

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

 5M14	

S

NEARCTIC SAWFLIES

I. Blennocampinae: Adults and Larvae (Hymenoptera: Tenthredinidae)

By David R. Smith

Technical Bulletin No. 1397

Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

[^0]
Contents

Page
Methods 2
Taxonomic characters 3
Subfamily Blennocampinac Konow 3
Adults 3
Larvae 4
Bionomics 4
Historical review 6
Classification and relationships 9
Systematic arrangement 11
Keys to Blennocampinae genera 15
Tribe Lycaotini MacGillivray 19
Genus Bleunogencris Mactiinivray 20
Genus Lycaota Konow 2.8
Tribe Tomostethini Benson 32
Genus Tomostcthes Konow 33
Genus Tethida Ross 37
Tribe Phymatocerini Rohwer 40
Genus Phymatocera Dahibom 41
Genus Paracharactas MacGillivray 57
Genus Rhadinocraca Konow 60
Genus Lagonis Ross ir
Genus Monophaduzes Hartig 81
Genus Stcthomostus Benson 96
Genus Eutomostethus Enslin 99
Tribe Blemnocampini Konow 106
Genus Ardis Konow 107
Genus Monardis Enslin 11.3
Genus A parcophora Sato 116
Genus Euparcophora Enslin 119
Genus l'criclista Konow 123
Genus Monophadnoides Ashmead 133
Tribe Ceratulini, new tribe $1: 2$
Genus Ceratulus MacGillivray 152
Tribe Waldheimini, new tribe 165
Genus boldhcimia Brullé 100
Genus Erythraspides Ashmead 157
Genus Halidamia Benson 163
Taxa excluded from Nearctic fauna 16.5
Genus Bltmocompa Hartig 165
Genus Parenphora Konow 165
Literature cited 166
Index 177

NEARCTIC SAWFLIES

I. Blennocampinae: Adults and Larvae (Hymenoptera: Tenthredinidae)

By David R. Smith, entomologist, Systematic Entomology Laboratory, Agricultural Research Service ${ }^{1}$

The subfamily Blennocampinae is a group of rather heterogeneous species, most of which are confined to the humid temperate and tropical regions of the world. Many species may be of economic importance to agriculture. Most of them are external feeders in the larval stage on the foliage of various trees and shrubs, such as Fraximus, Quercus, Carya, Sambucus, Vitis, Cissus, Rubus, and Rosa, and are destructive in forests or ornamental plantings. Others feed on herbaceous plants, such as Ranmentus and varions Liliaceae, and one species is a shoot borer in roses and may be a pest in gardens or cultivated plantings. Several species may be destructive to forage grasses, whereas some may be beneficial by feeding on Veratrum, a plant harmful to livestock.

In North America this subfamily has received varying degrees of attention. Cresson $(18806)^{2}$ listed 33 species that are now considered to belong in this group. MacGillivray (1916) in his key to the sawfies of Connecticut included 17 genera and 61 species. Ross (1937) included 14 North American genera in this subfamily, and later he (1951) listed 21 genera and 65 species. Ross (1932b) revised the Lycaotinae, which are now considered a tribe of the Blennocampinae, and Stannard (1949) revised the genus Periclista. There have been 156 species names and 41 generic names proposed for the Nearctic components of this group. In this bulletin 21 genera and 72 species are treated; 17 species are new. Konow (1905) listed about 180 species for the world.

No attempt has been made to evaluate the status of the subfamily. It is accepted here as proposed by Ross (1951) and may be separated from other subfamilies of the Tenthredinidae by following Ross' 1937 key to the Blennocampinae and Lycaotinae. Outside of the Lycaotini, the group treated here is the same as the Blennocampini of Benson (1952).

[^1]In this bulletin an atlempt is made to clarify the taxonomy of this group and provide workable keys for identifying the known adults and larvale for North America north of Mexico. It is hoped that this study will create further interest, which may add to our knowledge and help fill the large gaps that still exist.

Methods

Specimens from about 41 irstitutions or individuals were borrowed for this study. Approximately 5,000 specimens were examined, including representatives of most of the Palaearctic and several Neotropical species. All the types located ian North America were examined except those that are apparently lost. The types locuted in Europe represent, in most cases, either Holarctic or introduced forms, and the use of names for these species is based on the original descriptions, Enslin's (1914) or Benson's (1952) interpretations, and sjecimens identified by Berson. Most of the European synonymy is not given, because it was impossible to see the types and there is considerable confusion in the literature as tc: the correct placement of some of the names.

Slicle mounts of genitalia were essential, and the techniques followed were principally those outlined by Ross (1945). All measurements were made with a calibrated Iinear ocular micremeter: and drawings were made from an ocular grid. The length of the body is from the anterior part of the head, excluding the anterna, to the posterior part of the abdomen, excluding any protruding structures, such as the sheath, male genitalia, or wings. Body length is of little significance except for comparisons. Where the width of the head is used, it is taken at the widest point, usually just behind the eyes in clorsal view.
Descriptions of adults are based on the most typical specimens representing the species, and the larval deseriptions are all based on the last feeding stare. Deviations from these are explained in the discussions. The literature cited for each genus or species is usually the most pertinent to the taxonomy or biology of the group. Many references where only the name is mentioned incidentally are omitted. The morphological nomenclature for the adults follows that of Ross (193\%). The larval nomenclature follows that used by Yuasa (1922) and Lorenz and Kraus (1957). The morphology of the adults and larvae is discussed in detail by these authors. Ey referring to their works and to the illustrations presented here, the terms should be easily understood. The chatracters in the keys are used only for convenience and ease of iclentification; they do not necessarily indicate phylogenetic relatienships.

Most of the North American sawfly types are in the U.S. National Museum, Illinois Natural History Survey, Canadian National Collection, Academy of Natural Sciences of Philadelphia, and Museum of Comparative Zoology. Whenever possible, holotypes of new species were placed in one of these institutions. Otherwise the policy of the institution from which the specimens were borrowed wats followed.

Taxonomic Characters

Since most of the previous descriptions of species and genera are inadequate, all are rewritten to make them more uniform, except in Periclista.

Coloration and head punctation were used extensively by the early authors. In some cases these characters were rather constant, but usually they were extremely variable. Characters not used by the early authors, such is the female lancet and sheath and male genitalia, were found to be of considerable taxonomic importance and are employed extensively in this study. Most of the characters for both the adults and larvae have been utilized to some extent by more recent authors.

In goneral, the females are much easier to separate than the males. Although the males offer adequate characters, in genera such as Phymatocera no characters were found for separation of the males, and in other general the males of some spenies are not known.

Lawal and genitalic characters are used here for the first time in attempting to construct a more stable and ratural generic and tribal classification of the subfamily.

Subfamily BLENNOCAMPINAE Konow

Blennocampides Konow, 1890, p. 241 (in part); Konow, 1905, p. 76 (in part). Blennocampinae Dalia Torre, 1894, p. 155 (in part) ; Ashmead. 1898a, p. 250 ; MacGillivray, 1006, p. 629; MacGillivray, 1916. p. 142; Yuasa, 1922, p. 92; Ross, 1937, p. 95 ; Benson, 1938, p. 357 ; Berland, 1947, p. 233 (in part); Ross, 1951, p. 62; 'Tikeuchi, 1952, p. 42; Lorenz and Krats, 1957, p. 8.4 (in part).
Blennorampini Enslin, 1914, p. 269 (in part) ; Penson, 1972, p, 97.
Empriinac Rohwer, 1011c, p. 223 (in part).
Phymatocerinae Rohwer, 1911c, p. 224 .

Adults

The adults of the subfamily Blennocampinae, as treated here and as outlined by Ross (1951), may be separated by the following combination of characters: Forewing with vein M joining $M_{i}+M$ at or slightly before their junction with $S c+B$ ($p l$. I, 1, 3) ; veins M and $1 m-c u$ parallel or, in Tomostethus and Tethida. subparallel and slightly converging (pl. I, 1, 7, 9) ; vein $2 \cdot$ present; anal cell petiolate; vein $2 A$ and $3 A$ present for entire length, contracted in middle and fused to $1 A$ for short distance ($p l . \mathrm{I}, 4,5$), or partially atrophied with only basal stul present, which is furcate, curved up, or straight at apex (pl. I, 1, 6, 7). Findwing with anal cell present, petiolate; crossrein m-cu present or absent, leaving cell M closed or open; cell R s absent (pl. I, 2, 8). Prepectus present or absent; if present, then separated from mesepisternum by suture or furrow; if furrow, appearing as raised shoulder. Mandibles bidentate. Cervical sclerites pointed, not appressed on meson.

In generat. the adults are short, robust, and usually dark colored, though some may have a conspicuous red thorax or abdomen.

Adalts may be keyed to this subfamily by following Ross' 1937 key to the subfamilies Lycaotinae and Blennocampinae.

Larvae

The larvae of the Blennocampinae may be distinguished by the following combination of characters: Antenna conical, fivesegmented. Clypeus wider than long, with four or six setae. Labrum with four, six, or eight setae on outer surface, slightly emarginate, symmetrical; epipharynx with row of spines on each lateral half, yarying in position and number. Left mandible with tecth various; index ridge absent or present and unattached at base to any other ridge. Right mandible with teeth various; usually several molar: teeth present. Outer surface of each mandible usually with one seta. Maxillary palpus four-segmented; second segment of palpus with at least one seta; palpifer and stipes each usually with one to several setae; galea conical; lacinia with row of spines varying in number at shape Labial palpus three-segmented; second segment of palpus with or without setae; palpi separated by totaglossa from which arises opening of silk gland.

Thorax with amulation of segments various; ornamentation of same type as that of abolomen. Prothoracic suprapedal lobe of several species decidedly protuberant. Thoracic legs normal, fivesegmented ; femur usually longer than tibia (in Ceratulus subequal in length) ; tarsal claw present.

Atsomen 10-segmented; spiracles present on segments 1 through 8, sometimes winged. Prolegs obvious (ezcept in Ardis), present on segments 2 through 8 and 10 . Abdominal segments 1 through 8 each with four, five, or six dorsal annulets (four annulets only in Ardis and some Periclista). Ornamentation consists of conspicuously branched spines, dark rounded or conical tubercles, dark fat plates, and conspicuous or inconspicuous "glandubae" or glandlike protuberances, which are concolorous with rest of body. Spines, tubercles, or glandubae present on orily second and fourth annulets, first and second (if present) postspiracular lobes, subspiracular lobe, and surpedal lobe. Ninth segment indistinctly annulate, with usual ornamentation. Tenth abdominal tergum usually not sclerotized (except in Ceratulus), but with ornamentation similar to that of rest of abdomen and arranged variously, Subanal protuberances absent (except in A odis).

In general, the larvae are all typically sawfylike except for Ardis, which is adapted to an internal life. The conspicuously branched spines will immediately separate the larvae of the Blennocampini from other sawfly larvae, and the absence of ornamentation on the third annulet of each abdominal segment will separate many of the Blennocampinae from the Allantinae. Some of the larvae may be keyed to this subfamily by using Yuasa's 1922 key or Lorenz and Kraus' 1957 key to subfamilies.

Bionomics

Biological studies have been done for very few species of Blennocampinae, and host plants and larvae are known for less than
half of the known species. Although some species have not been defnitely associated with a host, their probable host may be inferred from adult collection data, known habits of closely related species, or both.

All the members of this subfamily are external feeders except for Ardis brunniventris (Hartig), which is a tip borer in Rosa, and Biennogeneris spissipes (Cresson), which forms a terminal bud gall on Symphoricarpos. The hosts include a wide variety of plants.

Host Plant Associations of Blennocampinae

MONOCOTYLEDONEAE

Plant family	Plant genus	Insect species
Gramineae	Poa	Eutomostethus ephippium (Panzer)
Cyperaceae	Carex	Paracharactus niger. (Harrington) (?)
Juncaceae	Juncus	Eutomostethus luteiventris (Kiug)
	$\left\{\begin{array}{l}\text { Smilacina } \\ \text { Polygonatum }\end{array}\right.$	Phymatocera spp. Phymatoceraspp. (European) (Nearctic?)
Liliaceae	Veratrum Calochortus	Rhadinoceraea (Veratra) spp. Rhadinoceraea nigra (Rohwer) (?)
Iridaceae	Iris	Rhadinoceraca (Rhadinoceraea) spp. (European)

DICOTYLEDONEAE

Juglandaceae	Carya	$\left\{\begin{array}{l} \text { Eupareophora parca } \\ \text { (Cresson) } \\ \text { Periclista marginicollis } \\ \text { (Norton) } \end{array}\right.$
Fagaceae	Quercus	Periclista spp.
Ranunculaceae	Ranunculus	$\left\{\begin{array}{l}\text { Stethomostus fuliginosus } \\ \text { (Schrank) } \\ \text { Monophadnues spp. }\end{array}\right.$
	[Rosa	$\left\{\begin{array}{l} \text { Ardis bruniventris (Hartig) } \\ \text { Ardis atrata (Harrington) (?) } \end{array}\right.$
Rosaceae	$\left\{\begin{array}{l}\text { Rubus } \\ \text { Spiraea }\end{array}\right.$	Monophadnoides geniculatus (Hartig)
	1 Spiraea Fritis	Aparcophora dyari (Benson)
Vitaceae	$\left\{\begin{array}{l}\text { Titis } \\ \text { Cissus }\end{array}\right.$	Erythraspides vitis (Harris)
		MacGilliveay
Onagraceae	Oenothera	Evythraspides carbonarius (Cresson)

Oleaceae	Fraximus	Tomostethns multicinctus (Rohwer)
		Tsthida cordigera (Palisot de Beatrois)
	${ }^{\text {Chionanthus }}$	Eunareophora parea (Cresson) (?)
Rubiaceae	Galizm	Halidamia affinis (Eallen)
Caprifoliaceae	, Symphoricarpos	Blemogeneris spissipes (C'resson)
	Sambucus	Lagomis neradensis (Cresson)

Life History

The life history of the known species follows the typical sawfy pattern. Nost of the species are among the first sawfies to appear in the spring. The aduits mate and the female oviposits on the host plant, usually in the leaves. When the larvae mature, they drop to the ground and look for a suitable site to pupate. Some may enter the earth and spin a cocoon; others reguire a more specific medium, such as rotting wood or stems of dying plants. fere the sawfy remains through the summer and following winter in the prepupal stage, then it pupates and emorges as an adult the following spring. There is usually one generation a year.

For further biological data, see the species discussions.

Historical Review

The subfamily Blennocampinat has received varying degrees of recognition since its establishment by Konow in 1890. The inciusions and exclusions by various authors have depended on their definitions of the subfamily: The first described species of this group were placed in the genus Tenthredo, the original sawfly genus proposed by Linnaeus in 1758. The first genus to be deseribed was Phymatocera by Dahbom in 1835, followed by Plennocampa and Monophadmus, described by Hartig in 1837. Hartig considered these two genera in the section Blemmocampa, a subgeneric frouping of Touthredo. The characters he used for designating this section were the lanceolate anal cell of the forewing and the filiform antenna with the first segment of the flagellum longer than the following segments. Hartig separated Blennofampa from Monobhathus b_{4} the presence of the midile cell of the hindwing. This formed the basis for the present concept of this subfamily.

Norton (1867) was the first North American author to present a synopsis of the sawflies. The genus Selandria incladed most of what are now known as Blennocampinae except for Waldheimia, Which was given separate generic status. Selandria was separated by the wing venation having two marginal cells and four submarginal cells, by the nine-segmented antenna, and by the short "eggshaped" abdomen. Solathia is now considered a small genus in
the subfamily Selandriinae and is not known to occur in North America. The differences given for Waldheimia were the lengthened abdomen and the antenna being filiform and enlarged in the middle. Blemocompa was considered a section of the genus Selandriu and was broken into two tribes, Blennocampa and Monophadnus. This essentially followed Hartig's classification and the characters used were the same.
('resson (18SOb) followed Norton's scheme, but he (1887) inchaded Blennocompa, Honophadnus, Phymatocera, and Selandria as genera in his synopsis of the families and genera of the liymenopteral of North America.

Konow (78%) gave higher categorical ranking to this group for the first time. He considered the Blennocampides as a sabolivision of the Tenthredinini, separated from the Selandriides on the basis of the lancelate anal cell of the forewing. Konow (190:5) followed this classification in the sawfly section of Genera Insertorum and included Waldheimia in this group for the first time.

In the Catalogus Hymenoptorum, Dalla Torre (1894) gave full subfamily status to the Blennocampinae. He included 19 genera, seven of which are not now included in the present definition of the subfamily.

Ashmead (189 Sa) was the third North American ather to deal with the higher categories. He radically changed the classification, giving full family status to the Selandridae with four subfamilies iseluded, the Blemocampinae, Selandrinae, Blasticotominac, and Hoplocampinate. The Brennocampinate were still separated from other subfamilies by the lanceolate cell of the forewing. The Selandridae were separated on the basis of vein M meeting $R s+$ M at the junction of $\mathrm{Se}+R$ and the basal plates not being united.

Maccillivray (1906) presente! his first concept of the higher classification when he dealt wita the wing venation. His subfamilies were entirely based on wing venational characters. He proposed the sublimily lycaotinae and separated it from the Blennocampinate by the complete $2 A$ and $3 A$ vein of the forewing. The characters for the Blennocampinae are essentially those stilt utilized. Macfillivaly (1916) used the same characters in his account of the satwfies known to oceur in Connecticut.

Rohwer (f9170) presented other characters for subtamily separation, giving most weight to the presence or absence of the prepectus and whether or not the proepisternum meets on the meson. The present Blennocampinae were included in two of Rohwer's categories, one, the Emprimate, separated by the absence of the propectus, the other, the Phymatocerinat, separated by the presence of the prepectus. The Lycaotini and Blemocampini were considered tribes of the Emprinate.

The European workers more or less followed Konow's chassification, as (id Enslin ($1: 14$) in I) ie Tenthredinoilea Mittolearopas. The blemocampini were considered a tribe of the sublitmily Tenthredininase.

Ross ($19,3 \tilde{r}$) presentel a generic revision for North American sawflies, which stabilized the reneric and subfamily classification
for a while. For the first time ideas concerning the phylogeny and evolution of the Symphyta were proposed, and keys were available for the generic determination of Nearctic sawflies. Although Norton, ('resson, and Ashmead had presented keys, the handling of the sawfly groups, especially on the generic and species level, by MacGillivray and Rohwer put sawfy taxonomy into a state of confusion. Ross' systematic approach gave it a much needed stability. The subfamilies Lycaotinae and Blennocampinae were recognized, and the wing venation characters used for subfamily separation were essertially those proposed by MacGillivray (19006). Ross (1951) presented his classification again, but he changed the Lycaotinae to a tribe of the Blemnocampinae. This subfamily concent is followed here.

Benson (1938) criticized Ross' 1937 revision, but he used the same principles and characters, and the names were merely given a different status.

Benson (1952) broadened his concept of the Blemnocampinae and included the krocampini, Athalimi, Allantini, Empriini, Calmoni, and Fenasini as tribes, as well as the Blennocampini, which is the group treated in this bulletin. The Lycatini were not included sinee they do not occur in England.

Takenchi (105,2) presented his concepts in a generic revision of the Japanese sawfly fauna. This closely paralleled Ross' 1937 revision. He also presented a graphic correation of the various classifcations used by various authors beginning with Konow (1905).

The pionets of North America sawfy taxonomy were Norton and Cresson, although most of the species names were proposed by Maccillivay and Rohwer. The last two workers stressed detail, and though working concurrently each was yery independent. Maccillivaty proposed 65 of the species names in the Blemocampinate, only 11 of which are still considered valid. This excess work may be attributed to lack of knowledre about other work in the field, enfamiliarity with types, unfamiliarity with pahaearctic and possible Holaretic species, and use of variable characters for species separation.

The history of larval work is much less confusing. Brischke and Zaddach (1883) and (ameron (1882) described some larvae, all of which are Palacarctic species. For North America the first to rear and deseribe larvale was Dyar (2898), who gave a key to the known huvae of Blennocampinae. Yuasa (192?) published the major work on North American sawfy larvae and gave keys to the families, subfamilies, genera, and species. His arrangement of taxa was influenced by MacGillivay. For the Blennoempinae, only a key to genera was given.

The major European work is that by Loreno and Kraus (1957). It is extremely usetul, even lor North America. The keys to the subfamilies, genera, and species, as well as the descriptions and illustrations, allow partial identification of almost any larva encountered. Also, many useful generic and specific characters are presented, which are used here for the North American forms. No work has been done on the North American larvae since Yuasa's (1922). except for descriptions of individual species and
a key to the families of Symphyta with illustrations of several species by Peterson (1956).

Classification and Relationships

The North American genera and species of Blennocampinae may be grouped into six categories or tribes, tach composed of closely related species (see chart). Previous groupings have been difficult because of the lack of obvious characters on which to base a phylogenetic classification. Benson (1938) was the first to attempt a tribal classification, and he included the Blemocampini, Tomostethini, Phymatocerini, and Lycaotini, as well as several exotic tribes, and separated them by using adult characters, such as the wing venation and prepectus. Benson (1952) grouped the Tomostethini, Phymatocerini, and Blennocampini into one tribe, the Blennocampini, and Ross (19.51) recognized two tribes, the Lycaotini and Blennocampini. Takeuchi (1952) included four tribes in the Japanese fauna, the Phymatocerini, Tomostethini, Perclistini, and Blennocampini, separated by wing venation, malar space, prepectus, and antenna. In this bulletin additional charac-

Chart showing relationships between genera of Blennocampinae.
ters have been utilized, especially the male genitalia and larval characters. In my opinion the classification presented here represents a matural classification.

The relationships between taxa indicate that members of the subfamily have evolved in a radiating palmate fashion, simitar to that proposed by Ross (103\%) for the Tenthredinidae, in which each tribe or phyletic line has generalized members that are apparently closely related. Some momphological characters indicating a generalizel condition in the adults were pointed out by Ross (10.37) and include the presence of a prepectus, simple antennae, the proximal anal cell contracted in the middle and separated from the distal anal coll by an anal crossvein, and vein M of the forewing joining $R s+M$ at the junction of $S c+R$.

In the Blennocampinae the prepectus may be present or absent, yein M of the forewing joins $R s+M$ at or slightly before the junction with Sc $+R$, the antennae vary from being filiform to servate, the relative length of the antennal segments varies considerably, and the anal crossvein is never present except for some Ly/caota species, where it is extremely short. Several steps toward the reduction of the amal cell are evident within this subramily, ranging from that of the Lycaotini, which has vein $2 A$ and $3 A$ complete and fused to 1A for a short distance, to that of genera such as Monophadnus and Monophathoides, which have the stub of $2 A$ and $3 A$ straight at its apex. The transitory forms are apparently those with the furcate $2 A$ and $3 A$ vein, such as in Rhadinocerara and Phymatocera, and the curved-up $2 A$ and $3 A$ vein. which is present in many genera.

Some additional characters, which I believe represent a generalized condition, have also been useful for this subfamily. These include the presence of crossvein $m-c / t$ in the hindwing enclosing cell M, the lack of lateral armature on the penis valve of the male genitalia, simple tarsal claws, abdominal segments 1 through 8 of the larvae each with six dorsal amulets, and the lack of elaborate body ornamentation on the larva. In contrast, the more specialized members show a reduction of parts, such as the lack of prepectus, reduced wing venation, and reduced ammation of the larvae, and an increase of what may be more specialized structures, such as the additional teeth of the tarsal claw, lateral armature of the penis valve, and various tubercles and spines as body ornamentation on the larva.

The host plant does not seem to give a good indication of phylogeny, though usually the more generalized members feed on monocotyledonous plants, such as grasses, sedres, and members of Liliaceat, whereas more specialized members feed on dicotyledonous plants, such as Ranunculus and woody shrubs and trees.

The characters discussed have been used to set up the tribal dassification, and relationships are described under each tribe. This is certainly not a definitive arrangement, but it is presented only to indicate the possible relationships or affinities between the species and genera found in North America. A key is not given for their separation, since the genera are more readily identified without first determining their respective tribes.

Systematic Arrangement

Family TENTHREDINIDAE

Subfamily BLENNOCAMPINAE Konow
 Tribe LYCAOTINI MacGillivray

Genus Blennogeneris MacGillivray
(1) Blennogeneris colorulensis (Rohwer) ; Colorado, Idaho, Manitoba, Utah, Washington.
(2) Blennogeneris gittinsi, new species; Idaho.
(3) Blennogeneris spissipes (Cresson) ; Alberta, British Columbia, California, Colorado, Idaho, Manitoba, Minnesota, Montana, Ontario, Oregon, Saskatchewan; forms bud galls on Symphoricarpos.

Genus Lycucta Konow

(4) Lycaota bouquetensis, new species; California.
(5) Lycuota janetae, new species; California, Oragon.
(6) Lycaota sodulis (Cresson) ; Alberta, British Columbia, Colorado, Idaho, Saskatehewan, Utah, Washington.

Tribe TOMOSTETHINI Benson

Genus Tomostethus Konow
(7) Tomostethus multicinctus (Rohwer) ; California, Connecticut, District of Columbia, Illinois, Iowa, Kansas, Massachusetts, Missouri, New Jersey, North Carolina, Ontario, Oregon, South Dakota, Texas, Virginia, Wisconsin; on Fraxinus.

Genus Tethida Ross

(8) Tethida cordigera (Palisot de Beauvois) ; Connecticut, Florida, Illinois, Incliana, Iowa, Kansas, Louisiana, Maine, Manitoba, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New Brunswick, New Hanıshire, New York, North Carolina, Ontario, Pennsylvania, Quebec, Saskatchewan, South Dakota, Tennessee, Texas, Virginia, Wisconsin; on Fraximus.

Tribe PHYMATOCERINI Rohwer

Genus Phymatocera Dahlbom
(9) Phymatocera fumipennis (Norton) ; Alabama, Connecticut, Illinois, Indiana, Maryland, Massachusetts, Missouri, New Hampshire, New Jersey, New York, North Carolina, Ohio, Ontario, Pennsylvania, Quebec, Virginia, Vest Virginia, Wisconsin; or Smilacina.
(10) Phymatocera offensa (MacGillivray); Alberta, British Columbia, California, Colorado, Idaho, Illinois, Maine, Manitoba, Ontario, Oregon, Quebec, Saskatchewan, I'tah; on Smilacina.
(11) Phymatocera recemosae, new species; British Columbia, Connecticut, Ilhnois, Maryland, Michigan, New Jersey, New York, North Carolina, Ohio, Ontario, Pennsylvania, Quebec, Virginia, Washington, Wisconsin; on Smilacina.
(12) Phymatocera similata (MacGillivray) ; Alberta, British Columbia, California, Colorado, Idaho, Illinois, Iowa, Manitoba, Michigan, Montana, Nebraska, Ontario, Oregon, Utah; on Smilacina.
(13) Phymatocera smilacinae, new species; Illinois, Maryland, Michigan, New York, Ohio, Ontario, Pennsylvania, Quebec, Virginia, Wisconsin ; on Smilacina.

Genus Paracharactus MacGillivray

(14) Paracharactus montivagus (Cresson) ; California, Idaho, Montana, Nevada, Oregon, Washington.
(15) Paracharactus niger (Harrington) ; Comnecticut, Hlinois, Iowa, Kansas, Maine, Maryland, Massachusetts, Michigan, Minnesota, New Hampshire, New York, Ohio, Ontario, Pennsylvania, Quebec, Wisconsin.
(16) Parachuractus rudis (Norton); Colorado, Connecticut, Georgia, Illinois, Iowa, Kansas, Maine, Manitoba, Maryland, Massachusetts, Michigan, Minnesota, New Hampshire, New York, Ohio, Ontario, Quebec, Saskatchewan, South Dakota, Wisconsin.

Genus Rhadinoceraea Konow

Subgenus Rhadinoceraea Konow

(17) Rhasinoceraca brysonensis, new species; California.
(18) Rhadinoceraea ctenidium, new species; California.
(19) Rhadinoceraea nigra (Rohwer); California; on Calochor. tus.
(20) Rhadinoceraea utahensis, new species; Utah.

Subgenus Veratra, new subgenus
(21) Rhadinoceraet aldvichi (MacGillivray); Alberta, British Columbia, California, Idaho, Montana, Nevada, Oregon, Washington; on Veratrum.
(22) Rhadinoceraea insularis (Kincaid); Alaska, British Columbia, California, Oregon, Washington.
(23) Rhadinoceraea jacintensis, new species; California.
(24) Rhadinoceraea nubilipennis (Norton); Connecticut, Massachusetts, New Brunswick, New Hampshire, New York, North Carolina, Quebec, Virginia; on Veratrum.

Genus Lagonis Ross

(25) Lagonis nevadensis (Cresson) ; Alberta, British Columbia, California, Idaho, Nevada, Oregon, Utah, Wyoming; on Sambucus.

Genus Monophadnus Hartig

(26) Monophadnus aequalis MacGillivray; Alberta, Colorado, Illinois, Towa, Maine, Manitoba, Maryland, Michigan, New York, Ontario, Quebec, Saskatchewan; on Ranunculus.
(27) Monophadnus assaracus MacGillivray; Oregon.
(28) Monophadnuts bakeri, new species; Illinois, Kansas, Maryland, Montana, Virginia.
(29) Monophadnus californicus (Rohwer); California, Oregon; on Rarunculus (?).
(30) Monophadnus contortus (MacGillivray) ; British Columbia, California, Idaho, Montana, Oregon, Yukon Territory.
(31) Monophadnus lattini, new species; Connecticut, Manitoba, Massachusetts, Minnesota, New Hampshire, Wisconsin.
(32) Monophadnus pallescens (Gmelin); British Columbia, Maine, Massachusetts, New Brunswick, Newfoundland, New York; Ontario, Quebec; Palaearctic; on Ranunculus.

Genus Stethomostus Benson

(33) Stethomostus fuliginosus (Schrank) ; Maine, Massachusetts, Michigan, New Brunswick, New Hampshire, New York, Nova Scotia, Quebec; Palaearctic; on Ranunculus.

Genus Eutomostethus Enslin

(34) S'utomostethus ephippium (Panzer) ; British Columbia, Connecticut, Maine, Maryland, Massachusetts, New Brunswick, New Hampshire, New Jersey, New York, Nova Scotia, Ontario, Pennsylvania, Quebec, Texas, Washington; Palaearctic; on Poa and other soft Gramineae.
(35) Eutomostethus luteiventris (Klug) ; Alberta, British Columbia, Connecticut, Maine, Maryland, Massachusetts, Michigan, New Hampshire, New Jersey, New York, Nova Scotia, Ontario, Oregon, Quebec, Vermont, Washington; Palaearctic; on Juncus.

Tribe BLENNOCAMPINI Konow

Genus Ardis Konow
(36) Ardis atrata (Harrington) ; British Columbia, California, Oregon, Washington; on Rosa (?).
(37) Ardis brumiventris (Hartig) ; Alberta, British Columbia, California, Colorado, Jdaho, Illinois, Iowa, Maine, Manitoba, Michigan, Missouri, Montana, New Mexico, New York, North Carolina, Northwest Territorjes, Ontario, Oregon, Quebec, South Dakota, Utah, Washington; Palaearctic; shoot borer in Rosa.

Genus Monardis Enslin

(38) Morardis pulla, new species; Alberta, British Columbia, Colorado, Idaho, Montana, Saskatchewan, Utah.

Genus Apareophora Sato
(39) Apareophora dyari (Benson); Connecticut, New Brunswick, New Hampshire, New York, Ontario, Quebec, Vermont; on Spiraea.
(40) A pareophort rossi, new species; Maine, Michigan, Mimnesota, Ontario, Wisconsin.

Genus Eupareophora Enslin

(41) Eupareophora parca (Cresson) ; Arkansas, California, Illinois, Iowa, Kansas, Manitoba, Maryland, Mississippi, Missouri, New Brunswick, New Jersey, New York, Ontario, Oregon, Quebec, Saskatchewan, Texas, Wisconsin; on Carya, Chionanthats (?), Fraxinus.

Genus Periclista Konow

Subgenus Periclista Konow

(42) Periclista albirollis (Norton) ; Illinois, Iowa, Kansas, Louisiana, Maine, Manitoba, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Oklahoma, Ontario, Pennsylvania, Texas, Virginia; on Quercus.
(43) Periclista bipartita (Cresson) ; Connecticut, Florida, Massachusetts, Missouri, New York, Texas; on Quercus.
(44) Periclista californica Rohwer; California.
(45) Periclista diluta (Cresson); Connecticut, Florida, Illinois, Kansas, Maine, Massachusetts, Michigan, Missouri, New York, Ontario, Pennsylvania, Texas, Wisconsin; on Quercus.
(46) Periclista electa MacGillivray; California, Oregon.
(17) Periclista entella MacGillivray; California, Oregon; on Quer rus.
(18) Perirlista linea Stannard; California, Oregon; on Onercus.
(49) Periclista marginicollis (Nortor) ; Connecticut, Florida, Illinois, Iowa, Kansas, Louisiana, Maryland, Massachusetts, Michigan, Mississippi, New Jersey, New York, Oklahoma, Pennsylvania, Texas, Vermont; on Carya, Qucrevs.
(50) Periclista media (Norton); District of Columbia, Florida, Ilinois, Iowa, Manitoba, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Virginia, Wisconsin; on Quercus.
(51) Periclista naranga Stannard; California.
(52) Periclista rileyi (Cresson) ; Florida, Illinois, Missouri, Texas.
(53) Periclista spicula Stannard; California.
(54) Periclista stannardi, new species; Iowa, Texas.
(55) Periclista sulfurana Stannard; Illinois, Iowa, Michigan, New Jersey, New York.
(56) Perielista vergorba Stannard; California.

Subgenus Neocfaractus MacGillivray

(57) Periclista inaequidens (Norton) ; Illinois, New Hampshire, New York, Texas, Wisconsin; on Quercus.
(58) Periclista occidentalis Rohwer; California; on Quercus.
(59) Periclista pallipes (Provancher); California; on Quercus.
(60) Periclisia subtruncata Dyar; Florida, Illinois, Indiana, Louisiana, Maryland, Mississippi, New York, South Carolina, Texas, Virginia; on Quercus.

Genus Monophadnoides Ashmead

(61) Monophadnoides atratus (MacGillivray) ; Alaska, British Columbia, Northwest Territories, Oregon, Washington.
(62) Monophadnoides conspiculatus MacGillivray; Maryland, New York, North Carolina, Nova Scotia, Ontario, Quebec, Tennessee, Virginia, West Virginia.
(63) Monophadnoides geniculatus (Hartit) ; Alberta, Arkansas, British Columbia, California, Colorado, Connecticut, Georgia, Idaho, Illinois, Indiana, Iowa, Kansas, Maine, Manitoba, Mary]and, Massachusetts, Michigan, Minnesota, Missouri, Montana, New Brunswich, Newfoundland, New Hampshire, New Jersey, New

York, North Carolina, North Dakota, Northwest Territories, Ohio, Ontario, Oregon, Pennsylvania, Quebec, Rhode Island, Saskatchewan, Tennessee, Texas, Virginia, Washington, Wisconsin; Palaearctic; on Rubus.
(64) Monophadnoides osgoodi, new species; Maine, Ontavio.
(65) Monophadnoides puuper (Provancher); Alberta, Coloratlo, Connecticut, Illinois, Iowa, Kansas, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Newfoundland, New Hampshire, New Jersey, New York, Ontario, Pennsylvania, Quebec, Saskatchewan, Wisconsin.
(66) Monopharhoides quebecensis, new species; Quebec.
(67) Monophadnoides typicus (Rohwer); British Columbia, Callifornia, Oregon.

Tribe CERATCLTNI, new tribe
 Genus Ceratulus MacGillivray
 (68) Ccratulus spectabilis MacGilliveay; Texas; on Cissus.

Tribe WALDHEIMIINI, new tribe
Genus Waldheimia Brullé
(69) Wraldh cimia bedeae, new species; Arizona.

Genus Erythraspides Ashmead

(70) Erythraspides carbonarius (Cresson) ; Colorado, Georgia, Iminois, Indiana, Maine, Maryland, Massachusetts, Michigan, Missouri, New Hampshire, New Jersey, New Ynrk, North Dakota, Ontario, Pennsylvania, Quebec, Saskatchewan, South Dakota, Texas, Virginia; on Oenothera.
(71) Erythraspides vitis (Harris) ; Arkansas, Florida, Georgia, Illmois, Iowa, Louisiana, New Hampshire, New York, Pennsylvania, South Carolina, Virginia; on Vitis.

Genus Halidamia Benson

(T2) Halidamia affinis (Fallèn); Connecticut, Maryland, Michigan. New Jersey, New York, Ontario, Wisconsin; Palaearctic: on Galimm.

Keys to Blemocampinae Genera

ADULTS

Forewilg with wein $\ln A$ and :3A atrophied; only basal stub present, which may be straight, curved up, or furcate at apex (pl. I, 1, 6, 7) -- 3

Leex- reddish hrown
5. Prepectus large and triangular, on same level as mesepisternum and separated from it by suture (pl. II, 29); forewing with veins M and $1 m$-cu slightly divergent (pl. I, 9)
Prepectus narrow, appearing as raised shoulder and separated from mesepisternum by furrow (pl. II, 28); forewing with veins M and 1m-cat parallel (pl. 1, 1)
6. Tarsal claw simple (pl. IT, 13); thomax without rufous markings Tomostethus
Tarsal claw with small inner tooth (pl. II, 14) ; thorax with consider-

7. Antenna with third segment longer than fourth segment (p.-.--1IJ, 58); prepectal furrow and hindmargin of scutellum with distinct punctures; hindwing with cell M present or absent; front tibial spur simple or furcate at apex-
Antenna with third segment subequal in length to fourth segment (pl. III, 44-49); prepectal furrow and scutellum without punctures; hindwing with cell M present; front tibial spur furcate at apex....
8. Forewing with stub of $2 A$ and $3 A$ straight at apex (pl. I, 1) ; tarsal claw simple; front tibial spur furcate at apex (pl. II, $3 \pm$); hindwing with cell M absent

Stethomostus
Forewing with stub of $2 A$ and $3 A$ curved up at apex (pl, $\overline{1}, 6$) ; tarsal claw simple or with small inner tooth; front tibial spur simple (pI. II, 30); hindwing with cell M present or absent..- spur simple
9. Postgenal carina absent; forewing with stub of $2 A$ and $3 A$ furcate at apex (pl. I, 7); wings moderately to darkly infuscate (in western North America, lancet of female with serrulae rounded (pl. VII, 143, 144), and harpe of male without inner extension (pl. IX, 198, 200))

Phymatocera
Postgenal carina developed slightly below eye; forewing with stub of $2 A$ and $3 A$ furcate or straight at apex (pl. 1, 1, 7); wings moderately infuscate to hyaline (in western North America, lancet of female with serrulae flat and serrate (pl. VII, 148, 149), and harpe of male with long inner extension (pl. IX, 202)) -, Paracharactus (pt.)
10. Apical four antennal segments distinctly reduced, together subequal in length to or only slightly longer than third segment (pl. III, 67-70) ; tarsal claw with long inner tooth subequal in length to or slightly longer than outer tooth, basal lobe present (pl. II, 20, 22) -
Apical four antennal segments not reduced (pl. III, 41-66); tarsal
claw various - $\begin{gathered}\text { cown } \\ \text { cored }\end{gathered}$
11. Forewing with stub of $2 A$ and $3 A$ curved up at apex (pl. 1,6) ; hindwing with cell M absent
Forewing with stub of $2 A$ and $3 A$ straight at apex (pl. I, I); hind-
wing with cell M present or absent wing with cell M present or absent 22) : hindwing with cell M wider and long ar than apical tooth (pl. II,

Tarsal claw with inner tooth shorter or subegual in length to outer tooth and of same width (pl. II, 20); hindwing with cell M absent
13. A (male of vitis with peripheral vein in hindwing)-Erythruspides (pt.) (pl. III, 44-48, $51,52,65$)

14. Forewing with stub of $2 A$ and $3 A$ curved up at apex (pi. I, 6); upper half of mesepisternum and scutellum with large craterlike puncFures; tarsal claw with small inner tooth (pl. II, 14) ---....-. Lagonis
Forewing with stub of $2 A$ and $3 A$ straight or furcate at apex (pl. I, $1,7)$; mesepisternum and scutellum without punctures; tarsal claw
various various
15. Tarsal claw with inner twoin Jong, nearly subequal to outer tooth in
Iength, and with basal lobe (pl. $18,19,20$) forewing with stub of $2 A$ and $3 A$ straight at apex (pl. T, 1); hindwing with cell M
 wing with stub of $2 A$ and $3 A$ straight or furcate at apex; hindwing
with cell M present.
16. Postgenal carina absent; forewing with stub of $2 A$ and $3 A$ furcate ai apex (pl. I, 7); prepectus absent Rhadinoceraea (pt.)
Postgenal carina developed slightly below eye; forewing with stub of $2 A$ and $3 A$ straight or furcate at apex (pi. I, 1, 7); prepectus indistinct, usually indicated
17. Forewing with stub of $2 A$ and $3 A$ furcate at apex (pl. I, 7) ; tarsal claw simple or with small inner tooth-at......-Rhadinoceraea (pt.)
Forewing with stub of $2 A$ and $3 A$ straight or curved up at apex (pl. I, $1,6)$; tarsal claw various

18. Forewing with stub of $2 A$ and $3 A$ curved up at apex (pl. $\bar{F}, 6)$	18

Forewing with stub of $2 A$ and $3 A$ straight at apex (pl. I, I, $)$-.......--
Tarsal claw bifid, with long inner tooth and with basal
19. Tarsal claw bifid, with long inner tooth and with basal lobe present or absent (pl. II, $15,18-20$) 20
Tarsal claw simple (pl. II, 13)20
20. Deep postorbital groove present with large craterlike punctures (pl. II, 10); epimeron without small membranous area; hindwing with cell M present; tarsal claw with basal lobe
Postorbital groove absent; epimeron with small membranous area (except in marginicollis); hindwing with cell M present or absent; tarsal claw usually without basal lobe_-.......-...-.-....-. Peric (pl. I, 3); eye large, close to, and parallel with posterior margin of head (pi.11, 10); postorbital groove present, with punctures

Eupareophora

Forewing with veins M and $R s+M$ meeting at junction with $S c+R$
(pl. I, 1) ; eye smaller, removed from posterior margin of head (pi. Ii, 11); postorbital groove absent

22. Wings darkly infuscate: hindwing with cell M present
\qquad
Monardis
23. Anterior margin of clypeus slightly convex (pl. II, 26); wings with basal two-thirds infuscate, apical one-third hyaline; antenna with apical four segments reduced, but not noticeably so (pl. III, 69) Erythraspides (pt.)
Anterior margin of clypeus truncate (pl. II, 27); wings hyaline or uniformly lightly infuscate; antenna with apical four segments not
reduced (pl. III $53-57,61-66$) reduced (pl. III, 53-57, 61-66)
24. Tarsal claw either simple (pl. II, 13), with small inner tooth (pl. II, 14), or with long imner tooth (pl. II, 15), and with basal lobe absent; postgenal carina may be slightly developed below eye; hindwing with cell M present (penis valve of male genitalia rounded or quadrate, without lateral spine or dorsal lohe (pl. X, 221, 223, 225, 227, 229); lancet of female with serrulae low and serrate, not lobelike and

Tarsal claw with long inner tooth and basal lube (pl. II, 18-21); postgenal carina absent; hindwing with cell M present or absent (penis valve of male genitalia with dorsal lobe and lateral spine (pl. XI, 243, 245, 247,251); lancet of female with serrulae lobelike or rounded (pl. IX, 181-187)) --.----.-.-.-Monophadnoides (pt.)

