagged dependent variable relationship (equations 5-8).

$$AWTFl_{t} = -204.0 + 1.1362 \quad AWTF4_{t-1} + 3.64 \quad (PRFBL3/PRC3)_{t-1} \quad (5)$$

$$(0.251) \quad (2.32)$$

$$R^2 = 85$$

$$AWTF2_{t} = 271.0 + 0.6958 \quad AWTF1_{t} + 2.24 \quad (PRFB14/PRC4)_{t-1}$$
(6)
(0.122) (1.13)

$$AWTF3_{t} = 280.0 + 0.6599 \quad AWTF2_{t} + 2.84 \quad (PRFBL1/PRC1)_{t}$$
(7)
(0.170) (1.35)

$$R^2 = 87$$

$$WTF4_{t} = 478.0 + 0.5304 \text{ AWTF3}_{t} + 1.61 (PRFBL2/PRC2)_{t}$$
(8)
(0.174) (.186)

 $R^2 = 75$

The values of the dependent variable in the previous quarter is adjusted by the value of the beef-corn ratio two quarters earlier. This beef-corn ratio was the one existing at the time most of the cattle were placed on feed. Feeding programs are planned to carry cattle to heavier weights when the ratio is high at the time cattle are put into feedlots; conversely, low beef-corn ratios encourage a lighter weight feeding program. The coefficient of the lagged dependent variable is greater or less than unity as the average seasonal pattern over the historical period changed. In other words, during the 1957-68 period average weights in the first quarter increased over those in the fourth quarter. Still, the average weight in the second quarter was usually lighter than the average weight in the first quarter.

Nonfed beef subsector: Commercial slaughter (marketings) of cattle not on feed includes all other cattle slaughtered. This variable was estimated on a liveweight basis with the average weight of nonfed cattle being one of the explanatory variables. In developing the function, the average cull rate of dairy cows and the seasonally adjusted average cull rate of beef cows was used to delete this cow cull from nonfed cattle slaughter. The residual was then estimated as a function of the other variable, and the results were then recombined into one function. Thus, the residual nonfed cattle slaughter is a function of the corn price and feeder cattle price lagged one quarter, conditions of ranges in the Western States, the average weight of nonfed marketings, and seasonal adjustment factors.

$$MNFC(j)t = -770.27 + 0.0625 \text{ HL}_{3t} * (J) *H23_{t} + 1568.51 \text{ PRC}(j-1)t (405.67) PRC(j-1)t (12.123) PRFC(j-1)t + 24.05 RNGE(j)t - 0.3942 AWTNF(j)t (2.509) (2.509) (2.509) AWTNF(j)t -208.81 W1 - 146.34 W2 - 318.89 W3 R2 = .81 (9) *j = 1 = 0.0389 j = 3 = 0.0490 j = 4 = 0.0430 .1670$$

The function for estimating the average weight of nonfed cattle is: $AWINF(j)t = 915.0 + 0.783 T_{(j)t} - 1.41 WI - 21.65 W2 - 19.40 W3 (10) \\ (0.133) (0.133) T_{(j)t} - 1.41 WI - 21.65 W2 - 19.40 W3 (10) \\ (4.77) (4.77) T_{(4.77)} = 64$ Although many economic variables and production variables were considered, the average weight of nonfed cattle appeared to be best explained as a function of a trend term and seasonal factors. Equation 11, an identity, indicates that the dressing percentage of nonfed cattle varied only seasonally.

$$DPNFB_{(j)t} = 0.512 W1 + 0.524 W2 + 0.526 W3 + 0.511 W4$$
(11)

Dressont coefficients were somewhat higher during the spring and summer when cattle are in better flesh.

Hog sector: Commercial hog slaughter (equation 12) was also estimated on a liveweight basis.

$$CHS_{(j)t} = -4145.98 + 0.5273 SF_{(j-2)t} + 0.1721 SF_{(j-3)t}$$
(12)
$$-54.0487 PRPL_{(j-1)t} - 719.5827 PRC_{(j-1)t}$$
(12)
$$+1168.7608 PSPS_{(j-2)t}$$
(308.070)
$$R^{2} = 0.87$$

Commercial slaughter is a function of pigs produced from sows farrowing two and three quarters previously. The coefficient on the sows farrowing variable lagged three quarters is approximately one-third the size of the coefficient on the sows farrowing variable lagged two quarters. The lower value of this coefficient is probably due to the fact that the three-quarter lag in the explanatory variable estimates slaughter coming from cull sows plus a few hogs which took an above average time to finish. Hog slaughter estimated by sow farrowings lagged two quarters represents most of the barrow and gilt slaughter.

The hog-corn price relationship is divided into the separate effects of the hog price lagged one quarter and the corn price lagged one quarter rather than the more conventional ratio of hog-to-corn price. In this relationship, the magnitude of the coefficient on the corn price is approximately 10 times larger than the coefficient on the hog price variable because of the relationship of the magnitude of the mean values of these two variables. Both variables carry a negative sign. An increase in the price of corn reduces slaughter weights the next period as production costs are raised. An increase (decrease) in the hog price increases (decreases) gilt retention and also affects sow cull. Pigs saved per sow enters into the commercial slaughter relationship because this function needs a variable to indicate productivity per sow. In developing the model, pigs saved per sow is treated as an exogenous variable; in a projection period it can be estimated using a function of the form $Y = ae^{bt}$. This function is easily estimated in natural logarithms:

$$\ln PSPS_{(j)t} = 1.93641 + 0.0013 T$$
(13)

$$R^2 = 0.68$$

While developing the model, this coefficient was considered as an exogenous variable and reported data were used. The relationship presented in natural logarithms could be used in a projections period:

$$\frac{\ln DPH(j)t}{(0.00018)} = 4.02091 + 0.00226 T$$
(14)

 $R^2 = 0.80$

The dressing percentage of hogs, which is used to convert commercial hog slaughter to pork production on a carcass weight basis, follows the same functional form as pigs saved per sow.

Imports and Exports

Imports and exports of beef are not separated into fed and nonfed beef components under the assumption that about all foreign trade in beef is of a quality grade less than "Good." A considerable portion of our beef exports does consist of fed beef going to foreign markets patronized by American nationals. However, given the rather small magnitude of this variable, it is expedient to compute it as a nonfed item. Imports and exports of pork are of a considerably less magnitude than imports of beef. Nonetheless, it is necessary to include them as part of the total supply picture. Moreover, the volume of pork imports has been increasing in recent years.

Imports of beef (equation 15) are estimated as a function of the average price of commercial cow beef during the previous two quarters and the average per capita supply of nonfed beef in the past two quarters.

$$IB_{(j)t} = 761.34 - 172.0W - 3.344 ((PRNFB_{(j-1)t} + PRNFB_{(j-2)t})/2.0) (15) (37.67) (4.18) -37.585 ((PNFBS_{(j-1)t} + PNFBS_{(j-2)t})/2.0) (15.52) R2 = 0.64$$

The price variable carries the wrong economic sign. However, since it was not a statistically significant variable, its sign was not of great concern. The variable was left in the equation as opposed to a less satisfactory procedure of incorporating it in the intercept at its average value. The lagged supply variable is consistent in its negative effect on imports. As domestic production of nonfed beef increases, importers are signaled to decrease their orders for imported products. The dummy variable, W, has a value of 1 for 1955 through the first quarter of 1958. Beef imports were at a considerably lower level during this time and suddenly shifted upward as the rapid rise in demand for fed beef reduced the available supply of nonfed products.

Exports of beef were considered a function of the same variables as imports:

$$XB_{(j)t} = -0.65 - 1.86W - 0.686 \quad (PRNFB_{(j-1)t} + PRNFB_{(j-2)t})/2.0) \quad (16)$$

$$+3.977 \quad (PNFBS_{(j-1)t} + PNFBS_{(j-2)t})/2.0)$$

$$(1.38) \qquad B^{2} = 0.45$$

In this case, the signs associated with the coefficients are consistent with economic logic. When the lagged wholesale price of beef increases, the supply of beef available for export falls as the profitability of exporting is reduced. Conversely, an increase in the supply of domestic beef increases the amount which can be exported.

Imports and exports of pork are estimated as a function of similar variables--the average two-quarter lagged price of wholesale pork products, the per capita supply of pork lagged one quarter, and a trend term. In these functions (equations 17 and 18), the positive coefficient on the lagged price indicates that, as domestic price increases, imports of pork stimulate increased orders while high domestic prices reduce the amount of pork supplied for export.

$$IP_{(j)t} = -92.56 + 1.916 \quad ((PRFW_{(j-1)t} + PRFW_{(j-2)t})/2.0) \quad (17)$$

$$+0.928 T_{(j)t} + 2.605 PCPS_{(j-1)t}$$

$$(0.10) \quad (1.08) \quad (1.08)$$

$$R^{2} = 0.79$$

$$XP_{(j)t} = -2.40 - 0.18 ((PRFW_{(j-1)t} + PRPW_{(j-2)t})/2.0)$$
(18)
+0.285 T_{(j)t} + 2.85 PCPS_{(j-1)t} - 6.44 W1_{(6.30)}
-7.48 W2 - 10.18 W3_{(5.03)} (3.94) R² = 0.35

The positive sign on the trend term in both equations indicates a temporal increase in foreign trade in pork. The positive sign on the lagged domestic supply of pork in the export equation indicates that larger domestic production stimulates pork exports. The positive sign on the import function, although statistically significant, appears to be contrary to economic reasoning. This lagged positive value may be associated with a rather high intercorrelation with the price variable or it may be associated with a trend in both variables. The set of dummy variables on the export function indicates a statistically significant amount of seasonal variation, especially in the third quarter.

Per Capita Supply Available for Consumption

Per capita supply available for consumption is equivalent to per capita consumption with the exception that ending stocks have not been excluded. Theoretically, a price exists which will clear the market of all products offered for sale including stocks. Therefore, ending stocks and price are jointly determined (see discussion pp. 17-19) from the entire supply available.

In the case of fed beef supplies, the per capita supply available for consumption is considered identically equal to per capita consumption in that an explicit assumption is made that stocks of fed beef consist only of those in the consumer distribution "pipeline." Therefore, the term "per capita consumption" is used for fed beef in the model. Equation 19 shows per capita fed beef consumption as identically equal to fed beef production minus 50 percent of military consumption. Military consumption of beef is assumed to be divided equally between fed and nonfed beef products.

A per capita figure is derived by dividing total quantity by civilian population.

$$PCFBC_{(j)t} = (BPF_{(j)t} - 0.5 \text{ MILB}_{(j)t})/CN_{(j)t}$$
(19)

$$PNFBS_{(j)t} = ((ESB_{(j-1)t} + BPNF_{(j)t} + IB_{(j)t} - XB_{(j)t}) + O.5 MILB_{(j)t})/CN_{(j)t}$$

$$(20)$$

$$PCPS_{(j)t} \equiv (ESP_{(j-1)t} + PP_{(j)t} + IP_{(j)t} - XP_{(j)t} - MILP_{(j)t})/CN_{(j)t}$$
(21)

Alternatively, the per capita supply of nonfed beef available for consumption is equivalent to the beginning stocks of the period (ending stocks of the previous quarter) plus domestic production and imports, minus exports and 50 percent of military consumption. This quantity is again divided by civilian population to achieve a per capita basis.

The per capita supply of pork available for consumption considers the same variables as in the case of nonfed beef. Of course, all military consumption is excluded from this relation.

Wholesale Market Demand and Ending Stocks

The wholesale rather than the retail market is chosen as the appropriate pricing level. Consumers patronizing retail stores are price takers and quantity adjusters; their demand is reflected through the quantities they purchase. Since the buyers representing retail distribution organizations bargain with salesmen representing meat packers and meat processors, the wholesale market level probably represents a true interaction of supply and demand forces in a bargaining sense.

In the preceding section, joint determination of prices and ending stock was discussed. Therefore, a simultaneous system of five justidentified equations (22-26, or appendix B) was developed. The endogenous variables are the wholesale price of fed beef, the wholesale price of commercial cow beef, the composite wholesale pork price, ending stocks ci beef, and ending stocks of pork. The per capita supplies available for consumption of fed beef, nonfed beef, and pork enter into the system as predetermined endogenous variables along with the exogenous variables of income and a trend term representing consumer taste. An additional set of dummy variables was employed to differentiate between seasons of the year by shifting the value of the constant term. The structural equations derived from the reduced form system are presented in appendix B. These coefficients may be useful in deriving direct and cross price and income elasticities. The estimating equations for prices and ending stocks presented here are the reduced form system omitting certain insignificant variables. The per capita supply of pork was omitted from the fed beef price equation and the per capita supply of fed beef was omitted from the other two price equations. These variables were omitted either because of a rather low significance in a statistical sense or because of a sign different from that expected from economic theory.

In obtaining the initial least-squares fit, income, consumption of fed beef, and ending stocks of beef were used in deviation-from-trend form. This eliminated the problem of high intercorrelation with the trend term. The trends were then reincorporated into the coefficients after the initial fit by least squares. Thus, a standard error cannot be reported for the trend term.

Price of fed beef carcasses, commercial cow beef carcasses, and value of wholesale pork products: The wholesale prices of these three products are estimated by equations 22, 23, and 24. They are estimated as functions of the predetermined per capita supplies available for consumption, income, trend (representing long-time consumer demand), and seasonal intercept shifters.

$$PRFBW(j)t = 68.30 - 3.3237 PCFBC(j)t - 3.1563 PNFBS(j)t$$
(22)
+ 0.02253 Y(j)t + 0.1106 T(j)t - 0.94 WI
(0.005) - 0.21 W2 + 3.06 W3
(0.83) (0.68)
$$R^{2} = 0.83$$

PRNFB(j)t = 81.54 - 4.4403 PNFBS(j)t - 1.1698 PCPS(j)t
+ 0.01112 Y(j)t - 0.2363 T(j)t - 6.61 WI
(0.007) Y(j)t - 0.2363 T(j)t - 6.61 WI
(1.11) - 3.94 W2 + 0.53 W3
(1.05) (1.16)
$$R^{2} = 0.80$$

PRIW(j)t = 49.36 - 0.9945 PNFBS(j)t - 3.3264 PCPS(j)t
+ 0.03727 Y(j)t - 0.6021 T(j)t - 2.76 WI
(0.006) - 4.94 W2 - 4.61 W3
(0.94) (1.03)
$$R^{2} = 0.91$$

The high degree of price flexibility, particularly on the own-price supply relation, is interesting. An increase in the per capita supply of nonfed beef appears to have an almost equal effect as an increase or decrease in the per capita consumption (supply) of fed beef on the Choicegrade carcass price. The wholesale price of pork products seems to be influenced more by consumer incomes than are the beef prices. This income effect is estimated after allowing for long-term shifts in consumer tastes (which are positive in the case of fed beef and negative in the case of manufacturing beef and pork products).

Ending stocks of beef and pork: Functions estimating ending stocks are shown in equations 25 and 26.

$$ESB_{(j)t} = -430.82 + 26.26 PCFBC_{(j)t} + 17.91 PNFBS_{(j)t}$$
(25)
+ 10.27 PCPS_{(j)t} - 0.0115 Y_{(j)t} - 0.7872 T_{(j)t}
(3.78)
- 28.0 W1 - 46.7 W2 - 39.6 W3_{(14.2)} (14.4) (14.1)
R² = 0.80
$$ESP_{(j)t} = -852.91 + 19.20 PCFBC_{(j)t} + 18.56 PNFBS_{(j)t}$$
(26)

 $(0.53) + 42.50 \text{ PCPS}_{(j)t} - 0.0010 \text{ Y}_{(j)t} - 3.37 \text{ T}_{(j)t}$ (4.24) + 111.2 W1 + 120.4 W2 + 5.0 W3 (15.91) + 116.17 + 115.78 W3 $R^{2} = 0.95$

Income appears in these equations because it is part of the reduced form system. Its effect is minimal and the statistical significance is inconsequential. A price increase for any of the three commodities results in an increase in stock. The negative coefficient on the trend term indicates that there is a decline in stocks over time, probably due to efficiencies in the "pipeline." Ending stocks of pork also exhibit considerably more seasonal fluctuation than ending stocks of beef. This probably stems from a need to store certain pork products for consumption which differs from seasonal production.

Primary Market Demand

The prices of Choice-grade steers, barrows and gilts, and feeder steers are considered in this subsection, which might also be called a section on margin relations. The functions are estimated statistically; however, these prices could be derived by subtracting a marketing margin from the liveweight equivalent of the wholesale price.

Prices of Choice steers and barrows and gilts: The estimating equations for live animal prices are:

$$PRFBL_{(j)t} = -4.51 + 0.6393 PRFBW_{(j)t} + 0.8018 BPCB_{(j)t}$$
(27)
(0.020)
$$R^{2} = 0.98$$
$$R^{2} = 0.98$$
(j)t + 1.1967 BPCP_{(j)t} (0.304) (j)t (28)

The price of Choice steers at 20 major terminal markets and the price of barrows and gilts at eight markets are estimated as functions of the wholesale prices and the national estimate of the byproduct credit. The byproduct credit is taken as an exogenous variable because byproduct prices are determined in a large part by exogenous demand factors (e.g., the demand for shoes).

Feeder animal prices: Individual functions for each quarter were estimated for feeder steer prices (Good and Choice 500-800 pound steers are used as a specific quality level). These equations were estimated by quarters since range conditions are not used in the winter (first) quarter and, additionally, the coefficient on the Choice steer price varies by a substantial amount between quarters. The feeder steer price (equations 29-32) is estimated as a function of the Choice steer price, the range conditions where applicable, and a gross price margin on steers just marketed.

$$PRFC_{1t} = -5.33 + 1.4322 PRFBL_{1t} - \frac{0.2329}{(0.070)} APM_{1t}$$
(29)

$$R^2 = 0.95$$

 $R^2 = 0.98$

$$PRFC_{2t} = -15.64 + 1.4540 PRFBL_{2t} - 0.2729 APM_{2t} + 0.1534 RNGE_{2t} (30) (0.049) R^{2} = 0.97$$

$$PRFC_{3t} = -23.74 + 1.7175 PRFBL_{3t} + 0.1649 (0.080) RNGE_{3t} - 0.3104 APM_{3t} (31) (0.066) R^{2} = 0.94$$

$$PRFC_{4t} = -13.79 + 1.4215 PRFBL_{4t} + 0.110 (0.059) RNGE_{4t} - 0.2432 APM_{4t} (32) (0.067) R^{2} = 0.95$$

The gross price margin (APM) is calculated as an identity weighting the current selling price of Choice steers and the price of feeder animals lagged two quarters. This gross price margin accounts for the 400-pound gain that would be put on a hypothetical 650-pound feeder steer during an average feeding period.

$$APM_{(j)t} \equiv 2.625 \ PRFBL_{(j)t} - 1.625 \ PRFC_{(j-2)t}$$
 (33)

. . . .

The coefficient on the Choice steer price is greater than 1.0, indicating the capitalization of the value of the initial weight of the feeder animal values at the price of the finished product into the feeder price. The coefficient on range conditions is positive, indicating that as range conditions improve the rancher is in a better bargaining position to hold his cattle for a higher price. The negative sign on the price margin indicates that it functions essentially as an adjusting factor which can be interpreted to mean that, if the price margin is good, feeders tend to expect a less favorable situation to exist in the next feeding period because more people probably will be feeding cattle. Alternatively, a resulting poor price margin may be interpreted as an expectation of better profits for the next batch of cattle.

Supply Response and Livestock Inventories

The feedback of prices into subsequent production decisions, which preserves the recursiveness of the system, comes in the following set of production equations. Once the production decision is made and breeding stock is retained, subsequent production and slaughter of livestock is only a matter of the biologic gestation period and feeding process. Supply response in the hog sector can be measured only in terms of sows farrowing, because a January 1 inventory of breeding stock is no longer reported. In the case of fed cattle, supply response is measured in terms of placements of cattle on feed. Total supply response in the entire beef cattle sector is measured in terms of the January 1 inventory of breeding stock.

Sows farrowing: The estimating equation employs a lagged dependent variable relationship augmented by the year-to-year change in the dependent variable during the previous quarter:

$$SF_{(j)t} = -82.67 + 0.89764 SF_{(j)(t-1)} + 45.175 (j-2)t$$
(34)
$$-317.48 FRC_{(j-2)t} + 0.3354 SF_{(j-1)t} - 0.3354 SF_{(j-1)} (j-2)t (t-1) (j-2)t$$
(34)
$$R^{2} = 0.95$$

This relationship makes use of the serial correlation in the data. The economic explanatory variable of hog price and corn price explains about two-thirds of the variance in sows farrowing. Obviously, an increase in hog prices leads to an increase in sows farrowing, whereas an increase in feed prices (represented by the price of corn) leads to a reduction in sows farrowing. The combination of lagged values of the dependent variables is simply mechanical and represents no economic response. Numerous other economic variables were tested, but none were found that reduced the unexplained variance by a significant amount over and above the hog-corn ratio.

Cattle: Placements of cattle on feed in 39 States are estimated separately by quarter using equations 35-38.

$$PL_{1t} = -5539.0 + 0.2488 + 23_{t-1} + 86.20 (PRFBL_{1t}/PRC_{1t})$$
(35)

$$R^{2} = 0.98$$

$$PL_{2t} = -5233.0 + 0.2490 + 21_{t} + 96.61 + 96.61 + 98FBL_{2t}$$
(36)

$$R^{2} = 0.98$$

$$R^{2} = 0.98$$

$$PL_{3t} = -4589.0 + 0.3011 + 21_{t} + 75.14 + 75.1$$

$$PL_{4t} = -3638.0 + 0.2728 + 97.83 (PRFBL_{4t}/PRC_{4t})$$
(38)
(0.020) (33.75)

 $R^2 = 0.98$

These equations are estimated separately for each quarter because different lagged inventory variables are employed for each quarter. In the first and fourth quarters, the appropriate lagged value of the beef cow inventory is used as the major explanatory variable. Here, the beef cow inventory acts as a proxy for the beef calf crop. This inventory relation is subsequently conditioned by the current beef-corn ratio. In the spring and summer quarters, the lagged inventory relation is the January 1 number of calves less than 1-year old. In these seasons of the year, placements come from older cattle as opposed to calf placements. Again the beef-corn ratio is employed in the summer quarter. However, the steer price alone yielded a better estimate in the second quarter than did the beef-corn ratio.

January 1 beef cattle inventories: The yearend inventory of beef calves less than 1 year of age is based on the current year's calf crop using the previous **yearend** beef cow inventory as an indicator of calves born:

$$H21_{t} = -5632.0 + 0.8888 H23_{t-1} + 0.5968 \bigtriangleup^{2} H23_{t-1}$$
(39)
+121.22 PRFCA_{t-1}
(49.49)
$$PRFCA_{t-1}$$

The calf inventory also increases or decreases with the rate of change in the beef-cow inventory (the second difference of beef-cow numbers) and the annual average feeder calf price. As feeder prices increase, more calves are either retained for feeding or for the breeding herd.

The January 1 inventory of beef heifers 1-2 years old is based on the previous January 1 calf inventory, but varies directly with the annual average feeder price:

$$H22R_{t} = -117.60 + 0.27791 H2I_{t-1} + 57.5855 PRFCA_{t-1} + 809.74 W$$
(40)
(0.006) (5.93) (71.95)
$$R^{2} = 0.99$$

Replacements for the herd are increased as prices rise. A dummy variable (W) was used in 1955 to improve the general fit of the equation.

Commercial beef cow slaughter during the year was developed in a two-step procedure:

$$CBCS_{t} = 536.0 + (0.1670 / H23_{t} - 1.0636 / H23_{t} - 39.39 PRFCA_{t} (41) (0.1428 / (0.104) (24.97) + 0.8412 W \Delta^{2} H23_{t} (0.195) R^{2} = 0.95$$

An average cull rate of 0.167 from the January 1 beef-cow inventory was subtracted from total cow slaughter from 1955 through 1960 and an average cull of 0.1428 was subtracted thereafter. Inspection of the data revealed a shift in the average cull rate after 1960. The residual slaughter (a positive or negative quantity) was then estimated as a function of the second difference of the beef-cow inventory and the current year's feeder price. The inverse variation of this residual with the rate of change in the inventory is logical. A cow cull greater than average occurs when the inventory is increasing at a decreasing rate (a negative second difference). On the other hand, the cow cull will be below average when the inventory is being built at an increasing rate (a positive second difference). Finally, cow cull is reduced somewhat as feeder calf prices increase. The dummy variable W takes on a value of 1.0 when the annual average feeder price exceeds \$28.00.

