

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

STAR'

REFERENCE
 DO NOT, LOAN

EFFECTS OF

CONSERVATION PRACTICES

ON STORM RUNOFF IN THE TEXAS BLACKLAND PRAIRIE

Agricultural Research Service

> UNITED STATES DEPARTMENT OF AGRICULTURE in cooperation with

Texas Agricultural Experiment Station

Contents

Page
INTRODUCTION I
THE TEXAS BLACKLAND PRAIRIE 1
Agriculture 3
Climate 3
THE BLACKLANDS EXPERIMENTAL WATERSHED 3
DESIGN OF THE TXPERIMENT 4
Uniform Treatment Period 5
Differeutial Treatment Period 7
Base Watershed W-1 8
Conservation Watershed Y-2 8
Watershed Y-4 9
Watershed Y-7 10
Watershed Y 10
Watershed SW-17 10
THE DATA 10
DATA ANALYSIS 11
Equation Development 13
Runoff Computation 15
DISCUSSION 16
CONCLUSIONS 20
SUMMARY 21
APPENDIX 22

Effects of Conservation Practices on Storm Runoff in the Texas Blackland Prairie

By R. W. Baipd, research hydraulic engincer, C. W. Richardaon, agrichltural snginecr, and W. G. Knisel, Jr., regearch hydraulic enginecr, Soil and Water Gonservation Research Division, Agricultural Rescarch Service, Onited States Depariment of Agriculture

INTRODUCTION

As demands for water grow, the effects of land-use changes on amounts of runoff become increasingly important to all water users. Where direct surface runoff is the cinief source of water, as in the Texas Blackland Prairic, there is considerable interest in the effect that conservation measures on the agricultural lands have on this source of water supply. The increase of the acreage of grassland and the introduction of terraces or contour tillage were believed to have decreased surface runoff. Therefore, a study to determine the effects of these conservation measures on runoff was conducted at the BlackIands Experimental Watershed near Riesel, Tex.

The study was conducted by instrumenting small watersheds in the Texas Blackland Prairie to measure rainfall and runoff. These measur?ments were made during an initial period when all watersheds were farmed alike in the then conventional mamer. Following this initial period, conservation practices were applied to all watersheds except one, which was maintained in nonconservation farming to serve as a base, and the measurements continued.

Equations were developed from the data obtained from these measurements for predicting runoff from each watershed-first as an area without improved treatment, and second, as an area with conservation practices applied. These equations were used to predict runoff based on the data for the entire period of record. The predicted amounts of runoff for the two treatments were then compared to determine the effect that conservation practices had on runoff.

THE TEXAS BLACKLAND PRAIRIE

The Texas Blackland Prairie extends in a southwesterly direction from near the Red River in northeast Texas to San Antonio in southcentral Texas (fig. 1). About $11,500,000$ acres are included within this

Froure 1.-Location of the Texas Blackland Prairie and mean annual rainfall in eastern Texas.
arca. The soils of this area are primarily heavy calcareous clays. These deep soils can absorb large amounts of water rapidly when dry, but swell when wet and are very slowly permeable. The major part of the area is gently rolling, with slopes of 3 percent or less. This part now includes much of this cultivated land of the area. Some relatively small areas, frequently along fault zones, have much steeper slopes. Some of
these steeper areas had been cultivated but now most of them are grassland. More detailed information of soils and geology of the area can be found elsewhere. ${ }^{1}$

Agriculture

The native vegetation in the Tezas Blackland Prairie was largely grasses with scattered patches of small trees and some larger trees along creeks. ${ }^{2}$ From the early 1900's into the 1930's, this area was extensively cultivated. Cotton and corn were the primary crops until reductions in cotton acreage started in the 1930 's. Mucl of the area formerly planted to cotton is now in grass and weeds. However, some of it is used for improved pastures and a considerable part for grain sorghum and small grains.
Farming on the cultivated lands has changed. Animal power and small tractors have been replaced with row-crop equipment of four rows or more. Deeper tillage, made possible by large power equipment, and use of herbicides lave resulted in more effective weed control with fewer tillage operations.

Climate

The climate of the area is characterized by long, hot summers and relatively mild winters. Mean annual rainfall varies from about 30 inches in the sonthwestern part of the area to about 40 inches in the northenstern part (fig. 1). Large variations from the mean are common. From 1937 to 1966, amual rainfall at the Blacklands Experimental Watershed ranged from 17.94 inches in 1954 to 57.91 inches in 1957. Long periods of below-average rainfall, without any severe storms, also occur, resulting in periods of more than 12 months without any runoff from the experimental watersheds.

THE BLACKLANDS EXPERIMENTAL WATERSHED

Hydrologic studies at the Blacklands Experimental Watershed are conducted on 841 acres of Government-owned land and on 4,000 additional acres of adjacent privately owned land at the headwaters of Brushy Creek. .

[^0]The experimental watershed is iepresentative of the Texas Blackland Prairie. Its soils are developed from the marls of the Taylor formation, the most extensive formation in the Blackland Prairie. Land uses within the watershed are typical of those for the area and the slopes and drainage comparable to the general area. In addition, this watershed has subwatersheds suitable for measuring runoff and sediment yields.

DESIGN OF THE EXPERIMENT

The data for this study were collected during two treatment periods. During the initial mriod, hereafter referred to as the uniform treatment period, all watersheds were trented alike. Fields were cultivated with straight rows without regard to slope and with no special conservation treatment. This uniform treatment period permitted the differences in runoft production to be determined among the watersheds
Different treatments were started in 1942 on experimental watersheds Y, Y-2, Y-4, and Y-7, and in 1948 on watershed SW-17. Watershed $\mathrm{W}-1$ was retained withont a major change to serve as a basis for comparing the old treatment with the new treatments. The new treatment period will be called the differential treatment period. The treatment periods and the total period vecorded on each watershed are shown in table 1.
The major part of all butione of the study watersheds is on Govern-ment-owned land where land uses and conservation practices can be controlled. The soils of these watersheds range from 66 to 100 percent Houston Black clay. Physical characteristics of the watersheds are given in table 2. A map of the experimental area is shown in figure 2.

Table 1.-Land treatments on experimental watersheds and periods with runoff records, Texas Blackland Prairie

Watershed	Treatment			Periods with runoff records
	Nonconservation ${ }^{1}$	Transition ${ }^{2}$	Conservation ${ }^{3}$	
	1930-Aug. 1942	pt. 1942-48	1949-66.--	1930-July 1943. May 1046-66.
Y-2.	1939-Aug. 1942	pt. 1942-48	1949-66	1939-66.
Y-4	1930-Aug. 1942	pt. 1942-4S.	1949-66.	$\begin{aligned} & 1939-J u l y ~ \\ & 1946-66 . \end{aligned}$
Y-7.	1939-Aug. 1942	pr. 1942-48.	1949-66	$\text { 1939-July } 1943 .$
SW-17	1939-July 1943	g. 1943-4S	1949-66	$\begin{aligned} & \text { 1939-Iuly } 1943 . \\ & 1948-66 . \end{aligned}$

[^1]

Frasky 2.- Tocation of runot measuring stations and rafn gages on the Government land.

Uniform Treatment Period

Under the land use prevailing in 1936 and 1937, farms in this area had approximately 80 percent of their total acreage in cultivation, 16 percent in permanent grass for hay or pasture, and 4 percent in roads and farmsteads. Of the total cultivated land, about 75 percent

[^2]Table 2.-Characteristics of the experimental watersheds, Texas Blackland Prairie

Watershed	Size	Length ${ }^{1}$	Area in slope range of -			Average slope ${ }^{2}$
			Less than 1 percent	$\underset{\text { percent }}{1-3}$	$\stackrel{3-6}{\text { percent }}$	
	Acres	Feet	Percent	Percent	Percent	Percent
W-1.	176.0	5,400	11	75	14	2. 19
Y	309.0	5,040	3	79	18	2. 41
Y-2	132.0	3,280	6	67	27	2. 57
Y-4,	79.9	2,760	3	61	36	2.86
Y-7	40.0	1,970	9	91	0	I. 87
SW-17-	2. 99	180	0	100	0	1. 83

${ }_{2}^{1}$ Distance from the measuring station to the most distant point of the watershed.
${ }^{2}$ For arest of less than 25 acres, average slope was determined by the contourlength method; for larger areas, from the average slope cte each siope class weighted by its area.
was in cotton or corn (both spring-planted crops) and the rest in fall-planted oats and other crops. This land-use practice was applied to all watersheds during the nonconservation period, although some minor changes were made in the acreages of the various crops grown. Actual land uses for 1937, 1939, 1942, 1949, and 1966 are shown in table 3.

Preparation of land for row crops generally started in the fall after harvest, and usually completed in October. The Iand was bedded and rebedded with beds spaced 36 to 38 inches. If control of winter weeds was necessary, one to three additional bedding operations were made before planting. Corn was planted in early March and cotton, about April 15 or later. Planting on the bed left the field with only a minor ridge. Row crops had frequent shallow cultivation for weed control until about July 1 when corn became too tall to cultivate or matil cotton was nearly ready for harvest. Usually stalks and other residue were covered by the fall tillage. No effective stalk shredders were available and stalks and other residues were difficult to incorporate into the soil. In some areas burning the stalks was common, but this was not done on these watersheds.

