

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

Abstract

A workable input-output methodology for generating multipliers for sectors of the national economy in 1067 was presented. This methodology has not been previously employed on a national input-output level due to the lack of an enclosed household sector. A method was found for breaking out the household sector and enclosing it into the endogenous portion of the 1967 transactions table built for this report. This method enabled development of two types each of income and employment multipliers. For example, the income multiplier for the apparel sector was found to be 3.15 . This figure represents how much total income is in the apparel sector, assuming all other final demands remain constant. With this assumption removed, the multiplier for the apparel sector increased to 6.74 , reflecting the introduction of the income-consumption relationship. Employment multipliers analogous to the income mult:plie,is were developed. These multipliers ranged from 7.37 in petroleum refining to 1.00 in government, with other final demands assumed constant. When this assumption was relaxed, the range was from 19.27 to 2.35 in these same sectors. keywords: Input-output, income multipliers, employment multipliers, national economy 1967.

PREFACE

This report is based on a dissertation by Robert H. Elrod in partial fulfilment of requirements for the degree of Doctor of Philosophy in Agricultural Economics, Clemson University, August 1969.

CONTENTS

Page
Summary V
Introduction 1
Conceptual probleras 2
Procedure 4
Household column 4
Household row 6
Multipliers 8
Income 8
Employmest 12
Implications 12
Literature cited 13
Appendix tables 16

SUMMARY

A workable input-output methodology has been derived for generating multipliers tor each sector of the national economy in 1967. This methodology had never been used before on a national input-output table because the household sector could not be closed into the table. A method for breaking out the household sector and enclosing it into the endogenous portion of the transactions table was a primary contribution of this study. Addition of the enclosed household secter enhances considerably the usefulness of a mational table.

The 1958 interindustry study by the (ommerce Department sorved as a point of departure for the 1967 tramsactions table built in this report. Control totals for all secturs of the table were developed from secondary sources. The technical conllicients in the 1958 transactions table were updated to 1967 by means of price and quantity indices. A set of batance equations was then used to generate the final demand and ralue-added sectors for the 1967 table. Certain sectors in the table of particulat interest to this study were manually built. The methodology presonted here has useful implications for small researeh stafls who want a mational table but are interested in only a few special sectors.

The method used to cuclose the household sector was to develop personal consumption exponditure ($\mathrm{P}(\mathrm{CE}$) components for each sector. These components were derived through use of : PCP "bridge" developed by the Department of Commerce. PCE by sector was takel as the houschold column. The household row wats developed by allocating those factor parments that corresponded to PCE across this row to the 56 sectors.

Two typer of sector ineome multipliers were genemated. The Type I multiplier showed how much income would change in the national coonemy if the income of one particular sector had a unit change and other final demands remained constant. This multiplier ranged from $\overline{5} 36$ in sector th (Gran Mill Products) to 1.00 in sector ab (Geneaal (Government, an exugenous sector). The Type il multiplier showed the total change in national income if the income of one particular sector had a buit chane This multiplier incluted the indued eflect on income resulting from consumer expenditue changes. The 'Type it multiplier

 aml imbued offects on income was alsw reported.

Two types cf employment multipliers were developed. Interpretation of these multipliers is analogous to that of the income nultipliens. Employment multipliers ranged from 7.37 in sector 31 (Petroleum Refining and Related Products) to 1.00 in sector 54 (Geneval Government, an exogenous sector). Other final demands were assumed constant. When this assumption was reli red, the multipliers ranged from 19.27 in sector 31 to 2.35 in sector 54 .

Sector Income and Employmant Multipliers: Their Interactions on the National Economy

by
Robert H. Elrod and Preston E. LaFerney ${ }^{2}$

INTRODUCTION

When the national economy experiences a change in the activity of one of its sectors, not only are the output, receipts, and expenditures of that sector immediately affected, but also the output, receipts, and expenditures of other sectors are altered. Industries in the economy are divided into sectors, and these sectors are then used to create a square matrix in which each sector name appears as a row name and column name. To analyze quantitatively the effects on employment and income of a change in any sector's activity is of vital importance. Government and industry are interested in any change in sector activity because such changes, if they affect final demand for a sector's products and services, will have concurrent employment and income effects. These changes can be estimated through the development and use of sector multipliers.

Various methods are available to generate these multipliers. A sector multiplier can be defined as a coefficient indicating the total effect of a change in the entire economy that is associated with a unit change in the particular sector, all other sectors remaining constant. Input-output analysis has frequently been used to determine output changes that will occur if final demand for a sector's products and services changes. ${ }^{2}$ Output changes cause employment and income changes in the economy. Isolation of these resulting changes is not easily accomplished. The inputoutput tables published by the Depariment of Commerce must first be modified.

[^0]The objectives of this study were to:
(1) Point out inherent problems in breaking out the household sector of the national input-output model;
(2) Present a workable input-output methodology for generating multipliers for a national model;
(3) Provide a set of employment and income multipliers for a 54 -sector model of the U.S. economy based on an updated 1967 input-output table; and
(4) Cite additional types of information that the Department of Commerce could provide for future studies.
A principal aim was to present the methodology by which a current input-output model can be used to generate income and employment multipliers. Since the method used to generate the updated 54 -sector model for 1967 was developed in an earlier study related to this research project, this method is not presented here. ${ }^{\text {B }}$ Much of the report concerns enclosing the household sector into the updated model. The updated 54 -sector model is presented in appendix table 1. The household column and row are shown in appendix tables 2 and 3 , respectively.

CONCEPTUAL PROBLEMS

The national transactions tables now available do not consider the household sector as an endogenous sector of the table. Rather, the payments made to the household sector are contained in the aggregate value-added row of the tables. ${ }^{\text {a }}$ The need for a household sector that is enclosed into the national table has long been recognized by those interested in analyzing effects of changes in output on income and employment. Multiplier analyses performed on regional models have not been made on any national models because a household sector could not be enclosed into the processing section of the table. Several problems, discussed below, have deterred the enclosing of this sector.

