

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

STAR'

MICROCOPY RESOLUTION TEST CHART National elureal of standards-1s63-a

- NEARCTIC SAWFLIFS
 III. Heterarthrinae: Adults and Larvae (Hymenoptera: Tentkredinidae)

By Dayid R. Smith

Technical Bulletin No. 1420

Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

Contents

Page
Hosts 3
Systematic arrangement 4
Keys to Heterarthrinae genera 6
Keys to leaf-mining larvae of Betula and Quercus 8
Tribe Caliroini 8
Genus Endelomyia Ashmend 9
Genus Caliroa O. Costa 12
Tribe Hetcrarthrini 30
Genus Heterarthrue Stephens 30
Tribe Fenusini 32
Genus Metallus Forbes 33
Genus Messa Leach 38
Genus Setabara Ross 45
Genus Profenusa MacGillivray 46
Genus Bidigitus Smith 56
Genus Nefusa Ross. 67
Genus Prolatus Smith 59
Genus Fenusa Leach 60
Genus Fenella Westwood 67
Literature cited 69
Index 83

NEARCTIC SAWFLIES.

III. Heterarthrinae: Adulte and Larvae (Hymenoptera: Tenthredinidae)

By David R. Smith, entomologist, Systematic Enfomology Laboratory, Agricultural Research Servics

The Heterarthrinae are represented in America north of Mexico by 37 species in 12 genera and three tribes. This subfamily includes some of the most economically important sawfies, such as the birch leaf miner (Fenusa pusilla (Lepeletier)), the elm leaf miner (Fenusa ulmi Sundevall), the European alder leaf miner (Fenusa dohrnii (Tischbein)), the rose-slug (Endelomyia aethiops (Fabricius), and the pear-slug (Caliroa cerasi (Linnaeus)). Members of the tribes Heterarthrini and Fenusini all are leaf miners in the larvai stage and may be destractive to Alnus, Betula, Crataegus, Platanus, Populus, Potentilla, Prumus, Quercus, Rubus, Salix, Ulmus, and Viola. Members of the tribe Caliroini are external feeders in the larval stage and skeietonize the leaves of Castanea, Nyssa, Prunus, Pyrus, Quercus, Rosa, and Salix.

This bulletin is the first comprehensive revision of the Heterarthrinae and is intended to provide a means for identifying the Nearctic genera and species of this subfamily. Other information may be found in the literature cited, which includes most of the pertinent literature for each taxon.

The subfamily limits accepted here are those proposed by Ross (1937, 1951).' Specimens may be keyed to this subfamily by using Ross' 1937 key to the subfamilies of Tenthredinidae. The name "Phyllotominae" was used for this subfamily at that time. Benson (1952) treated the components of this group in a different manner. His concept of the subfamily Heterarthrinae was more limited and included only the genus Heterarthrus. Caliroa and Endelomyia were included in the tribe Caliroini of the Blennocampinae, and the Fenusini were also considered a tribe in the Blennocampinae.

The adults of the Heterarthrinae may be characterized as follows: Vein M and $1 m-c u$ of forewing divergent; vein M meets $S c+R$ at or near junction of $R s+M$ and $S c+R$; vein $2 A$ and $3 A$ complete for entire length, connected to $1 A$ by oblique crossvein in Caliroini and Heterarthrini, or vein $2 A$ and $3 A$ partially atrophied, leaving anal cell petiolate and vein $2 A$ and $3 A$ present as stub, which may be straight, curved up, or curved up and meeting

[^0]$1 A$ to form small basal anal cell in the Fenusini. The wirg venation of various species is shown in plates I,, $7-9$; II, $10-18$; and III, 19-20. In generai, these sawhies are small black robust species.

The sawflies of the Heterarthrinae are divided into three groups, each composed of closely related genera, and here treated as the tribes Caliroini, Heterarthrini, and Fenusini.

The Caliroini include two genera, Endelomyia and Caliroa, which are separated from the other tribes by the complete $2 A$ and 3.A vein of the forewing and the tarsal claw with a single outer tooth and large acute basal lobe.

Hete:arthrus is the only genus in the Feterarthrini, which is a Palaearctic group with only one introduced species found in North America. This tribe is separated from the others by the complete $2 A$ and $3 A$ vein of the forewing, the 10 - or 11 -segmented antenna, and the tarsal claw with two subequal outer teeth and a large acnte, basal lobe.

The Fenusini, represented in North America by nine genera, are separated from the other tribes by the petiolate anal cell of the forewing and with only the basal stub of vein $2 A$ and $3 A$ present. The genera in this tribe may be divided further into three groups: (1) Those genera with cell R_{1} closed in the hind-wing-Messa, Metallus, and Setabara; (2) those genera with cell R_{1} open in the hindwing, with a simple tarsal claw, and with the stub of vein 2A and $3 A$ of the forewing curved up and meeting $1 A$ to form a small basal anal ce! $-F$ F enusa, Fenella, and Prolatus; (3) those genera with cell $R_{\text {}}$ open in the hindwing, with a tarsal claw having a large acute basal lobe, and with the stub of vein $2 A$ and $3 A$ of the forewing either straight or curved up at its apex-Profenusa, Bidigitus, and Nefusa.

The larvae of the Heterarthrinae fall into three distinct groups:
(1) The typically sawflylike larva of Endelomyia aethiops, an external feeder (pl. XI, 130-136). The body is neither flattened nor sluglike (or tadpolelike) in appearance. The larva of this species maj' be separated from other sawfy larvae by the mandibles, which have four truncate teeth on the ventral marein and by the presence of tubercles on the thorax, on annulets 2 and 4 of abdominal segments 1 to 8 , and on terga 9 and 10 .
(2) The sluglike or tadpoletike larvae of Caliroa, all external feeders (pl. XI, 137-141). These larvae have an enlarged thorax with the body sharply narrowing at the base and toward the apex of the abdomen; the head is hypognathous; the thoracic legs are reduced in size; and a large fleshy protuberance stems anteriorly from each prothoracic leg.
(3) The small dorsoventrallv flattened larvae of the Heterarthrini and Fenusini (DIs. XII-XVIII), all leaf miners. The head is usually dorsoventrally flattened and prognathous; the thoracic legs are usually reduced, sometimes lacking tarsal claws; various numbers of sclerotized plates are present on the venter of the body; and the prolegs are reduced or wanting.

The larvae are not well known for the Caliroa species. but they are well known for most of the leaf-mining species. Many
of the leaf-mining species have been reared and the larvae have been described in the literature.

The terminology used in this revision is that of Ross (1937) and Smith (1969) for adults and that of Yuasa (1922), Lorenz and Kraus (1057), and Smith (1969) for larvae. I have examined the types of all species discussed in this buletir except those located in Europe.

Hosts

The known host plants for the North American species of Heterarthrinae are as follows:

Plant family and gonus Salicacene:	Insect species
Salix	$\left\{\begin{array}{l}\text { Caliroa ladrata MacGillivray } \\ \text { Messa wuestneizi (Konow) }\end{array}\right.$
Populus	$\left\{\begin{array}{l} \text { Messa hortulana (Klug) } \\ \text { Messa leucostoma (Rohwer) } \\ \text { Messa populifoliella (Townsend) } \end{array}\right.$
Betulaceae:	
Betula	$\left\{\begin{array}{l} \text { Fonusa pusilla (Lepeletier) } \\ \text { Heterarthrus nemoratus (Fallén) } \\ \text { Mesaa nana (Klug) } \\ \text { Profenusa thonisoni (Konow) } \end{array}\right.$
$\begin{aligned} & \text { Alnus } \\ & \text { Fagaceae: } \end{aligned}$	Fentsa dohrnii (Tischbein)
Quercus	$\left\{\begin{array}{l} \text { Calivoa fasciata (Norton) } \\ \text { Caliroa lobata MacGillivray } \\ \text { Caliroa obsoleta (Norton) } \\ \text { Caliroa petiolata, new species } \\ \text { Ctliroa quarcuscoccincae (Dyar) } \\ \text { Profenusa alumna (MacGilivray) } \\ \text { Profenusa inspirata (MacGillivray) } \\ \text { Profenusa hucifes (Ross) } \end{array}\right.$
Castanea.	Caliroa lorata MacGillivray
Ulmacene:	
Ulmus	Fenusa ulmi Sundevall
Platanaceae:	
Platanus....	Bidigitus platani (Burks)
Cornaceae:	
$N y$ asa	.. Caliroa nyssae, new species
Violaccae:	
Viola	Nefusa ambigua (Norton)
Rosaceae:	
Rosa........ Endelomyia asthiops (Frabricius)	
Rubus	$\left\{\begin{array}{l}\text { Metalhus capitalis (Norton) } \\ \text { Mctallus rohweri MacGillivray }\end{array}\right.$
Crataegus	Profenusa cantdensis (Marlatt)
Potontilla	Fenella nigrita Westwood

Pruntes... | Caliroa terasi (Linnaeus) |
| :--- |
| Caliroa lizurata MacGillivray |
| Profenusa canadensis (Marlati) |
| Setabara histrionica (MacGillivay) (?) |

Pyruts \qquad Caliroa cerasi (Linnaeus)
The Calitc species recorded on Ceanothus, Cotoneaster, and Acer by Srnith (1967) are larvae only. They cannot be ascribed to a particuler species.

Systematic Arrangement

Family TENTPREDINIDAE

Subfamily HETERARTHRINAE Tribe CALIROINI

Genus Endelomyia Ashmead

(1) Endelomyia aethiops (Fabricius) ; British Columbia, Colorado, Connecticut, Delaware, District of Columbia, Idaho, Illinois, Kansas, Kentucky, Maine, Massachusetts, Michigan, Minnesota, Missouri, Montana, New Jersey, New York, Ohio, Oregon, Pennsylvania, Utah, Virginia, Washington; Palaearctic; on Rosa.

Genus Caliroa O. Costa

(2) Caliroa cerasi (Linnaeus); widespread in North America; also in Australia, New Zealand, South Africa, South America; Palaearctic; on Prunus, Pyrus, other Rosaceae.
(3) Caliroa distincta, new species; British Columbia, California, Nevada, Oregon.
(4) Caliroa fasciata (Norton) ; Connecticut, Illinois, Iowa, Maine, MaryIand, New Jersey, New York, Ohio, Ontario, Virginia; on Quercus.
(Б) Caliroa foridana, new species; Floriđa.
(6) Galiroa hyalina, new species; Oregon.
(7) Caliroa labrata MacGillivray; Alberta, British Columbia, California, Nevada, Oregon; on Salix.
(8) Caliroa liturata MacGillivray; Coloradu, Conrecticut, Florida, Georgia, Illinois, Lovisiana, Missouri, Montana, New York, Rhode Island, South Carolina, Tennessee, Virginia; on Prunuts.
(9) Caliroa lobata MacGillivray; Illinois, Iowa, Maryland, Michigan, New York, Texas, Vermont, Virginia; on Quercus.
(10) Caliroa lorata MacGilivray; Alabama, Maine, Maryland, Massachusetts, New York, North Carolina, Pennsylvania, Virginia, Wisconsin; on Castanea.
(11) Caliroa lanata MacGillivray; Minois, Michigan, Newioundland, New Hamphire, New York, Ohio, Pennsylvania, Texas, Virginia, West Virginia.
(12) Caliroa nyssae, new species; Georgia, Maryland, Mississippi, Pennsylvania, Virginia; on Nyssa.
(13) Caliroa obsoleta (Norton); Connecticut, Georgia, Illinois, lowa, Massachusetts, Michigan, Minnesota, New Jersey, New York, Ontario, Virginia, Wisconsin; on Quercus.
(14) Caliroa petiolata, new species; Maryland, Pennsylvania, Virginia; on Quercus.
(15) Caliroa quercuscoccineae (Dyar); Connecticut, Delaware, District of Columbia, Illinois, Louisiana, Maine, Maryland, Michigan, Minnesota, Missouri, New Hampshire, New Jersey, North Carolina, Pennsylvania, Virginia,
Wisconsin; on Quercus.

Tribe HETERARTHRINI

Genus Heterarthrus Stephens

(16) Heterarthrus nemoratus (Fallén) ; Maine, Massachusetts, New Brunswick, Newioundland, New Hampshire, New York, Nova Scotia, Ontario, Quebec; Palaearctic; leaf miner of Betula.

Tribe FENUSINI

Genus Metallus Forbes

(17) Metallus bewsoni, new species; British Columbia, New York.
(18) Metallus capitnlis (Norton); British Columbia, Illinois, Maine, New Brunswiek, Newfoundland, New Hampshire, New York, Oregon, Quebec; leaf miner of Rubus.
(19) Metalhus rohweri MacGillivrny; Connecticut, Deleware, Florida, Minois, Maine, Maryland, Massuchusetts, Miehigan, Missouri, New Jersey, New York, North Carolina, Ohio, Ontario, Penasylvania, Rhode Isiand, Virginia, Wisconsin; leaf miner of Rubus.

Genus Messa Leach

(20) Messa hortulana (Klug); Massachusetts; Palaearctic; leaf miner of Populus.
(21) Messa leucostoma (Rohwer); Alberta, California, Colorado. Iowa, Minnesota, New Brunswick, Oregon, Washington; leaf miner of Populus.
(22) Messa nana (Klag); Mrine, New Yorlc; Palacarctic; leaf miner of Botula.
(23) Messa populifoliella (Townsend); Arizona, Colorado, Connecticut, Michigan, New Brunswick, New Mexieo, Ontario, South Dakota; leaf miner of Populus.
(24) Messa wuessineii (Konow); Alaska, Eritish Coiumbia, California, Colorado, Nevada; Palaearctic; leaf miner of Salia.

Genus Setabara Ross

(28) Setabara histrionica (MacGillivray) : California, Colorado, Idaho, Nevada, Oregon, Washington; leaf miner of Prumes (?).

Genus Profemusa MacGillivray

(26) Profenksa aluma (MacGillivray); Illinois, Maine, Maryland, New York, Pennsylvania, Virginia; leaf miner of Quercus.
(27) Profenusa canadensis (Marlatt); Arkansas, District of Columbia, minois, Iown, Kentucky, Maine, Massachusetts, Michigan, Missouri, New York, Ontario, Pennsylvania, Quebec, Texas; leaf miner of Cratacgus and Prunus.
(28) Profenusa inspirata (MacGillivray); California, Nevada, Oregon; leaf miner of Quercus.
(29) Profewusa lucifex (Ross); Illinois, Maine, New York, Ontario; leaf miner of Quercus.
(30) Profenusa thomsowi (Konow) ; Connecticut, Maine, Ontario, Quebec, Vermont; Palaearctic; leaf miner of Bethata.

Genus Bidigitus Smith

(31) Bidigitus platani (Burks); California; leaf minar of Platanus.

Genus Nefusa Ross

(32) Nefusa ambigua (Norton); Maine, Maryland, Massachusetts, Michigrn, New York, Ohio, Pennsylwamia, Quebec, Tennessec, Wisconsin; leaf miner of V iola.

Genus Prolatus Smith

Prolatus artus Smith; Oregon.

Genus Fenusa Leach

(34) Fenusa dohrnii (Tischbein); Alberta, British Columbia, Colorado, Connecticut, Illinois, Maine, Massachusetts, Michigan, New Brunswick, Newfoundland, New Hampshire, New Mexico, New York, Nova Scotia, Ontario, Oregon, Pennsylvania, Saskatchewan, Utah, Washington; Palaearctic; leaf miner of Alnus.
(35) Fenusa pusilla (Lepeletier); Connecticut, Maine, Massachusetts, New Brunswick, Newfoundland, New Hampshire, New Jersey, New York, Nova Scotia, Ontario, Oregon, Quebec, Vermont; Palaearctic; leaf miner of Betula.
(36) F6ni..sa ulmi Sundevall; Massachusetts, Michigan, New York, Ontario, Quebec; Palaearctic; leaf miner of Ulmus.

Genus Fenella Westwood

(37) Fenella nigrita Westwood; Connecticut, Maine, Michigan, Ontario; Palaearctic; leaf miner of Potentilla.

Keys to Heterarthrinae Genera

ADULTS

1. Forewing with vein $2 A$ and $3 A$ complete for its entire length, connected to $1 A$ by oblique crossvein (pI. I, 1, 3, 8)
Forewing with anal cell petiolate, basal section of $2 A$ and $3 A$ atrophied with only basal stub present or curving up to meet $1 A$ and forming small basal anal cell (pl. II, 10, 12, 14, 17; pl. III, 19) ; Fenusini
2. Antenna with 10 or more segments (pl. III, 31); tarsal claw with two subequal outer teeth and large acute basal lobe (pl. III, 23); head markedly depressed between eyes (pl. III, 30); Heterarthrini Heterarthrus Stephens
Antenna nine-segmented (pl. IV, 40-42) ; tarsal claw with one outer tooth andi large acute basal lobe (pl. III, 22); head convex between eyes (pl. III, 29) ; Caliroini
3. Apical four antennal segments not reduced, segments beyond second gradually decreasing in length (pl. IV, 42); basal emargination of anal cell of forewing with short basally projecting spur (pl. I, 1); anal cell of hindwing petiolate (pl. I, 2) ... Endelomyia Ashmead
Apical four antennal segments reduced in length, together only slightly longer than third segment (pl. IV, 40, 41); basal emargination of anal cell of forewing without spur (pl. I, 3); anal cell of hindwing sessile or petiolate (pl. I, 4,5). Caliroa 0. Costa
4. Cell R_{1} of hindwing open at apex (pl. II, 15, 16, 18)

Cell R_{1} of hindwing closed (pl. II, 11, 13)
5. Tarsal claw with one or two outer teeth and large acute basal lobe (pl. III, 22, 23); stub of $2 A$ and $3 A$ of forewing straight or curved up at apex (pl. II, 14, 17) ; hindwing with anal cell present or absent (pl. II, 15, 16) ...
Tarsal claw simple or with small inner tooth, basal lobe absent (pl. III, 21); stub of $2 A$ and $3 A$ of forewing curved up, meeting 1A to form small basal anal cell (pl. EII, 19); hindwing with anal cell absent (pl. III, 20)
B. Antenna long and slender, third and fourth segments subequal in length (pl. III, 37); furetarsus $11 / 2$ times or more longer than
 32-34) ; foretarsus subequal in length to foretibia (pI. III, 26)
9. Antenna with 10 or 11 segments (pI. III, 34); himdtarsus with fourth segment not conspicuously produced apically (pl. III, 28)

Ferella Westwood
Antenna nine-segmented (pl. III, 32, 33); bindtarsus with fourth segment conspicuously produced apically (pl. III, 27).. Fenusa Leach
10. Tarsal claw with small indistinct lobe at base, appering simple (pl. IH, 24)

Setabara Ross
Tarsal claw with large acute basal lobe (pl. III, 22).
11. Second antennal segment broader than long (pl. III, 33, 30); third and fourth matemmal segments usually subequal in length

Metallus Forbes
Second antennal segment loncer than broad (pl. III, 35, 36) ; third antennal serment usually longer than fourth segraent Messa Leach

LARVAE

(based on final feeding stage)

1. Sluglike or typically sawflylike in appearance; body cylindrical, not dorsoventrally flattened; head round, not dorsoventraily flattened; prolegs distinct; external feeders (pl. XI)
Modified; body dorsoventrally flattened; head usually dorsoventrally flattened; prolegs reduced or absent; leaf miners (pls. XII-XVIII)
2. Head higher than wide; membranous process stemming anteriorly from each prothoracic leg; hody largest in repion of thorax, distinctly narrowing toward apex of abdomen; anal prolegs united (pl. XI, 137)

Caliroa 0 . Costa
Head round; prothoracic legs without membranous processes; body cylindrical, not sharply tapering toward apex; anal prolegs separated (pl. XI, 130-132)

Endelomyia Ashmead
3. Prolegs absent; each cost of thoracic legs with three small tubercles; on Quercus, Betala (pl. XIV, 179; pl. XV, 181, 184, 180, 190; pl. XVI, 200)

Profenusa MacGillivray (pt.)
Prolegs present, although reduced; coxac without tubarcles
4. Prolegs present on abdominal segments 2 to 7 and 10; on Rubus (pl. XIH, 159-161) Metallus Forbes
Prolegs present on abdominal segments 2 to 8 and 10
6. Each proleg surrounded by well-defined crescentlike dark area (pl. XII, 152, 153; pl. XIV, 164)
Prolegs without dark arcas, or nresent only around anal proleg $\quad 7$
6. Mesosternum, metasternum, and sternum of frst abdominal segment with dark plates; on Populus, Betula, Salix (pl. XII, 152, 153; pl. XIV, 164)

Messa Leach
Mesosternum, metasternum, and sternum of first abdominal segment without plates; on Crataegus (pl. XVI, 201, 202)

Profenusa MacGillivray (pt.)
7. Dark crescentlike piate surrounding anal proleg; on Betula (pl. XII, Y4.3)

Heterarthrus Stephens
Anal proler without dark plate
8. Mesosternum and metasternum without dark phates; on Platanus (pl. XVII, 212)

Bidigitus Smith
Mesosternum and metasternum with light or dark plates; not on Platanus
9. First abdominal sternum without dark plate; on Almus

Fenusa Leach (pt.)
First abdominal sternum with dark plate; not on Alnus
10. Ninth abdominal sternum with cluster of small spines; small spines about prulegs on segments 6 to 8 and at center of sterna 1 to 6 ; on Ulmus (pl. XVlII, 220-222)
11. Plates on thoracic sterna and first abdominal sternum very dark, rectangular in shape, longer than wide; on Betula (pl. XVIII, 232, 233)
Plates lighter, that of prostornum wider than long, those of mesosternum, metasternum, and first abdominal sternum smal!; on Potentilla (pl. XVII, 213, 214).Fenella Westwood

Keys to Leaf-Mining Larvae of Betula and Quercus

1. Prolegs absent; each coxa with three small tubercles on inner anterior surface; thoracic legs short, tarsal clav absent (pl. XV, 181, 182, 184) Profenusa thomsoni (Konow)
Prolegs present, reduced; coxae without small tubercles; thoracic legs longer, distinctly segmented, tarsal claw present, sometimes reduced
2. Anal proleg without dark ring (pl. X $\mathrm{V} I \mathrm{II}, 232$)

Fenusa pusilla (Lepeletier)
Anal proleg with dark ring (pl. XII, 143, 153) 3
3. Each proleg with dark ring (pi. X1, 152, 153) Messa nana (Kiug)

Only anal proleg with dark ring (pl. XII, 142, 143)
Heterarthrus nemoratus (Fallén)
Hering (1937) compared the birch leaf-mining species of Europe, and Lindguist (195\%) gave a key to three birch leaf-mining species of Ontario.

QUERCUS

1. Mesosternum with dark plate (pl. XIV, 179)

Profcnusa inspirata (MacGillivray)
Mesosternum without dark plate (pl. XV; 189)
2. Thoracic legs each with minute tarsal claw; antenna longer with distinct apical segment (pl. XVI, 199, 200). Profenusa lueifex (Ross)
Tarsal claws absent; antenna without small apical segment (pl. XV, 190, 192).

Profenusa alumna (MacGillivray)

Tribe CALIROINI

The tribe Caliroini includes two genera, Endelomyia and Caliroa, the larvae of which are external feeders on the leaves of various trees and shrubs. The adults are recognized by the complete vein $2 A$ and $3 A$ of the forewing, connected to $1 A$ by an oblique crossvein, the nine-segmented antenna, and the tarsal claw with a single outer tooth and a large acute basal lobe. The larvae may be distinguished as outlined in the introductory discussion on larvae.

Genus ENDELOMYIA Ashmead

Endelomyia Ashmead, 1898, p. 256; Konow, 1905, p. 74 ($=$ Eriocampoides Konow) ; MacGillivray, 1909b, p. 346; Rohwer, 1911b, p. 100 (= Caliroa O. Costa) ; Ross, 1937, p. 70 ($=$ Caliroa 0. Costa) ; Benson, 1938, p. 368; Benson, 1940, p. 214; Ross, 1951, p. 28; Benson, 1952, p. 96; Malaise, 1957, p. 18; Malaise, 1963, p. 176; Smith, 1967, p. 279.
Type-species: "M. rosae Harris." Original designation (see discussion below).
Description.-Second antennal segment longer than broad; third segment longer than fourth segment; segments beyond third gradually decreasing in length, apical four segments not reduced (pl. IV, 42). Clypeus truncate; malar space less than diameter of front ocellus. Prepectus absent. Tarsal claw with single outer tooth and large acute basal lobe (pl. III, 22). Forewing with vein $2 A$ and $3 A$ complete, connected to $1 A$ by oblique crossvein; basal angle of vein $2 A$ and $3 A$ with short basally projecting spur (pl. I, 1). Hindwing with anal cell petiolate; cell M present, cell $R s$ absent (pl. I, 2).

A single Holarctic species is in this genus, aethiops (Fabricius), which is an external feeder in the larval stage on the foliage of Rosa.

The type-species was designated as "M. rosae Harris" by Ashmead (1898). This species was originally described by Harris (1S41) as Selandria rosae and is a synonym of aethiops.

Description of Endelomyia Species

Endelomyia aethiops (Fabricius)
Tenthredo aethiops Fabricius, 1781, p. 416; Fabricius, 1787, p. 256; Gmelin, 1790, p. 2662; Fabricius, 1793, p. 121; Fabricius, 1804, p. 39; Klug, 1814, p. 66; Klue, 1819, p. 84; Lepeletier, 1823, p. 112; Hartig, 1837, p. 268; Zetterstedt, 1838, p. 339 ; Ratzeburg, 1844, p. 130; Gorski, 1852, p. 191.
Allantus acthiops: Jurine, 1807, p. 56.
Hylotoma aethiops: Fallén, 1807, p. 200.
Nematus aethiops: Spinola, 1808, p. 155.
Phyllotoma aethiops: Fallén, 1829, p. 33.
Selandria aethiops: Stephens, 1835, p. 51 ; Westwood, 1850, p. 207; Knitenbach, 1867, p. 92; Kaltenbach, 1874, p. 221.
Blennocampa arthiops: Costa, 1850, p. 48; Kaltenbach, 1874, p. 200.
Eriocampa cethiops: Cameron, 1876h, p. 192; Konow, 1886a, p. 109.
Eriocampoides aethiops: Konow, 1890, p. 248; Dalla Torre, 1894, p. 192; Konow, 1905, p. 74.
Caliraa nethiops: Enslin, 1914, p. 253; Middleton, 1922, p. 12; Dovnar-Zapolsky, 1929, p. 15; Johnson, 1930, p. 93 ; Dovnar-Zapolsky, 1931, p. 55 ; Balachowsky and Mesnil, 1935, p. 234; Smith, Kelley, Dean, et al., 1943, p. 384; Hardouin. 1045, p. 161; Berland, 1947, p. 270; Schuh and Mote, 1948, p. 125; Dominguez Garcia-Tejero, 1950, p. 185; Tadic, 1956, p. 18.
Endelomyia aethiops: MacGillivray, 1900b, P. 346; Yuasa, 1922, p. 58; Miles, 1935, p. 126; Benson, 1940, p. 214; Ross, 1951, p. 28; Benson, 1952, p. 96; Maxwell, 1955, p. 54; Peterson, 195G, p. 268; Malaise, 1957, p. 18; Lorenz and Kraus, 1957, p. 113; Benson, 1962, p. 391 ; Smith, 1967, p. 279; Benson, 1968, p. 148.

10

Selandria rosab Harris, 1841, p. 380; Norton, 1861, p. 223; Norton, 1867, p. 256 ; Scudder, 1869 , p. 268 ; LeBaron, 1871, p. 79; Riley, 1875, p. 27; Riley, 1877, p. 19; Provancher, 1878, p. 100; Provancher, 1880, p. 127 ; LeBaron, 1880, p. 66; Provancher, 1883, p. 202; MacGillivray, 1909b, p. 346 ($=$ aethiops Fabricius).

Eriocampa rosae: Cameron, 1882, p. 227; Dalla Torre, 1894, p. 132.
Monostegia rosae: Provancher, 1888, p. 351; Riley, 1892, p. 6; Dyar, 1895a, p. 194; Dyar, 1895b, p. 338.

Endelomyia rosae: Ashmead, 1898, p. 256; Chittenden, 1908, p. 1.
Eriocampoides rosae: Konow, 1905, p. 74; Gillette and List, 1915, p. 2.
The European synonymy for aethiops was given by Enslin (1914) and Benson (1952).

Female-Average length, 4.6 mm . Black; extreme apex of each femur and all of each tibia and tarsus white to infuscate; back tibia and tarsus occasionally black. Wings lightly infuscate.

Sheath straight above, rounded below. Serrulae of lancet each lobelike, rounded at apex, with one anterior and one posterior subbasal tooth located near ventral margin of lancet (pl. IV, 62).

Male.-Unknown in North America. They are very rare in Europe (Benson, 1952).

Larva.-Final feeding stage (pl. XI, 130-136). Length, 13 mm . Body cylindrical, typically sawfylike, not distinctly narrowing toward apex. Yellowish green when alive; tubercles concolorous with rest of body.

Head rounded, hypognathous. Antenna conical, five-segmented. Clypeus with four setae; labrum truncate, with six setae; epipharynx with about 12 spines on each side; each mandible with ventral row of four long rectangular teeth; in addition, right mandible with one large truncate middle tooth and two sharp dorsal teeth and left mandible with one pointed middle tooth and three sharp dorsal teeth; one seta on basal angle of each mandible; maxillary palpus four-segmented, second segment with one seta, palpifer with three setae, galea conical, lacinia with 12 to 14 spines; labial palpus four-segmented.

Thoracic legs normal, five-segmented; tarsal claw present; each tibia with lateral pad; membranous process of prothoracic leg absent. Tubercles of thorax arranged as in plate XI, 130.

Prolegs on abdominal segments 2 to 8 and 10 . Abdominal segments 1 to 8 each with six annulets; annulets 2 and 4 each with two small conical tubercles on each side of body; ninth segment with row of six to eight tubercles dorsally on fourth annulet; dorsum of 10 th segment with eight to 10 tubercles arranged approximately in three transverse rows. Suranal and subanal areas with setae. Spiracles not winged.

The larva was described by Dyar (1895a), Yuasa (1922), Miles (1935), Peterson (1956), and Lorenz and Kraus (1957), and the internal larval anatomy was described by Maxwell (10.55). The distinct mandibles and tubercle arrangement of the body will separate it from most other sawfly larvae.

Holotypes.-The location of the type of aethiops Fabricius is not known. Harris' type of rosae cannot be found.

Distribution.-Widespread in North America; Europe. The following data are limited to the State or Province and city or county of those specimens I have examined. ${ }^{2}$ British Columbia: Agassiz; Vancouver. Colorado: Boulder; Ft. Collins. Connecticut: Lyme; Branford. Delaware: Newark. District of Columbia: Washington. Idaho: Lenore. Illinois: Algonquin; Urbana; Champaigne; Rock Island; Alto Pass; Oakwood. Kansas: Yates Center; Douglas Co.; Manhattan. Kentuclyy: Lexington. Maine: Belfast. Massachusetts: Wellesley. Michigan: Detroit; East Lansing; LaPeer Co. Minnesota: Olmstead Co. Missouri: Jackson Co.; Kansas City; Columbia. Montana: Bozeman. New Jersey: N. Brunswick. New York: Oswego; Ithaca; Fulton Co. Ohio: Sugar Grove. Oregon: Troutdale; Salem; Forest Grove; Langdon Lake; Corvallis; Oakville. Pennsylvania: Philadelphia; Montgomery Co. Utah: Providence. Virginia: Falls Church; Vienna; Arlington; Bluemont. Washington: Colton; Woodland.

Host.--The larva is an external feeder on the foliage of wild and cultivated roses (Rosa spp.).

Biology.-Numerous papers have appeared on the life history of this species. The more noteworthy are those of Harris (1841), Riley (1892), Chittenden (1908), Middleton (1922) in North America, and Miles (1935) in England.
The adults fly in May and June and oviposit in the edge of a leaf, usually in serrations. There may be from two to five eggs per leaf. Incubation is from 9 to 14 days. The young larvae feed on either side of the leaf, but the older larvae prefer the lower surface. The feeding period is from 20 to 27 days, and, on maturing, the larvae enter the soil to overwinter. There is one generation a year.