LARVAE

(based on last feeding stage)

1. Prolegs reduced to blunt swellings; body smooth and white; abdominal segments 1 through 8 each with forr dorsal annulets; flat, lightly selerotized suranal plate present; pair of subanal appendages present (p ! XV, 306) ; shoot borer in Rosa-.-A Ardis brunniventris (Hartig)
Prolegs distinct; body either covered with long, conspicuously branched spines; short, simple spines; tubercles; sclerotized plates; or appears smonth with inconspicuous glandubae: abdominal segments ithrough 8 cach with four, five, or six dorsal annulets; 10 thents dominal tergum rounded; subanal appendages absent; external feeders (except Blemogeneris)
2. Body covered with long and slender or short and stout conspicuous spines, some of which are bifurcate; abdominal semments 1 through 8 each with four or five dorsal annulets (pl. XVII, 340; pl. XIX, 347, 354)
Body either with short spines, none of which are bifurcate, short conical tubereles, selerotized plates, or inconswicuous glandubae; abdominal segments 1 through 8 each with six dorsal annulets; if five, then dorsum of body covered with conimal, darkly sclerotized, simple spines (pl. XII, 268. 279 ; pl. XII, 285; pl. XIV, 292; pl. XV, 311; pi. XVI, 315; pl. XV11, 326; p. XV(II, 333)
3. Subspiracular and surpedal tohes anch with three simple spines; on Spiraea

Apareophora dyari (Benson)
Subspiracular and surpedal jobes each with only two spines, some of which are usually bifurcate (pl. SVII, 340; pi. XIX, 347, 354) _...-
4. Spines on subspitacular lobe and surpedal lobe arranged as follows: Subspiracular lobe with anterior spine bifurcate, posterior spine simple; surpedal lobe with anterior spine simple, posterior spine bifurate; foth abdominal tergum with central compound spine (pl. XIX, 346, 347) ; on Rubus _-. Monophadnoides geniculatus (Hartig)
Spines on subspiracular lobe and surpedal lobe arranged differently; 10th abdominal tergum with or without central spine
万. Spines on subspiracular lobe and surpedal lobe arranged as follows: Subspiracular lobe with two bifurcate spines: surpedal lobe with two simple spines; 10th abdominal tergum without central spine (pl. XVIII, 330, 340) ; lacinia with four to six spines (pl. XVIII, 3:38) ; on Froxinas and Carya_......-Enpareophore parca (Cresson)
Spines on subspiracular lobe and surpedal lobe arranged differently; 10th abdominal tergum with or without central spine; lacinia usually with more than six spines
6. Spines on subspiracular lobe and surpedal lobe arranged as follows: Subspiracular lobe with anterior spine bifurcate, posterior spine simple; surpednl lobe with two simple spines; 10th abdominal tergum with central spine absent; abdominal segments 1 through 8 with four or five dorsal ammulets (pl. XIX, 353, 354); on Querens and Caryu

Periclista spp.
Spines on subspiracular lobe and surpedal lobe arranged as follows: Suhspiracular lobe with two bifurcate spines or two simple spines; surpedal lobe with two bifureate spines; 10th abdominal tergum with central bifurcate spine; abdominal segments 1 through 8 each with five dorsal annulets; on Roso from Utah.....-Unidentified species
7. Body with stout, conical, simple, dark spines, which are confined to dorsal surface; abdominal segments 1 through 8 each with six dorsal ammulets, fifth and sixth annulets narrow, often appearing as one; second annulet with three spines on each side fourth ammlet with two spines on each side (pl. XVIII, 333); on Vitis

Erythraspides vitis (Harris)
Body with or without conical dark spines; if present, then they are also present on postspiracular, subsniracular, and surpedal lobes; abdominal segments 1 through 8 with six distinct dorsal annulets; tubercles, plates, or glandubae of second and fourth annulets various
8. Spiracles distinctly and darkly winged; clypeus with two setae on each side; labrum with three setae on each side.
Spiracles not winged, if winged, then lightly so; setae of clypeus and labrum various
9. Large dark plates present on body with small papilae or setae arising from each one; 10th abdominal tergum with dark plate; thoracic legs slightly reduced, trochanter narrow and ringlike, visible only on inner surface of leg, tibia and femur subequal in length (pl. XVIT, 324-326) ; on Cissus
lates absent, only small dark tubercles present on body; thoracic legs normal, trochanter distinct, femur longer than tibia; 10th abdominal tergum without dark plate
10. Postspiracular lobes, subspiracular lobe, ârō surpedal lobe each with only one tubercle; annulets 2 and 4 each with only two or three tubercles on each side (pl. XIV, 292, 296); left mandible with two ventral teeth (pl. XIV, 288) ; on Veratrom___...-Rhadinoceraea spp.
Postspiracular lobes, subspiracular lobe, and surpedal lobe each with two or more tubercles; amulets 2 and 4 each with more than three tubercles on each side, usually four to six; left mandible with three ventral teeth (pl. XV, 308) ; on Ranunchlus, California

Monophadnus sp. (pt.) (?)
11. Tubercles on body dark, contrasting in color with rest of body (pl. XIII, 284-286); spiracles may be lightly winged; on Smilacina Phymatocert spp.
Tubercles or protuberances on body of same color as rest of body; spiracles not winged.

12
12. Prothoracic suprapedal lobe distinctly protuberant (pl. XV, 301) _--- 13

Prothoracic suprapedal lobe normal, not protuberant.............-- 14
13. Clypeus with two setae on each side; head uniformly light brown; on Carex ------------------------------------1aracharactus sp.
Clypeus with three setae on each side; head light, mottled with darker spots; on Poa, Juncts Eutomostethus spp.
14. Glandubae numernus and long; subspiracular and surpedal lobes each with row of seven or eight glandibae; annulets $\frac{2}{}$ and 4 each with three or four pairs of glandubae (pl. XVI, 313-915); clypeus and labrum each with two setae on each side; on Sambueus

Lagonis nevadensis (Cresson)
Glandubae less numerous and shorter; subspiracular and surpedal lobes ench with no more than two or three glandubae; plandubae of annulets not in pairs (pl. XII, 268, 279; pl. XV, 311); setae of clyppus and labrum varinus
15. Labrum with two sotae on each side; body entirely smooth; glandubae of annulets 2 and 4 small and indistinct (pl. XII, 279) ; on Fraxinus
Labrum with three setae on each side; body smooth with inconspicuous glandubae or with glandubae distinet; host not Fraxinus_-...
16. Hear light; thoracic legs Iight; lacinia with six to eight spines (pl. XII, 2Ti) \qquad Tomostcthus multicinctus (Rohwer)
Head black; thoracic legs with segments black: lacinia with 9 or 10 spines (pl. XII, 273) -....-Tethida cordigera (Palisot de Beauvois)
17. Head light with two pairs of large brown spots on vertex (pl, XV, 312); second segment of maxillary palpus with one seta; on Ranmerhs from Illinois_------.-.-.-.-.-Monophednus sp. (pt.) Fead uniformly light; second segment of maxillary palpus with one or two setae
18. Second segment of maxillary palpus with two setae: on Galimm

Halidamia affnis (Fallén)
Second segment of maxillary palpus with one seta; feels in developing buds of Symphoricarpos (p1. XII, 267-269)

Blemogeneris spissipes (Cresson)

Tribe LYCAOTINI MacGillivay

Lycaotinae MacGillivray, 1906, p. 629; Ross, 1932b, p. 41; Ross, 1937, p. 101.
Lycaotini Rohwer, 1911c, p. 223; Benson, 1988, p. 367; Ross, 1951, p. 62 ; Benson. 190f, p. 75.

This group was first proposed as a subfamily by MacGillivray (1006). Rohwer (1011c) considered it as a tribe of the Emprinae. and Ross (19.3.2, 19,3\%) treated it as a subfamily. Ross believed this group to be a present-day representative of the ancestor of the Tenthredininae on the basis of the structure of the anal cell of the forewing, which is similar to that of Zaschisonhx Ashmead and some Macrophya Dahlbom. However, Ross kept them separate because of the following diflerences: Vein M of the forewing meet-
ing $R S \rightarrow M$ at the junction of $S c-R$ and the cervical sclerites being pointed in front and not meeting on the meson. Benson (1\%38) immediately reduced this group to tribal rank in the Blemocampinae, believing that the similarities of this group with the Hennocampinae outweighed the differences. Also, Benson pointed out that this form of contraction of the anal cell of the forewing may be a step toward the condition in which the anal cell becomes petiolate as in all other Blennocampinae. The latter is a specialized condition according to Ross (1937). Ross (1051) also included this group as a tribe of the Blennocampinae. Maxwell (195:5), on the basis of the internal larval anatomy, stated that the Lyraotini have an extremely anomalous position in the Blemnocampinat and should be considered as a separate subfamily.

Yein $2 A$ and $3 A$ of the forewing, which is complete and fused to 1 A for a short distance, will separate this group from all other Blemocampinae. This is a condition that may have been retained from the ancestral stock of the Blennocampinae while other characters have evolved. In other respects, members of this tribe are imilar to those of the Phymatocerini and the Blennocampini. The laryat are similar to those of the Phymatocerini, having the aldominal serments six-annulate and lacking branched spines. The male senitalia are similar to those of the Blennocampini, having a bateral spine. With these characters in common with the other tribes and the generalized condition of the anal cell, members of this group may be the most generalized and may most closely resumble the ancestral stock of this subfamily.

Descripfion.-Vein $2 A$ ard $3 A$ of forewing complete, contracted in midille, and fused with $1 A$ for short distance; veins M and 1 h-c" parallel. Hindwing with crossiein m-cu present. Antema normal. Tarsal claw simple or with small inner tooth. Pyepectus absent. Penis valve rounded or elliptical; dorsal lobe absent: lateral spine present. Larvae with abdominal segments 1 through x each with six dorsal amnulets; body ornamentation consisting of inconspictous wlandubae, branched spines absent.
Dienera Imeduded.-Dlennogeneris, Lyctota.
benson (1966) gave a key to the eight world genera of this tribe.

Gemus BLENNOGENERIS MacGillivray

Bls wheqr ureis Diactilliviay, 1923e, p. 8; Benson, 1938, p. 361; Ross, 1951, p. 62; Malase, 1963, p. 165; Benson, 1966, p. 76.
Type: Bhrmocampa typicella MacGillivray. Monatypic.
L,ictaticlle Ross, 1932b, p. 41; Malaise, 1933, p. 58; Ross, 1937, p. 101; Conde, 1tsht, p. 107 ; Benson, 1938, p. 361 ($=$ Blennogeneris MacGilivray). Tyur: Sithmlria (Hoploccompa) spissipes Cresson. Original designation.
Description.-Antenna filiform, second segment as wide as long, third segment slightly longer or subequal in length to fourth sexment. Clypeus truncate; malar space slightiy narrower than dameter of front ocellus; postgenal carina absent; postorbital yrowe absent. Prepectus absent. Tarsal claw simple or with large hasal lobe (pl. II, 34, 36); in female, hindtarsus is usually short and stocky, not of same proportions as segments of middle tarsus
(pl. II, 34) ; if back and middle tarsal segments are of same proportions, then back tibial spurs are equal to at least one-half length of hindbasitarsus and lobes, of lancet are flat and serrate; back tibial spurs of female equal to one-half or more length of hindbasitarsus (pl. II, 34, 36, 38) ; in male, back tarsal segments are normal. Forewing with vein $2 A$ and $3 A$ complete for entire length, fusea with $1 A$ for short distance (pi . I, 5). Hindwing with crossvein m-c h present, enclosing cell M. Wings hyaline. Servulae of female lancet flat and serrate (pl. VI, 134, 135, 136). Penis valve of male rectangular (pl. IX, 189).

Malaise (1933) criticized Ross for separating Lycaota and Blennogeneris on the basis of sexual and adaptive characters. He was referring to the genitalic characters and reduction of the back tarsal segments. Ross (1937) pointed out that such characters may be necessary when considering the arbitrary nature of genera and, in many groups, the lack of other diagnostic characters. After examination of species in these two genera, it is evident that there are two distinct groups present, each composed of closely related species. Even though a new species is added to Blennogeneris, one not possessing the reduced back tarsal segments, it is easily phaced in this genus by the characters of the lancet and the length of the back tibial spurs. Also, two new species are added to Lyccoota, both of which fall into that group on the basis of the male and female genitalia and the length of the back tibial spurs. In order not to obscure relationships between these species, I believe that Blemogeneris and Lycaota should be maintained as separate genera.

MacGillivray received credit for this genus in a rather casual manner. After describing Blennocampa typicella, he (1923c) stated: "If a new generic name is found necessary, Blennogeneris can be used."

Blemogeneris is known only from North America.
Larra-The larva of only one species, B. spissipes, is known. It is ditficult to distinguish from the larvae of several other Blennocampinae, but it may be separated by those chatacters given in the preceling key.

The close relationship of the larva of spissipes to the larvae of other Blennocampinae is a supporting factor for placing the Lycaotini in the Blennocampinae.

Key to Blennopeneris Species

(Male of only one species, spissipen, is known.)

1. Sheath with distinct scopa, from ahove bubbous at base, narrowing at center, and widening at apex ($p l$. IV, 78), in lateral view, truncate at apex (pl . IV, 76); middle tibial spurs tong, at least one-half length of middle basitarsus (pl. II, 3!) .-..-. --................-spissipes (Cresson)
Sheath with scopa absent or with very narrow one (pl. IV, $73-75$, T! 81), from above uniformy wide throurhout (pl. IV, 81) or only slightly holbous at base ame widenet at apex (pl. IV, 75), in lateral view, bruad! ronulded at apex (pl. It, 7\%) or straitht above and frounded below fol. IV, 79]: midule thatis intars short, less than onehalf length of middle basitarsus (pl. If. :35, 37)
2. Sheath with slight scopa, from above slightly bulbous at base, narrow-
ing at center, and slightly widened at apex (pi. IV, 75), in lateral
view, broadly rounded at apex (ρ. IV, 73); hindbasitarsus longer
than two following segments, usually as long as three following
segments (pl, 11, 36); middre basitarsus subecqual to or longer than
two following sepments...........-.......................oloradensis (Rohwer)
Sheath without scopa, from above uniformly wide throughout (pl. IV,
81), in lateral vicw, straight above ami roumded below (pl. TV, 79) ;
hindbasitarsus shorter than or subecual to two following segments
(pl. In, 38) ; middle basitarsus shorter than two following serments
yittinsi, n. sp.

Deseriptions of Blennozeneris Species

Blennogmeris coloradensis (Rohwer)

Lucaota coloradmesis Rohwer, 1911b, p. 384, D.
Lycaotella colortedensis, Ross. 1932b, p. 42.
Blennogeneris colontedo mis, Ross, 1951, p. 62.
Fumalr.-Average length, 6.2 mm . Antenna black; head black, suffused with brown; clypeus entirely black or with anterior half reddish brown. Thoras with dorsum entirely reddish brown to nearly entirely black with all intermediates; mesoplewron and pectus usually concolorous reddish brown, if pectus is darker, then it blends in with color of mesopleuron without sharp contrast. Leas reddish brown; tarsus black. Abdomen with various amounts of black and reddish brown. Wings hyaline.

Tarsal claw without large basal tooth; back tarsal segments short and stocky, not of same proportions as middle tarsal segments (pl. II, 36) ; hindbasitarsus subequal in length to three following segments (pl . IT, 36) ; middle basitarsus subequal in length or slightly longer than two following segments; back tibial spurs equal to one-half length of hindbasitarsus (pl. II, 36). Sheath with small scopa, less than one-half posterior margin of sheath; in lateral view, broady rounded (pl. IV, 73) ; in dorsal view, slightly bubous at base, narrowing, then slightly expanded at apex (pl. IV, 75). Lancet with serrulae fiat and serrate; apex with dorsal membranous projection (pl. VI, 134).

Male--Cnknown. As Ross (1932b) suggested, the male may be masquerading under spissipes. No series of coloradensis with associated males has been seen.

Holotype.-The type (0) is No. 13839 at the U.S. National Nuseum. The only label reads "Colo."

Distribution.- Washington to Manitoba and south in the Rocky Mountains to Colorado (fig. $1, A$).

North dmerican Records.-Colorado: "Colo." Idaho: Moscow, April 11, 1936, 2560, B. F. Coen. Manitoba: Ninette, May 9, 1958, at margin of beaver pond, J. F. McAlpine. Utah: Logan Canyon, May 16, 1983, T. O. Thatcher. Washington: Fort Lewis, Pierce Co., April 15, 1945, P. H. Arnaud. ${ }^{3}$

Host.-[nknown.
Larat--Unknown.

[^2]

Figure 1.-Distribution of (A) Blennogeneris coloradensis (solid circles), gittinsi (open circle), and (B) spissipes.

Discussion.-This species is easily separated from spissipes by the small scopa and rounded sheath. The back tarsal segments are modified as in spissipes but somewhat less so and more slender.

Blennogeneris gittinsi, new species

Female.-Length, 6.6 mm . Antenna and head black with labrum and anterior two-thirds of clypeus reddish brown. Thorax reddish brown with broad black band separating pectus and mesopleuron. Legs reddish brown; tarsus black. Abdomen dark brown to black with narrow white band on posterior margin of each segment. Wings hyaline.

Antenna with second segment as wide as long; third segment slightly longer than fourth segment (pl. III, 41). Clypeus truncate; malar space slightly less than diameter of front ocellus; postgenal carina absent; postorbital groove absent. Prepectus absent. Tarsal claw simpie; back tarsal segments not reduced, of same proportions as middle tarsal segments (pl. II, 38); middle basitarsus shorter than two following segments; hindbasitarsus shorter or subequal to two following segments (pl. II, 38) ; middle tibial spurs less than one-half length of middle basitarsus (pl. II, 37) ; back tibial spurs equal to one-half length of hindbasitarsus (pl. II, 38). Forewing $2 A$ and $3 A$ complete for entire length, fused with 1 A for only short distance (pl. I, 5). Hindwing with crossvein m-ch present, enclosing cell M. Sheath without scopa; in dorsal view, uniformiy thick throughout (pl. IV, 81); in lateral view, straight above and rounded below (pl. IV, 70). Lancet with serrulac flat and servate; apex without dorsal membranous lobe (pl. VI, 135).
Mate.-Unknown.
Holotype.-Female, 1 mi. N. Cocolalla, Idaho, Bonner County, May 9, 1960, A. R. Gitins, collector. The type has been deposited at the California Academy of Sciences, San Francisco, at the request of A. R. Gittins of the University of Idaho.

Distribution.-Known only from Idaho (fig. 1, A).
Host.-Unknown.
Larta.-Enknown.
Disctusion.-Only the type female is known. This species is very distinct, differing from the other two members of this genus by the lack of reduced back tarsal segments and the lack of a scopa on the sheath. The characters of the lancet place it in this genus.

This species is named after the collector, Arthur R. Gittins, of the U'niversity of Idaho.

Blennogeneris spissipes (Cresson)

Selandriu (Hoplocampa) spissipes Cresson, 1880a, p. 14, \%; Cresson, 1916, p. 9.

Hoplocampa spissipes, Dalla Torre, 1894, p. 191; Weldon, 1907, p. 302.
Macrophya spissipes, Konow, 1505, p. 123; Will, 1932, pp. 43, 44.
Lycaota spissipes, Rohwer, 1911d, p. 147; Rohwer, 1911b, p. 384.
Lycaotclla spissipes, Ross, 1932b, p. 42; Ross, 1937, p. 101.
Blennogeneris spissipes, Benson, 1938, p. 361; Ross, 1951, p. 62.

Selandric (Hoplocampa) lenis Cresson, 1880a, p. 14, 古; Rohwer, 1911b, p. 384
($=$ spissipes Cresson) ; Cresson, 1916, p. 5.
Hoplocampa lenis, Dalla Torre, 1894, p. 189; Weldon, 1907, p. 302.
Zaschisonyst lenis, Konow, 1905, p. 131.
Lycaota spissipes brunneus Rohwer, 1911b, p. 384, و; Ross, 1951, p. 62 ($=$ spissipes Cresson).
Lyctotella spisfipes var. brunneus, Ross, 1932b, p. 44.
Blennocampa fypicella MacGillivray, 1923c, p. 8, 子 ; Frison, 1927, p. 238; Ross, 1951, p. 62 ($=$ spissipes Cresson).
Lycaotella spissipes var. typicella, Ross, 1932b, p. 44.
Blennogeneris typicella, Benson, 1938, p. 361.
Female.-Average length, 6.4 mm . Antenna black; head black, suffused with brown; clypeus usually with anterior half reddish brown. Thorax variable, entirely brownish or entirely black, with all intermediates; mesopleuron brownish, pectus black, the two usually sharply contrasting. Legs reddish brown; tarsus black. Abdomen either entirely black or with various amounts of reddish brown. Wings hyaline.

Tarsal claw with large basal lobe (pl. II, 34) ; back tarsal segments reduced, short and stocky, not of same proportions as midd'e tarsal segments; hindbasitarsus subequal in length to three following segments (pl. II, 34) ; back tibial spurs equal to more than one-half length of hindbasitarsus (pl. II, 34) ; middle tibial spurs equal to more than one-half length of middle basitarsus (pl. II, 33). Sheath with distinct scopa, extending along nearly entire posterior margin of sheath (pl. IV, 77) ; in dorsal view, bulbous at base, narrowing, then distinctly widened at apex (pl. IV, 78) ; in lateral view, short and truncate at apex (pl. IV, 76). Lancet with serrulae flat and servate; large dorsal membranous lobe at apex (pl. VI, 136).

Male.-Average length, 6.3 mm . Coloration as variable as in female. Thorax usually black with tegula and upper angles of pronotum reddish brown; each coxa, trochanter, and tarsus black; each tibia and femur reddish brown. Head and abdomen similar to female.

Structure as for female except for middle and back tarsal segments, which are normal. Back tarsal segments not shortened and of same proportions as middle tarsal segments; middle tibial spurs less than one-half length of middle basitarsus; back tibial spurs less than one-half length of hindbasitarsus. Penis valve rectangular, with dorsoapical spine and finely serrate ventral margin (pl. IX, 189).

Holotypes.-Selandria spissipes Cresson (O) is type No. 362 at the Academy of Natural Sciences of Philadelphia and bears the data "Colo." Selandria lenis Cresson (δ) is type No. 195 at Philadelphia with the same locality data. Lycaota spissipes brunneus Rohwer (\circ) is type No. 13838 at the U.S. National Museum with the data "Montana." Blennocampa typicella MacGillivray (f) is at the Illinois Natural History Survey and bears the data "Corvallis, Oregon, March 14, 1915, Leroy Childs, collector."

Distrihution.-British Columbia to Ontario and south to California and Colorado in the West (fig. 1, B).

Forth American Records.-Alberta: Magrath, May 20, 1938, G. S. Walley; Radmor, May 12, 1931, O. Peck; Edmonton, June 20, 1926, E. H. Strickland, May 14, 1924, G. Salt; Blairmore, June 18, 1962, K. C. Herrman; Elkwater, June 2, 1955, A. R. Brooks, $49^{-} 42^{\prime}, 110^{\prime} 16^{\prime}$, June 2. 1955, 3. R. Vockeroth; Elkwater Lake, June 10, 1956, E. E. Sterns; Norton, $49.52^{\prime}, 110$ '24', May 31, 1955, J. R. Vockeroth; Onefour, 19 6', 110 '24', June 4, 1955 , J. R. Vockeroth. British Columbia: Vernon, April 23, 1939, H. B. Leech; Agassiz, May 30, 1927, em. March 3, 1928, reared, S. racemosa, em. March 15, 1928, ex Slymphoricarpos, H. H. Ross; Victoria, May, 1916, R. C. Treherne; Midday Valley, Merritt, May 15, 1925, Pinus ponderosa, J. Stanley; Chase, May 30, 1910, W. B. Anderson; Orofino Mt., May 25, 1959, R. E. Leech; Trinity Valley, R. Madge; Robson, April 4, $6,11,15,17,19,21$, $22,24,27,1947$, April 8, 9, 10, 23, 1949, April 18, 19, 28, 1950, April 23, 1951, May 24, 1951, April 16, 1952, May 9, 16, 1952 , H. R. Foxlee. Califormia: Berkeley, April 6, 1936, G. E. Bohart. Colorado: "Colo." Ifiaho: Moscow, Viola Grade, April 24, 1935, 3000^{\prime}, W. E. Shewell; Joel, Latah Co., April 22, 26, 1949, W. F. Barr; Julinetta, April 8, 1949, 1083', W. F. Barr; Moscow Mtn., May 5, 1937, C. J. Peterson; Robinson Lake, Latah Co., April 17, 1956, A. R. Gittins; Laird Park, Latah Co., May 11, 1962, R. E. Stocker. Manitoba: Birtle, May 2, 1928, R. D. Dird; Aweme, May 15, 28, 1926, R. D. Bird; Wawanesa, May 25, 1923, R. M. White; Treesbank, May 19, 1925, N. Criddle, April 3, 1925, R. M. White; Brandon, June 17, 1899, J. Fletcher'; 5 mi. S. W. Shilo, May 28, 1958, C. D. F. Milier; Hartney, May 21, 1955 , Brooks and Keiton; Ninette, May 30,1958 , C. D. F. Miller,' May 21,1955 , maple-elm, floodplain commur 'ty, J. F. McAlpine, May 3, 195̄, oak-aspen community along smail stream, J. F. McAlpine. Minnesota: Itasea Park, May 22, 1937, F. R. Dodge. Montana: "Montana." Ontario: Kinburn, May 28, 1956, J. E. H. Martin; Marmora, May 6, 1952, J. C. Mitchell; Ancaster, May 28, 1956, J. E. H. Martin. Oregon: 5 mi. W. Philomath, Benton Co., March 31, 1962, D. R. Smith; Sulphur Springs, Benton Co., April 4, 1963, D. R. Smith; Wakeena Falls, Multnomah Co., April 8, 1964, on thimbleberry, K. Goeden. Saskatchewan: Dundurn, May 16, 1923, K. M. King; Indian Head, June 3, 1929, K. Stewart; Pike Lake, May 9, 10, 12, 14, 1939 , A. R. Brooks; Cypress Hills, May 26, 1955 , J. R. Vockeroth; Scout Lake, $49^{\circ} 20^{\prime}, 106^{\circ}$, June 17, 1955, J. R. Vockeroth; Parkside, May 21, 1961, J. R. Vockeroth; Canora, June 13, 1954, Brooks and Wallis; Katepwa, June 18, 1954, Brooks and Wallis; Val Marie, $49^{\prime} 15^{\prime}, 107^{\prime \prime} 44^{\prime}$, June 9, 1955, J. R. Vockeroth; Maple Creek, May 28, 1955 , J. R. Vockeroth; Oxbow, F. Knab; Saskatoon, May 14, 1924, K. M. Kring, May 12, 1939, May 31, 1951, June 6, 1950,
A. R. Brooks.
Host.-The larva forms a terminal bud gall on Symphoricarpos allus (L.) Blake. Ross (1932b) gave a brief account of its biology from his rearings in British Columbia. In Oregon the adults are one of the first sawflies to appear in the spring and were swept from the host in late March and early April at the time the buds were forming on the host. About 6 weeks later
larvae were easily collected from the galls that they formed. There was always one larva per gall.

Larva.-The larva of this species is described here for the first time.

Late instar entirely light green when alive; ocularium, spiracles, and apex of mandible dark.
Head covered with numerous slender hairs. Clypeus with two setae on each half. Labrum shallowly emarginate; three setae on each side of outer surface; epipharynx with arcuate row of about seven stout spines on each anterolateral margin (pl. XII, 265). Each mandible with one seta on outer lateral margin; left mandible with two ventral teeth, lower one broad and concave, three lateral teeth, outer one broad, and one tooth on mesal ridge (pl. XII, 263) ; right mandible with two sharp ventral teeth, two sharp and one truncate lateral teeth, and three molar teeth (pl. XII, 262). Maxillary palpus four-segmented, one seta on outer margin of second segment; palpifer with three setae; stipes with one seta; lacinia with eight to 10 spines, proximal two or three bifurcate (pl. XII, 266). Labial palpus three-segmented; prementum with three setae on each side.

Thorax with glandubae arranged as in plate XII, 269. Glandubae inconspicuous and o.: same color as body; exact number in each area as pictured not always constant. Thoracic legs normal; femur longer than tibia. Sternum of each thoracic segment with pair of setiferous lobes. Fine hairs present on segments of each thoracic leg.

Abdominal segments 1 through 8 each with six dorsal annulets (tvpical segment shown in pl. XII, 268) ; annulets I, 3, 5, and 6 without glandubae; ammulet 2 with one glanduba on each side above spiracle; annulet 4 with two glandubae on each side; first and second postspiracular lobes each with one glanduba; subspiracular and surpedal lobes each with two glandubae. Ninth abdominal segment with annulation indistinct; glandubae arranged as in plate XII, 267. Tenth abdominal tergum with 20-25 glandubae; numerous setae on suranal and subanal areas (pl. XII, 267).

I have seen several larvae taken from Symphoricarpos at Williams, Ariz. It may be another species of this genus or a species of L l/faota. The larvae fit the above description except for the arrangement of the glandubae on the body. The glandubae on annulets 2 and 4 of abdominal segments 1 through 8 are arranged in two groups with two to four giandubae in each group. Each postspiracular iobe, the subspiracular lobe, and the surpedal lobe all bear one to three glandubae.

Disrussion.-This is the most commonly collected species of the genus. The females are easily distinguished by their modified back tarsal segments, large back tibial spurs, large basal lobe of the tarsal ciaw, and the large and distinct scopa of the sheath. The rectangular shape of the penis valve will separate the males of this species from those of Lycaota. Males of other species of Blemogencris are not known. The distribution is much wider than
previously recorded; it extends from the west coast east to Ontario.

Gemas LCAOTA Konow

Lycaota Konow, 1903a, p. 147; Konow, 1505. p. 101; Rohwer, 1911a, p. 82;
 1033, p. 58; Ross, 1937, p. 101: Conde, 103- p. 107; Benson, 1938, p. 361 ; Ross, 1951, p. 62 : Malaise, $196 i$, p. 164 : Benson, 1966, p. 76. Type: Selatedria sadalis (ressin. Oriminal designation.

Descriphion.-Antenna filiform, second segment as wide as long, third segment slightly longer than fourth segment or subequal to it. Cly peus truncate; malar space slightly more than one-half diameter of front ocellus; postorbital groove absent; postgenal carina absent. Prepectus absent. Tarsal claw appearing simple, but always with minute inner tooth; back tarsal segments shorter than middae tarsal segments, but segments of each are of same proportions (pl. III, 39, 40). Forewing with $2 A$ and $3 A$ complete, fused with 1 A for short distance or approaching $1 A$ and connected to it by very short erossvein (pl. 1, 4,5); hindwing with crossvein m-ch present, enclosing cell \$I. Wings infuscate or hyaline. Female lancet with serrulae rounded and lobelike (pl. VI, 137-139). Penis valre of male rounded (pl. IX, 191, 193).

The relationship of this genus to Blennogeneris has been discussed under the latter. There are now three species of this genus known from North America. Ross (10.32b) treated only one in his revision of the Lycaotinae.

The European species Hoplocampoinles xylostei (Giraud), a close relative of Ll/ecoota, is known to form galls on Lonicera xylost (um L. (Fonthanen, 1948). The habits of the Nearctic species of Lycaota are not known.

Larso-The larva is not known for species of this genus. Maxwell (195\%) described the internal anatomy of a species she called Lycaota sp., probably sodalis (Cresson). It was collected in British Columbia and is probally Blennogeneris spissipes (Cresson).

Key to Lycaota Species

1. Wings darkly infuscate; tarsal claw with very minate and indistinct inner tooth; female with thorax partly rufous......-.-sodulis (Cresson) Wings hyaline or very lightly infuseate; tarsal claw with imner tooth indistinct or moderate; thorax entirely black or black with some white on upper angles of pronotum
2. Sheath with slight scopa (pl. IV, 82, 83); tarsal claw with moderate inner tooth (pl. II, 16) ; upper angles of pronotum light; third antennal segment subequal in length to fourth segment; male unknown Sheath without scopa (pl. IV, 84, 85) ; tarsal claw with bouquetensis, n. sp. distinct inner tooth pronotum blach, thind antenal minute and inlonger than fourth segment in female...................jemefae, n. sp.

Descriptions of Lycaota Speries

Lycaota bouquetensis, new species

Female.-Length, 6.9 mm . Antenna and head black. Thorax black with tegula and upper angles of pronotum reddish brown. Legs black with extreme apex of each femur and basal part of each tibia and its outer surface white. Abdomen black with narrow white band on posterior margin of each segment. Wings hyaline. Body covered with fine white pubescence.

Antenna with second segment as wide as long, third segment subequal in length to fourth segment (pl. III, 45). Clypeus truncate; malar space equal to about one-half diameter of front ocellus; postorbital groove absent; postgenal carina absent. Prepectus absent. Tarsal claw with small inner tooth (pl. II, 16) ; back tarsal segments of same proportions as their respective middle tarsal segments. Forewing with 2.A and $3 A$ present for entire length, fused to 1 A for short distance ($p l .1,5$) ; hindwing with crossvein $m-c u$ present, enclosing cell M. Sheath, in lateral view, slightly truncate at apex (pl. IV, 82), in dorsal view apex slightly widened (pl. IV, 83); posterior margin with slight scopa. Lancet with serrulae rounded and lobelike, each as long or slightly longer than wide (pl. VT, 137).

Male.-('nknown.
Holotype.-Female, Bouquet Cn., Calif., March 15, 1941, J. Wilcox, collector. Deposited in the U.S. National Museum, type No. 69150.

Paratype-California: 2 mi . S. Pine Valley, San Diego Co., April 5, 1966, C. U. O'Brien, Edw. L. Smith Collection (1 ㅇ). Deposited in the collection of Edward L. Smith.

Distribution.-Known only from southern California (fig. 2, A). Host.-L'nkown.
Larra.-Unknown.
Discussion.-This species is very distinct and may be separated from sodalis by the black thorax and hyaline wings and from both of the other species of this genus by the slight scopa of the sheath, small inner tooth of the tarsal claw, and characters of the lancet.

The name of this species is derived from the type locality.

Lycaota janetae, new species

Female.-Length, 6.9 mm . Entirely black. Wings hyaline. Body covered with fine white pubescence.

Antenna with second segment as wide as long, third segment slightly longer than fourth segment (pl. III, 42). Clypeus truncate; malar space slightly less than diameter of front ocelius; postgenal carina absent; postorbital groove absent. Prepectus absent. Tarsal claw with very minute inner tooth; back tarsal segments of same proportions as their respective middle tarsal seg-

Fictre 2.-Distribution of (A) Lycaota janetae (solid circles), bouquetensis (open circles), and (B) soxlalis.
ments. Forewing with $2 A$ and $3 A$ present for entire length, fused to 1A for short distance (pl. I, 5) ; hindwing with crossvein n-cu present, enclosing cell M. Sheath broadly rounded at apex (pI. IV, 84); without scopa; in dorsal view, not widened at apex (pl. IV, 85). Lancet with serrulae rounded and lobelike, each serrula as long as wide (pl. VI, 138).

Male.-Length, 6.7 mm . Color as for female. In structure similar to female except for third antennal segment, which is subequal in length to fourth segment. Penis valve rounded, more oblong than in sodalis (pl. IX, 193); harpe flattened at apex (pl. IX, 192).

Holotype.-Female, Sulphur Springs, Benton Co., Oreg., April 4, 1963, David R. Smith, collector. Deposited in the U.S. National Museum, type No. 69151.

Allotype-Male, 5 mi . W. Philomath, Penton Co., Oreg., March 31, 1962, David R. Smith, collectox. Deposited with the holotype.

Partypes.-Califomia: Felton, St. Cruz Mts., 300-500', May 15-19, 1907, Bradley (10). Oregorl: McDonald Forest, 5 mi. N. Corvallis, April 6, 1958, R. K. Eppley (9) ; Benton Co., Oak Cr. Lab., $\overline{2}$ mi. N. W. Corvallis, March 30, 1963, Noel McFarland (1 p) ; Marion Co., Mehama, April 12, 1962, snowberry, Kenneth Goeden (1%).

Disposition of Paratypes.--Paratypes have been deposited at the U.S. National Museum, Oregon State University, State Department of Agriculture, Salem, Oreg., and Cornell University.

Distribution.-Oregon and California (fig. 2, A).
Host.-Unknown.
Larca.-Unknown.
Diserusion.-This species is distinguished from sodalis by its entirely black color and hyaline wings, as well as genitalic characters. It may be separated from bouquetensis by the tarsal claw, sheath, and characters of the lancet. In Oregon this is one of the earliest spring fliers.

This species is named after Jan Bedea, a student in entomology at Oregon State University.

Lycaota sodalis (Cresson)

Sclandria wodalis Cresson, 1880a, p. 14, 3 ; Dalla Torre, 1894, p. 146; Weldon, 1907, p. 309; Cresson, 1916 , p. 9.
Hoplocempa (?) sodalis, Kirby, 1882, p. 168.
Lycaota sodalis, Konow, 1903a, p. 147; Konow, 1905, p. 102; Rohwer, 1911b, p. 38 ; Ross, 1932U, 1. 42 ; Ross, 1951, p. 62.

Lycanta fusta Rohwer, 1908 b , p. 180 . \ddagger; Rohwer, $1911 \mathrm{~b}, \mathrm{p} .384$ ($=$ sodtelis (resson).

Fomale.-Average length, 6.8 mm . Antenna and head black. Thorax black with prothorax, tegula, mesonotum, and mesopleuron rufous. Legs black. Abdomen black. Wings darkly infuscate.

Antenna with third and fourth segments subequal in length (pl. III, 45). Tarsal claw with minute inner tooth. Forewing with 2 A and 3 A fused to 1 A for short distance or comected to 1 A by very short perpendicular crossvein (pI. I, 4, 5). Sheath broadly rounded at apex (pl. IT, 84) ; scopa absent; in dorsal view, not widened at apex. Lancet with serrulae rounded and Jobelike, ench serrula wider than long and slightly flattened (pl. VI, 139).

Male.-A verage length, 6.6 mm . In color differs from female by being entirely black with outer surface of foretibia whitish. Structure as for female. Penis valve evenly rounded (pl.IX, 191); harpe with apex truncate (pl. IX, 190).

Holotypes.-Sclandria sodulis Cresson (O) is type No. 361 at the Academy of Natural Sciences of Philadelphia and bears the data ""olorado, Morrison." Ly/caota fusca Rohwer (() is type No. 1.3837 at the U.S. National Museum and hears the data "Ft. Collins. Colo., 5-4-99."

Distribution-Washington and British Columbia east to Saskatchevan and south in the Rocky Mountains to Colorado (fig. $2, B$).
. Wrth American Records-Alberta: Lethbridge, May 21, 1938, G. S. Walley. British Columbia: Lumby, Creighton Valley, April

24, 1934, H. B. Leech; Salmon Arm, April 28, 1930, F. B. Leech; Vernon, May 13, 1923, D. G. Gillespie; Robson, April 11, 17, 1947, April 16, 1952, H. R. Foxlee. Colorado: Golden, May 25; Ft. Collins, May 12, 1900. Idaho: Moscow. Viola Grade, April 24, 1935, 3000^{\prime}, W. E. Shull; Julietta; Troy, May 7, 1909, Peck; 10 mi . N. Nez Perce, April 17, 1952, W. F. Barr ; Lewiston, April 21, 1937, 550^{\prime}, R. W. Every; Lewiston Grade, April 22, 1938, E. Ritzheimer; Moscow Mt., Latah Co., April 21, 1954, A. R. Gittins; 5 mi. E. Moscow, April 19, 1957, C. J. Peterson; Moscow, May 6, 1956, 2560^{\prime}, C. J. Peterson; Athol, Kootnai Co., May 9, 1961., W. F. Barr; Dreary, April 18, 22, 1951, 2775', W. F. Barr; Lawyers Canyon, Lewis Co., May 14, 1956, A. R. Gittins; Joel, April 22, 26, 1949, W. F. Barr ; Lenore, April 8, 1948, 1000', W. F. Barr; Woodland, Idaho Co., April 4, 1949, W. F. Barr; Robinson Lake, Latah Co., April 17, 1956, A. R. Gittins. Sashatchewon: Saskatoon, May 14, 1924, K. M. King, May 4, 7, 1939, May 5, 9, 1949, A. R. Brooks. C'tah: Dry Canyon, Logan, May 2, 1943, D. R. Maddock; Brigham, July 14, 1947, R. L. Rigby: Washington: Kamiac Butte, April 18, 1929 ; Pullman, April 12; Olympia.

Host.--Unknown.
Lara.--Unknown.
Discussion.-Both sexes of this species may be separated from the two other members of this genus by the darkly infuscate wings. The female is also easily recognized by its partly rufous thorax. This is the most commonly collected species of this genus and appears to be more widely distributed than the other two species.