The first problem involves selecting elements to include in the household sector. If the components making up the sector are to be considered totally a part of value added, then only components that contribute to gross national product (GNP) can be included in the household row. On the other hand, if disposable personal income is to make up the household row, various components such as government transfer payments and govern-ment-paid must be allocated across the row. The latter two components are not part of GNP.

[^1]After one has decided what should be part of the row and column, be must then consider the overriding constraint of balancing the row and column. When any row and its corresponding column are moved into the processing sector, the sum of the column entries must equal that of the row entries.

Another problem in enclosing the household sector arises due to changes in the definition of many sectors. Input-output sectors differ conceptually from industrial groups coded under the Standard Industrial Classification (SIC) system. For example, in a 1958 study by Commerce (7), sector 27 (Chemicals and Selected Chemical Products) had 281 as its related SIC code group, excluding part of 2819. Most data published on an SIC basis would be for major group 281 only. The part of 2819 not contained in the 1958 sector 27 would be diflicult, if not impossible, to obtain. The establishment (plant) basis for defining a sector, which distinguishes primary from secondary production, is the cause of this difficulty.

Another problem in enclosing the household sector results from the fact that in the imput-output model, any sector in the endogenous portion of the table is presented as both a buyer and a seller of goods or services or both from and to other sectors. For instance, a wage figure in the household row represents an output (labor) from households to a column. Conversely, the wage figure in the household row represents an input (labor) that the column sector bought from the household row. No difficulty arises if one is considering only wages and salaries. However, a payment to the household sector in the form of a business transfer payment does nut readily conform to a general inputoutput flow table. One example of a business transfer payment is a consumer bad debt (11, p. x). To allocate consumer bad debts across the household row, these debts must be distributed to persons who actually received transfer payments. However, in aliocating bad debts to the columns, these debts must be allocated to sectors (columns) that actually paid the bad debt. Seldom, if ever, would a sector that was paying a bad debt pay it to employees of that particular sector.

A difficulty akin to the previous one arises in government transfer payments to unemployed and retired persons. These are paid to the household row. However, associating an unemployed or retired person with any particular sector creates a problem because no corresponding labor input occurs.

Each of these and other difficulties must be overcome if one is to break out the household sector successfully and enclose it into the processing portion of a national input-output table.

These problems were considered in this study, and a method
fer handling each was devised. After the household sector was enclosed, employment and income multipliers for a 54 -sector economy were derived for the year 1967.

PROCEDURE HOUSEHOLD COLUMN

Interpreting the household column is analogous to interpreting any other column in an input-output table. Households buy inputs just as manufacturing sectors do. Inputs into the textile sectors, for instance, include cotton, wool, and labor. Similarly, inputs into the household sector include food, clothing, and labor.

Personal consumption expenditure (PCE) per sector by the household column was decided upon as an adequate representation of purchases by the household sector (app. table 2). PCE figures are published annually in the Survey of Current Business in the National Tncome and Product Account.

Two distinct problems arose as a consequence of the decision to use PCE for the household column. First, the published figures are given by type of product rather than by input-output sector, and second, in purchase price. ${ }^{5}$ Personal consumption expenditures are defined as (1) the market value of goods and services purchased by individuals and nonprofit organizations rendering services to individuals and (2) the value of imputed goods and services received by individuals as income in kind (11, p. viii).
Although PCE in the aggregate was identical in the National Income and Product Account (GNP table) and in the inputoutput flow table (interindustry table) for 1958, there were, on in detailed basis, important differences in classification between the two sets of accounts (9,11). In the GNP table, PCE is classified by functional category, but in the interindustry table, by producing industry. For example, in the GNP table, the classification "food expenditures" consists of the following functional categories: Food purchased for offpremise consumption, purchased meals and beverages, food furnished government and commercial employees, and food produced and consumed on farms. In the input-output flow table, however, "food expenditures" as such are not explicitly shown. Rather, the PCE column consists of flows from various sectors that produce and distribute food, such as agricultural, food and kindred products, transportation, and trade.

The second problem with published PCE figures involves the treatment of transportation and trade margins. A distinction must be made between producer and purchaser prices. In the

[^2]GNP table, personal consumption expenditures (like other final purchases) are shown in purchaser prices. Food purchased for offpremise consumption, for example, reflects prices actually paid in retail stores and, therefore, includes all costs to the consumer, including those of transportation and wholesale and retail trade. However, in the input-output table, values are in terms of producer prices. Thus, these values are independent of the trade and transportation margins. For items destined for PCE in an input-output table, producer values are allocated to the PCE column. Transportation costs and trade margins necessary to bring goods to the consumer are shown separately in the PCE column as consumer purchases from the transportation and trade sectors."

Therefore, for PCE to be estimated for each of the 1967 inputoutput sectors, the published figures had to be transformed from purchaser to producer prices. Also, PCE had to be converted from groups of products and services to the input-output producing industry classification. A set of conversion tables known as the PCE "bridge," developed by the Department of Commerce as part of its 1958 study (8) was used to perform these conversions. Use of this bridge allows systematic conversion of PCE from a GNP to an imput-output basis. Thus, differences in the prices and classification used in the two sets of tables are reconciled. In the National Income and Product Account, PCE is assigned to 83 functional categories. For each category the conversion table gives (1) total PCE-in both producer and purchaser pricesallocated to that category; (2) trade and transportation margins; and (3) producing sectors in which the products originated. Each of these sectors is shown as producing part of the total PCE for that particular category. The 1958 relationships for margins and producing sectors were assumed to be realistic for 1967, and from these relationships, the PCE for each 1967 inputoutput sector was derived.

Summation of all entries for the transportation and trade sectors meant adding margins and nonmargin purchases. Nonmargin purchases refer to services that consumers bought directly from these sectors. For example, not all purchases from transportation were charges for transporting particular products to consumers. Part of the PCE was for direct purchases from airline, taxi and railroad companies, and so forth. To these nonmargin purchases must be added margin purchases to obtain total PCE from transportation. The same process held for the trade sector. However, only one nonmargin purchase, tips, was made from this sector.

