

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART national bureal of stambaros l963-A

Treface

This input-output analysis provides additional insight into effects on domestic industrios of increased textile imports and interfiber aubstitution. Further refinements in the input-output tables will be required before this type of analysis can provide the quality of information required for policy decisions.

This study serves to demonstrate a potentially useful research technique and to provide background essential to the refinements planned for future work. And it has methodologieal implications of a broad nature, far transeanding problems of any particular industry.

This report is based on a dissertation by Philip F. Rice in partisal fulfilment of the requirements for the degree of doctor of philosophy in engineering management, Clemson University, May 1968.

Contents

$P_{\text {age }}$
Summary iii
Introduction 1
Brsic Concept 3
Assumptions 3
Generation of a Curreat Table 5
Anslyses. 11
Effect of Incressed Textile Imports 11
Effect of Interfiber Substitution 14
Appendix Table 18
Selected References 26

Summary

This input-output analysis indicates that the effects of increased imports on employment in the U.S. textile industry will depend partly on the form of the imports and that substitution of manmade fibers for cotton would result in net reduction is total employment.

Apparel imports valued at $\$ 100$ million were found to be more detrimental to employment in the textile industry than were $\$ 100$ million of textile mill products. Further, since $\$ 100$ million oi apparel actually represents an equivalent physical quantity of $\$ 45$ sillion of textile mill products, apparel imports were, on a relative basis, even more detrimental thin the study indicated.
Suppliers of cotton and manmade fibers, however, lost more employment when the imports were textile mill products, rather then apparel. But, when equivalent physical quanitios were considered, employment loss to suppliers of manmade fibers was about the same for both forms of imports, whereas cotton producers still suffered more employment loss from imports of textile mill producta

An incresse in substitution of manmade fibexs for cotton adversely affected employment of cotton producers, while benefiting suppliers of manmade fibers. Another industry that showed omployment loss Wes agricultural services, since need for such services as cotton ginning and crop dusting was reduced. Other industries that were adversely affected were cottonseed oil mills, trade, finance, insurance, and real estate. Overall, a net loss in employment was recorded.

Input-output analysis considers both direct and indirect effects of changes in the economy. In the analysis, all purchases and sales in the economy were represented by an interindustry transactions table. For this study, a 1966 table was constructed from the 1958 table by (a) developing industry control totals, (b) revising the coefficient matrix, and (c) generating a new table, using national income data to improve accuracy.

Tt was assumed that both the imports and the synthetics displased domestic demand on a 1 -to- 1 basis. This assumption is quite restrictive. Therefore, although this study provides a good demonstration of input-output analysis, the results cannot be used as a besis for policy decisions.

Use of Input-Output Analysis in Studying Industry Problems: Applied To Employment Changes in the U.S. Textile Industry

by
Philip F. Rice and Prestion E. LaFerney ${ }^{1}$

Introduction

Input-output analysis is receiving increased attention among both public and private researchers as a tool for studying structural interrelationships in economic systems (5). ${ }^{2}$ The first part of this report provides a brief description of the input-outpat technique, presents a method of input-output table construction of special use to small research groups, and demonstrates typical uses of input-output analysis in studying industry problems. ${ }^{3}$ Because of the unique nature of table construction employed, methodology is discussed at length. The second part of the report applies the developed methodology to determine probable effects of increased textile imports and increased substitution of manmade fibers for cotton. These changes are measured in terms of their effect both within the textile industry and on the industry's relationsh:p with other industries. Specific effects examained are changes in sources of supply, final sales, and employment within the textile and related industries.

An analysis of the effects on the U.S. economy of changes in demand or product substitutions must consider the economy's interindustry structure. That is, industries are kighly interdependent; growth or decline of sales in one industry affects the sales of other industries. Further, a thorough analysis of interindustry relationships should consider both direct and indirect effects of economic changes.

Consider producer A who buys from producers B, C, and D, and sells to producers B, D, E, and to final users. These transactions rep-

[^0]resent the dirept relationships existing between A and other producers and finalusers.To stop here, however, would omit the indirect relationships which exist. Producer B, as a supplier of A, is directly influenced by the needs of A. If A increases its production, B must increase its production to meet the new input requirements of A. But B^{\prime} sinoreased production will require additionsl iniputs, part of which comes from H (an industry that has no direct relationship with A). To meet the new requirements of B, H must also increase its production. Thus, the output of H has been indirectly influenced by the inereesed production of industry A. Input-output analysis is uspful in studying changes in the economy since it accounts for both the direet and indirect effects.

For input-output analysis, a representation of purchases and sales, known as a transactions table, is required. A hypotheticel two-sector transactions table is shown below:

	Apriculare	$\underset{\text { facturing }}{\text { Mantu }}$	Final demand	Tosal nutput
Agriculture...	\$15	\$35	0	\$50
Manufacturing	20	10	\$70	100
Value added.	15	55		
Total input	50	100		

Agriculture's sales to manufacturing, $\$ 35$, are shown in row 1, and the sum of the row, $\$ 50$, is the total seles (output) of agriculture. The purchases of agriculture are shown in columo 1. Agriculture purchases $\$ 20$ from manufacturing and had total inputs of $\$ 50$.

The total outputs, referred to as control totills, represent a unique way of measuring the output originating in each sector, as the following explains ($19, \mathrm{p}, 56$) :
The row total for a given induatry * * * inciudes not only the primary and secondary products made in the industry but also (1) the primary products of the industry made in other industries as a secondary sctivity and (2) the domestio port value of imported goods that can be used for production and oan be substitnted for the industry's primary output.
Sectors in the input-output teble are generally classified on an eatablishment basis." An establishment is placed in a sector according to the eftablishment's principel output. The principal output is known as the primary product while all other output is called secondary. Once an establishment is classified as belonging to a certain sector or industry, the output of the establishment, both primary and secondary, becomes part of that sector's total output.