This is one of the three common sawflies that feed on the foliage of roses. The others-Cladius isomerus Norton and Allantus cinctus (L.)-are not treated in this bulletin. C. isomerns is univoltine and oviposits in the stems. The larva is distinctly hairy. A. cinctus has one or two generations a year. The larva has fewer and pointed mandibular teeth and smaller less conspicuous tubercles on the body than the larva of aethiops.

Discussion.-Rose-slug is the approved common name for this species. It has received much attention in the literature and was recognized as a pest of roses as early as 1841 bv Harris. In Massachusetts in the 1840's it was such a pest that $\$ 100$ was offered for the most successful way to destroy it (Chittenden, 1908).
E. aethiops has sometimes been associated with the genus Caliroa, but the antenna and wing venation of the adult and the nonsluglike appearance of the larva separate it from species of Caliroa.

[^1]
Genus CALIROA O. Costa

Caliroa O. Costa, 1859, p. 59; Dalla Torre, 1894, p. 192 ($=$ Eriocampoides Konow) ; Ashmead, 1898, p. 256; Konow, 1905, p. 74 ($=$ Eriocampoides Konow); MacGillivray, 1909b, p. 347; Rohwer, 1911a, p. 119; Rohwer, 1911b, p. 100; Enslin, 1914, p. 252; Yuasa, 1922, p. 58 ; Ross, 1937, p. 70 ; Benson, 1938, p. 368; Crevecoeur and Maréchal, 1938, p. 493; Benson, 1940, p. 214; Berland, 1947, p. 269; Ross, 1951, p. 28; Benson, 1952, p. 96 ; Takeuchi, 1952, p. 56; Malaise, 1957, p. 18; Lorenz and Kraus, 1957, p. 111; Malaise, 1961, p. 240; Malaise, 1963, p. 176; Okutani, 1965, p. 29; Smith, 1967, p. 279.
Type-species: Caliroa sebetia O. Costa. Monotypic.
Eriocampoides Konow, 1890, p. 239; Dalla Torre, 1894, p. 192; Ghigi, 1904, p. 4; Konow, 1905, p. 74 ; MacGillivray, 1909 b , p. 347 ($=$ Caliroa 0. Costa).
Caliroa subgenus Eriocampoides: Rohwer, 1911b, p. 100; Enslin, 1914, p. 252.
Type-species: Tenthredo limacina Retzius. Designated by MacGillivray, 1909b.
Periclistoptera Ashmead, 1898, p. 255; Konow, 1905, p. 74 ($=$ Eriocampoides Konow) ; Enslin, 1914, p. 252 ($=$ Caliroa O. Costa).
Type-species: Monostegia alba Norton. Original designation.
Description.-Second antennal segment longer than broad; third segment longer than fourth segment; apical four segments reduced, together subequal in length to or only slightly longer than third segment (pl. IV, 40, 41). Clypeus shallowly emarginate; malar space less than diameter of front ocellus. Prepectus absent. Tarsal claw with one outer tooth and large acute basal lobe (pl. III, 22). Forewing with vein $2 A$ and $3 A$ present for entire length, connected to $1 A$ by oblique crossvein; basal angle of vein $2 A$ and $3 A$ without basally projecting spur. Hindwing with anal cell petiolate or sessile; cells $R s$ and M both present, both absent, or either one or the other present (pl. Y, 3-5). Hindwing of male with peripheral vein (except cerasi) (pl. 1, 6-7).

MacGillivray (1909b) treated 15 species of Caliroa from North America and gave a key to species that is based on variable and ambiguous characters and is impossible to use. Ross (1951) listed 15 species, but he did not express most of the synonymy. The present revision treats 14 species, five of which are new. Benson (1052) reported four species from England and Okutani (1965) seven species from Japan. There are probably about 30 world species.

This revision is based largely on the female genitalia and hindwing venation. Males have not been associated with some species, are less commonly collected, and their recognition characters are not so obvious as those of the female, although slight differences do exist in their genitalia, venation of the hindwing, and coloration. The relative lengths of the antennal segments and coloration of the tibiae and tarsi of the females sometimes have been used in the taxonomy of Caliooa; however, these characters are variable, vague, and difficult to see and describe, and they are not relied upon in this revision.

On the basis of the females, two groups of Caliroa may be recognized: (1) Those species that have the anal cell of the hindwing petiolate and cells $R s$ and M usually absent and (2) those species
that have the anal cell of the hindwing sessile and cells $R s$ and M either both present or at least one or the other present. These venational characters are one of the major divisions in the key to species. Occasionally abnormal specimens appear, and these should be taken through both parts of the key for correct determination.

Caliroa larvae are easily distinguished from larvae of other sawflies by their sluglike or tadpolelike appearance and by the presence of a fleshy protuberance extending anteriorly from each prothoracic leg (pl. XI, 137). They are usually covered with a dark or transparent slime. The head is hypognathous and the thorax is enlarged, with the body distinctiy narrowing toward the posterior.

Larvae have not been associated with enough species of Caliroa to permit a key for their separation. Larval material is available for study from various hosts, most of it from Prunus and Quercus. However, at least two species have been associated with Prunus and five species with Quercus, and it is impossible to determine to which species the larvae belong. Also, a study of the larval material available indicates that there are few obvious characters for species separation. The most obvious character seems to be the color of the head capsule, but this color may change from amber to black in the various instars.

Dyar (1895b) attempted to separate the larvae of some species by using size and head capsule coloration, and Yuasa (1922) gave a key to five specic:, largely based on the same characters. However, the keys of these authors cannot be relied upon because the taxonomy of the adults was not well known at that time. Lorenz and Kraus (1957) gave a key to the larvae of four European species, which is also based on coloration. Consequently, I have not attempted a key because of the lack of associated specimens, lack of adequate characters, and the impracticality of a key leading only, for example, to "species A" or to "species B."

Caliroa includes the common pear-slag (C. cerasi), which feeds on a wide variety of Rosaceae in the larval stage but seems to prefer Prumus and Pyrus. Other Caliroa species are associated with Castanea, Nyssa, Prumus, Quercus, and Salix. Some adults have been collected from Betula, but this host is not yet authenticated. Some larvae have been taken while feeding on Acer, Ceanothus, and Cotoneaster, but the species are not known.

Key to Caliroa Species

1. Female $\mathbf{2}$

Male ... 15
2. Pronotum and mesonotum rufous . foridana, n. sp.

Thorax entirely black 3
3. Hindlegs entirely black $\quad . \quad$ cerasi (Linnaeus)

> Tibia and tarsus of hindlegs partly white
4. Anal cell of hindwing with short petiole; cells Rs and M usually absent (pl. I, 5)
5. Serrulae of lancet deep, lobelike, rounded at apex (pi. V, 63, 67).. 6

Serrulae of lancet shallow or pointed at apex (pl. V, 64-66, 68) 7

14 technical bulletin 1420, u.S. Dept. of agriculture

6. Serrulae broad, close together (pl. V, 63) ; western distincta, n. sp. Serrulae slender, far apart (pl. V, 67) ; eastern .. lunata MacGillivray
7. Serrulae slender, pointed at apex (pl. V, 64); western hyalina, n. sp. Serrulae broad, usually flattened at apex (pl. V, 65-66, 68); eastern species

8
8. Lancet with 19 to 20 serrulae (pI. V, 68) lorata MacGilivray
Lancet with 15 to 17 serrulae
9. Serrulae flattened at apex, each with two anterior and two posterior subbasal teeth (pl. V, 65) Liturata MacGillivray
Serrulac rounded at apex, each with three or four small anterior and two or three large posterior subbasal teeth (pl. V, 66) petiolata, n. sp.
10. Serrulae exch with large distinct lobelike subbasal teeth (pl. V, 69; pl. VI, 74)
serrulae each with small less conspicuous subbasal teeth (pl. VI, 72, 73 ; pl. VII, 75, 76)
i) Serzulae usually with two anterior subbasal teeth "(pl. $\ddot{\mathrm{V}}, 69$) western
Serrulae usually with one anterior subbasal tooth (ata MacGilivray eastern
12. Lancet with 17 to 18 serrulae

Lancet with 20 to 21 serrulae
13. Serrulae of lancet evenly rounded with subbasal teeth extending to ventral margin of lancet (pl. VII, 76) ; hindwing usually with cells Rs and M present (pl. 1, 4). quercuscoccineae (Dyar)
Serrulac of lancet with anterior and posterior basal margins lacking subbasal teeth, subbasal teeth confined to rounded apex (pl. VI, 72) ; hindwing ustally with cell $R s$ present, cell M absent $n y s s a c, n$, sp.
14. Serrulae deep, lobelike, rounded at apex (pl. VI, 73) lobata MacGillivray Serrulae small, shallow, more pointed at apex (pl. VII, 75)
fasciata (Norton)
15. Hindwing without peripheral vein (males not seen; based on Benson (1952))
cerasi (Linnaeus)
17. Apex of anal cell of hindwing remover some distance from margin of wing, usually by at least half the width of anal cell at its widest point (pl. I, 7)
Apcx of anal cell close to or touching margin of wing (pl. I, 6)

Descriptions of Calivon Species

Caliroa cerasi (Linnaeus)
numerous references to this species under names "Tenthredo cerasi, Hylotoma cerasi, Phyllotoma cerasi, and Selandria carasi," all of which are questionable synonyms of limacina Retzius).
Caliroa cerasi: Kohwer, 1911a, p. 119; Webster, 1912a, p. 167; Webster, 1912b, p. 125; Wilson, 1913, n. 118; Ewing, 1917, p. 330; Britton, 1921, p. 199; Wellhouse, 1922, p. 1086 ; Yuasa, 1922, p. 59; Severin, 1923, p. 13; Zappe, 1926, p. 322; Obatrski, 1933, p. 156; Benson, 1040, p. 214; Russo, 1943, p. 306; Hardouin, 1943, p. 160; Smith, 1943, p. 384; Schuh and Mote, 1948, p. 124; Ross, 1951, p. 28; Benson, 1952, p. 96; Maxwell, 1955, p. 55; Tadic, 1956, p. 18; Peterson, 1956, p. 268; Lorenz and Kraus, 1957, p. 112; Raizenne, 1957, p. 25; Benson, 1062, p. 391; Benson, 1968, p. 148.

Eriocampoites cerasi; Cook, 1914, p. 40.
Tenthredo limacina Retzius, 1783, p. 73.
Eriocampa limacina: André, 1881, p. 322 ; Cameron, 1882, p. 224; Froggatt, 1901, p. 1.
Eriocanpoides limacina: Konow, 1890, p. 248; Dalla Torre, 1894, p. 134; Marlatt, 1897, p. 1; Konow, 1905, p. 74; MacGillivray, 1009b, p. 347; Tullgren, 1910, p. 294; Rohwer, 1911a, p. 121; Jörgensen, 1913, p. 266; Camacho, 1017, p. 1; Tillyard, 1921, p. 2; Izquierdo, 1021, p. 43; Porter, 1928 p. 3; Porter, 1930a, p. 370; Porter, 1930b, p. 9 ; Forsius, 1931, p. 14; Twinn, 1934, p. 72; Jourdan and Kungs, 1935, p. 205; Talhouk, 1941, p. 128; Kotte, 3041, p. 165; Trujillo Peluffo, 1942, p. 275.
Caliroa limacina: Enslin, 1914, 1. 254; Enslin, 1924, p. 37; Wolff, 1924, p. 45; Forsius, 1027, p. 6; Hepp, 1920, p. 253; Dovnar-Zapolsky, 1929, p. 8; Forsius, 1929, p. 83; Dovnar-Zapolsky, 1931, p. 55; Conde, 1934, p. 180; Beffa, 1934, p. 583; Balachowsky and Mesnil, 1935, p. 234; Miles, 1935, p. 117; Grandi, 1936, p. 224; Golfari, 1937, p. 241; Poluzzi, 1939, p. 525 ; Benson, 1940, p. 214 ; Chiesa Molinari, 1942, p. 463; Berland, 1947, p. 271; Dominguez Garcia-Tejero, 1950, P. 183; Scognamiglio, 1954, p. 96 ; Spirchez, 1956, p. 314; Iukhnevich, 1960, p. 18; Dadurian, 1962, p. 81.
Tenthredo cerasi Peck, 179n, p. \%.
Selandria cerasi: Harris, 1841, p. 383; Norton, 1861, p. 222; Winchell, 1865, p. 321; Norton, 1867, p. 254; Riley, 1875, p. 27; Thomas, 1881, p. 67; Forbes, 1883, p. 98; Packard, 1800, p. 522; MacGillivray, 1909b, p. 348 ($=$ limacina Retzius).
Eriocampa cerasi: Dalla Torre, 1894, p. 130; Dyar, 1895a, p. 195; Dyar, $1895 \mathrm{~b}, \mathrm{p} .338$.
Eriocampoides cerasi: Konow, 1905, p. 74.
Calioa laudata MacGilivray, 1900 h, , p. 356, 9 ; Frison, 1927, p. 238; Ross, 1951, p. 29 ($=$ cerasi Linnacus).
Calion lacinata MacGilhyray, 1909b, p. 357, o; Frison, 1927, p. 238; Ross, 1951, p. 29 ($=$ cers \cdot i Linnacus).

Female.-Average length, 4.8 mm . Black with front and middle tibiae brownish. Wings lightly, uniformly infuscated.

Antenna with third segment subequal in length to segments 4 plus 5: apical four segments subequal in length to third segment. Clypeus shallowly, circularly emarginated. Hindwing with anal celi sessile; cells $R s$ and M usually both present, sometimes both absent or one or the other present. Lancet with about 17 serrulae, each servia long, pointed at anex. with one anterior and three posterior subbasal teeth (pl. VI, 70).

Male.-Tarthenogenetic, unknown in North America. Males are rare in Europe but apparentiy common in Turkey (Benson, 1968). Benson (1952) stated that they lack a peripheral vein in the hindwing.

Larra.-Final feeding stage. Length, 11 mm . May be separated from other known Caliroa larvae by the following combination of
characters: (1) Host: Pyrus, Prunus, or other Rosaceae; (2) darl. brown head capsule in late feeding stages; and (3) black, rather than transparent, slime covering body. The general shape of the body, mandibles, epipharynx, and maxilla are as illustrated in plate XI, 137-141.

The larva of cerasi has been described numerous times in the literature. Dyar ($1895(1,1895 b$) and Yuasa (1922) attempted to separate it from other North American Caliroa larvae. Miles (1035), Peterson (1056), and Lorenz and Kraus (1957) all described and illustrated the larva, but Scognamiglio (1954) has given the most complete descriptive and morphological account of the larva. Maxwell (10.55) described the internal larval anatomy.

Holotypes.-Malaise and Benson (1934) stated that Linnaeus' type of cerasi is lost. The location of Retzius' and Peck's types are not known. MacGillivray's types are at the Illinois Natural History Survey: C. landata, a female, is labeled "Vancouver, B.C., 19-VI03," and C. lacinata, a female, is labeled "Algonquin, Ill., 6-8-94."

Distribution.-Widespread in temperate Eurasia and North America; also, Africa, Argentina, Australia, Chile, China, New Zealand, Tasmania, Uruguay. I have seen specimens from the following North American States and Provinces: British Columbia, California, Colorado, Connecticut, Delaware, District of Columbia, Georgia. Idaho, Illinois, Iowa, Maine, Massachusetts, Michigan, Minnesota, Montana, Nebraska, New Hampshire, New Jersey, New Mexico, New York, Ontario, Oregon, Pennsylvania, Quebec, Rhode Island, South Dakota, Utah, Virginia, Washington.

Hosts.-The larva is an external feeder on the foliage of many Rosaceae, preferably pear (Pyrus) and cherry (Prunus). Dyar (1895a) and Wellhouse (1922) reported that this species feeds on Crataegus, and labels on adult specimens indicate that Sorbus may be a host. Benson (19.52) recorded Amygdalus, Crataegus, Cydonia, Mespilus, Quercus, Rosa, Rubas, Salix, and Sorbus as hosts of this species in England.

Biology.- The first reference to the life history of cerasi was as early as 1799 when Peck was awarded $\$ 50$ and a gold medal from the Massachusetts Agricultural Society for his printed account "Natural History of the Slug Worm." Since that time numerous papers have appeared. such as those by Harris (1841), Winchell (186.5). Riley (1870), Thomas (1881), Forbes (1883), Marlatt (18.97). Webster (1912a, 1912b), Wilson (1019), Ewing (191\%), and Britton (1921). The insect has always received attention in reports of State entomologists. Outside of North America binlogical work has been carried on wherever this pest exists, such as in England (Miles, 19.35), Lebanon (Talhouck, 1941), Morocco (Jourdan and Rungs, 1935), Chile (Porter, 1028. 1930a, 19306; Izquierdo. 1021), Argentina (Jörgensen, 1913; Chiesa Molinari, 1042), Uruguay (Trujillo Peluffo, 1942), Australia (Froggatt, 1901). and New Zealand (Tillyard, 1921).

In North America two generations a year are usual, the first in May or Jume, the second in July or August. The eggs are inserted on the underside of the leaf near a midrib or larger vein. The
feeding period may extend to 3 weeks, after which the larva enters the ground to pupate for the next generation or to overwinter. Slight differences are found in the biology of cerasi and liturata, another species associated with Prunus. (See section on biology under liturata.)

Discussion.-C. cerasi is easily separated from all other Cailiroa species by the entirely black legs. All other species, except floridana, which has a rufous pronotum and mesonotum, have some white markings on the hindtibia and hindbasitarsus. The lancet with the relatively slender serrulae, each with one anterior and three posterior subbasal teeth, is also distinctive for this species.

Pear-slug is the approved common name.

Caliroa distincta, new species

Female.-Length, 4.8 mm . Black; front and middle tarsi, front and middle tibiae, and extreme apex of front and middle femora brownish to white; basal one-third of hindtibia and basal one-third of hindbasitarsus white. Wings very lightly, uniformly, infuscated.

Antenna with third segment subequal in length to segments 4 plus 5; apical four segments together subequal in length to third segment. Clypeus circularly emarginated. Hindwing with cells $R s$ and M absent; anal cell with short peticle. Lancet with 16 to 17 serrulae; serrulae deep, close together, and lobelike, each rounded at apex and with three or four anterior and three or four posterior subbasal teeth located near ventral margin of lancet (pl. V, 63).

Male.-Unknown.
Larta.--Unknown.
Holotype.-Female, 7 mi . N.W. Roseburg, Oregon, Douglas Co., May 8, 1964, J. D. Vertrees, U.S.N.M. (U.S. National Museum) type No. 70212.

Paratypes.-British Columbia: Cultus Lake, 21-VII-1948, H. R. Foxlee (1 \%) ; Salmon Arm, 10-VII-1935, A. A. Dennys (18) ; Robson, 9-V-1947, H. R. Foxlee (1 q). California: Sta. Cruz Mts. (2 9 甲) ; nr. Stanford U., Bear Creek Gulch, March 25, 1915, Harold Morrison (1 q). Nevada: "Nev." (1 9). Oregon: "Oregon," Koebele (1 q). Talent, May 2, 1936, L. G. Gentner (1.9) ; Douglas Co., 4 mi . S. Canyonville, May 21, 1964, D. R. Smith (1 f). Deposited in the Canadian National Collection, U.S. National Museum, and at Oregon State University.

Distribution.--Pacific coastal region from British Columbia to California and Nevada.

Host.-Unknown.

Biology.-Unknown.
Discussion.-This western species is recognized by the petiolate anal cell and absence of cells Rs and M in the hindwing and the large lobelike serrulae of the lancet. The lancet is similar to that of lobata of eastern North America, but in distincta the serrulae are larger, closer together, and fewer.

Celiroa fasciata (Norton)

Selandria fasciata Norton, 1864, p. 9, \%; Norton, 1867, p. 256; Cresson, 1928, p. 6.

Eriocnmpa fasciata: Dalla Torre, 1394, p. 130.
Eriocampoides fasciata: Konow, 1905, p. 74.
Caliroa fasciata: MacGillivray, 1909 b , p. 362; MacGillivray, 1916, p. 80; Ross, 1951, p. 29; Maxwell, 1955, p. 55 (?).

Fernale.-Average length, 4.8 mm . Black; front and middle tibiae and tarsi white ; basal two-thirds of hindtibia and basal twothirds of hindbasitarsus white. Wings moderately to darkly infuscated on basal two-thirds, nearly hyaline on apical one-third.

Antemna with third segment shorter than segments 4 plus 5 ; apical four segmerits together slightly shorter than third segment. Clypeus shallowly, circularly emarginated. Hindwing with cells $R s$ and M both present; anal cell sessile. Lancet with 20 to 22 serrulae; each serrula shallow and broad, rounded at apex, with one or two anterior and three or four posterior subbasal teeth (pl. VII, 75).

Male.-Average length, 4.5 mm . Color similar to that of female except for extreme apex of each femur, which is white, and hindtibia, which is only one-half white. Hindwing with peripheral vein; anal cell with apex close to margin of wing (pl. I, 6). Genitalia as in plate IX, 103 and 104; harpe longer than broad, pointed at apex.

Larva-Unknown. Maxwell (1955) described the internal anatomy of a species of Caliroa on Crataegus, which she called fasciata.

Holotype.-S. fasciata Norton, a female labeled "Mass.," is type No. 10340 at the Academy of Natural Sciences of Philadelphia.

Distribution.-Eastern North America. Connecticut: Union, June 24, 1932 ; Poquonock, June 27, 1905 ; E. Hartford, Aug. 25, 1950. Mlinnis: Fardin, June 5-9, 1932; Parker, June 4, 1913; Jeff, June 12, 1934. Iowa: Mt. Pleasant, May 1, 1933, on pin oak. Maine: Brunswick. Mare Pt., 1-VII-65, ex w. birch; Augusta, VIII-10, 1941; Woolwich, emgd. VI-6, 7, VII-10, 14, 16, 1958, ex red oak. Maryland: Plummers Id., July 6, 1921, June 18, 1916, VIII-31912; Glen Echo. New Jersey: Ateo; Manahawkin, V-30-11. New York: Ardsley, Westchester Co., May 30, 1957. Ohio: Put-in-Bay, June $20-30$, 1924. Ontario: Little Rapids, $3-\mathrm{V}-1955$, red oak; Nestorville, 18-IV-1955, red oak. Virginia: Veitch, July 7, 1914, Quercus velutina: Falls Church, July 23, 1913, reared VII-7-1916, Quercus palnstris.

Host.-Quercus spp. Series of adults have been reared from larvae feeding on Quercus velutina Lam., Q. palustris Muenchh., and Q. rubra L.

Biology.-No information is available.
Discussion.-This species is most closely related to quercuscoccineac; however, puercuscoccineae has only 17 or 18 servulae on the lancet and each serrula has several more anterior subbasal teeth. I could not separate the males of these two species. The presence of cells $R s$ and M and sessile anal cell of the hindwing and the rela-
tively shallow serrulae of the lancet will separate the females from those of other Caliroa species. The wings, which are only partly infuscate, will also help to differentiate this species. The males are more difficult to separate from those of other species. The closeness of the anal cell to the margin of the hindwing, entirely black body, and partly infuscate wings will help to separate them.

Caliroa floridana, new species

Female.-Length, 4.8 mm . Head and antenna black; labrum brownish. Thorax black with pronotum, tegula, and mesonotum rufous. Legs black with front tibia and tarsus whitish. Abdomen black. Wings uniformly, darkly infuscated.

Antenna with third segment shorter than segments 4 plus 5 ; apical four segments together subequal in length to third segment. Clypeus shallowly, circularly emarginated. Hindwing with celis $R s$ and M both absent; anal ceil with very short petiole. Lancet with 20 to 22 serrulae; each sermula relatively deep, rounded at apex, and with two or three anterior and two or three posterior subbasal teeth (pl. VI, 71).

Male...Unknown.
Larva-Unknewn.
Holotype.-Female, Hillsboro Co., Fla., 3-24-30, C. L. Rabb, Fiorida Fruit Fiy Trap Survey. U.S.N.M. type No. 70213.

Paratypes.-Florift: Sumter Co., 4-24-30, W. A. Bryant, Florida Fruit Fly Trap Survey (1 q) ; LaBelle, IV-21-21, J. N. Knull (19). Deposited in the U.S. National Museum.

Distribution.-Known only from Florida.
Host.--Unknown.
Biology.-Unknown.
Discussion.- The red pronotum and mesonotum and black hindlegs will separate this species from all other Caliroa species. The lancet is very similar to that of fasciata except for several more anterior subbasal teeth on the serrulae of the lancet of foridana. I have not seen specimens that may indicate intermediate color variations between this and other species and am therefore considering this species distinct.

Caliroa hyalina, new species

Female.-Length, 4.8 mm . Black; front and middle tibiae and tarsi, basal one-third of hindtibia, and basal one-third of hindbasitarsus white. Wings hyaline.

Antenna with third segment subequal in length to segments 4 plus 5; apical four segments together subequal in length to third segment. Clypeus circularly emarginated. Hindwing with cells Rs und M absent; anal cell with very short petiole. Lancet with 16 to 17 serrulae; serrulae far apart, each serrula slender, pointed at apex, with one anterior and two posterior subbasal teeth (pl. V, 64).

Male.-Length. 4.6 mm . In color and structure similar to female. Hindwing with peripheral vein; anal cell with apex removed from
margin of wing (pl. I, 7). Genitalia as in plate IX, 96; harpe only slightly longer than broad.

Larva.-UUnknown.
Holotype.-Female, Salem, Oreg., VII-10-18, on cherry, E. J. Newcomer, collector, Quaintance No. 14085. U.S.N.M. type No. 70214.

Paratypes.-Oregon: Mt. Hood (19 , 古) ; same data as for holotype (1 \%) ; "Oregon," Koebele ($2 \circ \%, 1$ f); Klamath F'alls, June 6,1956 , Joe Schuh, coll. (1 \%). Deposited in the U.S. National Museum and at Oregon State University.

Distribution.-Known only from Oregon.
Host.-Adults were collected from cherry.
Biology,-No information is available.
Discussion.-This species is similar to cerasi, but may be separated by the more hyaline wings, lack of ceils $R s$ and M in the hindwing, the petiolate anal cell of the hindwing, and the widely separated serrulae of the lancet, each serrula with fewer subbasal teeth. The venation of the hindwing and lancet characters will alse separate hyalina from other Caliroa species.

Caliroa labrata MacGillivray

Caliroa labrata MacGilivivay, 1909b, p. 360, δ; Frison, 1927, p. 238; Ross, 1951, p. 29.
Female.-Average length, 4.8 mm . Black; front tibia and tarsus, basal one-half of middle tibia, and basal one-third of hindtibia white. Wings uniformly, Iightly infuscated.
Antenna with third s gment subequal in length to or slightly shorter than segments 4 pius 5 ; apical four segments together longer than segment 3. Clypeus circularly emarginated. Hindwing with anal cell sessile: cells $R s$ and M both present. Lancet with 16 to 17 servulae; each serrula shallow, broad, with large lobate subbasal teeth, usually two large posterior and two large anterior subbasal teeth (pI. V, 69).

Male.-Average length, 4.5 mm . Black with extreme apex of front and middle femora, all of front and middle tibiae and tarsi, and basal one-half of hindtibia white. Hindwing with peripheral vein; apex of anal cell close to margin of wing (pl. I, 6). Genitalia as in plate IX, 97; harpe longer than broad, apex and inner margin rounded.

Larva.-I have seen one small larva, probably an early instar, taken from Salix. The head capsule and thoracic legs are dark brown.

Holotype.-At the Illinois Natural History Survey, a male labeled "Mts. near Claremont, Calif., Baker."

Distribution.-Western North America. Alberta: Jumping Pd. Cr., 20 mi . W. Calgary, July 3, 1962. British Columbia: Remo, June 13, 1960. Califorma: Mit. Shasta, Siskiyou Co., 3561', em. 9 Oct. 1965, 30 Sept. 1965, leaf slug, no cocoon, Salix lemmonii; 8 mi. S. Bieber, Lassen Co., VIII-3-1965. Nevada: Galena Cr., Campground. 7 mi. S.W. Reno, Washoe Co., 6100', 27-VI-1965, 11-

VII-1965, Salix lasiolepis; Douglas Co., east end Kingsbury Grade, 3 mi . S. Genoa, 4800 ', 10-VII-1965, em. 7, 8-VIII-1965, Salix lasiolepis. Orcgon: Corvallis, August 8, 1962.

Host.-Adults have been bred from larvae feeding on Salix spp.

Biology.-No information is avaiiable.
Discussion.--The sessile anal cell and presence of cells $R s$ and M in the hindwing and the large lobate subbasal leeth of the serrulae of the lancet distinguish labrata from other Caliroa species. It is most closely related to obsoleta, but labrata may be separated by the more darkly infuscated wings and the serrulae, which usually have an extra anterior and posterior subbasal lobe. Also, the host of obsoleto is Quercus and that of labrata is Salix. This is the only known North American Caliroa species associated with Salix.

Caliroa liturata MacGillivray

"3S" (in Key), Dyar, 1895b, p. 338.
Caliroa obsoleta Dyar, nee Norton, 1896, p. 237.
Calion liturata MacGillivray, 1909b, p. 349, 9 ; Frison, 1927, p. 238; Ross, 1951, p. 29.
Caliroa lineata MacGillivray, 1909b, p. 350, \&; Frison, 1927, p. 238; Ross, 1951, p. 29. New synonymy.
Galiont loricata MacGillyray, 1909b, p. 351, \&; Frison, 1927, p. 239; Ross, 1951, p. 29. New synonymy.
Caliroa (Eriocampoides) amyydalima Rohwer, 1911c, p. 203, 子, ㅇ; Cushman, 1911, p. 91 ; Ross, 1951, p. 28; Burks, 1967, p. 16. New synonymy.
Female.-Average length, 4.5 mm . Black; front and middle tibiae and tarsi, basal two-thirds of hindtibia, and basal one-haif of hindbasitarsus white. Wings aniformly, lightly infuscated, sometimes slightly darker basally.

Antenna with third segment subequal in length to or only slightiy shorter than segments 4 plus 5 ; apical four serments together subequal in length to third segment. Clypeus circularly emarginated. Hindwing with cells $R s$ and M absent; anal cell with short petiole. Lancet with 17 to 18 servilae; each sermbla low, fattened at apex, and with two anterior and two posterior subbasal teeth, flattened apex sometimes with several teeth. and apical serrulae usually with only one anterior and one posterior subbasal tooth (pl. V, 65).

Male.-Average length, 4.3 mm . Black; front and middle tibiae and tarsi, apical half of each femur, and basal half of hindtibia and hindbasitarsus whitish. Hindwing with peripheral vein; apex of anal cell removed some distance from margin of wing (pl. I, 7). Genitalia as in plate IX, 101 and 102; harpe slightly longer than broad.

Larra.-The larva was described by Dyar (1806) under the name "obsoleta" and by Cushman (1911) under the name "amygclatina." The following may serve to distinguish the larva: (1) Feeds on Promus spp. and (2) the head is pale brown, as opposed to dark brown for cerasi, which also feeds on Prumus.

Holotupes.-MacGillivray's types, all females, are at the Illinois Natural History Surrey and are labeled as follows: C. litwata, "Florida"; C. lineata, "Columbia, Mo., 15 July 1905"; C. loricata,
"Columbia, Mo., 2 Sept. 1905." C. amygdalina Rohwer, a female, is U.S.N.M. type No. 13371, labeled "Hunter No. 1936, II-15, 7-2410, bred peach, Tallulah, La., 7-13-10."