[^3]The methodology explained above was used to derive personal consumption expenditures for each of the 54 sectors in the 1967 table (app. table 1).

HOUSEHOLD ROF

The choice of PCE as the household column dictated the components of the household row (app. table 3). Totals for the row and the column had to balance. Household output figures were comprised of various payments. These paymer's corresponded to the amount of money paid by a particular sector that was then spent for personal consumption. Just as other sectors sell goods and services to intermediate and final demand, the household sector sells services in the form of labor.

Disposable personal income equals personal outlay plus personal savings. Personal outhy is the sum of PCE, interest paid by consumers, and personal transfers to foreigners. Therefore, if personal onitay per sector can be computed, the removal of interest paid by consumers and personal transfers to foreigners will yield a houschold now whose sem equals PCE. Totals for the household row and column will then balance. This method was used to generate the household row.

Unfortunately, neither disposable personal income nor personal outlay is broken down on any workable basis in the mational income accounts. Therefore, national income per sector was used as a starting point for deriving the household row. National income consists of compensation of employees, net interest, proprietors' income, corporate profits, and rental income flowing to persons. The Survey of Current Business publishes these national income figures on a yearly basis by company-industry. These gigures were converted from company-industry to sector basis in the 1967 table.

The following components were distributed across the household row to balance the household row and column:
(1) undistributed corporate profits
(2) corporate profit taxes
(3) social insurance taxes
(4) government transfer payments to persons
(5) business transfer payments to persons
(6) government interest
(7) personal taxes
(8) personal savings

[^4](9) personal transfers to foreigners.

The relationship of these nine components is shown in the figure.

An explanation follows of methods used to allocate these components to the household row.
Undistributed corporate profits were published on a detailed industry basis for 1965 (10, p. 45). For 1967, they were published only for 13 major industry divisions. The 1965 detailed industry breakdowns were used as weights to distribute the undistributed corporate profits at the more detailed level required for the 1967 table.

Federal and State corporate profit taxes wexe also published on a detailed industry basis for 1965 and by major industry division category for 1967 (10, p. 44). The method used here is the same one used for undistributed corporate profits.

The figure for social insurance taxes was published only on an aggregate basis. ${ }^{5}$ No detailed breakdown was given. Social insurance taxes, paid by both employer and employee, had to be removed from national income figures. No method was immediately available for removing these taxes from the household row. Published figures were available by industry for 1967 wages and salaries and compensation of employees. Wages and salaries consist of monetary remuneration of employees, exclusive of payments in kind that represent income to the recipient (11, p. ix). Compensation of employees is the sum of wages and salaries plus supplements to wages and salaries. In 1967, 50 percent of these supplements were employee contributions to social insurance. Since employer and employee contributions are approximately the same, the difference between wages and salaries by industry and compensation of employees by industry was considered an acceptable measure of social insurance paid by sector. Thus, this difference was used as a weight to apportion social insurance across the row.

Government transfer payments presented a special problem. These are defined as payments under social security (including medicare), State unemployment insurance, railroad retirement and unemployment insurance, government retirement programs, veterans' benefits, direct relief, and a few other minor payments (11, p. x). Since most payments were made either to unemployed or retired persons, no rationale existed for distributing these payments across the household row. Instead, this figure was

[^5]represented in aggregate as a purchase by the Gensral Government sector from the household row. ${ }^{\circ}$

Aggregate business transfer payments for 1967 were allocated across the household row. The number of people employed per sector in 1967 was used as the weight. Business transfer payments are defined as corporate gifts, consumer bad debts, and a few other minor payments (11, p. x).

Normally, transfer payments occur within a sector; however, government interest presented a conceptual problem. All these payments came from government but were made to employees of all sectors. As a solution, the number of employees per sector was used as the weight to distribute government interest figures.

Personal savings and taxes are also published only in aggregate form (10, p. 18). However, these were distributed among sectors in proportion to wages and salaries.

Personal transfers to foreigners were a minor percentage of the total household row. However, these transfers had to be removed on a sector basis and the number of persons per sector was used as the weight.

MULTIPLIERS

INCOME. After the household sector was enclosed, income multipliers were generated for the 54 sectors of the economy. The multipliers were generated under the assumption that consumption functions were linearly homogeneous. Hence, the sector multipliers are overstated to the extent that a particular sector's consumption function is not linearly homogeneous.

Briefly, the method used for generating the multipliers, shown in table 1 , was as follows: ${ }^{10}$
(1) Column 1 was obtained from the household row of the 55×55 intermediate direct requirements matrix (not shown).
(2) Column 2 was obtained by multiplying each column entry in the 54×54 intermediate matrix (not shown) of direct plus indirect requirements by the corresponding household row entry in the 55×55 matrix of direct requirements.
(3) Column 3 was obtained by dividing column 2 by column 1.
(4) Column 4 was obtained from the household row of the 55×55 matrix of direct plus indirect requirements.
(5) Column 5 was obtained by dividing column 4 by column 1.

[^6]Two types of income multipliers were developed. These multipliers and the associated income effects are presented in table 1. The Type I multiplier of a sector shows the total U.S. income change associated with a unit income change in that particular sector if all other final demands remain constant. The Type II multiplier reflects the introduction of the income-consumption relationship and shows the increase in income for the total economy for each unit increase in income of a particular sector. The Type I multiplier ranged from 5.36 in sector 16 (Grain Mill Products) to 1.00 in sector 54 (General Government). The Type II multiplier ranged from 11.46 in sector 16 to 2.14 in sector 54. These are household-income not dollar-of-expenditure multipliers.

Divect, indirect, and indused income changes were also developed. The direct effect is shown in table 1. Since the effects are additive, indirect and induced effects can be derived. The income interactions are as vital as the multipliers themselves. For example, in planning industrial development for the economy, it is useful to know which sector will produce the greatest increase in total income for each unit change in final demand (3, p. 365).