Oats, usually drilled in cotton land without other tillage soon after cotton harvest, were grazed from December through February and harvested in May or June. Bedding of land to be planted to cotton the following year was usually started soon after harvest of oats or corn. Sometimes, however, this work was delayed because of other workloads or dry soil.
Pastures on the watersheds were usually small and severely overgrazed. Many farms retained small acreages (or areas) of native grass which were cut for hay about July 1. This grass was usually in good condition unless heavily grazed after the hay was cut.
The only major change in tillage operations from 1939 through August 1942 was replecing animal power with small tractors. Little fertilizer, herbicide, or insecticide was used during this period.

Table 3.-Major uses of land in experimental watersheds, Texas Blackland Prairie, specified years 1937-66

Watershed and year	Fallplanted oats	Springplanted crops	Permanent grass	Farmstends	Roads	Other ${ }^{1}$
Watershed W-1:	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.
1937	10.5	76. 7	8.1	1.5	2.6	0.6
1939	12. 5	73. 6	9.3	1. 6	2. 6	4
1942	13. 6	71.5	10.2	2.1	2.6	
1949	15. 8	58.3	16.7	1.9	2. 6	4.7
1966	18.1	50.7	21. 4	. 8	2.6	6.4
Watershed Y-2: 0						
1937.-.-.-.------	7.9	46.2 80.8	- 8.6	. 5	1. 1	36. 6
1942	18. 3	71.8	8. S		1.1	---------
1949	25.9	44.2	28.8		1.1	
1966	26.1	39.7	33.0		1.2	
Watershed Y-7:1937--------						
1939	15. 6	84.4				
1942	28. 1	71.9				
1949	93.1		6. 9			
1966	35.5	22.8	14.1			27. 6
Watershed Y: 70						
1937	7. 4	54.9	18. 2	. ${ }^{\text {S }}$	1. 1	17.6
1939	10. 6	69.3	18.5	. 5	1. 1	
1942	15.6	64.0	18.8	. 5	1.1	
1949	14.9	37.8	31.1	. 2	1. 1	14.9
1966	27.8	30.6	37.0		1. 1	3.5
Watershed X-4;						
1937------	11. 6	57.8	11. 8	07		18.1
1993	12.0	77.6 68.2	11. 7		1. 1	
1949	24.7	46.2	2 S .0		1. 1	
1966...---------	29.9	37.7	31.3		1. 1	--

[^3]
Differential Treatment Period

The staff of the Blacklands Experimental Watershed in cooperation with the Operations Division of the Soil Conservation Service and conservation specialists of the Texas Agricultural Experiment Station prepared a conservation plan for watershed Y and its sabwatersheds. This plan included terraces, grassed waterways, larger acreages of permanent grasses, and a 3 -year rotation of cotton, corn, and oats with Hubam or Madrid clover. Early in 1943, terraces, water-
ways, and changes in field layouts were completed, but improved agronomic practices were not fully effective until 1949, when the 3year rotation had completed two cycles.

Watersheds $\mathrm{X}, \mathrm{Y}-2, \mathrm{Y}-4$, and $\mathrm{Y}-7$ were terraced and acreages of permanent grasses were increased. The major differences in these areas were the physical differences shown in table 2 and in the crops grown (table 3). A detailed description of the treatment on each area follows.

Base Watershed W-1

In 1942, watershed $W-1$ was selected as the base area for later comparison with areas on which conservation practices would be established. Tillage and cropping practices had only minor changes (table 2). The nereage of permanent grass was increased and grain sorghum replaced corn, but row crops were grown each year on approximately 75 percent of the cultivated land in at 4 -year rotation of cotton, oats, cotton, corn or grain sorghum. Fertilizers were not used until 1063 and then at rates comparable to those used in the conservation areas. Little changes occurred in tillage until 1963, when leavier equipment was used which resulted in deeper tillage and more tiraely field operations. Throughout the period recorded, the area was cultivated in straight rows, parallel to field boundaries without regard to slope.

Conservation Watershed Y-2

The conservation program on watershed Y-2 starked in 1942. The plan included: (1) Increasing the acreage of grassland for additional pasture and for protection of drainageways and terrace outlet channels; (2) terracing all cultivated land with slopes greater than 1 percent; and (3) improving agronomic practices, including deeper tillage and recommended crop rotations. Some small areas with slopes as great as 5 percent were included in cultivated felds, but areas with steeper slopes generally were seeded or sodded to grasses. Construction of terraces started in the fall of 1942 and was completed in 1943. Since then, all tillage operations have been parallel to the terraces.
In 1949, commercial fertilizer applications of $24-30-0^{3}$ were used with the oats-clover; these rates were gradually increased to $50-38-0$ by 1966. Oat fields were moderately grazed from December through February except during wet periods. The principal change in tillage was plowing all oat-clover fields when the clover had made some growth after harvest of oats. Plowing depths were gradually increased from about 5 inches in 1949 to 8 inches or deeper in 1966. Plowing with a two-way plow was parallel to terraces and all dead furrows were in the terrace chamnels. Except for tillage parallel to terraces, planting, cultivating, and harvesting on conservation-treated watersheds were the same as on the base watershed $W-1$. Figure 3 shows the improvements in methods and depths of tillage.

[^4]

Froune 3.-Typlcal tillage methods and depths used in 1939 (upper) and 1963 (lower).

Watershed Y-4

Watershed $Y-4$ is part of watershed $Y-2$ and has a similar conservation and cropping plan. Land slopes, however, are generally greater on Y-4 than on Y-2. Slopes of $3-6$ percent oceur on 36 percent of $Y-4$ and on 27 percent of $\mathrm{Y}-2$. Only 13 percent of the part of $\mathrm{Y}-2$ below $Y-4$ has slopes within this range.

A smaller proportion of watershed $Y-4$ has the deep Houston Black clay soil than watershed Y-2. Shallower soils occur on 26 percent of watershed Y-4 and 24 percent of watershed Y-2.

Watershed Y-7

After 1942, watershed Y-7 had the same type of terraces and waterway system as Y-2. The cultivated land of this watershed is privately owned, but the grassed waterway (about 6 percent of the area) is owned nnd maintained by the Government. Deeper tillage was not used on this watershed as on Y-2. After 1942, cotton acreage was reduced and no special cropping or tillage plan was followed. Quality and timeliness of farming were poorer than those followed on the base watershed $W-1$. Ont crops frequently were intensively grazed and seldom harvested for grain. After corn or grain sorghum was harvested, the stalks remaining were also heavily grazed. Cultivation was parallel to the terraces and the terraces were maintained in good condition.

Watershed Y

The 309-acre watershed Y includes subwatersheds $Y-2, Y-4$, and Y-7. Although this watershed had the same type of conservation plan as described for Y--2, in intensive treatment of all the drainage area was impossible. This area has 20 acres of privately owned land, in addition to that in watershed $Y-7$, with no special conservation treatment or agronomic plan. On the Government-owned land, 59 acres were tenant operated with the Government prescribing the crop plans. The types and timing of farming operations, however, were left to the discretion of the tenant. Until 1953, these two privately owned areas were managed much like watershed Y-7. Since then, the 59 -acre area has been managed and operated by the Government. By 1956 , one rotation cycle was completed using the same type of farm equipment, fertilizer, and other practices used on watershed $Y-2$. The remaining 35 acres of cultivated land and 23 acres of pasture on watershed Y had an improved treatment comparable to that used on watershed Y-2 during the entire conservation period.

Watershed SW-17

Watershed SW-17 is a 3 -acre area with only one crop any one year. From 1939 to July 1943, tillage and crop practices were the same as for the same crop in the larger areas-cotton and oats in alternate years, beginning with cotton in 1939.
Common bermudagrass was sprig sodded in January 1948, overseeded with Hubam clover in February, and other clovers added in the fall of 1948. By January 1949, a good cover was established. From 1949 to 1962, grazing was moderately heavy, but since then, it has been only moderate.

THE DATA

Rainfail and runoff data were collected from these study areas from 1939 to 1966. Data for this entire period were obtained from only two
watersheds (W-1 and Y-2). The other watersheds had no record of runoff for various periods starting in August 1943.

Amounts of rainfall for the various areas were computed by the Thiesses weighting method from a network of rain gages over the area. Areas of 20 acres or less may have one centrally located gage or two gages near the boundary. Larger areas have two or more gages within or near the boundary. The number of rain gages was changed several times during the period recorded. The rain gages shown on the map in figure 2 have been used since October 1960.

Runoff was computed from continuous records of gage height at each measuring station. Watersheds Y-2, Y-4, and $\mathbf{Y}-7$ have Parshall flumes with V-notch Columbus weirs in the recovery section for measuring low-flow rates. The measuring device on watershed $W-1$ is similar, except a deep-notch Columbus weir is used for measuring low flows. Ratings for these flumes and weirs were obtained from model studies and checked with a few field current meter measurements. The 309 -acre watershed Y has an artificial control, which has been rated by current metor mensurements. A deep-notch Columbus weir is included for low-flow rates. Watershed SW-17 is equipped with an H-3 flume with a sloping floor that has a standard rating. An example of each type of runof-mensuring installation is shown in figure 4.