Distribution.-Widespread in eastern North America. Colorado: Boulder, 5500', June 9, 11, 19, 21, 1961, 6000', June 4, 1961. Connecticut: Lyme, VI-19-18; Windsor, VIII-20-1951. Florida; "Florida." Georgia: Austell, VIII-27-10. Illinois: McLean, June 25, 1940; Dubois, May 21, 1917. Louisiana: Baton Rouge, May 1, 1896, Scpt. 9, 1922, bred from peach leaves, adult, Sept. 28 : Tallit lah, $8-22-10,8-12-10$, on peach, August 18, 1909. on peach. Missouri: Columbia, July 15, 1905, Sept. 2, 1905. Montana: "Montana." New York: Tthaca, Jaly 4, 1918; Buffalo, 6-25-10; Keene Valley, on plum (Dyar's "3S"). Rhode Island: Kingston, June 20, 1905. South Carolina: Clemson Co., May 31, 1895. Tennessee: Rhea Co., VI-14-1939, peach orchard. Virginia: Falls Church, June 9, 1921, July 20, 1917; Suffolk, June 11, 1895; Vienna, VI-12-1915, bred from plum.

Hosts.-This species has been bred from peach and plum (Pronus spp.). Dyar (1896) bred it from "Promus serotina" and "P. pemasyleanica."

Biology.-Cushman (1911) reported on the biology of this species. The first adults were found in April in Louisiana and were present until cold weather in the fall, usually after six or seven generations. Oviposition is on the upper side of the leaf close to the midrib or a larger vein. This is opposed to cerasi, which ussally oviposits on the underside of the leaf. The liturata larvae feed for about 3 weeks and drop to the ground to pupate. The totai life cycle takes about 20 to 30 days. Another difference between the two species is that the liturata larvae do not eat the exuvium whereas the cerasi larval do.

Discussion.-Attention was given to this specias in 1910 when it was discovered damaging peach trees in Louisiana. Rohwer (1011c), believing it was a new species, described it as amygdalina; however. MacGillivav (1,909) had described it as liturata 2 years before. The petiolate anal cell and absence of cells $R s$ and M in the hiadwing and short lancet with the servalae shallow and truncate at their apices will separate the females from those of other Calion species. The males are more difficult to identify, but the anal cell of the hindwing does not reach the margin of the wing, the wings are infuscated. and the front and middle femora are partly white. Generally this is a smaller species than most other Caliroa species.

Calivoa lobata MacGillivray

Caliron Dobata MacGillivray, 1909b, p. 355, q; Frison, 1927, p. 239; Ross, 1951, p. 29.

Female.-Average length. 4.8 mm . Black ; extreme apex of each femur, all middle and front tibiae and tarsi, basal three-fourths of hindtibin, and basal three-fourths of hindbasitarsus white.

Wings uniformly, moderately infuscated, sometimes lighter on apical one-third.

Antenna with third segment shorter than segments 4 plus 5 ; apical four segments subecual in length to third segment. Clypeus shallowly, circularly emarginated. Hindwing with cells $R s$ and M both present; anal cell sessile. Lancet with 20 to 21 serrulae; each serrula deep, symmetrical, lobelike, with apex rounded and three or four anterior and three or four posterior subbasal teeth located near ventral margin of lancet (pl. VI, 73).

Male.-Average length, 4.5 mm . Antenna, head, and thorax black. Each leg entirely whitish beyond coxa except apical onethird of hindtibia and hindbasitarsus, which are black. Abdomen dark rufous with central part of each terga and hypandrium black. Hindwing with peripheral vein; apex of anal cell near margin of vein (pl. I, 6). Genitalia as in piate IX, 107.

Larra.-Unknown.
Holotupe.-At the Illinois Natural History Survey, a female, labeled "Oswero, N.Y., July 25, 1895."

Distribution.-Eastern North America. Illinois: "N. Ill."; Muncie, $\mathrm{LX}-16$; Havana, July 28, 1910, Inva: County No. 16. June 19, 1918. Marpland: Plummers Id.., Aug. 12, 1914, IX-13-1958, VIII-5-1914. Michighen: Marquette. New York: I, I.; Oswego July 25, 1895; Ithaca, June 19, 1908. Texas: College Station, April 19. 1932. Yermont: Ruthand, Aur. 1-15, 1916. Virgiuia: Falls Church, July 25, Aug. 13, 16, 22, Sent. 12, 1927, reared, Queveus, Aug. 28, 1912. Quercus relutima, VI!-25-1916, Quevens palnstris, May 20, 1918, TX-11-20, TX-19, 1917.

Host.-Qucreus spp. Adults have been bred from larvae feeding on Quercus polustris Muenchh. and Q. urlutina Lam.

Biology.-No information is available.
Discussion.-The sessile anal cell and presence of cells $R s$ and M of the hindwing and the large lobate serrulae of the lancet wild distinguish the female of the snecies. The males may be separated by the rufous abdomen, which is black in all other known Caliroa males.

Calion lorata Mactillivatay

Calima larato Maçilliveny, 1900b, p. 355, Q: Frison, 1927, p. 230; Ross, 1951, p. 29.
Eriocampoides castaneme Rohwer. 1017, p, 152, Q. New synonymy. Calivor castanear: Ross, 1951, p. 29.

Female.-Average length. 4.8 mm . Biack; front and midde tibiae and tarsi, basal one-half of hindtibia, and basal one-half of hindbasitarsus white. Wings uniformly, lightly, infuscated.

Antenna with third serment slightiy shorter than segments 4 plus 5 ; apical four segments together subequal in length to third segment. Clypeus circularly emarginated. Hindwing with cells R s and M both absent; anal cell with short petiole. Lancet with 19 to 21 servulae; serrulae shollow. not extending far below margin of lancet. each serrula witn anterior margin more or less straight,
with one anterior subbasal tooth, posterior margin oblique, with two or three subbasal teeth (pl. V, 68).

Male.-A Average length, 4.5 mm . Color similar to that of female. Findwing with peripheral vein; apex of anal cell removed short distance from margin of wing (pl. I, 7). Genitalia similar to plate IX, 97 ; harpe at least twice as long as broad.
Larea.-Unknown.
Holotypes.-C. lorata MacGillivray, a female, is at the Illinois Natural History Survey with the data "Mit. Tom, Mass., July 16, '98.' E. castaneae Rohwer, a female, is U.S.N.M. type No. 15486 with the data "11307a Hopk. U.S., reared, Aug. 5, '12, Castanea dentata, Falls Church, Va., Wm. Middleton."

Distribution.-Eastern North America. Alabama: Pyziton, Clay Co. Mainc: Winslow, Kennebec Co., June 30, 1957. Maryland: Plummers Id., 20-VI-1912, 8-26-1960; Glen Echo; 3 mi. S.E. Beltsville, May 30, 1966. Matsachusctts: Mt. Tom, July 16, '98. New York: Ithaca. North Carolima: "N.C." Pemusylvania: Wernersville, VIIT-5-1913; 5 mi. W. Davidsburg, VI-16-1958: Harrisburg, VI-17. Virginin: Falls Church. reared Aug. 5. 1912, Castanea dentata. VI-19-13, Castaneat dentata, July 16. 1913, VIII-14-1913, Casianca pamila: Black Pond. Fairfax Co., June 19, 1919; Glencarlyn. V-26; Barcroft, VI-5-11; Vienna. reared, Aug. 13, 1912, Ctistanea dontata. Wisconsin: Gays Mills, 7-2-1930.

Host.-Adults have been bred from larvae feeding on Castanea spp.

Biology.-No information is available.
Discussion.-The petiolate anal cell and absence of cells $R s$ and M in the hindwing and the low servalae of the lancet will distinguish the females of this species. The males may be separated by the apex of the anal cell of the hindwing, which is removed from the margin of the wing, the infuscated wings, and the black femora.

Caliron lmata MacGillivray

Calivar henata MacGillivray, 1909b, p. 353, o : Frison, 1927, p. 239; Ross, 1951, p. 2.9 .
Caliroa leta MarGillivray, 1909b, p. 361, \& ; Frison, 1927, p. 238; Ross, 1951, p. 29. New synomym.

Female-Average length, 4.5 mm . Black; front and middle tibiae and tarsi, basal one-half of hindtibia, and basal one-half of hindbasitarsus white. Wings lightly infuscated.

Antenna with third segment slightly shorter than segments 4 plus 5 ; apical four segments together subequal in length to third segment. Clypeus circularly emarginated. Hindwing with cells $R s$ and M both absent: anal cell with short petiole. Lancet with 17 to 19 serrulae; serrulae far apart, each long, slender, symmetrical. with apex rounded and two or three anterior and two or three posterior subbasal teeth located near ventral margin of lancet (pl. V, 67).

Male.-Unknown.
Lara.--Unknown.

Holotypes.-MacGillivray's types are at the Illinois Natural History Survey. C. lunata, a female, is labeled "Ithaca, N.Y., 27 May '93," and C. lata, a female, is labeled "Ithaca, N.Y., 22 July '90.'

Distribution.-Eastern North America. Illinois: Shawneetown, June 14, 1934 ; Kampsville, June 10, 1932 ; Vienna, July 10, 1935; Oakdale, 8-3-35; Riverside Woods, Cook Co., 9-3-1949. Michigan: "Mich." Newfoundland: 3 mi. S.E. St. George's, June 27, 1966. New Hampshire: Notchland, Carroll Co., June 12, 1967. New York: Ithaca, May 27, '93, July 22, '90; Babylon, L.I., VII-13-1937; New Balt., 8-11-93. Ohio: Columbus, 05-10-1902. Pennsylvania: Harrisburg, VI-22. Texas: Liberty, III-18-08. Virginia: Rosslyn. West Virginia: Lost River St. Pk., Hardy Co., Aug. 1-14, 1960.

Host.-Unknown.
Biology.-Unknown.
Discussion.-This species may be recognized by the absence of cells $R s$ and M and the petiolate anal cell of the hindwing and the long slender lobelike serrulae of the lancet. The lancet resembles that of lobata and distincta, but in lanata the servulae are more slender and farther apart. Also, there are fewer serrulae in the lancet of lunata than in that of lobata.

Caliroa nyssae, new species

Female.-Length, 4.8 mm . Black; extreme apices of front and middle femora, all front and middle tibiae and tarsi, basal one-half of hindtibia, and basal two-thirds of hindbasitarsus white. Wings hyaline.

Antenna with third segment slightly shorter than segments 4 plus 5 ; apical four segments together subequal in length to third segment. Clypeus circularly emarginated. Hindwing with anal cell sessile; cell $R s$ present, cell M absent. Lancet with 17 to 18 serrulae; each serrula low, broad, anterior and posterior margins smooth, without subbasal teeth, about five or six teeth present on apical rounded part (pl. VI, 72).

Mare.-Length, 4.5 mm . In color and structure similar to female. Hindwing with peripheral vein; apex of anal cell close to margin of wing (pl. I, 6). Genitalia as in plate IX, 105 and 106; harpe slightly longer than broad.

Larva.-Unknown.

Holotype.-Female, Falls Church, Va., reared, Aug. 5, 1912, Nyssa sylvatica, Wm. Middleton, collector, Hopk. U.S. 11308a. U.S.N.M. type No. 70215.

Allotype.-Male, same data as for holotype. Deposited with holotype.

Paratypes.-Georgia: Dalton, Aug. 29, 1909 (1 \%); Atlanta, 8-6-41, P. W. Fattig (1 o). Maryland: Glen Echo, R. M. Fouts (1 ○). Mississipmi: Biloxi, Sept. 29. 1908, black gum, J. Brodei (1 q) : Biloxi, VIII-31, 1908, issued IX-14-1908, on black gum (1 ㅇ). Pennsyluania: Lakemont Park, Blair Co., 8-8-1947 (1 ㅇ). Virginia: Data as for holotype (1 3) ; Great Falls, reared May 26,

1914, Nyssa, Heinrich, colr., Hopk. U.S. 11398e (2 ㅇ ㅇ) ; Kearney, reared, Sept. 9, 1912, Nyssa sp. ?, Wm. Middleton, colr., Hopk. U.S. 11317d (1 of) ; Falls Church, IX-5-17, G. M. Greene (1 \&); Falls Church, July 24, 1920, Wm. Middleton, colx. (1 q). Deposited in the U.S. National Museum and at the Illinois Natural History Survey.
Distribution.-Eastern North America.
Host.-Adults have been reared from larvae feeding on Nyssa sylvatica Marsh.

Biology.-No information is available. Collection dates on specimens indicate this species flies in late summer, usually in August.

Discussion.-The sessile anal cell, presence of cell $R s$ and absence of cell M in the hindwing, hyaline wings, and lancet will separate females of this species. The hindwing venation is unique and is very consistent in this species; however, the lancet should always be checked before final determination. The closeness of the anal cell to the margin of the hindwing, the hyaline wings, the partly white femora, and short broad harpe of the genitalia will distinguish males of this species.

Caliroa obsoleta (Norton)

Selandria obsoleta Norton, 1867, p. 254; Provancher, 1878, p. 100; Provancher, 1883, p. 202; Cresson, 1928, p. 8.
Caliroa obsoleta: Kirby, 1882, p. 182; Provancher, 1888, p. 351 (?); Yuasa, 1922, p. 59; Ross, 1951, p. 29.
Eriocampoides obsoleta: Dalla Torre, 1894, p. 196; Konow, 1905 , p. 74.
Selandria quercus alba Norton, 1867, p. 258, 9 ; Norton, 1872, p. 85; Packard, 1890, p. 205. New synonymy.
Monostegia quercus alba: 'Kirby, 1882, p. 186; Dyar, 1894, p. 43.
Eriocampa quercus alba: Dalla Torre, 1894, p. 132.
Selandria quercus-alba Cresson, 1880, p. 60. Correction of quercus alba Norton.
Calivoa quercus-alba: Yuasa, 1922, p. 59; Ross, 1951, p. 29; Raizenne, 1957, p. 25 (?).

Eriocampoides quercus Konow, 1905, p. 74. Correction of quercus alba Norton.

Female.--Average length, 4.5 mm . Black; extreme apex of each femur, all front and middle tibiae and tarsi, basal two-thirds of hindtibia, and basal two-thirds of hindbasitarsus white. Wings uniformiy hyaline.

Antenna with third segment slightly shorter than segments 4 plus 5; apical four segments together subequal in length to third segment. Clypeus shallowly, circularly emarginated. Hindwing with anal cell sessile; cells $R s$ and M usually both present, but either one or both may be absent. Lancet with 18 to 20 serrulae; each serrula shallow, with large lobelike subbasal teeth, one on anterior margin and two on posterior margin, all distinct and subequal in size (pl. VI, 74).

Male.-Average length, 4.3 mm . Color similar to that of female except for each femur, which is whitish. Hindwing with peripheral
vein; apex of anal cell close to margin of wing (pl. I, 6). Genitalia as in plate IX, 99 ; harpe longer than broad.

Larva--Dyar (1894) described the larva and stated that the head capsule is brownish black. I have not seen the larvae, and Dyar's description does not adequately characterize the larva of this species.

Holotypes.-S. obsoleta Norton, a female, labeled "Mass." is type No. 10717 at the Academy of Natural Sciences of Philadelphia. I could not find the type of quercus alba Norton.

Distribution-Eastern North America. Connecticut: Lyme, reared, VI-6-16, Quercus alba, July 8, 1918; Stamford, Aug. 17, 1931, reared, Aug. 4, 1931, swamp white oak; East River, 8-20-23, 1914, white oak leaf, reared Aug. 12, 1916, white oak; E. Hartford, Aug. 25, 1950; Stafford, VIII-24-1950. Georgia: Athens, 5-23-37. Illinois: Oakwood, June 2, 1927; Perry Springs, Aug. 11, 1948, on white oak; White Pines St. Pk., May 30, 1936; Fox Lake, June 10, 1936; White Pine Forest, Ogle Co., July 4, 1932; Grand Tower, June 2, 1913; Ziegler, Aug. 21, 1933; Herod, June 23, 1927. Iowa: Mt. Pleasant, May 20, 1930. Massachusetts: Southwick, VIII-29191.6; Woods Holl, on white oak (Dyar's "J"). Michigan: Douglas Lake, July, 1914. Minnesota: "Minn." New Jersey: Ateo. New York: Napeague, L.T., VII-2-1954; Bedford. Westchester Co., July 6, 1907 ; Ithaca, Aug. 12, 1918; Ft. Montgomery, Aug. 6, 1923. Ontario: One Sided Lake, June 30, 1960. Virginia: Falls Church, reared, Aug. 28, 1912, Querchs alba, June 27, 1913, reared July 29, 1912, Quercus primus. reared July 29, 1912, Quercus alba, July 31, 1916, Quercus minnr; Glencarlyn, June 5, 1918. Wisconsin: Madison, 8-10-1929; Colona, June 19, 1934.

Host.-Reared from Quercus spp. Apparently most common on white onk (Querchs alba L.) but also reared from Q. stellata Warg. ($=$ Q. minor Sarg.) and Q. primes L. Dyar (1894) reared this species from white oak; the reared adults are labeled "J."

Biology.- The only information on the biology is that by Dyar (180.4). The adults oviposit on the underside of the leaf "near the tip." After feeding. the larvae drop to the ground and "form a cavity in the earth, lined with a brown secretion."

Discussion.-The large distinct subbasal teeth of the lancet and the sessile anal cell of the hindwing will separate this species. Cells Rs and M of the hindwing are normally present, but some specimens, including the type of obsoleta, lack both cells: in other specimens either one or the other cell may be absent. The wings are usually hyaline, but some specimens from more northern localities have lightly infuscated wings. The lancet is close to that of labrata, but there are more subbasal teeth on the serrulae of labrata and its host is Salix.

Norton's type of quercus alba is anparently lost. Its synonymy with obsoleta, however, seems justified, since it was apparently bred from white oak, a common host for this species, and, according to Norton's (1867) original description, the wings of quercus
alba are hyaline and cells $R s$ and M are both present in the hindwing, both of which are usual characters for this species.

Caliroa petiolata, new species
Caliroa lineata of auctt., nec MacGillivray, Burks, 1958, p. 12; Burks, 1967, p. 16.

Female.-Length, 4.5 mm . Black; each front and middle tibia and tarsus, basal two-thirds of hindtibia, and basal two-thirds of hindbasitarsus white. Wings lightly infuscated on basal two-thirds, hyaline on apical ore-third.

Antenna with third segment slightly shorter than segments 4 plus 5; apical four segments together subegual in length to third segment. Clypeus shallowly, circularly emarginated. Hindwing with cells $R s$ and M absent; anal cell with short petiole. Lancet with 15 to 16 serrulae; each serrula shallow, not extending far below ventral margin of lancet, slightly asymmetrical with two or three anterior and four or five postexior subbasal teeth (pl. V, 66).

Male.-Length, 4.3 mm . Color similar to that of female except for each femur, which is whitish. Hindwing with peripheral vein; anal cell with apex removed some distance from margin of wing (pi. I, 7). Genitalia as in plate IX, 100; harpe about as long as broad.

Larva.-Unknown.
Holotype.-Female, Caroline Co., Va., 7-15-1941, larva on Quercus palustris. L. A. Hetrick. U.S.N.M. type No. 70216.

Allotype.-Male. Same data as for holotype. Deposited with holotype.
Paratypes.-Maryland: College Park, Aug. 9, 1919, Quercus palustris, E. N. Cory (3 o o). Pemsylvania: 6 mi. S. E. Meadville, Crawford Co., VII-1-61, on oak, F. B. Negley, collector (2 \& $\%$). Virginia: Same data as for holotype ($20 \%, 1$) ; data as for holotype, $\mathrm{V}-16-1941$ (2 98) ; data as for holotype, V-17-1941 (1 o). Deposited in the U.S. National Museum.

Distribution.-Eastern North America.
Host.-The type series was reared from larvae on Quercus palustris Muenchh.

Biology.-Unknown.
Discussion.-The petiolate anal cell and absence of cells Rs and M of the hindwing. short lancet, and shallow serrulae of the lancet will separate the females of this species. The anal cell with the apex removed from the margin of the hindwing, white femora, and genitalia will separate the males.

Caliroa quercuscoccineae (Dyar)

Monostegia quercus-coccineae Dyar, 1894, p. 42, ㅇ, Iarva; Dyar, 1895b, p. 338; Taylor, 1931, p. 459.
Caliroa quercus-coccmeac: MacGillivray, 1909b, p. 359; MacGilivray, 1916, p. 80; Yuasa, 1922, p. 59 ; Ross, 1951, p. 29.

Female.-Average length, 4.7 mm . Black; extreme apex of each femur, all front and middle tibiae and tarsi, basal two-thirds of hindtibia, and basal two-thirds of hindbasitarsus white. Wings with basal two-thirds moderately infuscated, apical one-third hyaline.

Antenna with third segment shorter than segments 4 plus 5 ; apical four segments together subequal in length to third segment. Clypeus shallowly, circularly emarginated. Hindwing with cells $R s$ and M present; anal cell sessile. Lancet with 17 to 18 serrulae; each sercula moderately deep, rounded at apex, nearly symmetrical, and with three or four anterior and three or four posterior subbasal teeth (pl. VII, 76).

Male.-Average length, 4.5 mm . Color similar to that of female. Hindwing with peripheral vein; anal cell with apex close to margin of wing (pl. I, 6). Genitalia similar to plate IX, 103 and 104; harpe longer than broad, narrowing toward apcx.

Larca.-Dyar (1894) described the larva and stated that the head capsule is "orange-yellowish." The characters given by Dyar do not permit an adequate characterization of this species.

Holotype.-Female, U.S.N.M. type No. 4127, labeled "T" and "Collection, H. G. Dyar." Dyar's "T" is from Woods Holl, Mass.
Distribution.-Eastern North America. Compecticut: Lyme, 7-8-18; Stonington, VII-5-32, Quercus velutina. Delaware: "Delaware," Sept. 23, 1960, on oak. District of Columbia: Sept. 10, 1913, coll. on pin oak. Illinois: Urbana, June 20, 1932; Carbondale, July 22, 1909. Louisiana: Shreveport, III-27-07. Maine: Augusta, VII-21-1944. Maryland: Glen Echo, 4-97. Michigan: "Mich." Minnesota: Northfield. VII-3-17. Missowi: Warrenton, VII-8-1963. New Hampshire: Hanover. New Jersey: Westfield, July 15, 1956. North Carolina: Durham, Oct. 8, 1942, Quercus palustris. Pennsylvamia: North East, VI-18-16; Inglenook, VI-27-09. Virginia: Falls Church, reared VII-29-16, Quercus alba, reared, Aug. 26, 1912, Quercus relutina. Wisconsin: Trout Lake, July 21-23, 1937 ; Minong, Kimball Lake, Aug. 25, 1945.

Host.-Quercus spp. Dyar (1894) reared the type series from "Quercus coccinea." Other specimens examined have been reared from larvae on Quercus relutina Lam., Q. palustris Muenchh., and Q. alba L .

Biology.-The only information on the biology is that by Dyar (1894). The eggs are inserted parallel to the midrib of the leaf. The larvae feed gregariously, and. after maturing. drop to the ground and "form little elliptical celts in the ground for pupation."

Discussion.-The sessile anal cell and presence of cells $R s$ and M in the hindwing the partially infuscated wings, and rounded serrulae of the lancet will serve to distinguish this species. It is closest to fasciata but may be separated by the fewer servulae of the lancet: fasciata has more than 20. quercuscoccineae has less than 20 . There are apparentity no distincuishing characters between the males of the two species. If the distinguishing characters between fasciata and quercuscoccincae are found to be variable, it may be necessary to synonymize the two species.

Tribe HETERARTHRINI

The single genus in the tribe Heterarthrini may be separated by the complete vein $2 A$ and $3 A$ of the forewing, the $10-$ or 11segmented antenna, and the bifid tarsal claw with an acute basal lobe. The larvae are dorsoventrally flattened, typical of the leafmining larvae of the Fenusini, and may be separated in the key to larvae. Only one species is in North America, introduced from Europe.

Genus HETERARTHRUS Stephens

Phyllotoma Fallén, 1829, p. 25; Gameron. 1882, p. 282; Dalla Torre, 1394, p. 197; Ashmead, 1898, p. 255; Konow, 1905, p. 72; Enslin, 1914, p. 257; Forsius, 1930, p. 103; Ross, 1937, p. 70; Weber, 1939, p. 541 ; Berland, 1947, p. 273. Preoccupied.
Type-species: Phyllotoma vagans Fallén. Designated by Rohwer, 1911b.
Heterarfhrus Stephens, 1835, p. 94; Westwood, 1840, p. 54; Dalla Torre, 1894, p. 197 (二Phpllotoma Failén); Ross, 1951, p. 29; Benson, 1952, p. 77; Malaise, 1961, p. 236.
Type-species: Decatria fuscipennis Stephens ($=$ Tenthredo (Emphytus) ochropotia Klug). Original desipnation.
Heterarthus Cameron, 1882, p. 282. Emendation for Heterarthrus Stephens.
Decatria Stephens, 1835, p. 94; Dalla Torre, 1894, p. 197 (=Phyllotoma Fallén).
Type-species: Decatria fuscipennis Stephens. Monotypic and original designation.
Druida E. Newman, 1838, p. 484; Dalla Torre, 1894, p. 197 (=Phyllotoma Fallén).
Type-species: Druida parwiceps E. Newman. Monotypic.
Phlebatrophia MacGillivray, 1909b, p. 345; Forsius, 1930, p. 103 (=Phyllotoma Fallén).
Type-species: Phebatrophia mathewsoni MacGillivray. Monotypic and original desiznation.

Description.-Antenna 10 - to 12 -segmented (pl. III, 31). Head flattened, markedly depressed between eyes from dorsal view (pl. III, 30). Malar space twice width of diameter of front ocelius; clypeus truncate; postgenal carina absent. Tarsal claw with two long subequal outer teeth and large acute basal lobe (pl. III, 23). Prepectus absent. Forewing with vein $2 A$ and $3 A$ complete for entire length, connected to $1 A$ by obiique crossvein. Hindwing with radial cell open; cells Rs and M absent; anal cell present (pl. I, 8, 9).
This very distinct genus is separated from other Heterarthrinae genera by the antenna, head, wing venation, and tarsal claw. Benson (1952) placed this genus in a subfamily by itself, the Heterarthrinae, and placed the other taxa treated in this bulletin in the subfamily Blennocampinae. About 10 species are in this genus. Only one species is found in North America, an introduced form that is destructive to Betula spp. in northeastern United States and eastern Canada. The larva is known for this species and is treated under the species description.

Description of Weterarthras Species

Heterarthrus nemoratus (Failén)

Hylotoma nemorata Fallén, 1808, p. 47.
Phillotome remorila: Thomson, 1870, p. 268; Thomson, 1871, p. 176; André, 1880, p. 235; Cameron, 1882, p. 284; Brischke and Zaddach, 1883, p. 254; Konuw, 1890, p. 248; Dalla Torre, 1894, p. 198; Konow, 1405, p. 72; Enshin, 1914, p. 258; Rohwer, 1929, p. 63; Taylor, 1929, p. 323; DovnarZapolsky, 1929, p. 39; Pierson, 1399, p. 588; Pierson, Taylor, and Wilkins, 1930, p. 1; Taslor, 1931, p. 452 : Glaskow, 1932, p. 693; Conde, 1934, p. 181; Twimn, 1934, p. 76; Pierson and Brower, 1936, p. 37; Goebeil, 1937, p. 1: Hering, 1937. p. 73; Baleh, 1930, p. 36; Benson, 1940, p. 213; Buhr, 1941, p. 910; Wahgren, 1944, p. 139; Reeks and Smith, 1945, p. 10; Berland, 1047 , p. 27.4
Heterarthrts momorohus: Ross, 1951, p. 30; Benson, 1952, p. 77; Maxwell, 1955, p. 56; Raizenne, 1957, p. 25; Lorenz and Kraus, 1957 , p. 146; Lindquist, 19564, p. ti26; Benson, 1062, p. 389; Burks, 1967, p. 16.
Phylhtoma nemorchis Fallén, 1829, p. 3̄̄; Dalla Torre, 1894, p. 198 ($=$ uemorata Ealén).
Phebatrophict methensomi MacGillivray, 1909b, p. 345, 9 ; Yuasa, 1922, p. 60 ; Frison, 1 1927, p. 256; Rohwer, 1929, p. 63 ($=$ nemorate Fallen).
Female.-Average length, 4.5 mm . Antemna black; head black with clypeus, mouth parts, imner orbits, malar space, supraclypeal area. and spot above each antema yellow. Thoras black with posterior half of pronotum and tegula yellow. Legs white with each coxa and basal half of each temur black. Abdomen black with yellow spots on hateral apical margin of each terga. Wings hyaline, infuscate band below stigma, lighter on hindwing; costa of forewing yellow, stigma black.

Antenna with 10 or 11 segments (pl. III, 31). From above, head markediy depressed between eyes (pl. III. 30). Sheath straight above, rounded below, with narow scopa at apex (pl. IV, 43, 44).

Male.-. Cnknown. barthenogenetic.
Lara.-Tinal feeding stare (bl. XII, 142-147). Length, 8.0 mm . Dorsoventrally fattened. White with head capsule pronotal plate, prosternal plate. smail central areas of mesosternum and metastermum, and ring around anal proleg dark brown.

Ilead dorsoventrally flattened, prognathous. Antenna conical, four-segmented. Labrum slightly wider than long, truncate; epipharnyx with about 12 long spines on each half; maxillary palpus four-segmented, first and second segments each with one seta; galea long. digitate: lacinia with two long bifurcate spines and numerous smaller spines below these; right mandible with dorsal and ventral cutting edges: left mandible similar to right mandible but dorsal edge divided into three blunt teeth: one seta on basal angle of each mandible; labial palpus three-segmented, mentum with numerous small spines.

Pronotal plate present; prosternal plate present, cut into large circular areas around cach prothoracic leg: small dark plates at center of mesosternum and metasternum. Thoracic legs indistinctly three-segmented; tarsal claw minute. appearing absent. Prothoracic spiracle not winged.

Prolegs on abdominal segments 2 to 8 and 10 ; anal proleg surrounded by sclerotized plate. Segments each two-amulate.

Holotupes.-MacGidivray's type is at the Minois Natural History Survey, a female, labeled "New Glasgow, Nova Scotia." Fallen's types are probably in the Zoological Museum, Lund, Sweden.

Distribution-Northeastern United States and southeastern Canada; Europe. The following records are from specimens examined : Maine: Bar Harbor: Aurora; Bethel; Philips; Mt. Desert Is. Massachusetts: Amherst. New Brunswick: Fredericton. Newfoundland: Grand Falis. New Hampshire: Mt. Washington; Shelburne; Gorham. Nou Fork: Keene; Mt. Marcy summit. Nora Scotim: New Clasgow; Truro. Quebec: Gaspe; Cascapedia R.; Lake St. John. Raizeme (105r) recorded this species from the following localities in southern Ontario: Bruce, Kent, Leeds, Simeoe, Victoria. Welland and York.

Host-- heaf miner of Betula spp. Glasgow (198.2) stated that the preferred hosts are white and gray birch, although yellow and black birch are altacked to some extent.
Biologl,-Pierson, Taytor, and Wikins (1930) studied this species in Maine. The adults appear in May or June, later at higher elevations, and the female oviposits in the leaf margin. The feeding period lasts about a month, during which the larvae mine throughout the leaf. The mined areas first appear as small brown patches on the edge of the leaf, and hater these patches increase in size and merge logether. On maturing, the larrae remain in the leaf to overwinter and pupate. There is one generation a year. Of the four birch leaf-mining sawfies, both nemoratus and Messa nana oviposit on the leaf margins; Fennsa masilla and Profenusa thomsomi oxiposit on the surface of the leaf. However, nama goes into the soil to overwinter and nupate. whereas nomorotus remains in the leat. Pierson (1929), Clasgow (19.32), Pierson and Brower (1936), and Goebeil (1.937) have all published notes on the biology of this species.

Discussion.-This species is easily recognized by the antenna, head, and wing venation. The larvae may be separated from other birch leaf-mining sawfy species by the presence of prolegs and the presence of a sclerotized ring only around the anal proleg.

The first record for momoratus in North America was from Pictou, Nora Scotia. in 1908. By 1927 this species had reached epidemie proportions in eastern Mraine. and by 1928 it was found throughout Maine to New Fampshire and Massachusetts. Glasgow (19.3?) first reported it from New York. Recently the populations have been at a very low ebb.

Tribe FENUSINI

The larvae of all species of the tribe Fenusini are leaf miners. The adults may be distinguished by their small size and petiolate
anal cell of the forewing. The larvae are small and dorsoventrally flattened, with a varying number of sclerotized plates on the body.