An example of the entire process will illustrate uses of all figures in table 1. An increase of $\$ 1$ million in final demand for sector 23 (Apparel) would result in a direct increase of $\$ 146,000$ in income originating in the industry. This increased production by sector 23 will start a chain reaction that will result in increased production by all other sectors directly or indirectly linked to sector 23. Therefore, the $\$ 1$ million increase in the output of sector 23 would result in a total direct and indirect change in income of $\$ 461,000$. The Type I multiplier for sector $23-3.15-$ is the ratio of these two changes. This ratio shows how much total income will increase in the economy per unit increase in sector 23 income if all other final demands remain constant. In this example, the economy's total income will increase $\$ 461,000^{11}(=3.15 \times \$ 146,000)$ when final demand for sector 23 increases by $\$ 1$ million and all other final demands remain constant.

When the constant final demand assumption is relaxed, the further (induced) increase in income is $\$ 525,000$ (column 4column 2). The total income increase in the economy is $\$ 986,000$. The ratio of this total increase to the direct increase yields a Type II multiplier, 6.74. This ratio reflects the economy's total increase in income per unit increase in sector 23 income. Given a $\$ 1$ million increase in final demand for apparel, total income

[^7]TABLE 1.-Income interactions and multipliers, by industry, 1967^{1}

dustry number and title	Income reactions to changes in demand			Income reactions including induced through linearly homogenous consumption function	
	Direct income change (1)	Direct plus indirect (2)	Type I multiplier (3)	Direct indirect, and induced (4)	Type II multiplier (5)
1. Cutton	. 207	.6.48	3.14	1.386	6.71
2. Food reain	. 206	. 608	2.94	1.300	6.30
3. Feed crons	. 136	.128	3.14	. 915	6.72
4. Oil beriring crops	. 832	. 510	9.20	1.090	4.70
a. Other atericultural products	,352	. 67.1	1.91	1.440	4.09
6. Forestry, fisheries, and services	. 39%	.704	1.78	1.506	3.82
7. Iron and ferroalloy ores	. 132	. 327	2.47	. 699	5.28
8. Nonferrous metal ores	. 207	. 105	1.96	. 867	4.20
9. Coal	. 339	. 563	1.66	1.204	3.55
10. Crude peiroleum and natural gas	.153	.331	2.16	. 707	4.C2
11. Stone non clay mining 138	. 329	2.38	.704	5.09
12. Chemicals and fertilizer minerals	. 117	. 307	9.62	. 655	5.61
13. New construction	.205	. 509	9.48	1.088	5.30
14. Maintenance and ropair construction	. 317	488	1.54	1.044	3.29
15. Ordnance and aceessories 181	. 308	2.76	1.086	5.89
16. Grain mill products	. 077	412	5.36	. 881	11.46
17. Bakery products	. 181	- 402	2.49	. 967	5.33
18. Miscellaneous food and kindred products	. 051	.396	4.90	. 848	10.48
19. Other food and kindred products	. 097	. 506	5.19	1.083	11.10
20. Tobacco manufactures	. 107	. 368	3.45	. 787	7.38
21. Yarn and thread mills	.159	. 543	3.42	1.161	7.32
22. Textile goods and floor coverings	. 122	.481	3.96	1.029	8.46
23. Apparel 146	461	3.15	. 986	6.74
24. Miscellaneous fabricated textile products	. 114	. 178	4.18	1.022	8.95
25. Lumber and wood products	. 333	. 617	2.6 .1	1.320	5.65
26. Furniture and fixtures	$\therefore 35$. 503	2.16	1.183	4.63
27. Paper and allied products	.181	. 402	2.71	1.053	5.81
29. Printing and publishing	.691	. 588	2.02	1.258	4.31
29. Chemicals and so forth	. 161	. 501	3.11	1.072	6.66
Note. See footnote at end of table.					

30. Pastics and synthetics
31. Petroleum refining and related products
32. Rubber and misecllaneous plastic products
33. Leather tanning and so forth
34. Glass, atone and clay products
35. Primary iron and steel manufacturing - -
. aned metal products

[^8]in the economy would increase $\$ 986,000(=6.74 \times \$ 146,000){ }^{12}$
Among the sectors with the highest Type II income multipliers, as determined in this study, were 16 (Grain Mill Products), 18 (Miscellaneous Food and Kindred Products), 19 (Other Food and Kindred Products), and 24 (Miscellaneous Fabricated Textile Products). Unit increases or decreases in their income were estimated to have a greater impact on the economy's total income than would such income changes in other sectors.
EMPLOXMENT. The logic of an employment multiplier is analogous to that of any other multiplier. A unit change in employment in one sector will effect concurrent employment changes in the economy as a whole.

Various methods, all tractable (given the required data), are available to compute employment multipliers. The input-output procedure presented by Bills and Barr (1) was used in this study. This procedure has been used on regional input-output models but has never been applied before to a national table.

Methods for generating employment multipliers in table 2 were as follows:
(1) Column 1 was obtained by dividing total sectoral employment by sectoral gross output.
(2) Column 2 was obtained by multipiying each column entry in the matrix of direct, indirect, and induced requirements (I $\left.-A^{-2}\right)_{55} \times 5$ by the direct employment ratio for the inindustry named at the left.
(3) Column 3 is column 2 divided by column 1.
(4) Column 4 was obtained by multiplying each column entry in the matrix of dirct, indirect, and induced requirements $\left(\mathrm{I}-\mathrm{A}^{-1}\right)_{55 \times 55}$ by the direct employment ratio for the industry named at the left.
(5) Column 5 is column 4 divided by column 1.

Interpretation of these multipliers is similar to that for income multipliers. For example, a 1 -unit employment change in sector 23 will effect a 2.32 -unit employment change in the economy if other final demands remain constant. A 4.23 -unit employment change will occur when respending through the consumption function is considered.

IMPLICATIONS

Results of this study have implications for future input-output studies. These results demonstrate a need for the Department of Commerce to publish future tables with the value-added vector broken down into its component parts. Logically, available PCE data seem to be the correct measure of the household column.