The rainfall and runoff data used in this study are summarized by storm periods in the appendix. All storms that had 0.005 inch of runoff or more on both the base watershed, W-1, and the watershed being studied were included. In the Texas Blackland Prairie, most of the total water yield results from storms causing more than 0.005 inch of runoff. On some watersheds, a high ground-water table will cause a sustained low flow for several days after a storm. Runoff from these sustained low-flow periods is not considered storm runoff but is included in total flow. The percentage of total flow occurring as storm runoff is shown as follows for each watershed discussed.

Storm runoff as percentage Waiershed of total flow

DATA ANALYSIS

Areal variations in storm rainfall are large, even on small areas. These rainfall differences cause variations in runoff amounts from small areas that cannot be attributed to treatment. Because of these uncontrolled variations, a simple comparison of runoff on the base watershed with runoff on each of the study watersheds is not meaningful. In this report, equations were developed to predict rumff from each watershed being studied, both as an area with nonconssrvation treatment and as an aren with conservation treatment. These equations predict rmoff based on data from nearby base watershed W-1. Amounts of runoff could then be predicted for either the nonconserva-

tion or conservation condition on a given watershed. When these two equations are applied to the same period of record, variations due to climatic differences between periods are avoided.

Equation Development

Amounts of storm retention (rainfall minus runoff) frem two adjacent watersheds are more highly correlated than runoff volumes because of precipitation differences. Equations were derived for each treatment period which related storm retention on W-1 to storm retention on each of the other watersheds.

The equations were developed by a linear regression of the retention data. The basic form of the regression equation is

$$
\begin{equation*}
(P-Q)_{x}=a(P-Q)_{\mathrm{W}-1}+b, \tag{1}
\end{equation*}
$$

where $(P-Q)_{x}$ is storm retention on the watershed being studied, $(P-Q)_{W_{-1}}$ is storm retention on $\mathrm{W}-1$, and a and b are regression constants. The regression constants for each watershed and each treatment are shown in table 4 along with the number of storms and correlation coefficients. The retention equations for all watersheds are plotted in figure 5. The retention equations were solved for Q_{x}, to produce an equation of the form

$$
\begin{equation*}
Q_{x}=\ddot{x}^{2} x-a(P-Q)_{W-2}-b . \tag{2}
\end{equation*}
$$

Runoff was then computed for each treatment using equation (2) for every storm during the period of record (1939-66). The reliability of the runoff computation procedure is shown by the close agreement of computed and measured amounts shown in table 5.

Table 4.-Regression constants for retention equations, experimental watersheds, Texas Blackland Prairie

Watershed and treatment ${ }^{1}$	Slope (a)	Intercept (b)	n	r
Y:				
NC^{N}	1. 0744	-0.0646	${ }^{46}$	0. 9952
Y-2:				
NC	1. 0065	-. 0496	46	. 9924
C.	1. 1296	-. 0346	132	. 9819
Y-4:				
NC_{C}	1. 1.0435 1. 1328	-.0565 -.0545	45 134	.9898 .9847
Y-7:				
NC.	1. 0203	. 0807	44	- 9870
	1. 1383	-. 1055	135	. 9675

[^5]

Table 5.-Measured and computed munoff for each treatment period, experimental watersheds, Texas Blackland Prairie ${ }^{1}$

Watershed	Runoff			
	Nonconservation		Conservation	
	Measured	Computed	Measured	Computed
	Inches	Inches	Inches	Inches
Y	24.92	24. 64	70.21	71. 31
Y-2	27. 23	27. 15	68. 68	70.89
Y-4	25. 30	25. 40	71.45	73.42
Y-7	22. 69	22.94	85.71	87.91
SW-17	40. 47	40.87	79. 96	75. 49

${ }^{1}$ See table 1 for treatment periods for each watershed.

Runoff Computation

Using equation (2) with the appropriate constants shown in table 4, amounts of storm runoff were computed for both treatments on each watershed for the entire period (1939-66). For a specific watershed, the difference between the computed runoff amounts for each treatment is the predicted change in storm runoff due to treatment. The sums of the computed amounts for each treatment for the 28 -year period are shown in table 6.
Tests were made to determine if significant differences existed between the slopes and intercepts of the two equations for each watershed. The results of these tests are shown in table 6. If either the slopes or intercepts of the regression lines are significantly different at the 5 -percent level, a significant effect of treatment on runoff volumes exists.

Runoff iwas computed for periods of nonconservation and conservation treatments and the transition period during which conservation

Table 6.-Computed runoff for conservation and nonconservation treatments, experimental watersheds, Texas Blackland Prairie, 1989-66

Watershed	Equation significance tests ${ }^{1}$		Computed 28-year runoff		Percentage change due to treatment
	Slope	Intercept	NC	C	
			Inches	Inches	Percent
Y	Yes	No.	158.23	138. 20	-12.7
Y-2	Yes		177. 23	135. 45	-23.6
$\mathrm{Y}-4$	Yeg		166. 53	139. 44	-16.3
Y-7	Yes.		140. 22	168. 98	20.5
SW-17--	Yes	Yes	198.89	151. 14	-24.0

[^6]practices were being established. Runoff computed by both the nonconservation and the conservation equations and measured runoff, when available, can be compared during each period. These comparisons are shown in the form of mass curves for each of the watersheds studied in figures 6 through 10 .

DISCUSSION

Terraces in the gently sloping Texas Blackland Prairie were designed primarily to reduce losses from erosion. Studies showed that they were successful as an erosion-control measure.' Peak rates of runoff from small agricultural watersheds are also reduced by terraces. Baird and Potter showed that the percentage reduction in peak rates was inversely proportional to both size of watershed and magnitude of storm (see reference listed in footnote 3).

The effects of terraces on amounts of runoff are more difficult to ascertain, Data from individual storms are inconsistent. When runoffproducing storms occurred and the soils were moderately dry, terraces had sometimes reduced amounts of runoff. However, the effect was reversed when large amounts of rainfall occurred and the soils were

Figure 6.-Measured and compated storm ranoff for watershed Y.

[^7]

FToure 7.-Measured and computed storm runoff for watershed Y-2.

Fraure 8.-Measured and compated storm ranoff for watershed Y-4.

Frgure 9.-Measured and computed storm runoff for watershed X-7.

Figure 10.-Measured and computed storm runoff for watershed SW-17.
wet. ${ }^{5}$ These inconsistencies may be explained by anticipated effects of terraces on amounts of runoff as follows:

1. Terraces reduce the velocity and increase the travel distance of the runof' water, thus allowing more time for the water to enter the soil.
2. Terrace channels ara frequently wetter than the interterrace areas. Under these conditions, the volumes of runoff ate sometimes greater than that from areas without terraces.
3. Terrace construction increases the average field slope, with the steepest area leing near the terrace channel. This may result in increased runof from high-intensity storms.
Land-use practices may also affect volumes and timing of runoff. Rapidly growing crops can deplete soil moisture quickly. A watershed with several crops in different stages of growth will not contribute runoff equally from all areas during runoft-producing storms unless soils are extremely wet. Plowing crop residues into the soil may incrense the water-absorbing capacity of the soil. The increase in crop growth by the use of fertilizers and better tillage practices should तeplete soil moisture more rapidly and permit greater water retention from rains after short dry periods. In general, land-use practices alter the rate of moisture intake of the soil. The effect on runoff depends on the type of land-use practice.

Both terraces and land use asect amounts of runoff. When combined, their effects become more complex and difficult to separate.

In this study, watershed $Y-2$ showed the greatest reduction in runoff due to conservation treatment of any of the mixed land-use watersheds. Figure 7 shows that from 1939 to August 1942 the computed nonconservation runoff for watershed Y -2 agrees closely with the measured runoff. The computed conservation runoff was considerably less than the measured runoff. During the transition period, the measured runoff again is very near the computed nonconservation runoff, except during the fall of 1942 when terraces were being constructed and in 1943 when very little runoff occurred. The terrace system was established on this watershed soon after the beginning of the transition period. Deep plowing was started on oat fields in 1946 but did not cover all field areas of the rotation until the summer of 1948. Evidently, a terrace system, in itself, had little effect on amounts of runoff. By 1948, the planned 3 -year rotation was ending the second cycle and the agronomic plan was nearing complete effectiveness. During the conservation period, the computed nonconservation runoff is considerably greater than the measured runoff, whereas the computed conservation runoff is nearly equal to the measured runoff as expected.

On watersheds Y and Y-4 the results are similar to those on Y-2 except that the effect of treatment is not as great as on Y-2. The less intensive agronomic treatment on \mathbf{Y} and the greater slopes and shallower soils on Y-4 account for this difference. Measured runofil closely approximated computed amounts during both the nonconservation and conservation periods on these watersheds (figs. 6 and 8).

Runoff measurements on watershed Y-7 were discontinued in July

[^8]1943 and not resumed until May 1947 ; therefore, little data were available during this transition period. The runoff computed on Y-7 for the conservation treatment exceeded the computed nonconservation runoff (fig. 9). Since the terraces on this watershed were not accompanied by the deeper plowing and crop rotation, it can be concluded that this type of treatment results in larger amounts of runoff than the nonconservation treatment.