Genus METALLUS Forbes

Metallus Forbes, 1885. p. 87; Dalla Torre, 1894, p. 156 (= Fcmusa Leach); MacGilivray, 1909a, p. 265; MacGillivray, 1916, p. 159; Benson, 1936, p. 622: Ross, 1937, p. 71; Conde, 1937, p. 108; Benson, 1940, p. 212; Benson, 1941 p. 86 ; Berland, 1047, p. 261; Ross, 1951, p. 30 ; Benson, 1952, p. 106; Takeuchi, 1952, p. 59; Lorens and Kraus, 1057, p. 133; Smith, 1967, p. 280.
Type-species: Metallus rubi Forbes. Monotypic.
Entodecta Konow, 1886b, p. 184: Dalla Torre, 1894, p. 16G; Ashmead, 1898, p. 253; Konow, 1904, p. 4; Konow, 1005, p. 85; Hellén, 1935, p. 22; Benson, 1936, p. is2 ($=$ Mefallus Forbes) ; Ross, 1937, p. 71; Ross, 1951, p. 30 (- Metallus Forbes).
Type-specics: fenthredo (Allanus) pumila Klug. Designated by MacGilivray, 1009:
Polybates MacGillivay, 1909a, p. 264; MacGillivmy, 1016, p. 158: Ross, 1937, p. 71 ($=$ Entothela Konow) ; Ross, 1951, p. 30 ($=$ Mctalhes Forbes).

Type-species: l'olybates slossonae MaeGillivray. Monotypic.
Description.-Antema with second segment broader than long; third segment slightly longer than or subequal in length to fourth segment; in males third and fourth antennal segments widened and laterally flattened, segments beyond fourth less distinctly thattened (pl. ITT, 38, 39). Postgenal carina absent; malar space linear; clypeus trumeate. Prepectus absent. Tarsal claw with long outer tooth and large acute basal lobe (pl. III, 22). Forewing with vein $2 A$ and $3 A$ straight at apex. Hindwing with cell R_{1} closed; anal cell present: cells R s and M absent (pl. II, 10, 11).

The brad second antemmal segment and the flattened antenna of the male will separate this genus from Messa, its closest relative. Also, the serrulae of the female lancet are long and lobelike in species of Mictalhos and flattened in species of Messa, and the penis valve of the male genitalia of Mctallus lacks a long apical filament, which is found in males of Messa species.

About eight described speries are in this genus, three of which are found in North America. Two of the North American species are associated with Rubus.

Iarvae are known for two species of Metallus. They may be separated from those of all other genera of Fenusini by the presence of prolegs on abdominal segments 2 to 7 and 10 . Other genera have no prolegs or they are present on segments 2 to 8 and sometimes 10.

Keys io Metallus Species

ADULTS

1. All tibiae black; mesonotum sometimes party rufous; antenna of male laterally fattened
rohveri MacGillivray
Legs entirely yellowish; thorax always black; mate unknown
2. Serrulae of lancet long, pointed at apex, with single anterior subbasal tooth near ventral margin of lancet (pl. VIII, 87) Eensoni, n. sp. Serrulae short r, rounded at apex, with one anterior and one posterior subbasal tooth near ventral margin of lancet (pl, VIIf, 88)
capitalis (Norton)

LARVAE

1. Mesosternum and metasternum with dark plates; lacinia with three or four spines (pl. XIII, 154, 159)
rohweri MacGillivray
Mesosternum with small dark plate on anterior margin; metasternum without plate; lacinia with three spines
capitalis (Norton)

Descriptions of Metalus Species

Metallus bensoni, new species

Female.-Length, 4.5 mm . Black with all legs entirely yellowish. Wings uniformly, moderately infuscated.

Second segment of antenna broader than long; third segment slightly longer than fourth segment (p i. III, 38). Clypeus truncate; malar space less than diameter of front ocellus. Tarsal claw with one outer tooth and large acute basal lobe (pl. III, 22). Forewing with vein 2.4 and $3 A$ straight at apex. Hindwing with radial cell closed; cells $R s$ and M absent; anal cell present. Sheath straight above, rounded below, scopa absent (pl. IV, 46). Serrulae of lancet long, each pointed at apex with one anterior subbasal tooth near ventral margin of lancet and no posterior subbasal teeth (pl. VIII, 87).

Male.-Unknown.
Larea.-Unknown.
Holotype.-Female, New York, Albany Co., nr. Rensselaerville, Huyck Preserve, 23 June 1967, Malaise trap 1, R. and J. Matthews. Deposited in the Museum of Comparative Zoology, Harvard University.

Daratypes.-British Columbia: Grouse Mt., July 20, 1936, H. H. Ross ($1 \circ$). New York: Same data as for holotype, 9 June 1967 (1 o), 21 June 1967 (1) , 1 July 1967 (1 و), 9 July 1967, Malaise trap 4 (1 o), 13 July 1967 (1 q) , 17 July 1967 (19), 23 July 1967 (1 \%), 8-12 August 1967 (1 o), 9 August 1967 (1 q), 14 August 1967 (2 9 o), 14 August 1967, Malaise trap 4 (19), 17 August 1967 (19), 17 August 1967, Malaise trap 2 (1 o), 18 August 1967 (299), 19 August 1967 (1 우), 20-23 August 1967 (2 \% \%), 5-7 September 1967, Malaise trap 2 (1 o). Deposited in the Museum of Comparative Zoology, Harvard University, U.S. National Museum, and at the Illinois Natural History Survey.

Distribulion.-Known only from British Columbia and New York.

Host.-Unknown.
Bioiogy.-The dates of capture extend throughout the summer. There may be several generations a year.

Discussion.-This species is similar to capitalis in coloration, but bonsont is slightly larger, the wings are slightly darker, and the serrulae of the lancet are longer, pointed at their apices, and
each has only one anterior subbasal tooth. The entirely yellowish legs will separate bensoni from rohweri. The British Columbia specimen is identical to those from New York.

Metallus capitalis (Norton)

Selaulria capitalis Norton, 1867, p. 247, $\%$; Cresson, 1928 , p. 4.
Blemuonampa capilalis: Cresson, 1880, р. 58; Dalla Torre, 1894, p. 170; Koyow, 1905, p. 84.
Scolioneura capitalis: Marlatt, 1895, p. 234.
Metallus capitalis: MacGillivray, 1909a, p. 266; MacGillivray, 1916, p. 159; Ross, 1951, p. 30; Smith, 1967, n. 280.
Eutodecta capilalis: Ross, 1937, p. 71.
Entodecta humilis Konow, 1008, p. 84, 8; Ross, 1937, p. 71 (= capitalis Norton). Synonymy not certain.
Polybates slossonte iLacGillivray, 1909a, p. 265, q; MacGillivay, 1016, p. 158; Frison, 1987, p. 25̄(i; Ross, 1437, p. 71 ($=$ capitalis Norton).
Polybutes secundus Rohwer. 1910, p. 202, of MacGillivray, 1916, p. 159; Ross, 1937, p. 71 ($=$ capitalis Norton).
Female.-Average length, 4.0 mm . Black with all legs entirely yellowish. Wings uniformly, lightly infuscate.

Antenna slender, third segment slightly longer than fourth segment (pl. III, 38). Sheath straight above, rounded below, scopa absent (pl. IV, 46). Serrulae of lancet each lobelike, rounded at apex, with one anterior and one posterior subbasal tooth, each located near ventral margin of lancet (pl. VIII, 88).

Male.-Unknown.
Larca.-Very similar to that of rohueri with the following differences: Small plate on anterior margin of mesosternum; metasternum without plate; lacinia with three spines; palpifer with two setae; mandibles slightly different, as in plate XIII, 162 and 163. Described from larvae taken from raspberry leaves, Friday Harbor, Washington, Sept. 17, 1956.

Holotypes.-S. capitalis Norton, a female labeled "N.Y." is type No. 10338 at the Academy of Natural Sciences of Philadelphia. P. slossonaf, a female labeled "Franconia, N.H.," is at the Mlinois Natural History Survey. P. secmadus Rohwer, a female labeled "Red Head, St. John, N.B., Sept. 1, '07, A. G. Leavitt, collector," is U.S.N.M. type No. 12926. Konow's type is probably at the Deutsches Fntomologisches Institut. Eberswalde, Germany.
Distribution.-Probably transcontinental across northern United States and southern Canada. British Columbia: Vancouver, 19-VIII-32. Illinois: Mineral Springs, VIII-28-16. Maine: Mt. Katahdin, Camp Kennedy, 3000^{\prime}, Aug. 1902; Mt. Katahdin, 8-31-23; Bar Harbor, emgd. V-43, miner ex raspbery. New Brunswick: Red Head, St. John. Sept. 1, 1907. Nercfowidland: 20 mi . N.E. Deer Lake. June 28, 1966. Neu Hampshire: Franconia; Hampton. New York: Brooklyn; Niagara Falls, 9-4-11. Oregon: Astoria, 25-5; Astoria, May 4, 1962, raspberry: Spring Cr... Baker, 11-VIII-1952. Quebec: St. Hillaire; Ile Jesus, 4 mi . N. Montreal, Aug. 19, 1956.

Host.-Adults have been reared from larvae mining in the leaves of raspberry (Rubus sp.).

Biology.-Collection dates of adults range from May to Septem-
ber, most of them in August, indicating that there may be more than one generation a year. There is no literature on the life history of this species.

Discussion.-This is a small species that may be separated from bensoni by the lower and more rounded serrulae of the lancet and the presence of a posterior subbasal tooth on each sexruia. The yellowish tiviae will separate capitalis from rohweri.

Metallus rohweri MacGillivray

Metallus mbi Forbes, 1885, p. 87, A; MacGillivray, 1903a, p. 268; MacGillivary, 1916, p. 160; Yuasa, 1922, p. 09; Frison, 1027, p. 210; Rohwer, 1027, p. 67; Daniel, 1928, p. 5 ; Ross, 1037, p. 72. Procecupied.
Fenuse rubi: Cresson, 1887, p. 160; Dalla Torre, 1894, p. 157; Dyar, 1898, p. 137; Konew, 1005, p. 90.

Mctallus rohueri MacGillivray, 1909a, p. 267, ¢; MacGilivaray, 1916, p. 159; Frison, 1927, p. 252; Ross, 1937, p. 72 ($=$ rubi Forbes); Ross, 1951, p. 30 ; Smith, 1967, p. 280.
Metalhus bethunei MacGillinay, 1914, p. 366. A, 9 ; MacGilivray, 1916, p. 160; Caesar, 1921, p. 33; Yuasa, 1922, p. 90 (?); Frison, 1927, p. 251; Rohwer, 1927, p. 67 ($=$ rubi Forbes); Daniel, 1928, p. 5 ($=$ rubi Forbes).
Scolioneura capitalis of auctt., nee Norton, Houghton, 1308, p. 212; Houghton, 1910, p. 10.

Female.-Average length, 5.2 mm . Black with labrum, each trochanter, tibia, and tarsus white; thorax sometimes rufous with metapleuron and pectus black, or with intermediates between this and those with thorax all black. Wings darkly infuscated, usually darker on basal one-half.

Antema stout. third segment subequal in length to fourth segment (pl. III. 38). Sheath short, straight above, rounded below, subtruncate at apex; scopa absent (pl. IV, 45). Serrulae of lancet shallow, broad, rounded at apex, each with three or four small anterior subbasal teeth and no posterior subbasal teeth (pl. VIII, 89).

Male.-Average length, 5.0 mm . Color similar to black specimens of females. never with rufous thorax. Antenna thickened, laterally fattened, especially noticeable on segments ? to 5 (pI. III, 39). Genitalia as in plate $\mathrm{X}, 108$ and 109 ; penis valve long and slender, with long apical spine.

Larva-Final feeding stage (pl. XIII, 154-161). Length, 9.0 mm . Body cylindrical, slightly dorsoventrally flattened. White; head capsule, plates on venter and dorsum of thorax, and crescentshaped marks about each proleg brownish.

Fead dersoventrally flattened, prognathous, diamond shaped from abore. Antema one-segmented. Labrum slightly emarginated; epipharyns with row of about eight to 10 long spines on each half ; right mandible with one ventral tooth and three rounded dorsal teeth; left mandible with one rounded ventral tooth one large rounded dorsal tooth, and one blunt inner tooth; maxiliary palpus four-sermented. one seta on second segment; palpifer with one seta; galea long, digitate; lacinia short, inconspicuous, with three or four stout spines; labial palpus small, two-segmented.

Pronotum, mesonotum, and metanotum each with lightly sclero-
tized plate, pronotal plate largest. Prosternum with dark plate covering nearly entire sternum; mesostermum and metasternum with smaller central plates. Prothoracic spiracle winged. Thoracic legs tive-segmented; tarsal claw present.

Abdommal segments 2 to 9 each with two annulets; pleural lobes present. Prolegs on abdominal segment 2 to 7 and 10 dark crescentshaped phate present about anterior margin of each proleg, those about anal prolegs largest. Abdominal spiracles not winged.

Holotypes.-At the Illinois Natural Tistory Survey, a specimen is labeled as holotrpe of M. ruhi Forbes. It is a male and is without data. Frison (1, 1, 2) stated that there is a lectotype male with the data "Normal, Illinois, reared lron mines in leaves of raspberries, Angust 12, :8s.!" Machillioray's types are at the Iminois Natural Tistory Survey: M. rohurri, a female, is labeled "Block Tsland, R.I., Ang. 28, 1891," and M. hrithmei, a female, is labeled "Jordan Tarlor, July 5, 1910."

Dishibulion,-WEastern North America. Connecticut: Lyme, Aug. 27. 1918, 5-1-18, 7-8-18, 7-11-18: Pranford, 2-YX-51;
 logrical Sta., Mighands Co., 2-6-66, bloteh miner, blackberry. Mlinob: '"N. Ill." Mainc: Mt. Desert. emgel. 5-VI-1953, ex blackberry; Augusta, YTII-21-t3, about dewberry. Morylor, Cabin
 1911; Marshall Hall; Bowie, V-30-44: Glen Fcho. Masachunetts: Joston, Armold Arboretum, July 25, 1921: Sherborn, Nantucket Tsland. Michithm: Stevensville, Berrien Co., V-29-38. Missomi: "(". Mo." Su" Mrsoy: Someville, 1921. New York: Cold Spuing Firbor, VIII-9-20; Gardiner's Tsland: Fredonia; Greenport, L.I., Sept. 6. 1951: Ithaca. Aug. 5. 1898. North Carolina: Chadbourn, Apr. 16, 1070, collected on dewberry. Ohio: Put-in-Bay. Ontario: St. Kits, YITT-12-1911; Jordan Harbor; Vineland, Aug. 14, 1952 : Toronto, 7-10-09. Prmonhlrania: Harrisburg, Hetzels Swamp, July 9. 1910; Encola, T[-7-08; Colmanville, iss. 14 Aug. '05. leaf miner in blackberv: Prescue Is., 7-17-1947. Rhode Island: Plock Tsland. I'irdimia: Fall: Church, VT-17-17, June 9, 1921. June 25, 1021: Whicle. Aug. 28, 1948; Easter Field Station. Aug. 29, 1918. J「ismonsin: Trout Lake, Aug. 1911; Baraboo, 8-10-10.

Host.-Teaf miner of blackberry (Rubus spp.). Daniel (192s) stated that they may attack dewbery close to blackbery patches.

Biology.--Danicl (1029) gave the life history of this species from his studies in New York. Two generations a year occur, adults of the first generation apporring in June and those of the scond greneration in August. The eggs are inserted into the leaf from the upper side, usually on the surface near the midrib or a prominent vein. The egg and larval stages combined last about 6 weeks, after which the mature larva drops to the ground to pupate or ovelwinter in the soil. Foughton (1908, 1910) also published notes on the life history of this species in Delaware under the name "Scolioncrora capitalis."

Discussion.-This specjes mav be separated from the other two species of Mctallus by the black femora, lower and broader serrulae
of the lancet, and, when present, the red thorax. Also, rohweri is a laxger species and the wings are more darkly infuscated than in bensoni and capitalis.

Genus MESSA Leach

Messa Leach, 1817, p. 126; Westwood, 1840, p. 54; Dalla Torre, 1894, p. 156 ($=$ Fenusa Leach); Enslin, 1914, p. 307: MacGilivray, 1914, p. 365 ; Benson, 1936, p. 625; Benson, 1941, p. 86; Ross, 1951, p. 30; Benson, 1952, p. 107; Takeuchi, 1052, p. 50; Lorenz and Kraus, 1957, p. 136; Malaise, 1904, p. 33; Smith. 1907, p. 280.
Type-species: Tenthedo hortuhana Klug. Monotypic.
Ferusella Enslin, 1914, p. 270; Benson, 1936, p. 625; Stritt, 1936, p. 56; Benson, 1941, p. 80 ($=$ Messa Leach); Berland, 1947, p. 265; Malaise, 1964, p. 33.

Type-species: Fenusa whestueii Konow. Monotypic and original designation.
Melanobates MacGilliviny, 1916, p. 158; Benson, 1936, p. 622 ($=$ Fenusella Enslin) ; Ross, 1937, p. 71 (= Scolioneura Konow); Ross, 1951, p. 30 ($=$ Messa Leach).
Type-species: Rartbates leucostomas Rohwer. Monotypic.
Description.-Antemna nine- or 10 -segmented; second segment longer than broad; third segment longer than fourth segment; antenna of males not widened or laterally flattened (pl. III, 35, 36). Postgenal carina absent; clypeus truncate; matar space linear. T'arsal claw with long outer tooth and large acate basal lobe (pl. III, 22). Forewing with vein $2 A$ and $3 A$ curved up at apex. Hindwing with cell $R_{\text {, }}$ closed; anal cell present; cells $R s$ and M absent (p. II, 12, 13).

This genus is separated from Metallus by the long second antennal segment and by the third antennal serment, which is always longer than the fourth segment. The antennae of males of Messa species are not enlarged as are those of Metallus species. Also, the genitalia of Messa species are relatively uniform, having serrulae of the female lancet flat and a long apical filament on the penis valve of the male genitalia. The color pattern of the species of this genus appears constant within the species.

About seven or eight species are in this genus, five of which are found in North America. All are leaf miners in the larval stage and are associated with Betula, Pomulus, and Salix.

The larvae are not well enough known to permit a key for their separation. I have seen some specimens from Popmlus, but they have not been associated. The only larva I have described and specimens of which I have examined is that of nana. The larvae of Messa may be separated from those of other genera of Femusini by the following combination of characters: Abdominal prolegs present on segments 2 to 8 and 10 ; a dark crescent-shaped plate anterior to each proleg; mesosternum. metasternum, and sternum of first abdominal segment each with a dark plate. The larvae are typical of most leaf miners and are dorsoventrally flattened with the head prognathous.

Key to Messa Species

1. Frons with distinct circular ridge; mesonotum without fine surface sculpture; segment 8 of antenma more than twice as long as broad; forewing with infuscate band below stigma; male unknown; leaf miner of Betula
nona (Klug)
Frons without ridge; mesonotum with fine surface sculpture on front and hateral lobes; serment 8 of antenna less than two times longer than broad; forewing uniformly subhyaline
2. Mesopleuron pale yellowish or orange

Mesoplearon black

3. Head, pectus, and venter of abdomen mostly yellowish orange; male with coloration similar to that of female; leaf miner of Pophins populifoliella (Townsend)
Head, pectus, and abdomen black; elypeus yellowish; male unknown; leat miner of lopuhes
horthicha (Klug)
4. Flypers and pronotum white; male and female similar; leaf miner of Popnhas
lencostoma (Rohwer)
Clypers and pronotum black; male and female similar; leaf miner of Salix

Descriptions of Messa Species

Messa hortulana (Klug)

Tenthredo (Enphiftus) hortulanu Klug, 1814, p. 276, 9 ; Kriechbaumer, 1884, p. 208.
Messif hortultura: Leach, 1817, p. 126; Stephens, 1835, p. 40; Westwood, 1810, 13. 54; Enslin, 1914, p. 308 ; Koornneff, 1925, p. Bfi0; Dovanr-Zapolsky, 1929, p. 38; Iterink, 1934, p. 67; Stritt, 1935, p. 187; Renson, 1941, p. 80; Benson, 1943, D. 10; Jones, 1945, p. 218; Benson, 1952, p. 108; Lorenz and Kraus, 1957, p. 137; Malaise, 1904, p. 33; Benson, 1908, p. 150.

Emphytus hortalaus: Hartig, 1837, p. 258.
Phemusa hortulana: Antrí, 1880, p. 231.
Fentest horfulana: Fleteher, 1881, p. 127: Cameron, 1882, p. 296; Konow, 1885, p. 297; Konow 1886ib, p. 270; Konew, 1890, p. 249; Dalla Torre, 1804, p. 257 ; Konow, 1905, p. 90.
Fentselluthortulana: Brnson, 1936, p. 625; Buhr, 1941, p. 015 ; Stritt, 1944 , p. 25 ; Berland, 1947 , p. 267 .

Female.-Average length, 4.0 mm . Antenna black above, lighter on ventral surface; head black with clypeus, basal half of each mandible, and rest of mouth parts whitish. Thorax black with tegula and pronotum white, spot on lateral margins of prescutum and all of mesopleuron yellowish orange. Legs entirely yellowish orange with each trochanter, base of each cosa, and each tarsus infuscated. Abdomen black with white band on posterior margin of each segment. Wings hyaline.

Antenna 10 -segmented, if nine-segmented then ninth segment at least $11 / 2$ times length of eighth segment (pl. III, 35). Frons without ridge. Front and lateral lobes of mesonotum with fine surface sculpture. Sheath short, straight above, rounded below, with marrow scopa at apex (pl. IV, 51, 52). Lancet with each serrula low and flattened, with one anterior and four or five posterior subbasal teeth as in plate VII, 80.

Male.-Unknown in North America. The males are very rare in Europe (Benson, 1952).

Larva.-Unknown.

Holotype.--Probably in the Zoological Museum of Berlin.
Distribution.-In North America known only from Massachusetts; Europe. Massachusetts: Malden, lombardy poplar, Gip. Moth Lab. 12164J18, bred specimens, 5-2-24 (6 \% q), 5-3-24 (1 \%), 5-10-24 (2 와); Wellesley (1 오).

Host.-Adults were bred from larvae on lombardy poplar (Populus nigra var. italica Muenchh.) in Massachusetts. Benson (1952) recorded the host as Populus nigra L. in England.

Biology.-There is little information on the life history of this species except notes by Buhr (1941) and Hering (1934).

Discussion.-This species is separated by the yellowish-orange mesopleuron and black pectus. M. popalifoliella has considerably more yellow on the head and abdomen, and leuostoma and wuestracit are nearly entirely black.

This is the first North American record for hortulana. The sperimens from Massachusetts are identical to specimens from Europe and were also bred from an introduced shade tree, Iombardy poplar, which is native to Europe. This is probably an introduced species.

Messa lencostoma (Rohwer)

Parabates leucostomen Rohwer, 1910, p. 202, $\%$.
Scolionenra lencostoma: Ross, 1037, p. 71.
Messo lencostomat: Ross, 1051, p. 30.
H/ctnocampa amara NacGillivzay, 1923a, p. 161, q; Frison, 1927, p. 238; Ross, 1951, p. 30 ($=$ leacostoma Rohwer).
Female.-Average length, 4.0 mm . Antenna biack, first segment and ventral surface of rest of antemna sometimes brownish. Head black with clypeus, labrum, basal half of each mandible, and rest of mouth parts whitish; supraclypeal region, paraantennal fiefds, and spot above each antenna sometimes brownish. Thorax black with tegula white and posterior margin of pronotum white; rest of pronotum sometimes brownish. Legs mostly black with white to infuscated areas on extreme apex of each femur and each front and middle tibia. Abdomen black with narrow to wide white margin on posterior edge of each segment. Wings hyaline.

Antema nine-segmented; ninth segment shorter or subequal in length to eighth segment. Head without circular ridge on frons. Front and lateral lobes of mesonotum with fine surface sculpture. Sheath straight above. rounded below, with narrow scopa at apex (pl. IV. 51, 52). Lancet with each serrula low and flattened, with one anterior and three or four posterior subbasal teeth as in plate VII, 80.

Male-Average length, 4.0 mm . In color and structure similar to female. Genitalia as in plate X, 112 and 113; harpe rounded at apex, subtruncate at base and at inner lower margin; penis valve broad, with long apical filament.
Lavea.-Unknown.
Holotypes.-P. lencostoma Rohwer is U.S.N.M. type No. 12925, a female labeled "St. John, N.B., 18 Jul., A. G. Leavitt, collector."
B. amara MaeGillivray is at the Illinois Natural History Survey, a femaie, labeled "Edmonton, Alta., 21-V-1917, F. S. Carr."

Distribution.-Transcontinental across southern Canada and northern United States with southern extensions into California and Colorado. Alberta: Edmonton, May 21, 1917. California: Elkhorn Ferry, Yolo Co., March 30, 1963; Winnemucca Lake, Carson Pass, July 14, 1964 ; Pachaco, Contra Costa Co., on cottonwood, 4. 3-1958; Mint Canyon, 3-8-62; Forestville, April 21, 1938. Colorado: "Colo." Lowa: Ames, May 7, 1950. Minnesota: Itasca Park, May 23, 1937. New Brunswick: St. John, July 18. Oregon: Willamette River, Benton Co., May 4, 1961. Washington: Yakima, March 30, 1932.

Host.-Aduits have been collected from cottonwood.
Biology.-Unknown.
Discussion.-This widespread species is variable in coloration except for the black mesopleuron, white margin of the pronotum, and white clypeus, which appear constant in all the specimens examined. M. wuestneii has the pronotum and clypeus black, and populifoliclla and leucostoma have a yellowish-orange mesopleuron. The color variations, such as the brownish areas on the head, are most common in the California specimens, but they appear to be the same species.

Messa nana (Klug)

Tenthredo (Allanfus) nana. Klug, 1814, p. 72; Hartig, 1837, p. 266; Kriechbaumer, 1884, p. 117.
Fenusa naza: Stephens, 1835, p. 41.
Blennocampa nana: Thomson, 1870, p. 285̈; Thomson, 1871, p. 212; André, 1881, p. 302; Cameron, 1882, p. 254; Brischke and Zaddach, 1883, p. 278; Konow, $1886{ }^{\circ} \mathrm{b}$, p. 215.
Scolionerra nana; Konow, 1890, p. 249; Dalla Torre, 1894, p. 168; Konow, 190 , p. 85; Enslin, 1914, p. 298; Hering, 1931, p. 109; Conde, 1934, p. 185; Benson, 1936, p. 625; Hering, 1937, p. 74; Benson, 1940, p. 212; Buhr, 1941, p. 911; Wahlgren, 1944, p. 145; Berland, 1947, p. 260; Wahlgren, 1951, p. 74.
Messa nana: Benson, 1941, p. 89; Benson, 1952, p. 107; Lorenz and Kraus, 1957, p. 136; Smith, 1967, p. 280.
Female.-Average length, 4.5 mm . Antenna and head black; labrum and apical segments of maxillary and labial palpi whitish.
Thorax black with tegula and posterior margin of pronotum white. Legs with each coxa, trochanter, and femur black; extreme apex of each femur, tibia, and tarsus white. Abdomen black. Wings subhyaline with infuscate band on forewing below stigma; costa and basal parts of veins whitish, stigma and remainder of veins black.

Antenna nine-segmented, slender; eighth segment more than twice as long as broad (pl. III, 36). Head with circular ridge on frons, enclosing anterior ocellus at posterior edge of ridge. Mesonotum without surface sculpture. Sheath straight above, rounded below, with narrow scopa at apex (pl. IV, 49, 50). Serrulae of lancet each low and rounded, with about 10 subbasal teeth and one prominent anterior subbasal tooth (pI. IX, 95).

Male.--Cnknown in North Amorica. Benson (1952) has seen
only two males from Britain. His description of the male is as follows: " of mainly yellow; white are: the tegulae and the outer half of each side of the pronotum; black or piceous are: the vertical and postoccipital parts of the head, middle of pronotum, mesonotum except for sides of front lobes, mesosternum, mesepimeron, most of metathorax, and also the medial basal portions of the basal tergites, though fading out between the 4th and 6th; costa and stigma pale yellow, rest of venation brownish white. $4-4.5 \mathrm{~mm}$."

Larva.-Final feeding stage (pl. XII, 148-153). Length, 9.0 mm , Slightly dorsoventrally flattened. Whitish with head capsule and thoracic and abdominal plates brownish.

Head dorsoventrally flattened, prognathous. Antenna conical, two-segmented. Labrum as wicle as long, truncate; epipharynx with row of 10 to 13 spines on each half; right and left mandibies with dorsal and ventral cutting edges, without distinct teeth, left mandible with one inner tooth; maxillary palpus four-segmented, one seta on second segment; palpifer with one seta; galea long, digitate; lacinia with eight to 10 spines; labial palpus three-segmented.

Single dark slate on pronotum; mesonotum with anterior and posterior transuerse narrow plates; metanotum with anterior transverse narrow plate. Prosternum, mesosternum, and metasternum with dark plates, prosternal plate largest. Thoracic legs each five-segmented; tarsal ciaw present; thoracic legs dark brownish.

Prolegs present on abdominal segments 2 to 8 and 10 ; dark ring surrounding anterior margin of each proleg; anal proleg with complete dark ring. Sternum of first abdominal segment with small central dark plate; sternum of ninth abdominal segment with two small dark spots and sometimes with another dark spot lateral to each of these. Spiracles winged. Abdominal segments each with two annulets.

The larvae described here were taken from birch in Maine. Lorenz and Kraus (195\%) also described the larva.

Holotype.-Probably in the Zoological Museum of Berlin.
Distribution.-Northeastern United States; Europe. Maine: Scarboro, June 4. 1966, ex res oak, L. J. Lipovsky (1 9); Scarboro, Cumberland Co., ex birches in nursery, June 2, 1967, D. R. Smith (10 9 9). New York: Oswego Co.. Oswero Tws, from sticky board trap in pear orchard, 6-3-66, R. W. Stelle (2 oq); Albany Co., nr. Rensselaerville, Huyck Preserve, 8 June 1967, R. and J. Mathews (Malaise trap 3) (18).

Host.-A leaf miner of Betula spp.
Biology.-In Maine there is apparently one generation a year. The adults emerge early in the spring, usually the end of May or the first of June, and are found flying about the host at about the same time Frnusa pusilla is active. The female oviposits in the matgin of the leaf, similar to Hetcrarthrus nemoratus, and the larvae mine toward the center. F. phesilla and Profemusa thomsoni both oviposit on the surface near the center of the leaf. On maturing, the nana larvae drop to the soil where they pupate and over-
winter. In this respect nana differs from nemoratus, which remains in the leaf.

Hering (1937), Buhr (1941), and Wahlgren (1944, 1951) published notes on the life history of this species in Europe.

Discussion.-This is the most distinct species in this genus and is recognized by its larger size, presence of a ridge on the frons, lack of surface sculpture on the mesonotum, the infuscate band on the forewing, and the more rounded serrulae of the lancet. It was first found in Maine in 1966 and reported by Smith (1907) from Maine and New York. It is probably an introduced species and adds another sawfly leaf-mining pest for Betula, which now has four in North America.

Messa populifoliella (Townsend)

cottonwood ieaf miner, Townsend, 1892a, p. 26.
Tineidac ? larva, Townsend, 1892b, p. 234.
Blennocampa populifoliella To thsend, 1893, p. 304.
Messa populifolielle: Burks. 1958, p. 13; Titus and Underwood, 1966, p. I; Underwood and Titus, 1968, p. 407.
Scolioneura populi Marlatt, 1895, p. 235, $\delta, 9$; Burks, 1958, p. 13 (= populifoliella Townsend).
Messa. populi: Ross, 1951, p. 30.
Scolioneura huteopicta Rohwer, 1911d, p. 398, s: Ross, 1951, p. 30 ($=$ populi Marlatt) ; Burks, 1958, p. 13 ($=$ populifoliella Townsend).
Female.-Average length, 4.0 mm . Antenna yellow with dorsal surface beyond first segment black. Head yellow with middle fovea, lateral furrows, areas around each ocellus, and sutures of postocellar area black; clypeus white. Thorax yellow with katepimeron, mesonotum except lateral margins of anterior lobe and posterior lateral and anterior mesal margins of lateral lobes, and metanotum black; pectus yellow or black. Legs entirely yellow. Abdomen yellow with most of dorsum black. black decreasing toward posterior; sheath black. Wings subhvaline; veins black with basal parts yellow; stigma and costa light to dark brown.