[^9]Thus, a PCE "bridge" for a year later than 1958 would also be useful.

The upcoming 1963 input-output table should be useful for analyses such as those performed in this study. The 1963 table will have the sector breakdown on a much finer basis than the current 1958 model. Such a breakdown will allow multiplier analyses of various phases of the textile industry, for example, rather than for the entire industry. The 1963 table will offer a later base year from which to begin a study. Certain technological innovations that were not an integrated part of the economy in 1958 will be reffected in the new technical coefficients. Finaliy, perhaps additional data available to the Department of Commerce for 1963 will permit publication of separate components of the value-added vector.

LITERATURE CITED

(1) Bills, Nelson L. and Alfred L. Barr. An Input-Output Analysis of the Upper South Branch Valley of West Virginia. West Virginia University, Agr. Exper. Station. Bul. 568 T, June 1968.
(2) Chenery, Hollis B. and Paul G. Clark. Interindustry leconomics. New York: John Wiley and Sons, Inc., 1959.
(s) Hirsch, Werner Z. Interindustry Relations of a Metropolitan Area. The Review of Economics and Statistics. Vol. XLI. Nov. 1959, pp. 360-369.
(4) Miernyk, William H. The Elements of Input-Output Analysis. New York: Random House, 1965.
(5) Moore, Fredrick T. and James W. Peterson. An Interindustry Model of Utah. The Review of Economics and Statistics. Vol. XXXVIII. Nov. 1955, pp. 368-383.
(6) Rice, Philip F. An Input-Output Analysis of the American Textile Industry. Unpublished dissertation, Clemson University, May 1968.
(7) Rise, Philip F. and Preston E. LaFerney. Use of Input-Output Analysis in Studying Industry Problems: Applied to Employment Changes in the U.S. Textile Industry. U.S. Dept. Agr. Tech. Bul. No. 1411, Feb. 1970.
(8) Simon, Nancy W. Personal Consumption Expenditures in the 1958 Input-Output Study. Survey of Current Business. Vol. 45. Oct. 1965, pp. 7-20, 28.
(9) U.S. Dept. Commerce. Office of Business Economics. The Transactions Table of the 1958 Input-Output Study. Survey of Current Business. Vol. 14. Sept. 1965, pp. 33-49. --. Survey of Current Business. July 1968.
(11) -- The National Income and Product Accounts of the United States. 1929-1965 Statistical Tables. Aug. 1966.

TABLE 2.-Employment interactions and multipliers, by industry, 1967.

[^10]
APPENDIX TABLES

Appendix Table 1.-Interindustry transactions, by industry, 1967^{1}

Industry number and title

Note: See footnote at end of table.

	Industry number								
Industry number and title	10	11	12	13	14	15	16	17	18
					an ciollars-				
1. Cotton	-...	--*	- + --	--.	--	--.	208
2. Food xrain		\cdots	*	907	-...	--
3. Feed crops	\cdots		-...	-...	895	----	--..
4. Oil bearing crops	*-.			-	-...	.-.	---.	4	1561
5. Other agricultural products			***	259	-...	...	16	53	222
6. Forestry, fisheries, and services	****	$\cdots{ }^{*}$...-	- . .	-.-.	----	-..-	-...	30
7. Iron and ferroalloy ores			--.	*..-	--"	-...	- - -	+
8. Nonferrous metal ores	----	3-. -	-		----	---	----
9. Conl		8	. . .	---	*...	-...	7	1	6
10. Crude petroleum and natural gns	316		2	\cdots	-	-	----	--.-
11. Stone and clay mining		40	19	790	166	-	5	--..	2
12. Chemicals and fertilizer minerals	-**	. 3	57	---*	-...	--	5	----	---
13. New construction			-	.-.	-	-	----	---	---
14. Maintenance and repair construction	6	6	\cdots	8	1	16	33	42	33
15. Ordnance and accessories			\cdots	2	71	-..-	----	---
16. Grain mill products			…	22	--..	-..-	807	1131	125
17. Bikery products		****	-	--.	---*	--.-	2	121	----
18. Miscellaneous food and kindred products		\ldots	*	-	*-.	-..-	1152	232	1090
19. Other food and kindred products		--.	-	-...	439	853	245
20. Tobacco manufactures		-.-.	...-	-..-	-	----	-	----	--
21. Broad and narrow fabrics and yarn and thread mills	-	*...*	...	-	-	-	-..-	--.-	---
22. Miscellaneous textile goods and floor coverings	3	5	1	-...	-...	-..-	--*
23. Apparel -		-	. . .	-.	1	-..-	---	4	12
24. Miscellaneous fabricated textile products			*-.	----	-...	7	142	---	5
25. Lumber and wood products	8		\ldots	39.40	502	10	9	5	47
26. Furniture and fixtures			-	591	19	----	-..-	.-.	---
27. Paper and allied products	8	53	8	384	81	46	247	200	196
28. Printing and publishing	1	3	-.-	9	1	16	7	28	35
29. Chemicals and so forth	75	56	36	664	1119	30	187	22.	153
39. Plastics and synthetics			-..-	----	…	---	-	----	3
31. Petroleum refining and related products	69	133	10	1116	424	19	6	65	264
32. Rubber and miscellaneous plastic products	47	100	7	408	87	247	55	96