[^1]
Basic Concept

- The basic concept on which an input-output table is constructed is that the total output of any industry can be divided into two categories: (a) The interindustry trananctions and (b) the final demand sales. That is, a firm sells its output either to another producing firm or industry or to a subsector of the final demand sector (private consumers, investment, government, or net export). Thus, total output of any industry can be expressed by the following equation:

$$
\begin{equation*}
\sum_{j=1}^{n} X_{i j}+O_{i}=X_{i} \quad(i=1, \ldots, n) \tag{1}
\end{equation*}
$$

where
$X_{i y}=$ amount of outpot industry i ships to industry j,
$C_{i}=$ final demand for output of industry i,
$X_{i}=$ total output of industry i.
The transactions of the economy then can be represented by a system of linear equations, one equation for each industry.
To utilize the system of equations representing the economy, it is necessary to assume constant technical coefficients of production. A technical coefficient is a ratio of input to output, and can be written as follows:

$$
\begin{equation*}
a_{t j}=\frac{X_{i j}}{X_{j}}, \tag{2}
\end{equation*}
$$

where
$a_{4 y}=$ technical coefficient,
$X_{i j}=$ value of shipments from industry i to industry j,
$X_{j}=$ total outpat of industry j^{5}
As an example, consider the agriculture and manufacturing industries in the two-sector transactions table. Total output of manufacturing is valued at $\$ 100$, and raw materinis shipped from agriculture to manufrcturing are valued e.t $\$ 35$. Then the technical coefficient (ratio of input to output) is $\$ 35$ divided by $\$ 100$, or 0.35 . Specifically, 0.35 is the vailue of agricultural output required to produce $\$ 1$ worth of output in manufacturing.

Assumptions

Genarally, a system based on the assumption of fixed technical coefficients descrites an economy that has a fixed physioal structure

[^2]and linear homogeneous production functions. Thus, the sseumption rules out input substitutions axising from factors such as relstive price ohangee (price competition), changes in technology, or industrial. integretion. Economies of scale slao are muled out. If uhe coefficients are fixed, inpats from each source remain a constant pronortion of e sectores output; furthermore, the sources of input supply are constant. Similarly, the assumption implies a constant product mix-the output of a sector is nssumed to be homogeneous over time. ${ }^{6}$

The arsumption of constant coefficients is not easy to defend theoretically. Consequently, the use of input-output analysis restr not so much on strong theoretical velidity, as on the eoncept that in the short run the sissumptions are close eanough to reality to provide a satisfactory basis tor analysis.
Substituting the value of $X_{i i}$ from equation (2) into equation (1) yiolds

$$
\begin{equation*}
X_{i}=\sum_{j=1}^{n} a_{i} X_{j}+C_{i} \quad(i=1,: \ldots n) \tag{3}
\end{equation*}
$$

In matrix notaticin, this is

$$
\begin{equation*}
X=a X+C, \tag{4}
\end{equation*}
$$

where

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
\vdots \\
\vdots \\
X_{n n}
\end{array}\right], \quad a=\left[\begin{array}{llll}
a_{11} a_{12} & \ldots & a_{1 n} \\
a_{21} u_{22} & \ldots & a_{2 n} \\
: & & \\
\vdots \\
a_{n 1} a_{n 2} & \ldots & a_{n n}
\end{array}\right], \quad C=\left[\begin{array}{l}
\Gamma C_{1} \\
C_{2} \\
\vdots \\
C_{n}
\end{array}\right]
$$

This is equivalent to

$$
\begin{equation*}
(I-a) X=C, \tag{5}
\end{equation*}
$$

where

$$
I=\left[\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ddots & . & 0 \\
\vdots & 0 & & & \vdots \\
\vdots & 0 & & & \\
0 & 0 & 0 & \ldots & i
\end{array}\right] .
$$

When $(I-a)^{-1}$ exists,

$$
\begin{equation*}
X=(I-a)^{-1} C \tag{6}
\end{equation*}
$$

Defining ($I-a)^{-1}$ as A, then

[^3]Equation (7) can be written as

$$
\begin{aligned}
& X_{1}=A_{11} C_{1}+A_{12} O_{2}+\ldots+A_{1 n} C_{n} \\
& X_{2}=\mathrm{A}_{21} O_{1}+A_{22} C_{2}+\ldots+A_{2 n} O_{n} \\
& X_{\vec{n}}=A_{n 1} C_{1}+A_{n 2} C_{2}+\ldots+A_{n n} O_{n},
\end{aligned}
$$

where $A_{t i}$ is the direct plus indirect output of industry i required for industry j to deliver a dollar's werth of output to final damand. Equation (8) shows that the total output of any industry is affected not only by its own tinal demand, but by the final demand er other sectors as well. Thus, a change in the final demand of one sector may affect the total outputs of all sectors.

Analysts in this paper will make use of the inversion process to compute total outputs given certain changes in the economy. The new outputs reflect only current account purchases and do not include the effect of reepending of income.

Generation of a Current Table

The most recent transactions table arailable, published by the U.S. Departsonent of Commerce, is for the year 1958 (19, pp. 34-39). In that table, the economy was divided into 83 producing industries for the purpose of presenting the flow of goods and services between industries. The table, as it stood, presented serious problems: it was dated and available data sources for 1966 were difficult to reconcile with the 83 -sector structure. Thus, a 1966 table was developed in which some industries were aggregated to aid in reconciliation. Reconciliation was accomplished by constructing the aggregated 1958 control totals from published data sources. The 1966 numbering resulted in 44 producing sectors, as shown in table 1. The 1966 table construction was essentially a tbree-step process: (a) Developing industry control totals, (b) revising the technical coefficient matrix, and (c) generating a new table, using national income data to improve accuracy.

The 1966 control totals were developed in a variety of ways making use of several sources (8, pp. 46-65). Esech control represents what appeared to be the strongest estimate. No 1966 estimates were made until a reconciliation had been performed for each control in the 1958 aggregated table. Secondary products were assumed to represent the same percentage of output as in 1958, since the 1958 transfer matrix nrovided by the U.S. Department of Commerce represented the latest information on secondary production.