Antenna nine-segmented; ninth segment of antenna shorter than or subequal in length to eighth segment. Anterior and lateral lobes of mesonotum with fine surface sculnture. sometimes difficult to see. Frons without circular ridge. Sheath straight above. rounded below. with narrow scopa at apex (pl. IV, 51, 52). Each servula of lancet low and flattened. with one anterior and three or four posterior subbasal teeth (pl. VII, 80).

Male.-Average length. 4.0 mm . In color and structure similar to female. Hypandrium narrowed posteriorly, tapering to blunt point. Genitalia as in plate X. 110 and 111 ; harne rounded. oblong; penis valve with long anical filament; parapenis wider than those of urusstneii and leucostnma.

Larra-Underwood and Titus (1908) described the larva. The later feeding stages have a large pronotal plate. a small transverse mesonotal plate a large prosternal plate, smaller mesosternal and metasternal plates, a small plate on the sternum of the first abdominal serment. crescent-shaned dark nlates at anterior of each proleg, and a large dark plate about the anal proleg. From the
description I am unable to clearly differentiate the larva from other known Messa larvae, and I have not seen specimens.

Holotypes.-S. populi Marlatt is U.S.N.M. type No. 4032, a female labeled " 51 " and "Townsend, 1891. New Mexico." S. luteonicta Rohwer is U.S.N.M. type No. 14011, a female labeled "Brookings. S.D." Townsend did not select, a type. He (18920) described the larra, but believed it to be a "Tineid?." Later Townsend obtained adults and described them as a manuscript species of Dr. Riley, Blennocampa populifoliella. Marlatt (1895) described populi from the same locality where Townsend obtained specimens and probably from the same series Townsend examined. Therefore, I have designated a lectotype for Townsend's species from a series collected by Townsend: U.S.N.M. type No. 70217, a female labeled "Las Cruces, N.M."

Distribution.-Central and eastern North America, west to Arizona. Arizona: "Ariz." Colorado: Deric, June 1, 1901, leaf miner on cottonwood, H. G. Dyar. Comecticut: Windsor, 4-1951, James B. Kring. Michigan: Ottawa Co., May 23. 1937, Dreisbach. Newo Mcrico: "N. Mex."; Las Cruces, Apr. 21, 1897, C. J. Ckli. South Dakota: Brookings, June 20, 1909, H. C. Severin.

Also in Canata from New Brunswick and from eastern Ontario to the Manitoba border (Underwood and Titus, 1968).

Host.-Leaf miner of Popilus spp. Populus fremonti Wats. (Townsend. 1892a), P. cugpuei Simon-Louis, P. nigra var. italica Muenchh., P. tremuloides Michx., and P balsamifera L. (Underwood and Titus, 1968).

Biology.- 'inderwood and Titus (1968) gave the life history of this species in New Brunswick. The adults appear during the last 2 weeks of May, and the femates oviposit on the margin of the leaf, usually near the tip. The larvae feed for 14 to 20 days, making blotch mines throughout the leaf. On maturing, they drop to the ground and make cells in the soil where they overwinter and pupate. There is one generation a year.

Discussion.-The color pattern makes this species distinctive. The yellow markings of the head, thorax, and abdomen will separate it from other Messa species. I have seen only a few specimens from widely scattered localities.

Messa ruestneii (Konow)

Fenusa ưes/neii Konow. 1894, p. 91, ₹, 9 ; Konow, 1005, p. 90.
Fenusella whes/neii: Enslin, 1914, p. 305; Malaise, 1020, p. 104; Malaise, 1931, p. б9; Conde, 1937, p. 108; Buhr, 1941, p. 923; Malaise, 1964, p. 33 . Messa wuesfmeii: Benson, 1941, p. 89; Benson, 1952, p. 108; Lorenz and Kraus, 1957, p. 137; Benson, 1959, p. 90; Benson, 1962, p. 391; Burks, 1967, p. 16.
Femusa alaskana Kincaid, 1900, p. 3.45, oै; Konow, 1905, p. 90 (alascana); Benson, 1959, p, 90 (= resestneii Konow).
Messa uluskanu: Ross, 1951, p. 30.
Female.-Average length, 3.7 mm . Antemna and head black; ventral surface of antenna and labrum sometimes brownish. Thorax black with tegula white; posterior angles of pronotum sometimes with touch of white. Legs black with extreme base of
each femur, front tibia, and apices of middle and hindtibiae whitish; each tarsus infuscated. Abdomen black, sometimes with narrow white margin on posterior edge of each segment. Wings lightly, uniformly infuscated.

Antenna nine-segmented; ninth segment shorter than or subequal in length to eighth segment. Circular ridge on frons absent. Front and lateral lobes of mesonotum with fine surface sculpture. Sheath short, straight above, rounded below, with narrow scopa at apex (pl. IV, 51, 52). Each serrula of lancet low and flattened, with one anterior and three or four posterior subbasal teeth (pl. VII, 81).
Male.-Average length, 3.7 mm . In color and structure similar to female. Genitalia as in plate $\mathrm{X}, 114$ and 115; harpe oblong, rounded at apex; parapenis narrow; penis vaive with long apical filament.

Larca-Mahaise (1920), Buhr (1941), and Lorenz and Kraus (195\%) described the larva of this species. I have not seen specimens.

Holotypes.-F. alaskana Kincaid is U.S.N.M. type No. 5281, a male labeled "Kukak Bay, Alaska, July 4, '99, Harriman Expedition '99. T. Kincaid, collector." Konow's type is probably at the Deutsches Entomologisches Institut, Eberswalde, Germany.

Distribution.-Western North America from Alaska to California and Colorado; Europe. Alaska: Kukak Bay, July 4, '99; Anaktuvak Pass, on willow, 7-14-68. British Columbia: Vancouver, April 21, 1931. Cal jormia: San Francisco. March 3, 1927, March 12, 1932, on Salix lasiolepis: Carnelian Bay, Placer Co., June 27, 1965, Salix lemmonii: 1 mi. W. Hobart Mills, Nevada Co., May 13, 1966, Salix lemmonii, S. geveriana; Lassen Co., McCoy Flat Res., 31 mi . N.W. Susanville, June 15, 1966, Salix lemmonii bebb. complex; Willows..Colorado: "Colo."; Green Mt. Falls. June 14, 1938. Nerada: Mt. Rose Pass, 11 mi . S.W. Reno, Washoe Co., July 10, 1965, Salix lemmonii; same data, June 27, 1965 ; same data, July 18, 1965 ; same data, July 7, 1965.

Host.-Leaf miner of Salix spp.
Biology.-Malaise (1931) and Buhr (1941) described the life history of this species in Europe; there is no North American literature on its life history.

Discussion. This small species may be separated from other Messa species by the almost entirely black coloration. It is a Holarctic species and was recorded from North America by Benson (1959).

Genus SETABARA Ross

Parabates MacGillivany, 1909n, p. 262; Benson, 1936, p. 625 ($=$ Fenusella Enslin) ; Ross, 1937, p. 70 ($=$ Scolionenta Konow). Preoccupied. Type-species: Parabates histrionicus MacGillivray. Original designation. Setabara Poss, 1951, p. 31 (new name for Parabate's MacGilivray); Smith, 1967, p. 281.

Description.-Antenna stocky; second segment longer than broad; third segment longer than fourth segment; segments beyond third subequal in length. Clypeus truncate; malar space linear; postgenal carina absent. Prepectus absent. Tarsal claw simple with biunt inconspicuous basal lobe (pl. III, 24). Forewing with stub of vein $\triangle A$ and $3 A$ curved up at apex. Hindwing with cells $R s$ and M absent; anal cell present; cell $R_{\text {t }}$ closed (similar to pl. II, 13).

The closed radial cell of the hindwing and inconspicuous basal lobe of the tarsal claw will distinguish this genus from other North American genera. The single species of this genus is known only from western United States and is probably associated with Primias.

Description of Setabara Species

Setabara histrionica (MacGillivray)
Parabates histrionions MacGillivray, 1909a, p. 262, ㅇ ; Frison, 1927, p. 255. Scolioneura histrionicus: Ross, 1937, p. 71.
Selabara histrionicus: Ross, 1951, p. 31; Smith, 1967, p. 281.
Female,--Average length, 4.0 mm . Black with labrum brownish and extreme apex of each femur, extreme base of middle and back tibiae, and front tibia whitish. Wings lightly infuscated.

Front and lateral lobes of mesonotum with fine surface sculpture. Sheath short, straight above, rounded below, with small scopa at apex (pl. IV, 60.61). Lancet with each serrula low, broad, truncate at apex, without distinct anterior or posterior subbasal teeth (pl. VII, 83).

Male.-A verage length, 4.0 mm . In color and structure similar to female. Genitalia as in plate X, 116 and 117; harpe long, inner apical margin flat; penis valve rectangular, with short apicolateral spine.
Larva.-「"nknown.
Holotype.-U.S.N.M. type No. 12177, a female labeled "Colo."
Distribulion.-Western North America. California: Hambone, Shasta N.F., 5-8-34. Prumts sp. Colorado: "Colo." Idaho: Lenore, 1000', May 19, 1937. Nerada: "Nev"" Oregon: Talent, Apr. 19, 1960. on Prumis; Talent. April 11, 1935; Klamath Falls, 5-11-64, Prunus subcordata: Boyer, May 15, 1937. Washington: Almota, 4-17.

Host.-Adults have been collected from Prunus sp.
Biology--Unknown.
Discussion.-This is not a well-known species, apparently closely related to some Messa species but differing by the small basal lobe of the tarsal claw and lack of a long filament on the penis valve of the male genitalia.

Genus PROFENUSA MacGillivray

Profentsa MacGillivray, 1914, p. 364; MacGillivray, 1916, p. 156; Ross, 1937, p. 72; Benson, 1941, p. 86; Ross, 1951, p. 30 ; Benson, 1952, p. 108;

Lorenz and Kraus, 1957, p. 137; Malaise, 1064, p. 33; Smith, 1966, p. 719; Smith; 1967, p. 280.
Type-species: Profentsa collaris MacGilliviay. Monotypic,
Guntca Malaise, 1964, р. 33. New synonymy.
Type-species: Tenthredo pygmaea Klug. Original designation.
Description.-Second antennal segment longer than broad; third segment longer than fourth segment. Clypeus truncate; postgenal carina absent; malar space less than diameter of front ocellus. Prepectus absent. Tarsal claw with one long outer tooth and large acute basal lobe (pl. III, 22). Forewing with stub of vein $2 A$ and $3 A$ straight at apex. Hindwing with cell R_{1} open; anal cell present or absent, if present then cell is longer than its petiole (pl. II, 14-16).

The open radial cell of the hindwing, the straight $2 A$ and $3 A$ vein of the forewing, the single outer tooth and basal lobe of the tarsal cha, and the absence of a prepectus will distinguish this genus.

About eight species are in this genus, five of which are found in North America. The North American species are associated with Betula, Crataegus, and Quercus.

Malaise (1.064) established the genus Grinnea and separated it from Profomusa only on the basis of the presence of an anal cell in the hindwing. This is a variable character in Profenusa and cannot be valid for separation of species that are so closely related in habits and larval and other adult morphological characters.

Larvae are known for all five species of Profentsa. All species, except conadenais, are very distinct and conform to a similar pattern. The larvae of lucifex, inspirata, thomsoni, and alumna are distinctly dorsoventrally fattened, lack prolegs, have very reduced thoracic legs, lack tarsal claws (except very minute tarsal claws in lucifers), have three small spines or tubercles on the coxa of each thoracic leg. and have a minutely spiniform integument. The larva of canadenais has prolegs, well-developed thoracic legs with tarsal claws, lacks the spines on the coxae, and has a smooth integument. The larva of canadensis may be confused with those of Messa or Mctallus, but conadensis may be senarated by the presence of prolegs on abdominal segments 2 to 8 and 10 and the lack of dark plates on the mesosternum, metasternum, and sternum of the first thoracic segment. The larva of canadensis is as in plate XVI, 201. The larvae of the other four species of Profennsa are similar in general habitus, as in plate XV, 181.

Keys to Profenusa Species

ADULTS

1. Female ---. 2

Male 6
2. Thorax, either part of mesonotum, upper part of mesepisternum, or prothoras, rufous; elypeus usually white
Thorax black; elypeus black

[^2]3. Mesonotum, except seutellum, rufous; serrulae of lancet lobelike (pl. VIII, 90); leaf miner of Cratacyus
Mesonotum black; serrulae of lancet pointed at apex (pl. VIIi, 94): Ieaf miner of Quezcus lucifer (Ross)
4. Hindtibia black; California and Oregon; leaf miner of Quercus

Hindtibia white; eastern spuecies
mspirata (MacGillivray)
5. Hindwing without anal cell; serrulae of lancet with eight or nine Small posterior and equal number of anterior subbasal teeth (pl. VIII, 91); sheath rounded below ($p \mathrm{l}$. IV, 57); leaf miner of Betza
Hindwing with anal cell; serrulae of lancet with two or three anterior subbasal tecth and five or six posterior subbasal teeth (pl. VIII, 92) ; sheath subtruncate at apex (pl. IV, 56); leaf miner of Quercus
alamna (MacGillivray)
6. Abdomen, mesopleuron, and pectus orange yellow canadensis (Marlatt)

Entirely black
7. Western species, Californin and Oregon

Eastern species; rare
mepirata (MacGillivray) alumna (MacGillivray)

LARVAE

1. Prolegs present; tarsal claw distinct; sternal plates, except for that on prosternum, absent; labrum wider than long, emarginated; coxae without spines; leaf miner of Crataegus (pl. XVI, 201-206)
canndensis (Marlatt)
Prolegs absent; tarsal claw absent or very minute: mesosternal and metasternal phates sometimes present; labrum longer than wide, truncate: each coxa with three small spines or tubercles
2. Mesosternum and metasternum each with central dark plate; thoracic legs two-segmented; leaf miner of Retula (pl. XV, 181-814)
thomsoni (Konow)
Metastarnum without phate; mesosternum with or without plate; thoracic legs with more than two segments; leaf miners of Quercus us
3. Thoracic leps each with minute tarsal claw (pl. XVI, 200) hicifex (Ross) ${ }_{4}^{3}$
4. Mesosternal plate present; thoracic legs four-segmented; western species, Califormia and Oregon (pl. XIV, $1.78,179$)
inspirata (MacGillivray)
Mesosternal plate absent; thoracic legs three-segmented; eastern
species (pl. XV, 189, 100)

alumna (MacGillivray)

Descriptions of Profenusa Species

Profenusa alumna (MacGillivray)

Messa nhuma MacGillivray, 1923b, n. 23, Q; Frison, 1927, p. 251; Benson, 1950, p. 91 ($=$ thomsoni Konow [1]).
Femustalumna: Ross, 1936, p. 265.
Profenusa alumna: Ross, 105i, p. 30.
Fentsa curta of auctt., nee Norton, Dyar, 1895b, p. 343; Dyar, 1898, p. 137 (?).
Messa amica MacGillivray, 1923b, p. 23, Ψ, Frison, 1027, p. 251; Ross, 1936, p. 265 ($=$ ahuma MacGillivray).

Messa appota MacGillivray, 1923b, p. 24, d; Frison, 1027, p. 251; Ross, 1936, p. 265 ($=$ alumna Mackillivray).

Profenusa mainensis Smith, 1906. p. 720 , 9 , larva. New synonymy.
Female.-Average length, 4.0 mm . Black with each tibia and tarsus whitish. Irings infuscated, slightly darker toward base.

Hindwing with anal cell present. Sheath straight above and be-
low, subtruncate at apex (pl. IV, 56), not as rounded as that of thomsoni (pl. IV, 57). Serrulae of lancet low, far apart, each serrula with two or three anterior and five or six posterior subbasal teeth; clumps of lateral spines located centrally on segments 3 to 11 (pi. VIII, 92).

Male.-Average length, 4.0 mm . In color and structure similar to female. Genitalia as in plate X, 120 and 121 ; penis valve oblong, without lobes, with two small spines near apex, one directed dorsally, the other ventrally.

Larva.--Final feeding stage (pl. XV, 189-196). Length, 7.5 mm . Body dorsoventrally flattened; integument covered with minute rounded spines. White to light brown with pronotal plate, prosternal plate, head capsule, thoracic legs, and spiracles dark brown; usually black spot on each side of head. In lateral view similar to thomsomi (pl. XV, 181).

Head dorsoventrally flattened; prognathous. Antenna with one segment; ocularium small; eyespot conspicuous, located posterior to antenna. Labrum longer than wide, truncate; epipharynx with row of eight or nine spines on each half and row of shorter spines anterior to these; maxillary palpus four-segmented, one seta on second segment; galea long, digitate, subequal in length to maxillary palpus; lacinia with five stout spines; each mandible similar, right mandible with several irregular ventral and dorsal teeth left mandible with several irregular ventral teeth, rounded dorsal cutting edge, and one inner tooth; each mandible with one seta on outer basal angle; jabial palpus two-segmented.

Thoracic legs small, directed laterally, three-segmented with apical segment minute; tarsal claw absent; each coxa with three smali tubercles. Prothoracic spiracle winged. Pronotal and prosternal plates present.

Prolegs absent. Abdominal spiracles winged, located dorsal to pleural lobes.

Smith (1966) described the larva of this species, and those references to curta by Dyar (1895b, 1898) probably pertain to the larva of this species.

Fiolotypes.-MacGillivray's types are at the Illinois Natural History Survey: M. alumna, a female, is labeled "N. Ill."; M. amica, a female, is labeled 'N. Evans, N.Y., 8-2-08, M. C. V. Coll."; M. appofa, a male, is labeled "Buffalo, N.Y., 6-27-09, M.C.V. Coll." P. mainousis Smith is U.S.N.M. type No. 67982, a female labeled "Canton, wiaine, May 30 1964, ovipositing on red oak leaves, G. LaBonte."

Distribution.-Northeastern United States. Illinois: "N. Ill."; Algonquin. Maine: Manv adults from the following localities collected during the last of May and in June: Augusta. Gilead. Canton, South Paris, Peru, Strong. Maryland: Plummers Island, 23-7-16. New York: N. Evans, 8-2-08; Buffalo. 6-27-09. Pennsylvania: Dupont, Aug. 14-16, 1944. Virginia: Falls Church, Aug. 12, 1912, Quercus, July 15. 1912.

Host.-Most of the damage in Maine is on red oak (Quercus rubra L.). It may also attack Q. macrocarpa Michx., Q. alba L., Q.
velutina Lam., and Q. ilicifolia Wangh. Dyar (1895b) found the larva on Q. macrocarpa.

Biology.-This species has done considerable damage to oaks in Maine where the leaf-mining larvae cause severe browning and blotching of the leaves. The adults fly in spring and early summer, from the end of May to the first of July, and oviposit in the upper surface of the leaf. When the larvae mature, they drop to the ground to overwinter and pupate in the soil. Larvae have been observed on the foliage until mid-August. This species is apparently parthenogenetic with very rare males. Among the long series from Maine, males have never been seen; however, males have been taken in other parts of its range-in Illinois, New York, and Virginia.

Discussion.-The general habitus of this species closely resembles that of thomsoni, but the presence of the anal cell in the hindwing, the more truncate sheath, and small serrulae of the lancet will separate alumna. The larvae are separated from those of other Profenusa species by the absence of mesosternal and metasternal plates, absence of prolegs, and absence of tarsal claws.
The close similarity of alumna to thomsoni led to the synonymy of these two species by Benson (1059) and subsequent description of a new species, mainensis, by Smith (1066). The examination of the type of alumha proved that this synonymy was a mistake and that alumna is actually the oak leaf miner, probably native to North America, whereas thomsomi is undoubtedly an introduced species. The references to alimna by Burks (1958), Lindquist (1959), Watson (1959), or any other literature treating alumna as a birch leaf miner do not pertain to alumna (MacGillivray) but actually to thomsoni (Konow).

Profenusa canadensis (Marlatt)

Scotioneura conudensis Marlatt, 1895, p, 235, ㅇ.
Metallus canadensis: MacGillivray, 1916. p. 160.
Profensa canadensis: Ross. 1937, p. T2; Hamilton, 1943, p. 59; Hamilton, 1950, p. 694 ; Ross, 1951, p. 30 ; Peterson, 1956, p. 270; Malaise, 1964, p. 28; Martincau, 1965 p. 46 ; Smith, 1966, p. 719.

Profenusa collaris MacGillivray, 1914, p. 364, $\hat{\alpha}, 9$: Parrott and Fulton, 1915a, p. 551; Parrott and Fulton, 1915b, p. 519; MacGillivray, 1916, p. 157; Frison, 1927, p. 258; Ross, 1937, p. 72 (= canadensis Marlatt).

Female.-Average length, 4.0 mm . Antenna black, sometimes with ventral surface whitish; head black, clypeus and mouth parts white. Thorax black with mesonotum, except scutellum, rufous; mesopleuron and pectus rufous or black; prothorax usually rufous; tegula and posterior margin of pronotum white. Legs white to yellowish orange, usually with hindcoxa and hindfemur darker or black. Abdomen black; each segment with narrow white band on posterior edge. Wings hyaline.

Hindwing with anal cell present. Sheath short, rounded at apex (pl. IV, 53). Fach serrula of lancet deep, lobelike, rounded at apex, without subbasial teeth (pl. VITI, 90).

Male.-Average length, 4.0 mm . Antenna black, sometimes with ventral surface whitish; head black, clypeus and mouth parts white.

Thorax yellowish orange with mesonotum and metanotum black. Legs entirely yellowish orange. Abdomen entirely yellowish orange, sometimes with black or infuscate areas on basal terga or black longitudinal line on dorsum. Structure as for female. Genitalia as in plate $\mathrm{X}, 118$ and 119 ; penis valve with long ventral lobe.

Lorva-Final feeding stage (pl. XVI, 201-206). Length, 7.5 mm . Cylindrical, slightly dorsoventrally flattened. White; head capsule, spiracles, thoracic legs, prosternal plate, and crescentshaped marks about each proleg light brown.

Head dorsoventrally flattened, nearly hypognathous. Antenna conical, indistinctly three-segmented. Eyespot posterior to antenna. Labrum wider than long, emarginated; epipharynx with row of seven to nine long spines on each half; right mandible with two ventral teeth and two dorsal teeth; left mandible with three ventral teeth and two dorsal teeth; each mandible with one seta on outer basal angle: maxillary palpus four-segmented, one seta on second segment; galea digitate, subequal in length to palpus; lacinia with seven to nine long spines; labial palpus three-segmented, relatively long and distinct compared to that of other Profenasa species.

Thoracic legs five-segmented, directed laterally; tarsal claw present. Pronotal and mesonotal plates light colored; prosternal plate light colored; mesosternal and metasternal plates absent. Prothoracic spiracle not winged. Coxa of each thoracic leg without small spines or tubercles.

Prolegs present on abdominal segments 2 to 8 and 10 , rudimentary on segments 1 and 0 . Spiracles of abdomen not winged. Pleural lobes present. Abdominal segments 1 to 8 each with three annulets. Light crescent-shaped plates present at anterior of each proleg.

The larva has been described by Parrott and Fulton (19156), Hamilton (1950), and Peterson (1956).

Holotypes.-_S. conadensis, a female labeled "Can.," is type No. 10222 at the Academv of Natural Sciences of Philadelphia. It also bears a label "Type No. 4031 USNM." There is a specimen with the same data in the U.S. National Museum collection; however, it camot be the type, since Marlatt (1895) stated that the type was in the collection of the American Entomolorical Society. P. rollaris MacGillivray, a female labeled "cherry, 5/4/11, Geneva, N.Y.," is at the Illinois Natural History Survey.

Distribution.-Widespread in eastern North America. Arkansas: Bentonville, 4-14-19, Crataegus. District of Columbia: Apr. 3. 1945. on Crataegus. Illinois: Muncie, V-1-27, May 4, 1936; White Heath. May 1, 1915, May 5. 1940, April 30, 1916: Monticello, May 4, 1947; St. Joseph. Mav 3, 1914 ; Oakwood, May 4, 1936. Iowa: Shemandoah. 4-21-46. Kentuchu: Lexington, Apr. 17. 1919, hawthorn Maine: Augusta, emgd. 23-VI-56. ex Crataegus; Brownville Junction. June 9, 1967. Massachusetts: Boston, May 10, 1909; Forest Hills. V-3-12. Michifan: East Lansing. May 17, 1963 , Missouri: Columbia. New York: Geneva, 5-20-15; Greendale, V-11-39. soil under cherry tree; Oswego, 6-3-66; Ithaca; Nassau, May 27. 1917. Ontario: Manotick, $20-\mathrm{V}-66$, Cratacgus sp. Penn-
sylvania: Harrisburg, V-11-20, on foliage of Crataegus sp.; Chestnut Hill, 5-4-25. Quebec: Ste. Foy. T'exas: Longview, III-26-08.

Hosts.-Leaf miner of Cratnegus spp. and Prumus sp. This species is apparently most destructive to hawthorn. Parrott and Fulton (1915a, 1015b) recorded a population on cultivated cherry, the English Morello variety, but other varieties of cherry were not subject to attack.

Biology.-Parrott and Fulton (1915b) and Hamilton (1950) published the life history of this species. The adults emerge early in the spring, usually during April and May. The females oviposit near the margin of the leaf, but not on the margin nor near the center. The larva mines toward the center of the leaf leaving blotch mines. On maturing, the larvae drop to the ground and form earthern cells in which they overwinter and pupate the following spring. There is one generation a year.

Discussion.-The rufous mesonotum of the female and yelloworange coloration of the male will separate this species from other Profenusa species. The genitalia of both sexes are also distinct. This species is of occasional economic importance, especially in ornamental plantings of Crataegus.

Profenusa inspirata (MacGillivray)

Parabates inspirathe MacGillivray, 1909a, p. 264, 9.
Fenusa inspirata: Ross, 1936, p. 265.
Profenusa inspirata: Ross, 1951, p. 30 ; Smith, 1966, p. 719.
Female.-Average length, 4.0 mm . Black with each front and middle tibia and tarsus and hindtarsus whitish. Wings uniformly, lightly infuscated.

Hindwing with anal cell present. Sheath straight above, rounded below (pl. IV, 57). Each serrula of lancet pointed, finely serrate, with greater number of posterior than anterior subbasal teeth; lateral spines on segments lacking (pi. VIII, 93).

Male.-Average length, 4.0 mm . In color and structure similar to female. Genitalia as in plate X, 122 and 123 ; penis valve oblong, without lobes; two short spines present near apex, one directed dorsaliy, the other ventrally.

Larca.-Final feeding stage (pi. XIV, 174-180). Length, 7.5 mm . Dorsoventrally fiattened; integument covered with minute rounded spines. White to light brown with head capsule, pronotal plate, prosternal plate, mesosternal piate, thoracic legs, spiracles, and spots surrounding abdominal spiracles dark brown. In lateral view similar to larva of thomsomi (pi. XV, 181).

Head dorsoventrally flattened, from above similar to that of alumna (pl . XV, 192). Antenna apparently with small second segment; eyespot located posterior to antenna; antennaria small. Labrum longer than wide; epipharynx with row of eight or nine spines on each half with row of smaller spines anterior to these; right and left mandible similar, each with three ventral teeth and rounded dorsal cutting edge; maxillary palpus four-segmented,
one seta on second segment; galea long, digitate, subequal in length to maxillary palpus; lacinia with four stout spines; labial palpus two-segmented.

Thoracic legs reduced, directed laterally, apparently four-segmented with apical segment minute; tarsal claw absent; each coxa with three rounded tubercles. Large pronotal and prosternal and small mesosternal plates present. Prothoracic spiracle winged.

Abdominal prolegs absent. Annulation indistinct. Abdominal spiracles winged. Small darkened spots surrounding each spiracle.

The larvae are described from specimens taken from valley oak, Merced, Calif., on July 27, 1959.

Holotype.-U.S.N.M. type No. 12176, a female labeled "Nev."
Distribution.-Pacific coastal region of North America. Califormia: 4 mi . W. Quincy, Plumas Co., VI-19-49; Quincy, July 1, 1958 ; Yosemite, $3880^{\prime}-4000^{\prime}$, 6-12-28; Hatchet Mtn., Shasta Co., 7-1433, adults on Almus sp. Nevada: "Nev." Oregon: Corvallis, May 10, 1931 ; 'Touvelle St. Pk., 8 mi. N. Medford, May 21, 1960 ; Jackson Co., Buckhorn Mineral Springs, 11 mi. E.S.E. Ashland, 2800^{\prime}, May 19, 1960 ; Jackson Co., 1 mi . E. Brownsboro, May 18, 1962; Wasco Co., 3 mi. E. Mosier, May 23, 1959; Talent, May 20, 1959, on Quercus garryona; Medford, V-5-53; Klamath Co., 10 mi. S.W. Keno, May 23, 1962, on Garry oak; Jackson Co., 1 mi. N. Sams Valley, May 24, 1964, on oak leaves.

Host. -Leaf miner of Quercus spp. Adults have been taken from Q. garryana Dougl. and Abmus sp., and larvae were taken from valley oak (Q. lobata Née).

Biology.-No information is available.
Discussion.-This is the only known western species of Profenlisa. It is similar to thomsoni and clumna, but it may be distinguished by the dark hindtibia and characters of the male and female genitalia.

Profeñusa lucifer (Ross)

Fenusa lucifer Ross, 1936, p. 266, $\%$.
Profenusa hacifex: Ross, 1951, p. 31; Lindquist and Jackson, 1965, p. 1; Smith, 1966, p. 719.
F'emale.-Average length, 4.0 mm . Head and antenna black; clypeus and mouth parts white to yellow orange. Thorax black with pronotum, tegula, and upper half or less of mesepisternum rufous to yellow orange. Legs entirely yellow orange. Abdomen black. Wings lightly, uniformly infuscated.

Hindwing with anal cell open, vein $2 A$ and $3 A$ partially atrophied. Sheath straight above, rounded below (pI. IV, 57). Lancet with each serrula pointed, central serrulae each with about 10 fine anterior and 10 fine posterior subbasal teeth (pl . VIII, 94).

Male.-Unknown.
Larra.-Final feeding stage (pl. XVI, 197-200). Very similar to larva of alumna except for following differences: Anterna slightly longer with small second segment; spots on each side of
head larger and darker; tarsal claw present, very small, and located on anterior side of tarsus; thoracic legs four-segmented; mesosternum sometimes with narrow dark plate on posterior edge.

The prepupa may be distinguished from that of alumna by the presence of a tarsal claw.

Holotype.-At the Mlinois Natural History Survey, a female labeled "Fox Lake, JIl., June 30, 1935, DeLong and Ross."

Distribution.-Northeastern United States and southeastern Canada. Illinois: Fox Lake, June 30, 1935. Maine: Augusta, emerged April 18, 1966, from larva on white oak; At gusta, July 9, 1965, emgd. April 8, 11, 1966, bred ex white oak; Berwick, June 1, 1966, sweeping under red oak; Portland, Baxter Park, June 11, 1967. New York: Oritat L.I., June 16, 1947; Riverhead, L.I., August 24, 1934. Ontario: Iorest districts of Kenora and Fort Frances (Lindquist and Jackson 106.5).

Host.-Leaf miner of Quercus spp. Most common on white oak (Quercus alba L.) and also on rei oak (Q. rubra L.) in Maine. Lindquist and Jackson (1906) reased this species from bur oak (Q. macrocarpa Michx.) in western Ontario.
Biolog!!.-The note by Lindquist and Jackson (1965) is the only information available on the life history of this species. In western Ontario the larvae complete their feeding in late July or early August and drop to the ground to overwinter in the soil. The larvae make irregular blotch mines in the leaves. In Maine the adults appear in June.