Treatment on watershed SW-17, which was 100 percent bermudagrass, had the greatest effect on stom monf. Fowever, large differences were observed between measured and computed maff (fig. 10). These differences were due to a relatively large amount of secpage fow during and after sustained wet periods. Only 02.1 percent of the total flow on this watershed occurred as storm runoff. More seepage flow occurred on SW-17 than on any other of the watersheds situdied. From 1958 to 1061, the total measured runoft was 31.97 inches; however, the mensured storm runoff was $2 \overline{6} .92$ inches compared with computed runoft of 22.07 inches. High seepage flow and, consequently, untlerestimation of runoff, occurred most often during the winter months on this grassed area. When the grass is dormant, little moisture is dissipated because surface evaporation is suppressed by the dense cover. On the adjacent cultivated areas, the soil is bare and is tilled, resulting in greater evaporation.

CONCLUSIONS

The results of this study indicate that the response of amounts of storm runofi to conservation treatment depends on the rombination of land-use practices and terrace construction. Data from the transition period on watershed $Y-2$ indicate that terraces in themselves probably cause little change in amounts of runoff over time (fig. 7). Terraces accompanied by a change in land use may either increase or clecrease runoff, depending on the type of land-use change.

When improved land-use practices were combined with terraces on watershed $Y-2$, there was an apparent reduction in amounts of storm runoff. These land-use practices were (1) an increase in permanent grasses, (2) decper tillage, (3) a 3-year crop rotation, and (4) use of legumes in oats. Computations showed that storm runof from this type of system for the 28 -year study period would have been about $2 \pm$ percent less than from a nonconservation farming system.

Terraces withont improved land-use practices have not shown a reduction in wunoff amounts. During the transition period on watershed Y-2 (September 1942-48), when terraces were constructed but before decp tillage and improved agronomic practices began, the munoff volumes compared closely with that expected from the area with a nonconservation treatment (fig. 7).

Terraces accompanied by shallow tillage and intensive use of crop residues by livestock may cause runoff to be greater than that expected from the area with a nonconservation treatment. This is illustrated by the apparent 20 -percent increase in runoff from $\bar{Y}-7$, the privately owned watershed (fig. 9).

Conservation practices were not as intense on watershed Y as on $\mathrm{Y}-2$. Watershed \bar{Y} contained both $Y-2$, an area with decreased runoff, and

Y-7, an area with increased runofi. Aithough all planned terraces were completed, only about 35 acres of the part of watershed Y below Y-2 received the intensive agronomic treatment during the full period that was in effect on watershed Y-2. The net effect of this trentment was an apparent 13 -percent decrense in ruboff.
Watershed SW-17 was changed from a cultivated area with one crop each year to an area with 100 percent common bermudagrass. Only moderate grazing was permitted. This change decreased storm runoft by about 24 percent.
Findings of the study showed that in the Texas Blackland Prairie the intensity of agronomic treatment had a greater effect on amounts of storm runofy than terraces. A combination of terraces and good management, including deep tillage and other improved farming practices, had the greatest effect upon runofl. On watershed Y-2, a mixed land-use watershed of 132 acres, storm runoff computed during a 28 -year period was 24 percent less than that expected without such conservation practices. The effects of land-use treatments upon storm runoft in the Texas Blacklands should seldom exceed these values. A good grass cover also resulted in less storm runoft, although this decrease was partly offiset by increases in seepage flow. A combination of terraces and poor agronomic treatment increased amounts of runoff.

Sedom will a watershed of several square miles and with many farm operators have the intensive conservation practices described for watershed Y-2. On almost ali the larger watersheds, such as on watershed Y, the farms will be operating under many different levels of management. Under these conditions, it is unlikely that terraces and agronomic treatment will appreciably change total amounts of storm runoff.

SUMMARY

The objective of this study was to determine the effect of various conservation practices on amounts of storm runoff. This was done by studying treated and untreated watersheds in the Texas Blackland Prairie and then developing equations to predict rumof resulting from either of the two conditions on a given watershed. The results of these computations showed that amounts of storm runoff can be significantly affected by conservation and land-use practices.
An intensive conservation program, including a complete terrace system, increased the acreage of grazed grassland. In addition, when conservation was combined with recommended crop rotations and tillage practices, stich as used on experimental watershed Y-2 in the study, storm runoft was about 24 percent less in a 28 -year period than would have occurred without such treatments.
In the Texas Blackland Prairie, terraces without a change in landuse management apparently had little effect on the amounts of storm rumoff. On the other hand, when terraces were accompanied with shallow plowing and heavy stocking of livestock, amounts of runoff were greater than from a comparable area with no conservation treatment.
Usually, drainage areas of several square miles will have a number of farm operators, each using different farming practices. Therefore, storm runoff or water yield will not be greatly affected.

APPENDIX

Table 7-Measured storm rainfall (P) and munoff (Q) 1939-66
[In inches]

Date	W-1		Y^{1}		Y-2		$Y-4^{1}$		$Y-7^{1}$		$S W-17^{1}$	
	P	Q										
$1-11-39$	2. 091	0. 045	2. 099	0. 014	2. 075	0. 028						
$\begin{aligned} & 2-17-39 \\ & 2-24-39 \end{aligned}$	1. 281	. 016	1. 256	0.014 .005	1. 269	0.028 .003	2. 1. 270	0.015 .005	2. 182	$\begin{aligned} & 0.006 \\ & 0 \end{aligned}$	2. 200	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
$2-24-39$ $5-16-39$	1. 166	. 081	1. 109	. 046	1. 075	. 037	1. 065	. 051	1. 145	. 007	1. 180	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
$5-16-39$ $5-20-39$	3. 144 .930	$\begin{array}{r}.356 \\ .338 \\ \hline\end{array}$	3. 028	- 283	2. 931	- 396	2. 854	- 374	3. 141	. 330	2. 970	. 388
4-5-40	2. 259	-. 289	2. 202	170	2. 297	. 305	2. 864	.359 .280	.930 2.278	. 326	-. 850	500
4-11-40	$\begin{array}{r}.453 \\ \hline\end{array}$. 011	2.315 +312	0^{-170}	2. 291 .291	$0^{.315}$	2. 293 .291	0^{-280}	2.278 .383	0^{-266}	2.260 .480	$0^{.001}$
$4-28-40$ $5-22-40$	1. 1.331	.020 .016	1. 273	.001 .017	1. 273	0	1. 282	0	1. 280	${ }^{0} 0002$	- 480 1. 350	${ }^{0} .004$
6-15-40	1. 478	.016 .205	1. 1.377	.017 .158	1. 396	. 042	1. 376	. 056	1. 524	. 039	1. 390	. 004
6-17-40	- 929	. 101	1.317 .817	. 033	1.368 .825	. 251	1.348 .838	. 277	1. 480	. 218	1. 310	. 084
$6-24-40$ $7-3-40$	2. 135	.376 .457	2. 107	- 398	2. 116	- 566	2. 1338	.085 .598	2. 862	.033 .273	2. 950 2.	.066 .063
10-30-40	1. 380	.457 .316	1. 355	277 .132	1. 379	. 441	1. 378	. 502	1. 371	. 096	1. 430	. 601
11-22-40	9. 358	5. 997	8. 918	5. 138	8. 885	5. 5209	8. 057	5. 144	3. 170	1299 5	3. 17U	1. 021
12-11-40	1. 955	. 493	1. 939	- 497	1. 946	5. .632	8. 911	5. 219	9. 197	5. 789	9. 470	6. 757
$12-15-40$ $12-26-40$	1. 088 . 751	736 .113	1. 046	. 714	1. 654	. 803	1. 048	. 667	1. 064	. 374	1. 090	. 783
1-13-41	2. 949	1. 800	2. 8108	1. 108	2.718	100 1595	$\begin{array}{r}.734 \\ \hline 2731\end{array}$. 073	- 733	. 055	- 760	- 011
2-1-41	2. 668	1. 479	2. 630	1. 448	2. 2.598	1. 595	2. 731	1. 1.388	2. 917	1. 274	2. 970	1. 806
2-21-41	2. 590	1. 375	2. 544	1. 448	2. 494	1. 4.468	2. 580	1. 382	2. 637	1. 165	2. 690	1. 446
3-5-41 3 -17-41	1. 438	1.528 .	1. 472	1.448 .601	1. 497	.468 .611	1. 526	1. 390	2. 626 1. 474	1.423 .553	2. 590	1.424 .466
$3-17-41$ $3-23-41$	1. 287	.292 .482	1. 193	. 261	1. 181	. 273	1. 179	. 185	1. 1.231	+ +236 .255	1. 430	. 466
$3-26-41$. 863	. 079	.647 .379	.287 .051	.588 .368	. 248	. 558 .363	. 181	.846 .412	. 355	. 890	. 588