Given the estimates of heifer replacement and beef-cow slaughter, the January 1 beef-cow inventory may be estimated as an identity. A 4-percent death loss is assumed on the beginning inventory.

$$H23_t = 0.96 H23_{t-1} + H22R_{t-1} - CBCS_{t-1}$$

EMPIRICAL DEVELOPMENT OF THE MODEL

(42)

The quarterly estimating equations and identities outlined in the previous section were incorporated into a computer program using the Fortran IV computer language. These equations were ordered to maintain the recursive mechanism of the system. The program commences by estimating relationships for the third quarter followed by the fourth quarter, the January 1 inventory estimates, the first quarter, and completes 1-year's estimates with the second quarter. The program was written to commence as of a July 1 "third quarter" so that the most recent January 1 inventory estimate available in mid-February would enter into the relationships as available data. In fact, many livestock production decisions are made during the summer months with ensuing production activity carried out during the fall, winter, and spring.

In developing the model, an initial computer run was made commencing with the values of lagged endogenous variables as of July 1, 1955. The model was operated over a 13-year period to June 30, 1968. Throughout these 13 annual iterations over four quarters, the output of one period becomes the lagged endogenous values of the next period. Exogenous variables as described in tables 10-12 of appendix A are available for each time period.

The completed price-output computer model is shown in appendix D. The development of the model, including the addition of numerous operating rules, is discussed in subsequent sections. Still, the reader might with to glance at the model at this time to familiarize himself with the general structure of the computer model.

Initial Performance of the Model

The initial estimates of the model as operated for the first time is illustrated by the dashed lines in figure 2. Twelve variables were selected from the 25 estimated to illustrate the predictive ability of the initial run. The dashed lines indicate the deviation of the predicted values from the historical data.

As the program progressed through time, more error of a cumulative nature occurred. Several variables indicated a countercyclical performance in later years; in some cases, an upward trend in the error is evident. However, during the initial stages of building the model, it was encouraging that the error buildup did not reach magnitudes which produced estimates completely out of the relevant range. Despite the final estimates being some 13 years away from any reported endogenous data, price estimates were still within the historical range of the data.

Developmental Procedures

The objective of the computer model of the livestock-meat economy is to approximate its price and output performance (the data) of the historical period. After the initial run, the model was allowed to progress first 2 years, then 3 years, and so on up to June 30, 1970. At the first sign of a substantial error in the estimate of a variable, the situation was examined to determine the cause of this error buildup. At this point, an operating rule was introduced into the model based on an economically logical behavioral relationship which could be postulated to have caused the prediction error. For example, at very low prices, supply response may not fall as rapidly as when prices are in the middle of the historical range.

When an operating rule was introduced, estimation of the endogenous variables was recommenced as of July 1, 1955, in every case. The model was then operated until a new error of substantial magnitude appeared. At that point, a new operating characteristic was introduced and the model was again restarted as of July 1, 1955.

In some instances, decision rules introduced into the model produced unexpected errors in an earlier period. For example, a new operating rule introduced at an earlier period was the result of a substantial error later on. When this was the case, a different operating characteristic had to be substituted in the earlier period.

In every instance of a change in an operating characteristic or the introduction of a new operating characteristic, <u>the operation of the computer model was restarted as of July 1, 1955</u>. This type of interaction between the researcher and the computer model was continued until all historical data were satisfactorily reproduced to June 30, 1970. A more comprehensive discussion of the problems in adjusting dynamic models was previously published by the author (13).

Operating Rules

Over 100 operating rules were introduced into the model over the 15-year validation period. The incidence of the necessity for introducing these operating characteristics fell approximately as follows: Six operating rules were introduced on the marketings of fed cattle and nine more were introduced on the average weight functions. Approximately 20 rules were introduced on the estimates of nonfed marketings. Slightly more rules were necessary for the nonfed function, since part of the corrections in the fed cattle sector fell back in the placements equations. Sixteen operating rules were introduced on the commercial hog slaughter function; 15 were introduced on the foreign trade equations for beef. Approximately 20 rules were introduced in the wholesale demand functions and two operating rules were necessary on the ending stock equations. No operating characteristics were introduced in the Choice steer and hog price functions, but seven operating rules were introduced on the feeder price functions. Fourteen operating characteristics were introduced on the sows-farrowing equations with a similar number introduced on placements functions for fed cattle. Ten rules were introduced on January 1 inventory relations.

The entire set of operating rules introduced into the model are described in detail in appendix C. The operating rules applied fell into three general categories. One type of operating rule is illustrated by equations 43 and 44:

$MFC2_{t} = a + b \not\leq PL_{t-k}$	(43)
IF $(PRPL1_{t-1} - PRPL1_t) > 6.00$	
$MFC2_t = 1.05 MFC2_t$	(44)

In the original relationship (equation 43), marketings of fed cattle in the second quarter are estimated as a function of lagged placements. However, if the price of hogs at eight markets in the first quarter fell by more than \$6.00 from year-earlier levels, then equation 44 would be employed wherein marketings in the second quarter are increased by 5 percent. The justification of a change in economic response is that a rather rapid and substantial drop in hog prices induced a shift to some short-fed cattle feeding operations in the second quarter resulting in marketings above that indicated by lagged placements. (Short-fed cattle are those placed and marketed in the same quarter.) The magnitude of the operating characteristic (a 5-percent increase) reflects the fact that this was the amount necessary to adjust the model for the particular error that occurred. In some instances, operating characteristics functioned on more than one occasion in the historical period. In such cases, the researcher was able to develop a generalization for the rule. However, when the rule functioned only once, a general statement could be made. The year(s) in which the operating characteristics functioned are shown in appendix C.

Another type of operating characteristic is illustrated in equations 45 and 46:

$$AWTF3_{t} = a + b AWTF2_{t} + c (PRFBL1/PRC1)_{t}$$
(45)
IF (PRC1_{t} < 1.10)
$$AWTF3_{t} = a + b AWTF2_{t} + c' (PRFBL1/PRC1)_{t}$$
(46)
where c'c c

In equation 45, the average weight of fed cattle marketed in the third quarter is a function of its lagged value in the second quarter and the beef-corn ratio lagged two quarters (the beef-corn ratio which existed at the time most of the cattle were put on feed). However, if corn prices were quite low, in this case less than \$1.10, the program was instructed to shift to equation 46 where a different coefficient is employed. In this case, the value of the new coefficient C' is less than the value of the original coefficient C. This rule (which functioned in both 1962 and 1968) indicated that the high beef-corn ratio (induced by the low corn price) resulted in a tapering off of producer response to the rather high beef-corn ratio. Here, feedlot operators modified the feeding program because they probably did not feel that this kind of a beef-corn ratio would hold for an extended period of time.

A third type of compound adjustment procedure can be illustrated by the wholesale price equation for fed beef in the fourth quarter:

$$PRFBW4_{t} = a - b Q_{t} + c Y_{t} + c T_{t}$$
(47)
IF (PCFBC4)>16.0 and (PCPS4)>18.0
PRFBW4_{t} = 0.9375 PRFBW4_{t} (48)

In general, the wholesale price was estimated as a function of the per capita quantity available, income, and time, as shown in equation 47. The operating characteristic introduced took effect if per capita fed beef consumption was greater than 16.0 pounds per capita and pork supplies were greater than 18.0 pounds per capita. When this situation existed, as it did in 1967 and 1968, equation 48 is used and the price is cut $6\frac{1}{4}$ percent. This cut in price response is based on the combined interaction of a high beef and pork supply reducing the cross-price elasticity. Recall that the per capita pork supply did not normally enter into the beef-price equation.

. *

Validation of the Model

The price-output model was considered a valid representation of the economic activity of the beef and pork sectors when the historical data were reproduced with acceptable accuracy. The deviations of the final simulated values from historical data are shown by the solid line in figure 2.

In general, deviations were minimal. The absolute values of the predicted and historical data are shown in appendix tables 1-10.

Since this is a behavioral model, no attempt was made to obtain simulated values which minimize the error for the entire system. If this were attempted, one would not have constructed a behavioral model of these subsectors. A test statistic similar to a correlation coefficient for evaluating the accuracy of forecasted values was developed by Thiel (13).

$$U = \frac{\sqrt{\frac{(P-A)^2}{n}}}{\sqrt{\frac{z}{\frac{A^2}{n}}}}$$
(49)

In a perfect forecast, the value of this statistic would be zero since the value of the numerator would vanish. The values of the test statistic for all of the variables estimated are shown in table 2. In general, errors were in the magnitude of 2-4 percent.

USES AND LIMITATIONS OF THE MODEL,

The complete model validated over the 1955-70 period is shown in appendix D using the FORTRAN IV computer language. It may be operated over the historical period by entering the appropriate values of the lagged endogenous variables and the necessary values of exogenous variables. Also, an initial first data card specifying the maximum value of the parameter K (which controls the number of years (iterations) the program operates) must be specified. If the program is to be initialized at any period other than July 1, 1955, certain control statements for the initial years of the model must be changed. In general, these statements involved adjustment of intercept values fixed by the original least-squares estimates for early years through the use of a dummy variable. These changes were usually operated in the model by "if statements" which specified use of different functions during the first few iterations of the model. Obviously, if the model is initialized at any other date, appropriate lagged values of endogenous variables and appropriate current values of exogenous variables must be read into the computer as data.

Table 2.--Values of "U-statistic" calculated for 1955-70

MFC = 0.0172	PRFBW = 0.0247
AWTF = 0.0064	PRNFB = 0.0474
MNFC = 0.0416	PRPW = 0.0238
AWINF = 0.0188	ESB = 0.1437
IB = 0.1467	ESP = 0.1150
XB = 0.3074	PRFBL = 0.0265
PCFBC = 0.0173	PRPL = 0.0335
PNFBS = 0.0304	PRFC = 0.0257
CHS = 0.0192	SF = 0.0489
IP = 0.1268	PL = 0.0412
XP = 0.2189	H21 = 0.0089
PCPS = 0.0187	H22R = 0.0124
	CBCS = 0.0398

In general, the model may be used to simulate the effects of structural change introduced into the model, changes in values of exogenous variables, or changes in initial values of lagged endogenous variables over the historical period. In addition, the model may be initialized as of the current date, say July 1, 1970, and projected to any year desired. Values of exogenous variables for the projection period would need to be derived from alternative sources. Usually, independent estimates of population and income can be derived from several Government planning agencies. Values of stochastic exogenous variables such as range conditions probably could be entered at mean seasonal values.

When simulating alternatives, the simulated values should always be compared with the estimated values of the validation run if the simulation is over the historical period. If the simulation is over a projected period, the simulated values should be compared with the simulated base run.

Use as a Projection Model.

Because of the recursive structure of this model, it can be used to project values in future periods. The parameters of this model estimated over the historical period quantify the economic activity of that period which developed under the existing market structure. In this case, the existing market structure may be defined as governmental policies, existing institutions, and attitudes of people involved in daily economic activity in the beef and pork sectors. Therefore, this model has the limitations of any other econometric model in that the economic structure which developed under this set of historical institutions and attitudes is projected into the future. This being the case, such a model cannot forecast institutional change. If the user wishes to use the model as a short-term forecasting tool, he should realize that his forecasts may be in error because of fluctuations in prices and outputs introduced by random effects of institutional change. Thus, it is the author's opinion that such a model may be of more value in making longer-run -- rather than short-term -- prognoses of economic activity in the beef and pork sectors.

Since "the past is prologue," projections are more interesting than studies of historical changes in structure. However, initial experiments with this model will be with policy constraints or structural change over the historical period and then projections of apparent significant and timely changes will follow.

Experiments with Policy Constraints

The effects of either governmental or private policy are, by definition, the constraints on or manipulation of the system in an exogenous sense. These policy effects may be introduced through changes in exogenous variables or through limits imposed upon the behavioral aspects of the system.

Experiments which might be performed on this model through changes in values of exogenous data include a change in the price of feed inputs supported through Government action (indicated in the model by a change in the price of corn), or changes in consumer income through some type of income support payments. Shifts in Government purchase programs might be simulated by subtracting the amount of the per capita Government purchase from per capita consumption at a fixed price, allowing the remainder to be priced in the demand equation, and then calculating a new wholesale price as the weighted average of these two prices.

Examples of institutional policy limits might involve a ceiling on imports of beef and pork or specification of a higher level export program. Price-support operations might be introduced into the model by not allowing either wholesale or live prices to fall below a specified level.

Experiments Involving Structural Change

One form of experimenting with a change in structure which might be initiated from institutional change would involve new values of coefficients, constant terms, or both. As mentioned earlier, the model cannot predict changes of this nature, although it can trace out the effects of such changes when they are made in the model. Independent research studies might be designed to specify the exact changes in coefficients or constant terms for tracing out the effects over time. One form of experimentation with structural change might involve making only percentage adjustments in coefficients or constant terms. While this type of experimentation might show the sensitivity of the model, one could not relate results directly to a changed institutional setting.

One very important consideration when simulating the results of experiments on the model is to make the user vitally aware of all changes that were made and of any and all assumptions involved. For example, if an experiment involving a 10-percent increase in corn prices is assumed, the user must be aware of the basis for this assumption. If he agrees, he can accept the results of the simulated situation. If he does not agree, the user may alternatively wish to specify his own set of assumptions.

SELECTED REFERENCES

(1) Bean, L.H.

1929. The Farmer's Response to Price. Jour. Farm Econ. 11: 368-385.(2) Breimyer, Harold

1955. Demand and Price for Meat. U.S. Dept. Agr. Tech. Bul. 1253.(3) Coase, R.H. and Fowler, R.F.

1937. The Pig Cycle in Great Britain: An Explanation. Economica 4: 55-82.

- (4) Crom, R.J. and Maki, W.R.
 1965. A Dynamic Model of a Simulated Livestock-Meat Economy.
 Agricultural Economics Research Vol. XVII, No. 3, July.
- (5) Crom, R.J. and Maki, W.R.

1965. Adjusting Dynamic Models to Improve Their Predictive Ability. Jour. Farm Econ. 47: 962-972.

(6) Harlow, Arthur A.

1960. The Hog Cycle and the Cobweb Theorem. Jour. Farm Econ. 42: 842-853.

- (7) Hayenga, Marvin and Hacklander, Duane 1970. Short-Run Livestock Price Prediction Models. Michigan State University Agricultural Experiment Station, East Lansing, R.B. 25.
- (8) Hildreth, C. and Jarret, F.G.
 1955. A Statistical Study of Livestock Production and Marketing.
 John Wiley and Sons, New York.

(9) Lorie, J.H.

1947. Causes in the Annual Fluctuations in the Production of Livestock and Livestock Products. University of Chicago, Studies in Business Administration 17: 1-103.

- (10) Maki, Wilbur R.
 1962. Decomposition of the Beef and Pork Cycles. Jour. Farm Econ.44:
 731-743.
- (11) Maki, W.R. and Crom, R.J.

1965. Evaluating Alternative Market Organizations in a Simulated Livestock-Meat Economy. Iowa State University of Science and Technology, Ames, Agriculture and Home Economics Experiment Station R.B. 541, Oct.

(12) Maki, Wilbur R.

1963. Forecasting Livestock Prices and Supplies With an Econometric Model. Jour. Farm Econ. 45: 612-624.

- (13) Suttor, R.E. and Crom, R.J.1964. Computer Models and Simulation. Jour. Farm Econ. 46: 1341-1350.
- (14) Theil, Henry
 1961. Economic Forecasts and Policy. North-Holland Publishing Co.,
 Amsterdam, Netherlands.
- (15) Wells, 0.V.

1933. Farmer's Response to Price in Hog Production and Marketing. U.S. Dept. Agr. Tech. Bul. 359.

(16) Wright, Sewall

1925. Corn and Hog Correlations. U.S. Dept. Agr. Bul. 1300.

Appendix A Data and Values Predicted by the Model (tables 1-11)

Year	: Quarter	•	etings (M			age weight			cial slaught eef (CSFC)	
		Reported	l Predicte	ed:Pred. Rptd.	Reported	Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.
1954	: : : 4	:	1,000 ha	l 		Pounds		: :	Mil. 1b.	
1955	1 2 3	2700	2705	 5	1025 1005	1004	 -1	 2714	 2716	2
1956	: 4 : 1 : 2 : 3	2725 3013 2952 2619	2744 2958 3028 2661 2821	19 - 55 76 42 74	1032 1044 1044 1011	1036 1050 1040 1011	4 -4 0 6	2812 3146 3082 2648 2827	2843 3106 3150 2691 2920	31 -40 68 43 93
1957	4 1 2 3 4	: 2747 : 3073 : 2804 : 2784 : 2624	2021 3041 2737 2990 2747	-32 -67 206 123	1029 1042 1028 1007 1038	1035 1045 1033 1008 1042	3 5 1 4	3202 2883 2803 2724	2920 3176 2828 2944 2861	93 -26 -55 141 137
1958	: 1 : 2 : 3 : 4	2836 2837 3150 2964	2960 2805 3176 2933	124 -32 26 -31	1031 1035 1036 1087	1028 1032 1038 1078	-3 -3 2 -9	2924 2936 3263 3222	3043 2895 3296 3161	119 -41 33 -61
1959	1 2 3 4	3174 3216 3358 3144	3163 3160 3382 3246	-11 -56 24 102	1104 1078 1064 1072	1094 1084 1064 1078	-10 6 0 6	3504 3467 3573 3370	3460 3360 3598 3498	_44 _107 _25 _128
1960	: 1 : 2 : 3 4	3501 3373 3454 3293	3504 3370 3470 3275	3 -3 16 -18	1088 1073 1061 1075	1086 1078 1054 1073	-2 5 -7 -2	: 3809 : 3619 : 3665 : 3540	3806 3635 3659 3514	-3 16 -6 -26
1961	: 1	3571	3535	-36	1094	1091	-3	: 3907 :	3857	-50 Intinued

Table 1.--Quarterly marketings, average weight, and commercial slaughter of fed beef, 1954-70

0[†]0

Year	: Quarter		etings (M		: Average	weight (.	AWTF)		cial slaught eef (CSFC)	er fed
		Reporte	d Predicte	ed: Pred.	Reported	Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.
1962 1963	2 3 4 1 2 3 4 3 4 1 2	3726 3627 3636 3866 3921 3844 3802 4099	3705 3572 3503 3784 3938 3849 3828 4138	-21 -55 -133 -82 17 5 26 39	 1093 1073 1074 1075 1072 1027 1049 1087 	1096 1072 1081 1090 1083 1028 1060 1088	3 -1 7 15 11 1 11 1	4073 3892 3905 4156 4203 3948 3988 4456	4062 3829 3787 4164 4264 3958 4057 4504	-11 -63 -118 8 61 10 69 48
1964	3 4 1 2 3	4348 4141 4220 4494 4815 4554	4394 4162 4106 4441 4779 4377	46 21 -114 -53 -36 -177	 1096 1074 1082 1113 1091 1043 	1091 1060 1086 1103 1083 1048	-5 -14 4 -10 -8 5	 4765 4447 4566 5000 5253 4750 	4794 4412 4461 4900 5177 4585	29 -35 -105 -100 -76 -165
1965	1 2 3 4	4456 4822 4702 4745 4667	4376 4734 4729 4753 4664	-80 -88 27 8 -3	 1058 1063 1046 1018 1042 	1062 1072 1045 1020 1050	4 9 -1 2 8	: 4714 : 5126 : 4918 : 4830 : 4863	4648 5074 4943 4848 4895	-66 -52 25 18 32
1966	1 2 3 4	5057 5230 5240 5081	5048 5196 5311 5115	-9 -34 71 34	: 1071 : 1066 : 1044 : 1076	1064 1058 1037 1077	-7 -8 -7	 5416 5575 5471 5467 	5373 5500 5509	-43 -75 38
1967	: 1 : 2 : 3 : 4	5449 5780 5409 5317	5540 5776 5524 5397	91 -4 115 80	i 1089 i 1080 i 1041 i 1056	1077 1086 1068 1037 1057	-3 -12 -4 1	• 5467 • 5934 • 6242 • 5631 • 5615	5509 6016 6170 5726 5708	42 82 -72 95 93
									Continued	1

Table 1.--Quarterly marketings, average weight, and commercial slaughter of fed beef, 1954-70--Continued

Year	: Quarter:	Marketings (MFC)	: Average weight (AWIF)	: Commercial slaughter fed : beef (CSFC)
		Reported Predicted -Rptd.	Reported Predicted Pred. -Rptd.	Reported Predicted Pred. -Rptd.
1968 1969 1970	1 2 3 4 1 2 4 1 2 3 4 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.--Quarterly marketings, average weight, and commercial slaughter of fed beef, 1954-70--Continued

Year	: : :Quarter					etings (MNF)	C)	: : Beef] :	production	(BPNF)
	•	Reported	l Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.	Predicted	Pred. -Rptd.	
1954	: : : 3	• • • • • • •	Pounds	. 1999 - 1993 - 1993 - 1993 1997 - 1993 - 1993	•	<u>Mil. 1b.</u>	••••••••	: = :	<u>Mil. 1b.</u>	
1955	: 4 : 1 : 2				-			·		
1956	3 4 1 2 3	881 907 921 893 885	896 917 916 896 900	15 10 -5 3 15	3648 3509 3061 3166 3760	349 7 3498 3022 3182 3726	-151 -11 -39 16 -34	 1850 1735 1561 1639 1916 	1840 1788 1547 1667 1960	-10 53 -14 28 44
1957	4 1 2 3	905 910 894 892	920 919 899 903	15 9 5 11	3993 3138 3186 3669	3807 3146 3311 3439	-186 8 125 -230	1952 1586 1644 1885	1946 1611 1735 1809	-6 25 91 -76
1958	1 2 3 4	921 945 916 908	923 922 902 906	2 -23 -14 -2	3521 2809 2728 2710	3416 2735 2674 2710	-105 -74 -54 0	: 1770 : 1402 : 1401 : 1417	1746 1400 1401 1425	-24 -2 0 8
1959	4 1 2 3	934 926 931 917	926 925 906 909	-8 -1 -25 -8	 2647 1962 2274 2420 	2662 1837 . 2201 2444	15 -125 -73 24	 1356 1000 1199 1282 	1360 940 1154 1285	4 -60 -45 3
1960	• 4 • 1 • 2 • 3 • 4	945 938 915 906 932	929 928 909 912 932	-16 -10 -6 6 0	2685 2320 2545 2960 2873	2622 2127 2392 3006 2892	-63 -193 -153 46 19	: 1404 : 1201 : 1344 : 1572 : 1478	1340 1089 1254 1581 1478 Continue	-64 -112 -90 9 0

Table 2.--Average weight, commercial slaughter, and beef production from nonfed cattle, 1954-70

ξ

Year :Quarter			age weight	(AWTNF)	: Mark	etings (MN	FC)	: Beef	Beef production (BPNF)			
:		Reported	Predicted	Pred. -Rptd.	Reported	Predicted	: Pred. :-Rptd.	Reported	Predicted	Pred. -Rptd.		
1961 :	1	• • 930	931	1	: 2347	2253	-94	: : 1219	1154	- 65		
•	2	· 915	912	-3	: 2499	2519	20	: 1347	1320	-27		
:	3	· 927	915	-12	: 2753	3015	262	: 1499	1586	87		
•	4	: 942	935	-7	: 2684	2797	113	: 1399	1429	30		
1962 :	1	• 935	935	0	: 2273	2249	-24	: 1176	1152	-24		
•	2	888	915	27	: 2291	2263	-28	: 1206	1186	-20		
•	3	• 931	918	~1 3	: 2762	2679	-83	: 1452	1409	-43		
•	4	• 937	938	1	: 2599	2403	-196	: 1319	1228	-91		
1963 :	1	935	938	.3	: 2161	2044	-117	: 1119	1047	-72		
	2	908	918	10	: 2161	2301	140	: 1160	1206	46		
	3	926	921	-5	: 2661	2560	-101	: 1441	1346	-95		
	4	936	942	6	: 2675	2685	10	: 1388	1372	-16		
1964	1	934	941	7	: 2299	2469	170	: 1222	1264	42		
•	2	936	921	-15	: 2705	2817	112	: 1458	1476	18		
•	3	931	925	-6	: 3206	3516	310	: 1702	1850	148		
	4	947	945	-2	: 3513	3390	-123	: 1804	1732	-72		
1965	T .	943	944	1	: 2709	2762	53	: 1396	1414	18		
•	2	926	924	-2	: 2758	2689	-69	: 1433	1409	-24		
•	3	931	928	-3	: 3485	3407	-78	: 1813	1792	-21		
	4	950	948	-2	: 3627	3761	134	: 1840	1922	82		
1966	1	933	947	14	: 2943	2778	-165	: 1483	1422	-61		
	2	912	927	15	: 2805	2886	81	: 1446	1512	66		
	3	923	931	8 1	: 3233	3197	-36	: 1726	1682	-44		
1967 :	4 1	937	951	14	: 3175	3350	175	: 1680	1712	32		
TAO1	2	929	950	21	: 2676	2560	-116	: 1401	1311	-90		
1		908	931 031	23	: 2504	2505	1	: 1361	1313	-48		
	3	938	934	-4	: 2951	3132	181	: 1610	1647	37		
					-∎u an inf			•	Continued			

.