Discussion.-This species received little attention from the time of the description in 1936 until 1965, when it was discovered damaging oaks in Ontario and Maine. It may be distinguished from other Profonuse species by the rufous pronotum and partly rufous mesepisternum. Some specimens have the upper half of the mesepisternmo rufous, other specimens only the dorsal margir.

Profenusa thomsoni (Konow)

Fenusat thomsoni Konow, 1886 b , p. 270 , 9 ; Konow, 1890, p. 249; Konow, 1905,
p. 90 . p. 90.

Fentaselta thomsoni: Enslin, 1914, p. 30G; Downar-Zapolsky, 1931, p. 50 ; Conde, 1934, p. 186; Hering, 1937, p. 75; Buhr, 1941, p. 912 ; Wahleren, 1951, p. 75.
Profohusa thomsomi; Benson, 1941. p. 88; Benson, 1943, p. 11; Benson, 1952, p. 108; Lorenz and Kraus, 1957, p. 137; Benson, 1959, p. 91; Forbes, Underwood, Cuming, and Eidt, 1060, p. 29; Martin, 1960 , p, 376; Picrenek, 1962, p. 285; Benson, 1962, p. 302; Smith, 1066, p. 719 ; Burks, 1967, p. 16; Benson, 1968 , p. 149.
Profenusn alumar of auctt, nee MacGillivray, Burks, 1958, p. 13; Lindquist, 1959, p. 626; Watson, 1959, p. (i18.
Female--Average length, 4.0 mm . Black with each tibia and tarsus whitish. Wings infuscated, darker on basal half.

Hindwing with anal cell absent. Sheath straight above, rounded below (pl IV, 57). Serrulae of lancet wide, close together, central serrulae each with six or seven anterior and six or seven posterior subbasal tecth; apical servulae each with four or five anterior and six or seven posterior subbasal teeth; group of lateral spines present on segments 4 to 9 (pl. VIII, 91).

Male.—Unknown. Parthenogenetic.

Larva- Final feeding stage (pl. XV, 181-188). Length, 7.0 mm . Body dorsoventrally flattened; integument covered with minute spines, venter of 10 th abdominal segment smooth. White to light brown with head capsule, pronotal, prosternal, mesosternal, and metasternal phates, thoracic legs, and spiracles dark brown.

Head dorsoventrally flattened, prognathous. Antema one-segmented; antennaria small; eyespot posterior to antenna. Labrum longer than wide, truncate; epipharynx with row of seven to nine spines on each halt; left and right mandibles similar except for inner tooth of left mandible, ventral margin of each mandible with four or five fine teeth, dorsal margin without teeth; one seta on outer basal angle of each mandible; maxillary palpus four-segmented, second segment with one seta; galea long, digitate, subefual in length to maxillary palpus: lacinia with five or six stout spines; labial palpus two-segmented.

Thorax with large dark pronotal and prosternal plates and small mesosternal and metasternal plates. Prothoracic spiracle winged. Thoracic legs two-segmented, tarsal claw absent; each coxa with three short spines.

Abdominal prolegs absent. Abdominal spiracles winged, located dorsal to pleural lobes. Segments indistinctly three-amnulate.

Watson (1950) described the larva of this species in detail, and Lindquist (1959) qave characters to separate it from other birch leaf-mining sawfy larvae.

Hololype.-Probably at the Deutsches Entomologisches Institut, Fberswalde, Germany.

Distribuion--Northeastern U'mited States and southeastern Canada; Eurone. Comecticut: Yartiand. July 25, 1930; Famden, July 5, 1026. Maine: Canton, 21-VIT-64, white birch; Gilead. July 7, 1905, white bireh; Brunswick, many dates from June 23 to July 16, 1965. Ontarin: Sault Ste. Marie. 4-VII-55, white birch. Quchec: Routhierville, July 2, 1966. Vermont: Stratford, IV-191962.

Host.-Leaf miner of Petula spp. Martin (1900) recorded B. papyrifera Marsh., B. alleghaniensis Britt. $(=B$. lutea L.), and B. populifolit Marsh.

Biology.-Martin (1960) presented the life history of this species. In Ontario the adults emerge from the middle of July to the first of August. The femates ovipnsit near the center of the leaf, usually near a vein, with rery few eggs placed near the margin of the leaf. The lavae form typical biotch mines while feeding. On maturing, the larvae drop to the ground and overwinter in the soil. In Maine the adults begin emerging during the last part of June.

Discussion.-This species is separated from chimna by the absence of an anal cell in the hindwing. more rounded sheath, and larger serrulae of the lancet. The larvae have mesosternal and metasternal plates, both absent in alumma larvae. This is one of the four sawfly leaf miners of Brtula known in North America.

As explained under alumma, the synonymy of alumna with
thomsoni by Benson (1959) was a mistake, and caution should be used when referring to distributional and taxonomic data in those publications that report "Profemusa alumna (NacGillivray)" as a leaf miner of Betula. The distributional data by Watson (1959), for example, are not entirely correct. P. thomsoni is probably an introduced species.

Genus BIDIGITUS Smith

Ridigitus Smith, 1067, p. 280.
Type-species: Profemusa platani Burks. Original designation.
Description.-Antenna with second segment longer than broad; third segment longer than fourth segment; segments beyond third gradually decreasing in length. Clypeus truncate; malar space less than half diameter of front ocellus; postgenal carina absent. Prepectus absent. Tarsal claw with two long subequal outer teeth and large acute basal lobe (pl. III, 23). Forewing with stub of vein $2 A$ and $3 A$ faint, curved up at apex; vein $1 m-c u$ strongly directed downward meeting $C u$, closer to vein $C u, a$ than to crossvein $c^{\prime \prime-a}$. Hindwing with cell R_{r} open at apex; anal cell present, petiole much longer than cell: cells Rs and M absent (pl. II, 17, 18).
This genus is close to Prof cuusa. but it is separated by the bifid tarsal chaw and wing vemation. The single species in this genus is known only from California and is associated with Platamus.

Description of Ridigitus Species

Bidigitus platani (Burks)

Profenusa platanue Burks, 1957, p. 207, of, ©, larva; Brown and Eads, 1965, pp. 14, 22-32.
Profenusa platani: Smith, 19fo, p. 710; Burks, 1067, p. 16. Ridigitus photani: Smith, 1967, p. 280.

Female.-Average length, 1.0 mm . Black with tegula, extreme apex of each femur, each front and middle tibia. basal two-thirds of hindtibia, and each tarsus whitish. Wings uniformly, lightly infuscated.

Sheath long and narrow, pointed at apex (pl. IV, 47). Serrulae of lancet far abart. each low, with two anterior and three or four posterior subbasal leeth (pi. VII, 85).
Male.-Average length, 4.0 mm . In color and structure similar to female. Hymandrium truncate. Genitalia as in plate X, 128 and 129; harpe long and narrow: parapenis rounded. about as wide as long; penis valve subrectangular with apical and dorsoapical lobes.

Larta.-Final feeding stage (pl. XTII, 207-212). Length, 9.0 mm . Slightly dorsoventrally flattened. White; head capsule and legs light brownish. In dorsal riew slightly widened at thorax and narowing toward apex of abdomen.
Head dorsoventrally flattened, prognathous. Antenna two-segmented, second segment small; antemaria large ; eyespot posterior to antenna. Labrum wider than long. emarginated; epipharynx with row of nine to 10 spines on each half; left mandible with large
apical tooth, two small ventral teeth, and three larger dorsal teeth; right mandible similar to left mandible but with two dorsal teeth; each mandible with one seta on outer basal angle; maxillary palpus four-segmented, one seta on second segment; galea long, digitate, subequal in length to palpus; lacinia long, with about seven spines of unequal length all directed mesally; labial palpus threesegmented.

Thoracic legs five-segmented, directed laterally, relatively long and segments distinct: tarsal claw present. Prosternum with large smooth plate of similar color as rest of body, smaller plates located centrally on mesosternum, metasternum, and pronotum.

Prolegs present on abdominal segment 2 to 8 and 10 ; rudimentary on ninth segment. Abdominal segments 1 to 7 each twoannulate, first annulet one-third size of second annulet. Conspicuous pleural lobes present.

Burks (1957) and Brown and Eads (1965) also described the larva.

Holotype.-U.S.N.M. type No. 63460, a female labeled "Santa Barbara, Calit., May 20, 1956, reared from Platanus racemosa, Clark O. Eads."

Distribution.-Known only from California. California: The only adult record is that of the type locality. Larvae have been taken from the following: Anaheim, Apr. 20, 1962, on Platanus; Lakeport. Y-16-1952, ex plane tree (leaf blisters) ; Claremont, April 24, 1961, Platanus racemosa. Brown and Eads (1965) stated that this species is "very common throughout southern California, as well as the rest of California."

Host.--Leaf miner of the California plane tree (Platanus racemosa Nutt.).

Biology.- Brown and Eads (1965) described the life history of this species. The adults appear in February and oviposit in the upper surface of the leaf. The larvae feed for about 30 days making blotch mines in the leaves. Up to 95 larvae have been found in a single leaf. On maturing. the larvae drop to the soil and form small cells lined with a tough papery material in which they pupate or orerwinter. There are from three to five renerations a year, and 7 to 11 weeks are required to complete a life cycle.

Discussion.-The damage caused by this species has been known for a long time in California. but it was believed to be caused by a lepidopterous blotch miner. In 1956 the damage was first recognized as being caused by a sawfly and the sawfy was described as new in 1957 by Burks. The tarsal claw and wing venation will easily distinguish this species from those of related genera.

Genus NEFUSA Ross

[^3]Description.-Antenna with second segment longer than broad; third segment longer than fourth segment: segments beyond third subequal in length. Clypus truncate ; malar space linear; postgenal
carina absent. Prepectus present, narrow, set off by suture. Tarsal claw with one outer tooth and large acute basal lobe (pl. III, 22). Foreving with stub of vein $2 A$ and $3 A$ straight at apex. Hindwing with cells Rs and M absent; anal cell present; cell R_{1} open (similar to pl. II, 14, 15).

The presence of a prepectus will separate this genus from all other genera of North American Fenusini. The single species known for this genus is a leaf miner of Viola in eastern North America.

Description of Nefusa Species

Nefusa ambigua (Norton), new combination
Fenusa ambiguus Norton, 1867, p. 225, \&; Dalla Torre, 1894, p. 156; Konow, 1905, p. 90.
Messa ambigua: MacGillivray, 1916, p. 157.
Messa anita MucGillivray, 1923b, p. 23, q; Frison, 1927, p. 251. New synonymy.
Fenusa anita: Ross, 1936, p. 265.
Nefusa anita: Ross, 1951, p. 31; Burks, 1967, p. 17; Smith, 1967, p. 281.
Fenusa sp. ?, Shaw, 1940, p. 951.
Female.-Average length, 4.0 mm . Antema and head black with first and second antemnal segments, labrum, and mouth parts yellowish. Thorax black with tegula and pronotum white to yellowish. Legs entirely yellowish. Abdomen mostly black on dorsum, yellowish on venter. Wings very lightly infuscated.

Sheath straight above, rounded below, scopa absent (pI. IV, 48). Lancet with each serrula pointed, with one prominent anterior and four or five fine posterior subbasal teeth (pl. VII, 86).

Male-Average length, 4.0 mm . In color and structure similar to female. Genitalia as in plate X, 126 and 127 ; penis valve long and slender, subrectangular; harpe truncate at apex; parapenis large, rectangular.

Larva. - Shaw (7040) briefly described the larva, but it cannot be characterized by this description. I have not seen specimens.

Holotupes.-M. anita MacGillivray, a female labeled "Wis."" is at the Illinois Natural History Survey. Norton's type of ambiguus cannot be located. In his original description Norton (1867) stated "Penn. 1 o. (Smith. Inst.)": however, I could not locate such a specimen in the U.S. National Museum. Norton's original description fits the interpretation of this species, and three specimens of this species at the Academy of Natural Sciences of Philadelphia bear a determination label "Fenusa ambigua," apparently written by Norton.

Distribution.-Eastern North America. Maine: Augusta, emgd. VI1-2,7,12-1943, Viola; Portland, Baxter Park, June 11, 1967. Maryland: Bowie, V-29-1945; Glen Echo; Cabin John, VİI-211917. Massachusetts: Salem, reared, June 27, 1924, violet; Amherst, VIII-40. Michigan: Bay Co., June 2, 1940 ; Livingston Co., June 5-6, 1943. Ncu Yorl: Tthaca, Aug. 5, 1918. Ohio: Hocking Co., 5-25-30. Pcmnsylumia: State College, 7-3-47, violet leaf miner; MIt. Holly Springs, VII-4-1918. Quebec: Montreal, 3-VI-
06. Temessec: Gatinburg, GSMNP, 5500 ', July 18, 1947. Wisconsin: "Wis."

Host.-Leaf miner of Viola sp . Shav (1040) reared it from "Viola papilionacea."

Biology. - The only information on the life history of this species is a note by Shaw (1940) on a Fenusa ? attacking violet in Massachusetts. Adults were observed from the last of July to the middle of August. They deposit their ergs singly in the upper surface of the leaf. The larvae feed for 22 to 28 days, then go into the soil where they overwinter.

Discussion.-This species is very distinct and is recognized by the presence of a prepectus and the light coloration of the first two antemal segments, labrum, pronotum, legs, and venter of the abdomen.

Gemms PROLATUS Smith

Prolatus Smith, 1967, p. 282.
Type-species: Prolutus arlus Smith. Original designation.
Description--Antemna with second segment about as long as broad; third segment subequal in length to or only slightly longer than Courth segment (pI. III, 37). Clypeus truncate; malar space linear; postgenal carina absent. Tarsal claw simple, long and slender (pl. III. 2I). Front tarsus long, $1 \frac{2}{2}$ times or more length of front tibia; middle tarsus 11\% times length of middle tibia; hindtarsus shorter than hindtibia (pl. III, 25). Prepectus absent. Forewing with rein $2 A$ and $B A$ curving up and meeting $1 A$ to form small basal anal cell. Findwing with cell R_{1} open; anal cell absent; cells Rs and M absent (similar to pl. III, 20).

This gemus is distinguished by the simple tarsal claw, the unusually long front and middle tarsi, and the subequal third and fourth antemal serments. The tarsal claw and wing venation most closely rescmble those of F cuusa.

The single species of this genus is known only from Oregon and the host is not known.

Description of Prolatus Species
 Prolatus artus Smith

Prolatus artus Smith, 1967, p. 283, \%.
Female,-Length, 3.8 mm . Black with clypeus, labrum, each mandible tegula, upper posterior margins of pronotum, extreme apex of each femur, and extreme base of each tibia light brown to whitish. Wings uniformly, lightly infuscated.

Head and body, except anterin and lateral lobes of mesonotum, densely covered with fone white hairs. Sheath long and slender; rounded below and at apex (pl. IV. 55). Fach serrula of lancet broadly and flatly rounded with eight or 10 subbasal teeth and single lateral tooth at anterior of each serrula (pl. Y'II, 84).

Male--See Discussion.

Larva.-Unknown.
Holotype.-U.S.N.M. type No. 69159, a female labeled "Oregon, Josephine Co., 10 mi . N.W. Pinehurst, May 5, 1962, David R. Smith."

Distribution.-Oregon: Pinehurst, May 5, 1962; Corvallis, Scott's Hill, moss and ground litter, March 10, 1960 (\ddagger, see Discussion).

Host.-Unknown.
Biology.-Unknown.
Discussion.-A character not included in the description is the presence of a radial crossvein in the hindwing. This is sometimes a variable character in sawflies, and extra reins may appear at random in any species. More specimens will be needed to ascertain its value. A male from near Corvallis, Oreg., fits the description given here, but this specimen is of doubtfut association because of the lack of a radial crossvein in the hindwing. It does fit the generic description.

Genus FENUSA Leach

Femusa Leach, 1817, p. 126; Westwood, 1840, p. 54; Cameron, 1882, p. 290; Dalla Torre, 1894, p. 15f; Ashmead, 1898, p. 250; Konow, 1005, p. 89 ; MacGillivray, 191.1, p. 365 ; Enslin, 1914, p. 301; MacGillivray, 1916, p. 157 ; Benson, 1036, p. 6233; Ross. 1936, p. 263; Ross, 1937, p. 72; Benson, 19.11, p. 87; Berland, 1947, p. 263; Ross, 1951, p. 31; Benson, 1952, p. 108; Takcuchi, 1952, p. 59; Zirngiebl, 1955, p. 93; Lorenz and Kraus, 1957, p. 138; Malaise, ITM: n. 37; Smith, 1967, p. 282 .

Type-species: Tenthredo (Émphytus) pumila Klug. Monotypic.
Kaliosysphinga Tischbein, 1S46, p. 79; Konow, 1886b, p. 269; Dalla Torre, 1894, p. 158; Ashmead, 1898, p. 250; Konow, 1905, p. 89 (Caliosysphinga); Enslin, 1914, p. 301 ($=$ Feuasa Leach) ; Benson, 1936, p. 623; Zirngiebl, 1955, p. 93.
Type-species: Kaliosysphinga dohmiz Tischbein. Monotypic.
Aphadniums O. Costa, 1859, p. 40: Dalla Torre, 1894, p. 158 ($=$ Kaliosysphingu Tischbein); Benson. 1936. p. 623 (= Fenusa Leach).
Type-species: A phorduitrus touthlhe 0 . Costa. Monotypic.
Kaliofunst Viereck, 1910, p. $\overline{5}$ It ; MacGillivray, 1916, p. 157; Benson, 1036, p. 623 ($=$ Fenusa Leach).

Type-species: Fenusa whi Sundevall. Monotypic.
Description.-Antenna with second segment as long as broad; third segment longer than fourth segment; segments beyond third slightiy decreasing in length (pl. IIT, 32, 33). Clypeus truncate; malar space less than diameter of front ocellus; postgenal carina absent. Prepectus absent. Tarsal claw simple. Front and middle tarsi subegual in length to their respective tibiae. Forewing with vein 2A and 3.4 curved up. meeting $1 A$ to form small basal anal cell. Hindwing with cell R_{1} open; anal cell absent; cells $R s$ and M absent (pl. ITI, 19, 20).

The simple tarsal claw, basal anal cell of the forewing, open radial cell of the hindwing, and short tarsi will distinguish species of this genus. Three species are in this genus, all of which are Holarctic. They are leaf miners of Almus. Betula, and Ulmus.

Larvac are known for all three species of Fenusa. As a group they are diflicult to distinguish from those of Bidigitus and Fenella,
but the following combination of characters will help to differentiate them: Reduced prolegs present on abdominal segments 2 to 8 and 10; dark crescent-shaped marks about prolegs absent; mesosternum and metasternum with light or dark plates; sternum of first abdominal segment with dark plate (except in dohroii). The generic key (p.7) to larvae and hosts will help to separate the larvae from those of other Fenusini.

Keys to Fenusa Species

ADULTS

1. Lnteral lobes of mesonotum with fine surface sculpture; abdominal tergites dull with alutaceous surface sculpture; vein $2 r$ of forewing joins $R s$ before $3 r-m$; male rare; leaf miner of Ulmus ulmi Sundevall
Lateral lobes of mesonotum and abdominal tergites smooth, without surface sculpture; vein $2 r$ of forewing joins $R s$ beyond $3 r-m$ (pl. III, 19)
2. Antenna longer than thorax with third segment only 1 16 times as long as fourth segment and serments 4 and 5 at least more than twice as long as broad (p. III, 32); hindtibia usually black; nuale unknown; leaf miner of Alnus
dohrnii (Tischbein)
Antenna shorter than thorax with third segment twice as long as fourth segment and segments 4 and 5 less than twice as long as broad (pl. IIT, 33); hindtibia usually white; males common; leaf miner of Betula
pusilla. (Lepeletier)

Larvae

1. Large central dark-brown plates on prosternum, mesosternum, metasternum, and sternum of first abdominal segment (pl. XVIII, 232, 233) ; leaf miner of Betula pusilla (Lepeletier)
Small selerotized plates on mesosternum and metasternum, plate on sternum of first abdominal segment present or absent
2. Small plate present on sternum of first abdominal segment; distinct short spines on venter of ninth abdominal segment and about prolegs of eighth abdominal segment (pl. XVIII, 220-222); leaf miner of
(llmas almi Sunde ulmi Sundeval!
Plate on sternum of first abdominal segment absent; venter of apical abdominal sefments without spines; leaf miner of Almus
dohrnii (Tischbein)

Descriptions of Fenusa Species

Fenusa dohrnii (Tischbein)

Kaliosysphinga dohrmï Tischbein, 1846, p. 80; André, 1880, p. 238; Konow, 1886b, p. 269; Konow, 1800, p. 249; Dalla Torre, 1804, p. 158 ; Konow, 1905, p. 89 ; Slingerland, 1905 , p. 58.
Fenusa dohrnii; Enslin, 1914, p. 302; MacGillivray, 191\%; p. 157; Yuasa, 1922, p. 97 ; Scidel, 1926, p. 239; Obarski, 1933, p. 157; Conde, 1934, p. 186; Ross, 1936, p. 263; Crevecoetr and Marēchal, 1938, p. 496; Benson, 1940, p. 213; Benson, 1941, p. 90; Buhr, 1941, p. 909 ; Wahlgren, 1944, p. 146 ; Berland, 1947, p. 204; Hering, 1951, pp. 220, 314; Ross, 1951, p. 32 ; Wahlgren, 1951, p. 75 ; Benson, 1952, p. 100 ; Takeucht, 1952, p. 60; Maxwell, 1955, p. 59; Raizenne, 1957, p. 25; Lorenz and Kraus, 1057, p. 140; Rafes, 1958, p. 40 ; Benson, 1062, p. 392: Smith, 1967, p. 282; Benson, 1968, p. 150.
Fenuselde dohrnii; Dovnar-Zapolsky, 1929, p. 38.
Fenusa curths Norton, 1862, p. 199, of; Norton. 1867, p. 225; Provancher, 1888, p. 347 (?) ; Dalla Torre, 1894, p. 156; Konow, 1905, p. 90 ; Cresson, 1928, p. 5; Taylor, 1031, p. 451; Ross, 1936, p. 263 (= dohrnii Tischbein).

Phaentsa meldnopoda Cameron, 187 Ga, p. 6.
Femusa melonopoda: Cameron, 1882, p. 202; Fletcher, 1831, p. 252.
Fenusa wripes of anct., nee Lepelcticr, Dyar, 1803, p. 247; Harrington, 1803, p. 69 ; Dyar, 1898 , p. 137.

The complete European synonymy is not given here. Benson (1952) gave molanopoda Cameron and westwoodi Cameron as synonyms of this species.

Female.-Average length, 4.0 mm . Black with front and middle tibiae whitish; hindtibia and all tarsi black to whitish, variable. Wings moderately, uniformly intuscated.

Antenna more slender and longer than that of pusilla; longer than thorax with third semment 11.2 times as long as fourth segment and segments 4 and 5 at least more than twice as long as broad (pl. IIT, 32). Surface sculpture on mesonotum and abdomen absent. Vein $2 r$ of forewing joins $R s$ apical to $3 r-m$. Sheath short and rounded (pl. 1V, 59). Lancet with each serrula low, flat, with one anterior and about three posterior subbasal teeth (pl . VII, 78).

Male.-Unknown. Parthenorenetic.
Larra-Final leeding stage (pl. XVIII, 228, 229). Length, 7.0 mm . Similar to the harva of pmsilla with the following differences: Body evenly covered with minute darkened spines; sternum of first abciominal segment without dark plate; pronotal and sternal plates of thoma lightly selorotized : mandibles with fewer teeth.

The larva differs from that of nlmi by the lack of a plate on the sternam of the first abdominal segment, lack of a concentration of small spines on the renter of the ninth abdominal segment and fbout the prolegs and by having two spines on the lacinia.

Dyar (78.3) described six larval stages of this speries, and Slingerland (16n5) described the larva but could not distinguish it from $\quad 1 m i$. Lorenz and Kraus ($19 ; 5$) atso described the larva.

Holotupes.-F . curtus Norton, a female labeled "Penna.," is tye No. 10377 at the Aeademy of Natural Sciences of Phitadelphia. Tischbein's type may be at the Zoological Museum, Tamburg, Germany.

Distribution.--Transeontinental across Noth America: Furope, Japan: South Alrica. The following records are merely a list of localities taken from the specimens I have examined. Alberta: Edmonton: Wabmum. Bribish Columbia: Fernie. Colorado: Eldora; Custola; Cmanby: Rocky Mountain Nat'l. Park; Green Mtn. Falls; Cameron l'ass; Ward: Fmpire; Poalder Canyon; Poudre River Canyon. (omucchirnt: Lyme; Wallingford: Stamford. Illimois: Chicago. Maine: North Bridgetom; Orono. Massachuretts: N. Adams. Michigan: Ann Arbor, New lirnastich: Nerepis. Newfoumdland: Cool's Brook: Spruee Brook; Brichy Tk. Bog; Baie Verte Cp.: Terra Nova Nat'l. Park: Aspen Brook Cp. Catamaran Co.: Crabbs River Camp; Cormack; Codroy Pond; Corner Brook; Deer Lake: Big Falls. New Hempshire: Franconia. New Mcrion: Tans. New Somk: Thaca: Tronkiyn. Nora Scotia: Antigonish. Ontario: Ottawa; Weston; Swansea. Oregon: Hood River; Wallowa Co.; Wallowa Mtns. Penmwhlomia: North Fast. Saskatchewan: Waskesia. Y/ah: Mana; I'nita Mins. Washinglon: Nehcotte.

Host.-T.eaf mines of Ahums spp. Dyar (18ns) bred this species
from "Aluus ruyosa (servulata)" in Massachusetts, and Slingerland (1005) recorded this species from European alder (Alnus glutinosa (L.) Gaertn.).

Biology.- Slingerland (1905) gave the most complete account of the biology of this species from his observations in New York. The adults are active about the middle of May and oviposit in the surface of the leaf, usually in the central part between the larger veins. The larvae feed for about 3 weeks, mining through the leaf, then drop to the ground where they pupate or overwinter in a papery cocoon in the soil. All stages have been reported active through September, and there are probably two or three generations a year. The damage is recognized by the "blisterlike" appearance of the leaves. Un to 12 harvae may feed in a single leaf and their mines coalesce to form the "blisters."

Discussion.-This species is most likely to be confused with pusilla but may be separated by the more slender and longer antema and dawker back tibia. The lack of surface scalpture on the mesonotum and fat servalae of the lancet will separate dohmii from llmi .

Although Norton described this species in 1862 under the name "curtus," it first received attention in North America when it was found damaging European alder at the Experimental Farm in Ottawa by Fleteher (1 s00). Harrington (1893) also found this species in Ottawa. Dyar (1 sog) discovered this species in Massachusetts, and Slingerland (1005) first recorded it from Newark and Thaca, N.Y.

The Europem ader leaf miner is the approved common name for this spocies.

Fenusn pusilha (I,epeletier)

Tenthrak mumila Klug, 1814, p. 277: Krichbaumer, 1884, p. 200. Preoceupied.
Fentast pamik: Leach, 1817, p. 126; Stephons, 1825, o. 41; Westwood, 1840, 10, 54: Thomson, 1870, n, 279 ; Thomsom, 1871, n. 186; Cameron, 1882, p. 293: Enslin, InIL, p. 303; Mritton, 1925, p. $340 ;$ Britton, 192G, p. 329 ; Dovnar-Zapolsky, 1929, 12. 39; Friend, 1931, p. 171; Ghasmov, 1932, p. 693; Malaise, 1032, p. 27: Friend, 1933, D. 291; Obarski, 1433, p. 157 ; Twinn,
 Brown, IM40, j. I6; Benson, t!40, p. 213; Buhr, 1941, p. 912 ; Wahigren, 1944, p, 147; Forland. 19.47, p. 26I; Dering, 11351, p. 314.
Emphy/us pumila: Harlig, 1837, p. 259.
Mhtrumstr pumila: Cameron, $187 \mathrm{Ga}, \mathrm{p} .7$; André, 1880, p. 231.
Kaliosysphingo pumilt: Konow, 1885, p. 297; Konow, 18RGb, p. 269; Konow, 1890 , p. 24! ; Dalla Torre, 1894 , p. 158 : Konow, 1905, p, 89; Zirngiebl, $1955, p .93$.
Dolerus pusillus Lepeletier, 1823, p. 120; Bhanchard, 18.60, p. 241.
Phachusa phasilkt: André, 1880, 1. 209.
Fenusa pusilla: Ross, 193f, p. 265; Benson, 1940, p. 213; Ross, 1951, p. 31; Wahlgren, 1!151, !. 75; Benson, 1952, p. 10!; Maxwell, 1955, p. 59 ; Peterson, 1950 , p. 270; Chent, 19t56, $p .17$; laizenne, 1957, ;i, 25; Lorenz and Kraus, 1957, p. 140; Schuder, 1958, p. 160; Lindquist, 1959, p. 626 ; Benson, 19ti2, p. 392; Cheng ant Lehoux, 1965, p. 175; Smith, 1967, p, 282: Burks, 1967, p. 16.
Female.-Average length, 3.7 mm . Biack with extreme apex of
each femur, each tibia, anù tarsus whitish. Wings lightly infuscated, darker on basal half.

Antenna stocky, shorter than thorax; third segment twice as long as fourth segment; segments 4 and 5 less than twice as long as broad (pl. III, 33). Mesonotum and abdomen without surface sculpture. Vein $2 r$ of forewing joins $R s$ apical to $3 r-m$ (pl. III, 19). Sheath short and rounded (pl. IV, 59). Lancet with each serrula low and flattened, with one anterior and five or six posterior subbasal teeth (pl. VII, 79).

Male.-Average length, 3.5 mm . In color and structure similar to female. Genitalia as in plate X, 124 and 125.

Larca.-Final feeding stage (pl. XVIII, 230-235). Length, 5.5 mm . Slightly dorsoventrally flattened. White; head capsule light brown; plates of thoracic sterna and sternum of first abdominal segment dark brown.

Head dorsoventraly fattened, round from above, prognathous. Antenna one-segmented. Labrum slightly emarginated with two setae on dorsal surtace; epipharynx with row of four or five stout spines on each half; maxillary palpus four-segmented, first, second. and third segments each with one small seta; galea conical, subequal in length to maxilhary palpus: lacinia with two stout spines; palpifer with feur setae; right mandible with four ventral and two dorsal teeth; left mandible with four ventral and three dorsal teeth; each mandible with one seta on outer basal angle; labial palpus three-segmented; mentum with four setae.

Thoras with dark prosternal, mesosternal, and metasternal plates. Thoracic legs five-segmented, short and directed laterally; tarsal claw smal but present.

Sternum of first abdominal segment with dark plate. Prolegs on abdominal serments 2 to 8 . Abdominal segments 1 to 8 each with two annulets. Small spines on venter of ninth segment and about prolegs absent.

The larra has been described by Friend (1033), Peterson (1956), Lorenz and Kraus (1950) and Lindquist (1959).

Holotypes.-Klug's type is probably in the Zoological Museum of Berlin. The location of Lepeletier's type is not known; it may be in the Museum of Natural History, Paris.

Distribution.-Northeastern and northwestern United States, southeastern Canada: Europe. The following records are from those specimens I have examined; in States where this species is widespread. specific localities are not given. Comecticut: Widespread. Mainc: Widespread. Massachusetts: Widespread. New Brumsuich: Widespread. Newfomdlond: Insular, widespread. New Hampshirc: Widespread. New, Iersey: Widespread. New York: Widespread. Nora Scotin: Widespread. Ontorin: St. George; Islington. Oregon: Gresham. Quebec: Widespread in southern part of Province. Vrmont: Widespread. This species has also been recorded in the U.S. Agr. Res. Serv. Coop. Fcon. Insect Rpt. for 1967 (17 (3.4) : 800) from the following States, but I have not seen specimens: Delaware, Indiana, Iowa, Maryland, Michigan. Minnesota, Ohin, Pennsylamia, Rhode Island, Washington, West Virginia, and Wisconsin.