Unplaced Name of Lycaotini

Lycaota bruneri Rohwer

Lycuota bruneri Rohwer, 1908a, p. 104, 9.
The type of this species cannot be located. In the description Rohwer gives Colorado as the locality. According to the description, this species would fit the female of Blemnogeneris spissipes (Cresson) ; however, correct placement is impossible unless the type is examined.

Tribe TOMOSTETHINI Benson

Tomostethini Benson, 1938, p. 367; Takeuchi, 1952, p. 42.
Benson (1938) proposed this tribe for the genus Tomostethus.
Takeuchi (1952) also included Eutomostethus and Paracharactus in this tribe, both of which belong in the Phymatocerini.

The presence of a prepectus separated from the mesepisternum by a suture (not a furrow), the slight convergence of veins M
and $1 m$-cu of the forewing, and rein 24 and $3 A$ of the forewing, which has an indication of being complete, are the characters that separate this tribe. The prepectus and larval characters resemble those of the more generalized Phymatocerini, and members of this tribe may be similar to the parent stock that gave rise to that group. The faint indication that $2 A$ and $3 A$ is complete is like this structure in the Lycaotini and may be a transitional step toward the complete loss of part of $2 A$ and $3 A$ evident in other Plennocampinae. Although members of this tribe could be placed in the Phymatocerini, I believe such a step would obscure their distinctiveness and generalized position.

Destription.-Vein $2 A$ and $3 A$ of forewing straight or curved up at apex, with faint indication of being complete; veins M and $1 m-c u$ subparallel, slightly converging. Hindwing with crossvein m-c u present, enclosing cell M. Antenna normal. Tarsal claw simple or with a small inner tooth. Prepectus present, large and triangular, flat, separated from mesepisternum by suture. Penis valve without dorsal lobe or lateral spine. Larvae with abdominal segments 1 through 8 each with six dorsal annulets; body ornamentation consisting of inconspicuous glandubae.

Genera Included.-Tomostcthus, Tethida.

Genus TOMOSTETHLS Konow

Tomostethus Konow, 1886, p. 184, 214: Dalla Torre, 1894, p. 174; Ashmead, 1898a, p. 251; Ashmead, 18986, p. 128; Konow, 1905, p. 82; Rohwer, 1911a, p. 91; Rohwer, 1911c, p. 224; Enslin, 1912, p. 125; Rohwer, 1913, p. 240; Enslin, 1913, p. 167; Enslin, 1914, p. 286 ; MacGillivray, 191G, p. 148; Ross, 1937, p. 95; Benson, 19:38, p. 367; Berland, 1947, p. 246; Ross. 1951, p. 62; Benson, 1952, p. 09; Takeuchi, 1952, p. 45; Lorenz and Kraus, 1957, p. 115.
Type: Tenthecio miarita Fabricius. Hesignated by Rohwer (1911a).
Description.-Antenna short and stout, second segment as wide as long, third segment longer than fourth segment and subequal in length to fourth plus fifth segments (pl. III, 43). Clypeus truncate; malar space linear; postorbital gruove absent; postgenal carina absent. Tarsal claw simple (pl. II, 13); front tibial spur furcate at apex. Prepectus present, large and triangular, not raised above level of mesepisternum and separated from it by suture (pl. II, 29). Forewing with stub of $2 A$ and $3 A$ straight or faintly curved up at apex (pI. I, 1, 6) with indication of being complete; veins M and $1 m$-cu slightly divergent (pl. I, 9). Hindwing with crossvein m-cu present, enclosing cell M.

This genus and Tethida are similar except for the structure of the tarsal claw and reins M and $1 m$-cu of the forewing. The relationship between these two genera is discussed under Tethida.

Only one species is known from North America. The genus consists of about a dozen species, mainly centered in eastern Asia. A common Palaearctic species is nigritus (Fabricius).

Larca.-The larva of multicinctus is known, and it feeds on Fraxinus as does the Palaearctic nigritus.

Description of Tomostethus Species

Tomostethus multicinctus (Rohwer)

Monophadnus mallicinctus Rohwer, 1909a, p. 90, : Sasseer, 1911, p. 107.
Tomostethus multicinctus, Yuasa, 19シ2, p. 93 ; Langford and MeConnell, 1935, p. 208; Ross, 1937, p. 96; Armitare, 1950, p. 183: Ammtage, 1951a, p. 126; Armitage, 1951b, p. 154; Ross, 1951, p. (2, Mačay, 195.3, p. 43; Maxwell, 1955, p. 87; Peterson, 1956, pp. 255, 246; MacNay, 1957, p. 184.

Female-Average length, 7.0 mm . Antenna and head black. Thorax black with tegula white and pronotum reddish brown. Legs black with extreme apex of each femur, each tibia, and each tarsus whitish; hindtibia and tarsus infuscate. Abdomen black with narrow white band on posterior margin of each segment. Fead and body may be suffused with reddish brown, especially in some specimens from the West. Wings hyaline.

Head and body covered with fine white pubescence, less conspicuous on abolomen. Sheath short and broadly rounded (pl. 1V, 88). Lance straight above, rounded below, and wider near apex than at base and center. Lancet lightly sclerotized, semulae flatly roundel with subbasa! teeth distinct (pl. VI, 110).

Male.-Average length, 6.6 mm . Color similar to that of female except for thorax, which is entirely black with tegrla whitish, and abdomen, which has much less conspicuous white nargins on segments. Structure similar to female. Genitalia with penis valve narrow and oblong (pl. IX, 195) ; harpe and jarapenis as in plate $\mathrm{IX}, 19.1$.

Holotype. The type (:) is at the U.S. National Museum, No. $563 \% 7$, and bears the data "Washington, D.C., May 6, N. Banks."

Inistribution- Wastern North America from Massachusetts and North (arolma west to the Dakotas and Texas; California and western Oregon (igg. 3, A).

Vorth Amertican Kerords.-('aliformia: FI Portal, May 14, 1959, R. P. Allen; Green Valley, Solano (To., March 20, 1936. R. M. Bohart; Red Pluff, Tehama Co., March 23, 1951, ex Frommus, Kane and Osburn; Palo Alto, April 26, 1892; Redding, Shasta Co., March 17, 1951, ash, W. A. Kane, March 22, 1951, Kane and Osburn; Anderson, March 22,1951 , on ash; Cazadiro, March 29 , 1934. ('onnecticut: Windsor, May 2 , 1945, June 16, 1951. District of (olumbia: Washington, May $2-5$, N. Banks, May 1 , 1028, ovip. on ash in mall, H. G. Dyar, April 25, 1983, ander ash, Middleton and Yaniline, April 19, 1909 . Illinois: Murdock, 1938, on Fraxinus, em. in lab. May 4, 1938, Mohr; Camargo. reared on ash, C. O. Mohr; (obden, May 7-9, 1918. 3. R. M.; Champaiern, May 5, 1886 , (. M. Weed; Pontiac, April 23, 1941. Mowa: Ames, May 11. 1960, S. M. (aud, May 3, 1950, R. A. A., May 8, 1999, Fjene; Ledges St. Pk., Boone (ro., May 2, 1961, J. L. Keller. Kanstes: Manhattan, May 1, 1949, ash, April 24-27, 1940, ash, J. B. Kring; Riley Co., April 12-19, Popenoe. Massachusetts: Prookline, Tay 12,1925 , Jarya on ash; Melrose, May 19, 1925, larva on ash; Wakefield, May 13, 1925, Fracimus. Missouri: Kansas (ity, April 17-2:3, ash,

Figure 3.-Distribution of (A) Tomostethus multicinctus and (B) Tethida cordigera.

Kring and McNellys. Neur Jersey: Hammonton, May, 1908, on ash, Girth. North Carolina: Raleigh, April 14, 1942, on ash. Ontario: London, em. April 28, 1954, assoc. larvae coll. June 3, 1953, Fraxinus americana, R. E. Sampson; Belleville, May 15, 1956, on white ash, H. C. Coppel. Oregon: Kiger's Island, April 12, 1930, J. Wilcox; Little Squaw Lake, 7 mi. E. Copper, Jackson Co., 3200^{\prime}, R3W, T41S, Sec. 2, May 22, 1964, R. Shoemake. South Dakota: Springfield, May 28, 1954, H. C. Severin. Texas: "Texas" Belfrage, C. V. Riley Collection. Vivginia: Falls Church, April 27. Wisconsin: Madison, June 1941.

Host.-Adults have been reared from larvae feeding on Fraxinus americana L. and F. oregona Nutt.

Larea-Yuasa (1922) included this larva in his key to the Blennocampinae but did not examine any of them. Sasscer (1011) described the larvae in a biological note on this species. The larva is illustrated by Peterson (1956).

In late instar, body entirely light, probably green when alive, with minute glandubae, which are same color as rest of body. Head capsule light brown to yellowish.

Clypeus with two setae on each side. Labrum with two setae on each side; shallow central emargination present; epipharynx with about six spines arranged in arcuate fow on each anterolateral half (pl. XII, 276). Each mandible with one seta on outer lateral surface; left mandible with three sharp ventral teeth and two sharp and one truncate lateral teeth (pl. XII, 275) ; right mandible with two sharp ventral teeth, one sharp and one truncate lateral teeth and two molar teeth (pl. XII, 274). Maxillary palpus four-segmented; second segment with one seta on outer margin; palpifer with two setae; stipes without setae; lacinia with six to eight spines (pl. XII, 277). Labial palpus three-segmented; two setae on each side of prementum.

Glandubae of thorax mostly confined to prothorax, each suprapedal lobe, and first and third annulets of mesothorax and metathorax. Each thoracic sternum with a pair of setiferous tubercles. Thoracic legs normal, femur longer than tibia; inner margin of each coxa and trochanter with coarse setae, appearing to be arranged in two rows.

Abdominal segments 1 through 8 each with six dorsal annulets; annulets $1,3,5$, and 6 without glandubae; annulets 2 and 4 each with two glandubae on each side; first and second postspiracular lobes each with one glanduba; subspiracular lobe and surpedal lobe each with two glandubae (typical segment shown in pl. XII, 279). Ninth segment with glandubae mostly confined to surpedal area (pl. XII, 278). Tenth abdominal tergum usually with about 10 scattered glandubae and scattered hairs; suranal and subanal area with numerous setae (pl. XII, 278).

Discussion.-This species is easily separated by the prepectus, wing venation, simple tarsal claw, and coloration. The approved common name for this species is the brown-headed ash sawfly, and it may be of minor economic importance when present in large numbers. It was believed this species was introduced to the west coast; however, a record from California dated 1892 and one
from Oregon dated 1930 indicate that it has been present on the west coast for some time. The adults are not usually collected and are obtained most commonly by rearing. Sasscer (1911) and Langford and Mcconnell (1935) discussed the habits and biology of this species.

Gemus TETHIDA Ross

Tethida Ross, 193 , p. 96 ; Ross. 1551, p. By.
Type: Tenthredy cordigera Palisot de Beauvois. Original designation.
Descriphon-Antema short and stocky, second segment slightly longer than wide; third segment longer than fourth segment and subequal in length to tourth plus fifth segments (pl. III, 43). Clypeus truncate; postgenal carina absent; postorbital groove absent; malar space equal to one-half diameter of front ocellus. Prepectus present, large and triangular, not raised above level of mesepisternum and separated from it by a suture (pl. II, 29). Tarsal claw with small inner tooth (pl. II. 14) ; front tibial spur furcate at apex. Forewing with stub of $2 A$ and $3 A$ straight or curved up at apex (pl. I, 1, 6) with indication of being complete; veins M and $1 m$-cu slightly divergent (pl. I, 9). Hindwing with crossvein m-ru present, enclosing cell M.

This genus was separated from Tomostethus primarily on the basis of reins M and $1 m$-c u of the forewing being parallel (more parallel than in Tomost thus) and the tarsal claw having a small inner tooth. Other than these differences and several differences in coloration and sheath shape of the female, these genera are remarkably similar, even being found on the same host, Fraxinus. It was decided to leave Tomostethus and Tethida separate, however, since a relatively small portion of the Tomostethini is found in North America and a much wider study will be needed to evaluate their status.

The North American species is the only known member of this genus.

Description of Tethida Species

Tethida cordigera (Palisot de Beauvois)

Tethrelo rurdigtia Palisot de Beauvois, 1809, p. 97, ¢; Lepeletier, 1823, p. 100.

Momophadiun, cordige ru, Kirby, 1882, p. 174; Cameron, 1883, p. 28 (?); Dalla Torre, 1894, p. 161; Konow, 1905 , p. 86.
Tethida cordigera, Ross, 1!37, p. 96 ; Ross. 1951, p. 62.
Tonthrde bardu Harris, 1835, p. 583. . Nomen nudam.
Tenthredo burlus Say, 18:5f. p. 218. ©; LeConte, 1859, p. 678; Kirby, 1882, p. 174 (cordigera Palisot de Beauvois).

Selandria bardus, Norton, 1861, p. 220; Norton, 1864, p. 9; Norton, 1867, p. 247; Provancher, 1878, p. 98; Provancher. 1883, p. 200; Osborne, 1884a, p. 148; Oshmme, 1884h, p. 32; Packard, 1890, p. 544.
Mosuphadhus hatedus, Provancher, 1881), p. 350; Dyar, $1895 b$, p. 308.
Tomosfe thus barthes, Sacseer, 1911, p. 109; MacGilliviay, 1916, p. 148; Yuasa, 1524, p. 93.
Sflundrin duhia (ressm, 18f5, p. 244, ₹; Norton, 1897, p. 248; Provancher, 1878, p. 93: Kirby, 1889, p. 174 (cordigert Palisot de Beauvois); Provancher, 188:3, p. 203; (resson, 1916, p. 4.

Female-Average iength, 7.2 mm . Antenna and head black. Thorax black with tegula, pronotum, mesonotum, and upper half of mesepisternum rufous. Abdomen black. Wings darkly infuscate.

Head and body smooth and shining; prepectus of same texture as mesepisternum. Sheath short, broadly rounded; scopa distinct, (pl. IV, 86, 87). Lancet with serrulae low and rounded, with distinct subbasal teeth (pl. VI, 141).

Male--Average length, 6.8 mm . Color similar to that of female except for thorax, which usually has less rufous coloration. In structure similar to female. Penis valve long and narrow (pl . IX, 197) ; harpe and parapenis as in plate IX, 196.

Holotypes.-The type of S. bardus Say is lost. S. dubia Cresson ($)$) is type No. 191 at the Academy of Natural Sciences of Philadelphia. The type of cordigera has not been located.

Distribution.-Widely distributed in eastern North America from New Brunswick south to Florida and west to Saskatchewan and Texas (fig. 3, B).

Worth Americm Records.-Comnecticut: E. Hartford, June, 1939, H. E. Evans; Storrs, May, 1936, Thompson; New Haven, May 3 and 20,1920, E. H. Waiden. Florida: Gulf Hammock, April 23, $1952, \mathrm{G}$. S. Walley; Torreya St. Pk., April $\angle 9$, 1952, G. S. Walley. Illinois: St. Joseph, May 3, 10, 1914 , May 4, 11, 25, 1913, June 9, 1912, salt fork; Mohamet, May 18, 1913, Sangamon R.; Urbana, April 17, 1915, May 12, 1934, T. H. Frison, May 7, 1933, H. H. Ross, June 13, 1947, on ash tree, L. J. Stannard, May 16, 1909; White Heath, May 9, 1913, April 25, 1915, June 3, 1917, May 18, 1889 ; Algonquin, June 1, 5. 1905, May 20, 21, 1905, W. A. Nason, June 10, 1904, May 29, 1895; Shawneetown, April 23, 1926, Frison and Anden; Muncie, May 4, 1936, Ross and Burks; Dubois, May 23, 1917; Savanna, June 11, 12, 1917; Oakwood, May 8, 1920, T. EI. Frison ; Rock Island, June 8, 1931, H. H. Ross; Toledo, June 23, 1935, C. O. Mohr; E. Dubois, June 1, 1933, Ross and Townsend; Herod, May 24, 1946, Ross and Mohr; Hillsdale, June 5, 1940, Mohr and Burks. Indiana: Turkey Run St. Pk., April 25, 1948, Sanderson and Becker. Iowa: Council Bluffs, June 1924, A. S. Beardsley; Lewis and Clark St. Pk., Monoma Co., June 6, 1960. J. Shaffner; Shenandoah, May 7, 1950, W. S. Craig, June 14, 1022, J. C. Browning; Ames, May 27, 1946, V. S. Hagen, June 8, 1047, July 11, 1947, J. Laffoon; loess bluff by Turin, Monoma Co., June 6, 1960; Esthervilie, May 17, 1949, C. N. Ainslie; Sioux City, south ravine, June 20, 1928, C. N. Ainslie; Sioux City, May 19, 1919. Kansas: Baldwin, May, 1897, J. C. Bridwell; Manhattan, June 1, 1950, J. B. Kring, May 1, 1949 ; Riley Co., April 25, Marlatt, April 29, J. B. Norton, April 21, 24, Popenoe, May; Mission, June 6, 1952. W. R. Evans; Douglas Co., May 21, 1950, N. Massey; Lawrence, April, 1930, L. W. Brown. Louisiana: Opelousas. Maine: Newport, May 28, 1925, Fraximus: Augusta, June, 1939, emgd. April, 1941, ash sprouts, emgd. April 16, 1941 , ash sprouts, May 31, 1946, A. E. Brower; Bar Harbor, June 4, 1936, May 16, 1937, A. E. Brower. Manitoba: Aweme, June 13, 1911, E. Criddle; Treesbank, June 27, 1925, R. M. White; 5 mi. S. W. Shilo, July 7, 1958, R. L. Hurley. Maryland: Bowie, May 20, 1944, H. K. Townes;

Glen Echo; Plummers Island, April 30, 1965, D. R. Smith; 3 mi. S. E. Beitsville, May 5, 15, 30, 1966, D. R. Smith. Massachusetts: Brookline, May 12, 1925, Fraxinvs; Melrose, May 20, 21, 23, 1935, June 1, 1926, Fraxinus; Framingham, May 10, 1936, C. A. Frost; Nantucket Is. Michigan: Ingham Co., June 18, 1948, R. Fischer; Douglas Lake, July 2, 1928, C. H. Kennedy; E. Lansing, June 2, 1937, May 25, 1939, C. Sabrosky; Detroit; Ag. Coll., May 12, 1891; Port Huron, June; Saginaw, May, 1938; Guli Lake Biol. Sta., Kalamazoo Co., June 26, 1956, R. W. Hodges. Mimesotu: Foley, June 19, 1917; St. Anthony Park, May 29, 1911; Itasca Park, June 20, 1937, H. R. Dodge, June 16, 1938, H. E. Milliron; Rice Co., June 21, 1938, D. Murray; Olmstead Co., C. N. Ainslie. Mississippi: Ag. Coll., April 18, 1915, C. C. Greer. Missouri: Kansas City, April 22, 1949, ash, McNollis. Montana: "Mont." Nebraska: Lincoln, May. New: Brunswick: Fredericton, April 12, 1915, F. A. Urquhart. New Hampshire: Rummey, July 1, 1926, Darlington. New York: Hartsdale, June 2, 1938, G. P. Englehard; Ithaca, June 12, 1904, Ellis; Ardsley, Westchester Co., May 20, 26, 1957, June 1, 1957, E. R. Ferguson; Oswego, May 16, 1896 ; Ithaca, June 6, 1935, H. K. Townes. North Carolina: Highlands, May 12, 1957, Wilson Gap, 3100', J. R. Vockeroth. Ontario: Ottawa, July 16, 1954, W. R. M. Mason, June 17, 20, 1954, C. D. Miller; Selkirk, June 10, 1935, adult taken on white spruce; Bells Corners, June 2.4, 1935, F. A. Urquhart; Vineland, June 4, 1922, June 5, 1923, W. G. Garlick; Pelham, June 2, 1923, W. A. Ross; Beamsville, June 8, 1924, W. L. Putnam; Niagara Falls, June 8, 1962, Kelton and Thorpe. Pemnsylvania: Rockville. May 26, 1923; Linglestown, May 11, 1912, W. S. Fisher, May 13, 1919, Champlain; Roxborough, April 30, 1901, C. T. Greene, May 13; Shiremanstown, May 28, 1914, W. S. Fisher, June 6, 1915, Fraximes; Harrisburg, Nay 24, 1912, Champlain; Charter Oak, April 20, 1917, J. N. Knull; Conewago, May 23, 1911. Quebec: Cascapedia R., June 17, 1934 ; Aylmer, June 7, J. N. Knull, May 21, 1923, R. Ozburn; St. Damien, May 31, 1940, host Fraxinus americana, L. Daviault; Gracefield, June 12, 1937, F. A. Urquhart; Montreal, June 11, 1899. Saskatchewan: Pike Lake, May 30, 1949, J. R. Vockeroth. South Dakota: Brookings, June 12, 1891; Canton, June 16, 1924, H. C. Severin. Tennessee: Knoxvilte, April 23, 1919; East Ridge, May 6, 1952, G. S. Walley; Great Smoky Mt. Nat. Pk., Green Bradove, 2000°, April 28,1954, H. and A. Howden. Texas: College Station, April 13, 1932, F. J. Reinhard; Crosby, April 26, 1953, L. O. Beamer; Lincoin, April 23, 1953, R. H. Beamer; Dickinson, June, 1929, F. M. Hull. Virginia: Great Falls, May 1-17, fying, C. T. Greene; Clifton, 1933, J. C. Bridwell; Dixie Landing, May 27, C. L. Marlatt. Wisconsin: Dane Co., May 22, 1911, W. S. Marshall; Madison, May, 1939, April 3. 1945.

Host.-Fraxinus americuna L. and probably other species of ash.
Larta.-Yuasa (1922) included a description of the larva of this species.

In late instar, body light, creamy colored, probably green when alive. Head shining black except for clypeus, which is lighter.

Segments of thoracic legs dark brown. Body with minute glandubae.

Clypeus with two setae on each side. Labrum with two setae on each side; narrow central emargination present; epipharynx with six or seven spines located in arcuate row on each anterolateral half (pl. XII, 272). Each mandible with one seta on outer lateral surface; left mandible with three sharp ventral teeth and two sharp and one truncate teeth (pl. XII, 271) ; right mandible with two large sharp ventral teeth, one sharp and one truncate lateral teeth, and two molar teeth (pl. XII, 270). Maxillary palpus four-segmented; second segment of palpus with one seta; palpifer: with three setae; stipes without setae; lacinia with 10 or 11 spines (pl. XII, 273). Labial palpus three-segmented; two setae on each half of prementum.

Thorax with glandubae arranged approximately as for Tomostethus multiciuctus. Thoracic Iegs with femur longer than tibia; numerous setae on inner margin of each leg.

Abdominal segments 1 through 8 each with six dorsal annulets. Anmulets 1, 3, 5, and 6 without glandubae; second annolet with two glandubae on each side; fourth annulet with three glandubae on each side; first and second postspiracular lobes each with one glanduba; subspiracular lobe with one or two glandubae; surpedal lobe with one glanduba. Lower inner surface of each proleg with several setae. Ninth segment as for multicinctus. Tenth abdominal tergum with two or three indistinct glandubae; numerous hairs on suranal and subanal areas.

The black head and brown thoracic lers will serve to separate this larva from that of Tomostethus muliticinctus.

Discussion.-This is a large and robust species. The rufous thorax will separate both sexes from Tomostethus multicinctus, and the large scopa of the female sheath is a good distinguishing character.

The report of the species from Mexico, Venezuela, and Brazil by Kirby (2882) and Cameron (1883) was undoubtedly a result of confusion with another species. I have seen nothing resembling cordigera from these countries and Palisot de Beauvois stated his specimen was from "Etats-Unis d'Amerique." The date of the description is 1809 (Griffn, 1937), not 1805 as commonly given.

This species has been given the approved common name of the black-headed ash sawfy. Biological notes on this species include those by Osborne (1884a, 1884b) and Packard (1890).

Tribe PHYMATOCERINI Rohwer

Phymatocerinae Rohwer, 1911c, p. 224.
Phymatocerini Benson, 1938, p. 367; Takeuchi, 1952, p. 42.
Rohwer (1911c) separated the Phymatocerinae by the presence of the prepectus. The prepectus has been found to be a variable character, especially in Paracharactus, and even within the species P. rudis (Norton), where it is either present or absent. Benson (1938) and 「akeuchi (1952) both considered this group as a tribe.

In this bulletin some genera have been included and some excluded from their interpretation.

Characters of the larva, male genitalia, and tarsal claw are the most constant for this tribe. The ornamentation of the larva consists of inconspicuous glandubae or dark tubercles (spines such as those present in the Blennocampini are laching), and the abdominal segments are always six-annulate. The penis valve of the male genitalia always lacks any type of lateral armature, and the tarsal claw always lacks a basal lobe. The prepectus and vein $2 A$ and $3 A$ of the forewing are variable. Those genera, considered as the most generalized members of this tribe, possess a prepectus and have vein $2 A$ and $3 A$ furcate at its apex, whereas the more specialized genera lack a prepectus and have vein $2 A$ and $3 A$ curved up or straight. Paracharactus appears to be a transitory genus in which these two characters vary.

The known hosts for members of this tribe include monocotyledonous plants, such as grasses, sedges, and members of the Liliaceae, and also dicotyledonous plants, such as Ranunculus and Sambucus.

Description.-Vein 2A and 3 A of forewing furcate, curved up, or straight at apex; veins M and $1 m$-cer parallel. Hindwing with crossvein m-clu present or absent, usually present. Prepectus absent or present as raised shoulder, separated from mesepisternum by furrow. Penis valve rounded, elliptical, or rectangular, without dorsal lobe or lateral spine. Larvae with abdominal segments 1 through 8 each with six dorsal annulets; body ornamentation consisting of inconspicuous glandubae or dark tubercles, lacking branched spines.
Genera Included.-Phymatocera, Paracharactus, Rhadinoceraea, Lagonis, Monophadmus, Stethomostus, and Eutomostethus.

Genus PHYMATOCERA Dahlbom

Tenthredo subgenus Phymatocera Dahbom, 1835, p. 11; Hartig, 1837, p. 276 ; Norton, 1867 , p. 252.
Phymatoccra Dahlbom, Konow, 1886, p. 184, 212; Cresson, 1887, p. 162: Dalla Torre, 1894, p. 176; Konow, 190̄̄, p. 82; Rohwer, 1911e, p. 224; Enslin, 1914, p. 285; Rohwer, 1916, p. 107; MacGilhvary, 1916, p. 150; Ross, 2937 , p. 100; Benson, 1938, p. 967; Ross, 1951, p. 64; Renson, 195.2, p. 100; Takeuchi, 1952, p. 44; Lorenz and Kraus, 195̄, p. 117; Burks, 1958, p. 15; Togashi, 1058, p. 161 .
Type: Tenthredo (Allanhus) aterrima Klug. Monotypic.
Pectinia Brulle, 1846, p. 664; Dalla Torre, 1894, p. $177(=$ Phynatocera Dahllom).
Type: Tenthrcho (Allentus) aterrima Klue. Original designation.
Melanosclondria Ashmead. in Smith. J. E., 1900, b. 606 ; Ross, 1937, p. 100 ($=$ Phymatocer(e Dahilom). Xumen utadam.
Hypargyricus MacGillivay, 1408a, p. D90; MacGillivay. 1916, p. 144; Malaise, 193.3, p. 59 ; Ross, 1937, p. 100 (Phymatocem Dahlbom).

Type: Hypargyrioks infuscatus MacGilivas. Original designation.
Mclandselandria Mac(illivas, 1909, p. 404 i Hyparmyrichs MacGillivay); Burks, 1958, p. 15 (Phymatace (ox Dahbom).
Type: Mf lunosclobdriu zohishici Mac(iblivray: Monotyic.
Description.-Antema filiform (pl. III, 45) or subserrate with segments distinetly expanded at their apices (pl. III, 46) ; second
serment as wide as long; third and fourth segments subequal in length or fourth segment slightly longer than third segment. Clypeus truncate; malar space slightly narrower than diameter of front ocellus; postorbital groove indistinct, or, in Palaearctic species, distinct and ending in pit halfway down eye; postgenal carina absent. Prepectus present as raised shoulder, separated from mesepisternum by furrow. Tarsal claw with inner tooth long and nearly subequal to outer tooth in length and outer tooth sharply bent over at apex (pl. II, 15), or inner tooth small and outer tooth not long or sharply bent over at apex (pl. II, 16). Wings moderately to darkly infuscate. Forewing with stub of 2 A and 3A furcate at apex (pl. I, 7); hindwing with crossvein m-r" presunt, enclosing cell M. Basal plates normal, separated medially with onis small membranous area present ($\mathrm{pl} .11,2 \cdot 5$).

This genus is very close to Parachuructus, especially in the West where the two genera may be confused. The western species of Paracharactus, montivagus, varies in the structure of vein $2 A$ and 34 of the forewing, the postgenal carina, the inner tooth of the tarsal claw, and in the infuscation of the wings. This ratiation results in an overbpping of the generic characters; consequently, genitalic examimation is necessary for generic determination in many cases. Such an intergradation of the two grouns may be enough evidence to consider them as the same genus; hovever, in my estimation ther are distinct enourh to be regarded separately. The lack of intergradation in the other two species of Parachuractus, their characteristic genitalic structure. their host. and their diffrent larval forms are all supporting factors for regarding these two groups as separate genera.

Within the genus Phymatorrot, there are three groups bresent. These gromps may be delineated as follows: (1) The Palaearetic species with a deep postorbital growe ending in a pit hallway down the ere; tarsal claw with a long outer tooth, sharphy hent over at its apex, and with imner thoth nearly subequal in length to the outer tooth; and in the male, numerous, long crect hairs on the intenal. (2) The Nearetic species, all of which lack a postorbital growe and pit; have similar tarsal claws as those in group 1; and, in the male, lack the conspicuous erect hairs on the antenna. (3) The Nearctic species similar to group 2 but having a tarsal chaw with the outer tooth short. not sharply bent oyer, and with inner troth small. Although these characters are faime evident, the species included in all of them fall into one distinct group on the basis of the characters in the generic description of Phymatocera, the known host plants, and the larval similarity. The characters mentioned in separating these three groups serve best by helping in species determination.

There are few reliable external characters for separating the species of this genus. The species are based almost entirely on the structure of the female lancet, but no reliable genitalic characters could be found for separation of the males. The only useful external character is the relative length of the antema and its segments, which are useful in combination with the lancet for separation of two of the species. In other species the antenna
varies, especially in the degree of serration. This variation is most evident in the transcontinental forms.

The narrow ecological zone that members of this genus occupy may help to explain the confusing assemblage of forms that are available for study. The host, false Solomons-seal (Smilacina), is usually found in rather isolated areas, especially in the prairie regions and in the West, the very regions where the most variation is apparent. The aduits of Phymutocera seem to be very weak and clumsy fiers and probably do not stray far from their home grounds except by some means of passive dispersal. Combining these two factors with past geologic phenomena, there now exist numerous isolated populations that have tended to evolve in their own direction and thus lead to the many slightly different populations across the continent. In the East, where the vegetation is rather uniform, much less variation is evident in the species present.

Five Nearctic species are included in this genus, three are transcontinental and two are confined to the East. The discussions at the end of each will explain their characteristics and variability. Long series of specimens from various parts of the continent and considerably more biological information will be needed to determine the validity of the species treated here.

There is one European species, P. aterrmat (Klug), and one Japanese species, P. nipponica Togashi, in this genus. Chapman (1915, 1917) discussed the biology of aterrimu. This renus is closely related to Phymatoceropsis Rohwer of Japan, but Phymatoceropsis is distinguished by the basal plates, which are broadly and deeply emarginate.

Larca. -Yuasa (1922) treated two species of Iarvae from North America, which he called H. fumipennis (Norton) and Hypargyrichs, sp. 1. These andoubtedly correspond to the two in the key to larvae (p. dis). The two forms are not associated with any adults. They are associated with the genus only by the host plant and their similarity to the description of Phymatocera by Lorenz and Kiaus (19:57). I am calling the two forms "species 1 " and "species 2." Species 1 may well be P. smilacinae, racemosae, or jumiuemnis since it was taken in Rhode Island. Species 2 from Indiana may be any one of the five species. However, since its larva differs so radically from the larvae of the other species, it may be P. racemoste, similata, or offensa.

The following description gives characters that both species have in common. The key to the two forms follows.

In late instar, head with very few scattered hairs. Clypeus with two setae on each half. Labrum cleft for about one-third its medial length; two setae on each side of outer half; epipharynx with six to nine spines located in arcuate row on each anterolateral half (pl. XIII, 282). Each mandible with one seta on outer lateral surface; feft mandible with one large and several indistinct ventral teeth and three sharp and one truncate lateral teeth (pl. XIII, 281); right mandible with two large sharp veatral teeth, three molar teeth, and one truncate lateral tooth (pI. XilI, D80). Maxillary palpus four-segmented; one seta on outer surface of second
segment; palpifer with three setae; lacinia with about 10 simple spines, which may be arranged in three groups (pl. XIII, 283). Labial palpus three-segmented; prementum with three setae on each side.

Body covered with small or large, dark, conical tubercles. Spiracles lightly winged. Thorax with tubercles arranged as in plate XIII, 286. Thoracic legs normal; femur longer than tibia (pl. XIII, 286) ; setae on inner surface of each coxa and trochanter.

Abdominal segments 1 through 8 with six dorsal annulets. Annulets 1, 3, 5, and 6 without tubercles; annulets 2 and 4 each with two tubercles on each side; first and second postspiracular lobes, subspiracular lobe, and surpedal lobe each with one tubercle (pl. XIII, 285). Ninth and 10th abdominal segments as in plate XIII, 284; 10th tergum usually with four tubercles; hairs numerous on suranal and subanal areas.

Keys to Phymatocera Species

ADULTS

Male 7
2. Tarsal claw with outer tooth small, not sharply bent over, and inner tooth small (pl. II, 16); usually smaller species with wings moderately infuscate
Tarsal elaw with outer toath large, sharply bent over, and inner tooth long, nearly subequal in length to outer tooth (pl. II, 15); usually larger species with wings darkly infuscate
3. Lancet with serrulae low, close together, evenly rounded, and more than 20 in number; hairs of lancet long, leaving no or only short area of segments without hairs (pl. VIT, 145, 146); antemna filiform with segments only slightly expanded at apices or subserrate with segments distinctly expanded at apices and laterally fattened (pi. III, 46, 47); head either entirely biack, or black with clypeus, supraclypeal area, and first two antennal segments yellowish, with all

Lancet with servula deeper, farther apart, asymmetrical and less than 20 in number; hairs of lancet confined to narrow band separating each segment (pl. VII, 143, 144); antenna filiform and long or short and stocky with subserrate appearance (pl. III, 44, 45) ; head always entirely black
4. Antenna short and stocky, its length equal to about twice width of head with segments 2 to $2^{1} \frac{1}{2}$ times longer than wide and distinctly expanded at apices giving antenna subserrate appearance (pl. III, 44); lancet wtih segmental hairs sparse (pl. VII, 143)

P. offensa (MacGillivray)

Antenna longer and filiform, its length equal to more than twice width of head with segments three times or more as long as wide and only slightly or not at all expanded at apices (pl. III, 45) ; lancet with segmental hairs numerous (pi. VII, 144) _-_-P. similata (MacGilivray)
5. Lancet with serrulae flat and serrate (pl. VI, 142); antenna with segments only slightly expanded at apices (pl. III, 47); head always entirely black \qquad -P. fumipennis (Norton)
Lancet with servolae rounded (pl. ViI, 146, 147); anterna with segments slightly or distinctly expanded at apices, if distinctly so, then laterally flattened (pl. III, 4G, 47) ; head entirely black or black with clypeus, supraclypeal area, and first two antennal segments yellowish, with all combinations.
6. Eancet with serrulae low, evenly rounded, and close together (pl. VII, 145, 146) ; antenna with segments only slightly expanded at apices or distinctly expanded giving antenna subserrate appearance and laterally flattened (pl. III, 46, 47); head either entirely black or black with clypeus, supraclypeal area, and first two antennal segments yellowish, with all combinations.....................eemosae, n. sp. (pt)
Lancet with serrulae deeper, farther apart, and asymmetrica! (pl. VII, 147) : antenna filiform, with segments only slightly expanded at apices (pl. III, 47); head always entirely black_-_-. P. smilacinae, n. sp.
7. Tarsal claw with outer tooth small, not sharply bent over, and inner tooth small (pl. II, 16); usually smaller species with wings moderately infuscate.

$$
\begin{aligned}
& \text { Tarsal elaw with outer tooth large, sharply bent over, and inner tooth } \\
& \text { long, nearly subequal in length to outer tooth (pl. II, 15); usually } \\
& \text { larger species with wings darkly infuscate. }
\end{aligned}
$$

 Clypeus black-......P. racfmosaf, n. sp. (pt.), P. offensa (MacGilivray), P. similata (MacGillivray)

Clypeus black_.......... P. racfmosat, n. sp. (pt.), P. fumipennis (Norton), P. smilacinae, n. sp.

LARYAE

1. Head black with occipital area, area around antennaria, part of frons, and clypeus light; legs black; tubercies large, black; some specimens with broken lateral line on each side; on Smilacina, from Rhode Island Species 1
Head brownish yellow; legs concolorous with body; tubercles smaller but distinct, brown; lateral dark line absent; on Smilacina racemosa, from Gary, Ind Species 2

Descriptions of Phymatocera Species

Phymatocera fumipennis (Norton)

Selandria fumipenuis Norton, 1861, p, 292, \therefore, 9 ; Norton, 1867, p. 252; Provancher, 1878 , p. 09 ; Provancher, 1883, p. 201.
Phymafocera fumipeunis, Provancher, 1888, p. 350; Dalla Torre, 1894, p. 178; Ross, 1951, p. 64.
Rhadimocrace fumipcmmis. Konow, 1905. p. 81.
Hypargyricts fumipennis, Rohwer, 1915, p. 198; MacGillivray, 1016, p. 145; Y゙uasa, 192e, p. 95 (?).

Female.-Average length, 8.5 mm . Entirely black. Wings darkly infuscate.

Antenna with segments only slightly expanded at apices, third and fourth segments subequal in length (pl. III, 47). Tarsal claw with outer tooth long and sharply bent over; inner tooth long and nearly subequal to outer tooth in length (pl. II, 15). Sheath straight above, rounded below (pl. IV, 89). Lancet with serrulae flat and serrate with about six anterior subbasal teeth and about 10 posterior subbasal teeth (pl. VI, 142).

Male-Average length, 7.5 mm . Color as for female. Structure as for female except for antenna, which has segment 4 slightly longer than segment 3. Genitalia as in plate IX, 198, 199.

Holotype.-S. flumipemmis Norton (9) is type No. 14001 at the Nuseum of Comparative Zoology. It bears the labels "Type 14001 " and "Sclamdria fumipenmis N., Ct. F." In the original description Norton did not designate a type. He simply stated "Six speci-
mens." At the Museum of Comparative Zoology this type label had been put on one of the specimens, which Norton probably examined. This specimen fits Norton's description and fits the traditional concept of this species; therefore, the specimen bearing these labels is here designated as the lectotrpe.

Distrihation.-Wastern North America from Wisconsin to New Finglated south to Missouri and Alabama (fig. 4, A).

Vorth American Kofords.-Alahmo: Pyziton, Clay Co., H. H. Smilh. ('onncricht: Lxme. July 2,1918 . June 2A, 1918, (ᄃ. T. Greetue. Mllinos: Palos Park, June 17, 1906, W. J. Gerhard; Algron(1uin, Junc 10, 1895, June 13, 1895, Julv 2, 1897 ; Oregon, June 20, 1917; Oakwood, June 15, 20, 19\%3. H. H. Ross; Antioch, June 5, 1619, T. JJ. Fisison, July 9, 1932, Frison et ad. Indiana: Mineral Springs, June 25, $1916, S$ Spooner. Maryland: Jlummers Island, June 2j, 1917, G. M. Greene, June 2x, 1905, H. S. Barber, June 28, 1905 , ङ. A. Schwaz, June 29, 1911, S. A. Rohwer. June 25 , 1959, K. V. Krombein, July, 1907, W. Palmer; Takoma Park, July ($;$ 1911, H. K. Townes; Cabin John, June, 1917, R. M. Fouts; Cilen Echo; Travilah; College Park, August 17, 1014. Massachusetts: Salugus, July 21, 1924, Solomons-seal. Missouri: "Mo.,"C.V.
 June 13; Somerville, July 18, 1921; Ramsey, June 18, 1916. New Fork: Ithaca, June 1, 193 -, W: Middlekauft, July 13, 1918; Flatbush, Jume 5, 1897, May 27, 1896, J. L. Zabriske; Lott Wood, Flathush, L.J., July 11, 1891 , July 6, 1891; Hartsdale, May 26 , I!3G, on false Solomons-sea!, G. \dot{P}. Engelhardt; Prospect Park, J. L., June 2, 1918 , G. P. Engelhardt. Forth (avolina: Valley of Jlack Dits., June 2d-30, 1906, W. Beutenmuller; Canton, June, 1910, F. Sherman. ohio: CIifton, June 23, D. J. \& J. N. Knulf; Destware (o., August I, 3, 19-19, July 2, D. J. \& J. N. Knull ; Put-in-Dar, S. Jass 1st, July 1-10, 192-1, July 1120 , C. If. Kennedy, Junt 22. 1927, R. (. Osburn, July 14, 1928. Ontario: Vineland Stal, Jume 29, 192s, W. Putnam; Vineland, June 1617,1929 , W. L. Putham; "iarara Glen, July 1, 1926, (., S. Walley; Leamington, June 11, 1929, L. J. Milne; Point Pelee, June 45, 1961, Kelton and 13-umpton; Blatek Rapids, Ottawa, July 28,1959 , J. R. Vockeroth. Po mushluwia: Inglenook, May 30, 1912, Champlain, May 20, 1912, June 14, 1913, W. S. Fisher, July 14, 1910, P. R. Myers; (Ilenside, July 5,1909 ; Roxborough, June 28, 1908, C. T. Greene, June 3; Mt. Holly Springs, July 28,1918, R. M. Fouts; Charter Oak, August 1, 1916. L. Stannard; Rockville, August 14, 1910 , P. R. Jrers; Linglestown, June 26, 1917, W. S. Fisher; Lemont, August 1, 1946 , S. W. Frost; The Rock, June 24, 1945, S. W. Frost. Qmher: Ste. Annes, Jume 12, 1954, G. A. Moore; Cat) Rouge, July 8, 197, July 7, 1953, R. Lambert; Montiort, July 10, 1916; Kingsmere. June 12, 1953, R. Lambert; Montreal, June 21, 1923, June J.1, 11 , $18,29,1924$, June 21,1025, June 7, 1930, J. W. Buckle, June 4,1031 , A. F. Wian. Firginia: Great Jalls, June 27,1913 , S. A. Rohwer; Black Pond, Fairfax (oo, Ausust 4, 1922, R. A. ('ushman; (ilencarlon, June 1, 1919, W. L. McAtee IFest lirgina: ‘'owam, July, 19:3. H'isconsin: Matison, June 26, 1929, C, L. Flake, June 2e, $1!129$, M. H. Doner; Dane ('o., July 12, 191\%, N. S.
3

Marshall ; Milwaukee, W. H. Ashmead; Cloverleaf Lakes, Shawano Co., June 29, 1935, sweeping.