Table 1.-Industry numbering än the 1966 transactions table
Industry number and title

1. Agricultural produets, exeept cotton ${ }^{2} 1,2$
2. Cotton (3)
3. Forestry, fisheries and services 3,4
4. Iron and ferroalloy ores 5
5. Nonferrous metal ores 6
6. Coal 7
7. Crude petroleum and natural gas 8
8. Stone and clay 9
9. Chemioal and fertilizer minerals 10
10. New oonstruction 11
11. Maintenance and repair constructions 12
12. Ordnance and accessories 13
13. Foor and kindred praduets 14
14. Tobaceo manufacturea 15
15. Textile mill producta 16, 17
16. Apparel and fabricated products 18, 19
17. Lumiber and wood products 20, 21
18. Furniture and fixtures 22, 23
19. Paper arid allied products 24, 25
20. Printing and publishing 26
21. Chemicals, ete 27-30
22. Petroleum refining and related products 31
23. Rubber and miscellaneous plastic produeta 32
24. Leather tanning, ete 33, 34
25. Glass and stone 35, 36
26. Primary iron and steel manufacturing and nonferrous manufac- turing 37, 38
27. Fabrianted metal producta 39-42
28. Machinery, exeept eleatrical 43-52
29. Electrical equipment 53-58
30. Transportation equipment 59-61
31. Scientific ingtrumente 62, 63
32. Miacellaneoiut manufacturing 64
33. Transportation and warehousing 65
34. Communication and utilities 66-68
35. Wholesale and retail trade 69
36. Finance, insurance, real estate and rental 70-71
37. Lodging, personal and business services 72-73
38. Research and development 74
39. Auto repsir. 75
40. Amusementa, medical and educational services 76, 77

Table 1.-Industry numbering in the 1966 transactions table-Con.

$$
\begin{array}{ll}
\text { Industry number and title } & \begin{array}{c}
\text { Related } \\
1958 \\
\\
\text { industry } \\
\text { number }
\end{array}
\end{array}
$$

41. Federal Government enterprises 78
42. State and local government enterprises 79
43. Gross imports 80
44. Dummy industries 81-83
45. Goverament 84
46. Rest of world industry 85
47. Househoid industry 86
f For induatries corresponding to numbers, see (19, pp. 34-39).
2 Except cotton. ${ }^{3}$ Cotton (unpublishet).
After developing the 1966 control totals, 1958 coefficients cruld have been used to calculate the interindustry transactions by the relationship $X_{t y}=a_{f j} X_{j}$. This method, however, would heve produced a 1966 table with an economy structured the same as that for 1958. Eight years seemed to be too long a period to adhere rigidly to the assumption of fixed coefficients. Consequently, two adjustments were applied to the 1958 aggregated coefficients. First, an adjustment was made for price changes between the input and output making up a coefficient, and then an index of coefficient change was applied to each row in the transactions table.
With the first adjustment the coefficients were made to reflect the 1966, rather than 1958 price relationships. Any coefficient is denoted as follows:

$$
a_{i j}=\frac{X_{1 j}}{X_{j}}=\frac{P_{1} Q_{1 j}}{P_{j} Q_{j}}
$$

which is the price of $i^{\text {th }}$ good times the quantity of $i^{\text {th }}$ good shipped to j, divided by the price of $j^{\text {th }}$ good times the quantity of $j^{\text {th }}$ good produced. If the physical relationship $Q_{i /} / Q_{j}$ is assumed constant, the coefficient $a_{i j}$ remains constant, providing the ratio of P_{1} to P_{j} does not change. In the 1.966 trbie, all coefficients were adjusted for changes in the price ratios between 1958 and 1966 by use of a separate price index for the output of each sector.' Thus, only 44 price indexes were required. However, the adjustment for relative price change was made individually for each cell in the 44×44 table, since the ratio P_{8} / P_{f} was different for each. ${ }^{8 .}$

[^4]Tinally, the adjusted coefficients and the control totals were used to generate a 1966 tranaactions table. Each intermediate transaction $X_{i y}$ was calculated by the following relationship:

$$
X_{t i}=a_{i v} X_{i}
$$

Then the final deraand by sector was determined using equation (1). That is,
or

$$
\begin{array}{ll}
X_{t}=\sum_{j=1}^{n} X_{i j}+C_{t} & (i=1, \ldots, n), \\
C_{t}=X_{t}-\sum_{i=1}^{n} X_{i j} & (i=1, \ldots, n) .
\end{array}
$$

This states that all sales not shipped to intermediate users are sold to final consumers. Thus, the sum of the C 's should yield the gross national product for the year under investigation. Similarly, value added (shown in the hypothetical two-sector transactions table cited earlier), when summed for all industries, should yield GNP. These two facts were used to check and improve the transactions table.

In developing the new table, two other checks on its validity were observed. The first was provided by the decision not to permit any C_{s} to be less than zero. Admittedly, a negative net inventory change could have caused a negative GNP, but inventory information could not be obtained on many sectors, so all net inventory changes were assumed to be zero. Consequently, the five sectors that did show negative GNP's were inspected, and coefficients that seemed out of line were given further adjustment. ${ }^{\theta}$

The second check made use of the value added figure generated for each sector in the 1866 table. The generated figure was compared with a value-added figure derived from available sources. The check is not perfect since the derived and generated figures can be expected to agree only on a total basis, and not sector by sector. ${ }^{10}$ The same problem existed in the 1958 table. Thus, it was felt thet a comparison of the 1958 and 1966 ratios of derived to generated vaiues added, sector by sector, would aid in locating columns where the 1966 generated value added was out of line. Using this comparison, seven aectors were identified as needing closer investigation. ${ }^{11}$ After all adjustments were made, the table showed a gross national product

[^5]of $\$ 745.1$ billion, which deviates from the published figure of $\$ 743.3$ billion by 0.24 percent. ${ }^{22}$

The final 1986 traneactions table is ahown in the appendix table. A primary limitation of the table is the aggregation to 44 sectors. Perhaps the table reflects more reliable information in the agriculture and manufacturing sectors than in other sectors, since theese were of primary interest in this research project. Final demand was not broken into its components in this table.