Table 2.--Average weight, commercial slaughter, and beef production from nonfed cattle, 1954-70--Continued

ŧ

•		age weight (AWINF)	. Market	ings (MN	FC)	: Beef production (BPNF)			
	·	Predicted	Pred. -Rptd.	Reported	Predicte	d:-Rptd.	Reported	Predicted	Pred. -Rptd.	
: 4 : 4	952 047	954 953	2	2983 2481	3019 2550	36 69	: 1566 : 1308	1543 1305	-23 -3	
: 2	903	934	31 -6	2314 3109	2501	187 88	: 1260 : 1723	1310 1682	50 -41	
. 4 . 1	960 960	957 957	-3 -3	: 3058 : 2326	2912 2473	-146 147	: 1660 : 1232	1266	-172 34	
• 2 • 3	908 929	937 940	29 11	: 2620	2624	4	: 1452	1380	-9 -72	
: 4 : 1 : 2	932	960 960 940	23 28 63	: 2517 : 1886 : 1876	2527 1899 1943	10 13 67	: 1403 : 1039 : 1056	1291 973 10. 1 8	-112 -66 - 38	
	4 1 2 3 4 1 2 3 4 1 2	Quarter: Reported 4 952 1 947 2 903 3 943 4 960 1 960 2 908 3 929 4 939 1 932	Quarter: Reported Predicted 4 952 954 1 947 953 2 903 934 3 943 937 4 960 957 1 960 957 1 960 957 2 908 937 3 929 940 4 939 960 1 932 960	Reported Predicted -Rptd. 4 952 954 2 1 947 953 6 2 903 934 31 3 943 937 -6 4 960 957 -3 1 960 957 -3 2 908 937 29 3 929 940 11 4 939 960 23 1 932 960 28	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Table 2.--Average weight, commercial slaughter, and beef production from nonfed cattle, 1954-70--Continued

ø

£

Year	: : :Qtr.		import	nports (IB) : Beef exports (XB)			pita fed mption (apita no supply (onfed (PCNFBS)		
and and a second se Second second	•	Rptd.	Pred.	: Pred. :-Rptd.	Rptd.	Pred.	Pred. Rptd.	Rptd.	Pred.	Pred. -Rptd.	Rptd.	Pred.	Pred. -Rptd.
	•	:	Mil. lb		: :	Mil. 1b.		:	Pounds		:	Pounds	
1954	: 3	:			:			:			:		
1955	:4 :1	:			:			•			• • 9•7		
	: 2	• • • •			:			•			10.1		
	: 3	: 75	91		: 15	19	4	: 9.7	9•7	0	12.1	12.1	0
1050	: 4	: 54	20		: 16	22	6	: 10.0	10.1	.1	: 11.2	11.4	•2
1956	:1 :2	: 46 : 46	45 83	-1 37	: 29 : 17	25 24	- 4	: 11.2	11.1	1 .2	: 10.6	10.6	0
	3	: 61	35		: 22	24 24	2	10.9 9.3	11.1 9.4	•2 •1	10.9 12.3	11.4 12.6	•5 •3
	4	: 58	0		: 41	27	-14	· 9•9	10.2	•3	12.2	12.0	2
1957	:1	: 59	31	-28	: 54	29	-25	11.2	11.1	1	10.7	10.7	0
	: 2	: 79	67		: 23	25	2	: 10.0	9.9	1	10.9	11.3	• 4
	: 3	· 97	144	•	: 18	22	4	: 9.7	10.2	•5	: 12.0	11.8	2
1050	: 4	: 136	115		: 17	23	6	: 9.4	· 9.9	•5	: 11.5	11.3	2
1958	: 1 : 2	: 156 : 223	44 189		: 13 : 10	23 18	10 8	10.0 10.0	10.4 9.9	•4 -•1	9.6 9.8	9.1 9.5	-•5
	:3	: 282	286		: 11	10	0	10.0	9.9 11.2	 .l	10.2	10.0	-•3 -•2
	: 4	: 235	261		: 13	11	-2	11.0	10.7	3	9.6	9.7	•1
1959	:1	: 209	263		: 11	13	2	11.9	11.7	 2	7.8	7.5	-•3
	: 2	: 283	310	27	: 12	8	-4	: 11.7	11.3	4	9.2	8.8	4
	: 3	: 333	327	-6	: 13	6	-7	: 12.0	12.1	•1	: 9.9	9.6	-•3
1060	: 4	: 222	291		: 15	10	-5	: 11.3	11.7	•4	: 9.9	9.8	1
1960	: 2	: 167 : 189	279 204		: 13 : 13	14 14	1	: 12.7 : 12.0	12.7 12.0	0	8.6 9.2	8.6	0
	: 3	: 265	204 317		: 13 : 14	14	-3	12.0	12.0	0	10.8	8.9 1 1.1	~• 3 •3
	: 4	: 139	191		: 15	16	-5	: 11.7	11.6	1	9.7	10.0	•3
1961	: 1	: 167	179	12		19	4	12.8	12.7	1	8.4	8.1	3
											Con	tinued	-

Table 3.--Imports and exports of beef, per capita fed beef consumption, and per capita nonfed beef supply for consumption, 1954-70

Year	: : :Qtr.		imports	(13)	Beef (exports		ŧ	ita fe ption	(PCFBC)	: Per capita nonfed : beef supply (PCNFBS) :		
	•	Rptd.	Pred	Pred. -Rptd.	Rptd.	Pred.	: Pred. :-Rptd.	Rptd.	Pred.	: Pred. :-Rptd.	Rptd.		: Pred -Rptd.
	: 2	: 254	304	50	14	11	-3	: 13.3	13.3	0	: 9.4	9.5	•1
	: 3	: 323	314	-9	14	11	-3	: 12.6	12.4	2 4	:10.6	11.1	•5 0
	: 4	: 277	266	-11	: 13	18	5	: 12.7	12.3	4 1	9.9	9•9 8•5	-•5
1962	: 1	: 318	258	-60	: 12	19	7	13.5 13.6	13.4 13.8	-•1 .2	8.8	8.8	-•)
	: 2	: 280	302	22	13 12	13 10	0 -2	12.7	12.7	.2	10.6	10.5	 1
	: 3	: 437	416	-21 -4	14	14	0	12.7	13.0	•3	: 9.7	9.2	-•5
1963	: 4	: 384 : 367	380 379	12	14	14 14	2	14.2	14.4	.2	8.7	8.5	2
1903	: 2	: 351	312	-39	11	11	0	15.2	15.3	.1	8.9	9.0	•1
	: 3	: 519	519	0	14	11	-3	14.1	14.0	1	11.2	10.8	4
	· · · · ·	: 414	472	58	1 5	16	l	14.4	14.1	3	:10.5	10.6	.1
1964	• 1	314	360	46	· 15	21	6	15.7	15.4	3	: 9.3	9.7	•4
	2	: 319	286	-33	23	21	-2	16.4	16.1	3	:10.4	10.2	2
	: 3	292	294	2	: 19	20	1	: 14.8	14.2	6	:11.6	12.3	•7
	: 4	: 251	248	-3	: 34	25	-9	: 14.6	14.4	2	:11.8	11.2	6
1965	:1	: 190	232	42	27	28	1	: 15.9	15.7	2	: 9.5	9.7	•2
	: 2	: 201	275	74	: 21	22	l	: 15.1	15.2	.1	: 9.4	9.6	•2
	: 3	: 274	294	20	: 19	16	-3	: 14.8	14.8	0	:11.3	11.5	.2 .6
	: 4	: 258	255	-3	: 24	19	-5	: 14.8	14.9	•1	:11.4	12.0	
1966	: 1	: 228	219	-9	: 22	25	3	16.5 16.9	16.4 16.7	1 2	: 9.7 : 9.6	9.4 9.8	-•3 •2
	: 2	: 290	255	-35	: 19	20 14	– 6	16.6	16.6	- .2	:11.3	11.3	0
	: 3	: 353	386	33 -67	20	14	-5	16.6	16.7	.1	:11.0	11.0	Õ
1967	:4 :1	: 312 : 288	245 322	-07 34	22 24	19	-5	17.9	18.2	•3	: 9.7	9.5	2
TA01	2	200 259	352	93	24	16	-5	18.8	18.5	3	: 9.3	9.6	•3
n i ser	: 3	• 407	360	93 -47	21	14	-7	16.9	17.2	•3	11.2	11.2	ŏ
	1.	: 359	348	-11	22	16	-6	: 16.7	17.0	•3	:10.4	10.5	.1
	•	• • • • • •	J, C		•					-	Contin		
a da ser en													

Table 3.--Imports and exports of beef, per capita fed beef consumption, and per capita nonfed beef supply for consumption, 1954-70--Continued

Year	Year Qtr		Imports	(18)	: Beef				ita fe ption	d beef (PCFBC)		Per capita nonfed: beef supply (PCNFBS)		
	:	Rptd.	Pred	Pred. -Rptd.	Rptd.	Pred.	: Pred. : -Rptd.	Rptd.	Pred.	: Pred. : -Rptd.	Rptd.	Pred.	: Pred. :-Rptd.	
1968 1969 1970	: 1 2 3 4 : 2 : 2 : 3 4 : 2 : 4 : 2 : 4 : 2 : 3 : 4 : 2 : 4 : 2 : 4 : 5 : 5 : 4 : 5 : 5 : 5 : 5 : 5 : 5 : 5 : 5 : 5 : 5	315 345 465 375 334 380 547 353 497 356	332 361 364 349 327 362 557 453 499 364	17 16 -101 -26 -7 -18 10 100 2 8	21 22 23 22 18 16 20 20 22 24	17 15 12 15 17 13 8 9 11 7	-4 -7 -11 -7 -1 -1 -12 -11 -11 -17	18.7 19.0 17.9 17.7 19.4 19.4 19.3 19.8 20.8 20.8	18.8 19.0 17.6 18.0 19.3 19.3 19.3 19.8 20.9 21.1	•1 0 •3 •1 •1 0 0 •1 •3	: 9.2 : 8.7 : 11.6 : 11.0 : 8.9 : 8.3 : 10.8 : 9.9 : 8.9 : 8.9 : 8.3	9.5 9.2 11.4 10.3 9.3 8.3 10.8 9.9 8.7 8.1	•3 •5 •2 •7 •4 0 0 0 •-2 •2	

Table 3.--Imports and exports of beef, per capita fed beef consumption, and per capita nonfed beef supply for consumption, 1954-70--Continued

Year	: : :Quarter	: sl	mmercial hog aughter (CHS)		: : Po:	rk production	n (PP)	•	Ending stoc pork (ESF	
	:		d Predicted	Pred. -Rptd.	Reporte	l Predicted	Pred. -Rptd.	Reporte	d Predicted	Pred. -Rptd.
		:	Mil. 1b.		:	- Mil. lb.		:	Mil. 1b.	
1954	: 3 4	•			ti se			;		
1955	: 1	:	, se a se		:			:		
	2 3 4	3723 5562	3649 5475	-74 -87	2128 3166	2087 3115	-41 -51	376 179 421	191 388	12 -33
1956	: 1 : 2 : 3	: 5240 : 4100 : 3825	5144 4143 3844	-96 43 19	2934 2300 2178	2 88 0 2324 2187 2897	-54 24 9 25	514 394 166 280	485 382 192 316	-29 -12 26 36
1957	: 4 : 1 : 2 : 3	: 5064 : 4470 : 4004 : 3738	5109 4463 3828 3870	45 -7 -176 132	2872 2522 2234 2141	2517 2136 2218	-5 -98 77	352 277 134	351 257 147	-1 -20 13
1958	: 4 : 1 : 2	: 4695 : 4137 : 3915 : 3879	4695 4120 3900	0 -17 -15 -140	2682 2375 2250 2254	2681 2365 2243 2172	-1 -10 -7 -82	194 224 210 127	209 222 198 90	15 -2 -12 -37
1959	3 4 1 2	: 4764 : 4824 : 4473	3739 4763 4806 4489	-1 -18 16	2739 2790 2568	2739 2778 2577	0 -12 9	206 337 313	176 290 284	-30 -47 -29
1960	: 3 : 4 : 1 : 2 : 3	: 4440 : 5568 : 5118 : 4590 : 4173	4505 5518 5029 4384 4261	65 -50 -89 -206 88	: 2560 : 3213 : 2979 : 2667 : 2419	2595 3184 2927 2547 2472	35 -29 -52 -120 53	163 264 338 351 158	194 299 364 280 168	31 35 26 -71 10
1961	: 4 : 1	: 4776 : 4695	4873 4632	97 - 63	2798 2750	2856 2714	58 -36	170 244	191 254 	21 10

Table 4.---Commercial hog slaughter, pork production, and ending stocks of pork, 1954-70

Year	:Quarter	The 3			: Pork	production	n (PP)	Ending stocks of pork (ESP)		
 	:	Reported	Predicted	Pred. -Rptd.	REDATED FREUTELED		Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.
1962	: 2 : 3 : 4 : 2 : 4 : 2 : 3 : 4	4506 4119 5067 4872 4671 4671 4140 5299	4493 4303 5132 4885 4684 4117 5115	-13 184 65 13 13 -23 -184	: 2600 : 2403 : 2977 : 2891 : 2749 : 2452 : 3137	2593 2509 3018 2897 2754 2437 3028	-7 106 41 6 5 -15 -109	: 240 : 128 : 200 : 280 : 295 : 139 : 230	282 159 211 298 301 119 182	42 31 11 18 6 -20 -48
1963	: 1 : 2 : 3 : 4	· 5083 · 5083 · 4785 · 4458 · 5500	5186 4808 4415 5554	103 23 -43 54	: 3041 : 2847 : 2660 : 3315	3101 2861 2636 3349	-109 60 14 -24 34	: 250 : 333 : 324 : 210 : 277	332 342 177 289	-40 -1 18 -33 12
1964	1 2 3 4	: 5302 : 4798 : 4339 : 5562	5205 4940 4446 5535	-97 142 107 -27	: 3187 : 2862 : 2606 : 3364	3128 2944 2668 3349	-59 82 62 -15	411 413 184 284	379 385 204 291	-32 -28 20 7
1965	: 1 : 2 : 3 : 4	: 4870 : 4255 : 3748 : 4440	4902 4416 3739 4489	32 161 -9 49	: 2961 : 2579 : 2478 : 2718	2980 2676 2471 2748	19 97 -7 30	: 335 : 224 : 126 : 152	330 264 111 137	-5 40 -15 -15
1966	: 1 : 2 : 3 : 4	4226 4280 4215 5185	4234 4340 4211 5168	8 60 -4 -17	: 2645 : 2639 : 2617 : 3229	2650 2673 2615 3220	5 34 -2 -9	: 217 : 214 : 151 : 234	212 254 158 252	-5 40 7 18
1967	: 1 : 2 : 3 : 4	5144 4607 4622 5407	5188 4674 4525 5510	44 67 -97 103	: 3224 : 2869 : 2893 : 3391	3253 2912 2833 3455	29 43 -60 64	: 293 : 293 : 203 : 286	388 349 211 288 Continue	57 56 8 2

Table 4.--Commercial hog slaughter, pork production, and ending stocks of pork, 1954-70--Continued

Veen	: : :Quarter	: Commercial hog : slaughter (CHS)) 	: Por	k productio	n (PP)	Ending stocks of pork (ESP)			
Year	: ; ;	Reported Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.	
1968 1969	: 2 3 4 1 2 3	: 5042 5300 : 4972 5022 : 4754 4592 : 5601 5591 : 5226 5126 : 4901 4826 : 4711 4451	258 50 -162 -10 -100 -75 -260	: 3197 : 3122 : 2998 : 3560 : 3353 : 3138 : 2988 : 2901	3360 3154 2893 3550 3286 3088 2822 3219	163 32 -105 -10 -67 -50 -166 -85	: 306 : 326 : 242 : 296 : 270 : 312 : 174 : 218	408 385 222 308 268 317 1 99 242	102 59 -20 12 -2 5 25 24	
1970	: 4 : 1 : 2	: 5175 5061 : 4743 4816 : 4864 4846	- <u>11</u> 4 73 -18	: 3304 : 3052 : 3136	3082 3101	30 -35	266 297	229 325	-37 -28	

Table 4.--Commercial hog slaughter, pork production, and ending stocks of pork, 1954-70--Continued

ſear	:Quarter:				Pork	exports (XP		: Per capita pork : supply (PCPS)		
		Reported	Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.
			Mil. 1b.		:	Mil. 1b.		:	Pounds	
1954	: 3 :				:			: 14.9		
	: 4 :				:			: 19.8		
1955	: 1 :	and one dist			:		1. * * * * * *	: 19.5		.
	: 2 :	 44						: 16.1		· • • • •
	: 3 :	44 42	31. 33	-13 -9	26 35	26	0 -2	15.2 20.1	14.9 19.8	3
1956	: 4 :	42	38 38	-9 -3	: 32	33 42	-2	20.1	19.5	 3
	2	46	26	-20	: 32	41	9	16.8	16.6	 2
	3	34	25	-9	: 29	30	1	15.2	15.2	-•2
	· 4 ·	30	33	3	· -/			17.8	18.2	•4
1957	. 1 .	39	4 <u>1</u>	2	44	35 38	-2 -6	16.4	16.6	.2
	2	38	37	-1	41	33	-8	: 15.1	14.5	6
	: 3 :	30	40	10	: 28	23	-5	: 14.0	14.4	•4
	: 4 :	37	45	8	: 31	33	2	: 16.3	16.4	.1
1958	: 1 :	42	49	7	: 31	33 28	2	: 14.8	14.9	.1
	: 2 :	48	47	-1	: 29		-1	: 14.3	14.2	1
	: 3	49	54	5	: 27	23	-4	: 14.2	13.7	-•5
050	: 4	54	58	4	: 31	31	0	: 16.4	16.3	1
1959	: 1 :	51	60	9	: 36	33	-3	: 17.1	16.9	2
	2 3	53 42	51 45	-2	: 32 : 37	35	-6	16.5 16.2	16.3	2
	: 5 : • 4 :	42 40	4つ 44	3 4	• 31 • 38	31 42	-0 4	: 19.0	16.3 19.0	•1
1960	: 4 : : 1 :	46	47	4	35	42 44		19.0	19.0	2
-,	2	40 51	44	-7	: 35	41 41	9 6	16.7	16.1	 6
		45	46	1	: 30	32	2	: 15.4	15.3	0 1
	· 4 ·	44	49		: 38	40	2	16.4	16.8	-• <u>+</u>
1961	• 1 •	48		56	: 36	38	2	: 16.1	16.0	1
	•				• 5-	<u> </u>			Contin	

Table 5.--Imports and exports of pork and per capita pork supply, 1954-70

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Year:Q	Pork imports (IP) Year:Quarter:						: exports (XP))		capita por upply (PCP		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• •		Reported	Predicted		Re	porte	d Predicted		Reported	Predicted	Pred. -Rptd.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2		54	12	:	35	35	0		15.7	.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•					•	33						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		• 53			•							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1962:		: 55		3	•	29						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•			58	2	•		39					
1963:1:57658:5140-11:17.417.6.2:2:56626:5142-9:16.917.1.2:3:53574:4139-2:15.815.80:4:5957-2:6545-20:18.518.6.11964:1:58646:7447-27:18.118.01:2:55605:6045-15:17.117.4.3:3:57625:40411:15.715.9.2:4:61632:284719:18.618.601965:1:70711:314817:17.017.00:2:8766-21:324311:15.63:3::30366:14.714.2.1:4:9378-15:39412:14.714.42:2:9894-4:33341:14.6			÷ 50									-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1063.		• 22 • 57			•							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1903		56			:					· · · · · · · · · · · · · · · · · · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				and the second		:::							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		: 59		-2			45					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1964:	1	: 58			:			-27		18.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	an 1942 - 19	2						45	-15	: 17.1	17.4	•3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		• 57			:							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		and the second			•							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1965:					1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$:					:	32						
1966:1: 10790 -17 : 30366: 14.614.4 2 :2: 9894 -4 : 33:341: 14.815.0.2:3: 799415: 32:331: 14.614.8.2:4: 9793 -4 : 4543 -2 : 17.417.401967:1: 10497 -7 : 38457: 17.818.0.2:2: 9891 -7 : 324715: 16.416.8.4:3: 90: 86 -4 : 3341:8: 16.316.2 1 :4: 10091 -9 : 4349::18.418.6.2													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1066												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1900:					•		30 2)	the second s				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•					:							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-	<u>ј</u> ДБ	<u>л</u> з					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1967:		: 104			:							
3 : 90 $86 $ $-4 : 33 $ $41 $ $8 : 16.3 $ $16.2 $ $14 : 100 $ $91 $ $-9 : 43 $ $49 $ $6 : 18.4 $ $18.6 $ $.2$:							
: 4 : 100 91 -9 : 43 49 6 : 18.4 18.6 .2						:							
						:	43					· · · ·	
$1400: 1 \cdot 10(30 -3 \cdot 33 20 1(\cdot 100 100 100 0) \cdot 1000 1000 0)$	1968:	1	: 107	98	-9	:	33	50	17	: 17.8	18.5	•7	
Continued		an a' an An An An An											

Table 5.--Imports and exports of pork and per capita pork supply, 1954-70

E. F.M.

5 З

Year	Quarter		: Pork exports (XP)	: Per capita pork :supply (PCPS)
•		Reported Predicted -Rptd.	Reported Predicted -Rptd.	Reported Predicted -Rptd.
1969 1970	2 3 4 1 2 3 4 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

¢

Table 5 .-- Imports and exports of pork and per capita pork supply, 1954-70-- Continued