[^11]| Industry number and title | Industry number | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| | | | | | on doll | | | | |
| 1. Cotton | | --. | 1147 | 20 | 13 | ---- | ---- | ---* | ---- |
| 2. Food grain | 7 | | | - .-. | -... | -... | -..- | ---- | |
| 3. Feed crops | 165 | | ... | | \cdots | -- | -.. | --. | --- |
| 4. Oil bearing crops | 166 | \cdots | ---- | --.- | | | - | --. | - |
| 5. Other agricultural products | 22854 | 1114 | 172 | 106 | | ---- | 260 | -... | -..- |
| 6. Forestry, fisheries, and services | 363 | *+-* | -... | | 298 | 2 | 923 | ---- | -..- |
| 7. Iron and ferroalloy ores | \ldots | ---* | -... | ---- | ...- | … | , --. | --.- | ---. |
| 8. Nonferrous metal ores | -..- | -... | --* | -.- | ---- | --- | | --- | -- |
| 9. Coal | 33 | 1 | 24 | 3 | 2 | -..- | 2 | 3 | 102 |
| 10. Crude petroleum and natural gas | | … | -.. | --- | -... | --.- | ---- | ---- | --.- |
| 11. Stone and clay mining | *-. | -.-- | -... | -..- | -..- | ---. | | ---- | 62 |
| 12. Chemicals and fertilizer minerals | 3 | | 2 | ---- | -- | -- | --- | - | 23 |
| 13. New construction | -... | | -..- | -... | --* | -2.* | | ---- | --- |
| 14. Maintenance and repair construction | 221 | | 12 | -... | 17 | -..- | 21 | 3 | 91 |
| 15. Ordnance and accessories | -... | | . | -...- | -..- | ---- | | - | 1 |
| 16. Grain mill products | 553 | | 44 | | ---. | - | -- | ---- | 112 |
| 17. Bakery products .-... | --... | | | --.. | ---- | - - - | --.. | -******* | --- |
| 18. Miscellaneous food and kindred products | 218 | 7 | 2 | 31 | --. | ---- | -..- | 46 | 20 |
| 19. Other food and kindred products | 8830 | 35 | | | -..- | ---- | ---. | ---- | 2 |
| 20. Tobacco msiufactures | 1 | 1303 | -... | - | | \cdots | ---- | - | ---- |
| 21. Broad and narrow fabrics and yarn and thread mills | 11 | 1 | 6348 | 814 | 7939 | 1731 | --- | 298 | 92 |
| 22. Miscellaneous textile goods and floor coverings _...... | 1 | | 451 | 434 | 169 | 302. | 3 | 115 | 27 |
| 23. Apparel .-.. | 39 | | +30 | 14 | 5188 | 36 | 15 | 5 | 17 |
| 24. Miscellaneous fabricated textile products | 19 | | - 69 | 28 | 427 | 286 | 2 | 9 | 45 |
| 25. Lumber and wood products | 88 | 11 | 2 | 12 | .-. | ---- | 3579 | 821 | 1121 |
| 26. Furniture and fixtures | 1135 | \cdots | --7 | 12 | --- | 23 | 36 | 136 | 3 6416 |
| 28. Printing and publishing | 1135 88 | 156 | 183 | 84 | 216 | 91 | 134 | 173 | 6416 |
| 29. Chemicals and so forth | 88 | 13 | 13 | 2 | 27 | 5 | 42 | 4 | 190 |
| 30. Plastics and synthetics | 275 18 | 14 | 344 1803 | 18 895 | 90 337 | 4 | 148 85 | 149 5 | 614 185 |
| 31. Petroleum refining and related products | 66 | 3 | 44 | 8 | 12 | 3 | 105 | 16 | 230 |
| 32. Rubber and miscellaneous plastic products | 76 | 12 | 85 | 79 | 54 | 132 | 83 | 264 | 318 |

33. Leather tanning and so forth			4	2	106	11	1	12	3
34. Glass, stone, and clay products	826		46	8			61	190	94
35. Primary iron and steel manufacturing and nonferrous metals manufacturing	21	8	12	4	2	2	39	431	29
36. Fabricated metal products	2039	19	20	6	37	11	132	516	253
37. Machinery, except electrical	23		138	5	--..	2	53	77	125
38. Electrical equipment	30	1	8				18	25	34
39. Transportation equipment			***	4		2	10	10	---
40. Scientific instruments	\ldots		.-*	-	5	14	----	17	12
41. Miscellaneous manufacturing	29	8	32	41	569	71	19	64	20
42. Transportation and warehousing	2584	98	592	192	313	46	761	198	1036
43. Communications and utilities	644	13	344	64	265	33	160	116	576
44. Wholesale and retail trade	1810	85	664	247	1041	182	518	411	849
45. Finance, insurance, real estate, and rental	732	27	248	92	660	74	194	162	327
46. Lodging and personal and business services	2101	402	283	58	491	43	122	173	372
47. Research and development	6		4				-	-	4
48. Auto repair	334	3	13	3	8	7	120	18	23
49. Amusements and medical and educational se	70	8	22	5	41	4	14	11	26
50. Federal Government enterprises	25	13	12	5	48	5	4	4	20
51. State and local government enterprises	28		4	2	2	2	7	2	21
52. Gross imports	2458	7	605	583	864	45	929	78	1556
55. Dummy industries	357	12	87	87	227	33	98	77	434
54. Government (keneral)			----	-..-	--.-	- - -	--**	-***	----
55. Rest of the world	--.-	-*-	***	----	--**	--i-	----	---*	--*-
56. Household industry							----	-**	
Intermediate inputs, total	49347	3501	13913	3956	19468	3202	8698	4639	15486
Value added	19042	3585	4970	1020	11284	1377	3599	3583	7515
Total	68389	7086	18883	4976	30752	4579	12297	8222	23001

Note: See footnote at end of table.

Note: See footnote at end of table.