Host.-Adults have been collected from false Solomons-seal (Smilacina).
Larva.-The larva has not been associated by rearing, but it may be the one described as species 1.

Discussion.-This species is characterized by the large tarsal claw and the flat serrulae of the female lancet. It is most closely related to smilacinae and racemosae and is differentiated from these by the lancet. The characters of this species are relatively constant.

An interesting relationship exists between this species and smilucinue. All the collection records for fumipennis are from the last of May into August and the records for smilacinae are from April to the first of June. Specimens of each species have been collected at the same locality, but usually with about 3 months between the collection dates. Possibly these may be seasonal forms of the same species since they each occur at different times of the year and the lancet character is the only character that separates these forms. However, this possibility can be substantiated by rearings only, and it seems best to distinguish between these forms since there is a constant character separating them.

Phymatocera offensa (MacGillivray), new combination
Parterharactus offensus MacGillivray, 1923e, p. 28, of Frison, 1927, p. 255; Ross, 1951 , p. fif (Phymatoccra rusculh (Ancillivray)).
Female.-Average length, 6.2 mm . Entirely black with labrum, extreme apex of forefemur, and outer surface of foretibia whitish. Wings moderately infuscate.

Antenna short and stocky, length approximately equal to twice width of head; segments 3 and 4 subequal in length; segments beyond second never more than 25 , times longer than greatest width; segments each distinctly expanded at apices, giving antenna subserrate appearance (pl. III, 44). Tarsal claw with outer tooth small, not sharply bent over, and with inner tooth small (pl. II, 16). Sheath straight above, rounded below (pl. IV, 91). Lancet with serrulae rounded, asymmetrical, less than 20 in number; segmental setae sparse (pl. VII, 143).

Male.-Average length, 5.8 mm . Color as for female. Structure as for female except antenna, which is usually much longer in relation to width of head, laterally flattened, and with fourth segment longer than third segment. Genitalia as in plate IX, 200 and 201.

Holotype. -The type (O) is located at the Illinois Natural Fistory Survey and bears the daiia "Rock Creek, Oregon, III 19."

Distribution.-British Columbia to Quebec and Maine with southern extensions into the California Sierras, Rocky Mountains of Colorado, and IMinois (fig. 4, B).

Worth Americon Records.-Alberta: Gull Lake, June 14, 1929, E. R. Strickland; Waterton N. P., trail to Rowe Lk., $55-6500^{\prime}$, June 17, 1961, H. E. Milliron. British Columbia: E. entrance

Manning Pk., May 31, 1959, R. Madge; Saanich, April 28, 1930, W. H. Preece; Agassiz, May 8, 1927, H. H. Ross. California: Alta Meadows, Sequoia N. P., July 19, 1902, 9000^{\prime}, J. C. Bradley; Donner Pass, Nevada Co., June 18, 1940, M. Cazier and T. Aitken; Markleeville, Alpine Co., May 6, 1959, from grass, F. L. Elanc. Colorado: Westcliff, W. H. Ashmead; "Colorado," Cockerell. Idaho: Cub River, May 27, 1950, E. H. Kardos; Lolo Pass, Clearwater Co., June 14, 1963, W. F. Barr. Illinois: Amboy, em. April 6, 1946, ex Smilacina racemosa. Maine: Augusta, May 22, 1965, A. E. Brower; Penobscot Co., 3 mi . N. Passadumkeag, May 26 , 1966, D. R. Smith. Manitoha: Aweme, May 27, 1925, R. D. Bird. Ontario: Marmora, May 20, 1952, R. Lambert. Oregon: Mare's Egg Spring, Klamath Co., May 30, 1962, J. Schuh; Kelsey Valley, Douglas (co., June 26, 1962, J. D. Vertrees; Big Meadows, N. Santiam Pass, June 5, 1954, V. D. Roth; McMinnville, April 27, 1934-1935, McNab; Boyer, April 27, 1934. Quebec: Nominigue, June 4, 1941, O. Peck; Mt. Albert, 3500^{\prime}, June 10, 1954, June 19 , 1954, W. J. Brown; Mistassini Post, June 11, 1956, June 13, 1956, J. R. Lonsway. Suskatchewan: Regina, May 29, 1943, P. Larkin; Pike Lake, May 14, 1939, A. R. Brooks. C'tah: Alta, Salt Lake Co., June 24, 1958, W. J. and J. W. Gertsch; Logan, April 24, 1949, R. W. McAdams.

Host.-Adults of this species have been reared from larvae on false Solomons-seal (Smilacina racemosa (L.) Desf.) from Amboy, Ill.

Larva.-No larvae were kept from the above rearings. The larva may be similar to that described as species 2 .

Discussion.-This species is most closely related to similata, but it may be separated by the shorter, stouter, subserrate antenna and the sparse segmental hairs of the lancet. Males with the shorter antenna may also belong here; however, the antennae of the males are extremely variable and cannot be relied on for determination. No constant characters could be found to separate the males of this species.

This species is transcontinental as is similata. but the records are most cornmon in the more northern latitudes and higher mountain chains extending to the south. There is a slight variation in the antenna, which seems to be somewhat more slender in the western specimens and shorter and more distinctly serrate in the Midwest and East. The female lancet does not differ noticeably, but it shows slight variation in the shape of the serrulae both between and within populations.

Phymatocera racemosae, new species

Fomale-Length, 8.5 mm . Antenna and head entirely black, or black with labrum, elypeus, supraclypeal area, and first two antennal segments yellowish or only clypeus yellowish. Legs black with light areas on outer surface of front tibia. Thorax and abdomen black. Wings darkly infuscate.

Antenna filiform with segments only slightly expanded at apices or subserrate with segments distinctly expanded at apices and
laterally flattened; third segment subequal in length to fourth segment (pl. III, 46, 47). Clypeus truncate; malar space narrower than diameter of front ocellus; postgenal carina absent; postorbital groove indistinct. Prepectus present as raised shoulder, separated from mesepisternum by furrow. Tarsal claw with outer tooth large and sharply bent over and with inner tooth long and nearly subequal to outer tooth in length (pl. IF, 15). Forewing with stub of $2 A$ and $3 A$ furcate at apex. Hindwing with crossvein m-ct present, enclosing cell M. Sheath strairht above, rounded below (pl . IV, 89). Lancet with serrulae low, rounded, close together, symmetrical, and more than 20 in number; segmental hairs long and dense (pl. VII, 145, 146).

Male.-Length, 7.7 mm . Color similar to that of female. Structure similar to that oi female except antenna, which has fourth segrment slightly longer than third segment. Genitalia as in plate LX, 198 and 199.

Holotype--Female, Rockville, Pa., July 14, 1910, P. R. Myers. Deposited in the U.S. National Museum, type No. 69152.

Allorype.-Male, same data as holotype. Deposited with the holotype.
Praraypes.-Dritish Columbia: Robson, May 16, 1947, H. R. Foxlee (2 $₹ 7$), June 3, 1949, H. R. Foxlee ($1:$), April 24,1947 , H. R. Foxlee (2: :), June 8 10, 1950, H. R. Foxlee ($1:$), May 15,1948 , H. R. Foxlee (1 f). ('onnecticut: Lyme, June 13, 1918, Hying, W. S. Fisher (1.7); New Haven, July 28, 1911, A. B. Champlain (1 p). Illnois: Kickapoo S. P., July 31, 1947, sawing slit.; in upper side of leaf, true Solomons-seal, Sanderson and Stannard ($4 ;$), Maryland: Ft. Meade, July' 21,1962 , R. E. Rice (1 F). Ner Jerspy: Greenwood Lakes, August 16, 1920 , J. Bequatert (1)). New Fork: Huntington, L.I., July 31, 1938 , Blanton and Borders (1 o); Farmingdale, L.I., July 30, 1938, Blanton and Borders (1 ?) ; Flatbush, July 6, 1897, J. L. Zabriskie (1 i) ; Niagara Falls, June 2, 1901 (1 \%). North Carolina: Yalley of Black Mts., July 7, 1906, W. Beutenmuller ($1 \circ$); "N. (\because ". (1 $\hat{7}$). Ohio:' Sandusky, Cectar Point (3 of \circ), June 21 , 1894 (1). Pemsyluania: Lehigh Gap, August 2, 1902, G. M. Greene ($1:$). Quebec: Montreal, June 18, 1924, J. W. Buckle (3 , 7), June 26, 1925, J. W. Buckie (1 o) , June 21, 1925, J. W'. I uckle (1), June 27, 1929, J. W. Buckle (2 q 7) , June 21, 1930 , J. W. Buckle (1), July 1, 1930, J. W. Buckle (1 o) ; Lakeside, June 26, 1931, J. W. Buckle (1 q) ; Levis, Rev. T. W. Fyles (1 of). Tiginia: Great Falls, June 27, N. Banks (1Q). Wanhington: Electron, June 28, 1933, J. Wilcox (1 \%). Wisconsin: Dane Co., April 8, 1947 (1 우).

Other Kecords.-British Columbia: Kleanza Creek, 14 mi . E. Terrace, June 29, 1960 J. G. Chillcott; Terrace, June 23,1964 , hemlock, F. I. S. Michigun: East Lansing, June 8. 1943, \because Sabrosky. Ohio: Put-in-Bay, Green Isi., June 20-30, 192-, (\because H. Kennedy, July 1926. Ontario: Pt. Pelee, June 27, 1927, F. P. Ide. June 17, 18, 1927, F. P. Ide.

Disposition of Paratypes.-Paratypes have been deposited at the I'S. National Museum, Canadian National Collection, Illinois

Natural History Survey，University of Wisconsin，American Museum of Natural History，Ohio State University，Lyman Entomological Museum，Pennsylvania State University，Museum of Comparative Zoology，Harvard University，University of Cali－ fornia at Davis，and Oregon State University．

Distribution．－British Columbia and Washington in the West and Wisconsin to Quebec south to North Carolina in the East （fig．5）．
Host．－Adults were captured in［llinois sawing slits in true Solomons－seal（Polygonatum）．

Lared．－Unknown．The larra may be that described as species 1.
Iiscossion．－The lancet is the most constant character for this species．The antenna，tarsal claw，and coloration wary from one part of its geographical range to the other．Those specimens from the East，primarily from Wisconsin to New York and sonth，have distinctly subserrate antemae，large tarsal claws，and a yellow clypeus，sumpaclypeal area，and first two antennal serments．Many of those specimens from Quebec have the serments of the antenna less：expanded at their apices，slighty smaller tarsal claws，and usually only the clypeus is yellow，though it may also be black． In those specimens from the West．the antenna is nearly filiform． the tarsal claw has the outer and imner teeth smaller，and the head is nearly always black．Since such a gradation of characters was apparent，coupled with the constant structure of the lancet， all these forms have been grouped into one species．Those speci－ mens from the West and the northern section of the East show characters of uroup 3 of Phamatorera．Most of the specimens from the East show characters of group？

The name is derived from the probable host plant Smilacina rarturosa（L．）T）ese．

Phumutoceru similatu（MacGillivras），new combination
 P．144；Frison，1927，p．259，Ross， 1051 ，p． 64 （－fumipomis Norton）．
 p．144：Frivon，1997，p．249；Ross，1951，p． 64 （ fumipennis Norton）． Vew－v uctmym．
Rhatimoctime hrijde Rohwer，1919，p．299．₹；Ross，1951，p．64．Vew symuramy．

Fomale．－Averare length， 6.5 mm ．Entirely black with extreme apex of forefemur and outer surface of foretibia whitish．Wings moderately infuscate．

Antsmna fillform，slender．length equal to more than twice width of head；segments not at all or very slightly expanded at apices； third segment subequal in length to fourth serment；segments berond second three or more times as long as greatest width （pI．III，45）．Tarsal claw with outer tonth small．not sharply bent orer，and with inner tooth small（pl．II，16）．Sheath straight above rounded bolow（pl．IV．90）．Tancet with serrulae rounded， asymmetrical，and less than 20 in number；segmental hairs short， numerous（pl．VII，144）．

Figure 5.-Distribution of Phymatocera racemosae.

Male.-Average length, 5.9 mm . Color as for female. Structure as for female except antenna, which is usually laterally flattened and with fourth anternal segment longer than third segment. Genitalia as in plate IX, 200 and 201.

Holotypes.-Both MacGillivray types are at the Milinois Natural History Survey. R. similata ($\%$) bears the data "Ag. Coll. Mich., $6-3-96$," and H. infuscutus ($\%$) bears the data "Ithaca, N.Y." R. fucida Rohwer (f) is type No. 14756 at the U.S. National Museum and bears the data "Dane Co., Wisc., V-20-1909, Wm. S. Marshall."

Distribution.-British Columbia to Quebec extending south into northern California, Colorado, Illinois, and New York (fig. 6, A).

North American Records.-Alberta: Gull Lake, June 24, 1929, E. H. Strickland. British Columbia: White Lake, Oliver, May 18, 1959, E. E. MacDongall. California: Oakland, April 8, 1987, E. S. Ross; Berkeley, April 2, 1915, E. P. VanDuzee; Alameda, April; 4.8 mi . S. E. Sierraville, Sierra Co., June 14, 1959, Byers and party; Weott, Humbolt Co., June 4, 1936, E. C. VanDyke; Ft. Bragg, Mendicino Co., May 30, 1937, R. L. Usinger ; Echo Lk., Eidorado Co., July 13, 1961, 7500', B. H. Poole. Colorado: Eckert, June 28, 1938, U. Lanham; Westeliff, W. H. Ashmead; Estes Park, 7500^{\prime}, June 14, 1961, C. H. Mam. Idaho: Moscow Mt., Latah Co., July 1, 1959, G. W. Byers; Rock Cr., Canyon Co., 13 mi. S. Rock Creek, June 30, 1953, W. F. Barr. Illinois: Urbana, May 1, 1957, on Smilacina racemosa, H. H. and J. A. Ross, August 3, 1885. Ioura: Ames, May 9, 1927. Munitobu: Int. Peace Gardens, Turtle Mtn. For. Res., July 17, 1958, J. G. Chillcott; Riding Mtn. N. P., June 15, 1938, W. J. Brown. Michigan: Ag. Coll., May 23, 1890; East Lansing, April 30, 1942, C. Sabrosky, May 22, 1937. Montana: Toston, July 9, 1949, B. A. Haws. Nebraska: Sioux Co., May; Lincoln. Ontario: Turkey Pt., $42^{\prime} 39^{\prime}, 80^{\circ} 21^{\prime}$, May 25,1956 , J. R. Vockeroth; Coldstream, May 31, 1922, A. A. Wood; Pt. Pelee, May 25, 1937, G. S. Walley; Ottawa, W. H. Harrington. Oregon: Upper Klamath Lake, Geary Canal, May 25, 1958, J. Schuh; Benton Co., Mary's Peak, June 12, 1962, D. R. Smith; Crescent Cr., Hy. 58 , Klamath Co., June 27, 1962, K. Goeden; S. E. edge (rater Lake N. P., June 23, 1959, G. W. Byers; Little Squaw Lk., Jackson Co., 7 mi. E. Copper, 3200^{\prime}, R3W, T41S, Sec. 2, May 22 , 1964, D. R. Smith. Utah: Logan Canyon, May 10, 1951, G. E. Eohart, June 18, 1945, G. F. K. and S. L. W.

Host.-This species has been taken from Smilacina racemosa (L.) Desf. at Urbana, Ill. K. Goeden and I have also swept it from the same host in Oregon.

Larca.-Cnknown. The larva may be similar to that described as species 2.

Discussion.-The slender antenna and lancet characters will separate this species from offensa, the species with which it is most likely to be confused. The small tarsal claw will separate it from other members of the genus.

This species, like offensa, is transcontinental. The available records indicate that it is slightly more southern in distribution and occurs at lower elevations in the West. The specimens from

the East, Midwest, and West vary slightly in the structure of the lancet, but this character did not seem to be constant within these geographical areas. The males are indistinguishable from offensa, and their antennae vary considerably in relative length.

Phymatocera smilacinae, new species

Famale-Length, 8.5 mm . Entirely black. Wings darkly infuscate.

Antenna filiform; segments only slightly expanded at apices; third segment subequal to fourth segment in length (pl. III, 47). Clypeus truncate; malar space narrower than diameter of front ocellus; postgenal carina absent; postorbital groove indistinct. Prepectus present as raised shoulder, separated from mesepisternum by furrow. Tarsal claw with outer tooth large, sharply bent orer, and with inner tooth long, nearly subequal to outer tooth in length (pl. II, 15). Forewing with stub of $2 A$ and $3 A$ furcate at apex. Hindwing with crossvein $m-c h$ present, enclosing cell M. Sheath straight above, rounded below (pl . IV, 89). Lancet with serrulae rounded, asymmetrical, and far apart; segmental hairs long and numerous (pl. VII, 147).

Male.-Length, 7.8 mm . Color as for female. Structure as for female except antenna, which has fourth segment slightly longer than third segment. Genitalia as in plate IX, 198 and 199.

Holotype. Female, Plummers Is, Maryland, June 18, 1913, P. R. Myers. Deposited in the U.S. National Museum, type No. 69153.

Allotype.-Male, same data as Lor holotype. Deposited with the holotype.

Paratypes.-Illinois: Urbana, Champaign Co., April 26, 1960. J. K. Bouseman (1 ; $1 \cup$). Maryland: Great Falls, April 27, N. Banks (1 \%) ; Cabin John, April 24, 1914, R. M. Fouts, (2; \%) ; Plummers Island, April 17, 1913, F. S. Barber (49 f), June 28, 1912, H. S. Barber (1 o), April 28, 1915, W. L. McAtee (1 2), April 23, 1920, W. L. Mcatee (10), May 10, 1916, on Smilacina, W. L. McAtee (1 \%), May 1, 1914, J. D. Hood (1 O) , April 22, 1915, J. C. Crawford (2 \% ?), May 1, 1914, on Polygonatum biflorum, E. A. Schwarz (1 \%), April 23, 1914, R. C. Shannon (1 o), April 25, 1915, R. C. Shamnon (1 o), Hopk. V.S. 10704a, false Solomons-seal, P. R. Myers (1 \%), April 18, 1913, P. R. Myers (6 q o), June 20, 1911, S. A. Rohwer (1o) . Michigan: "Mich." (1 o) . New York: Ithaca, Van Natta's Dam, May 6, 1936, Babig (1)), May 8, 1936, Babig (I of); Ithaca, May 9, 1936, W. Middekauff (3 ze), May 6, 1936, W. Middekauff ($1: 1$) ; Ithaca, N. Banks (1 o) ; Ithaca (1 o). Ohio: Greene Co., May 12, D. J. and J. N. Knull (2 9), May 8, 1958, D. J. and J. N. Knull (1) ; Delaware Co., May 14, 1950, D. J.
 (2 ?), May 15, 1950, D. J. and J. N. Knull (1 of), May 21, D. J. and J. N. Knull (1 ₹). Penusylvania: State Co., May 16, 1921 (1 \%) ; Stoverdale, May 10, 1916, fying, W. S. Fisher (1 . ?); Linglestow. May 13, 1919, Champlain (1 \%), May 18,

1912, W. S. Fisher (1 £). Quebec: Montreal, May 22, Cornell L., Lot 917, Sub. 53 ($1 \mp$). Virginia: Rosslyn ($1 \stackrel{\circ}{0}$); Bluemont, May 6, 1913, C. T. Greene ($2 \underset{F}{\mp}$). Wisconsin: U. W. Campus, May 29, 1926, C. L. Fluke (1 p) ; Madison, May 28, 1926, C. L. Fluke (1 f), May 30, 1924, C. L. Fluke (1 \%), May, 1954 (1 \circ).

Other Records.-Illinois: Oakwood, May 8, 1920; Normal.
Disposition of Paraypes.-Paratypes have been deposited at the U.S. National Museum, Canadian National Collection, Museum of Comparative Zoology, Harvard University, University of California at Berkeley, Ohio State Cniversity, Illinois Natural History Survey, University of Wisconsin, Cornell University, and Pennsylvania State University.

Distrihution.-Wisconsin to Quebec south to Illinois and Virginia (fig. 6, (').

Host.-Adults of this species have been taken on false Solomonsseal (Smilacina) and true Solomons-seal (Polygonatum).

Larra.-Unknown. The larva may be the one described as species 1.

Discussion.-This species is most closely allied to fumipennis, but it may be separated from it by lancet characters. Its seasonal occurrence in relation to fumipernis is discussed under the latter species.

The name is derived from the probable host plant, Smilacina racrmosa.

Pnplaced Names of Phymatocera

Phymatocera rusculla (MacGillivray)

Manophadnus ruscultus MacGillivray, 1923a, p. 80, :; Frison, 1927, p. 253.
Phymatocra ruschllus, Ross, 1951, p. 64.
The type of this species is a male and has the outer tooth of the tarsal daw mall, not bent over, and the inner tonth small. It is prolably conspecific with either P. similata or P. offensa, but since the males of these two species could not be separated and since both species have been collected near the type locality of rusculla, it is impossible to place this species at present.

The type is at the Illinois Natural History Survey and bears the data "Mary's Peak, Middlekauff."

Phymatorera zabrinkiei (MacGillivray), new combination
Mclanosflundria zabriskici Ashmead, in Smith, J. B., 1900, p. 606; Ross, 1937, p. 100. Vamen oudum.

Melamose landria zabriskici MacGillivray, 1909, p. 404 ($=$ fumipemis Norton); Burks, 1958, p. 15.

MacGillirray, who inadvertently received credit for this species, based its identity on one specimen bearing Ashmead's label and considered it as being the same as fumipennis (Norton). This specimen, which was supposedly in the U.S. National Museum collection, was not found, and it is impossible to determine which species it may belong to because of the similarity of the species
of Phymatocera and the use of different specific characters than those used by the early sawfly workers.

Genus PARACHARACTCS MaeGillivray

Paracharactus MacGllivray, 1908a, p. 292; MacGillivray, 1916, p. 150; Malaise, 1933, p. 59; Ross, 1937, p. 97; Ross, 1951, p. 63; Takeuchi, 1952, p. 46; Benson, 1954, p. 282.
Type: Parachaructus obscuratus MacGillivray. Original designation.
Dicrostema Benson, 1952, p. 101. New synonymy.
Type: Selandria grucilicornis Zaddach. Original designation.
Description.-Antenna filiform, slender, with segments not expanded at apices and segments 3 and 4 subequal in length, or fourth segment slightly longer than third segment (pl. III, 48, 49). (lypeus truncate; malar space as wide as diameter of front veellus or less than one-half diameter of front ocellus; postorbital groove indistinct; postgenal carina usually faintly developed below eye or, at times, extending for about one-half length of eye. Prepectus indistinct or present as raised shoulder, separated from mesepisternum by furrow. Tarsal claw simple or with small inner tooth. Wings hyaline to moderately infuscate. Forewing with stub of 24 and 3.4 straight or furcate at apex (pl. I, 1, 7). Hindwing with crossvein m-cll present, enclosing cell M.

The discussion concerning the relationship of this genus to Phymatocera has been explained under the latter.

There are three Nearctic species and three or four Palaearctic species. The Palaearctic species belonging here include P. lonaicornis (Hartig), P. hyolinus (Hartig), and P. gracilicomis (Zaddach). Benson (1952) erected the genus Dicrostema for gracilicornis and stated that it was distinguished from Paracharactus by the curved-up stub of $2 A$ and $3 A$ of the forewing. This character is rather variable in the Nearctic species. The other characters presented by Benson for Dicrostema are similar to those for Paracharactus except for the malar space being as wide as the diameter of the front ocellus. Consequently, I see no basis on which to keep Dicrostema separate.

The European prucilicornis feeds on Adoxa. The hosts of the North American species are not certain, but they may feed on grasses and sedges.

Larca.-The larva of what may be P. niger was taken from Carex at Seymour, Ill. It bears a striking resemblance to Eutomostethus species in that there is a distinct protuberance above each forecoxa. The larva, however, does not fit the description of either Eutomostcthus species known to occur in North America as described by Lorenz and Kraus (195\%) ; also, Eutomostethus has not been recorded from Illinois. This larva is described under nigur.

Key to Paracharactas Species

[^3]2. Upper posterior margin of mesepisternum with elevated ridge; prepectus distinct; thorax black with tegula white; eastern
P. niger (Harrington)
Upper posterior margin of mesepisternum rounded, without ridge; prepectus present or absent; thorax usually with considerable rufous markings, if black then tegulae are black and it is from the west
3. Thorax always partly cufous; eastern.................-P. redis (Norton)

Thorax partly rufous or entirely lack : western P'. montivaghes (Cresson)
4. Thorax with some rufous markings; genitalia with imner extension of harpe rounded and bulbous (pl . $I \mathrm{X}, \mathrm{N} 44$) ; eastern......P. rudis (Norton)
Thorax always entirely black; genitalia with inner extension of harpe narrow (pl. $\int \mathrm{X}, \underline{2} 02$) : western...........................ontivagus (Cresson)

Descriptions of Paracharachas Species

Paracharactus montira!!us (Cresson), new combination
Selundria montiraga Cresson, 1880a, p. 13, \ddagger; Provancher, 1886, p. 26; Cresson. 1916. p. $6 ;$ Ross, 1951. p. 62 (.. medis Norton).
Phymatocra montisaga, Kirtiy, 1882 , p. 165: Dalla Torre, 1894, p. 178.
Rhadinoceruca montiraga, Konow, $190 \overline{5}$, p. Si.
Schundria sceflesta Cresison, 1880a, p. 14, ; ; Dalla Torre, 1894, p. 165; Konow, 1905, p. 87; Cresson, 1016, p. 8. New synonymy.
Rhadinoerraea seelesta, Ross, 1951 , p. 6 A .
Frmalr.-Average length, 6.8 mm . Head and antenna black with labrum white and clypeus sometimes rufous. Thorax entirely black or rufous with upper angles of pronotum and tegula white and scutellum, posttergite, pectus, and metathorax black. Legs black with outer surface of each tibia white. Abdomen black. Wings lightly to moderately infuscate.

Postgenal carina inclistinct or clistinet and extending halfway up outer margin of eve; malar space less than one-half diameter of front ocellus. Prepectus present as raised shoulder, separated from mesepisternum by furrow, sometimes indistinct; upper posterior margin of mesepisternum rounded. Tarsal claw with minute imer tooth. Forewing with stub of $2 A$ and $3 A$ straight or furcate at apex. Sheath straight above, rounded below (pl. IV, 92). Lancet with serrulae flat and serrate (pl. VII, 148, 149).

Mode-Average length, 6.3 mm . Entirely black; each tibia with light areas on outer surface. Structure as for female except antenna, which is longer in relation to body, laterally flattened, and has fourth segment longer than third segment. Genitalia with penis valve rectangular (pl. IX, 203); inner extension of harpe narrow and parallel sided ($\mathrm{pl} . \mathrm{IX}, 202$).

Holotypes.-Both montiraga Cresson (type No. 197%) and scclesta (resson (type No. 360 :) are at the Academy of Natural Sciences of Philadelphia. They both bear a lat al reading "Nev."

Distrilhtiont-Western North America, west of the Rocky Mountains (fic. 7, A).

Vorth American Records.-California: Forestville, May 20, 1936, A. T. Mc(lay; San Diego, April 23, 1879; San Bernardino, 985', April 17, 1879 ; Portola St. Pk., San Mateo Co., May 7, 1950 ; Colfax, May 20,1953 , R. M. Bohart; Olema, Marin Co., March 18. 1960, L. A. Stange; Applegate, April I1, 1951, E. I. Schlinger; Elk Crove. Sacramento ('o., April 18, 1952, May 2, 1952, May 18,

1952, E. C. Carlson; Woodfords, May T, 1959, May 5, 1959, collected from grass, July 29, 1959, R. P. Allen; Yosemite Park, Mariposa Co., May 12, 1959, R. P. Allen; Oakville, Napa Co., April 11, 1957, Alnus sp., R. P. Allen; Riverton, April 28, 1961, M. E. Irwin; Markleevile, Alpine Co., May 6, 1959, ex mixed grasses, R. P. Allen, May 30, 1957, ex grasses, R. P. Allen. Idaho: Lochsa River, 8 mi . ‥ E. Lowell, Clearwater Co., April 25, 1963, A. R. Gittins and W. F. Barr. Montana: "Montana." Nerada: "Nev."; 3 mi. N. Crystal Bay, Washoe Co., June 14, 1964, D. R. Smith and C. W. Baker. Oreyon: Benton Co., Mary's Peak, meadow, swe : ing, June 12, 1962, June 26, 1962, D. R. Smith, meadow, July 0, 1963, June 24, 1962, D. \& L. Mays, 4000^{\prime}, May 23, 1954, F. F. Hasbrouck, 4000^{\prime}, July 25, 1962, G. C. Eickwort, 4060°, June 27.1962 , R. L. Fischer, 3500^{\prime}, June 1, 1946, H. A. Scullen, June 21 , 1942, G. R. Ferguson, 3900 , June 9, 1957, B. Malkin, 3800 , May 25, 1952 , B. Malkin and V. E. Thatcher, June 18, 1963, sweeping, (C. W. Baker, May 18, 1963, 10:00, rotary trap, May 2S, 1938; Corvallis, April 1. 1959, P. F. Torchio, April 10, 1936, G. R. Ferguson, June 27, 1962, R. W. Matthews; Buckhorn Mineral Springs, 11 mi. E. S. E. Ashland, Jackson Co., 2800, May 19, 1960, D. R. Smith; Tombstone Prairie, Linn Co., July 1, 1962, D. \& L. Mays; 4 mi. W. Selma, Josephine Co., May 18, 1962, D. R. Smith; Weeme, Clackamas Co., May 30, 1957, E. I. Schlinger; 12 mi . W. Adel, Lake Co., May 17, 1957, F. F. Hasbrouch: Salem, April 21, 1949, J. E. Davis; Sun Cr., Klamath Co., June 14, 1962, J. D. Vertrees; Lake Wallowa, June 15, 1938 , E. (. VanDyke; Oswego, May 7. 1959, weeds, H. Porter; Sulphur Springs, 7 mi. N. Corvallis, April 23, 1963, D. R. Smith; 5 mi . E. N. E. Copper, French Gulch Road, Jackson Co., 2550^{\prime}, May 22, 1904, D. R. Smith; 4 mi . S. Canyonville, rest area, Douglas Co., May 21. 1964, D. R. Smith. Washington: Yakima, June 1, 1931, A. R. Rolfe; Lost Lake, Stevens Co., 3600^{\prime}, June 18, 1954, B. Malkin and D. Boddy; Bonaparte Lake, Okanagon Co., 3600^{\prime}, June 18, 1954, B. Malkin and D. Boddy.

Host.-C'nknown. The adults are most commonly collected by sweeping grasses in fields and meadows.

Larca.-L'nknown.
Discussion.-There is considerable color and structural variation within this species. All the males that were examined were entirely black, whereas the females ranged from entirely black (usually in the north and at higher elevations) to black with the thorax largely rufous (usually in the south and at lower elevations). The wings varied from being moderately infuscate to nearly hyaline in both sexes. The structural variation is evident by the postgenal carina, which is scarcely developed or very distinct; the stub of $2 A$ and $3 A$ of the forewing, which is either straight or furcate; the prepectus, which is either distinct or scarcely developed; and the tarsal claw, which has a distinct or indistinct inner tooth.

Many specimens may be confused with the western Piymatocera, but they may be separated by the rectangular penis valve and
long inner extension of the harpe of the male and by the flat, serrate serrulae of the lancet of the female.

This species is close to rudis; the main differentiating character is the more slender inner extension of the harpe of the male, but color may be used in many cases. No structural character could be found to separate the females of montiragus from those of nudis.

Paracharactus niger (Harrington)

Phymatocera nigra Harrington, 1889, p. 96, 天 ; Dalla Torre, 1894, p. 178. Rhadinoceraca niyra, Konow, 1905, p. 81.
Neoparcuphora niyra, Mac (illivray, 1916, p. 144.
Parachuractas niger, Ross, 1951, p. 63.
Monophadmus distine frys MacGillivray, 1908a, p. 291, ; MacGillivray, 1916, p. 150; Frison, 1927 , p. 253 ; Ross, 1951, p. 63 \{ niger Harrington\}.

Tomostethes uortonii MacGillivray, 1908a, p. 291, 争; MacGillivay, 1916, p. 148; Frison, 1927, p. 26; ; Ross, 1951, p. 63 (: niger Harrington).

Female.-Average length, 6.8 mm . Entirely black with Jabrum, lateral portions of clypeus, tegula, extreme apex of each femur, and each tibia white. Wings hyaline.

Postgenal carina present, extending halfway up outer margin of eye; malar space equal to about one-half diameter of front ocellus. Prepectus present as raised shoulder, separated from mesepisternum by furrow; upper posterior margin of mesepisternum with carina or ridge. Tarsal claw simple. Forewing with stub of 2 A and 3 A straight at apex. Sheath straight above, rounded below (pl. IV, 92). Lancet with serrulae slightly rounded, with distinet subbasal teeth (pl. VIT, 150).

Male.-Cnknown.
Holotypes.-P. nigra Harrington is in the Canadian National Collection and bears the labels "§" and "No. 179." Two paratypes are associated with this species, one of which is the same species, the other a new species of Monophadnoides. Both MacGillivray types are at the Illinois Natural History Survey. M. distinctus (o) has the data "Lake Forest, Ill., J. G. Needham," and T. nortonii (p) has the data "Ames, Ia., 424."

Distribution.-Eastern North America (fig. 7, B).
North American Kecords.-Connecticut: Branford, April 29, 1951, May 7, 1951, J. B. Kring, May 1, 1951 ; Storrs, May 4, 1958, H. W. Smith. Illinois: Seymour, April 25, 1930, May 1, 1929, H. H. Ross; Sherman, April 20, 1930, H.' H. Ross; Chebanse, April 24, 1929, Frison and Ross; Rantoul, April 24, 1929, Frison and Ross; Ogden, April 16, 1929, Frison and Ross; Elgin, bot. gardens, April 25, 1941, Ross and Burks; Antioch, May 21, 1941, Sta. 75; Zion, May 16. 1936, Ross and Mohr. Io wa: Thompson, May 18, 1928, O. S. Walley; Ames, May 10, 1947, A. R. Brooks, May 7, 1951, W. Claycomb, May 11, 1953, H. C. Cox, May 3, 1952, May 6, 1952, W. Kwolek, May 7, 1056, E. E. Glass, May 11, 1950 , April 20, 1942, W. L. Downes; Mit. Pleasant, May 1, 1933, Simman; Leon, April 27, 1952; Sioux (ity, Stone St. Pk., May 12. 1956, J. L. Laffoon; Lerges St. Pk., May 7, 1948, May 16, 1947 ,

May 1, 1957, May T, 1956, May 11, 1950, May 6. 1958, J. L. Laffioon. May 6. 1958, J. Simning, May 14, 1949, Hendrickson. Kansus: Riley Co., from regetation along streambank, April 25, 1952, L. (). Warren, April 24, 1952. J. H. Schesser. Maine: Penolscot ($0.0,3 \mathrm{mi}$. N. Passarlumkear, May 26,]966, I). R. Smith; Piscatatuis (o., Brownville Junction, May 27, 1966, D. R. Smith. Marpland: (Hen Echo, R. MI. Fouts. Massathuselts: Riverside, April. Michifan: Jackson. Jackson (O., May 17, 1959, (1. D). N.; Fast lansing, May 4. 1938; 13 mi. N. Lapeer, May 30, 193世, (. Salorosky; Aun Arbor, Washtenaw (o., May 18, 1918, T. 11. Jubhell; ('uranaugh Lake, W"ashtenaw (0.0 , May 24, I919, T. II. Hubheil; Little Manistee River IIr. Peacotk, May 10, 19-do, Ross and Frison; Bailey, May 9, 1940, Frison and Parks; Pittsford. Jillsalale (o, May 16, 1959, F. I), N. Minnesota: Haglesnest, June 1. 195!, W. V. Baldaut. New Ihamphire: Alstead, August 0 . 190:; Hampton, May 7, R, 11, 193f, May 19, 1918, S. A. Shaw, S゙w York: Ithata, Fall ('eeek, Apríl 30. 1949, J. (. Martin; ('anton. May 17, 1929, J. Buss; Hamburg. June 12, 1909, M. (. Fanduzee. (hio: Columbus, April 27. 1920, A. F. Miller, April 2K, 7902 , Hridwell; Sciota River, April 2.2, 1911. G. R. Ferguson; Hedekinf (o., May 192-. (. N. Kennedy. Ontario: Ottawa, May 16, 194. O. Peck; Merivale, May 16, 19-11. O. Peck; (onstance Bay, April 29, 1941, O. Peck; Almonte, May 18, 1951, F. H. N. Smith; (hatterton, May 20. 1956, J. ('. Martin; Rockport, May 12, 1959. J. R. Vorkeroth; Marmora, May 23, 1952. May 26, 1952, J, R. Mreillis, May 2;3, 1952, R. Lambert, May 23, 25, 1952, J. C. Mitchell. Pt mosylewiat: Roxboro, April 2s; Phila.; Germantown,
 J7. 1030, W. J. Brown; cascapedia, April 10, 1933, W. J. Brown; Marbridge, May 20, 1937, (). Peck. Hisconsin: (irant (oo, June 7. 1951.

Host.-. 'lhis species probably feeds on selges. The larva described was feedinge on Correx.

Larra- The lara described here was taken from forex at Seymour, Ill. Adults of nigu were collected in the same localits during the same seal the larvae were collected and during the year after. They were not associated by rearing.

In late instal, body whitish; head capsule brown; ocularium and apical one-third of mandible black.

Head with scattered hairs (lypeus with two setae on each side. Lat)rum cleft for one-third its medial fength; three setae on each side of outer surface ; epiphargnx with about 10 spines located in arcuate row on each anterior half (pl. XV, 297). Mandibles each with one seta on outer lateral margin; left mandible with two ventral teeth and four lateral teeth (pl. XV, 300) ; right mandible with two rentral teeth and four lateral teeth (pl. XV, 299). Maxillary palpus four-segmented; second segment with one seta on water surface; palpifer with four setae; lacinia with nine to 11 shorit spines (bl. XV, 298). Labial palpus three-segmented: prementum with three setae on each side; second segment of latial palpus with three or four setate.

Thorax with minute glandubae on prothorax and annulets of mesothorax and metathorax; distinct protuberant lobe above each
forecoxa (pl. XV, 301). Thoracic legs normal; femur longer than tibia; setae on inner margin of seqments of each les; three or four larger spines on inner margin of each coxa. Sterna of each thoracic segment with pair of setiferous tubercles.

Addominal segments 1 through 8 each with six dorsal amnuets. Annulets 2 and a with minute glandubae of same color as rest of body; annulets $1,3,5$, and 6 without glandubae. Ninth segment with several glandubae on fourth annulet. Tenth segment with minute glandubae on posterior edge of tergum: suranal and subanal areas with numerolss setae.

Discussion.-This species may be separated from both other species of Paracharatur bs the presence of the ritge on the upper posterior maryin of the mesepisternum and the entirely black coloration with white tegulae. This is probably a parthenogenetic species since no males were found among the large serpes examined.

Paracharactus rudis (Norton)

Selandria rudis Norton, 1861, p. 221, \%; Norton, 186T, p. 251.

Pachacactus rudis, Maedilliviay, 1916, p. 150; Ross, 1951, p. 63.

 Ress, 1951, p. it.

 Ross, 1051, p, in: sumb Nortoni.

Fernale.-Average length. 6.5 mm . Antema black. Head blatek with labrum, dypeus, amd supraclypeal area white to rofous. Thorax matous with pectas, scutellum, and metathorax back. Lexg black with each tiliaz whitish. Abdomen black. Wings hyraline.

Postgenal arina present, extending for about one-fourth length of ere; mabar space less than one-half diameter of front ocelus. Propectus indisthet or present as raised shoulder, separated from mesepsternum by furrow; upper posterior margim of mesepisternum rounded, without ridge. Tarsal chaw with minute inner tooth. Forewin; with stub of $2 A$ and $3 A$ straight at apex. Sheath straight abow, rounded below (pl. 15, 32). Jancet with serruha flat and serrate (pl. VI, 148, 149).

Wale.-Average length, 6.0 mm . Color similar to that of female. Structure similas to that of female excent antema, which is longer, faterally fattened, and with fourth segment longer than third segment. Genitalia with penis valve rectangular (pl. IX, 205); inner extension of harpe with sides rounded, giving it bubbus apperance (pl. MX, 204).

Holotypex.--The type of s. rudis Norton has not been located. In his opjoimal description, Norton (1801) stated that he saw "One speciman received from Mr. Packard, Branswick, Me" The use of this name is based on specimens in the Academy of Natural Sciences of Phiadelphia, which were probably determined by Norton and which agree with Norton's original description. Thero is one specimen af the Philadelphia Academy with the labels "type ?" and "Selandria rufala Nort." In describing rufula,

Norton (1861) saw only one specimen from Farmington, Conn. The type camot be incated at any other institution; therefore. after comparison with the original description this specimen $($) is here accented as the type of ruiula. The type of P. obscurotus Maedillivay (a) is at the llinois Natural History Surves and bears the datai "W. Springfield, Mass."