Year	: : Quarter		PRFBW) ice 600-700		:	Util	(PRNFB) ity cow bee:		Pc	(PRPN) ork products	the second s
		Reported	l Predicted	Pred. -Rptd.	F	Reported	Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.
	• •	:	\$/ cwt.		:		<u>\$/ cwt</u> .		: :	\$7 cwt.	
1954	: 3	:							;		
1055	: 4	:			:	24.86			41.03		
1955	: 1				•	24.00			41.03		
e de la composition de	3	: 39.63	38.87	76	•	26.47	29.41	2.94	43.20	45.36	2.16
	. 4	: 37.08	37.09	-•10 •01	•	23.87	26.01	2.14	35.60	34.20	-1.40
1956	: 1	: 34.15	36.11	1.96		23.32	23.37	.05	34.00	33.13	87
	: 2	: 35.24	34.62	62		26.13	26.05	08	42.23	40.07	-2.16
	: 3	: 42.32	40.25	-2.07	:	27.39	26.77	62		43.90	2.46
	: 4	: 40.24	37.09	-3.15		26.39	25.27	-1.12	: 39.14	39.56	.42
1957	: 1	: 36.40	37.69	1.29	:	23.92	26.34	2.42	•	43.03	•51
	: 2	: 39.65	40.95	1.30		28.94	28.33	61		46.97	2.00
	: 3	: 42.62	42.20	42	:	30.00	30.93	•93	: 49.22	47.31	-1.91
	: 4	: 41.83	41.57	26	:	29.23	29.74	•51		44.79	1.27
1958	: 1	: 46.37	45.93	44	, :	34.60	34.69		48.65	48.59	06
	: 2	: 47.43	47.17	26	:	39.08	40.39	1.31		52.79	.85
	: 5	: 45.16	45.30 45.40	.14	:	39.59	38.92	67	· · · · · · · · · · · · · · · · · · ·	53.62 46.63	2.09
1050	: 4 : 1	: 45.20 : 47.53	49.40 48.61	.20 1.08	:	38.15 37.45	36.69 39.00			40.03	1.13 •37
1959	2	47.96	40.01	41	•	38.03	36.93		41.56 41.61	41.95	•31 •.40
	: 2	46.31	45.81	 50	•	37.19	37.77		: 39.47	39.87	.40
	• <u>1</u>	44.61	43.55	-1.06	•	34.68	32.70	-1.98		35.29	-1.02
1960	: 1	45.78	43.35	-2.43	•	33.76	32.38	-1.38	37.87	38.44	•57
	2	46.03	46.00	03		34.64	36.13	1.49		42.28	.65
	: 3	43.39	42.39	-1.00		32.97	31.68	-1.29		42.58	54
	: 4	42.81	44.29	1.48	:	33.17	33.99	.82		42.48	85
										Continu	ıed

Table 6.--Wholesale prices of choice 600-700 pound carcasses, utility cow carcasses and 100 pounds of pork products

Year	: Quarter	: (PRI	7BW) 2e 600-700		Uti	(PRNFB) lity cow b			(PRPN) Pork products		
		Reported	Predicted	Pred.	Reported	Predicted	Pred.	Reported	Predicted	: Pred. : -Rptd.	
1961	: 1	: : 44.52	45.89	1.37	33.87	36.26	2.39	43.20	43.71	•51	
	: 2	40.77	40.83	.06	32.53	33.22	.69	41.24	41.65	• J_ • 41	
	: 3	40.18	42.70	2.52	33.09	31.30	-1.79	43.74	42.17	-1.57	
	: 4	42.22	44.68	2.46	32.92	33.64	.72	41.72	41.89	-17 •17	
1962	: 1	: 44.33	45.04	•71	: 33.66	33.67	.01	41.64	41.76	.12	
	: 2	44.00	44.12	.12	: 33.59	35•55	1.96	41.08	40.65	43	
	: 3	: 45.94	45.74	20	34.16	34.15	01	45.56	44.80	76	
	: 4	: 47.21	46.26	-•95	: 33.53	36.79	3.26	42.72	43.51	•79	
1963	: 1	43.14	43.76	.62	: 32.01	32.87	.	39.28	39.50	.22	
	: 2	: 40.41	40.36	05	: 32.23	33.85	1.62	39.00	38.48	52	
	: 3	: 42.49	42.71	.22	: 31.45	31.59	.14	43.32	41.62	-1.70	
	• 4	: 40.19	40.55	• 36	: 30.14	28.66	-1.48	: 39.75	37.43	-2.32	
1964	: 1	: 38.95	39.42	•47	28.81	27.19	-1.62	38.89	38.44	•45	
	: 2	: 37.88	37-29	59	: 30.14	28.55	-1.59	: 38.74	39.12	• 38	
	: 3	: 41.81	41.06	-•75	: 29.97	25.72	-4.25	42.88	42.67	21	
-	: 4	: 40.64	41.17	•53	: 26.63	26.63	0	: 39.65	39.71	•06	
1965	: 1	: 39.75	39.60	15	26.60	28.81	2.21	41.34	40.94	40	
	: 2	: 43.53	43.61	•08	: 30.81	33.51	2.70	46.21	45.88	33	
	: 3	: 44.67	45.45	•78	: 31.14	32.08	•94	: 54.16	52.62	-1.54	
	: 4	: 42.86	41.64	-1.22	: 30.43	28.96	-1.47	: 56.20	55.88	32	
.966	: 1	: 44.88	45.07	.19	: 33.99	34•33	• 34	: 59.16	57.47	-1.69	
	: 2	: 44.38	44.04	 34	: 37.34	34.60	-2.74	: 53.16	53.18	.02	
	: 3	: 43.14	44.10	•96	: 36.62	36.75	.13	: 55.65	55•55	10	
	: 4	: 42.04	43.16	1.12	: 34.93	35.05	.12	: 51.25	49.50	-1.75	
1967	: 1	: 42.36	42.81	•45	: 35.34	34.27	-1.07	: 47.53	47.07	46	
	: 2	: 43.13	42.98	15	: 36.42	34.50	-1.92	• 47.08	46.53	55	
	: 3	: 46.24	46.49	.25	: 37.15	38.54	1.39	51.40	52.90	1.50	
	: 4	: 45.23	44.48	-•75	: 34.56	36.22	1.66	• 46.54	45.53	-1.01	
				e general d'anna an tha					Contin	ued	

Table 6.--Wholesale prices of choice 600-700 pound carcasses, utility cow carcasses and 100 pounds of pork products--Continued

56

1.1

Year :Quarter	(PRFBW) Choice 600-700 lb.	(PRNFB) Utility cow beef	(PRPN) Pork products
	Reported Predicted -Rptd.	Reported Predicted Pred.	Reported Predicted
1968 : 1 : 2 : 3 : 4 1969 : 1 : 2 : 3 : 4 1970 : 1 : 2	45.95 44.92 -1.03 46.54 47.43 $.89$ 47.52 48.98 1.46 46.66 46.09 57 48.13 47.54 59 53.92 52.34 -1.58 53.86 51.92 -1.94 47.60 48.97 1.37 50.25 49.48 77 52.39 52.56 $.17$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.0645.98-1.0848.2747.408750.6150.322947.8148.40.5949.5250.09.5751.9953.541.5558.7457.878758.8059.40.6061.1260.971557.1359.932.80

Table 6.--Wholesale prices of choice 600-700 pound carcasses, utility cow carcasses and 100 pounds of pork products--Continued

ear :Q	uarter	: Stocks	of beef (ESI		: Steer p	rice (PRFB		: Ho	g price (PRI	
:		Reported	Predicted	Pred. -Rptd.	Reported	Predicted	Pred.	Reported	Predicted	Pred -Rptd
:		:	Mil. 1b.		:	\$ /cwt.		:	\$ /cwt.	
954 :	3	•			:			:		
	4	:	*** ***		: 24.40	449 649 748		:		
955 :	1 2				: 25.13	i i i i i i i i i i i i i i i i i i i		: 19.39		
	2	: 106 : 110			: 23.02			: 17.92		
	- 5 - 4	: 205	135 222	25	: 22.33	22.12	21	: 16.81	18.12	1.31
956 :	1	: 188	260	17 72	: 20.90 : 19.47	20.65 20.06	25	: 12.40 : 12.44	12.50 12.02	.10 42
9) 0 •	2	: 136	200 166	12 30	20.30	19.39	•59	16.00		
• • • •	3	: 117	134	17	20.30		93 63	16.54	15.68 17.60	32
•	4	• <u>1</u> • 244	214	-30	22.68	23.13 21.02	-1.66	15.74	15.86	1.06 .12
957 :	1	: 180	169	-11	20.84	21.02	-1.00 •45	17.43	17.73	•30
•	2	: 113	107	- <u>-</u> 6	22.85	23.57	•4)	18.61	19.32	•30 •71
•	3	: 105	129	24	24.30	24.51	.21	20.47	19.80	 67
	ц 4	: 134	171	37	24.27	23.90	37	17.55	18.27	07
958 :	ı	: 110	101	~9	27.09	26.78	31	20.21	20.37	.16
;;;;;	2	: 108	69	-39	28.46	27.78	68	21.88	22.64	•10
:	3	: 123	114	-9	26.39	26.53	.14	21.62	23.08	1.46
:	ŭ,	: 174	160	-14	26.81	26.59	- 22	18.29	19.27	•98
959 :	1	: 171	125	-46	: 27.96	28.71	•75	16.05	16.40	•35
•	2	: 168	011	-58	: 28.83	28.47	36	16.03	15.98	05
:	3	: 171	150	-21	: 27.62	27.28	34	14.29	14.96	.67
•	4	: 202	212	10	: 26.06	25.37	69	12.53	12.74	.21
960 :	1	: 166	178	12	: 26.53	25.14	-1.39	: 13.92	14.22	• 30
:	2	: 145	126	-19	: 26.86	26.96	.10	: 16.29	16.45	.16
	3	: 162	164	2	: 25.01	24.58	43	: 17.08	16.85	23
:	4	: 170	184	14	: 25.28	25.76	.48	: 17.31	16.94	37

Table 7.--Ending stocks of beef, price of choice steers, and price of barrows-gilts, 1954-70

Year	: :Quarter :	: Pred. :		:	price (PRF	Pred.	:	Hog price (PRPL) Hog price (PRPL) Pred. Reported.PredictedBrtd.		
	;	Reported	Predicted	-Rptd.	Reported	Predicted.	-Rptd.	Reportea	Predicted.	-Rptd.
1961	• 1	142	144	2	25.99	26.80	.81	17.66	17.81	•15
	: 2	155	161	6	23,66	23.70	•04	16.67	16.55	12
	: 3	171	169	-2	23.64	24.98	1.34	18.13	16.66	-1.47
	: 4	200	203	3	24,90	26.14	1.24	: 16.51	16.39	12
1962	• 1	172	173	ĩ	: 25,99	26.31	•32	16.66	16.37	29
	: 2	123	165	42	25.91	25.83	 08	16.06	15.79	27
an teor da	• 3	145	157	12	: 26.98	26.87	11	18.54	17.94	60
	• <u>4</u>	189	201	12	: 28.31	27.19	-1.12	· 16.51	17.40	•89
1963	• 1	190	202	12	24.85	25.38	•53	14.95	15.22	.27
Í	: 2	190	209	19	22.89	23.16	.27	15.30	14.55	-•75
	• 3	220	202	-18	24.41	24.67	.26	: 17.29	16.19	-1.10
	: 4	281	269	-12	22.83	23.29	•46	: 14.72	14.09	63
1964	: 1	271	251	-20	21.86	22.47	.61	14.63	14.62	01
	• 2	287	254	-33	20.94	21.21	.27	14.94	14.99	•05
	• 3	257	232	-25	23.73	23.69	04	16.97	16.88	09
s de la composición d	: 4	315	283	-32	: 23.38	23.74	• 36	: 15.12	15.62	•50
1965	: 1	245	244	-1	22.95	22,66	29	16.68	16.33	35
	• 2	172	195	23	25.35	25.44	.09	20.43	19.84	59
	• 3	194	210	16	26.19	26.90	•71	23.95	23.18	77
	: 4	260	264	4	• 25.24	24.42	82	25.25	24.81	- 44
1966	: 1	228	224	- 4*	: 26.76	26.80	•04	26.71	26.03	68
	• 2	212	225	13	• 26.41	26.25	16	23.38	23.57	•19
	• 3	231	257	26	: 25.42	26.22	.80	24.67	24.68	•01
	: 4	307	315	8	24.36	25.37	1.01	20.37	20.25	12
1967	• 1	300	306	6	: 24.51	25.04	•53	19.09	19.74	.65
	• 2	276	284	8	24.63	25.10	•47	20.58	19.89	69
	• 3	243	278	35	: 26.45	26.56	.11	21.03	22.31	1.28
	* <u>4</u>	275	322	47	: 25.79	26.00	.21	: 17.60	17.04	56
									Continue	ea

Table 7.--Ending stocks of beef, price of choice steers, and price of barrows-gilts, 1954-70--Continued

Year	Quarter: Stocks of beef (ESB) Reported Predicted Pred.				•	r price (PR	FBL) Pred.	Hog price (PRPL)			
an a	•	Reporte	d Predicted	-Rptd.	Reported	Predicted	-Rptd.	Reported	Predicted	-Rptd.	
1968 1969 1970	1 2 3 4 1 2 3 4 1 3 4 1 2	225 199 242 296 275 256 304 341 373 312	242 295 290 344 243 272 310 361 334 308	17 96 48 48 -32 16 6 20 -39 -4	: 26.21 : 26.52 : 27.12 : 27.15 : 27.63 : 31.53 : 30.37 : 28.10 : 29.45 : 31.35	26.26 28.02 28.94 27.09 28.04 31.36 31.15 29.20 29.89 32.10	.05 1.50 1.82 06 .41 17 .78 1.10 .44 .75	18.93 19.44 20.50 18.32 20.29 22.89 26.76 26.82 26.82 27.50 24.00	18.58 19.30 20.58 19.55 20.67 23.11 26.34 25.76 26.27 26.02	35 14 .08 1.23 .38 .22 42 -1.16 -1.23 2.02	

Table 7.--Ending stocks of beef, price of choice steers, and price of barrows-gilts, 1954-70--Continued

8

Veen	Quarter		er price (1	PRFC)	: Sows :	farrowing ((SF)	: : :	lacements (PL)
Icai			Predicted	Pred. -Rptd.	Reported 1	Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.
1954 1955 1956 1957 1958	: 1 2 3 4 2 3 4 1 2 3 4 : 2 3 4 : 2 3 4 : 2 3 4 : 2 3 4 : 2 3 4 : 2 3 4 : 2 3 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4	19.00 19.25 21.50 20.87 20.34 18.65 18.26 18.16 19.08 18.53 18.95 21.35 22.63 22.64 25.29 27.90 27.88 28.35	\$/cwt. 20.11 19.10 18.74 17.84 17.97 16.66 18.95 20.91 22.47 23.03 25.15 28.22 27.42 28.27	 -	2758 2556 2497 5850 2965 2634 2539 2634 2539 5116 2641 2540 2387 4807 2687 4807 2677 2435 2680 4601 3141 2746	1,000 hd. 2963 2623 2568 5251 2516 2354 2435 4881 2439 2459 2620 4814 3172 2754	 -	2010 1729 2565 4600 2003 1911 2945 4678 2028 1931 2298 4794 2594 2150 2402 5382 2662	1,000 hd. 2781 4566 2048 2007 2685 4379 2175 1960 2391 4470 2576 2031 2461 5251	- Kptd. 216 - 34 45 96 -260 -299 147 29 93 -324 -18 -119 59 -131 -81
1959	: 1 : 2 : 3 : 4	: 28.95 : 30.48 : 29.53 : 26.56	28.61 29.67 28.35 26.49	34 81 -1.18 07	: 3053 : 4943 : 3346 : 2782	2992 4869 3146 2693	-61 -74 -200 -89	2455 2970 5466	2581 2406 2990 5476	-49 20 10
1960	: 1 : 2 : 3	: 25.92 : 26.56 : 24.35	26.04 26.39 23.80	.12 17 55	: 2507 : 4275 : 3035	2466 4211 2801	-41 -64 -234	: 2916 : 2273 : 2975	2613 2537 2911 Continu	- 303 264 -64 aed

Table 8.--Price of Good and Choice feeder steers, sows farrowing, and placements of cattle on feed, 1954-70

Year	: : :Quarter	: Feeder price (] :	: Sows farrowing (SF)			Placements (PL)			
	•	Reported Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.	Reported	Predicted	Pred. -Rptd.
1961	: 4 : 1 : 2 : 3	24.37 25.29 25.47 25.68 24.99 24.68 24.61 24.79	.92 .21 31 .18	2804 2521 4497 3081	2578 2479 4464 2 96 9	-226 -42 -33 -112	: 5935 2974 2380 3487	6070 3071 2267 3387	135 97 -113 -100
1962	4 1 2 3	25.01 25.12 25.33 25.65 25.90 26.64 26.54 27.98	.11 .32 .74 1.44	2837 2850 4416 3141	2833 2625 4368 3532	-4 -225 -48 391	6160 3124 2618	5207 6206 3135 2712 3821	46 11 94
1963	4 1 2 3	27,28 27.75 25.83 26.10 24.99 25.38 25.20 24.40	•47 •27 •39 •80	2957 2593 4506 3125	3001 2593 4264	44 0 - 242	3933 6940 3103 3010	6715 3518 2906	-112 -225 415 -104
1964	4 1 2 3	23.80 23.17 22.94 22.34 21.19 21.60 21.07 21.12	63 60 .41 .05	2862 2366 2366 4230 2903	3359 2817 2524 3987 3116	234 -45 158 -243	4155 6683 3765 3015	4054 6705 3716 3105	-101 22 -49 90
1965	4 1 2 3	20.59 21.81 20.70 21.27 23.01 23.10 24.40 24.77	.09 1.22 .57 .09 .37	2905 2622 2178 3712 2548	2660 2322 3753	213 38 144 41	4554 7119 3922 3619	4440 7257 3906 3608	-114 138 -16 -11
1966	4 1 2 3	23.93 24.30 26.25 26.04 26.91 26.44	•37 21 47	2458 2221 3980	2671 2428 2562 4116	123 -30 341 136	4569 7429 4823 3831	4582 7096 4709 3833	13 -333 -114 2
1967	3 4 1 2	26.53 25.44 25.89 26.12 25.30 24.85 25.58 25.78	-1.09 .23 45 .20	3009 2802 2451 4140	3203 2695 2549 4091	194 : -107 : 98 : -49 :	4823 7817 4777 3991	4868 7846 4557 4378 Continu	45 29 -220 387

Table 8.--Price of Good and Choice feeder steers, sows farrowing, and placements of cattle on feed, 1954-70--Continued

Year	: : Quarter	: Feeder price (PR	FC)	Sows farrowing (S	SF)	: Placements (PL)		
			Pred. Rptd	Reported Predicted	Pred. -Rptd.	Reported Predicted -Rptd.		
1968 1969	3 4 2 3 4 1 2 3 4 3 3	: 25.27 24.96 - : 26.67 26.84 : 27.14 26.89 - : 26.64 26.72 : 27.46 27.86	.08 .25 .31 .17 .25 .08 .40 .39 .37	294729142873283425492866413141163162302529943008261429193797374429393058	-33 -39 317 -15 -137 14 305 -53 129	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
1970	4 1 2	: 30.75 31.23 : 31.50 31.18 - : 33.00 33.82 :	.48 .32 .82	2790 3048 2600 2640 4423 4378	-258 40 -45	: 8955 9079 124 : 5365 5602 237 : 5518 5611 93		

Table 8.--Price of Good and Choice feeder steers, sows farrowing, and placements of cattle on feed, 1954-70--Continued

.

ည

Year (Jan. 1):	Beef calves (H21) Reported Predicted Pred.:			Beef heifers for replacement (H22R)			Beef cows (H23)		
:	reported.	Freurcteu	-Rptd.:	Reported	Predicted	-Rptd.	Reported	Predicted	-Rptd.
1953 1954 1954 1955 1956 1957 1958 1959 1960 1961 1961 1963 1964 1965 1966 1968 1968	17978 18804 18869 18405 18275 19407 20425 20814 22300 23747 25243 26181 26879 27294 27559	1,000 head 18956 18956 18476 18397 19637 20747 20925 21888 23700 25257 26401 26866 27482 27390 28148	-Rptd.: - Rptd.: - Rptd.	 5938 5178 5162 5114 5537 5787 6057 6046 6529 6906 7100 7375 7800 7950 7820	1,000 head 5224 5117 5188 5507 5910 6051 6083 6462 6939 7094 7506 7788 7950 7954	-46 -45 74 -30 123 -6 37 -67 33 -6 131 -12 0	23291 25050 25659 25371 24534 24165 25112 26344 27327 28691 30589 32794 34238 34433 34685 35405	1,000 head 25330 24478 24278 25123 26240 27471 29074 30765 32831 33991 34292 34705 35391	 -41 -56 113 11 -104 144 383 176 37 -247 -141 20 -14
1970: ;		29335	271 : ;	8033	8024	134 -9	36097 37433	36292 37547	195 114

Table 9.--January 1 inventories of beef cattle, 1953-70

** Derived series

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Year	Dairy Cows (H23) Reported	** Reported	Commercial beef slaughter (CBSC Predicted	· · · · · · · · · · · · · · · · · · ·	Reported	Feeder calf Price (PRFCA) Predicted	Pred. -Rptd.
1958: 21265 3200 3372 172 27.35 27.27 $.08$ $1959:$ 20132 3300 3385 85 28.88 28.28 $.60$ $1960:$ 19527 3750 3629 -121 25.30 25.38 $.08$ $1961:$ 19271 3600 3350 -250 25.02 25.07 $.05$ $1962:$ 18963 3000 3229 229 26.26 27.01 $.75$ $1963:$ 18379 3100 3165 65 24.95 24.76 19 $1964:$ 17647 4150 4466 316 21.45 21.72 $.27$ $1965:$ 16981 5535 5434 -101 23.01 23.36 $.35$ $1966:$ 15987 5745 5721 -24 26.40 26.01 39 $1967:$ 15198 5693 5714 21 25.95 25.84 11 $1968:$ 14662 5842 5633 -209 26.43 26.36 -07 $1969:$ 14123 5195 5248 53 30.25 30.63 38	1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1964 1965 1966 1968 1969	1,000 head 23549 23896 23000 22912 22325 21265 20132 19527 19271 18963 18379 17647 16981 15987 15198 14662 14123	: 5000 : 5000 : 4550 : 3200 : 3300 : 3750 : 3600 : 3000 : 3100 : 4150 : 5535 : 5745 : 5693 : 5842	5241 5062 4339 3372 3385 3629 3350 3229 3165 4466 5434 5721 5714 5633	 241 62 -211 172 85 -121 -250 229 65 316 -101 -24 21 -209	: 18.50 : 21.39 : 27.35 : 28.88 : 25.02 : 26.26 : 24.95 : 21.45 : 23.01 : 26.40 : 25.95 : 26.43	17.80 21.34 27.27 28.28 25.38 25.07 27.01 24.76 21.72 23.36 26.01 25.84 26.36	\$ /cwt. .05 77 05 08 60 .08 .05 .75 19 .27 .35 39 11 07

Table 9a--January 1 inventory of dairy cows, annual commercial beef cow slaughter, and annual average feeder cattle price, 1953-70

* Exogenous variable

** Derived series

Year :	Quarter	Pigs saved per sow	Militar	y consumption :	Byprodu	ct credits:	Dressing percentage for hogs
			Beef	Pork	Beef	Pork	
		Head	Mil	. 1b.	\$/c	wt. :	Percent
1954 :	3	6.50	: 100	48	2.22	2.85 :	57.0
•	$\tilde{4}$: 6.50	: 102	63 :	2.20	2.85 :	56.5
1955 :	1	6.90	: 98	57 :	2.16	3.29 :	57.1
:	2	6.90	: 108	66	2.12	3.30 :	56.6
	3	6.81	: 96	48	2.22	3.12 :	57.2
· · · · · · ·	$\tilde{4}$	6.81	: 100	63	1.80	2.96 :	56.9
1956 :	1	6.94	: 96	56 :	1.85	3.00 :	56.0
	2	6.94	: 102	59 :	2.21	3.23 :	56.1
	3	7.01	: 104	52	2.37	3.28	56.9
•	- ŭ	: 7.01	: 102	62 :	2.27	3.59	56.7
1957 :	1	7.12	: 86	56 :	2.13	3.74 :	56.4
	2	6.72	: 82	47 :	2.37	3.47 :	55.8
•	3	7.06	: 96	58 :	2.54	3.73 :	57-3
:	<u> </u>	7.06	86	52 :	2.29	3.48 :	57.1
1958 :	1 :	7.05	96	49	2.40	3.69 :	57.4
	2	7.05	: 84	46 :	2.66	3.88 :	57•5
•	3	7.40	: 92	49 :	2.60	3.91 :	58.1
•	4	7.17	84	48 :	2.59	3.57 :	57.5
1959 :	1 1	7.18	: 84	46 :	2.67	3.08 :	57.8
•	2	7.08	: 92	48 :	3.21	3.02	57•4
:	3	6.98	: 88	46 :	3.12	2.71 :	57.6
:	4	6.98	84	41 :	2.54	2.72 :	57•7
1960 :	1	7.19	80	46 :	2.42	2.68 :	58.2
:	2	6.96	: 96	56	2.57	2.98 :	58.1
•	3	7.02	92	41 :	2.49	3.19 :	58.0
•	4	7.02	: 76	40 :	2.44	3.31 :	58.6
1961 :	1 :	7.18	: 84	46 :	2.46	3•53 :	58.6
						Cont	inued