On the positive side, the table apparar reasonable and generates the total gross national product for 1966 quite accurately. Its apparent success in picturing the 1966 economy is sufficient to give credit to the methodology employed in its construction.

To utilize the 1966 table for employment analysis, two modifcations were made. Generation of total outputs, given final demands, requires inversion of the $[I-a]$ matrix. For the inversion, industries 43 (imports) and 44 (dummy industries) were omitted because neither industry generated employment. This necessitated the following modification.

Sincs induatry 44 is actually the distribution chawnel for products (such as paper clips, index cards, and rubber bands) that are made in other industries, shipments to the dummy industriss must be counted. For the purpose of the analyses, the shipments to industry 44 were considered exogenous and were added to the appropriate final demand element.

The revised final demands, when multiplied by the inverse, produced the generated control totals. Results of this multiplication are shown in table 2. Slight deviations from the original control totals occurred, but they are less than 1.2 percent, with the majority being less than 0.1 percent. The following analyses were based on the generated control totals. At this point, the table was considered to be satisfactory and appropriate for analytical use. ${ }^{18}$

[^6]Table 2-Comparison of orignal control totals and generated control totals

	1966 industry mumber ${ }^{1}$	Original	Generated	Deviation
		Milion dollars	Mallion dollirs	Percent
1		57, 172	b7, 175	0.005
2		1,652	1,:652	
3		3,519	3,521	. 057
4		1, 824	1,826	. 110
5		2,279	2,280	. 044
6		2,606	2,608	. 077
7		16, 114	16, 118	. 012
8		2,569	2, 569	
8		1,000	1, 000	
10		74, 369	74, 369	
11		23,939	23, 941	. 008
12		9,224	9,225	. 011
13		90,381	90,384	. 003
14		6,901	6,901	
15.		19,593	19,603	. 051
16		28, 212	28, 213	. 004
17.		12,533	12,548	. 120
18		8, 087	8, 183	1. 187
18.		22,579	22,585	.027
20		20,650	20,652	. 010
21		44, 122	44, 131	. 020
22		23,649	23, e^{2}	. 013
23.		13,735	13,741	. 044
24		5,774	5,794	. 346
25		15,670	15,674	. 026
26		54, 205	54, 246	. 076
27.		34, 943	34,951	. 023
28		50,697	50,700	. 006
29.		45, 533	45,525	-004
30.		78,448	78,449	. 001
31		9,807	9,808	. 010
32.		9,426	9,427	. 011
33.		46,671	46,680	. 019
34		52, 648	52, 655	. 013
35		140, 281	140, 291	. 007
36		151, 226	151, 234	. 005
37		58, 674	58,680	. 010
38		8,877	8,877	
39.		11, 824	11,825	. 008
40		50, 438	50,439	. 002
41		6,818	6,818	
42		7,945	7,946	. 013

${ }^{1}$ For industries sorresponding to numbers, see table 1.

Analyses

Effect of Increased Textile Imports

Effect of tariff reductions on employment carr be identified if the proposed tariff reductions can, in effect, be translated into imports, and if the rate of substitution between imports and domestic production is known.

In the Kennedy Round of GATH negotiations, the following tariff reductions were accepted (3, p. 5):

The United States agreed to cotton textile tariff reductions that amounted to a weighted average reduction of 21%. Reduotions on apparel items averaged 17%; fabric tariffs were reduced 24%; and ybm, 28% ***. The United States agreed to 2 weighted average tariff reduction of 15% on imports of man-made fiber textiles, excluding fibers. Man-made fiber apparel duties were reduced by an average of approximately 6%, fabrics by 18%, yarn by 37%.
To effectively examine the impact of the tariff reductions, they must be translated into changes in domestic sales. Such a translation, however, becomes a difficult task due to changing prices and market conditions.

Lack of information necessitated a subjective estimate of the impact of tariff reductions on domestic demand for domestic products. It was decided to introduce imports of $\$ 100$ million in the form of either textile mill products or apparel. This amount will provide a convenient base for comparison with better estimates when they are known. That is, since the relationships between output and employment are linear, a $\$ 50$ million actual increase in imports would produce one-half the change in employment caused by our estimated increase in imports of $\$ 100$ million. Since our analysis only illustrates what happens if imports are increased by $\$ 100$ million, the results cannot be used as a basis for policy decisions.

It is assumed that imports displace domestic production unit for unit. This assumption is severely restrictive but allows a simplified deraonstration of input-output anolysis. Although initially the total domestic supply might be increased due to the influx of imports and the resulting price decreases, our assumption disallows this. Ultimately the lower priced imports likely would displace domestic production, resulting in somewhat lower average prices and higher domestic consumption. Since no reliable estimates of the actual effects are available, we assume immediate and perfect substitution of imports for domestic production.

The analysis was completed in two steps. First, the $\$ 100$ million of imports was introduced into the final demand sectors of industry 15 (textile mill products) and industry 16 (apparel and fabricated products), displacing $\$ 100$ million of domestic production in each case. The inversion procedure, previously explained, was utilized to generste the new total outputs required to support the reduced demand for domestic output.

Second, the new total outputs were compared with the generated control totals. The dollar difference for each industry was converted to employment, using a ratio of 1,000 employees to $\$ 1$ million of output. The ratio was constructed by dividing the number of employees by total output in 1966 for each sector. ${ }^{14}$ Results are shown in table 3. If the simplifying assumptions hold or if, when the assumptions are relaxed, the updating procedures convert the 1958 phytical indurtry structure to that of 1966 , the use of a ratio in determining employment as a function of output is appropriate.