Distribuion.-Vastern North Amerita, tast of the Rocky Monntains (fig. $7,(`)$.

Vorth Ameriran Rerords.-(ohoradn: Bualder. June 10, 1961. 5400°, P. IF. Poole; 4.5 mi . N. Poulder, Jume 10, 1961, 5510 . J. IR. Stainer; Joulder, Flagstaff ('n., j800', June 10, 1961, (C H. Mann; Elklora, July 3, 1961, J. G. Chilloott. (omuctient: Hartford, May $27,1 \times 91$; Farmington, May 10, 1933, MI. P. Zappe. Cemofia: Thomasville, March 29,193 , P. W. Fattig. Mllmois: Crbanas, Brownfeld Woods, Aprit 29, 1939, lis. Ray, April 29, 1920; ['rlana, April 18, 1918, eottonwoods; Halflay, May 19, 1944, Ross and Sanderson; Newcomb, May 11, 1929, A. R. Park: Rock lsland, May 19, 1934, Ross and Mohr; Algonquin, June 3, 1909, May 26, 1508 , June 8,1907 , Nason; Jongrola, May 9, 1917, on senecio; Foley's Woorls, S. W. of Paris, April 22, 1949, Ross and Stannard; Goleondat, April 30, 1940. Mohr and Burks; Alto Pass, onion strings, May 14, 1940, B. 1). Burks. Ioura: Ames, April 29, 1942, E. M. Darrow, May 13, 1949 , May 14, 1950, May 11, 195(), W. L. Jownes, May 10, 1949. J. Stahl, May 10, 195.3, F. N. Hamerstrom, April 24, 1949, Swentair, May 11, 1953, (i. L. Bush, April 24, 1946, V. S. Hagen, May 4, 1950, W. Gennill, May 24, 1948. J. Laftoon, Amil 25, 1946, J. Henley, May 13, 1953, R. Didriksen, May 5,1932, H. Hixon, May 9, 1927, May, 1896 , May 11, 1897; Stone St. Pk., Sioux (ity, May 12, 1956, J. L. Iafloon; Sioux City, May 10, 9928 , C. Ainslie; Ledges St. Pk., Boone (o., May 10, 1952, R. O. Dirksen. Konsas: Onaga, Crevecownr; Riley (o., April 30, 1952, April 25, 1952, from veretation along streambank, L. (). Warren, April 21, 1953, F. A. Lawson; Potawatomis (o., May 10, 1552, 1.. O. Warren; Baldwin, J. C. Jridwell. Maine: Guerette, June 16, ex fir; Greenville, June 17. Mamitoba: Aweme, June, 1912, N. Criddle, June 2, 3, 4, 1926, R. I). Bird, June 5, 192\%, R. N. White; Ninette, June 13, 1958, (. D). F. Miller; 5 mi . S. W. Shilo, June $8,1958, \mathrm{R}$. B. Mradge. Marplami: Plummers Island, April 29, 1915, J. C. (rawford, May $16,1902, \mathrm{~K} . \mathrm{P}$. (urrie; near Plummers Island, May 14, 1915, R. ('. Shannon; (abin John, May 26, 1943, Cortez and Townes. Massuchusetts: Mt. Greylock, June 15, 1906, C. V. Johnson. Michigan: Sault Ste. Marie, August, 1946, Gaskius; Ann Arbor, Washtenaw (o., May, 1917. M. H. Hatch, May 20, 1921, T. II. Hubbell; Pattle (reek; Ag. Coll., May 6, 1896, May 18, 1887 ; Gull Lake Biol, Sta., Katamazoo (o., May 14, 1955, A. D. Jawson; East Lansing, May 13, 1940. Mmnesota: Eaglesnest, May 31, 1961, May 29, 1959, W. V. Baldauf. New Hampshire: Hampton, June 23, 1920, S. A. Shaw. Neu Fork: Niagara Falls, May 16, 1909, M. C. VanDuzee; Flatbush, June 1, 1891, J. L. Zabriskie; Ithaca, May 18,1895 ; Ithaca, 6 mile Creek, May $5,19 \overline{3} 1$, J. (. Martin, May $23,1936, \mathrm{H} . \mathrm{K}$. Townes; Taughannock Falls, April 30, 19:15, J. ('. Martin. Ohio: Franklin Co., May 21, 1952,
H. V. Weems, Jr. Ontario: Simcoe, May 29, 1939, G. E. Shewell; S. Marsh, May 20, 1937, O. Peck; Ottawa, W. H. Harrington, May 24, 1957, J. G. Chillcott; Marmora, May 31, 1952, J. R. McGillis, May 18, 1951, E. H. N. Smith; Poonamalee, June 10, 1949, J. C. Martin; Emo, June 28, 1960, S. M. Clark. Quebec: La Trappe, May, 1936 ; Laniel, June 9, 1939, J. L. Hitchon; Knowlton, June 14, 1928, J. A. Adams; Ile de Montreal, May 20, 1906, Beaulieu; Burbridge, May 30, 1932, O. Peck, June 6, 1937, F. A. Urquhart; Cascapedia, fune 22, 1933, W. J. Brown; Harrington Lk., Gatineau Pk., May 30, 1954, W. R. Coyles; Roundtop Mt., Sutton, 1300^{\prime}, July 5,1963, J. R. Vockeroth. Saskutchewan: Oxbow, June 15, 1907, F. K. Knab; Canora, June 13, 1954, Brooks and Wallace. South Dakota: "S. Dak." Wisconsin: Amery, fune 3, 1916, J. G. Sanders.

Host.-Cnknown. Adults are most commonly collected by sweeping grasses and other vegetation in fields and meadows.

Larca.-Unknown.
Discussion.-This species may be separated from niger by the partiy rufous thorax and the lack of a ridge on the upper posterior margin of the mesepisternum and from montivagus by the more bulbous extension of the harpe of the male genitalia.

The amount of rufous coloration on the thorax in the females is rather constant; however, in the males the thorax may be almost entirely black. Although this is a commonly collected species, nothing is known about its host, habits, or larva.

Gemus RHADINOCERAEA Konow

Rhadinoceraea Konow, 1886, p. 184, 211; Dalla Torre, 1894, p. 179; Ashmead, 1898b, p. 128; Konow, 1005, p. 81; Rohwer, 1911c, p. 224 ; Enslin, 1014, p. 279; MacGillivray, 1916, p. 144; Enslin, 1920, p. 316 ; Dittrich, 1924, p. 629; Malaise, 1933; p. 59; Ross, 1937, p. 95 ; Berland, 1947, p. 242 ; Ross, 1031, p. 54; Benson, 1952, p. 101; Takeuchi, 1952, p.44; Lorenz and Kraus, 1957, p. 118; Burks, 1958, p. 15.
Type: Tenthredo (Allantus) micans Klug. Designated by Rohwer (1911a).
Deseription.-Antenna filiform, slender, or stout with second segment as wide as long and third segment subequal to or slightly longer than fourth segment (pl. III, 50 52). Clypeus truncate; postgenal carina absent; postorbital groove absent or distinct and deep, ending in pit halfway down eye; malar space linear or as wide as diameter of front ocellus. Prepectus absent. Tarsal claw simple or with smali inner tooth (pl. II, 13, 16). Forewing with stub of $2 A$ and $3 A$ furcate at apex (pl, 1, 7). Hindwing with crossvein m-cu present, enclosing ceil M.

This genus is divided into two subgenera, Rhadinoceraea and Veratra, new subgenus. Rhadinoceraea includes the European species and a group of species from the Southwestern United States, all of which have a deep postorbital groove and pit and a small imer tooth of the tarsal claw; the larvae are associated with Iridaceae and Liliaceae. The subgenus Veratra includes those species without a postorbital groove and pit and with simple tarsal claws, and the larvae are associated with Liliaceae, specifically Veratrum.

Key to Rhadinoceraea Subgenera and Species

ADLLTS

1. Tarsal claw with small inner tooth (pi. II, 16) ; deep postorbital groove present, ending in pit halfway down eye; malar space linear, or less than one-half diameter of front ocellus (subgenus Rhadinoceraea)
Tarsal claw simple; postorbital groove and pit absent; malar space as wide as diameter of front ocellus (subgenus Veratra)

2. Lancet with lateral spines absent (pl. VII, 153) _-...-R. nigra (Rohwer)

Lancet with lateral spines present (pl. VII, 151, 152, 154)
4. Lancet with lateral spines slender and long, equal to one-fourth or more width of segment (pl. VII, 151) ; elypeus brownish
R. brysonensis, n. sp.

Lancet with lateral spines short and stout, equal to one-fifth or less width of segment (pl. VII, 152, 154) ; clypeus black 5
5. Lancet with one row of spines on each segment (pl. VII, 152)
R. ctenidium, n.sp.

Lancet with two rows of spines on each segment (pl. VII, 154)
R. utahensis, n.sp.
6. Penis valve rounded at apex ($\mathrm{pl}, \mathrm{IX}, 207$) ; southern California
R. rigra (Rohwer)

Penis valve truncate at apex (pl, X, 200); northern Utah
R. utalensis, n. sp.
7. Female 8
Male 11
8. Sheath long, evenly rounded at apex (pl. 1V, 98); A ppalachian region of castern North America_..............................ilipemmis (Norton)
Sheath shorter, straight above, rounded below (pl. IV, 95-97); west of Rocky Mountains
9. Lancet with sorrulae rounded at apices, with few distinct subbasal teeth (pl. VII, 156) ; antenna entirely black__-. R. insularis (Kincaid)
Laneet with serrulae pointed or flattened at apices, with distinct subbasal teeth (pl. VII, 155, 157) ; antenna entirely black or black and ventrally whitish
10. Antenna black with ventral side whitish; serrulae of lancet shallow, asymmetrical with greater number of posterior than anterior sub-

Antenna entirely black; serrulae of lancet deeper, symmetrical, with equal number of anterior and posterior subbasal teeth (pl. YII, 157)
R. jacintensis, n. sp.
11. Penis valve narrow and curved dorsally (pl. X, 217); Appalachian

Penis valve wide, rounded or truncate, not narrow and curved (pl. X, 211, 21., 215) ; west of Rocky Mountains
12. Penis valve truncate and slanted at apex (pi, X, 211); ventral side of

Peris valve rounded at apex (pl. X, 213. 215); antenna entirely black 13
13. Northern California and northward........... \quad. insularis (Kincaid)

Southern California
R. jacintensis, n. sp.

Subgenus RHADINOCERAEA Konow

Description.--Segments of antenna short and stout, usuaily not more than twice as long as wide; third segment slightly longer than fourth segment in length (pl. III, 50). Clypeus truncate; postgenal carina absent; postorbital groove deep, ending in pit halfway down eye; malar space absent or less than one-half diameter of front ocellus. Prepectus absent. Tarsal claw with small imner tooth (pl. II, 16). Forewing with stub of $2 A$ and $3 A$ furcate
at apex. Hindwing with crossvein m-cu present, enclosing cell M. Wings moderately infuscate.

In the Nearctic region there are four species in this subgenus, all confined to Utah and southern California. Oddly enough, they are more closely related to the Palaearctic species than are the more northern forms of the other subgenus.

Little is known of the Nearctic species and only a few have been taken. The larvae are not known, and the host for one species, nigra, is indicated only by the labels on the adults, which read "larva on Calochortus venustus."

The European species include R. micans (Klug), R. reitteri (Konow), and R. bensoni Beneš. Their known hosts include Iris species (Benson, 1952; Beneš, 1961a, 1961b).

Descriptions of Rhadinoceraea Species

Rhadinocertea (Rhadinoceraea) brysonensis, new species
Female.-Length, 8.0 mm . Entirely black with clypeus brownish and narrow white margin on posterior edge of each abdominal segment. Wings moderately infuscate.

Antenna short and stout, third segment slightly longer than fourth segment; segments beyond third never more than twice as long as wide (pl. III, 50). Clypeus truncate; postgenal carina absent; postorbital groove deep, ending in pit halfway down eye; malar spase linear. Prepectus absent. Tarsal claw with small inner tooth (pl. II, 16). Forewing with stub of $2 A$ and $3 A$ furcate at apex. Hindwing with crossvein m-cu present, enclosing cell M. Sheath straight above, slightly rounded below (pl. IV, 94). Lancet with lateral spines long and slender, one-fourth or more width of segment (pl. VII, 151).

Male.-Unknown.
Holotype.-Female, Bryson, Calif., April 27, 1917, E. P. VanDuzee. Deposited at the Illinois Natural History Survey.

Distribution.-Known only from California (fig. 8, A).
Host.-Unknown.
Larta,-Unknown.
Discussion.-This species resembles the other species in this subgenus, but it may be separated by the long, slender, lateral spines of the lancet. It is known only from the type. The name is derived from the type locality.

Rhadinoceruea (Rhadinoceraca) ctenidium, new species

Frmale.-Length, 8.2 mm . Entirely black with narrow white margin on posterior edge of each abdominal segment. Wings moderately infuscate.

Antenna short and stout, third segment slightly longer than fourth segment; segments beyond third never more than twice as long as wide (pl. IfI, 50). Clypeus truncate; postgenal carina absent; postorbital groove deep, ending in pit halfway down eye; malar space linear. Prepectus absent. Tarsal claw with small inner tooth (pl . II, 16). Forewing with stub of $2 A$ and $3 A$ furcate at

Figure 8.-Distribution of (A) Rhadinoceraea nigra (solid circles), utahensis (half circles), ctenidium (open circle), and brysonensis (triangle), (B) aldrichi, (C) insularis; (D) jacintensis, and (E) nubilipennis.
apex. Findwing with crossvein $m-c u$ present, enclosing cell M. Sheath long, straight above, slightly rounded below (pl. IV, 94). Lancet with one row of short, thick lateral spines on each segment, spines one-fitth or less wiclth of segment (pl. VII, 152).

Mate.-Unknown.
Hototype--Female, Mt. Finos, Kern Co., Calif., 8900', June 12, 1960, L. M. Martin. Deposited at the Los Angeles County Museum.

Paratype.-One female, same data as the holotype. Deposited with the holotype.

Distribution.-Known only from California (fig. 8, A).
Host.-Unknown.
Larva-Unknown.
Discussion.-This species is known from only two specimens. It resembles utahensis and brysonensis, but it may be separated from brysonensis by the short lateral spines of the lancet and from utahensis by the single row of spines instead of two.

The name is derived from the Greek word ktenos because of the comblike lateral armature of the lancet.

Rhadinoceraea (Rhadinoceraea) nigra (Rohwer)
Paracharactus niger Rohwer, 1912, p. 231, o .
Rhadinoceraca nigra, Ross, 1951, p. 64.
Female.-Average length, 8.0 mm . Entirely black with narrow white band on posterior margin of each abdominal segment. Wings moderately infuscate.

Sheath long and narrow, straight above, rounded below (pl. IV, 94). Lancet without lateral spines (pl. VII, 153).

Male.-Average length, 7.7 mm . Color as for female. Structure as tor female except for antenna, which has third segment subequal in length to fourth segment. Penis valve rounded at apex (pl. IX, 207) ; harpe covered with coarse hairs, harpe and parapenis as in plate IX, 206.

Holotype.-The type (ㅇ) is at the U.S. National Museum, No. 44588. The label reads "Los Angeles Co., Calif., Pasadena, April 10, 1909, F. Grinnel, Jr."

Distribntion.-Southern California (fig. 8, A).
North American Records.-California: Los Angeles Co., January 30, larva on Calochortus venustus, February, larva on Calochortus venustus: San Francisquito Canyon, April 2, 1953;8 mi. E. Sunnymead, Riverside Co., June 12, 1958 , J. C. Ball.

Host.--The larvae may feed on Calochortus as indicated by the labels on the adult specimens.

Larva.-Unknown.
Discussion.-Although this species resembles other members of this subgenus, it is easily separated by the lack of lateral spines on the lancet of the female. The male may be separated from that of utahensis by those characters given in the description and key.

Rhadinocerata (Rhadinocerafa) utthensis, new species

Female. Length, 8.0 mm . Fatirel black with narrow white margin on posterior edge of each abdominal segment. Wings moderately infuscate.

Antenna short and stout, third serment slightly longer than fourth segment; serments beyond third never more than twice as long as wide (pl. III, 50). (lypeus truncate; postgenal carina absent; postorbital groove deep, ending in pit halfway down eye; malar space linear. Prepectus absent. Tarsal claw with small inner tonth (pl. II, 16). Forewing with stub of 24 and 3.4 furcate at apex. Hindwing with crossvein $m-c / 1$ present, enclosing cell M. Sheath staight above, rounded below (pl. IV, 94). Lancet with two rows of short, stout hateral spines on each segment never more than one-fifth as wide as segment (pl. V1I, 15.j).

Male,-Length, 7.7 mm . Color similar to that of female. Structure as in female except for antenna, which has third and fourth segments subequal in length. Harpe with inner margin slightly angulate, covered with erect coarse hairs (pl. X, 208) ; parapenis as high or higher than wide (pl. X, 208) ; penis valve with apical marsin truncate ($\mathrm{pl} . \mathrm{X}, 209$)

Holotype--Femele, Logan, Utah, May 8, 1941, Don Fronk and R. R. Burnham. Deposited at the L.S. National Museum with the permission of G. F. Fnowlton and W. J. Hanson of Thah State University. ['S.N.M. type No. 69154.

Allotype-Male, Iogan, Utah, April 28, 1949, W. J. IJanson. Deposited with the holotype.

Poratypus.-Ctah: Logan, May 15, 1948, W. B. Lattimore (1 i) ; Dry (anyon, Salt Lake (o., March E4, 1954, J. L. Eastin (1 i) ; Salt Lake (ity, May $9,1956.3$. L. Eastin (1) ; Green Canyon, Mas 9, 196!3, Ernie Dean (1 s) ; Wellsville, May 14, 1966, Wm. Bachow (1 :) ; Logan, May 10,1951, E. A. (ross (1 :).

Disposition of laratypes.-The paratypes have been deposited at ("tah State Cniversity".

Distribution- Northern ('tah (fig. $8, A$).
Host.-Cnknown.
Larra.--एaknown.
Discassion.-This species is most closely related to ctenidium from southern California, but it may be distinguished from it by the two rows of spines on each segment of the lancet. The characters of the male genitalia will separate the males from nigra. This is the most northern species of this subgenus in North America. The name is derived from the type locality.

Subyenus VERATRA, new subgemus

Type' Siflandria mubilipennis Norton.
Description.-Antenna short and stout; third segment subequal in length or only slightly longer than fourth segment; segments bevond second approximately two times longer than wide (pl. III, 51, 52). (lypeus truncate; postgenal carina absent; postorbital groove and pit absent; malar space approximately as wide as
diameter of front ocellus. Prepectus absent. Tarsal claw simple (pl. II, 13). Forewing with stub of $2 A$ and $3 A$ furcate at apex. Hindwing with crossrein m-c u present, enclosing cell M. Wings moderately infuscate to hyaline.

Members of this subgenus are easily distinguished from those of the typical subgenus by the lack of a postorbital croove and pit and the simple tarsal claw. There are four Nearctic species, all of which are probably associated with false-hellebore (Veratrum). At least one European species, R. nodicornis (Konnw), belongs here.

Laraa--The larvae of two species are known, R. aldrichi (MacGillivray) and R. mubilipernis (Norton). Yuasa (1922) included a description of nubilipennis under the generic name Monophadnus. Lorenz and Kraus (1957) described the larva of nodicornis (Konow).

The larvae of this genus may be recognized by the six-annulate abdominal segments, the presence of small or large conical tubercles on the body, the darkly winged spiracles, and the presence of only one tubercle on each postspiracular and subspiracular lobe. The larvae will be described in detail under the species.

Key to I'eratra Species

LaRVAE

1. Boty tubercies small; annulets 2 and 4 of abdominal segments 1 through 8 each with three tubercles on each sicle (pI. XIV, 292) ; surpedal lobe without tubercle (pl. XIV, 292) ; lacima of maxilla with eight to 10 spines (pl. XIV, 290); west of Rocky Mountains
R. aldrichi (MacGillivray)

Body tubercles large and conical; annulets 2 and 4 of abdominal segments 1 through 8 each with two tubercles on each side (pl. XIV, 296): surpedal lobe with on? tubercle (pl. XIV, 296); lacinia of maxilla with five to seven spines (pl. XIV, 295); eastern North America. R. Mibilipennis (Norton)

Deseriptions of Veratra Species

Rhadinocract (Veratra) aldrichi (MacGillivray)

Parcophora aldrichi MacGillivray, 1923c, p. 28, \therefore, $\%$ Frison, 1927, p. 255. Rhadinoceruect aldrichi, Ross, 1951, p. 64.

Female.-Average length, 6.5 mm . Entirely black with ventral surface of antenna and foretibia and midtibia whitish. Wings lightly infuscate.

Antenna with third segment subequal in length to or very slightly longer than fourth segment (pl. III, 52). Malar space approximately as wide as diameter of front ocellus. Sheath straight above, rounded below (pl. IV, 95). Lancet with serrulae flattened at apices, asymmetrical, with four to five anterior subbasal teeth and seven to nine posterior subbasal teeth (pl. VII, 155).

Male.-Average length, 6.3 mm . Color as for female. Structure as for female. Penis valve truncate and slanted at apex (pl. X, 211). Harpe and parapenis as in plate $\mathrm{X}, 210$.

Holotype--The type (7) is located at the Minois Natural History Survey and bears the data "Peek, Idaho, J. M. Aldrich, on Solomons Seal."

Distribution.-Western North America from British Columbia to central (alifornia, east to central ldaho and western Alberta (fig. $8, B$).

Xorth Americun Rerords.-Allerta: Waterton Lakes, July 12, 1923, J. MeDunnough; Waterton, July 12, 1923, E. H. Strickland. British ('olumbia: N. Peak. Jude Pass, Mit. Revelstoke Nat. Pk., 7400', July 16, 195\%, G. P. Holland. 'alliomia: Telephone Campground, Black Butte, Glenn ('0., 6800', June 19, 1956, Yeratrum californicum, J. Powell; (hester, June 4, 1960), D. J. and J. N. Knull; ? mi. S. E. Mt. Lassen, July 8, 1955 , Te fatrum, J. W. MacSwain; Modoc (o., May 31, 1938, Teratrum colifornictom, K. A. Salman; Leland Meadow; Tuolumne (oo, July 1, 1957, A. E. Pritchard; ('astle Lake, Siskiyou C'., July 2, 1953, 5200', H. P. Chandler; Mammoth Lake, July 12, 1933; Trinity Co., May 20, 1934, 6000'; Susan K. ('amp, Lassen Co., Joly 10, 1949, D. Cox; Robertson Flat, Pluer ('o., July 4, 1956. R. E. Darby; Carson Pass, Alpine ('o., July 10, 1960, M. L. Rice; Buck's Lake, Plumas ('o., June 23, 1949, II. A. Hunt; Donner Memorial Park, Truckee, May 30, 1957, (C. S. Moore; Echo Lake, El Dorado Co., July 3, 6, 7, 1953, July 14, 19, 1950, July 3, 7, 15, 1962, W. W. Middekauff; 4 mi. W. Pantation, Sonoma Co., Match 3, 4, 5, 8, 9, 1956, March 6, 21, 1957, D. Jurlick; Yosemite Nat. Pk., Yosemite Valley, July 10, 1935, Terutrm califormicum, June 27, 1921, E. C. Van Dyke; Bloods, 7oom', June 23, 1930; Davis, July 13, 19:26, F. H. Wymore; Alta Meadows, Sequoia Nat. Pk., July 19, 1907, J. C. Bradley. Idaho: Rock Creek ('anyon, C'assia ('o., May 13, 195d, H. E. Cott; 3 mi . E. Moseow, March 24, 1957, ('. J. Peterson; Peck, April 8, on Solomons-seal. Montana: Glacier Nat. Pk., Jwne 29, 1956, on leaf of hellebore, Alice and J. G. Edwards. Nerada: "Ners"; 3 mi. N. Crystal Bay, Washoe ('0., June 14, 1964, on Veratrum, D. R. Smith and ('. W. Daker; Mt. Rose, Washoe ('o., 8900', June 14, 1964, on Yeratrm, D. R. Smith and ('. W. Baker. Oregon: 15 mi. E. Mt. Hood, May 12, 1959, false hellebore, K. Goeden; Bear Springs, Wasco ('o., May 21, 1959, swamp, K. Goeden; Monument Peak, 8 mi . F. S. F. Gates, Linn ('o., meadow, 4050', June 16, 1960, J. D. Lattin; Big Meadows, N. Santiam Pass, June 5,1954, rotting durf, V. D. Roth; Corvallis, April 14, 1960, K. (S. Swenson; MeDonald Forest, 5 mi . N. W. Corvallis, May 19, 1955, P. 0. Ritcher, April 22, 1962, from Veratrm, D. R. Smith, April 23, 1963, from I' rutrum, D. R. Smith; 20 mi . S. E. Oakridre, Lane (Co., May 21, 1958, P. O. Ritcher, R. K. Eppley, June 13, 1962, June 1, 1962, on T'ratrm, D. R. Smith, June 13, 196-1, on Yeratrum, D. R. Smith and C. W. Baker; Crater Lake Nat. Pk., Park Hef. July 12, 1955, D. H. Huntington; Crater Lake, July 13, 1923, F. II. Wirymore, August, 1935, J. S. B.; Luuch Cr., Dixie Pass. Bhe Mtns., Grant ('0., 4n00', June 1, 1957, B. Malkin; 20 mi . S. W. Lagrande, $4-5000$, May 11, 1930, taken on Teratrum; Bone Springs, Mlue Mtns., May 7, 1938, E. ('. Van I)yke; 10 mi . N. W. Pinehurst, Jackson Co, May 5, 1962, on Veratrum, D. R. Smith;

Sulfur Springs, 10 mi. N. W. Corvallis, April 4, 1963, D. R. Smith, April 13, 1963 ; Gearhart Mtn., 10 mi. N. E. Bly, Klamath Co., alpine meadow, below suxnmit, Boulder Cr., 7000', July 1, 1964, on 「'eratrum, J. Lattin, T. Schuh, and J. Schuh; 2 mi. W. Lansdon Lk., Umatilla Co., June 4, 1964, false hellebore, K. Goeden. Washington: Paradise Valley, Rainier Nat. Pk., July 17, 1936, E. C. VanDyke; Sunrise Peak, Rainier Nat. Pk., July 23, 1936, E. C. VanDyke; Blue Mtns., July, 1896, C. V. Piper; Pullman, May 10, 1899, C. V. Piper; Mt. Adams, July 26, 1932, A. B. Rolfs; Rainier Nat. Pk. near Yakima Park, subalpine forest, July 14, 1945; Lake Cushman, Mason Co., June 29, 1919, F. M. Gaige.

Host.-The larva feeds on Veratrum californicum Durand, V'. riride Ait., and probably other species of false-hellebore. Although the collection data on the type series indicate that they were taken from Solomons-seal, all the other records, as well as rearings by the author, have shown that the host is false-hellebore. The collector of the type series may have taken the adults from Solomonsseal or misidentified the host plant.

Larva.-The larva of this species is described here for the first time.

In late instar, head capsule, segments of mouth parts, mandible, spiracles, body tubercles, and segments of thoracic legs black; clypeus white. Remaining part of body green when alive with dark lateral stripe on each side.

Clypeus with two setae on each side. Labrum with narrow central emargination; three setae on each side; epipharynx with about nine spines located in arcuate row on each half (pl. XIV, 289). Left mandible with two ventral teeth and three sharp and one truncate lateral teeth (pl . XIV, 288) ; right mandible with one large and two small ventral teeth, two sharp and one truncate lateral teeth, and two molar teeth (pl. XIV, 287) ; each mandible with one seta on outer surface. Maxillary palpus four-segmented; second segment with one seta on outer margin; palpifer with five setae; lacinia with nine or 10 spines (pl. XIV, 290). Labial palpus three-segmented; prementum with three setae on each side; second labial palpal segment with two setae.

Thorax with tubercles arranged as in plate XIV, 293. Thoracic legs normal; femur longer than tibia; numerous setae on inner surface of each leg. Pair of setiferous lobes on sternum of each thoracic segment.

Abdominal segments 1 throurh 8 each with six dorsal annulets. Annulets 1, 3, 5, and 6 without tubercles; annulets 2 and 4 each with three tubercles on each side; first and second postspiracular lobes each with one tubercle; subspiracular lobe usually with two tubercles; surpedal lobe without tubercles (typical serment shown in pl. XIV, 292). Ninth abdominal segment usually with two tubercles on each side of second annulet and three tubercles on each side of fourth annolet (pl. XIV, 291) ; 10th abdominal tergum usually with four or six tubercles, suranal and subanal areas densely covered with setae. All spiracles distinctly and darkly winged. Number of tubercles as described may vary as to number, but this is usual number and position.

The earlier instars differ primarily in lacking distinct tubercles or the tubercles are lighter and in lacking the lateral dark stripe.

This species may be distinguished from nubilipennis by those characters given in the key.

Disrussion.-This species may be recognized by the white ventral surface of the antenna, but the most reliable character is the low, serate serrulate of the femate lancet.

The adults fly early in the spring and were taken from the last of March through April near Corvallis, Oreg., at an altitude of about 800 feet. They emerge at the time the host plant is sprouting and the leares are beginning to separate from the stem. Adalts were taken on Willamette Pass, Oreg., at an altitude of 4,500 feet before the winter snow had melted. The adults were easily collected on the leases and in the leaf axils, and on a cloudy day the could be picked off in numbers. At times three or four adults per plant were found.

Copulation takes place soon after emergence. Their position is the usual end-to-end type of the tenthredinids as described by Rohwer (101:5) for Phimatocera. In some cases this lasted as long as 30 minutes. Later the female begins to oviposit by carving a chamber in the leaf tissue and inserting the egrs. This is usually done on the underside of the leaf where the eggs appear as small white swellings and are arranged in rows of several to 12 eggs, paralle? with the venation of the leaf. The female will lay several rows of eggs, the usual total averaging 25 eggs.

In about 10 days the larvae hatch and immediately begin feeding. Ther mine out the leaf tissue by feeding on the underside of the leaf and leave the leaf riddled with irregular holes. There are five feeding instars and the sixth nonfeeding instar or prepupal stage, which searches for a papation site. The place of pupation Was not located, and rearings were not successful beyond this stage. Probably ther need a special medium for pupation, such as rotting wool or stems of clying plants. The time from hatehing to the prepunal stage was about 5 weeks. The time from adult emergence to the prepupal stage was about 3 months at 800 feet and about 2 months at 4,500 feet. The emergence time at the higher elevation lagrel about 2 months behind that at the lower elevation.

Rhadinoceract (Veratra) insularis (Kincaid)

Monophadnus instlaris Kincald, 1900, p. 34f; : .
Rhadinoctura insharis, Ross, 1951, p. G4.
Female--Average length, 6.3 mm . Entirely black with apex of foretibia whitish. Wings lightly infuscate.
Antenna with third segment subequal in length to fourth segment; segments berond third about three times as long as wide (pl. III, 51). Sheath straight above, rounded below (pl. IV, 96). Lancet with serrulae rounded, symmetrical, subbusal teeth indistinet (pl. VII, 156).

Mrde.-Average length, 6.0 mm . Color and structure as for Female. Penis valve obtong in appearance and rounded at apex (pl. X, 213). Harpe and parapenis as in plate X, 212.

Hodotype-The type (:) is at the T.S. National Museum, No. 5283 , and bears the data 'Metlakahtla, Alaska, June 4, 1899, Harriman Expedition '99, 'Т. Kincaid, collector."

Disfribution.-West coast of North America from Alaska to central ('aliformia (fig. 8, C $^{\circ}$).

Forth Ameriran Kocords--Alasku: Metlakahtla, June 4, 1899, T. Kincaid. Jritish C'olumbiat Hedley, July 7, 1923, C. B. Garrett; Grouse Mt., Yancouver. 3000', August 22, 1933, host-Feratrum viride, G. R. Jopping. ('aliformia: Lily Lake, Marin (o., March 5, 1956, J. Powell and J. Herring. Orequm: Dradley ('r., Dougtas Co., June 23, 1956, J. D. Vertrees; 5 mi . N. W. (orvallis, April 22, 1962, I). R. Smith; 20 mi . S. (akridge, Lane ('o., June 13, 1962, I). R. Smith; Still ('reek Forest ('amp, 1 mi . E. Government Camp nr. Mt. Hood, July 11, 1956, P. O. Riteher. Washington: Mt. Adams, July 26, 1932, (i. R. Rolf's; Mt. Rainier, July 4, 1937, H. Jenion; Mt. Rainier, Sunrise, 6400', July 30,1933 , J. Wilcox.

Ifost.-m(collection records indicate this species also feeds on Vratrom riride Ait. and other species of false-hellebore.

Larca.--l"nknown.
Discussion.-This species is close to aldrichi, but it difters by the entirely back antenna, rounded serulat of the lemale lancet. and rounded penis valve of the male. Specimens of insularis have been collected under the same conditions and at some of the same localities as aldrichi, but it appears to be more northern in distribution and found at higher altitudes.

Rhadinocoract (loralra) jacintensis, new species

Female-Length, 6.1 mm . Fintirely black with foretibia and apex of forefomur light brown to white. Wings lightly infuscate.

Antenna with third and fourth segments subedual in length; segments beyond third at least three times longer than wide (pl. [II, 51). ('lypeus truncate; postrenal arina absent; postorlital groove and pit alosont; madar space equal to diameter of front ocealus. Prepeetus absent. Tarsal claw simple. Forewing with stub of $2 A$ and $3 A$ furcate at apex. Hindwing with crossvein m-cu present, enclosing cell M. Sheath straight above, rounded below (pl. [V, 97). Lancet with serrulate pointed, with five or six anterior and posterior subbasal teeth (pl. Vif, 157).

Made-lemgrth, 5.9 mm . In color and structure similar to female. Penis valve evonly rounded at apex (pl. X, 215). Harpe and parapenis as in plate $X, 214$.

Hototype-Fremale, Tahquitz Valley, San Jacinto Mtns., Calif., June :3, 1940, W. L. Swisher". Deposited at the Los Angeles County Museum.

Allorypen-Male. Same ratil as the holotrpe. Deposited with the holotype.

Paralyes.-('filifornia: Same data as for holotype (2 3 7) ; Santa Barbara ('o., Lear V'aldes, Jume 1, 1928, Fi. ('. VanDyke (1.).

Disposition of P'aratypes.-Paratypes have been deposited at the Los Angeles C'omty Museum and the C'alifornia Academy of Scientes.

Distribution.-Southern California (fig. 8, D).
Host.-Unknown.
Larva.-Unknown.
Discussion.-This species is very close to insularis, but it may be distinguished by the pointed serrulae and distinct subbasal teeth of the lancet and the more evenly rounded penis valve. It is also found far south of the known range of insularis. The name is derived from the type locality.

Rhadinoceraea (Veratra) nubilipennis (Norton)

Phymatocera mbilipenmis, Kirby, 188:, p. 165́; Dalla Torre, 1894, p. 178.
Archs nubilipennis, Konow, 1905, p. 81.
Monophadhus mubilipendis, MacGilliveay, 1916, p. 150; MacGillivray, 1921, p. 23; Yuasa, 1922, p. 94; Benson, 1930. p. 107.

Rhadinoceraca rubilipcomis, Ross, 1951, p. 64.
Neoparcophora seclesta MacGillivray, 1908a, p. 289, ㅇ, MacGillivray, 1916, p. 144; Frison, 1927, p. 254 ; Ross, 1951, p. 64 (\because mubilipemis Norton).

Monophaduus planus MacGillivray. 1921, p. 23, $₹$; Frison, 1927, p. 253; Benson, 1930, p. 107; Ross, 1951, p. 64 (\therefore nubilipenmis Norton).
Monophadnus rapularis Benson, 1930, p. 107 (new name for planas MacGillivray, which is preoccupied by Monophadnus planus Klug).

Female.-Average length, 8.0 mm . Entirely black with outer surface of front tibia whitish. Wings moderately infuscate.

Antenna with third segment slightly longer than fourth segment, serments beyond third more than twice as long as wide (pl. III, 51). Malar space equal to one-half diameter of front ocellus. Sheath long, broadly rounded at apex (pl. IV, 98). Lancet with lobes low, rounded, subbasal teeth distinct with at least two anterior subbasal teeth extending above ventral margin of lancet (pl. VII, 158).

Male.-Average length, 7.7 mm . Color and structure as for female. Penis valve narrow and curved dorsally at apex ($p l . X$, 217) ; harpe and parapenis as in plate $X, 216$.

Holotypes.-S. Mubilipennis Norton (9) is type No. 10346 at the Academy of Natural Sciences of Philadelphia; the label reads "Mass." The MacGillivray types are at the Illinois Natural History Survey. The label on N. scelesta (9) reads "Black Mtns., N. C., VI," and the label on M. planus (\ddagger) reads "Franconia, N. H., Mrs. A. T. Slosson."

Distribution.- Eastern North America from southeastern Canada to North Carolina, not extending west of Appalachian Mountains (fig. 8, E).

Vorth American Records.-Connecticut: Storrs, May, 1954, E. Alven. Massachusetts: Boston; Central Massachusetts. New Brunswick: Harcourt, May 13, 1917, M. B. D. New Hampshire: Franconia, A. 'T. Slosson. New York: Lake Tear, Essex Co., 4300-4600', July 20, 1920; Ringwood, Ithaca, June 26, 1920; Ithaca, June 25, 1917; top of Mt. Whiteface, July 7, 1922, J. M. Aldrich; Indian Falls, Mit. Marcy, June 10, 1942, H. Dietrich; Northhampton, June 20. 1914, I. B. Young. North Carolina: Black Mts., May; summit of Plack Mts., July 2-5, 1906, W. Beutenmuller; Mt.

Mitchell, mid-June, 1924, above 4000', F. Sherman; Fayetteville, May 6, 1940. (umfte: Covey Hill, June 17, 1924, C. H. Curran; Knowlon, May 10, 19:30, L. J. Milme; Bolton Clan, May 5, 1936, G. S. Walley. Viryinia: Shenandoah Nat. Pk., Thornton River, May 8, 1966, (). and R. Flint.

Host... Larvate of this species feed on 「eratrum wiride Ait.
Sarca--Yuasa (1!2.2) included a deseription of the larva under the generic name Momophoulns.

In late imstar, head, segments of mouth parts, mandible, segments of thoracic legs, spiracles, and tubercles black; clypeus usually whitish. Tubercies large and conical, rest of body green, without dark lateral stripe.

Clypeus with two setae on gach side. Labrum with two setae on each side, with narrow central emargination; epipharynx with nine or 10 spines located in arruate row on each half (pl. XIV, 2911. Mandibles each with one seta on outer lateral surface; mandibles similar to those of aldrichi (pl. XIV, 287, 248). Maxillary palpus four-segmented; second palpal segment with one seta on outer margin; palpifer with five setae; stipes with one seta; lacinia with about six spines (pl. XIV, 295). Labial palpus threesegmented; second palpal segment with two setae; prementum with three setae on each side.

Thorax with tubercles arranged similarly to those of aldrichi (pl. XIV, 29\%). Thoracic legs normal; femur longer than tibia; setae numerous on inner margins of legs. Each thoracic sternum with pair of setiferous tubercles. Prothoracic spiracle distinctly winged.

Ablominal segments 1 through 8 each with six dorsal annulets (typical segment shown in pl. XIV, 296). Annulets 1, 3, 5, and 6 without tubercles; annulets 2 and 4 each with two tubercles on each side; first and second postspiracular lobes, subspiracular lobe, and surpedal lobe each with one tubercle. Spiracles distinctly winged. Ninth and 10th segments similar to those of aldrichi (pl. XIV, 291).

Discussion.-This is the only member of Rhadinoceraea known to occur in eastern North America. The female is easily separated by the fong sheath and the distinctive lancet, and the male may be separated by the long, narrow, curved, penis valve.

Genus LAGONS Ross

Lagomis Ross, 1!37, p. 99 : Ross, 1951, p. 6i3.
Type: Selandria nevadrnsis Cresson. Original designation.
Descripion.--Antenna filiform with second segment as wide as long and third and fourth segments subequal in length (pl. III, 49). Clypers shallowly emarginate; postorbital groove absent; postgenal carina present, developed only slightly below eye; malar space as wide as diameter of front ocellus. Prepectus absent. Tarsal claw with small inner tooth (pl. II, 14). Forewing stub of $2 A$ and 3A markedly turned up at apex, nearly meeting 1 (pl. I, 6). Hindwing with crossvein m-c present, enclosing cell M. Posterior
bart of seatellom and upper half of mesepisternum with large craterlike punctares.

The one Nearctit member of this qenus, wraderasis, may be immediately recognized by the large punctures of the scutellum and mesepisternum. This genus may lee distinguished from Monowhadmas by the sman inner torth of the tarsal claw and the upturned vein 2A and 3A, from Pararharactan by the wider malar space and the presence of punctures, and from P hymatocfore and Fhadinorerata hy the simple upturned 2 a and 3 A vein, presence of punctures, and more stemder antenta.

A paratype of the Japanese species Rhatinorrata opaciothis
 placed it in this genus, but it belongs in Letgomis (new comfonation). () Kutani (19,56) reported opacionlis to feed on Somburus, the same host for the North American nertedensis.

Larra-The larva for the one Nearetic species is known and is described under the spexies. The distinet larval form substantiates the status of this genms, It is close to Rihadinocerata in having setate on the sacond segment of the labial palpus, but the numerous lisht-colored tuberclas will immediately separate it. The mandibles as well as the tuluerele pattern are very distinctive.

Deseriprion of Lafonix Species

Latomis nevalensis (Cresson)

Phymatom m cade wis, Kirbs, 18א2, p. 165; Halla Torre, 1804, p. 178.

Fomble---Avadge length, 8.2 mm . Head and antenma black, clyous white. Thomax black with monotum, mesepisternum, prescutum, and lateral lobes rufous; northern specimens sometimes entirely black. Legs black; extreme apex of each femur, outer surface ol each tiba, and forelarsus white; midtarsus and hindtarsus infastate. Ablomen black with marrow white margin on posterior part of exch abominal segment. Wings hyaline.