Table 10.--Exogenous variables, 1954-70

Year :	Quarter	Pigs saved per sow	Milit	ary consumption	: Byprodu	ct credits	: Dressing percentage for hogs
• •			Beef	Pork	Beef	Pork	Teoria di Angela di Pangang Pengangan pengangan di Pangang
	2	7.02	88	45	2.63	3.32	57.7
	2 3	7.16	96	54	: 2.73	3.20	58.3
:	4 :	6.97	92	56	2.60	3.09	58.8
1962 :	1.	6.90	88	53	2.53	3.12	• 59•3
:	2	7.08	88	52	2,66	3.09	58. 8
:	3 :	7.23	96	51	: 2.67	3.20	: 59.2
	4 :	7.23	98	54	2.65	3.27	59.2
1963 .	1 ;	7.15	96	59	2.39	3.08	÷ 59.8
:	2 :	7.50	92	49	· 2.33	2.94	· 59•5
:	3 :	7.23	96	65	: 2.34	3.03	· 59•7
•	4 :	7.43	84	64	: 2.34	2,98	: 60.3
1964 :	1:	7.23	112	54	2.21	3.01	: 60.1
:	2:	7.23	140	58	2.35	3.04	: 59.6
- 1 - 1 - - - -	3 :	7.21	128	65	2.43	3.18	: 60.0
•	4 :	7.21	114	52	2.41	3•33	: 60.5
1965 :	1 :	7.05 :	120	54	: 2.32	3.42	: 60.8
:	2:	7.22	140	55	2,58	4.35	: 60.6
:	3 :	7.28	146	62	2.94	4.40	: 61.1
•	4 :	7.28 :	148	70	2.88	4.43	: 61.2
1966 :	1 :	7•32 :	152	62	3,12	4.81	: 62.6
	2:	7.32 :	180	62	3.25	4.50	: 61.6
ta da ser j e	3 :	7.25	176	65	3.16	4.46	: 62.1
•	4 :	7.25	152	66	2.85	3.22	: 62.3
1967 :	1, :	7•34 :	168	62	2.72	3.78	: 62.7
•	2:	7•34	192	82	2.66	4.i2	: 62.3
•	3 :	7.63 :	180	63	1.68	3.56	: 62.6
:	4	7.38 :	212	62	2,59	2.15	: 62.7
1968 :	1.	7.36 :	158	69	2.56	3.26	: 63.4
•	2:	7.36 :	186	92 :	2.76	3.28	: 62.8
						Co	ntinued

Table 10.--Exogenous variables, 1954-70--Continued

Year	Quarter	: Pigs saved : per sow :	Military	consumption	Byproduct	credits	Dressing percentage for hogs
			Beef	Pork	Beef	Pork	
	3	7.55 :	156	74	2.67	3.16	63.0
	. 4 .	7.55 :	145	53	2.66	3.08	: 63.5
1969	. 1 .	7.23 :	153	64	2.69	3•33	: 64.1
	2	7.23	162	60	: 3.00	3.90	: 64.0
	: 3 :	7.34 :	110	48	: 3.08	4.90	: 63.4
	. 4	7•34	130	50	: 3.00	3.80	: 63.6
1970	: 1 :	7.40	140	60	: 3.45	3.75	: 64.0
	2	7.40	150	75	: 3.75 :	3.80	: 64.0 :

Table 10.--Exogenous variables, 1954-70--Continued

Table 11.--Exogenous variables, 1954-70

Year :	Quarter:	Civilian : population : (48 States) :	Per capita : disposable : income :	Time	Range condition	Price of No. 3 corn in Chicago
1954 :	3	: 1,000,000 persons 160.0 :	Dollars 1590	No. O	: : <u>No.</u> : 77	\$/cwt. 1.36
1955 :	4 : 1 : 2 :	160.3 : 161.1 :	1598 : 1614 :	0 0	: 77 : 69	1.20 1.49
	3:	161.9 : 162.7 :	1646 : 1683 :	0 1	: 67 : 79	1.47 1.36
1956	4 : 1 :	163.5 : 164.3 :	1701 : 1713 :	2 3	• 77 • 71	1.20 1.27
	2:	165.0 : 165.8 :	1731 : 1746 :	4 5	70 69	1.50 1.55
1957 :	4 : 1 :	166.6 : 167.3 :	1775 : 1785 :	6 7	63 62	1.33 1.30
	2 : 3 :	168.0 : 168.8 :	1799 1815	8 : 9 :	77 83	1.32 1.30
: 1958 :	4 : 1, :	169.7 : 170.4 :	1807 1804	10 : 11 :	82 81	1.17 1.14
	2 : 3 :	171.1 : 171.8 :	1810 : 1844 :	12 : 13 :	86 83	1.30
1 959 :	4 : 1 :	172.7 : 173.4 :	1864 : 1882 :	 14 15	84 76	1.32 1.15
	2:	174.2 : 175.0 :	1912 1904	16 : 17 :	77	1.19 1.29
: 1960 :	3 : 4 : 1 :	175.7 : 176.4 :	1919 1929	18 : 19 :	79 79 71	1.23 1.10
	2 : 3 :	177.1 : 177.8 :	1943 : 1944 :	19 20 21	74 79	1.14 1.21
1961 :	4 : 1 :	178.6 179.3	1932 : 1942 :	22 :	80 77	1.18 1.00
	2:	180.0	1942 : 1966 :	23 : 24 :	74 76	l.ll l.ll tinued

Ŷ	• 8.r	Guarter	Civilian population (48 States):	Per capita : disposable : income		Range condition	Price of No. 3 corn in Chicago
		3	180.8 181.4	1992 2025	25 26	79 79 79	1.12 1.09
1	.962	1 1	181.9	2041	27	: 72 :	1.09
		2	182.6	2061	28	: 79 :	1.14 1.11
		3	183.4	2069	29	: 83 : 81	1.10
·	-	• 4	184.1 184.8	2081 2105	30 31	: 71	1.20
	.963	1 2	185.5	2119	32	: 76	1.24
		• 3	186.1	2].44	33	: 77	1.23
		: 4	: 186.8	2173	33 34	: 79 :	1.17
, 1	964	: 1	187.5	2214	35	: <u>7</u> 2 :	1.21
)	Tang Tang	2	188.1	2269	36	• 74 •	1.20 1.25
		3	188.7	2292	37	: 74	1.20
_ _		4	189.4	2312 2340	38 39	· 77 · 72	1.28
L	1965	: 1 2	190.2 190.6	2373	• 40	: 77 :	1.34
		• 3	191.2	2443	41.	: 83 :	1,29
		• 4	191.9	2486	42	: 82 :	1.17
]	1966	• 1	192.5	2525	43	: <u>77</u>	1.28
		2	192.6	2543	44	: 78 :	1.29 1.44
		3	193.3	2613	45 46	: 75 : 80	1.44 1.36
		4	193.5	2656 2693	• 40 • 47	: 72	1.38
	1967	• 1 • 2	194.0 194.5	2723	• 48	74	1,36
		• 3	· 195.0	2758	• 49	83	1.24
		: 4	195.6	2798	• 50	: 79 :	1.10
	1968	• 1	196.0	2866	51	: 76 :	1.12
		2	196.4	2918	52	: 80 :	1.14
		• Alta and a			• Na the state		Continued

Table 11.--Exogenous variables, 1954-70--Continued

Year	: Quarter	Civilian population (48 States)	Per capita disposable income	Time	Range condition	Price of No. 3 corn in Chicago
1969 1970	3 4 2 3 4 1 2 4 1 2	196.9 197.5 198.0 198.6 199.2 199.9 200.3 201.0	2942 2991 3014 3065 3140 3171 3226 3264	53 54 55 56 57 58 59 60	79 79 77 82 80 80 77 77 78	1.07 1.11 1.21 1.24 1.18 1.16 1.22 1.25

Table 11.--Exogenous variables, 1954-70--Continued

Appendix B--Structural Equations for Demand and Stocks Section

$$\begin{aligned} & \text{PRFBW}_{jt} = 15.70 + 0.786 \ \text{PRNFB}_{jt} - 0.298 \ \text{PRFW}_{jt} & \text{(A)} \\ & - 3.082 \ \text{PCFBC}_{jt} + 0.025 \ \text{Y}_{jt} + 0.077 \ \text{T}_{jt} \\ & + 3.16 \ \text{Wl} + 1.28 \ \text{W2} + 1.42 \ \text{W3} \end{aligned} \tag{B} \\ & \text{PRNFB}_{jt} = 50.03 + 0.232 \ \text{PRFBW}_{jt} + 0.281 \ \text{PRFW}_{jt} & \text{(B)} \\ & - 3.433 \ \text{PNFBS}_{jt} - 0.002 \ \text{Y}_{jt} - 0.0165 \ \text{T}_{jt} \\ & - 4.70 \ \text{Wl} - 1.52 \ \text{W2} + 1.85 \ \text{W3} \end{aligned} \end{aligned}$$

$$\begin{aligned} & \text{PRFW}_{jt} = 29.12 + 0.09 \ \text{PRFBW}_{jt} + 0.16 \ \text{PRNFB}_{jt} & \text{(C)} \\ & -3.05 \ \text{PCFS}_{jt} + 0.034 \ \text{Y}_{jt} - 0.545 \ \text{T}_{jt} \\ & -1.26 \ \text{Wl} - 3.82 \ \text{W2} - 3.46 \ \text{W3} \end{aligned}$$

$$\begin{aligned} & \text{ESB}_{jt} = -5199.0 - 36.66 \ \text{PRFBW}_{jt} + 129.6 \ \text{PRNFB}_{jt} & \text{(D)} \\ & -40.35 \ \text{PRFW}_{jt} + 438.0 \ \text{ENFBS}_{jt} + 0.05 \ \text{T}_{jt} \\ & +570.0 \ \text{Wl} + 137.0 \ \text{W2} - 270.0 \ \text{W3} \end{aligned}$$

$$\begin{aligned} & \text{ESP}_{jt} = -604.0 - 5.35 \ \text{PRFBW}_{jt} - 1.18 \ \text{PRNFB}_{jt} & \text{(E)} \\ & +3.86 \ \text{FRFW}_{jt} + 55.3 \ \text{PCFS}_{jt} - 0.70 \ \text{T}_{jt} \\ & +93.0 \ \text{Wl} + 130.0 \ \text{W2} + 44.0 \ \text{W3} \end{aligned}$$

APPENDIX C

7

Operating Rules

The 128 operating rules incorporated in the computer program (appendix D) are listed in the order they appear. They are also identified with the estimating equation number as it appears in the text. The calendar year(s) in which a rule was effective is shown along with the underlying economic basis.

Three statistics are calculated to condense identification of the situations they represent.

 \mathbf{E} (I) = 0.5 [(PRFBL3_t/PRC3_t) + (PRFBL4_t/PRC4_t)] $\mathbf{z} \in (I)$ = 1.0 when PRFW4_t < 40.0 and PRFW1_{t-1} < 40.0 and PRFW1_{t-2} < 40.0 Y \mathbf{z} (I) = 1.0 when (PRFCA_{t-1} - PRFCA_t) > 2.75 and PRFCA_t < 22.0

	Functior estimating			: Year(s): effective:	Economic basis
	(1)	MFC3 3	If $(PRFBW2_t) > 50.0$ and $(PRNFB2_t) > 40.0$ and $(PRPW2_t) > 50.0$ cut estimate 4%	69	Excellent prices of both cattle and hogs results in some cattle being held for further feeding.
74	(2)	AWTF3 7	If (PRC3) ≤ 1.11, <u>change</u> coefficient on beef-corn ratio to -1.44.	62 68	A very low corn price as cattle approach marketing weight results in modification of original feeding program based on beef- corn ratio when these cattle were placed on feed in order to use this lower priced feed for new feedlot placements.
	(3)	MNFC3 9	If $(PRFC2_{t-2} - PRFC2_{t}) > 4.00$ or $(PRFC2_{t-1} - PRFC2_{t}) > 3.10$ add 14% to estimate	59 60 64	When feeder calf prices show a sharp sustained fall, more nonfed cattle are marketed.
	(4)	MNFC3 9	If (RNGE _{t-1} -RNGE3 _t)>7.0 and If (RNGE2 _t - RNGE3 _t)> 2.0 add 14% to estimate	66	A drought situation in the West is indicated so there is an above average cow cull in the summer.
	(5)	MNFC3 9	If (Z _{t-1}) > 24.0 <u>cut</u> estimate 10%	63 69	The highly favorable beef-corn ratio two quarters earlier resulted in above average feeder placements with a consequential smaller supply of nonfed cattle available.

52.00

-	Function estimating	in	No: xt:		fear(s)	
	(6)	MNFC3	9	If $(H22R_t/H23_t) > 0.215$ and if $(PRNFB2_t) > 36.0$ and if $(PRPW2_t) > 47.0$ add 23% to estimate	6 8 70	A combination of (1) a greater than average number of heifers available for replacing cows, (2) a good cow beef price the previous quarter, and (3) a good pork price, precluding any incentive to shift out of hogs cause more cows to be culled.
	(7)	IB3	15	If $(CBCS_{t-1}) < 3370.0$ and if $(PRNFBL) > 30.0$ raise estimate 30%	62 63	Very low cow slaughter throughout the previous year coupled with a good manufacturing beef price stimulates imports.
75	(8)	IB3	15	If (PNFBS4 _{t-1}) < 9.5 <u>raise</u> estimate 24%	63	A very low domestic production of cow beef stimulates imports 6 months later.
	(9)	IB3	15	If $(PCPS4_{t-1} + PCPS1_t + PCPS_t) < 45.0$ raise estimate 35%	66	Sustained low pork production generates imports (note cross elasticity in demand function).
	(10)	IB3	15	If (PRNFB2 _t)>40.50 <u>raise</u> estimate 50%	69	Very high price increases summer imports.
	(11)	IB3	15	If (t) ≥ 1967, <u>raise</u> estimate 25%	67 68	Apparent shift in import levels; no economic basis noted from endogenous variables. (Shift may be due to importer's desire to stay near quota maximum.)

	Function estimating		: : Operating rule :	: Year(s) : : effective:	Economic basis
	(12)	CH3 12	If (PRPL2t)<13.0 change coeff. on PRPL2 from -54 to -30	(Designed for other quarters did not operate)	Demand for gilts does not fall in proportion to very low price (as better prices expected) so slaughter is not as large as estimated.
	(13)	CH3 12	If $(PRPL2_t) > 23.0$ <u>change</u> coeff. on PRPL2 to -44	66	Demand for gilts does not increase in proportion to very high prices.
76	(14)	CH3 12	If $(PRPL2_t) > 19.75$ and $(PRPL2_{t-1}) > 19.75$ and $(PRPL2_{t-2}) > 19.75$ Change coeff. on PRPL2 to -37	67 7.0	Long-term shift to higher price level lowers gilt retention associated with this higher price.
	(15)	PRFBW3 22	If (PCFBC3 _t + PNFBS3 _t) > 30.0 $\frac{\text{cut coeff. on PCFBC3}}{\text{from -3.324 to -3.25}}$	69	Coefficient damped when beef supply high.
	(16)	PRNFB3 23	If (PCFBC3t+ PNFBS3) > 28.0 change coeff. on PNFBS3 to -3	67 3.90 68	Cross flexibility of fed beef becomes effective at high total quantity (lowers price flexibility).
	(17)	PRNFB3 23 PRPW3 24	If (PCPS4 + PCPS1 + PCPS2 raise estimate of PRNFB3 12% raise estimate of PRPW3 2%	,)≺ 45.0 66	Persistent low pork supply lowers cross-price flexibility in cow beef price and direct price flexibility on pork price.

11.4

Function estimating		:	Operating rule	Year(s) effective	: Economic basis :
(18)	PRPW3	24	If (Y3 _t)>2800.0 <u>change</u> coeff. on Y to 0.03527 from 0.03727	68 69	Reduced income effect at higher values (due to original "fit" in deviation from trend).
(19)	PRPW3	24	If $(PCPS3_t - PCPS3_{t-1}) > 2.0$ <u>cut</u> estimate 4.75%	59	Sharp supply increase from year earlier causes price (drop) to overreact.
(20)	PRFC3	32	If (RNGE3 _t)>80.0 change coeff. from 0.165 to 0.175	57 58 62 65 67 68	Very good range condition enhances rancher's bargaining position.
(21)	PRFC3	32	If $(PRFC3_{t-1} - PRFC4_{t-1}) \ge 1.40$ cut estimate 4%	60 68	Sharp drop in feeder calf prices preceding fall leads to more than usual discount of feeding margin (APM).
(22)	PRFC3	32	If (PRC2 _t - PRC2 _{t-1}) \geq 0.13 cut estimate 4%	65	Sharp increase in spring corn pric cuts feedlot placements in spring and thus increases feeder supply in summer.
(23)	SF3	34	If $(PRCl_t) \ge 1.10$ and $(PRPLl_t/PRCl_t) < 17.5$ and $(PRPL2_t \ge 19.75)$ but $(PRPL2_t/PRC2_t) \le 15.0$ cut estimate 10%	65 67	Medium corn price coupled with continued low profit picture (as shown by hog-corn ratio), despite good second quarter price level, o breeding programs.

	: E	q. No.:		• • • • •	
Functio estimati		in : text :	Operating rule	: Year(s) : : effective:	Economic basis
(24)	SF3	34	If (PRCl _t) <1.20 (and condition above does not hold) <u>raise</u> estimate 20%	58 59 60 61 62 68	Low corn price increases breeding in winter for fall pigs.
(25)	PL3	37	If (PRC3 _t)<1.20 and (PRFBL3 _t /PRC3 _t)<22.0 <u>change</u> coeff. on beef-corn ratio from 75.0 to 60.0	60	Change in placement response (lower) at below average value of beef-corn ratio despite moderate corn price.
(26)	PL3	37	If (PRPL3 _t - PRPL3 _{t-1})>6.0 <u>cut</u> estimate 7%	65	Sharp increase in hog price results in shift to hogs.
(27)	PL3	37	If $(PRFBL2_t) > 30.0$ and $(PRFBL3_t) > 30.0$ raise estimate 5%	69	Sustained high price increases summer placements.
			Fourth quar	rter	
(28)	AWTF4	8	If $(Z_{t-1}) > 24.0$ raise estimate 1.5%	63 69	Some heavier feeding programs initiated in winter and spring in response to very favorable beef- corn ratio.
(29)	AWTF4	8	If (PCPS4 _{t-1} + PCPS1 _t + PCPS2 _t)<4 <u>raise</u> estimate 1.5%	5.0 66	Persistent low pork supply initiated heavier feeding programs.
(30)	AWTF4	8	Same as 23b <u>cut</u> estimate 2%		Cattle marketed lighter before seasonal price decline.

Functior estimatir		:	Operating rule	: Year(s) : : effective:	Economic basis
(31)	MNFC4	9	If (RNGE4 _t)>83.0 <u>change</u> coeff. to 20 from 24	58	Nonfed production does not increase proportionately to range feed at higher level.
(32)	MNFC4	9	If (PRC3 _t) \leq 1.11 <u>change</u> coeff. to 1485 from 1568	62 68	Very low corn prices result in more feeding and less nonfed marketing.
(33)	MNFC4	9	If $(Z_{t-1}) > 24.0$ cut estimate 13%	63 69	Very favorable beef-corn ratio stimulated cattle feeding first half of year, resulting in less grass-fed stock for fall cullalso less cow cull.
(34)	MNFC4	9	If $(PRC2_{t-1} - PRC2) \ge 0.13$ <u>raise</u> estimate 15%	65	More feeders were kept as grass cattle in the spring because of sharp increase in feed costs; then sold in fall.
(35)	MNFC4	9	If $(H22R_t/H23_t)>0.215$ and $(PRNFB3_t)>38.0$ raise estimate 7%	67 68 69	(See operating rule 6)
(36)	MNFC4	9	If (30) holds and if (H22R _{t-1} /H23 _{t-1})>0.22 <u>raise</u> estimate additional 14%	68	More than average replacement heifer available 2 years in row increases cow cull further.
(37)	TB4	15	If (PRNFB3 _{t-1} - PRNFB3 _t)>6.0 <u>cut</u> estimate 30%	60	Sharp drop in domestic cow beef price results in diversion of ship- ments to other countries.

-	Function estimating		:		: Year(s) : ffective:	Economic basis
	(38)	IB4	15	If $(CBCS_{t-1}) \leq 3370.0$ and $(PRNFB2_t \geq 30.0$ raise estimate 35%	62 63	(See operating rule 7)
	(39)	IB4	15	If $(Z_{t-1}) > 24.0$ <u>raise</u> estimate 25%	63 69	Very favorable beef-corn ratio of last half of year reduces potential nonfed supply early in year and increases import orders which are delivered in fall.
	(40)	IB4	15	If (t) ≥ 1967 <u>raise</u> estimate 40%	67 68	(See operating rule 11)
Bo	(41)	CHS ¹ 4	12	If (PRPL3 _t)<13.0 <u>change</u> coeff. to -24 from -54.0 <u>on</u> PRPL3 _t	(See 10)	(See operating rule 12)
	(42)	CHS4	12	If $(PRPL2_{t-1}) < 15.25$ and $(PRPL2_t) < 15.25$ change coeff. to -24.0 from -54. on PRPL3_t	64 0	Low hog price in spring for 2 years leads to expectations of better prices, so proportionately more gilts saved.
	(43)	CHS4	12	If $(PRFC3_t - PRFC3_{t-1}) > 4.90$ <u>cut</u> estimate 2.5%	58	Sharp increase in feeder calf price leads to more gilts retained.
	(44)	CHS4	12	If (PRFC3 _t)<1.10 <u>change</u> coeff. to -390 from -720 on PRC3 _t	68	At very low corn price, slaughter (through increased weights) does not increase proportionately (note the negative sign).

	ction : nating:	Eq. No in text	•		Year(s) : ffective:	Economic basis
(45) (CHS4	12	If $(PRPL3_t) \ge 24.0$ <u>change</u> coeff. to -33.0 from -54.0 on PRPL3 _t	66 69	(See operating rule 13)
(46)	CHS4	12	If $(PRPL3_t) > 22.0$ and $(PRPL3_{t-1}) > 22.0$ and $(PRPL3_{t-2}) > 22.0$ change coeff. to -28.0 from -54.0 on PRPL3 _t	67	Gilt demand does not increase proportionately at consistently high prices.
(47) 1	PRFBW4 :	22	If $(PCFBC4_t) > 16.0$ and $(PCFS4_t) > 18.0$ cut estimate 6.25%	67 68	Large supply of pork affects beef price when fed beef supply also high
(48)	PRNFB4	23	If $(PCFBC4_{t} + PNFBS4_{t}) \ge 27.0$ change coeff. on PNFBS to -4.09 from -4.44	61 67 68 69	(See operating rule 16)
(49)	PRPW4 :	24	If (Y4 _t)>2790 <u>change</u> coeff. on Y4 to + 0.03527 from 0.03727	67 68 69	(See operating rule 18)
(50)	PRPW4	24	If $(PCPS4_t - PCPS4_{t-1}) > 2.0$ <u>cut</u> estimate 4.75%	59 66	(See operating rule 19)
(51)	PRFC4	33	If (RNGE4 _t)>80.0 change coeff. on RNGE to 0.12 from 0.11	55 56 59 60 61 63 64	(See operating rule 20)

Functic estimati	m: in	No.: xt	Operating rule : : (Year(s) : effective:	
(52)	SF4	34	If $(PRPI2_t) \ge 19.75$ <u>change</u> coeff. on PRPL2 to +35 from 45.	58 65 66 67 69	Supply response reduced at higher price levels.
(53)	SF4	34	If $(PRC2_t) \le 1.11$ raise estimate 5.6%	61.	(See operating rule 24)
(54)	SF4	34	If $(PRC2_{t} - PRC3_{t}) \ge 11.0$ <u>raise</u> estimate 13%	67	Sharp seasonal drop in corn price increases farrowings for early winter.
(55)	PI4	38	If $(PRFBL4_t) < 24.50$ and $(PRC3_t - PRC4_t) > 0.10$ change coeff. on $(PRFBL4/PRC4)$ to 70.0 from 98.0	55 56 57 65	If fed cattle price is quite low and corn price has at least modal seasonal drop, placements in response to beef-corn ratio are reduced.
(56)	PI4	38	If $(PRPL3_t) \ge 24.0$ raise estimate 4%	66 69	Some additional shift to cattle feeding as producers feel hog price will be lower (cycle) next year.
(57)	PI4	38	If (PRFBL3,)>28.0 and (PRFBL4t)>27.0 raise estimate 4%	68 69	Sustained high fed cattle price induces additional placements of cattle on feed.
			Annual Inventor,	y System	
(58)	H21	39	If (Z _{t-1})>24.0 <u>raise</u> estimate 2%		More calves saved as a result of favorable beef-corn ratio as opposed to slaughter.