Host.-Leaf miner of Betula spp.
Biology.-Friend (1938) published the most complete biological treatment of this species in North America. The adults fly early in the spring, usually in May, and are very common everywhere around birches. There are several generations a year, and the adults may be collected from May to August. Oviposition is on the surface of the leaf, not on the margins as is that of Heterarthrus nemoratus and Messa nana. On maturing, the larvae drop to the soil to pupate or overwinter. The birch forests of the Northeastern States may turn entirely brown as a result of the damage by the mining larvae.

Discussion.-This species may be confused with dohrnii but is separated by the shorter antenna and white back tibia. The lack of surface sculpture on the mesonotum and low fat serrulae of the lancet will separate it from ulmi .

This species was first discovered in North America by Brition (1925) in Connecticut. It has since become widespread in northeastern United States, eastern Canada, and more recently has been introduced into Oregron and Washington. Friend (1033) reported on its history and included a good bibliography.

The approved common name for this species is the birch leaf miner.

Femusa ulmi Sundevall

Fenusa ulmi Sundevall, 1844, p. 240; Healy, 1869, p. 297; Kaltenbach, 1874, P. 539; Cameron, 1882. p. 205; Enstin, 1914, p. 302; Dovnar-Zapolsky, 1929, p. 38; Conde, 193.1, p. 185; Stritt, 1935, p. 187; Grandi, 1936, p. 246; Skala, 1936, p. 56 ; Ross, 1936 , p. 265 ; Crevecoeur and Maréchal, 1938, p. 497; Benson, 1940, p. 213; Benson, 1041, p. 89; Buhr, 1941, p. 025 ; Wahlgren, 1044, p. 147: Berland, 1947, p. $264 ;$ Wahlgren, 1951, p. 75 ; Ross, 1051, p. 31: Benson, 1952, p. 109; Maxwell, 1955, p. 58; Zirngiebl, 1955, p. 93; Raizenne, 1957, p. 25; Lorenz and Kraus, 1957, p. 140; Benson, 1902, p. 392 ; Smith, 1967, p. 282.
Phetenusa ulmi: Cameron, 1876a, p. 9 ; André, 1880, p. 230.
Kaliosysphinga ulmi: Konow, 1886b, p. 269; Konnw, 1890, p. 249; Dalla Torre, 1894, p. 153; Slingerland, 1905, p. 49; Konow, 1005, p. 89; Herrick, 1913, 5. 491.

たalofenust ulmi: Viereck, 1910, p. 591; MacGillivray, 1916; p. 157; Yuasa, 1922, p. 97 ; Twinn. 1934, p. 77.
"an elm leafminer," Felt, 1898a, p. 21; Felt, 1898b, p. 237.
Messe alsia MacGillivray, 1923b, p. 22, Q; Frison, 1927, p. 251; Ross, 1936, p. 265 ($=$ ulmi Sundevall).

Female.-Average length, 4.0 mm . Entirely black with front tibia whitish and midde tibia and hindtibia brownish. Wings uniformiy, lightly infuscated.

Antenna stocky; third segment 1% times length of fourth segment; segments 4 and 5 less than twice as long as broad (pl. III, 33). Lateral lobes of mesonotum with fine surface sculpture; abdominal tergites dull with alutaceous surface sculpture. Vein $2 r$ of forewing meets Rs basal to $3 r-m$. Sheath short, rounded (pl . IV, 58). Lancet with each serrula long, lobelike, rounded at apex, without subbasal teeth (pl. VII, 77).

Male.-Unknown in North America. Rare in Europe (Benson, 195~).

Larva.-Final feeding stage (pl. XVIII, 220-227). Length, 7.8 mm . Slightly dorsoventrally flattened. White; head capsule, notal and stemal plates of thorax, and sternal plates of first three abdominal segments light brown. Dorsum and venter of body with fine microscopic setae, larger and more abundant around prolegs of abdominal segments 7 and 8 and on ventral swellings of abdominal segment 9 .

Head dorsoventrally flattened; prognathous. Labrum slightly emarginated, two setae on dorsal surface; epipharynx with six stout spines on each half; right mandible with three ventral and two dorsal teeth; left mandible with three ventral and three dorsal teeth; one seta on outer basal angle of each mandible; maxillary palpus four-segmented; galea conical. subequal in length to maxillary palpus; lacinia with three stout spines; three setae on palpifer; labial palpus three-segmented, conspicuous; mentum with four setae.

Pronotal plate present; large prosternal plate and small mesosternal and metasternal plates present. Mesonotum and metanotum with dorsal swellings lacking microscopic setae. Thoracic legs five-segmented, small; tarsal claw minute, hooklike, appearing absent but visible under high magnification.

Venter of abdominal segments 1 to 4 with small light central plates. Prolegs present on segments 2 to 8, each with numerous microscopic spines about them; swellings on venter of segment 9 with concentration of small spines.

Healy (1869a), Slingerland (1905), Yuasa (1922), and Lorenz and Kraus (19.5\%) also described the larva of ulmi. Maxwell (1955) described the internal larval anatomy.

Holotypes.-M. alsia MacGillivray. a female labeled "Ithaca, N.Y.. 16 May 97," is at the Illinois Natural History Survey. The location of Sundevall's type is not known.

Distribuion-Northeastern United States and southeastern Canada. The following records are from those specimens that I have examined. Massichusetts: Danvers, V-15-26, Ulmus. Michigan: East Lansing, May 15. 17, 1963. New York: Ithaca, June 6, 1904, V-22-1926. V-17-1963. June 2. 1904; Van Natta's Dam, Ithaca, May 23, 1937; Inlet Valley, Ithaca, V-3-1913; New Rochelle, May 9, 1925 ; Geneva. May 17, 1954, V-18-15; Delmar, May 15, 1906 ; Albany, April 5, 1903. Ontario: Weston, May 29, 1934, Quebec: St. Hillaire, 24-V-22.

Host.-LLeaf miner of elm (Ulmus spp.). Felt (1898a) recorded it from American elm. However. Slingerland (1905) recorded it from English and Scotch elms in New York and stated that the American elms were immune from attack even where the different host species were growing in close proximity.

Biology.-Slingerland (1005) reported on the biology of this species. The adults fly from the middle of May to the first of June. The eggs are usually inserted near the midrib of the leaf, sometimes as many as 25 per leaf. The larvae feed for about 3 weeks. and, as they develop. the mines may coalesce to give a blisterlike appearance to the leaf. About mid-July the larvae drop to the
ground and form thin papery cocoons in the soil where they overwinter. There is one generation a year.

Discussion.-The surface sculpture of the mesonotum and abdomen, the position of yein $2 r$ in the forewing, and the lobelike serrulae of the lancet will separate this species from other Fenusa species.

This is probably an introduced species that was brought to America with the imported elms. The first record for North America is that by Felt (1S9Sa), who recorded it from New York as being a pest of elms. Slingerland (1905) first found this species in New York in 1899.

The approved common name for this species is the elm leaf miner.

Genus FENELLA Westwood

Fenella Westwood, 1840, p. 54; Cameron, 1882, p. 288; Konow, 1886b, p. 271; Dalla Torre, 1894, p. 155; Ashmead, 1898, p. 250; Konow, 1905, p. 90 ; Enslin, 1914, p. 308; Benson, 1936, p. 623; Benson, 1941, p. 87; Berland, 1947, p. 267; Benson, 1952, p. 109; Benson, 1953, p. 136; Lorenz and Kraus, 1957, p. 138; Smith, 1967, p. 281.
Type-species: Fenefla nigrita Westwood. Monotypic.
Description.-Antenna with 11 or 12 segments; second segment longer than broad; third segment longer than fourth segment; segments beyond third subequal in length (pl. III, 34). Clypeus truncate; malar space less than diameter of front ocelius; postgenal carina absent. Tarsal claw simple, basal lobe absent (pl. III, 21) ; fourth segment of back tarsus not conspicuously produced apically (pl. III, 28). Forewing with vein $2 A$ and $3 A$ curved up and joining 1 A forming small basal anal cell. Hindwing with radial cell open; anal cell absent; cells $R s$ and M absent (similar to pl. III, 19, 20).

Fenella is close to Femusa, but it may be separated by the longer antenna and the less apically produced fourth segment of the back tarsus. Also, members of this genus are associated with herbs, whereas members of F cmusa are associated with trees.

This is a small genus of about six species, only one of which has been found in North America. Benson (1953) treated five species in a revision of this genus.

Description of Fenella Species

Fenella nigrita Westwood

Fenella nigrita Westwood, 1840, p. 54; Thomson, 1870, p. 270; Thomson, 1871, p. 180; Cameron, 1876a, p. 15; André, 1880, p. 233; Cameron, 1882, p. 288; Brischke and Zaddach, 1883, p. 257 ; Konow, 1886b, p. 271; Konow, 1887, p. 276; Konow, 1890, p. 249; Dalla Torre, 1894, p. 155; Ghigi, 1904, p. 16; Enslin, 1914, p. 308; Dovnar-Zapolsky, 1929, p. 39; Dovnar-Zapolsky, 1931, p. 55 ; Conde, 1934; p. 186; Stritt, 1935, p. 187; Grandi, 1936, p. 250; Kvicala, 1938 , p. 151; Benson, 1940, P. 213 ; Benson, 1941, p. 89; Buhr, 1941, p. 908; Wahlgren, 1944, p. 148; Berlantl, 1947, p. 268; Wahlgren, 1951, p. T6; Benson, 1952, p. 109; Benson. 1953, p. 136; Lorenz and Kraus, 1957, p. 140; Ermolenko, 1061, p. 04 ; Smith, 1967, p. 281.

Female.-Average length, 3.0 mm . Black with labrum, extreme apex of each femur, each tibia, and each tarsus brownish. Wings uniformly, moderately infuscated.

Sheath short, rounded, without scopa at apex (pI. IV, 54). Basal serrulae of lancet pointed, with no anterior and seven or eight fine posterior subbasal teeth; apical serrulae flattened, each with seven or eight fine teeth on apical flattened margin (pl. VII, 82).

Male.-Unknown. Parthenogenetic.
Larva.-Final feeding stage (pl. XVII, 213-219). Length, 6.0 mm . Dorsoventrally flattened. White; head capsule, pronotal plate, large prosternal plate, and small mesosternal and metasternal plates light brown; dorsum of 10th abdominal segment very light brown.

Head dorsoventrally flattened, prognathous; oblong in dorsal view. Antenna conical, indistinctly three-segmented. Labrum slightly emarginated with two setae on dorsum; epipharynx with row of five short spines on each half; each mandible with three teeth; one seta on outer basal angle of each mandible; maxillary palpus four-segmented, palpifer with two setae; galea long, subequal in length to maxiliary palpus; lacinia with two long stout spines; labial palpus three-segmented, long and distinct; mentum with four setae.

Pronotal plate present; large prosternal and small mesosternal and metasternal plates present. Thoracic legs five-segmented, short, directed laterally; tarsal claw present.

Prolegs on abdominal segments 2 to 8 , indistinct on 10. Abdominal segments 1 to 8 indistinctly two-annulate. Small plate on sternum of first abdominal segment. Dorsum of 10 th abdominal segment slightly darkened, with numerous setae.

Lorenz and Kraus (1957) described the larva of this species.
Holotype.-Westwood's types are in the Hope Museum, Oxford, England.

Distribution.-Northeastern United States and southeastern Canada; Europe. Connecticut: Canaan, 15-VIII-65, A. Stone. Maine: Penobscot Co., 3 mi N. Passadumkeag, May 20, 1966 , D. R. Smith. Michigan: E. Lansing, May 17, 1963, F. E. Giles, May 18, 1962, G. Eickwort. Ontario: Ottawa, ex Potentilla, July 20, 1964, W. R. Richards.

Host.-Leaf miner of Potentilla sp. In Britain it is found on Agrimonia ellpatoria L. and Potentilla reptans L. (Benson, 1952).

Biology.-There is no North American literature on the life history of this species. In Europe Wahlgren (1944, 1951) and Lorenz and Kraus (1057) published some life-history notes.

Discussion.-This small species was first collected in North America at Oltawa, Ontario. Since then several specimens have been found from other localities. It is identical to the European specimens of nigrita and may be an introduced species.

Literature Cited ${ }^{1}$

André, E.
1879-82. Species des hyménofteres d'europe et d'algérie. V. 1, 642 pp. Beaune (Côte-d'Or), France.
Ashmead, W. H.
1898. CLASSification of the horntalls and sawflies, or the suborder piytophyga. Canad. Ent. 30: 141-148, 177-183, 205-213, 225232, 249-257, 281-287, 305-316.
Balaghowsky, A., and Mesnil, L.
1935. Les insectes nuisibles aux plantes cultivées. leurs moeurs. leur destruction. V. 1, 1137 pp. Paris.
Balch, R, E.
1939. Entomological investigation. report on forest insect condrtions in nova scotia in 1938. Nova Scotia Dept. Lands and Forests Rpt., Pub. 1938, pp. 35-38.
Beffa, G.
1934. I parassity animali delle plante coltivate od utili milan. V. 2, pp. 347-317. Milan, Italy.
Benson, R. B.
1936. Two new european sawfly genera of tife subfamily fenusinae (hymenoptera: tenthredinidae). Ann. and Mag. Nat. Hist. 18: 620-626.
1938. ON The Classification of sawflies (hymenopterd: sympityta). Roy. Ent. Soc., London, Trans. 87 : 353-384.
1940. Sawfles of the berkhamsted district with a list of the Sawfles of hertfordsilire and buckinghamshire, and a survey of the british species (hymenoptera: symphyta). Hertfordshire Nat. Hist. Soc. Trans. 21: 177-231.
1941. on the european genera of the fenusini and two undecognized british species (hymenoptera, sympiyta). Royal Ent. Soc., London, Proc., Ser. B, 10: 85-90.
1943. SOME REPUTED bRITISH SAWFLIES NOT FOUND SINCE STEPHENS'S days (hym., Symphyta). Ent. Monthly Mag. 79: 5-12.
1952. HYMENOPTERA (SYMPHYTA). FAMILY TENTHREDINIDAE. In Roya! Entomological Society of London, Handbooks for the Identification of British Insects, v. 6, pt. 2 (b), pp. 51-137. London.
1953. A revision of the genus fenella westwood (hymen., tenthredinidae). Roy. Ent. Soc., London, Proc., Ser. B, 22: 136138.
1959. FURTHER STUDIES ON THE FENUSINI (HyMENOPTERA: TENTHREDINIdae). Roy. Ent. Soc., London, Proc., Ser. B, 28: 90-92.
1962. holarctic sawfles (hymenoptera: symphyta). Brit. Mus. (Nat. Hist.) Ent. Bul. 12, pp. 381-409.
1968. hymenoptera from turhey, symphyta. Brit. Mus. (Nat. Hist.) Ent. Bul. 22, pp. 111-207.
1947. Faune de france. v. 47. hyménoptères tenthredoïdes. 496 pp. Paris.

[^4]Blanchard, C. E.
1840. Hfstore naturelle des animaux articulés. V. 3, 672 pp. Paris.
Brischike, C. G. A., and Zaddach, G.
1883. beohacitungen über dif arten der rlatt- und holzhespen. Schr. Naturf. Gesell. Danzig 5, pp. 201-328.
Britton, W. E.
1921. the pear and cheriy slug. caliroa cerasi linn. Conn. Agr. Expt. Sta. Bul. 226, pp. 199-291.
1925. TWENTY-FOURTH REPOBT OF THE STATE ENTOMOLOGIST OF CONNECTLcut, 1924. Conn. Agr. Expt. Sta. Bul. 265, pp. 221-344.
1920. Twenty-firtil report of tie state entomologist of connecticut, 1925. Conn. Agr. Expt. Stil. Bul. 275, pp, 301 -332.
Brown, A. W. A.
1940. annedl mbpoht of the forest insect survey 1930. Canada Dept. Agr. Porest Insect Survey Ann. Rpt. 4: 5-37.
Brown, L. R., and Eads, C. O.
1065. a tecinimal stidy of insects affecting the sycamore tree in Buhr, H .
1941. beobacitotongen ubber naitrungsplanzen, verhbeitting find auftrimen von minierfnden matitivespen. München. Ent. Gesell. Mitt. 31, pp. 903-926.
Burks, B. D.
 tera: tenthredinidae). Ent. News fi8: 207-210.
1958. Syambyta, on Krombein, K. V., ed., Hymenoptera of America North of Mexico, Symoptic Catilor, 1st Sup., U.S. Dept. Agr. Agr. Monog. 2, pp. 8-17.
1907. Symbilita. In Kromhoin, K. V., and Burks, B. D., eds., Hymenoptera of America North of Mexico, Symoptie Catalog, $2 d$ Sup., U.S. Dept. Agr. Agr. Monog. 2 , ph. fi-g. 7.

Cafsar, L.
1921. insects of the sbason in ontario. Ontario Ent. Soc. Rpt. 1920, рр. 35-45.
Camacho, C.
 Policia Sanit. Veg. Santiago de Chile. Cameron, P.

187Ga. A monograph of the hritish specifs of phantiga, Glasgow Nat. Hist. Soc. I'roc. 3, pp. 5-15.

1876b. descriptions of pive new, or hittige known, spicife or britisti TENTIREDNidaE. Ent. Monthly Mag. 12: 189.-103.
1882. a monograph of the bitisif phytorbagotes hymenoptera, V. 1, 3.10 pp . Lontion.
Cienc. H. H., and Larovex, E. I.
1965. Life history and habits of phe bircli leaf minfa, fenitsa
 bley bircit, betl'la cabrilda grandis mlancilabd, morgian arboretom, quebec 196.L. Ent. Soc. Quebec Ant. 10, pp. 173-188.
Citiesa Molinari, 0 .
1942. ENTOMOLOGLA Agricola. 571 pp. San Juan, Argentina. Cimtrenden, F. H.
1908. tie rose slugs. U.S. Dept. Agr. Cir. 105, 12 pn.

Conde, 0 .
1934. óstbattiscife tenthreninomed. if. Korresp. Bl. des Naturf. Ver. zu Riga 61, pp. 1(88-196.
1937. östbaltische tentilredinoide, hit. nebst bermerkungen \%u einigen anderen paliabitischen arten. Korresp. Bl. des Naturf. Ver. zu Riga (i2, pp, 103-112.
Cook, A. J.
1914. that cherry and pear slug. Galif. State Commr. Hort. Monthly Bul, 3: 40-i1.
Costa, o.g.
1859. Phuna del regno di napoli. pt. 2. menotterl. [n.p.] Naples. Cresson, E. 'T.
1880. capalogue of the tentifredinidae and uroceridae wf north America. Amer. Ent. Soc. Trans. 8: 53-6i8.
1887. Synopsis of tile famhites and genera of tile itymenoptera of ambrica, nobtli of ahisico, together with a catalogue of the described species and mblograpity. (Amer. Ent. Soc. Trans., sup. vol.) 350 pp. Philadelphia.
1028. the types of ifymenoptera in thf academy of natural scibates of pimadelplla other than those of e\%ra t. cresson. Amer. Ent. Soc. Mem. 5, 90 pp .
Crevecoerrb, A., and Marecthal, P.
 logere des byatenopteres de beloique. Soc. Ent. de Belg. Bul. et Amm. 78, pp. 175-508.
Cusiman, R. A.
1911. Papers on meciptores futit insects and insecticides. notes on
 LhNa Rouwer). U.S. Bur. Ent. Bul. 97, pp. 91-102.
Damprine li. ls.
 HYMENOTERA, symphyon). Akad. Nauk Ammienskoi SSR Zool. Inst. Sbornik 12: © $\mathrm{t3}-98$. [In Russian.]
Dhala Torre, c. g.
189. Cathlog's hymenoptoma, v. 1. tenthrbinidae inct., urocemidae (phylloplaga and Nyophaga). 450 pp. Lipsiae.
Daniel. D. M.
1928. mology and control of tile blackberry teaf-miner. N.Y. State Apr. Expl. Stal. Teeh. Bul. 133, pp. 3-38.

1950. tentremintoss peritometales a la agrtcultira. Bol. de Patol. Vex. y Ent. Agr. 17, pr. 1f:3-208.
Downab-/amposiky, D. P.
1029. Kirs to Clahastogastra Latrat. No. Caucasian Region. Sta. Plant Protect. Ser. A, No. 12, pp. 1-10. [In Russian.]
1931. on the sabflifs (chalastogastra) of the nortil cadcasian Region. No. Cancasian Phant Protect. Sta, Bul. 6-7, pp. 34-62. [In Russian.]
Dyak, If. (f.
1893. bescriptions of tie farval of certmin tenthredinidae. Canad.

1894. nescriptions of larvae of certain tentifredinidae. Canad. Ent. 26: 42-46.

1806a, mescriptions of the larvae of certaln tentiredintdae. Cinad. Ent. 27: 191-196.

1895b. the latryaf of the nortio american sawfles. Canad. Ent. 27:337.3.4.
1896. Notes on sawfly labvae. Canad. Ent. 28: 235-239.

Dyar, H. G.
1898. on the larvae of certain nematinae and blennocampinat, Witil descriptions of new species. N.Y. Ent. Soc. Jour. G: 121-138.
Enslin, E.
1914. metentiredinoiden miteleuropas. (Beit. Deut. Ent. Ztschr.) 1914, pp. 203-309. Berlin.
1924. ueber blatt-und holzwespen. Ent. Rundschau 41:37-38. Ermolenio, V. M.
1901. dhscmiption of the male of penblla nigrita westwood, 1814 (Hymenoptera, tenthrfdinidae) from juniper wooded slopes of tie ukrainian carpathins. Akad. Namk Ukrain. SSR Inst. Zool. Trudy 17: 94. [In Ukrainian.]
Eming, H. B .
1917. parthenocenfsis in the pear-slug saw-fly. Ent. Soc. Amer. Ann. 10: 330-336.
Fabricilis, J. G.
1781. Srecies insectorum. V. 1, 552 pp . Bohn.
1787. mantiss insectorum. V. $1,348 \mathrm{pp}$. Hafniae.
1793. entomolocia systematica. V. 2, 514 pp. Hafniae.
1804. SYSTema pibhatorim. 440 pp . Brunsvigae.

Fallen, C. F.
1807. Försök till uppstillning ocit bekhinning pa de : sverige funne abter af insict slïgtet tenthredo linn. Vetensk. Acad. Handlingar 28: 179-209.
1808. Försöt tili, uppstĩlaning octi bekrifning pà de i syerige funne arter af insect slígtet tenthredo linn. Vetensk. Acad. Handingar 29: 37-64.
1829. monograbhia tenthrfdnetarla suectae. 48 pp . Lund. Felt, E. P.

1898a. notes on some of the insects of the year in the state of New york. U.S. Dept. Agr. Div. Ent. Bul. 17 (n.s.), pp. 16-24.

1898 b.
an elim leaf-miner. fombternth beport of tie state entomologist on the induriols and other insects of the state of NEW York. N.Y. State Mus. Bul. 5, No. 23, pp. 153-295.
Fletcifra, d.
1891. notes of the yearin canada. Canad. Ent. 23: 252-253.

Flftchiar, J. E.
1881. Notes on tenthrpontma. Ent. Monthly Mag. 18: 120-127.

Forbas, R. S., Undmwoon, G. R., Cuminc. F. G., and Eidt, D. E.
1960. mabitide provinces, morest insect survey. Cabada Dept. Agr., Forest Biol. Div., Forest Insect and Dis. Survey Amm. Rpt. 1959: 17-29.
Foraes, S. A.
1883. Twelfth report of the state entomologist on the noxious and heneptcial insects of the state of llanois. (1st Ann. Rpt. by S. A. Forbes.) 154 pp . Springfield, Ill.
1885. Folrteentu report of the state entomologist on the nomious add beneficill insects of the state of illinois. 136 pp . Springfield, 11 .
Forsics R.
1927. tenthreminoden ats chna, Arkiv. für Zool. 19, pp. 1-12.
1020. notes on somi motle known australian tenthrednomea. Notulae Ent. 9: 81-8.4.
1930. A NEW GENUS OF THE TRBUS HOPLOCAMPINI FROM PALESTINE. Notulae Ent. 10: 103-104.
1931. NOTES ON A COLLECTION OF ETHIOPIAN ORYSSOIDEA AND TENTHREDINODEA (INSECTA: HYMENOPTERA). Amn. and Mag. Nat. Hist. 8: 1-36.
Friend, R. B.
1931. THE LIFE HISTORY AND CONTROL OF Tita BIRCI LEAF-MINING SAWMiy, fenusa pumila klug. Jour. Econ. Ent. 24: 171-177.
 Agr. Expt. Sta. Bul. 348, py. 291-364.
Frison, '1. H.
1927. A List of the insect rypes in the collection of tile ileinois STATE NATURAL IHSTORY SURVEY AND THE UNIVERSITY OF ILLINOIS. III. Nat. Hist. Survey Bul. 16, pp. 137-309.

Frocgart, W. W.
1001. THE pliak and cllbrry selte (ERIOCANPA LIMACINA, RET\%), GENERALIY KNOWN AS SELANDRIA CbRASI, WiTH NOTES ON AUSTRALIAN Snwflas. Agr. Gaz. N.S. Wales Mise. Pub. 407, 11 pp.
Grimpt, A. W.
1950. LNEAR WCREMENT IN WIDTH OF THE HEAD CAPSULE OF TWO SPECIEA OF SAWPlas. Citnad. Ent. 88: 17-23.
Ghigi, A.
1004. CATALOGO DES TENTHMEDINHD DRL MESFO \%OOLOGCO DI NAPOLI, Napoli Univ. Mus. Zool. Ann. 1: 1-28.
Gildetre, C. B., and List, (i. M.
1915. INSECTS AND insecticides. Colo. Agr. Expt. Sta. Bul. 210, 55 pp.

Glascow, R. D.
IGS2. THF WHTF HRCH LEAE MNING SAWPEY, PHYLLOTOMA NEMORATA FALLEN IN NEW YORK. Jour. Econ. Ent. 25: 693-695.
GMEEIN, J. F.
1790. CABOLI A linNé Systema nattrae. Edi. 13, tom. I, pp. 2653-2671. Lipsize.
Gofbeil. A. R.
1937. Notes str firiliotonia nemorata fallen, Prov, de Quebec Min. des Terre et Forets Bul, 1, 7 pp .
GOLFARI, L.
1937. CONTRIBCTI ALLA CONONCBN\%A DELLENTOMOFAUNA DEL PFRO (PIRUS Comavitis L.) \&. Bol. Ist. Ent. R. Univ. Bologna, v. 7, pp. 20(i-249.
Gonski, S. B.
1852. ANALPCTA AD ENTOMOCRAPHIAM PROVINCIARUM OCCIDENTALIMFRIDI-

Grandi, Gr.
1936. MORFO,OGIA ED FTOLOGB COMPARATA DI INSETTI A BEGME SPFCIAL1ZZATO VIt. LA MORFODOGIA FOMPARATA DELLE EABVE DI AECUN: LamNotremi tenzumedinidi. Bol. Lab, Ent. R. Ist. Agr. Bolorna, v. 8 , pp. 222-254.

HAMILTON, D. W,
1943. NOTES ON THE GIERRY LEAFMINER. N.Y. State Agr. Expt. Sta. Bul. 703, pp. 59-61.
1950. PROFENUSA CNNADENSIS, A PEST OF FNGLISII MORELLO CIERRIES IN EASTERN NEW YORK. Jour. Econ. Ent. 43: 694-606.
HARDOLIN, R.
19.13. LE PUPNLEMENT ENTOMOLOMQUE DE BOSIFR. 382 pp . Paris.

Harrington, W. IT.
1893. CANADIAN HYMENOPTERA - No. 3. Canad, Ent. 25: 57-64.

Jameis, T. W.
184t. REDORT on the insects indurious to venetidton. Exi. 1, 459 pp. Cambridge, Mass.

Hartig, T.

1837. DIE FAMILIEN DER HAATTWESPEN UND HOLZWESPEN, NEBST EINER alleghabing einteitung zur naturgescilchte der itymenopTEREN. 416 pp . Berlin.
Healy, C .
1838. LTFE MISTORY OF FENUSA ULMII. Entomologist 4: 297-299.

Hellén, W.
1935, MITEILUNGEN ÜBER EINIGE TENTHREDINOIDEN FINNLANDS. Notulae Ent. 15: 15-26.
Hepr, A.
1929.

Hering, M.
1931.

Ütser die mine und das vorkommen von scolioneura nana kLug in der mark brandenburg. Deut. Ent. Gesell. Mitt, 2: 100-111.
1034. SyNOPSIS DER AhORN-Minen. Ent. Jahrb. 43: 6G-74.
1937. dif märkiscien blattwespen-minen der birke (hym. tenTIIRED.). Märkische Tierweld, v. 3, pp. 71-76.
1951. biology of tile leaf miners. 420 pp . Berlin.

Hemick, G. W.
1913. control of two elm-tree pests. Cornell Univ. Agr. Expt. Sta. Bul. 333, pp. 491-512.
Houghton, C. O .
1908. the blackberry leaf-miner (scolioneura capitalis norton). Ent. News 19: 212-216.
1010. two important leaf-miners. Del. Col. Agt. Expt. Sta. Bul. 87, pp. 3-15.
Iukirnevicht, L, A.
1960. insects and mites-pests of stone fruits and currants in central and nortilern kazakilistan. Akad. Nauk Kazakhskoi SSR Inst. Zool. Trudy 11, pp. 12-23. [In Russian.]
Izquierdo, S. V.
1921. nota sobre el huevo de briocampoides limacina ("Chape"). Chilena Hist. Nat. Rev. 25: 120-123.
Jomnson, C. W.
1230. A list of tie insect pauna of nantucket massachusetts. The Nantucket Maria Mitchell Assoc., v. IIT, No. 2, 174 pp.
Jones, E. W.
1945. biological flora of tife britisil isles. insects and fungi associated witic acer. Jour. Ecol. 32: 216-219.
Jörgensen, p.
1913. Las tentirgedinoldea (hym.) de la república argentina. Buenos Aires Mus. Nac, de IIist. Nat. An. 24: 247-287.
Jourdan, M. L., and Rungis, C.
1935. observations sur quelques ifyménoptères du maroc. Soc. Sci. Nat. Muroc, Bul. 14, pp. 204-213.
Jurine, L.
1807. NOUVElle MÉ? TERES. 319 pp . Geneva.
Kaltenbacii, J. Fi.
18G7. die deutschen phytophagen aus der klasse der inseckten. Naturhist. Ver. der Preuss. Rheinlande Verhandl. 24: 21-117.
1874. die pflanzenfeinde aus der klasse der insekten. 848 pp. Stuttgart.
Kincaid, T.
1900. papers from tie harriman alaska expedition, vif. fentoMolomical restlets (1): the tentitedinoidea. Wash, Acad. Sci. Proc. 2: 3.11-3(95.

Kınay, W. F.
1882. List of hymenoftera in the britisil museum. 450 pp . London.
Klug, J. C. F.
1814-18. die blatiowespen nacit miren gattungen und arten zusammengestellt. Gescll. Naturf. Freunde, Berlin, Mag. 8: 4284, 110-144, 179-219, 273-307.
1819. die blattwespen der fabricischen sammiunc. Wiedemann's Zool. Mag., Altona, 2 (3): ($4-01$.
Konow, F. W.
1885. ueber hlattwespen. Wiener Ent. Ztg. 4: 295-301.

1886a. uener einige blattwespen. Wiener Ent. Ztg. 5: 107-110.
1886b. die europisischen hlennocampen. Wiener Ent. Ztg. 5: 183188, 211-218, 207-271.
1887. nachtrag zu den blennocampiden. Wiener Ent. Ztg. 6: 273283.
1890. tentimedinidae europab. Deut. Ent. Ztschr. 34: 225-250̃.
1894. nele europäische blattwespen. Wiener Ent. Ztg. 13: 84-96.
1904. Eln neuer entodecta knw. (hym,). System. Hymenopterologie u. Dipterologie Ztschr. \&: :4-5.
1905. hymenoptera, fam. tentheedindae. In Wytsman, P., ed., Genera lnsectorum, fise. 29, 77 pp. Bruxelles.
1908. de chalastocastris miscellanea (ifym.). System. Hymenopterologie u. Dipterologie Ztschr. 7: 81-93.
Koornnepr, J.
1925. Loose manteekeningen over hymenoptera, Ent. Ber. 6: 357365.