Large craterlike punctures present on posterior half of scutellum and upper half of mesepisternum. Sheath straight above, rounded below (ph. IV, 99). Lancet with sermbae that with subbasal teeth histinct; long narrow spmes conspicuous as lateral armature (1 hl . VII, 150).

Male...-Arerage length, 7.6 mm . ('olor similar to that of femate exorpt for mesepisternum and prescutum, which are black. Strueture similar to that of female. Fighth abominal tergite nearly divided mesally bey namos emargination extonding from posterior margin of segment. Penis valve quadrate (pl. X, 219) ; harpe and parapenis as in phate $X, 仓 1 \mathrm{x}$.

Holotypus. S. Heradrusis (ressom (;) is type No. 198 at the Acaromy of Natumal Sciences of Jhibatephiat and bears a label
reading＂Nev：＂P ．lurostomu：Rohwer（ \ddagger ）is at the（V．S． National Museum，type No．14557，and bears the data＂（faremont， （al．，Baker：＂

Distrihntion．－Western North America from British Columbia to southern（adifornia and east to Alberta and Wyoming（fig． 9 ． A）．

Yorth tmeriman Records．－．Hharta：Waterton，June 12，1923， E．H．Strickland．Brifish（＂olumbitt：Vernon，April 15，1934， reared from larvae，host－Sitmbucts racemosa，©．R．ILopping； Armatrong，Day 30，1020，M．H．Rahmann；Sancouver，Seymow （ㄷ，May 12，19：31，H．B．Lexh；Harrison，June x，1927．TI．H． Ross；Keremeos．May 2e．1959，L．A．Keiton；Mt．Revelstoke， July 21.105% ，600（G．P．Hollana．（raliformat Davis，April 15 ， 1957，F．W．Michalk，April 12，1417，B．Stevens，April 8， 1956, W＇．H．Jange，May x ，1015．P．I＇aige，Ampil 23，1936．Amil 6， 19\％6，R．M．Bohart，May ：，1961，F．I）．Parker，April 2\％，1901， April 8，1661，April 27，106\％，ex Stm \quad ， 10：31；Samamento，April 21，1947，May 1，1949，Mareh 19，1947，
 berry；Santat larbara，Mareh 2,1935 ．If．E．White：Ono．Shasta
 Smith；Los Anpelss，April 1．1919；Berkelsy，April 12，1934， April 26．1935；Kelnerville，April 17．1919，W．If．Lange；（arson
 Vanloke；Alameda（oo；Strawherry fyn，Satramento（oo，April 12．16．7．，T．H．Gantembein；Carmiehael，Sacramento Co．，April 12．In年；Adobe（r．，20 mi．W．Pattersom，Stamishas（o．
 April 1．1957，F．Santana；foose Lk．，Modoc（o．，May 2．4，1944． R．M．Bhant；Pimaches Nat．Mon．．April 6．1951，W＇IS．Lange；
 Farmo（o．，Amil． 1900 ，i．（＇．Hall：Glendale，Los Anqueles（o．，

 Irwin；Ahm lokk Park，Santa（larat（o．，April ？，1957．R．K． Finhly，Mareh 10，1956，1）．J．Burdick．Jhaho：Webb，Nez Perce （\％，May 5 万，19．7．IV．F．Barr；Krassel，June 6，19．57，in flight， M．M．Fumnis：Norada：＂Nev．＂Ortom：Salem，April 21，1949， J．E．Havis；Mollet Meat，Mue Mtns，May 17．1928．E．（＇．Van－ Iyke＇；lmatila（＇o．Wildwoman Springs， 3 mi．F．N．F．Tollate， 5140，July 11，196．1，T．Sehuh and J．I）．Lattin．Choh：Logan， May 1：3，19fo，A．B．Haws．I＇mminto Grand Teton N．Pk．，July， 1947，R．M．Bohart．

Host．Latraw of this suectits feed on speciss of Stmbuths．
Iara．－．．The larvar were mumerous on eldeborry during the last part of Amril and in Mas at Mavis，（alif．，and were eolkected and ant to me by Frank D．Parker．They were not asonciated by retring．

In late instar，fory entirely green，tubereles of ：ame color as rest of body．Head ans spimedes light brown．Ocatamium and apical one－thir of mandble batek．

Clypeus with two setae on each side. Labrum usually with two setae on each side (in a few cases, three were present); shallow central emargination present; epipharynx with 10 to 12 spines located in arcuate row on each anterolateral half (pi. XVI, 318). Each mandible with one seta on outer lateral surface; left mandible with three ventral teeth and two sharp and one truncate lateral teeth ($p 1$. XVI, 317) ; right mandible with three ventral teeth, one sharp and one truncate lateral teeth, and one molar tooth (pl. XVI, 316). Maxillary palpus four-segmented; one seta on outer margin of second serment; palpifer with three setae; stipes with one seta; lacinia with 10 to 11 spines (pl. XVI, 319). Labial palpus three-segmented; second segment with two setae; prementum with three setale on each side.

Thorax with tubercles arranged as in plate XVI, 315. Prothoracic spiracle not winged. Each thoracic sternum with pair of setiferous tubercles. Thoracic legs normal; femur longer than tibia; setae present on all surfaces of each segment.

Abdominal segments 1 through 8 each with six dorsal annulets (typical segment shown in pl. XVI, 314). Amulets 1, 3, 5, and 6 without tubercles; annulet 2 with three or four pairs of tubercles on each side, at times they may be single; annulet 4 with four pairs of tubercles on pach side; first postspiracular lobe with one tubercle; second postspiracular lobe with two tubercles; subspiracular fobe with row of seven to nine tubercles; surpedal lobe with row of seven to nine tubercles. Inner lower surface of each proleg with several setae. Ninth abdominal segment and 10th abdominal segment as in plate XVI, 313. Tenth abdominal tergum with posterior row of numerous tubercles.

Discussion.-The thorax varies from largely rufous in the southern part of the range of this species to entirely black in the northem part. Both sexes are easily recognized by the large punctures of the scutellum and mesepisternum, which are lacking in the species of all closely related genera.

Genus MONOPHADNUS Hartig

Tenthredo subgenus Monophadnus Hartig, 1837, p. 271.
Selandria subgenus Monophadnus Hartig, Norton, 1867, p. 250; Cresson, 1880b, p. 59.

Monophadnus Hartig, Konow, 188G, p. 244; Dalla Torre, 1894, p. 160; Konow, 1898, p. 231; Ashmend, 1898a, p. 253; Konow, 1903b, p. 170; Konow, 1905, p. 85; Rohwer, 1911c, p. 224; Enslin, 1914, p. 289; MacGillivray, 1916, p. 148; Dittrich, 1924, p. 627; Malaise, 1935, p. 167; Ross, 1937, p. 98 ; Berland, 1947 , p. 251 ; Pasteels, 1948 , p. 187; Ross, 1951, p. 67 ; Benson 1952, p. 101; Takeuchi, 1952, p. 54; Benson, 1954, p. 281; Lorenz and Kraus, 1957 , p. 119.
Type: Tenthredo albipes Gmelin. Designated by Ashmead (1898a).
Monophadmus subgenus Doderia Malaise, 1025, p. 167; Pasteels, 1948, p. 187 (Monophadnus Hartig).
Type: Tenthredo (illantus) spinolap Klug. Original designation.
Descrimion.-Antenna short and stout with second segment as wide as long or longer than wide and third segment longer than fourth sagment (pl. III, 5;-57). ('lypeus truncate; malar space as narrow as or narrower than one-halif diameter of front oceltus;
postorbital groove present or absent; postgenal carina developed part way below eye, never exceeding one-fourth length of eye. Prepectus absent or only slightly indicated by upturned margin of anterior edge of mesepisternum, but not separated from latter by groove or suture. Tarsal claw simple, with small inner tooth, or with imer tooth nearly subequal in length to outer tooth; basal lobe absent (pl. II, 13, 14, 15). Forewing with stub of 2 A and 3 A straight (pl. I, 1). Hindwing with crossvein m-cu present, enclosing cell M. Penis valve of male genitalia without lateral spine or basal lobe (pl. X, 221, 223, 225, 227, 229).

This genus is close to Phymatocera, Paracharactus, Rhadinoceraen, and Lafonis, but may be separated by the straight $2 A$ and 3 A vein of the forewing and the third antennal segment being longer than the fourth segment. Superficially it also resembles Monomhadnoides, but Monophadnus lacks the basal lobe of the tarsal claw, retains cell M of the hindwing, and lacks the fateral spine on the penis valve in the male genitalia. Various species in this genus have been put in Blennocampa on the basis of the presence of the inner tooth of the tarsal claw; however, in evaluating other characters on which this genus is based, the tarsal claw was found to be rather variable. The main character of the tarsal claw is the lack of a basal lobe.

Nonophadnus previously had been placed in the Blennocampini by Benson (1938) and Takeuchi (195,2), but the larval characters and the resemblance of the male genitalia associate this genus with the Phymatocerini.

Seven Nearctic species are in this genus and probably about six Palaearctic species. The larvae are associated with Romoncishs.

Larva.-Larvae are known for pallescens, aequalis, and possibly califormicus. The larval association with californicus is by host relationship only. Since I have not seen the larva of pallescens and the larva of californicus is questionable, generic characters are not given. The larval characters of aequalis, however, substantiate the close relationship of this genus to Phymatocera and Phadinocraca, and the placement of this genus in the Phymatocerini.

Keys to Monophadnus Species

ADLLTS

1. Femate 2
Male 8
2. Tarsal claw simple (pl . II, 13) 3
Tarsal claw with large or small inner tooth (pl . II, 14, 15) 6B. Abtomen and mesopleuron mostly light rufous or reddish brown
Mesopleuron black; abdomen at most with narrow white margin on posterior edge of each segment4
3. Niwrow white band present on posterior edge of each abdominal segment: antenar with third segment $11 / 2$ times or less length of fourth segment (pl . III, 56) ; basal plates witlely separated medially, leaving wide membramous aten (pl. II, 23) -...M. assaracus MacGillivay
Abdomen entirely black; anterna with thiud segment nearly twiec length of fourth segment and subequal to fourth plus fifth segments (pi. III, 53) ; basal plates not widely separated (pl. II, 24)
4. Tegula white; upper angles of pronotum reddish brown; sheath truncate at apex (pl. IV, 100) ; serrulae of lancet rounded (pl, VLII, 160)
M. aequalis MacGillivray

Tegula reddish brown or black; upper angles of pronotum blenct: sheath rounded at apex (pl. V, 106); serrulae of lancet pointed (pl. VIII, 166) -..esecns (Gmelin)
6. Tarsal claw with small inner tooth (pl. II, 14); tegula white; castern North America
M. bakeri, n. sp.

Tarsal claw with long inner tooth, nearly subequal in length to outer tooth ($\mathrm{pl} . \mathrm{II}, \mathrm{I} 5$) ; tegula black; western North America $-\ldots-\ldots$
7. Sheath large and rounded, usually slanting upward (pl. V, 104); medial part of lancet with low, rounded serrulae (pl. VIII, 1G4)
M. contorths (MacGillivray)

Sheath smaller, pointed, ventral and dowsal margins mecting at median apex ($\mathrm{pl} . \mathrm{V}, 103$) ; lancet with serrulae flat (pl. VIII, 163)
M. culifornicas (Rohwer)
8. Tarsal claw simple (pl. II, 13)

Tarsal claw with inner tooth (pli $1 \mathrm{I}, 14,15$) $-\cdots$
9. Abdomen with several tergites rufous or reddish brown_.._M. lattimi, n. sp. Abdomen black, at most with narrow white margin on posterior edge of each segment.
10. Basal plates widely isparated mesally, leaving wide membranous aren (pl. II, 23); narrow white margin on posterior edge of each ablominal segment usually present; parapenis longer than wide (pl. X, 222); western North America M. assaracus MacGilliviay

Basal plates not widely separated (pl. II, 24) : abdomen entirely black; parapenis as wide as or wider than long (pl. X, 220); eastern North America \qquad M. aequalis MacGilivray
11. Hrepe oblong (pl . $\mathrm{X}, 226$) ; penis valve with dorsal margin concave, ventral margin with rather angulate corners (pl. X, 227) ; usually from California-Oregon border northward_-M. contortus (MacGillivray) Harpe rounded (pl. X, 224) ; penis valve with dorsal margin straight, ventral margin rounded, without angulate corners ($\mathrm{pl} . \mathrm{X}, 225$); usually from California-Oregon border southward
M. califomicus (Rohwer)

LARVAE

1. Head entirely black \qquad M. pallescens (Gmelin)

Head brown or yellow with dark brown spot on cach side of vertex \qquad 2
2. Head brown with ocularium black; tubercles ustally dark
M. califormicus (Rohwer) (?)

Head yellow with brown spot on each side of vertex; tubercles of body small, of same color as body

Descriptions of Monophalnas Species

Monophadnuts aequalis MacGillivray

Monophathus aequatis MacGillivtay, 1908a, p. 292, o ; MacGilliviay, 1916. p. 150; Frison, 1927, n. 253; Ross, 1951, p. 67 ; Benson, 1962, p. 391 (- mallescens fimelin [!]).
Monophadnus plicatus MacGillivray, 1008a, p. 292, ; ; ; MacGiltivray, 1916, p. 150: Frison, 1927, p. 253; Ross, 1951, p. 67 ($=$ actutalis MacGillivray).

Monophadnus tronsversus MacGilljvray, 1908a, p. 292, ㅇ: MacGillivray, 1916, p. 150; Frison, 1927, p. 253; Ross, 1951, p. 67 (\because acqualis MacGillivray).

Monophadms trancatw Rohwer, 1912, p. 232, o ; Ross, 1951, p. 67 ($=$ uequalis MacGillivray).

Frmale.-Average length, 6.8 mm . Head and antenna black. Thorax black with tegula white and upper angles of pronotum reddish brown. Legs black with extreme apex of each femur, ench tibia, and each tarsus white; tarsi infuscate apically. Abdomen
black with very narrow white margin on posterior edge of each segment. Wings hyaline.

Antenna short and stout, second segment longer than wide, third segment subequal in length to fourth plus fifth segments (pl . III, 53). Head with vertex and upper inner orbits shining, remainder roughened, dull, and lightly punctate. Malar space equal to one-half diameter of front ocellus. Thorax with dorsum and mesopleuron finely punctate, scutellum and prothorax more densely so; pectus smooth and shining. Tarsal claw simple. Basal plates not widely divided mesally, only small membranous area present (pl. II, 24). Sheath straight above, rounded below, obliquely truncate at apex (pl. IV, 100). Lancet with serrulae low and rounded, without distinct subbasal teeth (pl. VIII, 160).

Male.-Average length, 6.5 mm . Color similar to that of female except for tegula, which is darker, and pronotum, which is entirely black. Structure similar to that of female. Parapenis as wide as of wider than long (pl. X, 220) ; harpe and penis valve as in plate X, 220 and 221.

Holotypes.-The MacGillivray types are all at the Illinois Natural History Survey. Their labels read as follows: M. aequalis (ㅇ), "Ithaca, N.Y., May 3, 1896"; M. plicatus (ㅇ),"Ames, Ia."; M. transversus (7), "Mich." M. truncatus Rohwer (\%) is type No. 14553 at the U.S. National Museum and bears the data "Oxbow, Sask., April 1, 1907, Fred K. Knab, collector."

Distribution.-Alberta to Quebec south to Colorado, Illinois, and Maryland (fig. 9, B). It does not occur west of the Rocky Mountains.

North Americun Records.-Alberta: Gull Lake, June 24, 1929, E. F. Strickland; Bilby, June 19, 1924, G. Salt; High River, June 25, 1927, O. Bryant. Colorado: Ft. Collins, June 6, 1899; "Colo.," collection C. F. Baker. Illinois: White Pines St. Pk., April 18, 1931, T. F. Frison; Halfday, May 19, 1944, Ross and Sanderson; White Heath, April 28, 1916, on flowers of Claytonia, April 28, 192 , C. C. Goff, April 25, 1915; Cary, April 13, 1945, on anemone, H. H. Ross; Zion, Dunes Park, May 21, 1942, Ross and Riegel. Iowa: Ames, Aptil 26, 1897. Maine: Kennebec Co., 5 mi . N. Litchfield, May 24, 1966, D. R. Smith; Piscataquis Co., Brownville Junction, May 27, 1966, D. R. Smith. Manitoba: Aweme, July, 1912, S. Criddle; Wanless, July 2, 1961, H. E. Milliron. Maryland: Glen Echo, May 19, R. M. Fouts; Plummers Island, April 27, H. S. Barber. Michigan: East Lansing, April 29, 1942, C. Sabrosky; Ann Arbor, Washtenaw Co., May 3, 1918, F. M. Gaige; White River, White Cloud, May 29, 1939, Frison and Ross; Barton Marsh, Ann Arbor, Washtenaw Co., May 22, 1919, T. H. Hubbell; Ag. Coll., May 27, 1920, L. J. Bottimer. New Yorlc: Ithaca, May 8, 1915, May 3, 1896. Ontario: Ottawa, May 11, 18; Bells Corners, May 17, 1945, O. Peck. Qucbec: Beech Grove, May 15, 1951, J. F. McAlpine; Finl, May 31, 1903. Saskatchewan: Swift Current, June 21, 1937, A. H. Sparrow; Oxbow, April I, 1907, F. K. Knab.

Host.-Larvae of what probably are this species have been taken from Ranunculus in Illinois by Ross and Sanderson. Closely related European species feed on Ranunculus.

Larva.-The larva described here was taken from Ranunculus at Cary, Ill. It is not associated br rearing, but adults of aequalis were taken from the same locality during the same year. The association of closely related species of this genus with Ranumculus and the similarity of this larya to other Monophadnus species, as described by Lorenz and Kraus (19.57), also support this association.

In late instar, entirely light creamy white, small tubercles same color as rest of body; head yellowish with one large brown spot on each side of vertex; ocularium black.

Clypeus with two setae on each side. Labrum with three setae on each side; narrow central emargination present; epipharynx with nine or 10 spines located in arcuate row on each half (pl. XV, 309). Each mandible with one seta on outer lateral surface; left mandible with three sharp ventral teeth and two sharp and one truncate lateral teeth (pl. XV, 308) ; right mandible with three ventral teeth, two sharp and one truncate lateral teeth, and one molar tooth (pl. XY, 307). Maxillary palpus four-segmented; second segment of palpus with one seta on outer margin; palpifer with three setae; lacinia with nine to 10 spines (pl. XV, 310). Labial palpus three-segmented; prementum with three setae on each half.

Glandubae of thorax arranged as in plate XV, 312, varying slightly as to number on each annulet and lobe. Thoracic legs normal; femur longer than tibia; setae on inner raargins of each leg.

Abdominal segments 1 through 8 each with six dorsal annulets (typical segment shown in pl. XV, 311). Annulets 1, 3, 5, and 6 without glandubae; annulet 2 with three glandubae on each side; annulet 4 with two glandubae on each side; each postspiracular lobe and surpedal lobe with one glanduba; subspiracular lobe with two or three glandubae. Ninth segment with glandubae approximately as for other segments. Tenth tergum with six to eight glandubae located centrally; setae numerous on subanal and suranal areas.

The dark spots on the head will immediately separate this larva. Lorenz and Kraus (1957) stated that the head is entirely black in pallescens.

Discussion.-This species is closely related to but distinct from pallescens, and the differentiating characters were probably not clear to Benson (106.2) when he synonymized it with pallescens. The females may be separated by the oblicuely truncate sheath, rounded serrulae of the lancet, the roughened thorax, and the light-colored upper angles of the pronotum and tegula. The males may be separated by coloration and genitalia.

Monophadnus assaracus MacGillivray

Monopiadhuts assaracus MacGilivray, 1923c, p. 26, ó; Frison, 1927, p. 253; Ross, 1951, p. 67.

Frmale--Average length, 6.9 mm . Head and antenna black. Thorax black with tegula white. Legs black with extreme apex of each femur and base of each tibia white. Abdomen black with narrow white margin on posterior ellge of each segment, which is sometimes wifler mesally. Wings hyaline.

Antenna with second segment as wide as long, third segment longer than fourth segment but only $11 \geq$ times its length (pl. III, 56). Malar space equal to one-halit diameter of front ocellus. Head smooth and shining except for very fine punctures, most noticeable on clypeus and postorbital areas. Thorax shining, with dorsum and mesopleuron tinely punctate, pronotum and hindmargin of scutellum more tensely so. Prescutum and scutellum separated from lateral lobes by very deep furrows; lateral lobes distinctly mrotuberant and raised above rest of thorax. Tarsal claw simples. Dasal plates widely separated mesally, leaving large membranous area (pl. II, 23). Sheath straight above, rounded below (1 . V, 101). Lancet with serrulae low and rounded (pl. VII, 161).

Hale.-Average length, 6.5 mm . In color and structure similar to female. Parapenis higher than wide (pl. X, 222) ; harpe and penis valve as in plate $X, 222$ and 223.

Holotype-The type (:) is located at the Hinois Natural History Survey and bears the data "Rock Creek, Oregon, March 19."

Distrihation.-Known only from Oregon (fig. 9, C.).
Forth Ampricm Records.-Oregon: Mary's Peak, April 28, 1963, April 29, 1963, May 12, 1963, rotary trap; N. Santiam River, 10 mi . N. Hwy. 20, Limn Co., June 24, 1954. J. C. Downy; Bagby Fot Springs, Clackamas Co., May 5, 1962, K. Goeden.

Host.-Unknown.
Larta.-Unknown.
Discussion.-This species may be separated from the other species of this genus with simple tarsal claws by its coloration, antenma, basal plates, and genitalia. It is the only known western species besides pallescens to have a simple tarsal claw. Among the several specimens at hand, the white margin on the posterior erlge of the abdominal segments varied as to width, the tegula was either white or dark brown, and the upper angles of the pronotum were either dark brown or black.

Monophathuts bakeri, new species

Frmale.-Length, 6.7 mm . Head and antenna black; labrum light. Thorax black with tegula white. Legs black with first segment of each midtrochanter and hindtrochanter, extreme apex of each femur, all tibiae, and all tarsi white; tarsi infuscate apically. Abdomen black. Wings hyaline.

Antenna with second segment as wide as long; third segment longe, than fourth but less than segments 4 plus 5 (pl. III, 54). Head shining, finely punctate, more densely so on frons, paraantemnal fields, genal areas, and clypeus. Clypeus truncate; postorbital groove indistinct; postgenal carina only slightly developed
below eye; malar space nearly linear, less than one-half diameter of front ocellus. Thorax smooth and shining, very finely punctate; pronotum and posterior margin of scutellum more densely punctate. Prepectus absent. Tarsal claw with very small inner tooth (pl. II, 14) ; basal lobe absent. Basal plates not widely divided on meson, only small membranous area present (pl. II, 24). Sheath straight above, rounded below (pl. V, 102). Lancet with serrulae low and pointed, apex of serrulae flat; subbasal teeth distinct (pl . VIII, 162)

Mate.-Cnknown.
Holotype.-Female, White Heath, 11l., April 25, 1915. Deposited at the Illinois Natural History Surver.

Paratypes.-Kahsas: Lawrence, April 18, 1938, L. J. Lipovsky (1\%). Maryland: Plummers Island, June 1, 1913, H. S. Barber (17). Montana: "Montana" (17). Tirginia: Great Falls, April 30, collection N. Banks (1 \%).

Disposition of Paratypes.--Paratypes have been deposited at the Illinois Natural History Survey, U.S. National Museum, and Museum of Comparative Zoology, Harvard University.

Distribution.--Maryland west to Kansas and Montana (fig. 10, A). Although only a few specimens are available, this species is apparently widespread.

Host.-Unknown.
Larad.-Unknown.
Discussion.-This is the only species in this genus with the small inner tooth of the tarsal claw as opposed to those with the simple tarsal claw and those with the long inner tooth. Coloration, antenna, basal plates, and genitalia will also serve to separate it from other members of this genus. Several specimens were examined from widely separated locaiities; all were constant in their coloration and structure.

This species is named after Charles W. Baker, Department of Biological Sciences, California State Polytechnic College, San Luis Obispo.

Monophadhus californicus (Rohwer), new combination

Nrocharactus califormices Rohwer, 1009a, p. 89, 9 ; Stannard, 1949, p. 38.
Parachurectus ctliformiets, Rohwer, 1912, p. 231.
Monophadnoides conductus MacGillivray, 1923c, p. 24, ㅇ ; Frison, 1927, p. 252. liew synotyomy.
Blennocampa conducta, Ross, 1951, p. 67.
Female.-Average length, 7.3 mm . Entirely black with extreme apex of each femur, each tibia, and each tarsus white; narrow margin on posterior edge of each abdominal segment white. Wings moderately infuscate.

Antenna with second segment as wide as long, third segment longer than fourth segment but less than length of segments 4 plus 5 (pl. III. 55). Head smooth and shining; clypeus roughened. Postgenal carina faintly indicated below eye; postorbital groove distinct with small punctures; malar space equal to one-half diameter of front ocellas. Thorax smooth and shining, fine scattered

punctures on dorsum, mesopleuron, and pectus; pronotum more densely punctate, roughened; several large punctures on posterior edge of scutellum and posttergite. Prepectus indicated by upturned margin of anterior edge of mesepisternum but not separated by suture or furrow. Tarsal claw with long inner tooth, nearly subequal in length to outer tooth; basal lobe absent ($p 1$ II, 15). Basal plates not widely separated on meson. only small membranous area present (pl. 1I, 24). Sheath with lower maryin slightly curved, upper margin straight, then abruptly curved near apex forming obliquely truncate margin above ($\mathrm{pl} . \mathrm{V}, 103$). Lancet with serrulae flat; subbasal teeth distinct (p). VIII, 163).

Male-A - verage length, 6.8 mm . In color and structure similar to female. Harpe almost evenly rounded, not oval (pl. X, 224); penis valve with dorsal margin flat, not distinctly concave (pl. X. 225).

Holotypes.-M. califormicus Rohwer (7) is type No. 14556 at the U.S. National Museum and bears the data "Palo Alto, Cal., Feb. 29, 1892." The type of M. conductus MacGillivray (2) is at the Illinois Natural History Survey and bears the data "Sta. Clara Co., Calif., May, 1902, Coleman."

Distribution.-Confined to extreme southern Oregon and California (fig. 10, B).

North American Records.-('alifornia: Dunsmuir, May 21, 1936, G. H. and J. L. Sperry; Hills back of Oakland, March 22, 1940, E. Zimmerman; Shingletown, Shasta Co., June 2, 1941, Ranuchlus; Forestville, April 20, 1933, A. T. MeClas; Stan. L., April 3, 1915, from Ranunculus sweepings, H. Morrison ; Modoc Nat. For., June 11, 1933. K. A. Salman; Berkeley, February 23, 1945, W. W. Middlekauff, March, 1934, R. M. Bohart; Sobre Vista, Sonoma Co., April 30, 1911, J. A. Kusche; Truckee, June 10, 1953, A. D. Telford; Markleeville, Alpine Co., May 29, 1959, May 20, 1957, grass, R. P. Allen ; Cabin, May 30, 1956, R. E. Darby; Calistoga, March 18, 1947, R. M. Bohart; Siskiyou Co.; Redwood City, March 30, 1942, P. H. Arnaud; Petaluma, May 18, 1946, T. О. Thatcher; Lake Tahoe, June 19, 1936, R. M. Bohart; Oakland, April 17, 1937, E. S. Ross; Colusa Co., Rumsey Cn., Aptil 1, 1961, J. Cantenbein; Alta Meadow, Sequoia Nat. Pk., 9000^{\prime}, July 19, 1907, J. C. Bradley; Elk Grove, Sacramento Co., April 2, 1952, E. C. Carison; Monterey Co., April 5, 1904, Pinus radiata, Coleman. Oregon: Pinehurst, Jackson ('0., 3375^{\prime} ', May 19, 1960, D. R. Smith.

Host.-Collection records indicate it may be found on Ranmculus. This agrees with the known host for some other members of this genus.

Larca.-The larva described here was taken from Ranumonlus at Sonoma, Calif. It was not associated by rearing. However, californicus is the only known Monophaines from this region, Ramuculus is the host for some closely related species, adults of californicus have been collected from Ranunculus, and the larva is close to other known Monophadmus harae.

In late instar, body creamy white; head capsule, tubercles, segments of thoracic legs, and spiracles brown; ocularium back.
(lypeus with two setae on each side. Labrum with three setae on each side; narrow central emargination present; epipharynx similar to that of "t qum/is (pl. XV, 309). Each mandible with one seta on outer lateral margin; left and right mandibles similar to those of acyualis (pl. XV, 307, 308). Maxilary palpus foursegmented; second serment of palpus with one seta on outer margin; palpifer with three setae; galea tonical; lacinia with nine to 10 spines. Labial palpus three-segmented; prementum with three setae on each side.

Thoracic legs normal; femur longer than tibia; setae mainly confined to inner margins of lers. Each thoracic sternum with pair of setiferous tubercles. Tubercles of thorax arranged similarly to these of arqualis ($\mathrm{pl} . \mathrm{XV}, \mathrm{a} 12$).

Aldeminal serments I through 8 each with six dorsal amnulets. Spiracles lighty winged. Giandubae or tubereles long and slender, darkened. Annulets 1,3 , 5 , and 6 without tubercles; annulet 2 with four or the tubercles on cach side; annulet 4 with four to six tubercles on each side; first postspiracular lobe with one or two tubercles; second postspiracular lobe with two to four tubercles; subspiracular lobe with two to five tubereles; surpedal lobe with three or four tubercles. Ninth segment similar to that of athualis. Tenth tergum with $16-20$ tubercles scattered on its surface and one tubercle above each proleg. Subanal and suranal areas with numerons setae.
The entirely brown head, more numerous and darkened tubercles, especially on the loth tergum, and distribution will separate this larva from other known larvae of this genus.

Discussion.-This species may be recognized by the long inner tooth of the tarsal claw and may be separated from its closest relative, contortus, by the lancet, sheath shape, and characters of the male genitalia.

Monophadhus contortus (MacGillivray), new combination

Monophadnoides contord MacGillivray, 1923a, p. 78, o ; Frison, 1927, p. 252. Btemoctampa contorta, Ross, 1951, p. 67.
Bumophadnus aeruths MacGillivray, 1923a, p. 79, \&; Frison, 1927, p. 253; Ross, 1951, p. if. hen synomym.
 1951, p. fis (contarta Mac(iflivyay).
 1!51, p. 67 (contorta MacGillivray).

Frmale, - Average length, 7.4 mm . Entirely black with extreme apex of each femur and base of each tibia white. Wings moderately infuscate.

Anterma with second segment as long as wide, third segment longer than fourth serment but shorter than segments 4 plus 5 (pl. II, ins). Head shining, finely punctate especially on genal areas; clypus roughened. Postorbitat groove distinct; postgenal carina developed below eye; malar space equal to one-half diameter of front ocellus. Thores shining; dorsum and mesopleuron finsly punctate; pronotum densely punctate; posterior margin of scutellum and posttergite with several large punctures; pectus
smooth and shining. Prepectus indicated by upturned margin of anterior edge of mesepisternum but not separated by suture or furrow. Tarsal claw with long inner tooth, nearly subequal to outer tooth in length; basal lobe absent (pl. II, 15). Basal plates not widely divided on meson, only small membranous area present (pl. II, 24). Sheath long and evenly rounded at apex, usually distinctly slanted upward (pl. V, 104). Lancet with serrulae low and rounded with subbasal teeth distinct (pl. VII, 164).

Male-Average length, 6.8 mm . In color and structure similar to female. Harpe oblong (pl. X, 226); penis valve with dorsal margin concave ($\mathrm{pl} . \mathrm{X}, 227$).

Holotypes.-All the MacGillivray types are at the Illmois Natural History Survey. They bear the following data, respectively: M. contorta (9), "Corvallis, May 7, Ballard Collection"; M. aeratus (.), "Corvallis, April 13, Gooding (ollection"; A. obsitus (\ddagger), "Moscow, Idaho"; and A. occiduns (7), "Juliaetta, Idaho."

Distribution.-Yukon Territory south to northern California and east to Montana (fig. 10, C).

Vorth American Recurds.-British Columbia: Langley Pr., May 11, 1929, R. Graham; Holtic. June 4, 192G, Ginoble; Horne Lk., June 4, 1955, R. Coyles; Port Hammond, May 13, 1919, W. B. Anderson; Victoria, V. I., April, 1886. Taylor; Kitsumkalum Lk., 20 mi . N. Terrace, May 31, 1960, W. W. Moss. Calfornia: Orleans, Humbolt ('0., May 7, 1962, P. menziezil, T. W. Koerber. Idaho: Moscow; Juliaetta. Montana: Gallatin ('o., May 17, 1932. Oregon: Corvallis. April 6, 18, 1935, G. Ferguson, May 7, 1938, A. T. MeClay, May 6, 1955, G. Bennett; Columbia, May 19, 1962 ; Mary's Peak, May 12, 196:3, May 14, 1964, rotary trap; Indian Ford Cr., 6 mi . N. W. Sisters, Deschutes ('o., May 17, 1963, D. R. Smith; Little Squaw lk., 7 mi. E. Copper, Jackson ($0 ., 3200$ ', R3W, T41S, Sec. 2, May 22, 1964, D. R. Smith. Yukon Territory: Westholm, May 3, 1917 , A. E. ('ameron.

Host--Inknown.
Larva--Unknown.
Discussion.-This species and califormicus may be separated from other members of this genus by the long inner tooth of the tarsal claw. This species may be separater from califormicus by the sheath shape and lancet of the female and the genitalia of the male. The range is more northern. It is found from the Oregon('alifornia border northward, whereas californicus is found south of this region.

Monopharluus lattini, new species

femate.-Length, 6.5 mm . Fead and antenna black with clypeus and mouth parts orange yellow. Thorax with dorsum of mesothorax, except scutellum, pectus and metapleuron black, remainder whitish to orange yellow. Legs with tach coxa, trochanter, and femur orange yellow; each tibia and tarsus whitish with tarsi infuscate apically. Abromen mostly orange yellow with infuscate areas on lateral margins, apical segments, and sheath; narrow
white band present on posterior margin of each segment. Wings hyaline.

Antenna with second segment as wide as long, third segment longer than fourth segment but not as long as fourth plus fifth segments (pl. HII, j6). Head mostly shining with finely punctate areas on parantennal fields and genal area; clypeus roughened. Clypeus truncate; postorbital groove present, with small punctures; postgenal carina developed below eye; malar space equal to one-half diameter of front ocelius. Thorax mostly shining, finely punctate, more densely so on pronotum and posterior margin of scutelium. Prepectus absent. Tarsal claw simple. Basal plates widely divided on meson, leaving large membranous area (pl . II, 2:). Forewing with stub of $2 A$ and $3 A$ straight at apex. Hindwing with crossvein $m-c^{\prime \prime}$ present, enclosing cell M. Sheath straight above, rounded below (pl. V, 105). Lancet with serrulae flat, subbasal tecth distinct (pl. VIIL, 165).

Mate.-Length, 6.3 mm . Fead and antenna black. Thorax black with tegula and upper angles of pronotum light rufous. Legs with each coxa, trochanter, and most of each femur black; extreme apex of each femur, tibia, and tarsus whitish; tarsi infuscate apically. Abdomen mostly black with some orange areas on cenural terga and narrow white band on posterior margin of each segment.

Structure similar to that of female. Parapenis higher than wide ($\mathrm{pl}, \mathrm{X}, 228$) ; harpe and penis valve as in plate $\mathrm{X}, 228$ and 229.

Holotype.-Female, Madison, Wis., May 2, 1930. Deposited at the Illinois Natural History Survey.
sllotype.-Male, Madison, Wis., May 2, 1927, Chas. L. Fluke. Deposited with the holotype.

Paratypes.-Connecticut: Lyme, March 18, W. S. Fisher (19). Manitoba: Aweme, May 6. 1925, K. D. Bird (19) ; Aweme, May 1, 1922, R. M. White (17); Aweme, May 20, 1935, R. D. Bird (17) ; Aweme, May 1, 1925, W. Criddle (1 \%). Massachusetts: Wellesley, May 16, 1900, Chas. L. Fluke (1q). Minnesota: Itasca Park, May 23, 1937, sweeping, H. R. Dodge (13). New Hampshive: Hampton, May 1,1910 , S. A. Shaw (19). Wisconsin.' Madison, May 6, 1923 (1ㅁ).

Disposition of Paratypes.-- Paratypes have been deposited at the Illinois Natural History Survey, Canadian National Collection, U.S. National Museum, and the University of Wisconsin.

Distribution.-Northern United States and southern Canada from Minnesota to New England (fig. 11, A).

Host.--Cnknown.
Larca.-Cnknown.
Discussion.-This species most closely resembles the western assaracus on the basis of antennae, basal plates, and male genitalia. It is easily separated from this species and the others, however, by its coloration and the low, flat serrulae of the female lancet.

This species is named after John D. Lattin, associate professor of Entomology at Oregon State University.

Figure 11.--Distribution of (A) Monophadnus lattini and (B) pallescens.

Monophadnus pallescens (Gmelin)

Tenthredo albipes Gmelin, 17! Eversmann, 1847, p. 81; Kriechbaumter, 1884, p. 112. Preoceupied by Tenthredo ulbipes Geoffros, 1781 .
Selanedia albipes, Stephems, 1835, p. 49; Voltenhoven, 1876, p. 270.
Monthhadrus albipes, Kaltembach, 1867, p. 71 ; Kaltenbach, 1874, p. 9; Konow,
 and Marechal, 1038, p. 495.
Blemutampm albipes, Thomson, 1870, p. 281; (ameron, 1877a, p. 77; André, 1881, p. 314; Cameron, 188\%, p. 240; Brischke, 1883, p. 279.
Tonthic do palleser ns Gmelin, 1790 , 2.2668.
Minnphadmas milliscens, Enslin, 1914, p, 29\}; Mataise, 1935, p. 167; Crevecoeur and Marechal, 1938, p. 495; Berland, 1947, p. 255; Pastecls, 19\%8, p. 188 ; Benvon, 1952, p. 101; Benson, 1054, p. 281; Benson, 1962 , p. 391.
 1878, p. 99; Thomas, 1881, p. 67 (?); Provancher, 1883, p. 201; Packard,

Monophathus tilas, Provancher, 1888, p. 350; Dalla Torre, 1894, p. 165; Mac(illivras, 1916 , p. 150 .
Ardis tiliac, Komow, 1905 , p. 81.
Monophadme biphnclatus HacGillivray, 1008a, p. 299, ₹ ; MacGillivray, 1016,
 Sesw sythonymy.
Monophadurs furims Bencoon, 1930, p. I0r. New name for M. bipunctatus Macdillivray, preoceupied by Monophadnus bimonctata Klug, Taschenbere, 186a. ityote: M. furvis Benson is preoceupied by Monophadhus furcits Konow, 1898.)

The European synonymy is not given here. Enslin (1914) listed Tinthredo morio Rossi, Blemnocampa emarginata Thomson, and Momophatuas rosarm Konow nec Brischke as synonyms as well as Tenthrdo watdheimi Gimmerthal. Benson (19.52) considered the last one a good species of Monophadnoides. Gmelin's species, pulliserens, is here based on Enslin's (1914) interpretation and sjecimens determined by Benson.

Fomalr-A - verage length, 6.7 mm . Head and antenna black. Thorax black with tegula dull white to reddish brown. Leegs with each coxa, trochanter, and most of each femur black; extreme apex of each femur and each tibia white; each tarsus white, infuseate apically: Ablomen black. Wings hyaline to very lightly infuscate.

Antema with second segment slightly longer that wide; third segment subecual in length to fourth plus fifth segments (pl. III, 57) Head generally roughened and lightly punctate, shiny areas on vertex and upper inner orbits. Postorbital groove present; malar space less than one-half diameter of front ocellus; postgenal carina developed below eye. Thorax shining, fine punctures on dersum with pronotum and posterior margin of scutellum more densely punctate; mesopleuron and pectus smooth. Tarsal claw simple. Basal phates not widely divided on meson, only small membranous area present (pl. II, 24). Sheath straipht above, rounded below (pl. V, 106). Lancet with lobes low, pointed, with anterior and posterior subbasal teeth distinct (pI. VIII, 166).

Malr-- None available. No males have been seen from North America, and Benson (1952) reported that they are very rare in Europe.

Holotypes.-S. tiliae Norton (?) is at the Museum of Comparative Zoology and bears the labels "Type 14000" and "Selandria tiliae N., Ct. 7 ." M. bipunctatus MacGillivray (8) is at the Illinois Natural History Survey and bears the data "Ithaca, N.Y., May 9, 1895." The location of the types of albipes and pallescens is not known.

Distribution.--Eastern North America, British Columbia (fig. 11, B), and Palaearctic region from Europe to Siberia.

Borth American Recoris.--British Columbia: Cowichan Bay, June 2, 1959, E. E. MacDougall; Mission City, June 3, 1953, W. R. M. Mason; Horseshoe Bay, $0-300^{\prime}$, May 26, 29, 1961, J. R. Vockeroth; Agassiz, August 15, 1919, P. Vroom; Prince Rupert, June 4, 1960, B. Henning, June 4, 1960, marshy hilltop, J. G. Chillcott; Duncan, June 9, 1955, G. E. Shewell; Ruskin, June 26, 1953, W. R. M. Mason. Maine: Masardis, June 3, 1958, beaten ex fir; Augusta, June 7 1946, A. E. Prower; 5 mi. W. Orono, May 26, 1966, D. R. Sminn. Massuchusetts: Cambridge, April 23, 1949, at Jite, W. L. Brown; Cohasset, May 8. New Brunsuick: Fredericton, June 22, 1933, (... E. Atwood. Newfoundland: 12 mi . N. W. Cormack, June 29, 1966, D. R. Smith. New York: Ausable Chasm, July 1, 1923; McLean, May 31, 1897, July 29, 1915; Ithaca, May 28, 1898, May 11, 1915. Ontario: Crosier, June 4, 1960, Kelton and Whitney; Eagle River, August 11, 1960, Kelton and Whitney; Moose Factory, June 9, 11, 15, 16, 18, 1949, D. P. Williams; Ottawa, June 10, May 24, 1895; Beachville, May 29, 1926, G. S. Walley, (uebec: St. Sylvestrie, em. July 10, 1911; Hull, May 16, 1001, May 31, 1902; Megantic, June 18, 1923, C. H. Curran; Woburn, June 19, 1923, C. II. Curran; Mt. Lyall, 1500', July 3, 1933, W. J. Brown; Hemmingford, June 18, 1917, J. I. Beaulne, May 6, 1926, T. Armstrong; Montreal, May 18, 1915, J. I. Beaulne, June 17, 1906, June 15, 1902, June 15; Montreal Island, June 3, 1905 ; St. Martin, May 1.4, 1924, J. W. Buckle; Knowiton, June 20, 1927, G. S. Walley; Wright, May 29, 1933, G. S. Walley; St. Hilaire, March 24, 1899; Breckenbridge, June 7, 1959, C. H. Mann.