4-2-41	. 542	. 073	. 560	. 087	547	130	540	. 086	. 558	. 021	540	088
4-6-41	. 517	. 041	. 585	. 056	. 618	. 135	. 634	. 087	.554	. 007	500	. 039
4-19-41	. 508	. 015	. 527	. 010	. 530	. 009	. 528	. 008	526	.007	500	
4-21-41	1. 591	. 395	1. 520	. 376	1. 513	. 398	1. 519	. 415	1. 556	381	1. 610	. 213
4-26-41	. 533	. 114	. 575	. 107	. 575	. 108	. 579	. 073	. 564	075	. 520	. 054
5-2-41	1. 403	. 321	1. 357	. 343	1. 333	. 389	1. 343	. 305	1. 342	295	1. 430	. 195
5-19-4]	3. 343	1. 199	3. 419	1. 159	3. 370	1. 393	3. 342	1. 127	3. 463	1. 123	3. 290	1. 843
5-25-41	. 299	. 052	244	. 028	. 230	. 045	. 221	. 035	. 301	. 033	. 310	. 078
6-2-41	1. 401	. 393	1. 392	. 369	1. 372	. 406	1. 368	. 348	1. 417	. 273	1. 400	. 667
6-6-41	1. 046	259	. 969	. 198	. 963	. 203	. 966	. 161	1. 016	139	1. 060	265
6-9-41	2. 891	2. 090	2. 505	1. 678	2. 510	1. 935	2. 519	1. 866	2. 630	1. 547	2. 780	2. 277
6-14-41	. 498	. 059	. .515	. 083	. 511	. 133	. 513	. 103	. 534	. 042	.490	. 072
6-16-41	. 531	. 176	613	292	. 548	256	. 505	. 198	564	. 119	. 520	. 241
7-11-41	2. 899	. 339	3. 220	429	3. 294	542	3. 296	469	3. 075	186	2. 820	346
11-22-41	1. 395	. 031	1. 366	0	1. 313	0	1. 267	0	1. 442	0	1. 380	. 063
4-7-42	2. 538	. 384	2. 487	. 204	2. 474	. 279	2. 484	. 279	2. 565	106	2. 530	. 516
4-19-42	1. 039	. 080	. 949	023	. 976	031	1. 006	. 043	. 855	0	1. 1.10	. 225
4-23-42	2. 371	1. 118	2. 424	1. 035	2. 447	1. 192	2. 458	1. 180	2. 395	. 832	2. 360	1. 908
5-6-42	1. 694	. 285	1. 819	. 381	1. 811	. 392	1. 799	. 402	1. 732	. 264	1. 680	. 608
5-11-42	. 741	. 082	. 717	. 072	. 717	. 070	. 721	. 057	. 740	. 034	. 740	132
5-19-42	. 600	025	. 658	. 013	. 673	. 008	. 676	002	. 591	. 001	. 600	0
5-23-42	1. 402	. 427	1. 212	. 305	1. 201	- 284	1. 171	. 234	1. 377	320	1. 430	. 585
6-5-42	2. 433	. 501	2. 573	. 491	2. 446	. 343	2. 445	. 228	2. 691	654	2. 330	. 793
6-10-42	2. 384	1. 531	2. 498	1. 680	2. 563	1. 832	2. 614	1. 780	2. 431	1. 656	2. 360	1. 651
6-14-42	1. 904	1. 084	1. 952	1. 114	1. 979	1. 192	2. 012	1. 188	1. 901	. 964	1. 910	1. 256
9-7-42	8. 071	2. 834	8. 073	2. 293	8. 076	2. 340	8. 002	2.315	8. 123	2. 484	8. 000	3. 897
10-30-42	1. 057	. 014	. 860	. 005	. 830	0	. 810	0	. 950	0	1. 100	0
11-4-42	3. 150	1. 098	3. 191	826	3. 124	. 793	3. 030	. 686	3. 302	1. 056	3. 390	1. 317
12-21-42	1. 135	. 058	1. 074	055	1. 062	. 040	1. 055	. 016	1. 131	. 070	1. 140	. 028
12-26-42	2. 524	1. 551	2. 316	1. 323	2. 256	1. 153	2. 195	. 946	2. 486	1. 671	2. 530	1. 751
1-6-43	. 598	. 048	. 610	. 047	. 607	. 051	. 608	. 029	. 596	. 016	. 600	. 012
1-12-43	. 207	. 022	. 183	. 015	. 180	. 017	. 178	. 007	. 201	. 000	. 210	. 012
3-24-43	1. 960	183	1. 887	. 161	1. 918	. 144	1. 963	. 106	1. 921	. 085	1. 990	. 127
4-8-43	1. 161	. 106	1. 248	. 079	1. 273	. 084	1. 290	. 055	1. 180	. 035	1. 150	. 189
5-10-43	1. 116	. 043	1. 159	. 014	1. 168	. 009	1. 148	. 005	1. 156	. 009	1. 100	. 065

Table 7-Measured storm rainfall (P) and munoff (Q) 1939-66-Continued

Date	W-1		Y^{1}		$Y-2$		$Y-4^{1}$		$Y-7^{1}$		SW-17	
	P	Q	F	Q								
$5-30-43$	1. 352	. 280	1. 501	. 195	1. 558	. 198	1. 585	207	1. 409	. 205		
$6-5-43$	1. 558	. 523	1. 490	321	1. 445	. 308	1. 436	. 307	1. 409	. 205	1. 1.510	.530 .742
12-23-43	1. 324	. 020	1. 227		1. 220	0	1. 222		1. 290	. 38	1. 350	
1-1-44	1. 860	- 547	1. 827		1. 825	. 151	1. 826		1. 849		1. 870	
$1-12-44$	1. 402	- 349	1. 409		1. 410	. 283	1. 410		1. 404		1. 400	
$1-24-44$. 305	. 017	. 292		. 294	. 010	. 298		. 297		. 310	
1-27-44	. 358	. 065	. 341		. 336	. 023	. 332		. 356		. 360	
1-29-44	. 648	. 225	. 644		. 645	$\cdot 161$. 646		-646		. 650	
2-8-44	2. 986	2. 067	2. 839		2. 800	1. 762	2. 765		2.966		3. 000	
2-13-44	. 752	. 216	2. 856		2. 755	. .227	2. .754		2. 964		3. .750 .710	
2-16-44	- 108	. 026	- 101		. 100	. 059	- 100		. 106		. 110	
2-19-44	. 330	. 078	- 329		. 326	- 133	. 322		. 334		. 330	
2-22-44	. 135	. 063	. 175		. 183	. 111	. 191		$\cdot 143$. 130	
2-25-44	1. 514	1. 103	1. 518		1. 505	1. 061	1. 486		1. 530		1. 500	
2-28-44	. 301	. 179	. 326		. 322	. 222	. 314		1.536 .		. r . 290	
3-9-44	. 975	. 165	. 968		. 969	.244	. 972		. 971		. 980	
3-18-44	- 2207	- 0181	$\begin{array}{r}185 \\ \hline\end{array}$. 181	. 021	. .178		. 201		. 210	
$3-21-44$ $4-29-44$	2. 133	1. 268	2. 283		2. 306 13. 078	1.677 10225	2. 320		2. 480		2. 110	
5-4-44	1.662 .6	1. 281	13. 11		13. 078	10.225	13. 119		13. 493		13. 910	
5-22-44	1. 074	. 123	1. 169		1. 183	. 183	1. 190		1. 103		1. 060	
5-24-44	2. 459	1. 047	2. 181		2. 137	. 951	2. 112		2. 385		2. 510	
5-27-44	. 761	. 529	. 737		. 731	. 588	2. 726		2. 756		2.510 .760	
6-5-44	1. 357	. 100	1. 470		1. 491	. 205	1. 506		1. 389		1. 350	
11-24-44	3. 410	. 637	3. 089		3. 046	. 658	3. 026		3. 315		3. 470	
12-4-44	2. 086	. 406	2. 033		2. 030	. 668	2. 032		2. 066		2. 100	
12-26-44	1. 695	. 291	1. 558		1. 541	. 361	1. 536		1. 651		1. 720	
12-30-44	. 897	435	. 887		. 886	. 626	. 884		. 896		. 900	
1-5-45	. 168	. 025	161		. 160	. 065	. 160		. 166		. 170	

1-17-45	2. 002	. 802	2. 059		2. 075	1. 041	2. 092		2. 009		2. 000	
2-12-45	1. 227	178	1. 169		1. 165	. 214	1. 166		1. 206		1. 240	
2-18-45	1. 167	. 424	1. 247		1. 258	. 562	1. 264		1. 189		1. 150	
2-26-45	. 410	. 042	. 328		. 320	- 085	- 320		. 383		. 430	
3-2-45	3. 316	2. 445	3. 171		3. 146	2. 819	3. 128		3. 286		3. 350	
3-11-45	. 408	. 040	. 455		. 477	. 107	. 504		401		0	
3-14-45	. 471	. 085	. 509		. 511	. 173	. 508		. 486		0	
3-19-45	. 428	. 036	. 424		. 414	$\bigcirc 010$. 410		. 437		- 420	
3-30-45	3. 431	2. 054	3. 727		3. 769	2. 234	3. 790		3. 518		3. 380	
4-20-45	4. 037	1. 996	4. 062		4. 058	2. 095	4. 048		4. 056		4. 030	
5-10-45	1. 658	. 216	1. 877		1. 921	. 240	1. 954		1. 707		1. 630	
5-15-45	. 871	. 159	. 877		. 851	. 119	. 812		. 906		. 850	
6-12-45	1. 800	. 182	1. 874		1. 877	. 038	1. 870		1. 832		1. 780	
7-10-45	1. 113	. 079	1. 134		1. 135	0	1. 134		1. 123		1. 110	
9-29-45	1. 473	. 084	1. 379		1. 384	. 002	1. 406		1. 430		1. 420	
10-8-45	2. 578	514	2. 331		2. 321	. 377	2. 310		2. 481		2. 640	
12- 1-45	4. 940	2. 183	4. 749		4.752	2. 612	4. 782		4.844		4. 990	
1-10-46	. 590	. 118	- 580		- 576	. 086	. 572	- 103	- 590		- 790	
1-14-46	. 750	- 181	. 724		. 724	- 193	- 728	- 232	- 739		- 760	
2- 9-46	. 882	. 194	. 882		- 888	- 150	896	. 161	. 871		- 880	
2-12-46	202	. 025	206		. 206	. 031	. 204	. 029	-. 204		. 200	
2-17-46	1. 607	. 788	1. 603		1. 607	. 894	1. 616	. 814	1. 597		1. 610	
3-13-46	1. 599	. 587	1. 754		1. 773	. 603	1. 780	. 557	1. 647		1. 570	
3-25-46	1. 847	. 598	1. 962		1. 950	. 608	1. 916	. 537	. 875		1. 810	
4-23-46	. 542	. 019	. 553		. 555	. 007	. 556	. 007	. 544		- 540	
4-29-46	1. 145	. 121	1. 161		1. 161	. 075	1. 158	. 087	1. 153	---------	1. 140	
5-6-46	. 962	. 197	. 948	176	. 928	. 152	. 900	. 144	. 980		. 950	
5-10-46	1. 083	. 351	1. 125	. 332	1. 137	- 354	1. 148	. 332	1. 089		1. 080	
5-12-46	3. 845	2. 956	3. 511	3. 033	3. 442	2. 803	3. 384	2. 336	3. 778		3. 890	
5-15-46	. 960	. 497	. 969	. 643	. 970	. 596	- 970	. 029	. 964		- 960	
5-24-46	501	. 019	562	. 032	. 573	. 030	. 558	. 029	. 516		490 +480	
5-31-46	1. 468	197	1. 369	313	1. 331	. 217	1. 293	- 223	1. 471		1. 480	
6-9-46	1. 114	078	1. 299	123	1. 343	. 173	1. 383	. 214	1. 147		1. 100	
11-3-46	2. 283	. 432	2. 181	. 172	2. 174	. 241	2. 178	. 219	2. 246		2. 310	
11-5-46	. 727	. 093	. 649	. 073	. 637	. 074	. 630	098	. 706		. 740	
11-25-46	. 823	. 015	761	. 008	727	001	. 710	0	. 801		. 840	