The employment loss in industries 15 and 16 (total textiles) was 5,592 workers when the increased imports were textile mill products, and 8,937 when the imports were apparel and fabricated products. Thus, imports in the form of apparel appear to be more detrimental to employment in textiles than do imports of textile mill products. There are at least two factors which help to illuminate this result.

First is the fact that apparel imports have a greater effect on employment in industry 15 (textile mill products) than imports of textile mill products have on industry 16 (apparel). That is, $\$ 100$ million of apparel imports causes industry 15 to lose 1,867 employees, whereas $\$ 100$ million of textile mill products imports only causes a loss of 71 employees in industry 16. This happens because imported apparel bypasses domestic manufacturing, whereas imported fabric and yarn must be converted domestically. Second, employment per dollar of output in industry 15 is only 62 percent of that in industry 16. Consequently, the employment effect per dollar loss is greater in industry 15. The fact that apparel imports are more detrimental to employment in the textile industry is reflected in recent tariff actions. Tariff reductions, for both cotton and manmade textiles, were greater on yarn and fabrics than on apparel.

The two major fibers used in textiles are cotton and manmade fibers, industries 2 and 21, respectively. Industry 21 also contains the majority of other chemical products purehased for textiles. Table 3 shows that industry 2 loses 719 employees when the $\$ 100$ million of imports are textile mill products, and 250 employees when the imports are apparel. Industry 21 also loses more employees from imports of textile mill products than from apparel imports-606 and 260 employees, respectively. Thus, as far as minimizing employment loss, the fiber suppliers would heve favored somewhat different tariff reductions than actually occurred.

It should be noted, however, that in the preceding analysis the import changes were fixed (equal) dollar volumes. Thus, $\$ 100$ million of apparel represents a amaller physical quantity of goods than does

[^7]Table 3.-Decrease in employment resulting from $\$ 100$ million of imports äntroduced into final demand sector

	1966 Andustry number ${ }^{1}$	When imports are sppare	When importsiare textile mill produots
		Man-hours	Man-hours
1.		. 148	313
2		. 250	719
3		154	142
4		1	2
5		2	4
6		14	28
7		5	0
8		3	${ }^{1} 7$
9.		4	10
10		0	
11		51	'76
12		0	1
13		19	40
14		0	0
15		1,867	5,520
16		7,070	72
17		27	33
18.		8	7
19		107	132
20		52	62
21		260	606
22		9	18
23.		69	67
24		39	6
25.		20	42
26		35	54
27		37	55
28		36	77
29		18	24
30		7	11
31		9	9
32		125	33
33		279	488
34.		111	167
35.		874	980
36		147	179
37		425	488
38.		0	1
39		32	47
40		39	44
41		62	62
42	-------*-------n----	28	43

[^8]$\$ 100$ million of fabric and yarn imports. In fact, in terms of production, $\$ 100$ million of apparel is equivalent to $\$ 42$ million of textile mill products, based on relationships existing in the 1966 transactions table. ${ }^{15}$ If this equivalent is considered, the employment loss attributed to imports of textile mill products shown in table 3 would be reduced 58 percent, and the apparel imports would be, on a relative basis, even more detrimental to domestic textile employment than the table implies.

On this equivalent basis, the fiber suppliers' position on form of imports softens somewhat. In fact, when the employment loss attributed to textile mill products is reduced 58 percent, industry 21 (chemicals) becomes somewhat indifferent to the form of textile imports, but apparel imports would still be preferred in order to minimize the net adverse employment effects in industry 2 (cotton). Apparently, this is the result of particular all-cotton products, such as sheets, pillowcases and towels, originating in industry 15 (textile mills) and passing directly to the consumer through the retailer, thereby bypassing industry 16 (apparel). This implies that cotton is tied more closely to industry 15 than industry 16. Consequently, imports of textile mill products are more detrimental to cotton producers.

Effect of Interfiber Substitution

The second analysis was performed to investigate the effect of substituting manmade fibers for cotton as an input of industry 15. The analysis was accomplished by substituting $\$ 100$ million of menmade fibers for $\$ 100$ million of cotton. The substitution had to be in dollars due to the nature of the transactions table, which represents purchases and sales in dollars. Displacement rate of a dollar's worth of manmade fiber for a dollar's worth of cotton rests on the following calculation:

兂	Cotton	Manmade	Ratio (man- made cotton)
Raw price.	${ }^{18} 80.30$	${ }^{17} \$ 0.4546$	1. 5153
Cotton equivalent	i. 3	${ }^{18}$ I. 2247	1. 2247

[^9]The ratio 1.5153/1.2247 (equals 1.2373) implies that manmade fiber is 24 percent more costly than cotton as an input to get the same value of output if output prices were equal. The exact relationship of the output prices is not known, but the output produced from manmade fibers is believed to sell at a higher price. Consequently, to get equal value of output, less manmade fiber input is needed. Therefore, the substitution rate of manmade fiber for cotton necessary to hold output value constant is not $\$ 1.25$ to $\$ 1$, but may be more like $\$ 1$ to $\$ 1$. Thus, for lack of more precise information, we assume a substitution elasticity of 1 .

The analytical procedure was the same as in the previous analysis. The $[I-a]$ matrix, with chenged coefficients, was inverted, and new total outputs were generated. ${ }^{19}$ The new outputs were converted to employment, and the results are shown in table 4.

As expected, the two industries that are affected most by the substitution are the fiber suppliers: cotton suppliers suffer a loss of 11,653 employees and chemical suppliers gain 2,507 employees. The gain in the chemical industry is actually the net result of increased shipments of manmade fibers and decreased shipments of agricultura chemicals necessitated by the reduced cotton output.

Industry 3 (forestry, fisheries, and agricultural services) suffers a large employment loss- 2,061 -mainly cotton ginners and cropdusters. This adverse effect is certainly attributable to the decline in cotton production. Industry 1 (agricultural products) suffers a similar loss (2,262 employees) due to losses in sales of the cotton sector and its suppliers. Also directly related to the decrease in cotton production is industry 13 (food and kindred products), which registers a loss of 742 employees. This loss reflects the decline in output of cottonseed oil in that industry.