>

Function estimation		L		: Year(s) : ffective:	Economic basis
(59)	H21	39	If $(Z_{t-1}) \leq 23.0$ and $(CBCS_{t-1}/H23_{t-3}) \leq 0.13$ change coeff. on $H23_{t-3}$ to 0.56684 from 0.59684	68	Beef-corn ratio is not good enough to result in increased inventory and cow herd is getting disproportion- ately old, so calf crop reduced.
(60)	H21	39	If $(CBCS_t/H23_{t-2}) \leq 0.105$ <u>change</u> coeff, on $H23_{t-2}$ from .597 to .547	70	(See operating rule 67)
(61)	H22R	40	If $(Z_{t-1}) > 24.0$ raise estimate 1.5%	63 69	More heifers retained for herd than usual because of very favorable feeding situation.
(62)	H22R	40	If $(PRFCA_t) > 30.0$ <u>cut</u> estimate 6%	70	More heifers put on feed than usual.
(63)	CBCS	41	If (Z _t)>24.0 <u>cut</u> estimate 18%	62 68 69	Cow cull reduced substantially as very favorable feeding situation results in cows being saved for one more calf.
(64)	CBCS	41	If $(PRFCA_t) < 22.0$ and $(PRFCA_{t-1} - PRFCA_t) > 2.75$ raise estimate 12.5%	64 5	Low feeder calf price coupled with further decline stimulates cow cull.
(65)	CBCS	41	If (RNGE3, - RNGE3,)>7.0 and (RNGE2 ¹ - RNGE3 _t)>2.0 raise estimate 7.5%	66	Drought in West increases cow cull.

Function estimating		:	Operating rule	Year(s): effective:	Economic basis
(66)	CBCS	41	If (Z _{t-1}) < 23.0 <u>and</u> (CBCSt/H23t-3)<0.13 <u>change</u> coeff. on H23t-3 to -1.03 from -1.06	67	Cull increased if cow herd getting old and beef-corn ratio not exceptional.
(67)	CBCS	41	If $(CBCS_t/H23_{t-2}) \leq 0.105$ change coeff. on $H23_{t-2}$ from -1.06 to -1.01	70	Cow herd aging results in more culling.
(68)	MFCl	l	If $(PRFBW4_{t_1}) > 48.0$ and $(PRNFB4_{t_1}) > 42.0$ and $(PRPW4_{t_1}) > 58.0$ cut estimate 6%	70	(See operating rule 1)
(69)	AWTF1	5	If (PRCL _t)<1.10 <u>change</u> coeff. on (PRFBL3/ to 2.94 from 3.64	62	(See operating rule 2)
(70)	AWTFL	5	If (PRPL3 _{t-1}) <15.00 <u>cut</u> estimate 15 lbs.	60	Low hog price at time cattle are placed on feed indicates oversupply of pork, so beef supply is restricted through lighte weights.
(71)	AWTF1	5	If $(PRFBL3_{t-1})/PRC_{t-1}) > 27$. <u>cut</u> estimate 4%	0 69	Feeders fear oversupply situation will develop from high prices received in summer, so feed to lighten weight.
(72)	MNFCL	9	If $(PRFC4_t - PRFC4_{t-2}) > 5$. <u>cut</u> estimate 12.5%		Large long-term increase in feeder cattl price results in shift to cattle feeding and consequent reduction in nonfeds.

Function estimating). : : :	Operating rule	Year(s) effective:	
(73)	MNFCl	9	If $(PRCL_t - PRC4_{t-1}) \ge 0.11$ <u>raise</u> estimate 8%	61 66	Sharp seasonal increase in corn price cuts placements of feeders, so more nonfed marketings.
(74)	MNFCl	9	If (PRNFB4 _{t-2} - PRNFB4 _{t-1}) >7.50 cut estimate 5%	64	Sharp drop in cow beef price reduces cow cull (probably in dairy)
(75)	MNFCL	9	If $(H22R_t/H23_t) \le 0.22$ and $(PRNFB4_{t-1}) > 37.25$ or If $(H22R_t/H23_t) > 0.22$ and $(PRNFB4_{t-1}) > 36.0$ raise estimate 11%	68 69 70	Cow cull increased when either cow beef price very high or cow-beef price is quite good and lots of replacement heifers are available.
(76)	IB1	15	If (CBCS _{t-1}) < 33.00 raise estimate 40%	63 64	Low domestic slaughter the previous year results in import increase in following quarters.
(77)	IBL	15	If (PRNFB3 _{t-2} - PRNFB3 _{t-1})>6.0 <u>cut</u> estimate 30%	61	Sharp summer price drop from year earlier induces curtailment of import orders two quarters later.
(78)	IBl	15	Same as 68 raise estimate 50%	70	Excellent price level increases imports.
(79)	IBl	15	If (T) <u>></u> 1967 <u>raise</u> estimate 45%	67 68 69 70	(See operating rule 11)
(80)	CHS1	12	If $(PRPI_{t-1}) < 12.60$ <u>change</u> coeff. on PRPL4 _{t-1} to -30.0 from -54	56	(See operating rule 12)

Function estimating		Operating rule :	Year(s) : effective:	Economic basis
(81)	CHSL 12	If (PRPIA _{t-1})>25.0 <u>change</u> coeff. to -28 from -54	70	(See operating rule 13)
(82)	CHS1 12	If $(PRPL_{t-2}) > 24.0$ and $(PRPL_{t-2} - PRPL_{t-1}) > 4.50$ change coeff. to -28 from -54	67	Sharp drop in hog prices from rather high level cuts demand for gilts, so more slaughter.
(83)	CHS1 12	If (PRFC4 _t - PRFC4 _{t-1})>4.25 cut estimate 6.4%	58 59 70	Sharp increases in feeder cattle price increases gilt retention and lowers slaughter.
(84)	PRNFBL 23	If (PCFBCL _t + PNFBSL _t)>27.0 change coeff. on PNFBSL _t to -4.04 from -4.44	62 68 69 70	(See operating rule 16)
(85)	PRPW1 24	If (Yl _t)>28.00 <u>change</u> coeff. on Y to 0.03527	68 69 70	(See operating rule 18)
(86)	PRPWL 24	If (PCPS1 _t - PCPS1 _{t-1})> 2.0 <u>cut</u> estimate 5%	59 67	(See operating rule 19)
(87)	PRPW1 24 PRFBW1 22	If $(ZZ_t) = 1.0$ <u>cut</u> PRFW estimate 7% and <u>cut</u> PRFW estimate 5%	64	Persistent low pork prices tend to be hard to overcome, so current beef and pork price is reduced moderately; cross elasticity with fed beef shows in extreme situation.

Functio	on :	• No in ext	: Operating rule : Yea	r(s) ctive	
(88)	ESBL	25	If (PCFBCl _t + PNFBSl _t +PCPSl _t)>46.5 <u>cut</u> estimate 25%	68 69	Stocks do not increase proportionaly when combined large supply of beef and pork.
(89)	ESP1	26	If (PCFBC4 _t + PNFBS4 _t +PCPS4 _t)> 46.5 <u>cut</u> estimate 30%	69 70	Stocks do not increase proportionaly when there is a combined high supply two successive quarters.
(90)	PRFCL	30	If (PRFBL1 _t)> 25.5 and (PRFC3 _{t-1} - PRFC4 _{t-1}) 1.75 cut estimate 6%	68	More than average seasonal price drop holds feeder prices down through AFM.
(91)	SF1.	34	If (PRPL3 _{t-1})>26.0 <u>change</u> coeff. on PRPL3 from +45 to +25	70	Less supply response at very high prices.
(92)	SFl	34	If $(Z_{t-1}) > 24.0$ cut estimate 7%	63 69 70	Excellent cattle feeding profits results in shift to cattle feeding, and fewer sows bred.
(93)	SFl	34	If (ZZ) _t = 1.0 <u>cut</u> estimate 7%	64	Sustained low hog prices cut farrowings.
(94)	SFL	34	If (PRPL3 _{t-2} - PRPL3 _t)>7.0 <u>cut</u> estimate 14%	60	Sharp drop in hog price at breeding time cuts farrowings.
(95)	SFL	34	If (PRC3 _t - PRC2 _t)>0.14 cut estimate 14%	67	Substantial counter seasonal corn- price increase at breeding time reduces farrowings.

Function estimation	on: i	No. n ext		Year(s) effective	
(96)	PL1	35	If (PRCL _t) <1.10 <u>change</u> coeff. to 76 from 86 <u>on (PRFBL1/PRCL</u>)	62	Beef-corn ratio is made artifically high by quite low corn price.
(97)	PLI	35	If (PRFBLL _t /PRCL _t) > 24.5 <u>change</u> coeff. on (PRFBLL/PRCL) from 86 to 76	70	Less supply response at high value of beef-corn ratio.
(98)	PL1	35	If $(YZ_{t-1}) = 1.0$ <u>cut</u> estimate 6%	61 65	General fall in cattle prices previous year lowers placements.
	• ••• ••• ••• ••• ••• ••• ••• •••		Second qua	rter	
(99)	MFC2	2	If $(PRFBL4_{t_2} - PRFBL4_{t_1})>3.80$ and $(PRFBL1_{t_1} - PRFBL1_t)>2.80$ <u>raise</u> estimate 5.3%	64 - 1 	A sharp price decline from a year earlier for two successive quarters leads feeders to hold cattle for a better price.
(100)	MFC2	2	If (YZ) = 1.0 cut estimate 4%	65	With general drop in fed cattle prices, there were more early sales of "short-feds" from placements made in third and fourth quarters. Also, cattle not on feed too long could have shifted back to grass in spring.
(101)	MFC2	2	If (PRFBWL _t)>46.0 and (PRNFBL _t)> 36.0 and (PRPWL _t)> 49.0 cut estimate 3.2%	69 70	Excellent prices of both cattle and hogs result in some cattle being held for further feeding.

	Eq. No	. :			
Function estimating		:	Operating rule	Year(s) : effective:	Economic basis
(102)	MFC2	2	If $(PRPLl_{t-1}) \ge 23.0$ and $(PRPLl_{t-1} - PRPLl_t)$ 6.0 raise estimate 5%	67	Big drop in winter hog price leads some producers to shift to "short- fed" cattle.
(103)	AWTF2	6	If $(Z_{t-1}) > 22.9$ and $(PRFBL_{t-1}/PRC_{t-1}) > 24.5$	61 63	Very favorable feeding ratio with improvement coming at end of year
			change coeff. on (PRFBL4/PRC4) to 2.54 from 2.24	69	leads to initiation of heavier weight feeding program.
(104)	AWTF2	6	If $(YZ) = 1.0$ <u>cut</u> estimate 1.5%	65	As general level of fed cattle prices fall, feeding programs are aimed at lighter weights.
(105)	MNFC2	9	If $(PRCl_t - PRC_{t_{1}}) \ge 0.11$ <u>raise</u> estimate 8%	61 66	Sharp increase in corn price cuts placements on feed and increases nonfed marketings.
(106)	MNFC2	9	If (PRCL _t) ∠ 1.10 <u>change</u> coeff. on PRCL _t to 1430 from 1568	62	Very low winter corn prices result in nonproportional shift in response to input-price change.
(107)	MNFC2	9	If $(PRPLL_{t-1}) > 23.0$ and $(PRPLL_{t-1} - PRPLL_t) > 6.0$ <u>cut</u> estimate 10%	67	(See operating rule 102). Increas fed placements lower nonfed marketings.
(108)	MNFC2	9	If $(Z_{t-1}) > 24.0$ <u>cut</u> estimate 8%	63 69 70	(See operating rule 5)

e	Function stimating		:	Operating rule	Year(s) effective	
	(109)	MNFC2	9	If (YZ) = 1.0 <u>cut</u> estimate 13%	65	When feeder price bas been down all of previous year indicating liquidation phase of cycle, nonfed marketings are cut in spring for herd rebuilding.
	(0ננ)	TB2	15	If $(PRNFBl_{t-1} - PRNFBl_{t}) \rightarrow 6.0$ <u>cut</u> estimate 33%	61	Sharp drop in price which draws imports results in diversion of shipments to other countries.
	(111)	IB2	15	If $(T) \ge 1967$ raise estimate 35%	67 68 69 70	(See operating rule 11)
	(112)	CHS2	12	If (PRCl _t)<1.12 <u>change</u> coeff. to -400 from -720 on PRCl _t	61 62 68	At very low corn price, increase in slaughter is not proportional to price change.
	(113)	CHS2	12	If (PRPLL _t)>26.0 <u>change</u> coeff. to -32 from -54 <u>on</u> PRPLL	66 70	(See operating rule 13)
	(114)	CHS2	12	If (PRPLL > 23.0 and (PRPLL - PRPLLt) 6.0 change coeff. to -28 from -54	67	(See operating rule 82)
	(115)	PRPW2	24	If $(Y_t) > 2800$ <u>change coeff.</u> on Y to 0.03527 from 0.03727	68 69 70	(See operating rule 18)

Functi		No.: : t	Operating rule :	Year(s) effective	
(116)	PRPW2	24	If $(PCPS2_t - PCPS2_{t-1}) > 2.0$ <u>cut</u> estimate 4.5%	60	(See operating rule 19)
(דבר)	PRPW2 PRFBW2	24 22	If (ZZ) = 1.0 $\frac{\text{cut}}{\text{cut}}$ estimate of PRFW2 3% $\frac{\text{cut}}{\text{cut}}$ estimate of PRFBW2, 3.25%	65	(See operating rule 87)
(8נג)	PRPW2	24	If $(PRPWl_{t-1} - PRPWl_{t}) > 10.0$ cut estimate 10%	67	Effect of sharp price drop previous quarter from year earlier level carries into current quarter.
(119)	PRFC2	31	If $(PRFC3_{t-1} - PRFC4_{t-1}) \ge 1.40$ cut estimate 6%	60 68	(See operating rule 90)
(120)	PRFC2	31	If $(PRC2_t - PRC2_{t-1}) \geq 0.13$ <u>cut</u> estimate 6%	65	Sharp increase in corn price leads to buyer resistance when buying feeders.
(121)	SF2	34	If $(PRPIA_{t-1}) < 13.0$ Change coeff. on PRPIA to 35 from 45	56 60	At low hog prices, producer response to price is changed.
(122)	SF2	34	If $(PRC4_{t-1}) \leq 1.05$ raise estimate 7.5%	61	Producers respond differently to very low corn price.
(123)	SF2	34	If $(PRC4_{t-1} - PRC3_{t-1}) > 0.02$ cut estimate 10%	69	Counterseasonal rise in corn price at breeding time cuts sows bred.

Function estimatin	: i	No: In ext :	Operating rule		ar(s) ective	
(124)	SF2	34	If (PRPL2 + PRPL3)> 49.0 and (PRPL4 _{t-1} + PRPL1 52.0 raise estimate 10%	_t)> ⁷⁰)	Sustained high price leads to above average supply response.
(125)	PL2	36	If $(PRC2_{t} - PRC2_{t-1}) \ge 0.13$ <u>cut</u> estimate $5\%^{t-1}$	65	5	(See operating rule 95)
(126)	PI2	36	If (PRPI2 _t)>23.50 <u>cut</u> estimate 4%	66 69		Some shift to hogs from cattle feeding at very high hog price.
(127)	PL2	36	If (PRPL2,)>22.0 and (PRFBL2,)>30.0 raise estimate 13%	69 70		Total response is increased when both hog and fed cattle prices above average.
(128)	PL2	36	If $(PRPL2_{t-1}) > 23.0$ and $(PRPL2_{t-1} - PRPL2_t) > 3.$ raise estimate 8.5%	67 50		Sharp drop in hog prices from high level year earlier causes shift to cattle feeding.