Table 7-Ne easured storm rainfall (P) and runoff (Q) 1939-66-Continued

Date	W-1		Y^{1}		$Y-2$		$Y-4{ }^{1}$		$Y-71$		SW-17:	
	P	Q	P	Q	P	Q	P	Q	P	Q	P	Q
12-10-46	2. 019	- 470	2. 059	. 445	2. 075	. 444	2. 079	. 387	2. 052		2. 010	
1-2-47	. 646	. 041	-. 637	. 052	. 642	. 044	. 651	. 029	. 632		. 650	
1-8-47	. 549	. 063	. 554	. 113	. 554	- 086	. 557	. 064	. 546		. 550	
1-16-47	2. 489	1. 462	2. 455	1. 764	2. 475	1. 757	2. 195	1. 474	2. 470		2. 500	
3-7-47	1. 437	. 246	1. 350	. 325	1. 355	. 271	1. 358	. 233	1. 416		1. 450	
3-12-47	1. 000	. 270	1. 011	. 426	1. 993	- 377	. .985	. 349	-. 996		1. 000	
3-18-47	1. 741	. 861	1. 703	1. 083	1. 706	1. 116	1. 713	. 899	1. 724		1. 750	
4-19-47	. 702	. 087	. 643	. 029	. 641	. 022	. 629	. 014	. 700		. 700	
4-25-47	1. 307	. 135	1. 328	. 156	1. 341	. 135	1. 344	. 120	1. 322		1. 300	
5-9-47	-699	. 012	. 708	. 011	. 701	. 002	. 687	0	. 655		. 690	
5-16-47	2. 039	. 480	1. 972	. 419	1. 976	. 381	1. 991	. 332	2. 016	494	2. 060	
5-20-47	1. 012	. 483	1. 139	. 590	1. 111	. 575	1. 092	. 468	1. 166	650	. 990	
4-12-48	2. 075	. 395	2. 056	. 108	2. 076	. 097	2. 085	. 101	2. 037	299	2. 090	753
4-25-48	3. 105	1. 174	2. 946	1. 013	2. 889	1. 082	2. 845	. 810	3. 067	1. 181	3. 120	2. 002
5-5-48	- 742	- 082	. 838	. 127	+868	- 145	+.877	. 139	. 706	. 220	- 750	. 214
$5-11-48$	2. 213	. 532	2. 111	. 486	2. 123	. 496	2. 109	. 457	2. 160	. 622	2. 230	. 582
$5-27-48$	1. 226	. 049	1. 351	. 090	1. 283	. 028	1. 303	. 009	1. 442	. 310	1. 160	. 002
$3-21-49$	2. 034	. 261	1. 946	. 094	1. 903	. 052	1. 852	. 044	2. 105	. 168	2. 000	. 353
$4-27-49$	1. 351	. 381	1. 159	. 226	1. 174	. 206	1. 175	.255	1. 369	. 214	1. 360	. 335
6-14-49	1. 227	. 041	1. 347	. 002	1. 384	0	1. 413	0	1. 288	0	1. 200	0
6-24-49	2. 018	. 238	1. 925	. 077	1. 895	. 029	1. 881	${ }^{0} .076$	1. 962	. 256	2. 050	${ }^{\circ} .051$
7-4-49	2. 864	1. 072	2. 884	. 911	3. 002	. 783	3. 035	. 879	2. 852	. 901	2. 870	. 672
10-24-49	1. 561	. 013	1. 516	0	1. 553	0	1. 579	0	1. 578	0	1. 580	$0{ }^{-}$
1-12-50	. 299	. 028	.289 +1919	.003	- 285	. 003	. 285	0	- 300	0	. 300	0
$\begin{aligned} & 2-12-50 \\ & 4-16-50 \end{aligned}$	$\begin{aligned} & \text { 1. } 984 \\ & \text { 1. } 670 \end{aligned}$	1. 102	1. 919	1. 452	1. 958	. 863	1. 989	. 927	1. 947	1. 331	2. 000	1. 291
$\begin{aligned} & 4-16-50 \\ & 5-13-50 \end{aligned}$	1. 670	. 218	1. 672	. 122	1. 672	$0^{.055}$	1. 682	. 100	1. 645	. 260	1. 680	$\begin{array}{r} 1.037 \\ .067 \end{array}$
5-13-50	- 782	. 014	. 815	. 007	+.812	0	. 801	0	. 848	0	1. 760	0
6- 5-50	1. 301	. 036	1. 355	013	1. 373	0	1. 374	0	1. 300	0	1. 300	0
4-25-51	1. 330	. 059	1. 301	0	1. 302	0	1. 303	0	1. 348	0	1. 330	. 002

5-10-51	757	. 019	739	0	733	0	723	0	. 759	0	$\bigcirc 750$	002
5-15-51	1. 221	. 068	1. 113	0	1. 102	0	1. 097	0	1. 162	0	1. 250	0
6-16-51	1. 638	. 187	1. 607	. 020	1. 641	. 004	1. 661	. 001	1. 631	152	1. 640	062
3-10-52	1. 098	. 008	1. 118	. 010	1. 125	. 010	1. 126	. 024	1. 142	0	1. 080	0
4-12-52	1. 031	. 035	1. 009	. 050	. 999	044	998	. 070	1. 064	$\bigcirc 011$	1. 020	. 105
4-20-52	. 825	. 013	. 806	. 001	799	0	. 793	. 001	. 804	0	. 830	007
4-22-52	1. 048	. 126	1. 086	. 090	1. 120	. 065	1. 145	- 130	1. 083	071	1. 080	238
5-23-52	2. 321	. 541	2. 355	. 388	2. 402	328	2. 473	377	2. 355	485	2. 320	460
11-25-52	1. 504	. 041	1. 449	. 000	1. 434	0	1. 427	0	1. 543	0	1. 490	016
12-19-52	1. 132	. 230	1. 291	. 094	1. 309	093	1. 239	. 107	1. 196	. 207	1. 090	234
12-30-52	2. 221	. 798	2. 116	. 595	2. 124	589	2. 126	568	2. 144	684	2. 250	986
2-10-53	1. 445	. 084	1. 162	. 004	1. 105	000	1. 056	001	1. 357	. 027	1. 480	068
3-9-53	3. 016	1. 065	3. 104	. 842	3. 093	836	3. 069	. 889	3. 029	1. 167	3. 020	1. 091
4-23-53	2. 114	. 294	2. 118	. 059	2. 084	026	2. 066	. 050	2. 153	225	2. 100	. 007
5-11-53	4. 263	1. 386	4. 047	. 844	4. 029	845	4. 031	871	4. 115	1. 651	4. 080	. 462
5-14-53	1. 855	1. 106	1. 870	925	1. 842	700	1. 833	910	1. 977	1. 287	1. 810	638
9-3-53	1. 697	. 016	1. 557	0	1. 531	0	1. 522	0	1. 658	0	1. 720	0
10-25-53	2. 360	. 203	2. 395	0	2. 427	. 003	2. 469	0	2. 302	0	2. 390	0
12-2-53	. 946	. 116	. 954	. 019	. 974	0	. 988	0	. 957	. 036	. 940	. 042
12-19-53	1. 061	. 057	1. 083	. 020	1. 073	003	1. 076	011	1. 052	. 016	1. 070	033
1-14-54	. 496	. 029	. 458	. 009	. 452	0	. 450	0	466	0	. 510	0
4-30-54	1. 835	. 220	1. 909	. 033	1. 978	0	1. 986	. 008	1. 838	. 224	1. 820	. 010
5-2-54	. 301	. 015	. 271	0	. 258	0	256	0	. 284	0	310	0
5-10-54	3. 558	1. 311	3. 435	. 596	3. 413	. 519	3. 417	712	3. 579	1. 469	3. 570	. 546
6-2-54	. 949	. 012	1. 189	. 007	1. 251	0	1. 289	0	1. 017	. 055	. 920	0
2-4-55	1. 772	. 105	1. 746	0	1. 753	0	1. 736	. 003	1. 753	. 053	1. 780	. 046
2-19-55	1. 652	. 134	1. 569	. 018	1. 611	0	1. 628	0	1. 574	. 081	1. 680	. 043
3-20-55	3. 260	1. 174	3. 450	1. 018	3. 407	. 865	3. 371	846	3. 354	1. 401	3. 230	993
3-31-55	382	. 016	. 412	0	413	0	. 406	0	. 405	. 029	. 370	004
4- 9-55	2. 310	. 397	2. 302	. 219	2. 327	. 117	2. 341	. 197	2. 344	- 575	2. 300	. 219
5-6-55	1. 205	. 063	1. 468	. 078	1. 492	. 084	1. 494	. 089	1. 244	. 220	1. 200	. 002
5-16-55	1. 340	. 059	1. 294	. 031	1. 264	. 004	1. 257	. 019	1. 331	140	1. 340	0
5-19-55	1. 547	. 216	1. 211	151	1. 546	. 126	1. 209	. 153	1, 205	. 362	1. 170	0
6-5-55	1. 243	. 102	1. 660	108	1. 686	102	1. 678	. 125	1. 451	. 251	1. 160	. 002
6- 8-55	. 955	. 078	. 859	034	. 873	015	. 876	035	. 950	. 099	. 950	001
5-1-56	2. 940	. 028	3. 070	0	3. 154	0	3. 222	0	2. 949	. 062	2. 940	0