Host.-Renson (1952) reported this species feeding on Ranunculus arris L. and repens I . in Europe. No host has been recorded for North America, but it probably feeds on Ranunculus here too. In the original description of tiliae, Norton (1861) mentioned that it was taken from linden: "Taken in June for several years, on the linden (Tilia americana). Latvae not known, but I have often noticed the leaves eaten with irregular holes, as in the case of S. mbi." The damage mentioned by Norton could well be that of a number of other sawfies, which are known to feed on Iinden. Packard (1890) also reported tilict to feed on Iinden.

Lara.-I have not seen the larva of this species. Lorenz and Kraus (1957) included it in their key to Monophadnus larvae, but apparently they did not see the larva either. Their basis for separation of the species is the entirely black head, and this is based on Kaltenbach (1874). If this is the case, this will differentiate it from the other two known North American larvae. Vollenhoven (1876) and (ameron (1882) illustrated the larva as having a
dark, broad, transverse stripe covering the vertex and genal areas.
One adult is in the U.S. National Museum collection and it was reared by Dyar. In his notebook is the following umpublished description of the larva: "A green species swept of grass or weeds. Neatly six-annulate, head pale with a blackish tinge, eye black. Body aniform emerald-bluish green, no marks at all, all the annulets neatly lined [livid ?] with smoky blackish over the dor-sum.-Food plant unknown." This disagrees slightly with Lorenz and Kraus (1957), but the stage discussed is unknown.

Discussion.-This species is most closely related to acqualis and may be confused with that species. However, pallescens always has an entirely black pronotum, usually brownish tegulae, and the lobes of the lancet are pointed, not rounded.

Norton's (1861) description of tilite fits perfectly the type labeled as this species at the Museum of Comparative Zoology. Norton also described the male, but this was not seen. No males have been seen from North America, and they are rare in Europe. Probably Norton confused several species while making this description, since he said he had 41 females and 2 males. This series probably represented several species and the confusion was probably due to the close superficial resemblance between species of this genus and those of Monophadnoides or related genera.

Gemus STETHOMOSTUS Benson

Stethomostus Benson, 1999, p. 111; Benson, 1940, p. 208; Ross, 1951, p. 63; Benson, 1952, p. 100 ; Takeuchi, 1952 , p. 52 ; Lorenz and Kraus, 1957, p. 117. Type: Tenthredo fuliginosa Schrank. Original designation.

Deseription.-Antenma short and stocky; second segment longer than wide: third segment longer than fourth segment (pl. III, 58). Clypeus truncate; malar space equal to one-half diameter of front ocellus; postorbital groove absent; postgenal carina developed for only short distance below eye. Prepectus present as raised shoulder, separated from mesepisternum by furrow (pl. II, 28). Tarsal claw simple; front tibial spur furcate at apex (pl. II, 31). Forewing with stub of $2 A$ and $3 A$ straight at apex (pl. 1, 1). Hindwing with crossvein $m-c u$ absent, leaving cell M open.

The members of this genus resemble those of Eutomostethus, but they may be separated by the furcate front tibial spur and the straight stub of $2 A$ and $3 A$ of the forewing.

The known host is Ranunculus. Lorenz and Kraus (1957) described the larva of fuliginosus.

Two Palaearctic species aro in this genus, one of which has been introduced into North America. The species not treated here is funcyeus (Klug).

Description of Stethomostus Species

Stethomostus fuliginosus (Schrank)
Tenthredo fuliginosa Schrank, 1781, p. 334; Villers, 1789, p. 104; Gmelin, 1790, p. 2664 ; Christ, 1791, p. 449 ; Bouché, 1834, p. 136 ; Dahlbom, 1835, p. 11. Selandria fuliginosa, Stephens, 1835, p. 49.

Blennocampa fuliginosa, Kaltenbach, 1874, p. 723 (?); Cameron, 1877a, p. 56 ; Brischke and Zaddach, 1883, p. 278.
Tomostethus fuliginosus, Konow, 1886, p. 214; Konow, 1905, p. 82; Enslin, 1914, p. 288; Conde, 1937, p. 107; Ceballos, 1941, p. 45; Berlarid, 1947, p. 250.

Phymatocera fuliginosa, Dalla Torre, 1894, p. 177.
Stethomostus fuliyinosus, Benson, 1930, p. 111; Ross, 1951, p. 63; Benson, 1952, p. 100; Takeuchi, 1952, p. 52; Larenz and Kraus, 1957, p. 117; Diniz, 1960, p. 14; Dadurian, 1962, p. 81.
Monophatnus fukaii Rohwer, 1910, p. 108, s, ϱ; Takeuchi, 1952, p. 52 ($=f u-$ liginosa Schrank).

The type of fukaii Rohwer was examined, and the synonymy presented by Takeuchi (1952) is here confirmed.

The European synonymy is not presented here. Ensin (1914) listed two synonyms, Teuthredo fuscus Lepeletier and T. fraxini Lepeletier. The species is accepted here as interpreted by Enslin (1914) and Benson (1989) and on the basis of specimens determined by Benson.

Female.-Average length, 6.5 mm . Entirely black with outer surface of foretibia whitish. Wings with basal two-thirds darkly infuscate, apical one-third hyaline.

Head and body smooth and shining; pronotum finely punctate; prepectal furrow and hindmargin of scutellum with large punctures. Sheath straight above, rounded below (pl. V, 107). Lancet with serrulae pointed, central ones with about four anterior subbasal teeth and about 10 posterior subbasal teeth, this number decreasing toward apex (pl. VIII, 167).

Male-Average length, 6.3 mm . Color similar to the th female, except for extreme apex of forefemur and base of foretibia, which are somewhat white. Structure similar to that of female. Penis valve rectangular in shape ($\mathrm{pl}, \mathrm{X}, 231$) ; harpe and parapenis as in plate $\mathrm{X}, 230$.

Holotype. -The type of M. fukaii Rohwer (9) is at the U.S. National Museum, No. 13325, and bears the data "Konosu Santama, Japan, April 14, T. Fukai collector, No. 3." The location of the type of fuliginosa is not known.

Distribution.-All Europe, Japan; in North America from New Brunswick and New York west to Michigan (fig. 12, A).

North Americon Records.-Maine: Augusta, May 31, June I, 15, 21, 22, 1946, August 19, 1937, July 14, 1945, July 15, 1944, June 9, 1943 , July 4, 1946 (on wild cherry), July 5, 1946 (on marsh grass), August 13,1945 (on marigold), June 15, 1943 (resting on maple), July 14, 1943 (resting on beans), August 2, 1942 (on Picea), June 8, 1944 (ex spruce), A. E. Brower; Mount Desert Is., June 19, 1934. A. E. Brower; Rangeley, June 16; Tramway, July 14; Old Town, July 1, 1939, sweeping, Wing. Massachusetts: Forest Hills; Melrose Hills, May 18, 20, 1922, bred, buttercup; Ipswich, July 23, D. H. Black; Amherst, May 10, 1949, Hunter. Michigan: E. Lansing, May 20, 1941, C. Sabrosky, New Brumsucick: Wawig, July 7, 1938, J. N. Freeman; Jaquet River, Fuly 7, 1940, G. S. Walley; Tabusintac, June 13, 1938, W. J. Brown; St. Andrews, August 8, 1957, G. E. Shewell; Fredericton,

June 6, 19, 1956, D. D. Pond; Lincoln, June 27, 1956, D. D. Pond. New Hampshire: Hanover, August 30, 1930; Mt. Washington, June 23, 1941, Frison and Ross. New York: Sloanville, August 3, 1955, J. C. Martin. Nove Scotia: 5 mi. F. Antigonish, June 24 , 1966, D. R. Smith. (ucbec: Magog, July 25, 26, 1938, H. A. N. Munro; Ministers Is., June 2, 1955, D. D. Pond; Gaspe, June 26, 1954, W. J. Brown, June 22, 25, 1954, J. R. Vockeroth; Lac Mandor, Ste. Flore, May 26, 1951, August 3, 1951, E. G. Munroe; Kirks Fery, June 25, 1951, S. M. Clark; Pelletier Stn., Aurust 16, 1957, 1000', W. R. M. Mason; Farnham, June 5, 1963. J. R. Vockeroth; Cap Rouge, July 7, 1953, R. Lambert, August 4, 1955, O. Peck; Bonaventure Is., July 14, 1954, W. J. Brown.

Host.-Adults have been bred from larvae on buttercup in Massachusetts. In Europe its known host is also Ramunculus.

Larm.- I have not seen larvae of this species. Lorenz and Kraus (1957) included it in their key and based their description on that by Brischke (1883). The only character by which they separate it from the larrae of Eutomostethus and Tomostethus is the black head capsule. I have not ancluded it in my key to larvae.

Discussion.-This species superficially resembles those of Eutomostethus. but it may be separated by its entirely dark coloration, the fucate front tibial spur, and the straight $2 A$ and $3 A$ vein of the lorewing. The prepectus, with distinct punctures in the prepectal furow, and the third antemal segment being longer than the fourth segment are other diagnostic characters.

Gemus El'TOMOSTETHLS Enslin

Tomostethas subgenus Entomostethus Enslin, 1914, p. 286; Malaise, 1934, p. 472 ; Berland, 18.17, p. 2.17.

Eutomostrithes Ensinin, Ross, 1937, p. 97; Benson, 1938, p. 367; Benson, 1940, p. 208; Ross, 1951, p. 63; Benson, 1052, p. 99; Takeuchi, 1052, p. 46; Yorenz and Krats, 1957, p. 115.
Type: Tentherdo huteibentris Klug. Original designation
Tomostrthes suhgenus Atomostefthe Ensin, 1914, p. 287; Bertand, 1947, p. 249; Rass, 1951, p. 97 (Eutomostelthes Ensiin).
Type: Trathredo rphappum Panzos. Oriximal designation.
Tomostcthomsis Sato, 192S, p. 178; Takeuchi, 1952, p. 40 (" Entomostcthus Enslin).
Type: Tomostethonsis mrtalliers Sato. Original designation.
Forsia Malaise, 1932, p. 20; Takeachi, 1052, 1. 46 (Futomostethes Ensin). Type: Forsio tamonfthi Mataise. Original designation.

Descriphon.-Antemma short and stocky; second segment as wide as long; third segment longer than fourth segment (pl. III, 58). Clypeus truncate: postrenal carina well developed, extending neary as far as top of eye; postorbital groove indistinct; malar space namower than diameter of front ocellus. Prepectus present as raised shoukler, sopanated from mosepisternam by furow (pl. [I, 2S). Tarsal cha simple or with small inner tooth; front tibial spur simple, not furcate at apm (pl. II, 30). Forewing with stub of $2 A$ and 3 curved up at apex (pl. I, 6). Mindwing with crossvein m-c h prosent or absent, leaving cell M open or closed.

Eutomostcthus and Alomostolhus were separated on the basis of the presence or absence of cell M in the hindwing. They both
seem to be closely related, however, and on the basis of the two Nearctic species their status cannot be evaluated. The most diagnostic character for this genus is the simple front tibial spur.

There are 25 or 30 species included in this genus, most of which are centered in eastern Asia. Two species, luteiventris (Klug) and ephippizm (Panzer), are known to occur in North America, and they may have been introduced.

Larva.-The larvae feed on grasses and sedges, and the larvae of both species known to occur in North America were deseribed by Lorenz and Kraus (1057). They are distinctive in that the lobe above the prothoracic leg is strongly protuberant (pi. XV, 301), the head is not enticely black as in Stethomostus, and there are three setae on each half of the clypeus. They may be separated from other Nearctic larvae by the general key to larvae (p. 17). The ℓ ey to larvae is from Lorenz and Kraus (1957).

Keys to Eutomostethus Species

Abstract

ADULTS 1. Thorax entirely black; abdomen partly orange; tarsal claw simple; hindwing with cell M present Thorax partly rufous; abdomen entirely black; tarsal claw with small inner tooth; hindwing with cell M absent_-_-_-_E. ephippium (Panzer)

LARVAE

1. Head mottled with dark spots and light spots, dark areas not completely
 Head entirely yelfow

Descriptions of Eutomostethus Species

Eutomostethus ephippium (Panzer)

Tenthredo ephippizm Panzer, 1798, p. 5, 오 ; Latreille, 1805, p. 133; Panzer, 1806, p. 38; Latreille, 1807, p. 230: Klug, 1814, p. 61; Lepeletier, 1823, p. 110 ; Hartig, 1837, p. 270; Eversmann, 1847, p. 30.

Hylotoma ephippizm, Fabricius, 1804, p. 27; Fallén, 1807, p. 207; Klug, 1807, p. 71 ; Klug, 1819, p. 73.

Allantus ephippium, Jurine, 1807, p. 56.
Phyllotoma ephippizm, Fallén, 1829, p. 33.
Selandria ephippium, Stephens, 1835, p. 48; Blanchard, 1840, p. 240.
Blonnocampa ephippium, Costa, 1859, p. 47; Taschenberg, 1866, p. 18; Thomson, 1871, p. 213; Cameron, 1877a, p. 56; André, 1880, p. 310; Cameron, 1882, p. 248; Brischke and Zaddach, 1883, p. 278.

Tomostethus ephippium, Konow, 1886, p. 214; Dalla Torre, 1894, p. 174; Enslin, 1914, p. 289; Ross, 1932a, p. 249; Berland, 1947, p. 250.
Eutomostethus ephippiam, Ross, 1937, p. 96; Ross, 1951, p. 68; Benson, 1952, p. 101; Lorenz and Kraus, 1957, p. 116.

Tenthredo inhabilis Harris, 1835 , p. 583 . Nomen nudum.
Selandria inhabilis Norton, 1861, p. 220, ㅇ; Norton, 1867, p. 246; Provancher, 1886, p. 26; Ross, 1932a, p. 249 ($=$ ephippium Panzer).
Blennocampa inhabilis, Dalla Torre, 1894, p. 171.
Tomostethus inhabilis, Konow, 1905, p. 82; MacGillivray, 1916, p. 148; Britton, 1925, p. 342; Britton, 1926, p. 323.

The European synonymy is not presented here. Enslin (1914) gave Tenthredo dubius Gmelin nec Strom and Tenthredo ovatus Schrank nee L. as synonyms. Benson (1952) gave T. dubius Gmelin and black form $=$ cinereipes Klug, Cameron nec Klug as synonyms. This species is here interpreted in the sense of Enslin (1914) and from specimens identified by Benson.

Female.-Average length, 6.5 mm . Antenna and head black. Thorax black with pronotun, prescutum, lateral lobes, and mesopleuron rufous. Legs black with. extreme apex of each femur and most of each tibia whitish. Abdomen black. Wings moderately infuscate.

Head shining on vertex and upper orbital areas roughened; malar space less than one-half diameter of front ocellus. Thorax smooth and shining with large punctures in prepectal furrow and on posterior margin of scutellum. Tarsal claw with small inner tooth (p . II, 14). Hindwing with crossvein m-cu absent, leaving cell M open. Sheath straight above, rounded below (pl. V, 108). Lancet with serrulae pointed, symmetrical, with equal number of anterior and posterior subbasal teeth (pi. VIII, 168).

Male.-Unknown.

Holotypes.-S. inhabilis Norton is in the Harris collection at the Museum of Comparative Zoology. There are two specimens (O Type 26313 " and " 82 ." One has been designated as the lectotype. Panzer's types are probably in the Zoological Museum of Berlin.

Distrithution.-In North America from Ontario to Nova Scotia and Maryland; Texas; British Columbia and Washington (fig. 12, B). All Europe, North Africa, Asia Minor to Himalayas.

Vorth Amprican Kecorts.-British Columbia: Langford, May 14, 1964, on grass and in flight; Langley, July 17, 1959, L. A. Kelton; Royal Oak, May, 1959 , L. A. Kelton; Mission City, July 18, 1953, G. J. Spenser; Hatzig Lake, July 20, 1953, W. R. M. Mason; Cultus Lake, July 17, 21, 29, 1948, H. R. Foxlee; MacGillivray Creek, Game Preserve nr. Chilliwack, July 27, 1953 , W. R. M. Mason. Comnecticut: Windsor, May 17, 1956, J. B. Kring; Branford, June 2, 1051, J. B. Kring; New Haven, May 9, 1921, M. P. Zappe, May 15, 1905, B. H. Walden; Lyme, May 20, 1918, W. S. Fisher; Storrs, May 13, 1958, M. Glazier, May 13, 1954, D. Strong, May 23, 1953 , H. W. Smith. Maine: Orono, June 12, 1913, May 31, 1914, H. M. Parshley: Augusta, May 30, 31, 1946, May 27, 1947, A. B. Brower; Piscataquis Co., Brownville Junction, May 27, 1966, D. R. Smith; Waldo Co., 5 mi . N. Belfast, May 25, 1966, D. R. Smith. Maryland: College Park, May 11, 1940 , W. H. Anderson; ('abin John, April 30, 1065, April 21, May 7, 1066, D. R. Smith; 3 mi. W. Seneca, May 3, 1966 , D. R. Snith; 3 mi . S.E. Beltsville, May 8, 1966. Massachusctts: Forest Hills, June 1, 1026, C: Salt; Arlington, May 20, 1920, C. S. Anderson; Fall River, May 6, 1905 ; Amherst, May 25,1928 , K. A. Salman, May 13, 1949, Clayton, April 25, 1949, Nardi; Chicopee, May, 1897; Boston, May 25,1893 , on a pear leaf; Riverside, May 14, 22, 1044; So. Hadley, Way 15, 1936, M. Chapman. New Bruns-
utick: Fredericton, May 20, 1921. Neu Hampshire: Hanover; Jaffrey, May 21, 1956, C. W. Johnson; Hampton, May 8, 27, 1909, May 25, 1904, May 28, 1919, S. A. Shaw. New Jersey: Edgewater. May 12, 1916; Chesilhurst, June 3, 1939, H. K. Townes. New York: Taughannock Falls, Ithaca, May 16, 1951, J. C. Martin; 6 mile Cr., Ithaca, May 8, 1949; Ithaca, May 31, 1951, June 5, 1952, J. C. Martin, May 9, 17, 1936, H. K. Townes; McLean Bogs, McLean, May 25, 1951, J. C. Martin; Karner, May 22-25, 1916; Albany, June, 1906, May 6, 1913 ; Labrador Lake, Cortland Co., May 14, 1921; Little Neck, L. I., May 3, 1925, on skunk cabbage, F. N. Schott; Larchmont, April 6, 1938, on Lilium gigantieum. Nova Scotia: Halifax, 1898, 1899, W. H. H.; Kentville, June 3, 1923, R. P. Gorham; Bridgetown, June 11, 1913, G. E. Sanders. Ontario: Wallaceburg, June 3, 1957, J. G. Chillcott; Durham, June 14, 1962, Kelıon and Thorpe: Bells Corners, May 18, 1961, B. Poole; St. Catharines, May 30, 1961, Kelton and Brumpton; Tilsonburg, June 3, 1961, Kelton and Brumpton; Chatterton, May 24, 1954, J. C. Martin; Merivale, May 30, 1952, W. R. Mason, May 30, 1952, R. Lambert; Normandale, May 27, 28, 29, 1956, J. R. Lonsway, $42^{\circ} 42^{\prime}, 80^{\circ} 19^{\prime}$, May 18, 21, 27, 1956, J. R. Vockeroth; Marmora, May 18, 27, 1952, June 7, 1952, J. R. Vockeroth, May 26, 1952, J. R. McGillis, May 19, 22, 23, 26, 1952, R. Lambert; Belleville, May 14, 1942, M. Thompson; Kinburn, May 29, 1957, J. E. Martin; Ottawa, May 31, 1943, June 8, 1943, May 12, 1948 , G. S. Walley, June 1, 7, 1939, June 3, 1940, May 30, 1940, May 23, 24, 1944, May 15, 16, 29, 1941, May 28, 1942, O. Peck, May 21, 1928, W. J. Brown, May 30, 1927, J. H. MeDumnough, May 28, 1955, R. Lambert, May 24, 1957, May 26, 1958, J. G. Chillcott, April 28, 1958, A. R. Brooks, June 2, 6, 1958, J. R. Vockeroth. Pennsylvania: Chestnut Hill, May 19, 1919, G. M. Greene; Laparte, June 4, J. N. Knull. Quebec: Knowlton, June 3, 1929, L. J. Milne; Brome, May 31, 1936, G. S. Walley; St. Johns, May 27, 1906, G. Chagnon, Jume 1, 1902; Cottage Beanlieu, July 18, 1908; Magog, May 25, 1936, G. S. Walley; Breckenbridge, June 8, 1959, at light, C. H. Mann; Meach Lake, May 28, 1962, S. M. Clark; Hull, June 20, 1954, J. R. Vockeroth; Harrington Lk., Gatineau Park, May 26, 1954, E. F. Sterns, May 30, 1954, J. E. H. Martin, June 3, 1954, R. McCondochie, June 10, 1954, W. R. Richards, May 30, 1954, W. R. Coyles; Cap Ronge, July 7, 1953, O. Peck; Alymer, May 31, 1952, June 2, 1952, R. S. Bigelow. Texas: Kerrville, June 14, 1948, C. W. Sabrosky. Washington: Seattle, April 27, 1936, C. B. N.

Host. -There are no host records for North America. In Europe the larvae feed on Poa and other soft Gramineae (Benson, 1952), and judging from the collection sites this is probably the case in this region.

Larva.-I have not seen the larva of this species. The following short description is from Lorenz and Kraus (1957).

Head entirely yellow. Body light with dorsal and lateral longitudinal dark lines. Clypeus with three setae on each side. Labrum with three to four setae on each side; very shallowly and broadly emarginate. Erih mandible with one seta on outer lateral surface.

Lobe above each thoracic leg strongly protuberant (pl. XV, 301). Thoracic leg with femur longer than tibia. Abdominal segments each with six dorsal annulets; annulets 2 and 4 each with small glandubac, which are concolorous with rest of body.

The diagnostic characters of the larva seem to be the protuberant lobe above each prothoracic leg and the entirely yellow head.

Disensision.-This species may easily be separated from luteiventris by the rufous thomax, smail inner tooth of the tarsal claw, and the absence of cell M in the hindwing. In Europe there is a black form that is most common in the northern parts of its range, whereas the red form is most common in the southern parts. Only the red form has been found in North America.

This is probably an introduced species. It is most common around the eastern seaports and known only from Vancouver and Seattle in the West. Its host in Europe is common in this country, and it is also a parthenogenetic species, both of which would lead to rapid establishment. The Texas record is considerably out of its known range and is duestionable.

Eutomostethus luteiventris (Klug)

Tenthredo lutcirentris Klug, 1814, p. 56, ㅇ, ㅇ; Hartig, 1837, p. 271; Eversmann, 1847, p. 30; Kriechbamer, 1884, p. Tn
Selandria heciventris, Stephens, 1835, p. 31.
Monophaduls lutciventris. Kirby. 1882, p. 169; Stein. 1887, p. 166.
Tomostethus luteivent;is, Dalla Torre, 1894, p. 176; Konow, 1905, p. 83: Enslin, 1914, p. 287: Conde, 1934, p. 182; Ross, 1932a, p. 248; Berland, 1947, p. 243. Eutomistothus luteirentris, Ross, 1937, p. 97; Benson, 1040, p. 208; Ross, 1951, p. 63 ; Benson, 195?, p. 100; Lorenz and Kraus, 1557, p. 115.

The European synonymy is not presented here. Enslin (1914) gave Tenthredo assimilis Fallén, in pact, and Tenthredo fuscipennis Lepeletier as synonyms. The species as given here is as interpreted by Enslin (1914) and from specimens identifed by Benson.

Female.-Average length, 6.2 mm . Antenna, head, and thorax black. Legs black with apical half of forefemur and all midfemur, hindfemur, tibia, and tarsi orange. Abdomen orange with basal plates, second tergum, apical segments, and sheath black, median dark stripe sometimes present on dorsum. Wings moderately infuscate.

Head moderately shining, slightly rugose around oceliar area; malar space less than one-half diameter of front ocellus. Thorax smooth and shining with large punctures present in prepectal groove and on posterior half of scutellum. Tarsal claw simple. Hindwing with crossvein m-cu present, enclosing cell M. Sheath straight above, rounded below (pl. V, 109). Lancet with serrulae pointed, asymmetrical, with four or five posterior subbasal teeth (pl. VIIT, 169).

Male.-Unknown.
Molotype.-Klug's types are probably at the Zoological Museum of Berlin.

Distribution.-Ontario and New Jersey west to Michigan; British Columbia and Albertal to southern Oregon (fig. 13). All Europe.

Worth American Recorfs.-Alberta: Banf, May 26, 1960, 4455', spucte lorest, J. G. Chillont. British Columbia: Goldstream, June 3, 1064, grass; Miracle Beach mr. Oyster River, June 11, 13, 1955, J. R. McGillis; Mission City, June 8, 1953, W. R. M. Mason; Duncan, June 9, 1955, J. R. Mechillis; Bowser, June 5, 1955, R. Coyles; Vancouver, May 31, 1931, Seymour Mt., 4700 , on show. H. B. Leech, May 12, 1931, Seymour (re, H. B. Leech. Comnecticut: Branford, April 23, 26, 29, 1951, f. B. Kring; Storrs, May, 1935 , K. M. S.; South Meriden, Junc 8, 1939, H. L. Johnson. Mainc: Augusta, May 26, 1935, July -I, 1939, June 19, 1943, June 6, 1957 (sweeping old field), May 31, June 1, 22, 19.16, A. E. Brower; Passadumkeag, June 7, 1941, A. E. Brower; Fartford, June 14, 1961, A. E. Brower; 5 mi . W. Orohe, May 26, 1966, D. R. Smith; Piscataruis ('o., Brownville Junction, May 27, 1066, T), R. Smith; Kemebec ('o., South China, May 25, 1966, D. R. Smith; Waldo (o., 5 mi . N. Beltast, May 25,1966 , D. R. Smith; Penobscot ('o., 3 mi. N. Passadumkeag, May 26, 1960, I). R. Smith. Maryland: Cabin John, along river, May 3, 7, 1966, 1). R. Smith; 3 mi. W. Seneca, May 3, 1966, D. K. Smith. Mussachusetts: Framingham, May, 1416, C. A. Frost; Amherst, May 30, 1928, May 10, 1929, K. A. Saiman ; Lowell, May 24, 1915, H. A. Preston. Michigun: 13 mi N. Lapeer, May 30, 1937, C. Sabrosky; Wast Lansing, June 2, 1937, May 28, 1937, May 19, 1941, ('. Sabrosky, May 8, 1963, R. T. Wilson, May 5, 1962, G. Hickwort; Saginaw Co., June, 1940, (. Sabrosky; Vassar, May 20, 1936, Frison and Ross; Eaton ('o., May 15, 1948, R. Fischer; Lake City, June 17, 1948, D. May, July 3, 1950, G. Guyer; Little Manistee Riv., mr. Peacock, May 10. 1940, Frison and Ross; Midland Co., May 29, 1937, R. R. Ireisbach; Lapeer Co., May 30, 1937, Dreisbach; Kalamazoo, May 10, 1936, C. Sabrosky; Ann Arbor, Pitstield Ponds, Washtenaw Co., May 20, 1918, T. 1I. Hubbelf; 1st Sister Lake, Ann Arbor, Washtenaw (oo., May 18, 1919, T. H. Hubbell; Kinderhook, Branch Co., May 30, 1942, C. Sabrosky; Negaunee, Marcuette Co., June 15, 1957, R. W. Holges; Flat River Game Avea, Montealm Co., May 14, 1955, R. L. Fischer; Ogemaw Co., June 1, 1957, R. A. Scheibner; Roscommon Co., Houghton Lake, May 21, 1955, R. W. Hodges; Eaton Rapids, Eaton Co., May 24, 1959, R. A. Scheibner; Escanaba, Delta Co., June 25, 1958, R. A. Scheibner. New Hampshire: Hampton, May 11, 1936, May 28, 1925, June 4, 1919, S. A. Shaw. Netw Jersely: Mendham, June 1, 1923, J. M. Shott. Nele York: Slaterville Springs, May 21, 1951, J. C. Martin; McLean Bogs, McLean, May 25, 1951, J. C. Martin; Lockport, May 30, 1950, L. L. Pechuman; Indian Falls, Mt. Marcy, June 10, 1942, H. Dietrich; Ithaca, May 20, 1947, H. E. Evans, June 11, 1935, May 17, 1936, H. K. Townes, June 6, 1937, Ries and Davis, June 1, 1925. Nova Scotia: 5 mi. E. Antigonish, June 26, 1966, D. R. Smith. Ontario: Owen Sound, June 15, 1961, Kelton and Brumpton; Listowel, May 27, 1962, Kelton and Thorpe; Grassie, May 31, 1962, Kelton and Thorpe; Collingwood,

June 13, 1962, Kelton and Thorpe; Brighton, May 18, 1955, J. C. Martin; Marmura, May 27, 1952, J. C. Mitchell, June 16, 1952, J. R. McGillis; Normandale, May 28, 1956, J. R. Lonsway; St. Williams, May 23, 1956, 42 40', $80^{\circ} \mathbf{2 5}^{\prime}$, J. R. Vockeroth; Blackburn, May 23, 1953, G. F. Ball; Millbrook, May 26, 1962, Kelton and Thorpe; Rockport, May 12, 1959, J. R. Vockeroth; Mer Bleue, May 19, 1938, G. S. Hobbs, May 16, 1938, G. E. Shewell; Bothwell, May 29, 1929, G. S. Walley; Strathroy, 1927, H. F. Hudson; Merivale, May 16, 1941 , O. Peck; Ottawa, May 29, 1941, May 16, 23, 24, 1944, O. Peck, June 7, 1940, E. G. Lester, May 11, 1948, A. R. Brooks, June 11, 1946, G. S. Walley. Oregon: McMinnville, Peavine Ridge, Yamhill co., May 30, 1958, on Equisetum, K. M. Fender; 4 mi . W. Wren, Benton ('o., May 11, 1960, P. F. Torchio; Corvallis, Benton (oo, April, 1059, P. F. Torchio; log, 1 mi . W. Sand Lake, Tillamook Co., July 7, 1962, D. R. Smith; Falls City, Polk ('o., May 11, 1960,1 I). R. Smith ; Little Squaw Lake, 7 mi . E. ('opper, Jackson Co., 3200', R3W, T4LS, Sec. 2, May 22, 1964, I. R. Smith; bog near Noti, Lane Co., May 18, 1964, J. D. Lattin; Corvallis, Avery Park, ex grasses, June 5, 1964, T. Marsh. Qurbec: lfarrington Lake, Gatineau Pk., June 10, 1954, H. J. Huckel; Wakefield, June 20, 1946, G. S. Walley; Granby, July 2, 1941, P. F. Mercier; Farnham, June 5, 1963, J. R. Vockeroth; Mt. Orford, 1200^{\prime}, June 5, 1963, J. R. Vockeroth; Hull, May 30, 1957, J. G. C'hillcott. Vermont: Essex Co., 4 mi E. Concord, May 22, 1966, D. R. Smith. Washington: Nehcotte, May 2, 1954, June 20 , 1955, May 3, 1953 ; Parkereek Park, Seattle, May 23, 1939, E. C. C.; Lake Tapps, June 11, 1936, J. Wilcox; Seattle, May, 1953, D. Malkin; Lk. Semamish St. Pk., King Co., May 23, 1953, B. Malkin and (: Taylor; 8 mi. S. Naselle, Pacific Co., May 30, 1964, ?Juncus sp., K. Goeden; Ashtord, July 10, 1940, I. and M. Townes.

Host.-In England the larvae bore in the sterile shoots of Juncus and remain there until the last instar, when they emerge and feed externally (Benson, 1952). Judging from the collection sites, especially in Oregon, it probably has the same habits in this region.

Larea--1 have not seen the larva of this species. It was described by Lorenz and Kraus (1957) and seems to differ from ephippiom by the coloration of the head, which is darker and mottled. The head is illustrated by Lorenz and Kraus.
Discussinin.-This species is easily distinguished from ephippirm by the black thorax and orange abdomen, the simple tarsal claw; and the presence of cell M in the hindwing. This is probahly an introduced species.

Tribe BLENNOCAMPINY Konow

Blennocampides Konow, 1890, p. 231 (in part) ; Konow, 1905, p. 76 (in part). Blennocampiai Ronwer, 1911c, p. 223 (in part); Enslin, 1914, p. 263 (in part); Benson, 1938, p. 367 (in part); Ross, 1951, p. 192 (in part); Benson, 1052, p. 97 (in part) ; Takeuchi, 1952, p. 43 (in part).

Periclistini Takeuchi, 1952, p. 42 . New synomym.

Benson (1938) included all those genera in this tribe that were not included in the other tribes he proposed. Later Ross (1951) and Benson (1952) included all the Blennocampinae in this one tribe except for the Lycaotini. Takeuchi (19.52) separated this tribe from the Periclistini, which he proposed; however, the two are considered the same here.

This tribe represents a distinct branch on the basis of both adult and larval characters. All the larvae are spiniform and have reduced amnulation of the abdominal segments. The adult characters vary, the tarsal claw ranging from simple to those with a long imner tooth and a basal lobe, and vein $2 A$ and $3 A$ of the forewing is either curved up or straight at its apex. The most constant adult character is the penis valve of the male genitalia, which has a dorsal lobe and a lateral spine in all the species except some in Ardis and Foriclista. This is also the only tribe in which vein M meets $R s+M$ slightly before their junction with $S c+R$, an apparently generalized character present only in Eupareophora and some Periclista. In general, the most specialized members of this tribe have vein $2 A$ and $3 A$ straight, tarsal claw with an inner tooth and basal lobe, and lateral armature on the penis valve well developed, whereas the more generalized members have vein 2 A and 3 A curved up, simple tarsal claws, lateral armature on the penis valve absent, and vein M and $R s+$ $i N$ meeting before their junction with $S c+R$.

The known hosts for this tribe are all dicotyledonous plants.
Description.-Vein 2A and 34 of forewing curved up or straight at apex; vein M joins $R s \div M$ at or slightly before their junction with $S c+R$; veins M and $1 m$-cu parallel. Hindwing with crossvein $m-c u$ present or absent, leaving cell M closed or open. Tarsal claw simple, with inner tooth or with inner tooth plus basal lobe. Prepectus absent. Penis valve with dorsal lobe and lateral spine usually present. Larva with abdominal segments 1 through 8 each with four or five dorsal annulets; body omamentation consists of long or short spines, some of which are branched (Ardis lacks any ornamentation, being an internal feeder).

Genera Indinded.-Ardis, Monardis, Aparcophora, Eupareophora, Perielista, and Monophadnoides. Blennocampa occurs only in the Palaearctic region.

Genms ARDIS Konow

Ardis Konow, 1886, p. 184, 188; Dalla Torte, 1894, p. 180; Konow, 1905, p. 80 ;
Rohwer, 1911a, p. it; Enslin, 1914, p. 282; Ross, 1937, p. 90; Berland,
19.47, p. 243 ; Ross, 19.21, p. 66 ; Benson, 1952, p. 102; Takeuchi, 1952, p. 47 ; Lovenz and Krilus, 1957 , p. 121.
Type: Tenthedo (Allanfus) bipmetata Klug. Designated by Rohwer (1011a). Vateo Ross, 1937, p. 99; Ross, 1951, p. 66 ($\because .$. Ardis Konow).
Type: Srlandria irrogata Cresson. Original designation.
Description.-Antenna short and stocky, second segment as wide as long, third segment longer than fourth segment (pl. III, 59). Clypeus truncate; malar space as wide as or slightly narrower than diameter of front ocellus; postgenal carina absent;
postorbital groove distinct and deep, with large craterlike punctures (pl. Il, 10). Prepectus absent. Tarsal claw with long inner tooth, subequal in length to ouler tooth; basal lobe present (pl. II, 20). Forewing with stub of $2 A$ and $3 A$ curved up at apex (pl. I, 6) ; vein $R s+M$ joins M at junction of $S e+R$ (pl. I, 1). Hindwing with crossvein $m-c h$ present, enclosing cell M.

This genus is characterized by the deep postorbital groove. Eupareophora also has the postorbital groove, but has simple tarsal claws and $R s+M$ joins M before their junction with $S c+$ R.

Two North American species are in this genus, atrata (Harrington), which is confined to the Northwest, and brunniventris (Hartig), which is Holarctic and transcontinental. One other species, sulcata (Cameron), is known from Europe.

Larw.-The larvae of sulcata and brumiventris are shoot borers in roses, but the habits of atrata are not known. Smith (1906b) gave some characters to differentiate the two known larvae of Artis and for their separation from Cladardis elongatula (Klug), a European species that is also a shoot borer in roses.

Key to Ardis Species

1. Teguls and upper angies of pronotum white; female with long, slender, dorsoapical projection on sheath (pl. V, 112) --A. branniventris (Hartig) Tegula and upper angles of pronotum brownish or black; female without dorsonpical projection on sheath (pi. V, 113) _A. atrata (Harrington)

Descriptions of Ardis Species
 Ardis atrata (Harrington), new combination

Monophachus atratus Harrington, 1894, p. 193, os.
Monophadnoides circine MacGillivray, 1923e, p. 24, of; Frison, 1927, p. 252. New synonymy.
Ardis circine, Ross, 1951, p. 66.
Paracharactus obtenhus MacGilliviay, 1923c, p. 28, 中; Frison, 1927, p. 255. New synonymy.
Ardis obtcnta, Ross, 1951, p. 60.
Fomale.-Average length, 6.7 mm . Entirely black with tegula and hindmargin of pronotum usually brownish, and extreme apex of each femur, each tibia, each tarsus, and very narrow band on posterior margin of each abdominal segment white. Wings hyaine.

Malar space slightiy less than diameter of front ocellus. Sheath straight above, rounded below, without dorsoapical projection ($p \mathrm{l} . \mathrm{V}, 113$). Lancet with sermalae lobelike, evenly rounded, close together, and with distinct subbasal teeth (pI. VIII, 170).

Male.-Average length, 6.5 mm . In color and structure similar to female. Penis valve oblong, with short lateral spine and blunt dorsal lobe ($\mathrm{pl} . \mathrm{X}, 233$) ; harpe and parapenis as in plate X, 232.

Holotypes.-M. atratus Harington (δ) is type No, 86 at the Canadian National Collection and bears the data "V. I. T." The MacGillivay types are at the Jilinois Natural History Survey.
M. circina (s) bears the data " $5-3-97$, T. Kincaid, collector," and P. obtentus (9) has the data "Corvallis, Or., May 5, 1901."

Distribution.-Known from British Columbia, Washington, Oregon, and California (fig. 14, A).

North Americen Records.-British Columbia: Agassiz, April 30, 1927, H. H. Ross; Vernon, May 9, 1908; Bowser, May 31, 1955, J. R. McGillis; Robson, May 7, 20, 1947, May 25, 26, 1948, May 22-30, 1950, June $8-10$, 1950, H. R. Foxlee; Cowichan Bay, June 2, 1959, L. A. Kelton; Oliver, May 10, 1923, E. R. Buckell; Royal Oak, June 3, 1959, L. A. Kelton; Saanich, May 20, 1929, W. H. A. Preece; Modern Lk., 10 mi . N. Oliver, May 22, 1959, R. Madge; Victoria, May 6, 1919, W. Downes. California: Inyo ('o., Glacier Lodge, 11 mi . E. Big Pine, 7000', June 13, 1965, ex Rosa woodsii v. ultra-montana, E. L. Smith. Oregon: Corvallis, May 1, 1929, V. T. Shattuck, April 20, 1927, H. A. Scullen; Hood River, April 15, Childs; Talent, May 8, 1936, on wild rose, L. G. Gentner; Troutdale, April 25, 1941, on wild rose, P. M. Eide. Washington: Pleasant Valley, Stevens Co., May 4, 1957, A. R. Gittins; Woodland, April 25, 1941, on wild rose, P. M. Eide.

Host.-Unknown. Adults have been collected from rose.
Larva.-Unknown.
Discnssion.-The female is easily distinguished from brunniventris by the lack of the dorsoapical projection of the sheath, and in the male by the more slender and oblong penis valve. In both sexes the tegula and upper angles of the pronotum are brownish or black, not white as in brunviventris.

Ardis brunniventris (Hartig)

Tenthredo (Allantus) bipunctata Klug, 1814, p. 215, o ; Hartig, 1837, p. 274; Kricchbaumer, 1884, p. 200; Enslin, 1914, p. 383 ($=$ brunniventris Hartig). Preoceupied by Tenthredo bipunctata Gmelin (1700).
Monophadnts bipmatalus, Taschenberg. 1866, p. 18.
Blonnocampa bipunctata, Thomson, 1870, p. 279; Thomson, 1871, p. 208; Cameron, 1877a, p. 56; Cameron, 1877b, p. 108; Cameron, 1880, p. 266; André, 1881, p. 301 ; Cameron, 1882, p. 242; Brischke and Zaddach, 1883, p. 274; André, 1889, p. 286.

Ardis bipenctata, Konow, 1886, p. 188; Dalla Torre, 1894, p. 180; Konow, 1905, p. 81.

Tenthredo (Monophadnus) brunniventris Hartig, 1837, p. 274, o.
Blennocampa brunniventris, André, 1881, p. 304.
Ardis brumiventris, Enslin, 1914, p. 283; Conde, 1934, p. 182; Crevecoeur and Maréchal, 1938, p. 494; Hardotin, 1943, p. 164; Berland. 1947, p. 244; Benson, 1952, p. 102; Takeuchi, 1952, p. 47; Lotenz and Kraus, 1957, p. 121; Smith, 1965, p. 9 ; Smith, 1066 b, p. 1292.