Kotte, W.
1941. Krankheiten und schädlinge m obstbau und ihre bekímpFtevg. 296 pp . Berlin.
Kriechbaumer, J., ed.
1884. Dr. fr. kleg's gesammelte aufsätze über blattwespen. 300 pp. Berlin.
Kvicala, B.
1938. SkOdy bpisobene minujicim mayeem rostlinam na kromeRIzSkU. Ent. Listy Fol. Ent. 1: 141-156.
Leacit, W. E.
1817. the zoological miscellany. V. 3, 151 pp. London. Lebaron, W.
1871. FiRSt annual, keport on the noxious insects of the state of illinots. 166 pp . Springfield, Ill.
1880. tentil report on the noxious and beneficlal insects of the State of illinols. 160 pp . Springfield, III,
Lepeletier, A. L. M.
1823. monograpila tenthredinetabum. 176 pp . Paris.

Lindquist, O. H.
1959. a key to tife laryae of leaf-mining sawflies on birchitin ontario witil notes on their blology. Canad. Ent. 91: 625[27.
and Jickson, G. G.
1965. A leaf-mining sawfly on oak. Canada Dept. Forestry BiMonthly Prog. Rpt. 21 (4): 1-4.

Linnaeus, C.
1758. SYStema naturae, 1. 826 pp . Stockholm.

Lorenz, H., and Kraus, M.
1957. die larval systematik der blattwespen (tenthiredinotdea und megalodontoldea). 339 pf. Berlin.
MacGilliyray, A. D.
1909a. a synopsis of the american species of scolioneurinae. Ent. Soc. Amer. Amm. 2: 259-271.

1909b. A new genla and some new species of tenturedinidae. Canad. Ent. 41: 345-362.
1914. new genera and species of Sawfles. Canad. Ent. 46: 363-367.
1916. tentifedinoidea. In Vierecl:, H. L., Guide to the Insects of Connecticut, pt. 3, The Hymenoptera, or Wasp-Like Insects of Connecticut. Conn. Geol. and Nat. Hist. Survey Bul. 22: $25-$ 175.

1923a. Sawfles from alberta (tenthredinidae). Canada Ent. 55: 158-162.

1923b. A Century of tentiredinoidea. Ill. Univ. Bul. 20, pp. 1-38. Malaise, R.
1920. beiträge zur kenntis schwfolscher bjattwespen. Ent. Tidskr. 40: 97-128.
1931. insektfaunan inom abisko national park in. Svenska Vetensk. Akad. Skr. Naturskyddsiirenden No. 17, pp. 54-68.
1932. entomologische ergebnisse der scinwedischen kamtchatkaExpedition 1920-1922. Arkiv. för Zool. 23: 1-68.
1957. SOME neotropical and oriental tenthredinoddea (hym.). Ent. Tidskr. 78: 6-22.
1961. new oriental saw-flies (hymen. tenthr.). Ent. Tidskr. 82: 231-260.
1963. inmenoptera tentiredinoided, subfamily selandrinag, key TO TIIE GENERA OF tile world. Ent. Tidskr. 84: 159-215.

1964, new genera nnd species of the subfamily blennocampinae (hym. tenthred.). Ent. Tidskr. 85: 20-39.
-_ and Benson, R. B.
1934. tile linnean types of sawfles (hymenoptera: symphyta). Arkiv. för Zool. 26: 1-1.1.
Marlatt, C. L.
1895. the american species of scolloneura knw. Wash. Ent. Soc. Proc. 3: 234-236.
1897. the pear sidg (eriocampoides limicina retyius). U.S. Dept. Agr. Cir. 26 (ser. 2), 7 pp.
Marrliner, T. F.
1936. some cumberland sawfles. Ent. Rec. and Jour. Variation 48: 41-4.4.
Martin, J. L.
1960. THE BIONOMISS OF PROFENUSA THOMSONI (KONOW) (IIYMENOPtera: tenthredinidate a lede-mining sawfly on betula spp. Canad. Ent. 92: 376-384.
Martineay, R.
1965. FOREST INSECT CONditions, Canada Dept. Forestry, Forest Ent. and Path. Br., Forest Insect and Dis. Survey Ann. Rpt. 1964: 43-47.

Maxwell, D. E.
1955. the comparative internal larval anatomy of sawfles (ifymenoptera; tenthredinidae). Canatl. Ent. 87 (sup. 1): 1-132.
Middleton, W.
1922. Sawfles injurious to rose foliage. U.S. Dept. Agr. Farmers' Bul. 1252, 14 pp.
Miles, H. W.
1935. hiological stwdies of certain species of caliroa costa and endelomyda asllmead (iymenoptera: symphyta). A.mm. Appl. Biol. 22: 110-133.
Newan, E.
1838. entomological notes. Ent. Mag. 5: 483-500.

Norton, E.
1861. notice of the genus selandria. Boston Soc. Nat. Hist, Proc. 8, pp. 210-224.
1862. h description of severdl new hymenoptera. Phila. Ent. Soc. Proc. 1, pp. 198-200.
1864. notes on tentiredinidate, with deschitions of new species. Phila. Ent. Soc. Proc. 3, pp. 5-16.
1867. Gatalogite of tile described thentioredinidae and urocbiridae of Nortil america. Amer. Ent. Soc. Trans. 1: 31-8f, 193-280.
1872. notes on nohtif ambican tenthbrinidae, with describtions or nbw species. Amer. Ent. Soc. Trans, 4: 77-86.
Omarski.j.
1933. roślintarkil tryplenniki (chabastogastia) polskicit lasow. cilalastogastra dek wäldoek in bolen. Polskic Pismo Ent. 12, pp. 145-172.
Okuthnt, T.
1965. the japanese sawflies of the genus cadiroa, witil description of its laryal character. Jap. Jour. Appl. Ent. and Zool. 9: 29-33.
Packard, A. S.
1890. thsects indriocs to forest and shade tregs. U.S. Ent. Comn. Rpt. 5 (Bul. 7, rev.), 957 pp .
Parrott, P. J., and Felton, B. B.
1915a. tile cherby and idawthorn sawfly leaf-miner (profenusa coldaris macgit.). N.Y. Agr. Expt. Sta. Bul. 411, pp. 551-580.
and Flemon, B. B.
1015b. cherdy and hawtiorn sawfly lage mingr. Jour. Agr. Res. 5: 519-528.
Peck, W. D.
1700. Natipal imstory of the sletg worm. Mass. Agg. Rpt., pp. 9-20.

PETERSON, A.
1956. Larvale of insects. pt. 1. lepidoptera and plant infesting hymenoptera. 315 pp . Amm Arbor, Mich.
Pierenek, 8.
1969. blattmintbrende tentubedinidae (hymenoptera) aus dem geblet der stadt krakow ynd der wojewodschaft kraków. Acta Zool. Cracoviensia 8: 279-292.
Pierson, hi, B.
1929. obseryations on tie birch leaf-miníng sawfly. Jour. Econ. Ent. 22: 588-594.
and Brower, A. E.
1936. biology and conrrod, of the mach leaf-mining sawfly. Maine Forest Serva and Maine Hardwood Assoc. Bul. 11, 37 pp .
Taylor, R. L., and Whimins, A. H.
1930. progress report on birch leaf miner problem. Maine Forest Serv. Cir. 1, 8 pp .

Poluzzi, C .
1939. notes mologiques sur la tenthrede du porrier. Schweiz. Ent. Porter, C. E.
1928. notas para el estudio me los tentiedinidos de chile. Chile Mus. Nac. Bol. 12, pp. 1-5.
1930a. el "chape" del peral y del cerezo. Rev. Chilena Hist. Nat. 34: 370-373.

1930b. notas para el estudiode los tentredinddos. Rev. de Col. Nac. Vicente Rocafuerte 12, Nos. 42-13, pp. 9-12.
Provancher, A.
1878. faune canadienne, les insectes, uyménopterres. Nat. Canad. 10: 97-108.
1880. Insectes nushmes. Nat. Camad. 12: 126-127.
1883. petite paline entomohogique du canada, v. 2. hyménofterres. 813 pp. Qucber.

1885-89. admitions at cornections au volime in de la fatene fotomologiqued ducanada. dit pp. Quebec.
Rafes, P. M.
1958. pests of thei abder growing in the Nabin sands in the semiDestirt reghon ibeyond the voiga. Moskov. Obsheh. Isp. Prirody Otd. Biol. Bul. (m3: 33-40. [1n Russian.]
Rabenne, H .
1957. Fohest sawfims of solthern ontario and fheir parabites. Canada Dept. Apr. Pub. 1009, 45 pp .
Ratzemere, J. T. C.
184. di fonstinsenten ober abmldeng und beschtrabing der in

 314 pm. Berlin.
Reeks, W. A., and Smera, C. C.
1945. A List of some morest insects of newfoundlind. Acadian Nat. 2: 10-12.
Retzies, A. J.
1733. Caroli de gehr genera et spectes insectorum. 220 mp . Lipsiac. Rhey, C V.
1870. the slig on fear and cherry trees. Amer. Ent. and Bot. 2, p. 296.
1875. SEMENTH anNUAL, REPORT on the Nomions, benefichal, and otiler insects of the state of hassoltri. 196 pp. Iefferson City, Mo.
1877. Nintil annthl report on the nostoos, beneficial, and other insects of the state of missokn. 129 pp. Jetlerson City, Mo.
1889. rose sawfiles in tife enited states. Insect life $\overline{\text { D }: ~ 6-11 . ~}$

Romwer, S. A.
1910. on a colifection of tenthrmdinodea from eastern canada. U.S. Natl. Mus. Proc. 38 , pp. $197-209$.

1911a. notes on tenturednoidea, with descriptions of new species. fapea xit, mischlaneous xotes. Gamad. Ent. 43: 119-123.
1911b. techmical papers on misceilaneols formest insects. in. the gevotypes of the sawrlies or woonwasps, or the strerfamily tentinempoldea. U.S. Bur. Ent. Tech. Ser. 20, pp. 69-109.

1911e. A New sawfly of economic importance (ifymen.). Ent. News 22: 203-205.

1911d. new sawfles in the collections of the united states national museum. U.S. Natl, Mus. Proc. 41, pp. 377-411.
1017. Descriptions of tilirty-one new species of hymenoptera. U.S. Natl, Mus. Proc. 53, pp. 151-176.
1927. on the synonymy of a leaf mining sawfiy. Wash. Ent. Soc. Proc. 29: 67-69.
1929. a note on the synonymi of a bheh leaf miner. Wash. Ent. Soc. Proc. 31 : $62-633$.
Ross, 11. II.
19;b. the nbarctic sawflies of the genis fenusa (fiymenoptera: tenthrednidae). Ill. State Acad. Sci. Trams. 29: 26:3-2660.
1937. a generic classification of the nfatetic sawfles (icimenopTERA, SYMPIITA). III. Biol. Monog. 3-4, pp. 1-173.
1951. Thntimbididaz. It Muespheck. C. F. W., et al. IIymenoptera of America North of Mexieo, Synoptic Catalog. U.S. Dept. Agr.

Rt:sso, G.
1043. Entomologha mikakia. tig pp. Pisa, Italy.

Schumer, D. I .
19\#̈. recently bisconered insect pests of ornamentald in indana. Ind. Actad. Sci. Proce (6: 150-154.
Scheme, J. and Mote, D.
 oreson, Oreg, State Col. Azr. Expt. Sta. Bul. 4t9, 163 pp.
Scognamigho. A.
 (hymenortera-sympityta-Tenthrednidae). Portici Lab. Ent. Agr. Bol. 13, pp. 96 144.
Scubder, S. H., ed.
 casbonal pabers of the boston socifty of natcral history, i.) 375 pp . Boston.
Seidel, J.
1926. zwei sehr ä̈ndiche tentimbemiden-hinen (pityleotoma va-
 Wiss. Insektenbiol. 21 : 239-248.
Severtin, h. C.
1923. the more mportant insect peets and plant disenses folk tile year 1022-1923. 23 pp. S. Dak. State Col., Brookings.
Shaw, F. R.
1940. A New species of leafmining sawfly attacking yiolet. Jour. Econ. Ent. 33: 051.
Skata, H.
1936. Nele oberösterf. Minen (Dipt., col., hymen.). Óstert. Ent. Yer. Ztschr. 21: 55- 2 f.
Slingerland, M. V.
1005. two NEw shade-tree prits: hawfly leaf-miners on ectropean elas and alder. Cornell Univ. Etr. Expt. Sta. Bul. 233, pp. 49-62.
Smath, D. R.
1966. A NEW PROFENTSA (IIMmFMPTERA: TENTHAEDNIDAE) frosi red
 Searctic species. Ent. Soc. Amer. Amn. it9: 719-z23.

Smith, D. R.
1967. a review of the subfamhiy heterarthrinae in nortil america (hymenortera: tenthredinidae). Wash. Ent. Soc. Proc. 69: 277-284.

19G9. nearctic sawflies i. blennocampinae: adults and laryae (hymenoftera: tenthredinidae). U.S. Dept. Agr. Tech. Bul. 1397, 198 pp .
Smitit, R. C., Kelley, E. G., Dean, G. A., and others.
1943. Common insticts of Kinsas. (Kans. State Bd. Agr. Rpt., June, 1043.) 440 pp. Topeka, Kans.

Spinoli, M. M.
 leglistico nuper metexit, desciapit et iconibus illusthavit. (II). 159 pp . Gemane.

Spibcifz, Z.
1956. Caliona limacha rbt\%-veispea neacra a ciresuluy in pbrdflele de: protrctie de la ceanul mare-tyrda. Rev, Padurilor 71: 314-317.
Sthemens, J. F.
1835. halditrations of britisi entomology: mandmulata. V. 7 f 321 pp . London.
Stritt, W.
1935. me blatt-, hami, I'Nn homwespen badens (lym., tenthr.). Mitt. Rad. Landesver Naturk. u. Naturschuta, Freiburg 3, pp. 184-100.
1036. kleine mittrinengen fiber blattwespen i. (fiymenortera: TENTHEDN: 54-60.
194. Der blattminerer pentsella becta thons. Arb. öber Physiol. u. Angew. Ent. 11: 25-31.

Su'ndevale, C.J.
184. on labverne ap tenthueminet shigtet fenusa. Skand. Förhandl. Naturf. 4, mp. 240-241.
Tadic, M.
1956. mbocampodes Limacina retz. Plant Protect. (Beograd) 37, p.). $7-19$.

Thamerim, K.
1959. A cenfmic classification of the japanese tenthrfonidae (Himanopterd: symphy's). 90 pp . Kyoto.
'Talmone, A. M.
19.1. the insect fatina hipported dy the apple and pear trees in bebanos. Eat. Kec, and Jour. Yariation 53: 120̄-128.
Taylor, R. I.
1929. a nombinclature note on the birch leafmining sawfly, piyzlompan nemorata (fachen). Brooklyn Ent. Soc. Bul. 24: 323324.
1931. on "dyar's nite" and its application to sawfly laryaf. Ent. Soc. Amer Ann. 9.4 : $451-10 \%$.
Thomas. C .
1881. TENTIf report of tile state entomologisy on the noxious and benghicha insects of the stite of hinoms. (5th Ann. Rpt. by Cyrus Thomas, State Ent.) 238 pp. Springfeld, Ill.
Tmomson, C. (f.
1870. مfC'sClLA ENTOMOLOGICA, FANCICLLU'S SECDNDUS. 304 pp, Lund.

1871. Hymenoptera scandinaytae. v. t. phytophaga. 342 pp . Lund. Thlyard, R. | . |
| :---: |
1872. tife hawthorn hedge menace. 7 pp . Nelson Evening Mail, Nelson, New Zealand.

Tischerin, P.
1846. verzeichniss der in den fürstenthümern lübeck und birkenfeld yon mir bismer aufgefundenen blattwespen. Stettin. Ent. Ztg. 7: 75-80.
Titus, F. A., and Underwood, G. R.
196G. leaf-mining sawfly on poplars. Canada Dept. Forestry BiMonthly Prog. Rpt., Forest Biol. Div., 22 (No. 1): 1.
Townsend, C. H. T.
1892a, notes of interest. Insect Life 4: 26-27.
1892b. en a leap-miner of populus fremonti. Zoc 3: 234-236.
1893. the mesilla yalley cottonwood leaf-miner determined. Canad. Ent. 25: 304.
Trujillo Peluffo, A.
1942. insectos Y otros parásitos de la agricultura y sus productos en el uruguay. 323 pp. Montevideo Facul. Agr., Uruguay.
Tulleren, A.
1910. VÄxtsteklar, som angripa vivra frukträd. Ent. Ticlskr. 31: $28 \mathrm{C}-205$.
Twinn, C. R.
1934. a summary of insect conditions in canada in 1933. Ontario Dept. Agr. Ent. Soc. Ann. Rpt. 64 (1933): 62-80.
Underwood, G. R., and Titus, F. A.
1968. description and seasonal uistory of a leaf miner on poplar messa populifoliella (hymenoptera: tenthredinidae). Canad. Ent. 100: 407-411.
Viereck, H. L.
1910. Pifytophaga. In Smith, J. B., Annual Report of the New Jersey State Museum Including a Report of the Insects of New Jersey, 1909. 888 pp . Trenton.

Wailgren, E.
1944. bladminerande tenthredinidlahyer. Opusc. Ent. 9: 138-149.
1951. bladminerande tenthredinidlaryer if (hym. phyt.). Opusc. Ent. 16: 74-76.
Watson, W. Y.
1959. the larya of profenusa alumina (macg.) (hymenoptera: tenthredinidae). Canad. Ent. 10:618-625.
Weber, H.
1939. vergleichend-funktionsanatomische untersuchungen an ATYPISCHEN BEISSMANDIRELN YON INSEKTEN MIT RESONDERER beruckstchtigung der phyllotoma-larve (hymenoptera tentilredinidae). Biol. Zentbl. 59, pp. 541-566.
Webster, R. L.
1912a. the pear-slug, caliroa cerasi linn. Iowa Agt. Expt. Sta. Bul. 130, pp. 16i7-193.
1912b. the number of moults of the pear-slug, caliroa cerasy LinNé. N.Y. Ent. Soc. Jour. 20: 125-130.
Welliouse, W. H.
1922. the insect fauna of the genus crataegus. Cornell Univ. Agt. Expt. Sta. Mem. 50, pp. 1041-1136.
Westwood, J. 0 .
1840. introduction to the modern classification of insects. V. II, 587 pp . London.
1850. ROSE insects. Gard. Mag. Bot. 1: 207-208.
$W_{\text {ILSON, }}$ E. F.
1913. tue cibrry and pear slug (caliroa cerasi linn.). Oreg. Agr. Expt. Sta. Rpt. for 1011-12, pp. 118-121.
Winchell, A.
1865. notes on selandria cerasi marris, as it occurs at ann arbor, miciugan. Boston Soc. Nat. Hist. Proc. 9: 321-325.

Wolfr, M.
1924. Ueber blattwespenfrass auf aucuparia. Ztschr. f. Forst. u, Jagdw. 56: 38-46.
Yuasa, H.
1922. A classification of the larvae of the tenthredinoidea. Ill. Biol. Monog. 7, pp. 1-172.
Zappe, $^{\text {M. P. }}$
1926. miscellaneous insect notes. In Britton, W. E., Twenty-Fifth Report of the State Entomologist of Connecticut, 1925, 330 pp . New Haven.
Zetterstedt, J. W.
1838. insecta lapponica descripta. hymenoptera. 868 pp. Lipsiae. Zirngiebl, L.
1955. Über die gattung fenusa leach, Nachrichtenbl. der Bayer. Ent. 4: 93-95.

Index

The following index contains both superspecific and trivial names. Valid names are in roman and synonyms in italic.

	Jage	Page	
acthiops (F.), Enclelomyia	9	histrionica (MacG.)., Setabara	46
alaskana Kincaid, Fenusa 4	44	hortulana (Klug), Messa	39
alsia MacG., Messa 6	65	hitmilis Konow, Entodecta	35
alumna (MacG.), Profenusa- 4	48	hyalina, n. sp., Caliroa	19
amaja MacG., Blennocampa 4	40		52
ambigua (Norton), Nefusa 5	58	inspirata (Mack.), Prorenusa ...	62
amtica MacG., Messa-.... 48	48	Kaliofenusa Viereck	0
amygdalina Roh., Caliroa	21	Kaliosysphinga Tischbein	60
antia MacG., Messa ...	58		
Aphathiurus O. Costa	60	labrata MacG., Caliroa	20
appota MacG., Messa	48	lacinata MacG., Caliroa	15
nrtus Emith, Prolatus	59	lata MacG., Caliroa	24
bensoni, n, sp., Metallus	34	lautata MacG., Caliroa-	15
bethenei MacG., Metallus	36	leucostoma (Roh.), Messa	40
Bidigitus Smith	56	lineata MacG., Caliroa ...-----..........	21
Caliroa O. Costa	12	liturata MacG., Caliroa	21
Caliroini	8	lobata MacG., Caliroa	22
canatensis (Marl.), Profenusa	50	iorata MacG., Galiroa	23
capitalis (Norton), Metallus	35	Ioricata MacG., Caliroa	21
castaneae Roh., Eriocampoides	23	lucifex (Ross), Profenusa	53
cerasi (L.), Caliroa	14	1urata MacG., Caliroa	24
cerosi Peck, Tenthredo	15	luteopicta Roh., Scolioneura	43
collaris MacG., Profenusa	50	mainensis Smith, Profenusa	48
cuthes Norton, Fenusa.	61	matherosoni MacG., Phlebatrophia	31
Decatria Stephens		Melanobates MacG.	38
distincta, n. sp., Galiroft	17	melanopoda Cam., Phaenusa Messa Leach	62 38
dohrnii (Tisch.), Fenusa ---	61	Messa Leach Metallus Forbes	38
Druida E. Newman 30	30	Metalius Forbes	3
Endelomyia Ashmead		nana (Klug), Messa	41
Entodecta Konow		Nefusa Ross	57
Eriocampoides Konow	12	nemoralis Fallen, Phyllotoma	31
		nemoratus (Fallén), Heterarthrus nigrita Westwood, Fenella	31 67
Fenella Westwood	67	nyssae, n. sp., Caliroa	25
Fenusa Leach	60		
Fonusella Enslin	38	obsoleta (Norton), Calir	26
Fenusini	32	ochropoda Klug, Tenthredo	30
floridana, n. sp., Caliroa	19	Parabates MacG.	45
fuscipennis Steph., Decatria . .*	30	parviceps E. Newman, Druida	30
Ginnea Malaise-.........	47	Periclisioptera Ashmead	12
Heterarthrini	30	netiolata, n. sp., Cali Phebotrophia MacG.	38
Feterarthrus Stephens	30	Phyllotoma Fallén.	30
Heterarthus Cameron		platani (Burks), Bidigitus	56

Page Page
Polybates MacG. 33 populi Marl,, Scolioneura-- 43
rosae Harris, Selandria 10populifoliella (Towns.), Messa 4343Profenusa MacG.46
Prolatus Smith 59
pumila Klug, Tenthredo 63
pusilla (Lep,), Fenusa 63
pygmaea Klug, Tenthredo 47
quercuts Konow, Eriocampoides guercus-alba Cresson, Selandria 26
rubi Forbes, Metallus 36
sebetia O. Costa, Galiroa 12
secundus Roh., Polybates 35
Setabara Ross 45
slossonae MacG., Polybates 35
tantillus O. Costa, Aphadniurus 60
thomsoni (Konow), Profenusa 54
quercte albe Norton, Selandria 26
ulmi Sundevall, Fenusa 65
vagans Fallén, Phyllotoma 30
rohweri MacG., Metallus 36
wuestneii (Konow), Messa 44

Forewing (1) and hindwing (2) of Eudelomyia aethiops; forewing (3) and hindwing (4) of Caliroa cerasi; lindwing of C. lorata female (5), C. fasciata male (6), and C. lovata male (7); forewing (8) and hindwing (9) of Heterarthrus nemoratus. $[A=$ anal cell; $2 A+3 A=$ second and third anal vein; $M=$ media, medial cell; $1 m-c u=$ first mediocubital crossvein; $R s=$ radial sector, radial sector cell; $R s+M=$ radial sector and media; $S c+R=$ subcosta and radius.]

Forewing (10) and hindwing (11) of Metalhus rohweri; forewing (12) and hindwits; (13) of Messce leucostona; lorewing' (14) and hindwing (15) of Proferuese canterensis; hindwing of P, homsoni (19); forewing (17) and hindwing (18) of bidigthes phatani. $[A=$ anal cell; $2 A+3 A=$ second
 cubital anal crosswin; $1 m-c h=$ frst mediocubtal crossvein; $R_{1}=$ radial cell.]

Forewing (19) and hindwing (20) of Fowuse pusilht; tarsal claws of F. pusillet (21), Nefuse tmbigut (22), Fidigitus platani (23), and Setabara histrionica (24); front lefs of frolulus artus (25) and Femese pusilla (26); apex of hindtarsus of $F_{\text {. }}$ mesillet (27) and Fehrlla nigrita (28); hend, dorsal, of Caliroa cerasi (29) and liclertrithru; uemorolus (30); antemae of H. nemortatus (31), Femser dohrmii (32), F. pusilla (33), Fenellu nigritus (34), Messa hortulana. (35), M. nent (36), Prolatus artas (37), Metallus rohweri female (38), and M. rohteeri male (39).

Antennae of Caliroa fasciata (40), C. liturata (41), and Endelomyia aethiops (42). Female sheaths: Lateral (43) and dorsal (44) of Heterarthrus nemoratus; lateral of Metallus rohueri (45), M. capitalis (46), Bidigitus platani (47), and Nefusa ambigua (48); lateral (49) and dorsal (50) of Messa nana; lateral (51) and dorsal (52) of M. hortulana; lateral of Profenusa canadensis (53), Fenella nigrita (54), Prolatus artus (55), Profenusa a(umma (56), P. thomsoni (57), Fenusa utmi (58), and F, pusilla (59); lateral (60) and dorsal (61) of Setabara histrionica. Female lancet of Eudelomyia aethiops (62).
 65

Female lancets of Caliroa distincta (63), C. hyalina (64), C. liturata (65), C. petiolata (66), C. lunata (67), C. lorata (68), and C. labrata (69).

Female lancets of Caliroa cerasi (70), C. foridana (71), C. nyssae (72), C. lobata (73), and C. obsoleta (74).

Female lancets of Caliroa fasciata (75), C. querouscoccincae (70), Fenusa ulmi (77), F. dohruii (78), F, pusilla (79), Messa pomulifoliella. (80), M. westneii (81), Fenella wigrila (82), Setabara histrionice (83), Prolatus artus (84), Bidigitus plateni (85), and Nofusa ambigna (86).

Female hancets of Metallus bensoni (87), M. capitalis (88), M. rohweri (89), Profenusa canadensis (90), P. thomsoni (91), P. alumna (92), P. inspirata (93), and P. lucifex (94).

96

97

101

98
99

100

103

105

102

104

Female lancet of Messa nana (95); male harpe and parapenis of Caliroa hyalina (96), C. labrata (97), C. lorata (98), C. obsoleta (99), C. petiolata (100); harpe and parapenis (101) and penis valve (102) of C. liturata; harpe and parapenis (103) and penis valve (104) of C. fasciata; harpe and parapenis (105) and penis valve (106) of C. myssue; penis valve of C. lobata (107).

108

109
110

i.

J
11

114 - 115

116

122
123

Male harpe and parapenis (108) and penis valve (109) of Metallus rohweri; harpe and parapenis (110) and penis valve (111) of Messa populifoliella; harpe and parapenis (112) and penis valve (113) of M. letcostoma; harpe and parapenis (114) and penis valve (115) of M. wuestueiu; harpe and parapenis (116) and penis valve (117) of Setabara histrionica; harpe and parapenis (118) and penis valve (110) of Profenusa canadensis; harpe and parapenis (120) and penis valve (121) of P. athoma; harpe and parapenis (122) and penis valve (123) of P. inspirata; harpe and parapenis (124) and penis valve (125) of Femusa pusilla; harpe and parapenis (126) and penis valve (127) of Nefust ambigut, harpe and parapenis (128) and penis valve (129) of Bidigitus platani.

Endelomyia uethiops larva: Head and thorax (130); third abdominal segment (131); eighth, ninth, and 10th abdominal segments (132); maxilla (133); epipharynx (136); right (135) and left (136) mandibles, ventral. Caliroa cerasi larva: Lateral (137); maxilla (138); epipharynx (139); left (140) and right (141) mandibies, ventral.

148

143

144

Heterarthrus nemovatus larva: Thorax and first two abdominal segments, ventral (142): eighth, ninth, and 10th abdominal segments, ventral (143); labium and maxilla, ventral (144); epipharynx (145); right (146) and left (147) mandibles, ventral. Messa nama larva: Labium and maxilla, ventral (148); right (148) and left (150) mandibles, ventral ; epipharynx (151); thorax and first three abdominal segments, ventral (152); abdominal segments 7 to 10, ventral (153).

154

155

156
160

161

Metalles rohweri larva: Labium and maxilla, ventral (154); epipharynx (155) ; head, dorsal (156); right (157) and left (158) mandibles, ventral; thorax and first three abdominal segments, ventral (159); abdominal segments 7 to 10, ventral (160); entire larva, lateral (161). Metallus capitalis larva: Right (162) and left (163) mandibles, ventral.

Messa sp. larva: Entire larva, lateral (iga); thorax and abdomen, ventral (165) ; right (166) and left (167) mandibles, ventral; epipharynx (168); labium and maxilla, ventral (169). Messa sp. larva: Right (170) and left (171) mandibles, ventral; epipharynx (172); lacinia (173). Profenusa inspirata larva: Labium and maxilla, ventral (174); right (175) and left (176) mandibles, ventral; epipharynx (177); thorncic leg (178); thorax and first two abdominal segments, ventral (179); third abdontinal segment, dorsal (180).

Profenusa thomsoni larva: Entire larva, lateral (181); thorax and first two abdominal segments, ventral (182); spines of integument (183); thoracic leg (184); epipharynx (185); labium and maxilha, ventral (180); right (187) and left (188) mandibles, ventral. Profenusa cilumab larva: Thorax and first two abdominal segments, ventral (189); tharacic leg (190); spines of integument (191); hend, dorsal (192); epipharyns (193); right (194) and left (195) mandibles, ventral; labium and maxilia, ventral (196).

Profenusa hucifex larva: Right (197) and left (198) mandibles, ventral; head, dorsal (199); thoracic leg (200). Profenusce canadensis larva: Entire larva, lateral (201); thorax and first three abdominal segments, ventral (202) ; epipharynx (203); right (204) and left (205) mandibles, ventral; labium and maxilla, ventral (206).

Bidigitus platani larva: Head, dorsal (207); epipharynx (208); right (209) and left (210) mandibles, ventral; labium and maxilla, ventral (211); entire larva, lateral (212). Fenella nigrita larva: Entire larva, lateral (213); thorax and first three abciominal segments, ventral (214); labiam and maxilh, ventral (215) ; epipharynx (216); right (217) and left (218) mandibles, ventral; head, dorsal (219).

Fenusa ulmi larva: Entire larva, lateral (220); thorax and first four abdom'jal segments, ventral (221); apical four abdominal segments, ventral (224); thoracic leg (223) ; epipharynx (224); labium and maxilla, ventral (225); right (226) and left (227) mandibles, ventral. Fenasa dohrnii larva: Right (228) and left (229) mandibles, ventral. Fenusa pusilla larva: Right (230) and left (231) mandibles, ventral; entire larva, lateral (232) ; thorax and first two abdominal segments, ventral (233) ; epipharynx (234); labium and maxilla (235).

[^0]: 'The year in italic after the author's name is the key to the reference in Literature Cited, p. 69.

[^1]: a Throughout this bulletin all information pertainine to distribution records is given essentially as it appeared on the insect labels.

[^2]: Thorax black;

[^3]: Nefusa Ross, 1951, p. 31; Benson, 1959, p. 92 ; Smith, 1007, p. 281.
 Type-species: Messt anita MacGillivray. Original designation.

[^4]: ing to date published in that year, not alphabetically by title.