Three other industries showing employee losses greater than 300 are industry 35 (wholesale and retail trade), industry 36 (finance, insurance, real estate, and rental), and industry 37 (lodging, personal and business services). These losses occur because each industry experiences a reduction in total output due to reduced cotton production.

[^10]Table 4.-Employment change resulling from substitution of $\$ 100$ million of manmade fiber for $\$ 100$ million of cotion

	1966 indusiry number '	$\begin{gathered} \text { Ermploy- } \\ \text { ment } \\ \text { ohange } \end{gathered}$
1.		-2,262
		-11,853
3		-2,081
		$+6$
		+12
		+26
		-4
8		-15
		+33
10		0
11		-266
12		0
13.		-742
14.		0
15		-7
16		0
17		$+14$
18		+8
19.		+110
20		-21
21		+2,507
22		-9
23.		+5
24		-7
25		+24
26		+74
27.		+32
28.		-7
29		-7
30		-12
31.		+10
32		+2
33		-18
34.		-36
35.		-616
36		-755
37.		-315
38		+2
39		-60
40		-26
41		-3
42.		-15
		-16, 057

${ }^{1}$ For induatries corresponding to numbers, see tsble 1.
$\$$

Appendix Table
(In malillon dollars,

Induatry number and title	1	2	3	4	5	6	7	8	0	10	11
1. Agrioaltural produots exatading cott:	13,007	144	986							288	
2. Cotton.		8	80								
8. Forastry, lisheries, and saryloes.	1,107	221	40								
4. Iron and ferroalloy ores				102	19						
5. Nonterrous metal orse.-				70	385			2			
6. Obal......................	7			7	\pm	385		4			
7. Oride petrolenm and nitural gras.							342		1		
R- Stome and clay .-....----	73	6				\pm		49	24	790	188
D. Ohemical and fertilitar minerals;	32	2			2			2	52		
10. New construgtion.-..---											
11. Mnintanasoe and ropair construotloa.	660	38	2	2	2	2	6	3		8	1
12: Ordinazce and acosssories:										3	
13. Food and tindreti products:	3,888		38							22	
14: Tobasco manufactures -											
15. Fpbrica, yaris, goods, and rags.	43		24		3	2	2			4	1
18. Apparol and fabrleated products.	${ }_{51}$	1									1
17. Yumber and woed prodacts.	120			10	2	10	θ			4,100	822
18. Furiture and Ixturas-n										506	19
10. Paper and allfed products.	20		27		2	7	\bigcirc	28	8	303	83
20. Printing and publishlng.	12	1				1	1	1		9	1
21. Ohamleais, oto.n........-	1,308	146	2	22	08	40	94	29	28	711	1,188
22. Petroleum refinling and related products.	905	81	27	18	12	28	78	66	7	1, 131	430
22. Rubber and misceilianeous plastic products.	212	10	13	2	7	25	49	48	6	403	88
24. Leatier tanning, ets.....	4	1									
25: Glass axd stone..........	32	2		2	0	6	6	168		5,133	775
28. Primary Iron and steel mifg. and nonfermous metals mig:	2			41	9	42	16	40	13	4,006	718

transactions, 1966
at producera' prices]

Appendix Table-Interindustry
iIn milllon dollarg,

Induatry pumber and title	1	2	3	4	5	6	7	8	0	10	11
27. Fabrleated motal products.	128	8	11	3	3	3 I	83	2	-...-	7,501	1,173
28. Machinery .-.-.-.........	258	13		45	58	142	240	! 52	32	1,227	96
29. Eloctical eqtipment-.	35	2		4	10	10	72	5	5	1,890	370
30. Transpertation equalpment.	01	2	19	4	1	10	12	8	1	4	
31. Selantile Instruments...							2			282	22
52. Miscelloneons mannfacturlog.	1		3			4		2		105	30
85. Trensportation and warehoustis.	1,142	30	45	292	88	26	508	49	05	2,688	. 443
34. Communjeatlons and otilittes.	359	39	16	43	6s	91	211	88	60	425	71
35. Wholesale tad retall trade.	2,171	75	30	38	54	02	180	03	22	5,886	1,630
30. FiLance, Insurnzica, real estate, and rental.	2,267	382	115	168	101	103	2,635	109	18	025	120
87. Lodgtag, personal, and busisess seryloes.	785	72	154	16	19	20	678	33	8	4,186	97
88. Researeb and development.											
30. Auto mepair.	156	0				1	20			398	33
40. Amusoryents and medtcal and edtecational sarvises.	200	1	2	2	2	3	15	2		77	13
41. Eitaral Government enterprises.	7		2	1	1			1			
12. State and local govarnment enterprises.	1					1	6	2	\cdots	18	2
43. Groes Imports.-....----	703	23	310	804	634	3	1,671	469	149		
44. Dammy industrles. ...-	54	3	2	8	10	18	275	19	0	388	85
45. Govenment industry---											
46. Reat of worid Industry --											
17. Housobold fndustry.											
Total tutermediate inputs.	29,883	1,335	1,036	1,638	1,633	1,120	7,190	1,451	480	43, 671	8, 197
Value added.	27,289	317	1, 883	188	646	1,477	8,023	1, 118	510	30,788	15,742
Total	37, 372	1,652	3,518	1,824	2,279	2,806	18,114	2,560	1,000	74,369	23, 299

transactions, 1966-Continued
at produsers' pasces]