	Industry number								
Industry number and title	37	38	39	40	41	42	43	44	45
					doll				
1. Cotton	.			6		***	*."		165
2. Food grain					...	9	--.**	695
3. Feed crops					...	26	- . -		674
4. Oil bearing crops		...		***	*	--**	--**	-*-	172
\% Oaher agricultural products					11	7	--.	****	1691
6. Forestry, fisheries, and services	6		***	**.	5	1	****	247	18
7. Iron and ferroalloy ores	2	12		\cdots		***	****	--**	8
8. Nonferrous metal ores		12	-**	2	$\cdots *$	*	4	5	8
9. Coal	13	10	35	3	1	28	653	5	21
10. Crude petroleum and natural gas		-...	-.	.-.			1585	-	172
11. Stone and clay mining	19				*.."	2	--.	6	13
12. Chemicals and fertilizer minerals	-				$\cdots \cdots$	1	- \times -	----	2
13. New construction	\cdots	4	198		27				9100
14. Maintenance and repair construction	59	44	198	4	27	1575	1227	986	9100 3
15. Ordnance and necessories	12	174	594	89	1	-	*-**	6	8
16. Grain mill products	***		-\%.**	.--	- ${ }^{-9}$	23	-..-	124	8
17. Bakery products					1	3	-***	198	${ }^{5}$
18. Miscellaneous food and kindred products	2			2	14	34	-	138	14
19. Other food and kindred products				23	********	73	--."	451	72
20. Tobacco manufactures	\cdots				2		---	6	3
21. Broad and narrow fabrics and yarn and thread mills	13	26	110	55	157	8	4	14	28
29. Miscellaneous textile foods and floor coverings		5	206	12	59	20	7	39	42
23. Apparel	45	44	52	22	15	5	13	84	39
24. Miscellaneous fabricated textile products		**	363	2	13	22	13	70	58
25. Lumber and wood products	119	110	266	8	171	33	4	243	40
26. Furniture and fixtures	23	361	143	29	12	-	--*	42	6
27. Paper and allied products	189	612	267	211	541	53	39	1301	220
28. Printing and publishing	32	40	45	4	43	86	164	343	620
29. Chemicals and so forth	167	402	454	224	165	109	17	388	185
30.. Plastics and synthetics	28	398	141	21	221		3	5	18
31. Petroleum refining and related products	204	8.	187	17	27	1824	361	1110	659
32. Rubber and miscellaneous plastic products	591	860	1760	113	350	358	24	419	162

33. Leather tanning anm: so forth	20	19	19	14	113	4		33	10
34. Glags, stone, and clay products	353	761	844	138	66	12	35	367	40
35. Primary iron and steel manufacturing and nonferrous metals manufacturing	6143	4428	7350	506	658	109	131	36	47
36. Fabricated metal products	2147	2209	4659	313	282	73	235	344	37
37. Machinery, except electrical	6293	1522	3643	364	79	207	20	447	194
38. Electrical equipment	2607	6571	3052	676	152	210	283	326	84
39. Transportation equipment	1073	332	17362	194	31	611	9	405	64
40. Scientific instruments	188	689	791	661	14	38	144	23
41. Miscellaneous manufacturing	116	79	110	45	507	63	36	185	56
12. Transportation and warchousing	731	766	1652	152	181	3269	693	780	1160
43. Communications and utilities	772	622	930	112	131	750	7454	5296	2197
44. Wholesale and retail trade	1843	1941	2316	439	661	1217	425	2436	1924
45. Finance, insurance, real estate, and rental	972	746	770	198	256	2638	809	10222	18358
46. Lodging and personal and business services	1031	1927	1884	392	303	847	87.4	8540	5224
47. Research and development	25	10	54	4	-..	-	-*-	-1.**	-
48. Auto repair	54	20	34	5	17	1295	75	1654	374
49. Amusements and medical and educational services	51	55	91	11.	11.	79	537	344	477
50. Federal Government enterprises	45	101	98	12	15	61	542	1367.	788
51. State and local government enterprises	4	7	15	-*	2	921	3646	667	726
52. Gross imports	1273	1110	1690	496	822	1470	"+--	-	-
53. Dummy industries	722	897	489	203	134	2.11	277	3112	897
54. Government (keneral)	*--	.-...-..	-...	-...	-***
55. Rest of the world	- - .	…-	*..	-n-	-.*	---	--	
56. Household industry			-						-*m-
Intermediate inputs, total	27987	28006	52674	5782	6170	18415	20186	42829	46817
Value added	2,122	18278	27894.	4701.	3480	34040	35659	112216	113909
Total	53109	46284	80568	10483	9650	52455	55845	155045	160726

[^12]| | Industry number | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Industry number and title | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
| | | | | | n dollars | | | | |
| 1. Cotton | | ---- | - . ${ }^{\text {- }}$ | ** | 428 | *--- | | *** | - |
| 2. Food grain | - - | *"** | --* | . ${ }^{*}$ | 61 | -*** | *-** | *** | --". |
| 3. Feed crons | \ldots | \cdots | . | \ldots | 27 | - $=$-* | *-.. | -- $=$ - | -** |
| 4. Oil hearing crops | | \cdots | - | - ${ }^{\text {c. }}$ | \therefore - | *** | --** | - - - | *"** |
| 5. Other agricultural products | | | .. | 33 | 3 | --~ | | 137 | man |
| 6. Forestry, fisheries, and services | | *** | ... | 5 | **** | 2 | --*. | 24 | \cdots |
| 7. Iron and ferroalloy ores | -** | --** | *** | --.* | 4 | *** | **. | | **** |
| 8. Nonferrous metal ores | \cdots | \cdots | **** | --..- | \cdots | ---* | --- | ... | *... |
| 9. Conl | 35 | **** | 12 | *... | 69 | 116 | -x.* | -... | --.. |
| 10. Crude petroleum and natural gas | … | 2 | --- | ---* | -*** | 33 | - | *** | - |
| 11. Stone and clay mining | | *** | *--. | -".* | -..- | - | --.- | --~- | -.. |
| 12. Chemicals and fertilizer minerals | | | --- | -... | "-** | --** | -*.* | --** | - |
| 13. New construction | -... | ... | --** | -*- | -- | --.. | - ${ }^{\text {a }}$ | -.. | -4.- |
| 14. Maintenance and repair construction | 80 | \cdots | 152 | 1370 | 25 | 2104 | . | --* | ... |
| 15. Ordnance and accessories | - | 798 | *... | - ${ }^{10}$ | -** | - | * | 3 | * |
| 16. Grain mill products | 20 | \cdots | | 115 | 181 | -... | - | 94 | --- |
| 17. Bakery products | *... | \cdots | -.** | 10 | --* | * | | 118 | -- |
| 18. Miscellaneous food and kindred products | | 2 | **" | 25 | 28 | 2 | - | 192 | --** |
| 19. Other food and kindred products | -- | 6 | *... | 158 | 277 | -..- | -... | 2948 | --- |
| 20. Tobacco manufactures | - | | | . | *** | --.- | - | 238 | ---- |
| 21. Broad and narrow fabrics and yarn and thread mills | 169 | 2 | 7* | 3 | .-.- | - - - | - | 124 | --. |
| 22. Miscellaneous textile goods and floor soverings . | 63 | 5 | 23 | 45 | --n | 4 | - | -*** | |
| 23. Apparel | 142 | 2 | 1 | 65 | -** | 3 | -... | 25 | -... |
| 24. Miscellaneous fabricated textile products | 242 | 6 | 29 | 75 | 4 | - - - | -.... | 4 | --* |
| 25. Lumber and wood products | 7 | | | 5 | - ... | -... | - | 3 | ---- |
| 26. Furniture and fixtures | 20 | *-- | -*- | - ... | "--- | -... | -- | ---- | - |
| 27. Paper and allied products | 338 | 16 | 6 | 186 | . 58 | 4 | --. | 576 | -2.- |
| 28. Printing and publishing | 7026 | -- | 13 | 529 | 61 | 19 | ...- | 1226 | --". |
| 29. Chemicals and so forth | 445 | 186 | 98 | 1001 | *- | 47 | --- | 67 | \cdots |
| 30. Plastics and synthetics | -... | 15 | **** | --- | -- | - | -... | - | \cdots |
| 31. Petroleum refining and related products | 340 | 32 | 36 | 120 | 10 | 67 | -..- | 15 | *** |
| 32. Rubber and miscellaneous plastic products | 210 | 56 | 423 | 124 | 2 | 10 | | 28 | *- |