• ••

Appendix D Computer Program

QUARTERLY MODEL OF PRICE-OUTPUT DETERMINATION IN BEEF & PORK, CROM COMMON XMFC1(25),XMFC2(25),XMFC3(25),XMFC4(25),PL1(25),PL2(25), 1PL3(25).PL4(25).AWTF1(25).AWTF2(25).AWTF3(25).AWTF4(25).PRF8L1(25) 2.PRFBL2(25).PRFBL3(25).PRFBL4(25).CSFC1(25).CSFC2(25).CSFC3(25). 3CSEC4(25)+BPE1(25)+BPE2(25)+BPE3(25)+BPE4(25)+XMIEB1(25)+XMIEB2(25 4).XMIFB3(25).XMIFB4(25).PCFBC1(25).PCFBC2(25).PCFBC3(25).PCFBC4(25 5) * XMNFC1(25) * XMNFC2(25) * XMNFC3(25) * XMNFC4(25) * PRFC1(25) * PRFC2(25) * 6PRFC3125).PRFC4(25).AWINF1(25).AWTNF2(25).AWINF3(25).AWINF4(25).XI 781(25),X182(25),X183(25),X184(25),PRNF81(25),PRNF82(25),PRNF83(25) 8.PRNFB4(25).PNFBS1(25).PNFBS2(25).PNFBS3(25).PNFBS4(25).XC1(25). 9X82(25)+X83(25)+X84(25)+FS81(25)+ES82(25)+ES83(25)+ES84(25) CHS1(25)+CHS2(25)+CHS3(25)+CHS4(25)+SF1(25)+SF2(25)+SF3 COMMON 1(25).SF4(25).PRPL1(25).PRPL2(25).PRPL3(25).PRPL4(25).PP1(25).PP2(3 25).PP3(25).PP4(25).XIP1(25).XIP2(25).XIP3(25).XIP4(25).PRPW1(25). 3PRPW2(25).PRPW3(25).PRPW4(25).PCPS1(25).PCPS2(25).PCPS3(25).PCPS4 4(25), XP1(25), XP2(25), XP3(25), XP4(25), ESP1(25), ESP2(25), ESP3(25), 5FSP4(25), PRFBW1(25), PRFBW2(25), PRFBW3(25), PRFBW4(25), PRNFL1(25), PR 6NFL2(25) • PRNFL3(25) • PRNFL4(25) • BPNF1(25) • BPNF2(25) • BPNF3(25) • BPNF4 7(25) COMMON PRFCA(25)+H21(25)+H22R(25)+H23(25)+CBCS(25)+PRC1(25)+ 1PRC2(25).PRC3(25).PRC4(25).XMILB1(25).XMILB2(25).XMILB3(25).XMILB4 2125).CN11251.CN2(25).CN3125).CN4(25).RNGE1(25).RNGE2(25).RNGE3(25) 3.RNGF4(25).T1(25).T2(25).T3(25).T4(25).PSPS1(25).PSPS2(25).PSPS3 4(25).PSPS4(25).DPH1(25).DPH2(25).DPH3(25).DPH4(25).XMILP1(25). 5XMILP2(25),XMILP3(25),XMILP4(25),Y1(25),Y2(25),Y3(25),Y4(25),H13 6125) + BPCB1 (25) + BPCB2 (25) + BPCB3 (25) + BPCB4 (25) + BPCP1 (25) + BPCP2 (25) + 78PCP3(25).8PCP4(25).7(25).22(25).YZ(25) 6 READ(5.7) K 7 FORMAT(12) 8 00 9 J=1.3 9 READ(5.10)PREBL2(J).PREC2(J).PRNEBI(J).PRNEB2(J).PRPL2(J).PRPW1(J) 1.PRPW2(J).PRFC1(J).PL1(J).PL2(J).SF1(J).SF2(J).SF3(J).SF4(J).AWTF2 2(J)+H21(J)+H22R(J)+H23(J)+PNF8S1(J)+PNF8S2(J)+PCPS2(J)+ESB2(J)+ESP 32(J), PRPt1(J), PRFBL1(J), PCPS1(J), PCPS3(J), PCPS4(J), CBCS(J), PRFC4(J 41.PREBL4(J).PRPL3(J).PREC3(J) 10 FORMAT(8F4.2.7F4.0.3F5.0.5X./3F4.2.2F4.0.2F4.2.3F3.1.F4.0.4F4.2) 11 DO 12 J=1.K 12 RFAD(5,13) HI3(J), PSPS1(J), PSPS2(J), PSPS3(J), PSPS4(J), PRC1(J), PRC2 L{J}.PRC3(J).PRC4(J).XMILB1(J).XMILB2(J).XMILB3(J).XMILB4(J).XMILP1 2(J).XMTEP2(J).XMTLP3(J).XMTLP4(J).CN1(J).CN2(J).CN3(J).CN4(J).RNGE 31(J).RNGE2(J).RNGE3(J).RNGE4(J).T1(J).T2(J).T3(J).T4(J).DPH1(J). 4DPH2(J).DPH3(J).DPH4(J).Y1(J).Y2(J).Y3(J).Y4(J).BPCB1(J).BPCB2(J). 5BPCB3(J)+8PCB4(J)+8PCP1(J)+8PCP2(J)+8PCP3(J)+8PCP4(3) 13 FORMAT(F5.0.4F4.2.4F3.2.8F3.0.4F4.1.7X./8F2.0.4F4.3.4F4.0.8F3.2) CALL TEST (K) 26 WRITE(6,27) 27 FORMAT(*1*.* MFC3 AWTE3 CSFC3 8PF3 MNEC 3 AWTNF3 BPNE3*+ 1 * 183 X83 PNEBS3 CHS3 PCF8C3 PP3 IP3 XP3 PCPS3+) 28 DO 29 I=3.K 29 WRITE(6.30)XMEC3(I).AWTE3(I).CSEC3(I).BPE3(I).XMNEC3(I).AWTNE3(I) 1.8PNF3(1).XIB3(1).XB3(1).PCF8C3(1).PNFBS3(1).CHS3(1).PP3(1).XIP3(1 2) . XP3(I) . PCPS3(I) 30 FORMAT(1H0+F7-0-3X+F5-0-3(2X+F6-0)-3X+F5-0-2X+F6-0-2(1X+F5-0)-2(5X 1.F4.11.2F7.0.2(1X.F5.0).3X.F4.1) 31 WRITE(6.32) 32 FORMAT(PRE8W3 PRNF83 PRPW3 FS83 ESP3 PNFBC3 PCPC3* 1.* PPF8L3 PRPL9, PREG3 PRESR3 PRPB3 SF3 PL3+) 33 DO 34 I=3.K


```
34 WRITE(6.35)PREBW3(I).PRNEB3(I).PRPW3(I).ESB3(I).ESP3(I).PREBL3(I)
  1.PRPL3(1).PRFC3(1).SF3(1).PL3(1)
35 FORMAT(1H0.3(4X.F5.2).2F7.0.16X.3(3X.F5.2).16X.2F6.0)
36 WRITE(6.37)
37 FORMAT( 11, MEC4 AWTE4
                             CSEC4
                                      BPF4
                                             MNEC4
                                                      AWTNE4
                                                               BPNF4 *
                   PCFBC4
                             PNFBS4
                                     CHS4
                                            PP4
                                                   IP4
                                                         XP4
                                                               PCPS41)
             XB4
  1 *
       184
38 DH 39 I=3.K
39 WRITE(6.40)XMEC4(T).AWTE4(I).CSEC4(I).BPE4(I).XMNEC4(I).AWTNE4(I)
  1.BPNF4(T).XIB4(T).XB4(I).PCFBC4(I).PNFBS4(I).CHS4(I).PP4(I).XIP4(I
  2).XP4(1).PCPS4(1)
40 FORMAT(1H0+F7-0+3X+F5-0+3(2X+F6-0)+3X+F5-0+2X+F6-0+2(1X+F5-0)+2(5X
  1.F4.11.2F7.0.2(1X.F5.01.3X.F4.1)
41 WRITE(6.42)
                       PRNEB4
                                  PRPW4
                                          ESB4
                                                  ESP4
                                                        PNF8C4
                                                                 PCPC4
42 FORMAT(1
              PREBW4
                                PRFPR4
                                         PRPB4
                                                  SF4
                                                        PL4+}
                         PRFC4
       PPFBL4
                PRPL4
  1.**
43 DO 44 1=3.K
44 WRITE(6.45)PREBW4(I).PRNEB4(I).PRPW4(I).ESB4(I).ESP4(I).PREBL4(I)
  1.PRPL4([).PRFC4([).SF4([).PL4([)
45 FORMAT(1H0.3(4X.F5.2).2F7.0.16X.3(3X.F5.2).16X.2F6.0)
46 WRITE(6.47)
                                                      AWTNE1
                                                               8PNF1 .
47 FORMAT(*)*.* MEC1 AWTE1
                              CSFC1
                                       8PF1
                                               MNFC1
                                             PP1
                                                    IPI
                                                          XP1 PCPS1)
            XB1
                  PCFBC1
                            PNFBS1
                                     CHS1
  1 • 1B1
48 DO 49 I=3.K
49 WRITE(6.50)XMEC1(1).AWTE1(1).CSEC1(1).BPE1(1).XMNEC1(1).AWTNE1(1)
  1. RPNF1(1).XTB1(1).XB1(1).PCFBC1(1).PNFBS1(1).CHS1(1).PP1(1).XIP1(I
  2).XP1(I).PCPSL(I)
50 EDRMAT(1H0+E7+0+3X+E5+0+3(2X+E6+C)+3X+E5+0+2X+E6+0+2(1X+E5+0)+2(5X
  2.F4.1).2F7.0.2(1X.F5.0).3X.F4.1)
51 RRITF(6.52)
                                                                PCPC1 .
                                                 ESP1
                                                       PNFBCL
                                         FS81
             PREBW1
                      PRNFB1
                                 PRPW1
52 FORMATLY
                                                       PL1+)
                               PRFBR1
                                        PRPB1
                                                 SFL
               PRPL1
                        PPFC1
      PPFBLL
  1.
53 DO 54 I=3.K
54 WR{TF(6.55)PRFBW1(I).PRNFB1(I).PRPW1(I).ESB1(I).ESP1(I).PRFBL1(I)
  1.PRPU1(I).PRFC1(I).SF1(I).PL1(I)
55 FORMAT(1H0.3(4X.F5.2).2F7.0.16X.3(3X.F5.2).16X.2F6.0)
56 WRITE(6.57)
                                                                  BPNF21
                                           BPF2
                                                  MNEC2 AWTNE2
57 FORMAT('1'.'
                 MFC.2
                         AWTF2
                                 CSFC2
                    PCFBC2
                              PNFB52
                                       CHS2
                                                PP2
                                                     1P2
                                                            XP2 PCPS2*1
        182
              XB2
  1...
58 DO 59 1=3.K
59 WRITEL6.601XMEC2(1).AWTE2(1).CSEC2(1).BPE2(1).XMNEC2(1).AWTNE2(1)
  1.BPNF2(1).XIB2(1).XB2(1).PCFBC2(1).PNFBS2(1).CHS2(1).PP2(1).XIP2(1
  2) • XP2(I) • PCPS2(I)
60 FORMAT(1H0.F7.0.3X.F5.0.3(2X.F6.0).3X.F5.0.2X.F6.0.2(1X.F5.0).2(5X
  1.F4.1).2F7.0.2(1X.F5.0).3X.F4.1)
61 WRITE(6.62)
                                                      PNFBC2
                                                               PCPC2 .
                                PRPW2
                                                ESP2
                       PRNFB2
                                         FS82
62 EDRMAT('
             PREBW2
                                        PRPB2
                                                SF2
                                                      PL21)
  1 PPFBL2
              PRPL2
                       PPFC2
                              PRFBR2
63 DD 64 T=3.K
64 WRITE(6.65)PREBW2(11.PRNEB2(1).PRPW2(1).ESB2(1).ESP2(1).PREBL2(1)
  1. PRPI 2111. PRFC2(1). SF2(1). PL2(1)
65 FORMAT(1H0+3(4X+F5+2)+2F7+0+15X+3(3X+F5+2)+16X+2F6+0)
66 WRITE(6+67)
67 ECRMAT( !! . PRECA H21
                            H22R
                                   CBCS
                                            H231)
69 DO 69 1=3.K
69 WRIT/(6.70)PRFCA(I).H21(I).H22R(I).CBCS(I).H23(I)
70 FOPM ([[H0.3X.F5.2.4F7.0]
98 STOP 99999
99 FND
```

```
SUBROUTINE TEST (K)
              XMFC1(25), XMFC2(25), XMFC3(25), XMFC4(25), PL1(25), PL2(25),
    COMMON
   1PI 3(25).PL4(25).AWTF1(25).AWTF2(25).AWTF3(25).AWTF4(25).PRFBL1(25)
   2.PRFBL2(25).PRFBL3(25).PRFBL4(25).CSFC1(25).CSFC2(25).CSFC3(25).
   3CSEC4(25), BPE1(25), BPE2(25), BPE3(25), BPE4(25), XMIEB1(25), XMIEB2(25)
   4), XMIFB3(25), XMIFB4(25), PCFBC1(25), PCFBC2(25), PCFBC3(25), PCFBC4(25)
   5), XMNFC1(25), XMNFC2(25), XMNFC3(25), XMNFC4(25), PRFC1(25), PRFC2(25),
   6PRFC3(25)+PRFC4(25),AWTNF1(25),AWTNF2(25),AWTNF3(25),AWTNF4(25),XI
   781(25), X182(25), X183(25), X184(25), PRNFB1(25), PRNFB2(25), PRNFB3(25)
   8.PRNFB4(25).PNFBS1(25).PNFBS2(25).PNFBS3(25).PNFBS4(25).XB1(25).
   9XB2(25)+XB3(25)+XB4(25)+ESB1(25)+ESB2(25)+ESB3(25)+ESB4(25)
              CHS1(25).CHS2(25).CHS3(25).CHS4(25).SF1(25).SF2(25).SF3
   COMMON
   1(25).SF4(25).PRPL1(25).PRPL2(25).PRPL3(25).PRPL4(25).PP1(25).PP2(3
   25).PP3(25).PP4(25).XIP1(25).XIP2(25).XIP3(25).XIP4(25).PRPW1(25).
   3PRPW2(25)+PRPW3(25)+PRPW4(25)+PCPS1(25)+PCPS2(25)+PCPS3(25)+PCPS4
   4(25), XP1(25), XP2(25), XP3(25), XP4(25), ESP1(25), ESP2(25), ESP3(25),
   5FSP4(25), PRFBW1(25), PRFBW2(25), PRFBW3(25), PRFBW4(25), PRNFL1(25), PR
   6NFL2(25).PRNFL3(25).PRNFL4(25).BPNF1(25).BPNF2(25).BPNF3(25).BPNF4
   7(25)
    COMMON
              PRFCA(25)+H21(25)+H22R(25)+H23(25)+CBCS(25)+PRC1(25)+
   1PRC2(25), PRC3(25), PRC4(25), XMILB1(25), XMILB2(25), XMILB3(25), XMILB4
   2(25).CN1(25).CN2(25).CN3(25).CN4(25).RNGE1(25).RNGE2(25).RNGE3(25)
   3.RNGE4(25).T1(25).T2(25).T3(25).T4(25).PSPS1(25).PSPS2(25).PSPS3
   4(25),PSPS4(25),DPH1(25),DPH2(25),DPH3(25),DPH4(25),XM1LP1(25),
   5XMT1 P2(25)+XMTLP3(25)+XMTLP4(25)+Y1(25)+Y2(25)+Y3(25)+Y4(25)+H13
   6(25), BPCB1(25), BPCB2(25), BPCB3(25), BPCB4(25), BPCP1(25), BPCP2(25),
   78PCP3(25), BPCP4(25), Z(25), ZZ(25), YZ(25)
 14 DO 15 [=4.K
301 XMFC3(I)=676.0+0.5426*PL2(I-1)+0.5426*PL1(I-1)
302 IF(I-5)530.303.530
303 XMFC3(I)=0.925*XMFC3(I)
530 IF[PRF8W2(1-1)-50.0)304.304.531
531 1F(PRNFB2(1-1)-40.0)304,304,532
532 IF(PRPW2(1-1)-50.0)304.304.533
533 XMFC3([)=0.96*XMFC3([)
304 AWTF3(1)=280.0+0.6599*AWTF2(1-1)+2.84*(PRFBL1(1-1)/PRC1(1-1))
396 IF(1-7)305.397.305
397 AWTE3([)=AWTE3([)+10.0
305 [F(PRC3(1)-1.11) 306.306.307
306 AWTF3(1)=AWTF3(1)-1.44*(PRFBL1(1-1)/PRC1(1-1))
307 CSFC3(1)=(XMFC3(1)*AWTF3(1))/1000.
308 BPF3(I)=0.6*CSFC3(I)
309 XMIF83(1)=0.5*XMIL83(1)
310 PCEBC3(I)=(BPE3(I)-XMIEB3([))/CN3(I)
311 AWTNF3(I)=895.6+0.7824#T3(I)
312 XMNFC3(I)=-1089.2+0.0625*H13(I-1)+0.049*H23(I-1)+1568.5*PRC2(I-1)
   1-84.965*PRFC2(I-1)+24.05*RNGF3(I)-0.39417*AWTNF3(I)
313 IF((PRFC2(1-3)-PRFC2(1-1))-4.00) 314.317.317
314 TF((PRFC2(T-2)-PRFC2(T-1))-3.10) 315.315.317
3)5 IF((RNGF3(I+1)-RNGF3(I))-7.0) 318+318+316
316 IF((RNGE2(1-1)-RNGE3(I))-2.0) 318.318.317
317 XMNFC3(I)=1.14*XMNFC3(I)
318 IF(7(I-1)-24.00) 320.320.319
319 XMNFC3(1)=0.90*XMNFC3(1)
320 IF((H22R(I-1)/H23(I-1))-0.2151323.323.321
321 IF(PRNEB2(1-1)-36.00) 323.323.20
20 IF(PRPW2(1-1)-47.0)323.323.322
322 XMNFC3(1)=1.23*XMNFC3(1)
```

```
323 BPNE3([)=0.526*XMNEC3(])
324 XIB3(I)=761.3-1.672*PRNFB1(I-1)-1.672*PRNFB2(I-1)
   1-18.8*PNFBS1(I-1)-18.8*PNFBS2(I-1)
325 XB3(1)=-0.65-0.343*PRNFB1(1-1)-0.343*PRNFB2(1-1)
   1+1.988*PNFB51(I-1)+1.988*PNFB52(I-1)
326 IF(1-51 327.327.328
327 \times 183(1) = \times 183(1) - 231.3
    GO TO 330
328 IF([-6] 329.329.331
329 X183(1)=X183(1)-112.0
330 X83(I)=X83(I)-1.86
331 IF(CACS(1-1)-3370.0) 332.332.334
337 IF(PRNFB1(I-1)-30.0) 334.333.333
333 XI83(I)=1.30*XI83(I)
334 IF(PNF854(1-1)-9.5) 335.335.336
335 XIB3(1)=1.24*X[B3(1)
336 IF((PCPS4(1-1)+PCPS1(1-1)+PCPS2(1-1))-45.0) 337.534.534
337 XIB3(1)=1.35*X183(1)
534 JELPRNEB2(I-11-40.501338.338.543
543 XIB3(T)=1.50*XIB3(I)
338 [F(I-16] 340.339.339
339 XIB3(1)=1.25*X[B3(1)
340 IF(XIB3(I)) 341+342+342
341 XIB3(I)=0.0
342 PNEBS3[1)≠ESB2(1-1)/CN3(1)+BPNE3(1)/CN3(1)+X1B3(1)/CN3(1)-XB3(1)/
   1CN3(1)-XMIEB3(1)/CN3(1)
343_CH$3(T)==4146.0+0.52726*SF1(I=1)+0.1721*SF4(I=1)=54.05*PRPL2(I=1)
   1-719.58*PRC2(I-1)+1168.76*PSPS1(I-1)
346 [F(PRPL2(1-1)-23.00) 348.347.347
347 CH53(I)=CH53(I)+10.0*PRPL2(I-1)
    GO TO 352
348 TELPRPL2(1-1)-19.75) 352.349.349
349 TETPRPL2(1-21-19.75) 352.350.350
350 JF(PRP)2(I-3)-19.75) 352.351.351
351 CHS3(I)=CHS3(I)+17.0*PRPL2(I-1)
352 PP3(T)=DPH3(T)*CH53(T)
353 XIP3(I)=+92.56+0.958*PRPW1(I-1)+0.958*PRPW2(I-1)+0.93*T3(I)+2.6*
   1PCPS2(I-1)
356 xP3[1)=-12.6-0.09*PRPW1(1-1)-0.09*PRPW2(1-1)+0.286*T3(1)+2.86*
   tPCPS2[I-1]
357 PCPS3(I)=FSP2(I-1)/CN3(I)+PP3(I)/CN3(I)+XIP3(I)/CN3(I)-XP3(I)/CN3
   1(])-XMT(P3(])/CN3(])
358 PRFBW3(1)=71.36-3.3237*PCFBC3(1)-3.1563*PNFBS3(1)+0.02253*Y3(1)
   1+0.1106*T3(I)
535 IF((PCF8C3(1)+PNF8S3(1))-30+0)359+359+536
536 PRFBW3(1)=PRFBW3(1)+0.08*PCFBC3(1)
359 PRNFB3(1)=82.07-4.4403*PNFBS3(1)-1.1698*PCPS3(1)+0.01112*Y3(1)
   1-0.2363*T3[1)
360 IF((PCFBC3(1)+PNFBS3(1))-28.0) 362.361.361
361 PRNF83(I)=PRNF83(I)+0.55*PNF853(I)
362 PRPW3(I)=44.75-0.9945*PNFBS3(I)-3.3264*PCPS3(I)+0.03727*Y3(I)
   1-0.6021*T3(T)
398 [F(1-7)363.399.363
399 PRPW3([)=PRPW3([)+3.5
363 IF(Y3(1)-2800.0) 365.365.364
364 PRPW3(I)=PRPW3(I)-0.002*Y3(I)
365 IF((PCPS3(1)-PCPS3(1-1))-2.0) 367.367.366
366 PRPW3(I)=0.9525*PRPW3(I)
```

```
97
```

```
367 IF((PCPS4(I-1)+PCPS1(I-1)+PCPS2(I-1))-45.0) 368.370.370
368 PRNF83(I)=1,12*PRNF83(I)
369 PRPW3(1)=1.02*PRPW3(1)
370 FSB3(1)=-470.0+26.26*PCF8C3(1)+17.91*PNF8S3(1)+10.27*PCPS3(1)
   1-0.0115*Y3(1)-0.7872*T3(1)
371 FSP3(1)=-847.9+19.20*PCFBC3(1)+18.56*PNFBS3(1)+42.5*PCPS3(1)
   1-0.001*Y3[]]-3.37*T3[]]
372 PREBL3(1)=-4.51+0.6393*PREBW3(1)+0.8018*8PCB3(1)
373 PRPI3(1)=-7.69+0.4864*PRPW3(1)+1.20*BPCP3(1)
374 PRFC3([]=-23.74+0.9027*PRFBL3(])+0.165*RNGE3(])+0.5044*PRFC1(]-1)
375 IF(RNGF3(I)-80.0) 377.377.376
376 PRFC3(I)=PRFC3(I)+0.01*RNGE3(I)
377 IF((PRFC3(I-1)-PRFC4(I-1))-1.39) 378,378,379
378 IFI(PRC211-11-PRC211-211-0.13) 380.379.379
379 PRFC3(1)=0.96*PRFC3(1)
380 SF3([]=-82.67+0.89764*SF3([-1]+45.175*PRPL1([-1]-317.48*PRC1([-1]
   1+0.33541*SF2(I-1)-0.33541*SF2(I-2)
381 TE(PRC1(1-1)-1.10) 386.382.382
382 IF((PRPI1(I-1)/PRC1(I-1))-17.5) 383.383.386
383 IF(PRPL2(1-1)-19.75)388.388.384
384 IF((PRPL2(1-1)/PRC2(I-1))-15.0)385.385.386
385 SF3(I)=0.90*SF3(I)
386 IF(PRC1(I-L)-1.201387.388.388
387 SF3(T)=1.20#SF3(T)
388 PI 3(I)=+4589.0+0.3011*H21([-1)+75.14*(PRFBL3(I)/PRC3(I))
389 IF(1-5) 390.390.391
390 P13(1)=PL3(1)+29.86*(PRFBL3(1)/PRC3(1))
391 IF(PRC3(1)-1,20) 392.394.394
392 IF((PRFBL3(I)/PRC3(I))-22.0) 393.394.394
393 PL3(I)=Pl3(I)-15.0*(PRF8L3(I)/PRC3(I))
394 TE((PRPI3(1)-PRPL3(1-1))-6.001 537.537.395
395 PI 3([)=0.93*PL3(1)
537 [F(PRFB) 2(I-1)-30.0)400.400.538
538 IF(PRF8L3(1)-30.01400.400.539
539 PL3(I)=1.05*PL3(I)
400 XMFC4(I)=501.0±0.344)*PL1(I-1)+0.3441*PL2(I-1)+0.3441*PL3(I)
401 AWTE4(1)=478.0+0.5304*AWTE3(1)+1.61*(PREBL2(1-1)/PRC2(1-1))
451 IF(1-7)402.499.402
499 AWTF4(1)=AWTF4(1)+15.0
402 [F17(I-1)-24.00) 403.403.404
403 IF((PCPS4(I-1)+PCPS1(I-1)+PCPS2(I-1))-45+0) 404+540+540
404 AWTF4(I)=1_015*AWTF4(I)
540 IF(PRE8) 2(1-1)-30.0)405.405.541
541 IF(PRFBI 3(1)-30.01405.405.542
542 AWTE4(1)=0.98*AWTE4(1)
405 CSEC4(I)=(XMEC4(I)*AWTE4(I))/1000.
406 BPF4(1)=0.6*CSFC4(1)
407 XMIF84(1)=0.5*XMIL84(1)
408 PCF8C4(I)=(BPF4(I)-XMIF84(I))/CN4(I)
409 AWINF4(I)=915.0+0.7824*T4(I)
410 XMNFC4(I)=-770.3+0.0625*H13(I-1)+0.043*H23(I-1)+1568.5*PRC3(I)
   1-84.965*PRFC3(1)+24.05*RNGF4(1)-0.39417*AWTNF4(1)
411 IF(RNGF4[1)-83.0) 413.413.412
412 XMNFC4(I)=XMNFC4(I)-4.0*RNGF4(I)
413 IF(PRC3(1)-1.111 414.414.415
414 XMNFC4(1)=XMNFC4(1)-183.5*PRC3(1)
415 IF(7(I-1)-24.00) 417.417.416
```

```
416 XMNEC4(I)=0.87*XMNEC4(I)
```

```
417 IF((PRC2(I-1)-PRC2(I-2))-0.13) 419.418.418
418 XMNFC4[[]=].15*XMNFC4[])
419 IF((H22R(J-1)/H23(J-1))-0.215)424.424.420
420 JE(PRNEB3[1)-38.00) 424.424.421
421 XMNEC4(1)⇒1.07*XMNEC4([)
472 IF((H22R(I-2)/H23(I-2))-0.22) 424.424.423
423 XMNFC4([)=].14*XMNFC4(])
424 BPNF4(I)=0.511*XMNFC4(I)
425 X1B4([]=761.3-1.672*PRNFB2([-1)-1.672*PRNFB3([)
   1-18.8*PNFBS2(1-1)-18.8*PNFBS3(1)
426 XB4(1)=-0.65-0.343*PRNFB2(I-1)-0.343*PRNFB3(I)
   1+1.988*PNFBS2(I-1)+1.988*PNFBS3(I)
427 IE(1-5) 428.428.429
428 XIB4(T)=XIB4([)-231.3
    GO TO 431
429 IF(1-6) 430,430,432
430 X[B4(T)=X[84(T)-112.3
431 \times B4(1) = \times B4(1) - 1.86
432 [F((PRNEB3(I-1)-PRNEB3(I))-6.0] 434,434,433
433 XIB4(1)=0.70*XIB4(1)
434 IF(CRCS(I-1)-3370.0) 435.435.437
435 [F[PRNEB2([-1]-30.0) 437.436.436
436 XIB4(1)=1.35*XIB4(1)
437 [F(7(1-1)-24.00] 439.439.438
438 XIB4(1)=1.25*XIB4(1)
439 IF([-16] 441.440.440
440 \times 184[1] = 1.40 \times 184[1]
441 IF(XIB4(I)) 442.443.443
442 XIB4([]=0.0
443 PNFBS4(I)=FSR3(I)/CN4(I)+BPNF4(I)/CN4(I)+XIB4(I)/CN4(I)-XB4(I)/
   icN4(1)-XMIFB4(I)/CN4(I)
444 CHS4(I)=-4146.0+0.52726*SF2(I-1)+0.1721*SF1(I-1)-54.05*PRPL3(I)
   1-719.58*PRC3(I)+1168.76*PSPS2(I-1)
446 IF(PRPL2(1-2)-15.25) 447.449.449
447 IF(PRP12(I-1)-15.25) 448.449.449
448 CHS4(1)=CHS4(1)+30.0*PRPL3(1)
449 IF{(PRFC3(1)~PRFC3(1-1))-4.90}452.452.450
450 CHS4(1)=0.975*CHS4(1)
452 TE(PRC3(1)-1.10) 453+454+454
453 CHS4(1)=CHS4(1)+330.0*PRC3(1)
454 IF(PRPI3(1)-24.00) 456.455.455
455 CHS4(I)=CHS4(I)+21.0*PRPL3(1)
    GO TO 460
456 IF(PRP)3(1)-22.0) 460.457.457
457 IF(PRPL3(I-1)-22.0) 460.458.458
458 IF(PRPL3(I-2)-22.0) 460.459.459
459 CHS4(1)=CHS4(1)+26.0*PRPL3(1)
460 PP4(1)=DPH4(1)*CHS4(I)
461 X1P4(I)=-92.56+0.958*PRPW2(I-1)+0.958*PRPW3(I)+0.93*T4(I)+2.6*
   1PCPS3(T)
462 XP4([]=-2.4-0.09*PRPW2([-1]-0.09*PRPW3([]+0.286*T4([]+2.86*PCPS3([
   11
463 PCPS4(1)=FSP3(1)/CN4(1)+PP4(1)/CN4(1)+X1P4(1)/CN4(1)-XP4(1)/CN4(1)
   1 - XMILP4(I)/CN4(I)
464 PRFRW4(1)=68.30-3.3237*PCFRC4(1)-3.1563*PNFBS4(1)+0.02253*Y4(1)
   1+0.1106*T4(I)
465 IF(PCF8C4(I)-16.0) 468.468.466
466 JF(PCPS4(I)-18.0) 468.468.467
```

```
467 PRFBW4(1)=0.9375*PRFBW4(1)
468 PRNFB4(I)=81.54-4.4403*PNFBS4(I)-1.1698*PCPS4(I)+0.01112*Y4(I)
   1-0.2363*T4(1)
469 IF((PCFBC4(I)+PNFBS4(I))-27.0) 471.470.470
470 PRNEB4(I)=PRNEB4([]+0.35*PNEB54([]
471 PRPW4(I)=49.36-0.9945*PNF8S4(I)-3.3264*PCPS4(I)+0.03727*Y4(I)
   1 - 0.602 * T4(1)
472 [E(Y4(1)-2790.0) 474,474,473
473 PRPW4(I)=PRPW4(1)-0.002*Y4(I)
474 IF((PCPS4(1)-PCPS4(1-1))-2.0) 476.476.475
475 PRPW4(1)=0.9525*PRPW4(1)
476 FSB4(I)=-430.87+26.26*PCFBC4(I)+17.91*PNFBS4(I)+10.27*PCPS4(I)
   1-0.0115*Y4(1)-0.79*T4(1)
477 FSP4(1)=-852.9+19.20*PCF8C4(1)+18.56*PNFBS4(1)+42.5*PCPS4(1)
   1-0.003*Y4(1)-3.37*T4(1)
478 PRFBL4(1)=-4.51+0.6393*PRFBW4(1)+0.8018*BPCB4(1)
479 PRPL4(1)=-7.69+0.4864*PRPW4(1)+1.2*BPCP4(1)
480 PRFC4(I)=-13.79+0.7831*PRF8L4(I)+0.11*RNGE4(I)+0.3952*PRFC2(I-1)
481 IF(RNGF4(1)-80_0) 483.482.482
482 PRFC4(1)=PRFC4(1)+0.01*RNGF4(1)
483 SF4(1)=-82.67+0.89764*SF4(1-1)+45.175*PRPL2(1-1)-317.48*PRC2(1-1)
    1+0.33541*SF3(1)-0.33541*SF3(1-1)
484 IF(PRPL2(1-1)-19.75) 486.485.485
485 SF4(I)=SF4(I)-10.0*PRPL2(I-1)
486 IF(PRC2(I-1)-1.11) 487.487.488
487 SF4(1)=1.056*SF4(1)
488 [F((PRC2(1-1)-PRC3(T))-0.115) 490.489.489
489 SF4(I)=1.13*SF4(I)
490 PL4(1)=-3638_0+0.2728*H23(I-1)+98.00*(PRFBL4(I)/PRC4(I))
491 IF(PRFB) 4(1)-24.50) 492.494.494
497 IF((PRC3(1)-PRC4(1))-0.10) 494.494.493
493 PL4(1)=PL4(1)+28.0*(PRFBL4(1)/PRC4(T))
494 IF(PRPI3(1)-24.001 496.495.495
495 PL4(T)=1.04*PL4(I)
    GO TO 501
496 IF(PRFBI3(1)-28.00) 501.497.497
497 IF(PRFBL4(1)-27.00) 501.498.498
498 PE4(I)=1.04*PL4(I)
 501 PRECA(I)=0.25*PREC1(I-1)+0.25*PREC2(I-1)+0.25*PREC3(I)+0.25*PREC4
    1(1)
 502 7(I)=((PRFBL3(I)/PRC3(I))+(PRFBL4(I)/PRC4(I)))/2+0
 503 H21(1)=-5632.+1.48551*H23(1-1)-1.19368*H23(I+2)+0.59684*H23(I-3)
    1+121.22123*PRFCA([])
 504 H22R(I)=-1176.+0.27791*H21(1-11+57.5855*PRFCA(I)
 505 [F(1-09] 506.506.510
 506 IF(PRECA(I)-27.001 507.507.508
 507 CBCS([]=536.-0.89657*H23([-])+2.12714*H23([-2)-1.06357*H23([-3)
    1-39.3934*PRFCA(1)
     GO TO 512
 508 C8CS([]=536.-0.05534*H23(I-1)+0.44468*H23(I-2)-0.22234*H23(I-3)
    1-39.3934*PRFCA(I)
     GP TO 512
 510 CBCS(I)=536.-0.92077*H23(I-1)+2.12714*H23(I-2)-1.06357*H23(I-3)
    1-39.3934*PRFCA(I)
 512 [F(7(1-1)-24.00) 513.513.524
 513 IF(PRFCA(1)-22,00) 514.514.515
 514 IF((PRFCA(1-1)-PRFCA(1))-2.75) 515.515.518
```