Appendix Pable-Interindustry
(In milion dollars

Industry numberand titio	\%	27	28	29	30	31	32	33	34	35
1. Agricultural products axoludlas cotton.							11.	40		
2, Cotton........---						5				
3. Foreatry, dshertes, and services.			6				5	1		188
4. Iron and forrealloy ores...	1,518		2	10						
6. Nonlerrous motal ores-.--	1,385	4		11		2			4	
3. Coal	720	7	12	0	33	3	1	26	628	4
7. Crude petroleum and natural gas.									1,557	
8. 8tone and clay............	105	3	35					1		4
9. Obomical and fertilizor minerals.	18							1		
10. New construction.										
11. Afilntenanca and zepair construction.	223	23	66	43	180	4	25	1,393	1,182	OFA
12. Ordnanea and necessorles.	2	4	13	203	627	$0{ }^{1}$	1			11
13. Food and kindred products.	15		2			24	14	124		651
14. Tobacco manufactures							2			4
15. Fibrics, yarus, goods, and rugs.	34	22	12	30	288	60	2 CH	24	10	41
10. Apparof ared fabrleated products.	42	38	45	45	373	23	27	22	12	112
17. Lumber and wood products.	57	185	117	111	232	8	171	30	4	184
18: Furnture and fixtures...-	3	69	22	354	136	23	11			82
10: Paper and aitlod products_	388	327	183	600	259	108	532	47	38	896
20. Printlag and pablshing --	60	48	31	41	45	4	43	79	184	289
21. Ohomicals, etc...........-	832	375	196	796	501	240	376	102	20	303
22. Putrolaum rodining and related products.	305	160	180	82	180	10	26	1,616	348	884
23. Rubbar andiniscallaneous plastic products	145	202	500	835	3,605	103	835	311	外	292
34: 工eather tonning, otc.......		9	20	$\boldsymbol{\sim}$	30	14	118	4		25
25. Oluss and stone...	800	280	342	755	817	120	65	10	34	278
28. Primary fron and steel mig. and nonferrous metals mig.	13,360	10,903	0,3¢2	4,710	7,623	608	691	104	135	28

transactions, 1966-Continued
at producens' prices]

30	37	38	30	40	41	42	43	44			Total intermetaiate nutputs	Fingl demand	Total
2,802				32	782			134			48, 517	10,406	57,17
105					151						1,678	g	1,652
10				5		2	--	23	-	--	3,488	-61	3, 619
6					3						1,781	48	1,824
8							--		-. --	---	1,675	804	2,279
18	32		11		63	100	--				.2,427	89	2,606
188						31	.-				14,258	1,856	16,114
10											2,301	288	2,889
							--				041	169	1,000
												74,389	74,869
8,722	75		144	1,237	22	1,922				--	17,578	6,880	23, 259
3		871						4	- -		1,974	7,250	0,224
101	19	7		290	469	2	--	3, 138	-	--	25,036	65,845	00;381
2								214			1,996	6,405	8,801
${ }^{87}$	201	6	20	40		3	-	110	.	---	17,629	1,954	18,083
88	340	7	28	122	3	3	--	27			0,841	21, 67,	28,212
39	6			4			\cdots	3	---		12,000	. 033	12,598
6	18										1,512	6,575	8,067
212	310	15	6	160	64	3	\cdots	525	---	-	20, 132	2,447	.22, 679
Bl 5	6,800	-------	12	406	88	18	--	1,146	-	--	13,048	7,602	20, 050
208	488	194	98	055		48	--	83			30,088	14, 034	44,122
831	317	20	34	108	θ	81	-	14			11,892	11,757	28,848
163	103	51	305	110	2	9	--	25	-		8,049	4,686	13,785
9	10			22	2			42			1,804	3,910	5,774
\$8	74	2	186	9	20	2	$\sim \mid$	7	-	---	18. 896	2,274	15,670
47	30	31				3	--	875	--	--	52,178	2,027	54,208

Appendix Table-Interindustry

In mellion dollars,

transactions, 1966-Oontinued
at producers' prionic

36	87	88	39	40	41	42		4	48.40		Trotal inter medinta ontputs	$\begin{aligned} & \text { Final } \\ & \text { domand } \end{aligned}$	Total
35	80	61	156	31	5	35	--	188			27,643	7,287	85,048
188	1, 200	372	161	\checkmark	2	2	--	233			20,008	.29,009	60,007
77	640	1,505	228	37	2	2	-	25	-		20,283	25, 200	4, 5 , 583
62	88	2,513	1,805	81	18	17					26,271	12,177	78,418
21	888		24	628			\cdots	118			4,996	4,8H1	0,807
83	894	17	8	180				467	---		8,700	8,720	9,423
1,120	831	4	122	271	1,485	139		4,732		--	36,661	10,110	48,671
2,029	4,870	4	37%	1,485	186	887					32,857	18,292	52,648
1,983	1,231	19	680	789	98	68	--				39,120	101, 181	140,281
17, 272	8,070	32	828	4,095	88	228	--	8			59, 878	07,048	151,220
4,980	2,182	43	277	1,862	121	103	--	1,817			41,547.	17,127.	88, 674
					2						242	8,635	8;877
358 468	383 72		222 12	77 84	72	10					4,969	6,825 46,800	21,824
468	72	978	12	84			-	247			3,838	46,800	50,488
788	794		5	2,388	9	3					8,601	217	8,818
714	35		30	20	2						5,893	2,052	7,040
177				186	306		-	973			27,320	-27,330	
877	203	28	145	892	96	73					14,872	679	15,561
							-					76, 699	70,509
-1.......							-		\cdots			4,163	4,189
---							-					4,028	4,0\%
45,291	25,047	7,140	5,769	16,859	4,096	3,835	-- 1	15,651			681,787		
105.235	22,727	1,737	6,005	33,778	2,721	1,110						746, 118	
161, 228	88,674	8,877	11,824	50,488	0,818	7,945		15, 551					1,410,895