[^13]| | | | |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| | Industry number and title | | |

[^14]APPENDIX TABLE 2.-Household column for 1907 table

Sector	PCE	Sector	PCE
	Million dollars		Million dollart
1.	0	29.	6610
2.	3	30.	20
3.	${ }^{6}$	31.	11531
4.	S	32.	2279
3	7189	33.	3591
6.	139	3 J .	582
7.	0	3 i .	49
8.	0	36.	1215
0.	S6	37.	8.13
10.	0	35.	8821
11.	26	30.	19899
12.	1	40.	1600
13.	0	41.	5585
14.	0	12.	13.335
15.	297	43.	185 E 4
16.	2316	14.	$\underline{110228}$
17.	$\because 170$	45.	94129
¢3.	4369	46.	15788
19.	7.488	47.	0
29.	553.1	18.	6347
21.	459	43.	47377
2-2.	1361	50.	1175
$\because 3$.	10429	51.	585
$\underline{4.4}$	2117	52.	7351
25.	252	53.	0
$\underline{56}$	\$163	51.	0
2.	1331	58.	${ }^{3} 0$
23.	4310	56.	- 4292

1 Not inctuded in inverse.

APPENDIX TABLE 3.-Honsehold row for 1967 table

Sector	Payments to consumera	Sector	Paymenta to conaumers
	Miltion dollar*		Million dollare
1.	304	29.	6126
2.	626	30.	1594
3.	1663	31.	2941
4.	686	32.	2811
6.	14038	33.	1438
6.	1381	34.	3405
7.	213	35.	8405
3.	$4: 2$	36.	8266
9.	906	37.	13274
10.	2293	38.	11724
11.	720	30.	13252
12.	130	40.	3051
13.	15916	41.	2045
14.	7660	42.	17563
15.	1760	43.	15480
16.	848	44.	66971
17.	1384	45.	53764
18.	874	46.	28615
19.	6668	47.	0
20.	755	48.	2182
21.	2995	49.	28168
22.	605	50.	3681
23.	4486	51.	1995
24.	523	52.	0
25.	2870	53.	0
26.	2099	54.	108882
27.	4166	55.	${ }^{2} 2541$
28.	6209	65.	${ }^{2} 4292$

' Not included in inverge.
it U.S. GOVERRMENT PRINTINE OFFICE: 1970 0-376-296

[^0]: ${ }^{3}$ Robert Eirod was formerly an agricultural economist with the Marketing Economics Division, Economic Research Service. Preston LaFerney is ant agricultural economist in the Marketing Economics Division, Economic Research Service at Clemson, S.C.
 ${ }^{2}$ For a detailed discussion of these techniques, see (2) or (4). Numbers in parentheses refer to items in Literature Cited section.

[^1]: 'Ser (a and i) for a discussion of this method. The 1058 Commerec table was used as a point of departure.
 'Ses (9, pp. $3: 3-49$) for an illustration of this value-added row.

[^2]: ${ }^{3}$ The Commerce flow table for 1958 is in terms of producer prices, and this convention was used in the 1967 table.

[^3]: ${ }^{\text {a }}$ By convention, costs of trade to the consumer include retail excise and sales taxes.

[^4]: * A company-industry basis differs concoptarally from an input-output sector, but the differences were not thought to affect adversely the use of these figures.

[^5]: *Social insurance consists of payments under social security (including medicare), Federal and State unemployment, railroad retirement and unemployment, and government retirement.

[^6]: -Since government transfer payments are not a part of value added, the total amount of these payments (40 billion) must be added to the column totals for sector 54 when computing the $a_{1 /}$: for column 54 in the 55×55 matrix.
 ${ }^{16}$ For a detailed discussion of this methodology, see either (s) or (5).

[^7]: "Figure may not be exact due to rounding errors.

[^8]: ${ }^{1}$ Numbers in parenthesis refer to column numbers

[^9]: ${ }^{12}$ Figure may not be exact due to rounding errors.

[^10]: ${ }^{2}$ Each entry in columns 1, 2, and 4 represents employment change from a $\$ 1000$ output change.

[^11]: Note: See footnote at end of table.

[^12]: Note: Sce footnote at end of table.

[^13]: Note: See footnote rit end of table.

[^14]: 'Figures are at producers' prices.