ţ

```
100
```

```
515 IF((RNGF3(I-1)-RNGE3(I))-7.0) 520,520,516
 516 IF((RNGF2(1-1)-RNGF3(1))-2.01 520.520.517
 517 CBCS(1)=1.075*CBCS(1)
     GO TO 520
 518 CBCS(I)=1.125*CBCS(I)
 519 Y7(1)=1.0
 520 [F(Z(I-1)-23.00) 521.521.509
 521 TE((CBCS(1)/H23(1-3))-J.13) 522.522.509
 522 CBCS([)=CBCS(])+0+04#H23(I-3)
 523 H21(T)=H21(T)=0.03+H23(T-3)
    GO TO 509
 524 GBCS(1)=0.82*CBCS(1)
525 H22R(I)=1.015*H22R(I)
526 H21(T)=1.02*H21(T)
509 IF((CRCS(1)/H23(1-3))-0.105)511,545.545
511 CBCS(E)=CBCS(E)+0+05*H23(I-3)
544 H21(I)=H21(I)-0.05*H23(I-3)
545 IF(PRFCA(1)-30.00)527.527.546
546 H22R(1)=0.94*H22R(1)
527 H23[[]=0.96*H23(]-1]+1.0*H22R(I-1)-1.0*CBCS(])
101 XMFC1(1)=514.0+0.3748*PL3(1)+0.3748*PL2(1-1)+0.3748*PL1(1-1)
547 [F(PRFBW4(1)-48.00)102.102.548
548 IF(PRNFB4(1)-42.00)102.102.549
549 IFIPRPW4(1)-58.001102.102.550
550 XMFC1(1)=0.94*XMFC1(1)
102 AWTF1([)=-204.0+].1362*AWTF4([)+3.64*(PRFBL3([)/PRC3([))
103 [F(T-5)104-104-105
104 AWTE1(1)=AWTE1(1)+18.0
105 [F(1+6) 107-106-107
106 AWTE1(J)=AWTE1(J)-20.0
107 IF(PRC1(1)-1.10) 108.109.109
108 AWTF1(I)=AWTF1(I)-0.70*(PRFBL3(I)/PRC3(I))
109 IF(PRPL3(1)-15.0)110.198.198
110 AWTE1([)=AWTE1([)-15.0
198 JF((PRFBL3(1)/PRC3(1))-27.0)111.111.199
199 AWTF1([)=0.96*AWTF1(])
111 CSFC1(1)=(XMFC1(1)*AWTF1(E))/1000.
112 BPF1(1)=0.6*CSFC1(1)
113 XMIFB1(T)=0.5*XM11B1(T)
114 PCFBC1(1)=(8PF1(1)-XMIFB1(1))/CN1(1)
115 AWINF1(1)=913.5+0.7824*T1(1)
116 XMNFC1(1)=-979.1+0.0625*H13(1)+0.038*H23(1)+1568.5*PRC4(1)
   1-84.965*PRFC4(1)+24.05*RNGE1(1)-0.39417*AWTNF1(1)
117 TF((PRFC4(T)-PRFC4(I-2))- 5.75) 119,119,118
118 XMNEC1(1)=0.875*XMNEC1(1)
119 IF((PRC)(I)-PRC4(I))-0.11) 121.120.120
120 XMNEC1(I)=1.08*XMNEC1(I)
12) IFI(PRNFB4(I-1)-PRNFB4(I))-7.50) 123.123.122
122 XMNFC1([)=0.95*XMNFC1([)
123 [F((H22R[[)/H23[]))-0.22] 124.124.125
124 IF(PRNE84(I)-37.25) 127.127.126
125 IF(PRNE84(I)-36.00) 127.127.126
126 XMNEC1([]=1.1]*XMNEC1[])
127 BPNF1(f)=0.512*XMNFC1(1)
128 XIB1(I)=761.3-1.672*PRNFB3([)-1.672*PRNFB4(I)-18.8*PNFBS3([]
   1-18.8*PNFBS4(1)
129 X81(1)=-0.65-0.343*PRNF83(1)-0.343*PRNF84(1)+1.988*PNF8S3(1)
```

```
1+1.988*PNFBS4(1)
```

```
130 IF(1-6) 131.131.133
131 XIB1(1)=XIB1(1)-181.3
132 XB1(1)=XB1(1)-1.86
133 IF(CBCS(1)-3300.0) 134-135-135
134 XIB1(T)=1.40*XIB1(T)
135 1F((PRNFB3(1-1)-PRNFB3(1))-6.0) 551.551.136
136 \times 1B1(1) = 0.70 \times XIB1(1)
551 IF(PREBU4(1)-48.00)137.137.552
552 IF(PRNFB4(1)-42.00)137.137.553
553 IF(PRPW4(T)-58.00)137.137.554
554 XIBI(I)=1.5*XIB](I)
137 [F(X(B)(T)) 138-138-139
138 X181(I)=0.0
139 [F1]-15] 141-140-140
140 XIB1(1)=1.45*XIB1(1)
141 PNEBS1(I)=ESB4(I)/CN1(I)+BPNE1(I)/CN1(I)+XIB1(I)/CN1(I)-XB1(I)/CN
   ji(t)=xmtEB1(1)/CN1(T)
142 CHS1(J)=-4146.0+0.52726*SF3(1)+0.1721*SF2(1-1)-54.05*PRPL4(1)
   1-719.58*PRC4(1)+1168.76*PSPS3(1)
143 IF(PRPI4(1)-12.6) 144.144.145
144 CHS1(I)=CHS1(I)+24.05*PRPL4(I)
    GO TO 151
145 TE(PRPL4(1)-25.00)146.146.148
146 IF (PRPL 4(1-11-24.00) 149-149-147
147 IF((PRPL4(I-1)-PRPL4(I))-4.50)149.149.148
148 CHS1(1)=CHS1(1)+26.5*PRPL4(1)
149 IF((PRFC4(I)-PRFC4(I-1))-4.25)151.151.150
150 CHS1(1)=0.936*CHS1(1)
151 PP1(I)=DPH1(I)*CHS1(I)
152 XIP1(I)=-92.56+0.958*PRPW3(I)+0.958*PRPW4(I)+0.93*T1(I)+2.6*PCPS4
   1111
153 XP1(I)=-8.84-0.09*PRPW3(I)-0.09*PRPW4(I)+0.286*T1(I)+2.86*PCPS4(I)
154 PCPS1(1)=FSP4(T)/CN1(T)+PP1(T)/CN1(T)+XIP1(T)/CN1(T)-XP1(T)/CN1(T)
   1-XMILP1(1)/CN1(1)
155 PREBWI(I)=67.36-3.3237*PCFBC1(I)-3.1563*PNEBS1(I)+0.02253*Y1(I)
   1+0.1106*T1(I)
156 PRNFB1(I)=74.93-4.4403*PNFBS1(I)-1.1698*PCPS1(I)+0.01112*Y1(I)
   1-0.2363*T1(1)
157 FE((PCERC1(1)+PNERS1(1))-27.0) 159.159.158
158 PRNEB1(I)=PRNEB1(I)+0.40*PNEBS1(I)
159 PRPW1(I)=46.60-0.9945*PNFBS1(I)-3.3264*PCPS1(I)+0.03727*Y1(I)
   1-0.6021*TL(I)
160 (F(Y)(1)-2800.0) 162.162.161
161 PRPW1(T)=PRPW1(I)-0.002*Y1(I)
162 IF((PCPS1(I)-PCPS1(I-1))-2.0) 163.163.169
163 IE(PRPW4(1)-40.0) 164.170.170
164 IE(PRPW1(1-1)-40.0) 165.170.170
165 IF(PRPW1(1-2)-40.0) 166.170.170
166 PRPWI([]=0.93*PRPW1(])
167 PRFBW1(1)=0.95*PRFBW1(1)
168 77(1)=1.0
    GD TD 170
169 PRPWI([)=0.955*PRPW1[[]
170 FSB1(1)=-458.8+26.26*PCFBC1(1)+17.91*PNFBS1(1)+10.27*PCPS1(1)
    1-0.0115*Y1(I)-0.7872*T1(I)
171 FSP1(I)=-741.67+19.20*PCFBC1(I)+18.56*PNFBS1(I)+42.5*PCPS1(I)
   1-0.001*Y1(1)-3.37*T1(1)
```

```
172 IF((PCF8C1(1)+PNF8S1(1)+PCPS1(1))-46.5) 174.174.173
```

```
173 ESBILL)=0.75*ESBILL)
 174 IF((PCFBC4(T)+PNFBS4(I)+PCPS4(I))-46.5) 176.176.175
  175 ESPI(I)=0,70*ESP1(I)
 176 PRFBL1(T)=-4.51+0.6393*PRFBW1(1)+0.8018*BPCB1(1)
 177 PRPL1([)=-7.69+0.4864*PRPW1(])+1.2*BPCP1(])
 178 PRFC1(1)=-5.33+0.8208*PRF8L1(1)+0.3785*PRFC3(1)
 179 [F(PRFBL1(I)-25,50) 182,182,180
 180 IF((PRFC3(I)-PRFC4(I))-1.75) 102.102.101
 181 PRFG1(I)=0.94*PRFC1(I)
 182 SF1#1)=-82.67+0.89764*SF1([-1]+45.175*PRPL3[])-317.48*PRC3[]
    1+0.33541*SF4(T)-0.3354*SF4(1-1)
 560 IF(PRPL3(1)-26-01183-561-561
 561 SF1(1)=SF1(1)-20.0*PkPL3(1)
 183 IF(7(1)-24.00) 184.184.185
 184 1F(77(1)-1.0) 186.185.186
 185 SE1([)=0.93*SE1([)
 186 FF((PRPL3(I-1)-PRPL3(I))-7.0) 187.187.188
 187 TF((PRC3(T)-FRC2(I-11)-0.14) 189.189.188
 188 SF1([]=0.86*SF1([)
 189 PL1(I)=-5539.0+0.2488*H23(I-1)+86.2*(PRFBL1(I)/PRC1(I))
 190 IF(I-4) 192,192,191
 191 [F(PRC1(J)-).10) 192.192.562
 192 PL1(1)=P(1(1)-10.0*(PRFBL1(1)/PRC1(1))
 562 TE((PREBL1(T)/PRC1(T))-24.50)193.193.563
 563 PL1(1)=PL1(I)-10.0*(PRFBL1(I)/PRC1(I))
 193 IF(Y7(T)-1.0) 201.194.201
 194 PL1[[]=0.94*PL1[]]
201 XMFC2(I)=-441.0+0.344*PL3(I)+0.344*PL4(I)+0.344*PL1(I)
202 IF(1-4)203,203,204
203 XMEC2(1)=1.085*XMEC2(1)
204 IF((PREBL4(I-L)-PREBL4(I))-3.80) 207.205.205
205 IF((PREBL1(I-1)-PREBL1(I))-2.80) 207.207.206
206 XMFC2(T)=1.053*XMFC2(I)
207 [F(Y7(T)-1.00] 209.208.209
208 XMFC2[1]=0.96*XMFC2[1]
209 IF(PRFBW1(I)-46.00) 213.213.210
210 TE(PRNEB1(1)-36.00) 213.213.211
211 IF(PRPW1(1)-49.00) 213.213.212
212 XMFC2(I)=0.968*XMFC2(I)
213 IF(PRPL1(1-1)-23.0) 216.214.214
214 IF((PRPL1(1-1)-PRPL1(1))-6.00) 216.215.215
215 XMFC2(1)=1.05*XMFC2(1)
216 AWTF2(T)=271.0+0.6958*AWTF1(T)+2.24*(PRFBL4(T)/PRC4(T))
217 [F47411-22.90] 220.220.218
218 IF((PRFBL4(1)/PRC4(1))-24.50) 220+220+219
219 AWTE2(1)=AWTE2(1)+0.3*(PREBL4(1)/PRC4(1))
    60 70 222
220 IF(Y7(I)-1.01 222.221.222
221 AWTF2(1)=0.985*AWTF2(1)
222 CSFC2(1)=(XMFC2(1)*AWTF2(1))/1000+
223 BPF2(1)=0.6*CSFC2(1)
224 XMIFB2(1)=0.5*XMILB2(1)
225 PCFBC2(I)=(BPF2(I)-XMIFB2(I))/CN2(I)
226 AWTNF2(1)=893.+0.7824*T2(1)
227 XMNFC2(1)=-916.6+0.0625*H13(1)+0.037*H23(1)+1568.5*PRC1(1)
   1-84.965*PRFC1(1)+24.05*RNGE2(1)-0.39417*AWTNF2(1)
228 [F((PRC1(1)-PRC4(1))+0.11) 230.229.229
229 XMNEC2(1)=1+08*XMNEC2(1)
```

.

```
230 IF(PRC1(1)-1.10) 231.731.232
231 XMNEC2(T)=XMNEC2(T)-138.5*PRC1(T)
232 IF(PRPL1(1-1)-23.0) 235.235.233
233 TE((PRPL1(I-1)-PRPL1(T))-6.00) 235.234.234
234 XMNFC2(1)=0.90*XMNFC2(1)
235 IF(7(1)-24.00) 237.237.236
236 XMNEC2[])=0.92*XMNEC2[])
237 [F(Y7(T)-1.0) 239.238.239
238 XMNFC2(1)=0.87*XMNFC2(1)
239 RPNF2(1)=0.524*XMNFC2(1)
240 XIB2(I)=761.3-1.672*PRNFB4(I)-1.672*PRNFB1(I)-18.8*PNFBS4(I)
   1-18.8*PNFB51(I)
241 XB2(])=-0.65-0.343*PRNFB4([)-0.343*PRNFB1(])+1.988*PNFB54(])
   1+1.988*PNF851(I)
242 IF(1-5) 243.243.245
243 XIB2([)=XIB2([)-181.3
244 XB2(I)=XB2(I)-1.86
    GO TO 253
245 [F[]-6] 246.246.247
246 XIB2(1)=X1B2(1)-81.3
247 IF((PRNEB1(1-1)-PRNEB1(1))-6.0) 249.248.248
248 X182([)=0.67*X182(I)
249 [F(XIB2([1) 250.251.25]
250 X182(1)=0.0
251 JF(I-15) 253.252.252
252 X1B2(I)=1.35*X1B2(I)
253 PNEBS2(1)=ESB1(1)/CN2(1)+BPNE2(1)/CN2(1)+X1B2(1)/CN2(1)-XB2(11/CN2
   1{1}-XMIFB2(1)/CN2(1)
254 CHS2(1)=-4146.+0.52726*SF4(1)+0.1721*SF3(1)-54.05*PRPL1(1)-719.58*
   1PRC1(1)+1168.76*PSPS4(1)
255 [F[PRC1(1)-1.12] 256.256.257
256 CHS2(1)=CHS2(1)+319,58*PRC1(1)
257 IFUPRPLI(1)-26.001 258.258.260
258 IF(PRPL1(1-1)-23.0) 261.259.259
259 [F([PRPL1(I-1)-PRP11(I1)-6.00] 261.26C.260
260 CHS2(1)=CHS2(1)+22.00*PRPL1(1)
261 PP2(1)=DPH2(1)*CHS2(1)
262 XIP2([]=-92.56+0.958*PRPW4(])+0.958*PRPW1([]+0.93*T2[])+2.6*PCPS1
    1(1)
263 XP2(1)=-9.8B-0.09*PRPW4(1)-0.09*PRPW1(1)+0.286*T2(1)+2.86*PCPSL(1)
264 PCPS2(I)=FSP1(I)/CN2(I)+PP2(I)/CN2(I)+XIP2(I)/CN2(I)-XP2(I)/CN2(I)
    1-XM[1 P2(1)/CN2(1)
265 PRFBW2(1)=63.19-3.3237*PCFBC2(1)-3.1563*PNFBS2(1)+0.02253*Y2(1)
    1+0.1106*T2(E)
 266 PRNFB2(I)=77.60-4.4403*PNFBS2(I)-1.1698*PCPS2(I)+0.01112*Y2(I)
    1-0.2363*72(1)
267 PRPW2(1)=44.42-0.9945*PNFB52(1)-3.3264*PCP52(1)+0.03727*Y2(1)
    1-0.6021*T2(1)
 195 IF(I-6)268-196-268
 196 PRNFB2(1)=PRNFB2(1)+4.50
 197 PRPW2(1)=PRPW2(1)+5.0
 268 TELY2(11-2800.0) 270.270.269
 269 PRPW2(I)=PRPW2(I)+0-002*Y2(I)
 270 IFL(PCPS2(1)-PCPS2(1-1))-2.0) 272.272.271
 271 PRPW2(T)=0.955*PRPW2(T)
 272 IF(77(1)-1.0) 275.273.275
 273 PRPW2(I)=0.97*PRPW2(I)
 274 PREBW2(1)=0.9675*PREBW2(1)
```

```
275 IF([PRPW1(1-1)-PRPW1(1))-10.00) 277.277.276
276 PRPW2T11=0.90*PRPW2(1)
277 ESB2(1)=-477.52+26.26*PCFBC2(1)+17.91*PNFBS2(1)+10.27*PCPS2(1)
   1~0.0115*Y2([)-0.7872*T2(])
278 FSP2(I)=-732.53+19.20*PCFBC2(I)+18.56*PNFBS2(I)+42.5*PCPS2(I)
   1-0.001*Y2(I)-3.37*T2(I)
279 PRFBL2(I)=-4.51+0.6393*PRFBW2(I)+0.8018*BPCB2(I)
280 PRPL2(1)=-7.69+0.4864*PRPW2(1)+1.2*8PCP2(1)
281 PRFC2(I)=-15.64+0.7376*PRFBL2(I)+0.153*RNGE2(I)+0.4435*PRFC4(I)
282 IF((PRFC3(1)-PRFC4(1))-1.39) 283.284.284
283 IF((PRC2(1)-PRC2(1-1))-0.13) 285.284.284
284 PRFC2(I)=0_94*PRFC2(I)
285 SF2[1]=-82.67+0.89764*SF2[I-1]+45.175*PRPL4[1]-317.48*PRC4(1)
   1+0.33541*SF1(1)-0.33541*SF1(1-1)
286 [F(PRPL4(1)-13.0) 287.288.288
287 SF2(1)=SF2(1)-10.0*PRPL4(1)
288 [F(PRC4([1-1.05] 285.289.555
289 SF2(I)=1.075*SF2(I)
555 [F((PRC4(1)-PRC3(1))-0.021556.556.557
517 SE2(1)=0+90*SE2(1)
556 IF((PRPL2(I-1)+PRPL3(I))-49.0)290.290.558
558 IF((PRPL4(I)+PRPL1(I))-52.0)290+559.559
559 SF2(I)=1.10*SF2(I)
290 PL2(I)=-5233.0+0.249*H21(I)+96.6*PRFBL2(I)
291 IF(1-4) 292,292.293
292 PL2(I)=PL2(I)+647.0
    GO TO 15
293 IF(I-5)15.294.295
294 PL2(I)=PL2(I)+316.0
295 IF((PRC2(I)-PRC2(I-1))-0.13) 297.296.296
296 P12(I)=0.95*PL2(I)
297 IF(PRP12(11-23.50) 299,299.298
298 PL2(1)=0.96*PL2(1)
299 IF(PRPL2(T)-22.0) 17.17.300
300 TE(PREBL2(1)-30.0) 17.17.16
 16 PL2(I)=1.13*PL2(I)
17 IF(PRPI2(I-1)-23.0)15.15.18
18 IF((PRP[2(I-1)-PRPL2(I))-3.50)15.15.19
19 PL2(1)=1.085*PL2(1)
15 CONTINUE
    RETURN
```

```
FND
```

* U. S. GOVERNMENT PRINTING OFFICE : 1970-434-916/ERS-25

.