Table 7-Measured storm rainfall (P) and monoff (Q) 1939-66-Continued

Date	$W-1$		Y^{1}		$Y-2$		$Y-4{ }^{1}$		$Y-71$		$S W-17!$	
	P	Q										
11-4-56	3. 323	. 375	3. 163	. 069	3. 130	. 109	3. 109	. 157	3. 238	241	3. 370	025
2-23-57	. 944	. 018	1. 004	. 018	. 993	. 017	1. 002	.024	1. 017	$\bigcirc 007$	3.370 .920	0
3-11-57	-990	. 011	+. 931	. 001	. 920	0	. 9009	0	. 965	0	1. 000	. 002
3-20-57	1. 911	. 295	1. 875	. 199	1. 844	. 144	1. 821	. 157	1. 919	. 453	1. 910	. 080
3-27-57	. 894	. 097	1. 973	. 033	1. 017	. 021	1. 058	- 039	-. 933	. 101	. 880	. 001
3-31-57	1. 341	. 313	1. 271	255	1. 298	240	1. 316	. 318	1. 315	. 262	1. 350	. 239
4-19-57	5. 260	2. 954	5. 538	3. 713	5. 702	3. 245	5. 867	3. 366	5. 461	2. 958	5. 170	3. 114
4-22-57	6. 138	5. 218	5. 954	4. 728	5. 999	4. 991	6. 040	5. 198	6. 216	4.913	6. 110	5. 151
4-26-57	2. 883	1. 772	2. 846	1. 730	2. 851	1. 744	2. 872	1. 710	2. 922	1. 711	2. 860	1. 043
5-1-57	$\bigcirc 352$. 078	. 265	. 058	. 233	. 022	. 223	. 038	. 326	. 103	. 370	0
5- 3-57	- 932	. 587	1. 446	. 983	1. 570	1. 218	1. 640	1. 352	1. 175	. 640	. 840	. 498
5-9-57	. 914	. .213	-. 974	. 249	. 978	. 262	-. 969	- 261	1. 969	. 253	. 890	. 025
5-11-57	3. 893	3. 295	3. 718	2. 827	3. 681	3. 092	3. 659	3. 213	. 832	3. 135	3. 920	3. 173
5-13-57	1. 661	1. 398	1. 638	1. 318	1. 632	1. 389	1. 620	1. 446	1. 669	1. 445	1. 660	1. 377
6- 1-57	1. 150	. 016	+. 976	. 007	. 912	. 005	-. 871	. 007	1. 084	0	1. 190	. 016
6- $6-57$	1. 798	. 740	2. 530	1. 082	2. 552	1. 294	2. 484	1. 346	2. 174	. 892	1. 620	. 216
6-19-57	- 816	. 032	- 962	. 006	- 922	. 001	. 857	. 002	. 884	. 015	. 770	. 016
10-13-57	7. 216	1. 780	7. 036	1. 240	7. 139	1. 659	7. 230	1. 712	6. 942	1. 941	7. 330	. 855
10-22-57	- 542	. 046	. 592	. 057	. 531	. 051	. .533	. 079	. 550	. 030	. .	. 001
11-5-57	. 829	. 039	. 788	. 072	- 784	. 076	. 808	. 107	. 840	.017	. 850	. 004
11-7-57	. 520	- 096	. 416	. 097	. 403	. 089	. 398	. 127	. 453	. 121	. 530	. 042
11-13-57	. 523	. 114	. 547	. 173	. 549	-188	- 554	. 200	-. 530	. 198	. 520	. 075
11-18-57	. 628	. 111	. 606	148	. 599	. 168	. 591	. 174	. 649	. 167	. 620	. 093
11-22-57	1. 119	. 424	1. 045	506	1. 059	. 547	1. 065	. 589	1. 044	. 634	1. 150	. 463
1-19-58	. 939	. 062	1. 051	. 079	1. 954	. 067	1. 971	. 074	1. 940	. 634	1.150 .940	. 4641
2-21-58	2. 404	1. 019	2. 269	1. 007	2. 298	1. 029	2. 325	1. 033	2. 266	1. 183	2. 460	1. 305
2-26-58	. 093	. 015	. 109	. 017	. 115	. 014	-. 116	. 018	. 100	1.183 .006	2. 090 .0	1. 3008
3-12-58	. 575	. 028	. 572	. 044	. 573	. 043	. 573	. 036	. 589	007	570	. 057
4-13-58	. 888	. 025	. 903	. 015	. 914	. 007	. 916	. 010	. 880	. 013	890	. 006

5-2-58	1. 628	. 618	1. 655	. 517	1. 642	. 544	1. 606	. 657	1. 640	. 883	1. 620	. 455
8-24-58	2. 399	- 364	2. 801	. 046	2. 802	.008	2. 826	. 034	2. 639	. 337	2. 300	. 063
9-19-58	3. 348	. 568	3. 298	. 174	3. 355	. 167	3. 434	. 225	3. 206	. 476	3. 410	. 250
10-21-58	1. 870	. 258	2. 098	. 110	2. 158	. 130	2. 208	. 188	1. 985	. 188	1. 820	. 084
2-14-59	1. 582	. 620	1. 508	.410	1. 474	. 409	1. 440	. 452	1. 590	. 583	1. 580	. 980
1-11-59	1. 285	. 481	1. 255	. 251	1. 274	.212	1. 304	. 246	1. 280	. 635	1. 290	. 220
4-16-59	1. 046	.211	1. 034	. 138	1. 123	. 090	1. 131	.104	1. 108	. 180	1. 020	. 124
5-2-59	$\because .703$. 025	. 765	. 006	. 712	0	. 692	0	. 738	. 002	. 690	. 028
5- 9-59	1. 421	.119	1. 473	. 053	1. 474	. 028	1. 504	. 029	1. 382	. 181	1. 440	. 221
5-22-59	1. 796	. 226	1. 764	. 126	1. 706	. 064	1. 755	. 032	1. 839	. 333	1. 820	. 156
6-4-59	1. 940	. 309	2. 067	. 184	2. 083	. 126	2. 098	. 106	2. 035	. 413	1. 900	. 191
6-23-59	3. 534	1. 766	3. 695	. 909	3. 637	1. 116	3. 652	1. 000	3. 550	1. 564	3. 530	1. 056
7-27-59	1. 654	. 203	1. 482	. 053	1. 494	. 006	1. 518	.008	1. 526	. 313	1. 710	. 203
8-31-59	1. 857	$.022$	1. 607	. 000	1. 652	0	1. 685	0	1. 812	. 010	1. 880	$.009$
10- 4-59	3. 787	1. 422	3. 860	.699	3. 837	.956	3. 829	1. 065	3. 780	1. 357	3. 790	1. 395
10-13-59	2. 079	. 488	1. 784	. 258	1. 680	. 168	1. 627	. 144	2. 004	. 595	2. 120	. 633
11-3-59	1. 641	. 604	1.719	. 506	1. 752	. 578	1. 783	. 533	1. 640	. 732	1. 640	. 789
12-10-59	. 756	. 029	. 702	. 026	. 675	. 014	. 657	. 009	. 751	. 004	. 760	0
12-15-59	1. 457	. 420	1. 465	. 356	1. 466	. 266	1. 482	. 340	1. 479	. 524	1. 450	. 620
12-27-59	. 163	.013	. 164	. 011	. 164	. 005	. 167	. 007	. 170	. 004	. 160	. 008
$12-31-59$	1. 257	. 475	1. 119	. 441	1. 233	. 469	1. 287	. 510	1. 261	. 550	1. 300	. 814
$1-5-60$	702	. 324	. 700	. 315	. 708	. 336	. 719	. 405	. 710	. 369	. 700	. 434
$1-13-60$. 780	.406	. 772	. 368	. 782	. 417	. 789	. 450	. 780	. 480	. 780	. 561
$1-16-60$. 585	253	. 502	. 208	. 490	. 212	. 476	. 230	. 552	. 249	. 600	. 379
2-3-60	.835	. 175	. 848	. 181	. 841	. 182	.847	.183	. 878	. 135	. 820	. 335
2-20-60	. 369	. 014	. 351	.013	. 344	. 010	. 345	. 013	. 370	. 003	. 370	. 028
$2-23-60$. 535	. 084	. 544	. 084	. 543	. 066	. 549	. 084	. 578	. 024	. 520	. 228
$3-1-60$. 589	.181	. 594	183	. 617	. 164	. 627	. 183	. 542	$.190$.610	. 335
3-14-60	. 156	. 010	. 163	007	. 167	. 004	. 165	. 008	. 150	. 001	. 150	080
$3-25-60$	$.796$	051	. 474	081	. 824	. 069	. 789	. 068	$.840$. 016	. 640	. 138
$4-29-60$	1. 067	. 033	. 983	025	. 947	. 007	. 918	. 002	1. 061	. 064	1. 050	. 012
$6-24-60$	3. 814	. 388	3. 704	. 150	3. 770	.157	3. 835	. 226	3. 639	. 557	3. 760	. 325
10-18-60	2. 487	. 323	2. 330	. 041	2. 296	0	2. 282	0	2. 441	- 362	2. 580	. 119
10-28-60	1. 267	. 434	1. 218	. 003	1. 236	0	1.278	0	1. 222	. 011	1. 300	. 042
11-20-60	1. 937	. 101	1. 961	. 059	1. 957	. 035	1. 962	. 030	1. 977	. 160	1. 990	. 422
12-6-60	6. 322	3. 642	6. 073	3. 231	6. 075	3. 351	6. 115	3. 202	6. 332	3. 874	6. 170	4. 220