Selected References

(1) Almon, Clopper, Jr.
1966. The American Economy to 1975. Harper and Row, New York.
(2) Chenery, Hollis B., and Clark, Paul S.
1959. Interindustry Economics. John Wiley and Sons, Inc., New York.
(3) Anonymous.
1967. GATT Kennedy Round Attacked Trade Barriers. 'Internatl. Com., July 10, pp. 2-7.
(4) Goldman, Morxis R., Marimont, Martin L., and Vaccara, Beatrice N.
1964. The Interindustry Structure of the United States. Survey of Cur. Business 44(Nov.): 10-29.
(5) Anonymous.
1967. Input-Output Analysis: Toy or Tool. Forbes, Jure 15, pp. 46-50.
(6) Leontief, Wassily W.
1866. Input-Output Economics, Oxford Univ. Press, Now York.
(7) Miernyk, William H.
1965. The Elements of Input-Output Analysis. Rendom House, New York.
(8) Rice, Philip F.
[n.d.] 2n Input-Output Analysis of the American Textile Industry: A Synthesis of Several Techniques Applied to a Revision of the U.S. Department of Commerce 1958 Input-Output Study. Unpublished dissertation.
(9) Anonymous.
1968. Textile Organon 39(2): 25-26.
(10) U.S, Bureau of Labor Statistics.
1967. Handbook of Labor Statistics. U.S. Dept. Labor Bul. 1555.
1966. Projections 1970: Interindustry Relationships, Potential Decarad, Employment. U.S. Dept. Labor Bul. 1536.
(12)
1967. Wholesale Prices and Price Indices. Jan.--Dec.
(18) U.S. Bureau of the Budget, Executive Office of the President. 1957. Standard Industrial Classification Manual.
(14) U.S. Department of Agriculture.

1966-67. Agricultural Statistics.
(15) ——, Consumer and Marketing Service.
1968. Weekly Cotton Market Review. Vol. 49, no. 23, Jan. 12.
(16) Wimomic Research Service.
1066. Statistics on Cotton and Related Data, 1925-1962, Supplement for 1986. U.S. Dept. Agr. 'Statis. Bul. 329, Nov., p. 8.
(17) U.S. Department of Commerce, Office of Business Economics.
[n.d.] The 1958 Interindustry Relations.Study. Unpubliahed.
(18)
1967. Survey of Cur. Buainess 47(7): 10.
(19)
1965. The Transactions Table of the 1958 Input-Output Study and Revised Direct and total Requirements Data. Survey of Cur. Business 45(Sept.): 33-49, 56.

[^0]: $\$$ Formeriy industrial economist and agricultural economist, respectively, Marketing Economics Division, Eleonomic Research Service.
 ${ }^{2}$ Italic numbers in parentheses refer to the "Selected References," p. 26.
 ${ }^{3}$ For s more comprehensive description of the work introduced in this report, see Rice (8).

[^1]: 4 "An eatabliahment is an economic unit which producea goods and services-for example, a farm, a mine, a factory, a store. In most instances, the establishment is at a single physical location, and it is engaged in one, or predominantly one, type of economic activity for which an industry code is applicable" (13, p. 3). Exceptions are construction, transportation, trade, and services, which are elassified largely on an activity basis (17, appendix 1).

[^2]: ${ }^{8}$ The value of X_{i} cor sponds to the value of X_{i} in equation (1), shown above, when $i=j$. That is, the row and column totals of the transactions table are equal for $i=j$.

[^3]: © For a detailed disoussion on assumptions, see Rise (8, pp. 9-15) and Chenery and Clark (2, pp. 33-42).

[^4]: ${ }^{7}$ Price indices were developed from several sources; the primary source was U.S. Bureau of Labor Statistics Bulletin 1555 (10).
 ${ }^{8}$ (11, pp. 103-104). The rates of change for the original 83 producing industries were weigated by the 1858 intermediate sales to form the 44 rates of change needed for the 1966 table.

[^5]: - The appllcation of avarage rates of change to each coeffictent was recognized as an oversimplification.
 ${ }^{10}$ The sector deviations oucur because of the differenoe in defining the economie unit in input-output work and in national income accounts (17, p. 4).
 ${ }^{11}$ For detail on adjustments, see Rioe (8, pp. 66-77).

[^6]: ${ }^{12}$ For published GNP, see (18, p. 10).
 ${ }^{13}$ For this paper, the control total of industry 2 (cotton) was revised to $\$ 1,652$ million on the basis of information available after the dissertation was completed. This forced the revision of all coefficients in column 2; and a_{2-1} changed from 0.001950 to 0.002922 .

[^7]: ${ }^{14}$ Employment totale by industry (except industries 1 and 2) were obtained from unpublished data of the U.S. Bureau of Labor Statistics. Employment toials for industries 1 and 2 were obtained from Agriculural Statistics (14 , p. 580).

[^8]: ${ }^{1}$ For industries corresponding to numbers, see table 1.

[^9]: is The unemployment resulting from $\$ 100$ million of imported apparel is compared with that resulting from $\$ 100$ million of npparel produced domestically from imported textiles, thereby comparing effects of equal physical quantities of imported textile goods at different stagea of rasnufacturing.
 ta Average cotton price for August-December, 1967 (15).
 ${ }^{17}$ Represents weighted average price of 1.5 denier polyester staple and viscose rayon staple. The polyester price ($\$ 0.658 / \mathrm{lb}$.) represents the average monthly wholegaie price for 1967 (72). The viscose rayon price ($\$ 0.28 / \mathrm{l}$.) is the monthly average price for 1967 (10, p. 29).
 ${ }^{18}$ Represents weighted cotton equivalent of polyester and visoose rayon. For cotton equivalents, see (16, table 239, p. 146). For weighting factors (1967 production) of polyester and viscose rayon used in caleulating manmade price and cotton equivalent, see (10, p. 29).

[^10]: ${ }^{10}$ The shipment of industry 2 (cotton) to industry 15 (textile mill producta) was reduced $\$ 100$ million, and the shipment of industry 21 (ehemicals) to induatry 15 was increased $\$ 100$ million. Concurrently, less cotton implies less seed, so shipment of industry 2 to industry 13 (food and kindred producta) was reduced to refleat seed loss of $\$ 25$ million. And finally, less seed impiies a reduction, estimated to be $\$ 29$ million, in production of cottonseed oil and cottonseed meal. These four shipment changes necessitated changing the corresponding coefficients in the coefficient matrix.