Table 7-Measured storm rainfall (P) and munoff (Q) 1939-66-Continued

Date	$W-1$		Y^{1}		$Y-2$		$\boldsymbol{Y}-4{ }^{1}$		$Y-7{ }^{1}$		SW-17	
	P	Q	P	Q	P	Q	P	Q	P	Q	P	Q
12-30-60	$\bigcirc 666$. 037	. 660	. 070	. 669	. 059	. 670	. 065	. 641	. 009	. 680	
1-6-61	4.641	2. 995	$\stackrel{4}{4} 620$	3. 864	4. 658	3. 480	4. 723	2. 994	4. 559	3. 109	+680 4.560	3. 372
2- 5-61	3. 108	1. 737	2. 890	2. 15.4	3. 057	1. 947	2. 923	1. 842	2.941	1. 670	2. 920	2. 260
2-15-61 $3-16-61$	1. 474	.556 .044	1. 418	. 720	1. 400	. 647	1. 390	. 543	1. 451	. 499	1. 480	. 834
$3-16-61$ $3-30-61$	1. 098	.044 .013	1. 152	.053 .004	1. 155	.049 .001	1. 145	.054 .002	1. 109	. 024	1. 100	. 075
5-22-61	1. 816	. 121	1. 602	. 001	1. 629	$0^{.001}$. 1.649	$0^{.002}$	1. 443 1. 703	.000 .089	410 190	$0^{.005}$
6-15-61	5. 283	2. 032	5. 141	1. 333	5. 186	1. 247	5. 242	1. 470	5. 263	1. 882	5. 350	1. 972
6-25-61	1. 381	. 329	1. 470	. 320	1. 506	. 316	1. 524	. 341	1. 446	. 232	1. 380	. 351
7-9-61	. 985	. 007	1. 112	. 010	1. 150	. 010	1. 156	. 006	1. 191	0	.980 .950	. 003
$7-12-61$ $7-16-61$	1. 590	.021 .177	1. 370	. 001	1. 322 1.294	. 001	.299 .	. 001	1.570 .570	. 006	. 650	. 007
9-12-61	3. 851	. 460	1. 590	. 163	1. 3961	. 142	1. 285	119 .179	1. 277	. 134	1. 200	. 309
12-16-61	1. 262	. 159	1. 144	. 093	1. 079	. 080	1. 049	. 065	1. 242	. 078	1. 190	517
1-26-62	. 459	. 015	. 462	. 016	. 471	. 009	. .481	. 007	1.470	$0{ }^{-078}$	1.1970 .470	. 044
2-23-62	. 846	. 021	. 786	. 025	. 790	. 019	. 784	. 018	. 802	. 001	. 840	. 012
3-10-62	. 728	. 012	- 751	. 025	. 771	. 016	. 782	. 015	. 740	. 001	. 710	. 010
4-27-62	2. 083	. 432	2. 101	. 285	2. 050	. 194	1. 995	. 241	2. 110	. 378	1. 980	. 120
5-28-62	2. 233	. 095	2. 289	. 020	2. 335	. 025	2. 386	. 005	2. 288	0	2. 300	. 005
6- 1-62	1. 136	. 139	1. 072	. 021	1. 055	. 017	1. 039	. 008	1. 091	. 016	1. 180	. 029
6- ${ }_{\text {6- }}^{6-62}$	2. 065	1. 199	1. 853	. 704	1. 796	. 730	1. 726	. 723	2. 109	. 871	2. 070	1. 670
$6-13-62$ $11-26-62$	2. ${ }_{\text {271 }} \mathbf{3 6 8}$.072 .169	r. 2. 347	.022 .025	r. 640 2. 333	$0_{0}^{.015}$.678 -358	. 022	- 554	. 006	-.800	. 187
- 5-63	1. 150	. 006	2. 110	. 0201	2. 110	0	2. 358	0	2. 3205	0^{117}	2. 280	. 018
3-18-64	1. 255	- 008	1. 235	. 001	1. 235	0	1. 232	0	1. 260	0	1. 250	$0^{.005}$
4-25-64	2. 542	. 538	2. 462	. 185	2. 477	. 294	2. 486	. 226	2. 444	. 490	2. 520	. 029
8-22-64	1. 925	. 029	1. 618	0	1. 520	0	1. 504	$0^{.226}$	1. 840	. 301	1. 974	0°
9-16-64	1. 797	. 007	1. 796	0	1. 806	0	1. 827	0	1. 793	. 002	1. 719	0
9-24-64	1. 528	. 012	1. 507	0	1. 568	0	1. 525	0	1. 522	. 012	1. 526	${ }^{0} .004$

${ }^{1}$ No entry in runoff columns indicates that measuring station was not operating.

[^0]: 1 Baird, R. W., and Potter, W. D. mates and amounts of runofe for the blacklands of texas. U.S. Dept. Agr. Tech. Bui. 1022, pp, 4-6, July 1950; Blank, E. R., Stoltenberg, N. I., and Emmerich, H. H. geology of the blacklands experimental watersired, near waco, texas. Univ. Tex., But. Econ. Geol. Invest. Rpt. 12, pp. 8-28, March 1902; and U.S. Departnient of Agriculture, Soil Conservation Service. the agriculture, soils, geology, and description of the blacklands experimental watershed. U.S. Depi. Agr., Hydiol. Bul. 5, pp. 8-9, 1942.
 ${ }^{2}$ Carter, W. T. the sonls of texas. Tex. Agr. Expt. Sta. Bui. 431, 189 pp., illus. July 1081.

[^1]: ${ }^{1}$ No special conservation treatment.
 ${ }^{2}$ Conservation practices were being established.
 ${ }^{3}$ Construction of terraces or change in agronomic treatment or both.

[^2]: $389-8790-69-2$

[^3]: ${ }^{2}$ Primarily idle land asually with cover of Johnsongrass or areas without record of crops.

 Note.-Watershed SW-17 had 100 percent of the area in 1 crop each year. Crops grown were: Cotton, 1939, 1941, 1943, 1945, and 1947; corn, 1938, 1946; oats, 1940 , 1942, and 1944. Sprig sodded with bermudagrass, spring 1948, used for pasture through 1966.

[^4]: ${ }^{5}$ Fertilizer applications are the amounts of total N , arailable $\mathrm{P}_{2} \mathrm{O}_{51}$ and water-soluble $\mathrm{K}_{2} \mathrm{O}$.

[^5]: : NC, nonconservation treatment; $\mathrm{C}_{\text {, }}$ conservation treatment.

[^6]: ' Yes indicates aignificant difference at 5 percent level; no, no significant difference at 5 percent level.

[^7]: ${ }^{4}$ Baiki, R. If. sedment melds from blackland watebsifeds. Amer. Soc. Agr. Engin. 7(4) : 4 $\overline{0} 4$-456. 1904.

[^8]: ${ }^{6}$ Baird, R. W., Hartman, M. A., Pope, J. B., and Enibel, W. G., Jr. gurface bunoff as affected by goll congervation practices. Fourth annual Conf, on Water for Texas Proc. 1958: 49-53. Sept. 1058.