Ardis sulcate of auct., nee Cameron, Eide, 1948, p. 819; Ross, 1951, p. 66 ; Middlekauff, 1958, p. 202; Benson, 1962 ; p. 390 ; Smith, 1965, p. 9 (= branniventris Hartig).
Selandric irrogata Cresson, 1880a, p. 13, ㅇ; Dalla Torre, 1894, p. 163; Cresson, 1916, p. 5; Smith, 1965, p. 9 ($=$ brumiventris Hartig).
Monophathus irrognta, Konow, 1905, p. 86.
V alco ibroyata, Ross, 1937, p. 99.
Ardis irrogata, Ross, 1951, p. 66.
Aphanisus odorotus MacGillivmy, 1908n, p. 296, of ; MacGiilivyay, 1916, p. 154; Frison, 1027, p. 237; Smith, 1965, p. 9 ($=$ bricnniventyis Hartig).
Ardis otoratus, RoSS, 1951, p. 66.

Figure 14.-Distribution of (A) Ardis atrata and (B) brunniventris.

Aphauisus parallelus MacGillivray, 1923e, p. 7, o ; Frist.n, 1927, p. 237; Smith, 1965, p. 9 (= brumiventris Hartig).
Ardis purallela, Ross, 1951, p. 66.
The synonymy of bipunctata is generally accepted and is based on Enslin (1014) as is the interpretation of this species. Other European synonymy is not presented here.

Female.-Average length, 6.4 mm . Entirely black with tegula, upper angles of pronotum, extreme apex of each femur, each tibia, and each tarsus white; parts of each tibia and tarsus infuscate. Wings hyaline.

Malar space as wide as diameter of front ocellus. Sheath straight above, rounded below, with long, slender, dorsoapical projection (pl. V, 112). Lancet with serrulae flat, with one anterior subbasal tooth and seven or eight posterior subbasal teeth (pl. VIII, 171).

Male.-Average length, 6.4 mm . Color and structure as for female. Penis valve quadrate, with lateral spine near apex and without dorsal lohe (pl. X, 235) ; harpe and parapenis as in plate $\mathrm{X}, 234$.
flolotypes.-S. irrogata (resson (o) is type No. 194 at the Academy of Natural Sciences of Philadelphia and bears the data "Colo." MacGillivray's types are at the Illinois Natural History Survey. They bear the following data: A. odoratus (O), "Ithaca, N.Y., May 11, 1898"; A. parallelus (o). "Colo." Klug's types are probably at the Zoological Museum of Berlin. Hartig's types are at the Zoolorical Museum of Munich.

Distrihntion.-Widely distributed over North America from Northwest Territories to southern Califomia east to Quebec, Maine, and North Carolina (fig. 14, B) ; all Etirope to Siberia and Japan.

North Americin Records.-Alberta: Websman. July 1, 1931, E. H. Strickland; Edmonton, June 13, 1929, E. H. Strickland; Medicine Hat, June 1, 1952, A. R. Brooks; Calgary, May 26, 1924, G. Salt; Lethbridge, June 22, 1956, O. Peck. British Columbia: Salmon Arm, May 7, 1933, H. Leech; Agassiz, May 16, 1927, H. H. Ross: Summerland. May 30, 1951, on cultivated rose, W. Snow; Agassiz, April 4, 1960, in rose stem tip, R. Glendemning; Oliver, May 6, 1923, C. B. Garrett, May 15, 1959, swept from rose, R. Madge; Anarchist Mt., Osoyoos, May 20, 1959, L. A. Kelton; E. entrance, Manning Pk., May 31, 1959, R. E. Leech; Kleanza Cr., 14 mi . E. Terrace, June 17, 1960, J. G. Chillcott; Lakelse nr. Terrace, June 27, 1960, grass and ledum, W. W. Moss; Trinity Valley, May 21, 1959, R. Madge; Ruskin, June 26, 1953, G. J. Spenser; Wynndel, May 10, 1958, H. and A. Howden. Califormie: Soda Cr., Napa Co., April 12, 1937, reared from rose buds, H. H. Kiefer; Redlands, F. R. Cole. Colorado: "Colo."; State Pridge, nr. Bond, 7000^{\prime}, June 24-25, 1961, B. H. Poole. Idaho: Moscow, J. M. A.; Lewiston Gracle, Lewiston, April 23, 1958, M. D. Bentley, April 27, 1938, H. L. Harris; Idaho Co., Riggins, April 3, 1958, on Syringa, A. R. Gittins; Cottonwood Cr., Myrtle, Nez Perce Co., April 28, 1961, W. F. Barr. Illinois: Oakwood,

May 9, 1930, T. H. Frison; Mt. Carmel, April 15, 1930, Frison and Ross; Cary, May 3, 1945, J. A. Ross; Dubois, April 24, 1914, creek valley, May 22, 1017; West Union, April 14, 1930, Frison and Ross; Seymour, April 13, 1929, R. R. Park; Eddyville, June 7, 1946, Mohr and Burks; St. Jacobs, April 13, 1941, Ross and Molir ; Onarga, April 24, 1929, Frison and Ross. Iowa: lowa City, Apyil 24, 1915̄, Stoner; Ames, May 25, 1952, R. R. Whitney. Maine: Augusta, May 13, 1943, resting on rose, A. E. Brower. Itanitoba: Birtle, July 14, 1928, R. D. Bird; Aweme, May 10, 192s, host Rosa, N. Criddle, May 20, 1925, May 17, 1926, R. D. Bird. Michiyan: Dougias Lake, July, C. H. Kennedy. Missouri: "Mo.," C. V. Riley Collection. Montana: "Montana." New Mexico: Aztec, April 17, 1899, C. F. Baker. New York: Ithaca, May 11, 1898. North Carolina: Spring Hope, May 25, 1925, C. S. Brimley. Northeest Tervitories: Aklavik, July 15, 1931, Bryant. Ontario: Waubamic, July 10, 1915, H. S. Parrish; Perry Island, July, 1915, F. S. Parrish; Aylmer, April 23,194 , swept from rose, G. S. Walley; Marmora, May 26, 1952, J. R. MeGillis, April 24, 1952, J. F. McAlpine. Oregon: Banks, April 9, 1942, on wild rose, P. M. Eide; Tumalo St. Pk., Deschutes Co., July 13, 1961, D. R. Smith; Grande Ronde, Polk Co., May 2, 1962, snowberry, K. Goeden; Powder River, May 11, 1899. Quebec: Wright, May 17, 1932, W. J. Brown. South Dakota: Pierre, Farm Island, June 17, 1937, H. C. Severin. ℓ tah: Logan, April 21, 1943, G. F. Knowlton and D. R. Maddock; Manila, July 25, 1925, L. Coons; Paradise, April 28, 1957, W. Besseth. Washington: Puyallup, reared from rose tip, larva coll. May 19, 1941, em. March 17, 1942, P. M. Eide ; Sumner, May 11, 1942, manetti, P. M. Eide; Fort Lewis, Pierce Co., Apri! 17, 1946, P. H. Arnaud; Yakima, June 1, 1951, A. R. Rolfs; Aderton, from rose tip, em. March 17, 20, 25, 27, 1942, on manetti, May 11, 1942, caught ovipositing on manetti tip, March 31, 1942, on manetti, April 19, 1942, P. M. Eide.

Hoxt.--The larva bores and feeds in the shoots of wild and cultivated roses (Eide, 1948; Middlekauff, 1958).

Larva.-The larva of this species has undergone certain adaptations that make it distinct from the larvae of other members of this subfamily. Lorenz and Kraus (1957) and Smith (19660) described this larva.

The larva is easily recognized by the reduction of the prolegs, the four-annulate abdominal segments, the broad, flat 10th abdominal tergum, and the presence of a pair of subanal protuberances.

In late instar, head, thoracic legs, and 10th abdominal tergum lightly sclerotized; rest of body white, without plates or setae.

Clypeus without setae. Labrum without setae; narrow, shallow central emargination present; epipharynx with three or four spines on each half (pl. XV, 304). Left mandible with four sharp and one truncate lateral teeth (pl. XV, 303) ; right mandible with three sharp and one truncate lateral tecth (pl. XV, 302). Maxillary palpus four-segmented; second maxillary segment without setae; palpifer with three setae; stipes with three setae; galea conical; lacinia with five spines, outermost one located on sepa-
rate fingerlike extension (pl. XV, 305). Labial palpus threesegmented.

Thorax without spines, plates, or setae. Thoracic legs normal, femur longer than tibia.

Abdominal segments 1 through 8 each with four dorsal annulets; without spines, plates, or setae. Ninth segment with lightly sclerotized plate on tergum. Tenth tergum with medial length equal to one-half basal width. Setiferous subanal protuberances present; without spines or setae between protuberances.

Discussion.-The female of this species is easily recognized by the dorsoapical projection of the sheath. The male may be recognized by the quadrate penis valve, which lacks a dorsal lobe. Both sexes have the tegula and upper angles of the pronotum white.

For a long time the species in this country was believed to be A. sulcata (Cameron). This was found to be based on a misidentification, and the correction was made by Smith (1965). This was also believed to be an introduced species; however, its wide distribution and early collection records in this country seem to support its position as a true Holarctic species.

This species may be of minor economic importance by its feeding habits in the tips of roses. It has been called the "rose tip sawfly" and a discussion of its biology was given by Eide (1948).

Genus MONARDIS Enslin

Monardis Enslin, 1914, p. 284; Berland, 1947, p. 244; Lorenz and Kraus, 1957, p. 123.

Type: Tenthredo plana Klug. Monotypic.
Description.-Antenna short and stocky, second segment as wide as long, third segment longer than fourth segment (pl. III, 59). Clypeus truncate; malar space as wide as diameter of front ocellus; postorbital groove absent; postgenal carina absent; eye small, located some distance from posterior margin of head (pl. II, 11). Prepectus absent. Tarsal claw simple. Forewing with stub of $2 A$ and $3 A$ curved up at apex (pl. 1, 6) ; vein Rs $+M$ joins M at junction of $S c+R$ (pl. I, I). Hindwing with crossvein $m-c u$ present, enclosing cell M. Wings darkly infuscate.

This genus is close to Apareophora, Ardis, and Pareophora and possesses some characters of each. At present, however, it seems best to treat it as a distinct genus. Monardis may be separated from Apareophora by the presence of cell M in the hindwing and the short dorsoapical extension of the female sheath, from Ardis by the lack of a postorbital groove and simple tarsal claw, and from Pareophora by the simple tarsal claw and shorter malar space.

There is only one species known for North America. The genus is represented in Furope by the type species, which feeds on Rosa. The host and larva for the Nearctic species are unknown.

Deseription of Monardis Species

Monardis pulla, new species
Female--Average length, 6.8 mm . Entirely black with light areas on extreme apex of each femur and extreme base of cach tibia. Head and body covered with fine white pubescence. Wings darkly infuscate.

Antenna short and stout, second segment as wide as long, third segment longer than fourth segment (pl. III, 59). Clypeus truncate; malar space as wide as diameter of front ocellus; postorbital groove absent; postgenal carina absent; eye small, located some distance from posterior margin of head (pi. II, 11). Several large punctures present on hindmargin of scutellum. Prepectus absent. Tarsal chaw simple. Forewing with stub of $2 A$ and $3 A$ curved up at apex; vein $R S+M$ joins M at junction of $S c+R$. Hindwing with crossvein $m-c u$ present, enclosing cell M. Sheath straight above, rounded below, small biunt projection at dorsoapical margin (pl. V, 110, 111). Lancet with serrulae lobelike and quadrate, with about six posterior subbasal teeth (pl. VIII, 174).

Male--Unknown.
Holotype-Female, Logan Canyon, Utah, May 29, 1933, G. F. Knowlton and E. W. Anthony. Deposited at the Illinois Natural History Survey.

Paratpes.-Alberta: Waterton, June 18, 1956, E. F. Sterns (12). British Columbia: Vernon (19); Robson, April 15, 1947, H. R. Foxlee (1 $⿻$ (). Colorado: "Colo." (19). Idaho: 2 mi N. Melba, Canyon Co., July 5, 1957, carrot flower, H. W. Homan (19); Moscow, Viola Grade, 3000', April 29, 1935, W. E. Shull (19) ; Latah Co., Section 9, May 15, 195̄7, J. R. Grabad (10); Almo, Cassia Co., June 12, 1953, H. E. Cott (10). Montana: Gallatin Co., July 1, 1932 (Io). Saskatchewan: Saskatoon, May 13, 1949, A. R. Brooks (1 o) ; Roche-Percée, July 4-8, 1927, E. and S. Criddle (19) . Utah: Logan Canyon, May 29, 1933, G. F. Knowlton and E. W. Anthony (19); Logan, May 25, 1933, T. O. Thatcher (19).

Disposition of Paralypes.-Paratypes have been deposited at the L.S. National Museum, Illinois Natural Fistory Survey, Canadian National Collection, Utah State University, and University of Idaho.

Bistribution.-Rocky Mountain region from British Columbia and Saskatchewan south to Utah and Colorado (fig. 15, A).

Host.—Unknown.
Larra.-Enknown.
Dismssion.-This species may be separated from members of closely related genera by the darkly infuscate wings, the short dorsoapical projection of the female sheath, the presence of cell M in the hindwing, and the simple tarsal claw.

The name is derived from the Latin word pullus meaning dark colored or blackish.

Genus APAREOPHORA Sato

Aparcophora Sato, 1928, p. 185; Takeuchi, 1952, p. 49; Malaise, 1964, p. 25; Togashi, 1964, p. 403.
Type: Apareophora forsythice Sata. Original designation.
Description.-Antenna short and stocky, second segment as wide as long, third segment longer than fourth segment (pl. II I, 59). Clypeus truncate; malar space slightly less than diameter of front ocellus; postorbital groove absent; postgenal carina absent; eye small, removed some distance from posterior margin of head (pl. II, 11). Prepectus absent. Tarsal claw simple. Forewing with stub of $2 A$ and $3 A$ curved up at apex (pl. I, 6) ; vein $R s+M$ joins M at junction with $S c+R(\mathrm{pl} .1,1)$. Hindwing with crossvein $m-c u$ absent, leaving cell M open.

One of the species in this genus was previously placed in the genus Pareophora Konow. The main features separating this genus from Pareophora are that in Apareophora the second antennal segment is as wide as long, the tarsal claw is simple, the matar space is not wider than the diameter of the front ocellus, and the hindwing has cell M absent. This genus is known from eastern Asia and North America. Sato (1928) described two species from Korea, and Togashi (1964) included two species from Japan in his revision of the Japanese species of this genus. A. forsythiae Sato of Korea feeds on Forsythia, and A. japonica Takeuchi of Japan is known to feed on Spiraea japonica L. f. The host is known for one North American species, A. dyari, which was reared from Spiraea salicifolia L. by Dyar (1859a). No larvae were available for examination.

Malaise (1064) synonymized Aphymatocera Sato (1928) with this genus on the assumption that Sato had separated the two genera only on the basis of $R s+M$ joining M just before $S c+R$ in Aphymatocera. Malaise overlooked several points. Sato included Aphymatocera in the subfamily Phymatocerinae as defined by Rohwer (1911c), who separated this subfamily by the presence of the prepectus, which is lacking in Apareophora. Also in Aphymatocera, Sato described the stub of $2 A$ and $3 A$ of the forewing as being straight and the third and fourth antennal segments being subequal neither of which is true in Apareophora. Considering these points, I see no reason to consider these genera as being the same.

Key to Apareophora Species

1. Female 2
Male
2. Tegula white; servume of lancet rounded and lobelike (pl. VIII, 172) A. dyari (Benson) Tegula black; serrulae of lancet flat, each with about six fine teeth (pl. VIII, 173)
3. Penis valye with lateral spine short and near center; dorsal lobe protuberant and distinct (pl. X, 237) ; tegula usually white_-A. dyari (Benson)
Penis valve with hateral spine near apex, corsal lobe short, more evenly rounded (pl. X, 239) ; tegula black A. rossi, n. sp.

Deseriptions of Apareophora Species

Apareophora dyari (Benson), new combination
Blemocampo spiraeae Dyar, 1895a, p. 194, i, 9, larva; Dyar, 1899, p. 220; MacGllivray, 1916, n. 155; Yuasa, 1922, p. 93. (Preoccupied by Blennocampa spiraeae Brischke and Zaddach, 1883.)
Pareophora spiraeae, Ress, 1951, p. 64.
Blennocampa dyari Benson, 1930, p. 107 (new name for spiracue Dyar).
Fpmale.-Average length, 6.7 mm . Entirely black with tegula, extreme apex of each femur, each tibia, and each tarsus white. Vings hyaline.

Sheath long and broadly rounded at apex (pl. V, 114). Lancet with servalae rounded and lobelike, without subbasa) teeth (pl. VIII, 172).

Male.-As erage length, 6.5 mm . Color similar to that of female except tegula, which may be black. Structure similar to that of female. Harpe oblong (pl. X, 236) ; penis valve with lateral spine short and neat center and with dorsal lobe protuberant and distinct (p. X, 237), parapenis as in plate $X, 236$.

Holotype-R. spiraeae Dyar (o) is type No. 41261 at the [.S. National Museum. Although the specimen bears a label reading only " 3 K ", the locality mentioned in the original description is Keene Valley, N.Y.

Distribution.-Southeastern Canada and Northeastern United States (fig. 15, B).

Vorth Amerisan Records.-C'onnecticut: Orange, May 3, 1962, M. P. Zappe. New Bronsicick: Charlotte Co., May 20, 1963, G. W. Wood, May 26, 1951, May 20, 28, 1952, May 17, 1955, W. T. A. Neilson. New Hompshire: Hanover, May 14, 1961; Hampton, May 7, 1936, S. A. Shaw; ('oos Co., 3 mi . B. Shelburne, May 22, 1966, D. R. Smith. Ner York: Keene Valley. Ontario: Ottawa, May 8; Merivale, May 3, 1936, O. Peck; Spencerville, Limerick Forest, May 19, 1955, R. Lambert (uebec: Beech Grove, May 15, 1951, J. F. MeAlpine. Fermont: Union Vill., May 5, 1963, K. W. Cooper.

Host.-Dyar reared this species from Spircea salicifolia L.
Larea. -Dyar (1895) described the larva in the original description of this species, and Yuasa (1022) also described it. I have not seen the larva and was unable to find the specimens on which these descriptions were based.

Dyar (1895a) described the head as being "Pale greenish, not shining, mouth brown, ocellus covered by a black spot." The abdomen has "several little white pointed elevations, like sharp teeth with two cusps; two of them ad-dorsal on each segment, two sub-dorsal, a single one-cusped dot laterally anteriorly, three in a triangle stigmatally posteriorly and six on sub-ventral fold, Body pale bhaish-green, not shining, closely like the leaf in color." Yuasa's (1922) description is similar except that he stated that the abdominal serments have six annulets. Dyar's notebook (unpublished) includes a sketch by Dyar of one of the abdominal segments, which shows the segment with five annulets and the spincs on the second and fourth annulet. It is likely that there
are five annulets. judging from the descriptions and the position of this species in relation to other species and genera of this subfamily.

Iiseussion.-This species is not common in collections. It may be separated from rossi by the white tegula, lobelike serculae of the female lancet, and characters of the male genitalia.

Aparcophora rossi, new species

Frmale,-Length, 6.7 mm . Entively black with labrum, extreme apex of each femur, foretibia, midtibia, foretarsus, and midtarsus white. Wings hyaline.

Antemat short and stout, second segment as wide as long, third segment longer than fourth segment (pI. III, 59). (lypeus truncate; malar space slightly less than diameter of front ocellus; postorbital groove absent; postgenal carina absent; eye small, located some distance from posterior margin of head (pl. IJ, 11). Prepectus absent. Tarsal claw simple. Forewing with stub of 2 A and 3A curved up at apex; $R s+M$ joins M at junction of $S c+R$. Hindwing with cross vein m-cu absent, leaving cell M open. Sheath long and rounded at apex (pl. V, 115). Lancet with semulae flat, each serruia with about six distinct subbasal teeth (pl. VIII, 173).

Mald - Length, 6.6 mm . In color and structure similar to female. Harpe almost evenly rounded (pl. X, 238) ; penis valve with lateral spine near apex, and with dorsal lobe small and evenly rounded ($\mathrm{pl} . \mathrm{X}, 239$) ; parapenis as in plate X., 238.

Holotype--Female, Bath. Mich., June 6, 1940, C. W. Sabrosky. Ihepnsited at the Illinois Natural History Survey.

Allotype-Male, same data as for female. Deposited with the holotype.

Paratypes. Maine: Bar Harbor, May, 1941, bred with 564 Diprion simile ex Pimus strobus (19) ; Brunswick, June 9, 1965, L. Lipossky (19); Penobscot Co., 3 mi . N. Passadumkeag, May 26, 1906, D. R. Smith (19). Michigan: Bath, June 6, 1940, C. W. Sabrosky (5: :); Bay City, May 20, 1936, Frison and Ross (1:, 1\%); 13 mi . N. Lapeer, May 31, 1937, C. W. Sabrosky (1 :) ; E. Lansing, May 25, 1937, C. W. Sabrosky (1 i) ; Bath, June 6, 1940 (2: 1). Minnesota: Itasca Park, June 3, 1957, sweeping, H. R. Dodge (1q). Ontario: Parry Sound, July 15, F. S. Parish (1:); Blackburn, May 20, 1941, O. Peck (10); S. Marsh, May 3, 1945, O. Peck (10) ; Marmora, May 26, 1952, R. Lambert ($1:$). Wisconsin: Madison, May 23, 1910, L. G. Gentner, ($1: 17$).

Disposition of Paratypes.-Paratypes have been deposited at the C.S. National Museum, Canadian National Collection, Ilfinois Natural History Survey, Michigan State University, University of Wisconsin, and Entomology Laboratory, Maine Forest Service, Augusta.

Distribution.-Southern Canada and Northern United States from Minnesota to Maine (fig. 15, C),

Howt.—Unknown.
Larta.-Unknown.

Disctossion.-The tegula, which is always black, and the male and female genitalic characters will distinguish this species.

This species is named after H. H. Ross of the Illinois Natural History Survey.

Genus ELPAREOPHORA Ensin

Eupareophora Enslin, 1914, p. 283; Berland, 1947, p. 234.
Type: Blemocampla exarmata Thomson. Monotypic.
Description.-Antenna short and stout; second segment wider than long; third segment longer than fourth segment (pl. III, 60). (lypeus truncate or very slightly emarginate; malar space as wide as diameter of front ocellus; postgenal carina absent; postorbital groove present and deep, with large indistinct punctures. Fye large, posterior margin very close to and parallel with posterior margin of head in lateral view (pl. II, 10). Prepectus absent. Tarsal chaw simple. Forewing with stub of $2 A$ and $3 A$ curved up at apex (pl. I, 6) ; vein $R s+M$ joins M before M joins $S_{c}-R$ (pl. I, 3). Hindwing with crossvein m-cu present, enclosing cell M.

The large eye, postorbital groove, wing venation, and tarsal claw will separate this genus from others.

This genus is represented in North America by one species, preve (Cresson), which has most commonly been known as Pareophora minuta (Maccillimay). The type of the genus is the only other species, a vare European form.

Description of Eapareophort Species

Eupareophora parca (Cresson), new combination
Selusdriu parca Cresson, 1880a, p. 13, $;$; Dalla Torre, 1894, p. 164; Cresson, 1916, p. 7.
Monophadmes parcus, Konow, 1905, p. 86.
Ardis parca, Ross, 1951, p. 66.
Selandria sp., Packard, 1890, p. 545.
Perichsta chionanthi Dyar, 1898, p. 132, o , larva; MacGilivray, 1916, p. 147. New synonymy.
Ardis chionanthi. Stannard, 1949, p. 38; Ross, 1951, p. 66.
Monophadhus minutus MacGilliviay, 1008a, p. 291, of MacGillivray, 1916, p. 150; Frison, 1927, p. 253. New syonymy:

Parcophori minuta, Ross, 1937, p. 99; Ross, 1951, p. 63; Maxwell, 1955, p. 88.
Pareophora guana MacGillivzay, 1923e, p. 28, i; Frison, 1927, p. 255; Ross, 1937, p. 99 ($=$ minutus MacGillivay). New syonymy.
Pareophora guara MacGillivray, 1923b, p. 54, ㅇ Frison, 1927, p. 255; Ross, 193t, p. 09 ($=$ minutus MacGillivay). New synonymy.

Female-Average length, 6.2 mm . Antenna and head black. Thorax black with tegula and upper angles of pronotum white to light rufous or nearly biack. Legs black with extreme apex of each femur, each tibia, and each tarsus whitish. Abdomen black. Wings hyaline.

Clypeus shallowly emarginate. Posterior margin of scutellum with several large punctures. Sheath short and broadly rounded
at apex (pl. V, 116). Lancet with serrulae low and rounded, each with 10 to 15 fine teeth (pl. VIII, 175).

Mah.-Average length, 5.8 mm . In color and structure similav to female. Penis valve with dorsal lobe and lateral spine near apex (pl. XI, 241) ; harpe and parapenis as in plate XI, 240.

Holorypes.-S. parca Cresson ($:$) is type No. $3 \overline{7} 7$ at the Academy of Natural Sciences of Philadelphia and bears the data "Tex." P. chionanthi Dyar (q) is type No. 4023 at the U.S. National Museum and is without locality labels. MacGillivray's types are at the lilinois Natural History Survey and have the following data, respectively: M. mimutus (9), "Milw. Co., Wisc., June 4, 1902, ('. E. S."; P. guana ($:$), "Algonquin, Ill."; and P. glata (\%), "Marion Co., Ark., May 2, 1897, F. M. McE."

Distrihution.-New Brunswick to Maryland, west to Texas and Saskatchewan; northern California and southern Oregon (fig. 16).

Vorth Amarican Kecords.-Arkansas: Marion Co., Nay 2, 1897, F. M. McE. Califormia: Marin Co., Phoenix Take, June 31, 1961, I). Q. Cavagnato; Red Bluft, March 23, 1951, on ash, Kane and Olsen; San Mateo, April S, 1959, W: H. Lange. Illinois: Algon(quin, May 12, 1903 , Nason; St. Joseph, May 1, 1913, May 3, 1914, salt fork; Dubois, April 24, 191-1, week valley; Bradtord, April 27, 1954, M. W. Sanclerson; Andover, April 27, 1954, M. W. Sanderson. Iowa: Sioux ('ity, April 29, 1929, (. N. Ainslie; Arres, May 6, 1950, W. L. lownes, May 7, 1951, Foward, May 3, 1953 , D. Muller, September, 1942, M. C. Park; Ledges St. Pk., Boone Co., May 1, 1957, N. M. Chivers, May 4, 1952, J. Laffoon. Kansas: Riley Co., April 2s, F. Marlatt. Maniloba: Carmen, em, March 2, 195i, green ash. Maryland: Wheaton, May 10 , 1956, on ash, adults April 27, 1957, B. D. Burks. Mississippi: Stoneville, November 11, 1963 , pecan, R. (. Morris. Missowi: Kirkwood. New Bronswick: Tetagouche Falls, em. March 8, 12, 15, 1965, white ash. New Jerself: Somerville, May 6, 1932, Frarimus americana. Nou+ Fork: Chappaqua, May 7, 1925; Honeoye L., May 14, 1933. Ontaro: Willard Lake, April 16, 1939, black ash; Donnoch, March 30, 1951, black ash; Furkett, March 19, 26, 1952, April 3, 1952, black ash; Nipigon, March 25, 19, 26, 1952, black ash; Northlancl, Mareh 26, 1952, brack ash; Chapleau, Nrarch 7, 21, 1955, black ash, March 7, 0, 1955, green ash; Ottawa, May 24, 1923, r. S. Walley, March S, 20, 1952, ash; Hazoldean, March 12, 1941, March 21, 1947, March 26, green ash; Orton Mills, Lake Simcoe, March 10, 1955 , black ash; White River, March 21, 1955 , black ash; Gogama, February 27, 1962, March 5, 9, 1962, Fraxinus nigra; Ouimet, March 19, 1952, black ash; Angus, April 3, 1947, white spruce cones; forestry sta., Petawawa, May 28, 1959, J. R. Vockeroth; Beils Corners, March 23, 1.950, white spruce cones; Marmora, May 26, 1952, R. Lambert; Merivale, May 22, 1947, O. Peck; Chatterton, May 24, 1954, J. C. Martin. Oregon: "Oregon," Koebele. Quebec: Harrington Lk., Gatineau Pk., May 31, 1954, R. McCondochie. Saskatchewan: Tessier, em. March 1, 1951, ash; Sutherland, em. Jane 5, 1945, March 27, 1950, March

Figtire 16.-Distribution of Eupareophora parca.

22, 1957, ash. Texas: "Tex." Belfrage. Wisconsin: Milwaukie Co., June 4, 1902, C. E. S.

Host.-Fraxinus americana L., F. nigra Marsh., F. oregona Nutt., and probably other species of ash. Adults of this species have been reared from larvae teeding on pecan (Carya illinoensis (Wangenh.) K. Koch) in Mississippi. Dyar (1898) reported that the larvae feed on white fringe (Chionanthus).

Larea-Dyar (1898) described the larva of this species in his description of chionanthi. The larva has long been confused with the larvat of Periclista, resembling the latter by the numerous long furcate spines on the body; however, the larva of parca may be separated from all known larvae of Perictista by the structure of the spines on the subspiracular lobe. Periclista has one bifurcate spine and one simple spine on this lobe, whereas parca has two bitureate spines.

Io late instar, head, spiracles, and spines on annulets entirely black; spines of spiracular and surpedal lobes black mony at tips. Light-black dorsolatemal longitudinal line present on each side of bociy.

Clypous with two setae on each side. Labrum with two or three setae on each side; shallow central emargination present; epipharynx with five or six spines located in arcuate row on each anterolateral half ($p \mathrm{l}$. XVIII, 337). Wach mandible with one seta on outer lateral surface; left mandible with two sharp ventral teeth and three sharp and one truncate lateral teeth (pl. XVIII, 336) ; right mandible with two ventral teeth, two sharp and one truncate lateral teeth, and one molar tooth (pl. XVII, 335). Maxillary palpus four-segmented; second segment of palpus with one seta on outer margin; palpifer with three setae; stipes with two setae; galea conical; lacinia with four or five stout spines (pl. XVIII, 338). Labial patpus three-segmented; prementum with three setae on each half.

Thorax with spines arranged as in plate XVIII, 341. Thoracic legs normal; femur longer than tibia; setae present on all surfaces of each leg.

Abdominal segments 1 through 8 each with five dorsal annulets; annulets 1,3 , and 5 without spines; annulets 2 and 4 each with two bifurcate spines on each side; postspiracular lobe with one bifurcate spine; subspiracular lobe with two bifurcate spines; surpedal lobe with two simple spines (typical segment shown in pl. XVIII, 340). Ninth abdominal segment with spines arranged as in plate XVIII, 339. Tenth tergum with transverse row of six spines, two central spines bifurcate, others simple (pl. XVIII, 339).

Discussion.-This species has previously been known in literature as Pareophora minuta (MacGillivary). Other species now considered synonymous with parca were placed in the genus Ardis by Ross (10.51) because of the presence of the postorbital groove; however, Eupureophora also possesses this character. Eupareophora may be separated trom Ardis by the simple tarsal chaw and wing venation, and from Pareophora by the simple tarsal claw, postorbital groove, large eye, and wing venation.

Dyar (1898) described chionanthi from two specimens, the type, and another specimen that is Periclista subtruncata Dyar. The host Chionanthus is based on the rearing of these two specimens and remains somewhat dubious.

Two races may exist here, one on Fraxinus and the other on pecan; however, no differences could be found between the adults and larvae taken from these two hosts.

Genus PERICLISTA Konow

Periclista Konow, 1886, p. 186; Stannard, 1949, p. 7; Stannard, 1951, p. 65; Benson, 1952, p. 100 ; Takeuchi, 1952, p. 48; Lorenz and Kraus, 1957, p. 124; Malaise, 1964, p. 22.
Type: T'enthredo (Allantus) lineolata Klug. Designated by Rohwer (1911a). Mogerus MacGillivray, 1895, p. 281. New name proposed unnecessarily for Periclistit Konow.
Isodyctiom Ashmead, 1898b, p. 127.
Type: Mogeras caryicolus Dyar. Original designation.
A periclista Enslin, 1914, p. 265; Malaise, 1964, p. 21 (genus reestablished). Synonymy reestablished.
Type: Tenthredo albipennis Zaddach. Original designation.
Neoclista Malaise, 1964, p. 22. New synonymy.
Type: Pcrictista andrei Konow. Original designation.
This genus was revised by Stannard (1949), who gave a key to species and descriptions for the North American species. Only additional information gathered since this revision is presented here. The references to the original descriptions are given, and any references pertaining to the species since Stannard's revision are cited.

Description.-Antenna short and stocky; second segment about as wide as long; third segment longer than fourth segment (pl. III, 59). Clypeus truncate or emarginate; malar space various, wider or narrower than diameter of front ocellus; postorbital groove absent; postgenal carina absent. Prepectus absent; small membramous area usually present on upper part of mesepimeron (absent only in marginicollis). Tarsal claw bifid with inner tooth long and nearly subequal in length to outer tooth; basal lobe usually present, at times rounded or indistinct (pl. II, 15, 18, 19). Forewing with stub of $2 A$ and $3 A$ curved up at apex (pl. I, 6); vein $R \delta+M$ usually meeting M before junction with $S c+R$ (p l. I, 3). Hindwing with crossvein m-cu present or absent, leaving cell M closed or open. Hindwing of male with peripheral vein in subgenus Periclista, without peripheral vein in subgenus Neocharactus.
Species of this genus may be distinguished by the curved-up vein $2 A$ and $3 A$ of the forewing, the bifid tarsal claw, the membranous area of the mesepimeron, and the presence of a peripheral vein in the hindwing of the males in the subgenus Periclista.

Malaise (1904) reestablished the genus Apericlista using the following characters: (1) Absence of cell M in hindwing; (2) inner margins of eyes converging downward; (3) lateral antennal furrows distinct and uninterrupted; (4) malar space shorter than diameter of front ocellus in female; linear in male; (5) pedicellus little longer than broad at apex; and (6) distance between eyes
below subequal to length of eye. Then on the same page he proposed another genus, Neoclista, based on the following characters: (1) Hindwing with cell M present; (2) inner margins of eyes subparallel; (3) distance between eyes longer than length of eye; (4) antennal furrows shallow; (5) malar space as long as diameter of front ocellus; and (6) scape and pedicellus conical. Those Periclista species not possessing the above combination of characters would evidently fall into the genus Periclista.

Malaise was obviously not aware of the Nearctic fauna, which includes the bulk of the world species, and the variation of characters within the species complexes as proposed by Stannard (1949). Most of the characters used by Malaise are good only for species separation and vary considerably within these species complexes. Malaise considers the middle cell of the hindwing to be a very important taxonomic tool. This is not rejected; it is an obvious character that is satisfactory for separation of some genera but varies in others (e.g., Eutomostethus, Monophadnoides). The width of the malar space is used to separate species within the Lineolata complex; therefore, it cannot be utilized on the generic level in this case. Stannard (1949) stated that the sculpturing of the head varied considerably and was not useful as a morphological character. Also, the other characters that Malaise uses do not substariate splitting of this genus.

The characters outlined in the generic description serve to differentiate this genus, and on the basis of these a uniform, compact group is formed. This is also substantiated by the habits and characters of the known larvae. If separate genera were to be established on the basis of those characters outlined by Malaise, the result would be about six genera, each with one or two species and each established with the use of all combinations of characters. There would be an assemblage of genera composed of distantly related species, some of which would be more closely related to members of other genera, and these would not reflect the true relationships of the species involved.

There are 19 species of Periclista in North America and four in Europe. Various species of Quercus constitute the host plant, although one species, marginicollis, feeds on Carya.

Larva.-The larvae of Periclista. were first treated by Dyar (1898), who gave a key to the species known to him at that time. Unfortunately much of his larval collection cannot be located, and specimens that are located are in such poor condition that it would not be worthwhile to describe them in detail. The changes in taxonomy and a different concept of subgeneric and generic characters make Dyar's key considerably out of date.

Yuasa (1922) also included Periclista and Isodyctium in his key to the genera of Blemnocampinae, but he did not include a key to species.

The larvae of only two species of Periclista can presently be identified with certainty; these are linea and marginicollis. I have been able to separate 10 larval forms from the material I have seen. Beer (1955) examined four larval forms taken from Quercus agrifolium at Berkeley, Calif., but only one was identified through
his rearings. I see no point in making a key to the unidentified larval forms examined; however, the following characters may permit specific identification of the larvae when they are associated with the adult: Number of spines on second annulet of each abdominal segment; number of annulets of each abdominal segment; number of postspiracular lobes of each abdominal segment; number of spines on postspiracular lobes; number and arrangement of spines on 10th abdominal tergum; number and arrangement of spines on thorax; mandibles; number and shape of spines on lacinia; and to some extent coloration of head and body.

It is interesting to note that, from the information available from Dyar (1898) and Beer (1955), those species of the Lineolata complex have two spines on the second annulet of each abdominal segment and those of the Melanocephala complex have three spines on the second annulet. When more larvae are defnitely associated, it will be interesting to see how the layval characters substantiate the present concept of species relationships.

Periclista larvae may be separated by the following combination of characters: Abdominal segments 1 through 8 each with four or five dorsal annulets; annulets 2 and 4 of abdominal segments 1 through 8 each with bifurcate or sometimes trifurcate spines; one or two postspiracular lobes present and with spines ; subspiracular lobe with anterior spine bifurcate, posterior spine simple; surpedal lobe with two simple spines (pl. XIX, 354). Tenth abdorninal tergum with simple, bifurcate, or trifurcate spines on margin; central compound spine absent.

The spines of the subspiracular lobe and the surpedal lobe are the characters by which Periclista larvae may be separated from other spiniform blennocampine larvae.

Subgenus PERICLISTA Konow

Descriptions of Periclista Species

Lineolata Complex

There are two eastern and three western species in the Lineolata complex.

> Periclista albicollis (Norton)

Selandria albicollis Norton, 1872, p. 85, of.
Periclista albicollis, Stannard, 1949, p. 18; Stannard, 1951, p. 65; Raizenne, 1957, p. 60.
Periclista emarginata Dyar, nec MacGilivay, 1898, p. 131.
Periclista quercus Rohwer, 1912, p. 232, $\delta, \%$.
Hindwing with cell M present.
New Host Records.-Quercus ilicifolia Wangenh., Q. rubra L., and Q. macrocarpa Michx.

New Kecords.-Jowa, Kansas, Louisiana, Maine, Manitoba, Maryland, New Hampshire, Ontario, Pennsylvania, and Virginia.

Larna.-The larva was described by Dyar (1898) as having "two spines on the second annulet," "dorsum entirely green," and
"head and spines black." Dyar also described the larva under the name emarginata MacGillivray.

Periclista linea Stannard

Periclista linea Stannard, 1948, p. 19, ; , o ; Stannard, 1951, p. 65; Beer, 1955, pp. 10-26.

Hindwing with cell M present.
Host.-Quercus agrifolia Née.
New Records.-Additional records from California and Oregon.
Larva.-Beer (1955) described the larva of this species in detail and discussed the biology of this species. The deseription and illustrations by Beer make this western species readily identifiable.

Periclista media (Norton)

Selandria media Norton, 1864, p. 9, i, 9.
Periclista media, Stannard, 1949, p. 16; Stannard, 1951, p. 65.
Selandria (Hoplocampa) foridana Cresson, 1880a, p. 12, \$.
Periclista purpheridorsum Dyar, 1898, p. 129, i, o.
Periclista confusa MacGillivray, $1908 \mathrm{a}, \mathrm{p} .291, \circ$.
Periclista similtaris Rohwer, p. $15 \overline{5}, 9$.
Hindwing with cell M present.
Few Records--Iowa, New Hampshire.
Larva.-Dyar (1898) described the larva of this species as having "two spines on the second annulet," and being "all green, at least in the last stage." Middleton (1922) described the Iarva of similaris Rohwer and illustrated the maxilla and third abdominal segment. His more detailed description is similar to Dyar's description of purpuridorsum.

Periclista naranga Stannard

Periclista nuranga Stannard, 1949, p. 20, 9 ; Standard, 1951, p. 65.
Hindwing with cell M present.
Larva--Unknown.

Periclista spicula Stannard

Periclista spicula Stannari, 1949, p. 21, o; Stannard, 1951, p. 65.
This species was described from a single male. To date several other males have been seen from California, but the female is still unknown.

Larea.-Unknown.

Melanocephala Complex

One new species in the Melanocephala complex is described, as well as the female of entella and the male of diluta. This complex includes seven species.

Periclista bipartita (Cresson)

Selandria bipartita Cresson, 1880a, p. 12, t.
Periclista bipartita, Stannard, 1949, p. 23; Stannard, 1951, p. 65.
Mogerus emarginatus MacGilliviay, 1895, p. 281, δ.
Isodyctiom murtjeldtiae Dyar, 1898, p. 135, o.
Hindwing with cell M present.
New Record.-Connecticut.
Larva.-Dyar (1808) described the larva of murtfeldtiue as having "three spines on the second annulet," "head not spotted, spines mostly pale," and "spines wel. forked and black at base and tip." Dyar also described the larva of emarginatus as having "two spines on the second annulet." However, Dyar's emarginatus was not that of MacGillivray's but equal to albicollis Norton.

Periclista diluta (Cresson)

Selandria (Monophadnus) diluta Cresson, 1880a, p. 12, q. Perichisfa diluta, Stannard, 1949, p. 27; Stannard, 195I, p. 65. Isodyclium subgregarinm Dyar, 1898, p. 134, o. ㅇ.

Female--Upper part of mesepimeron with small membranous area. Hindwing with cell M present or absent.

Mate.-A verage length, 6.7 mm . In coloration similar to male of marginicollis except for following: Usually only anterior lateral parts of clypeus white; mesoplearon may be red brown; mesonotum may be suffused with brown; upper inner orbits may be brownish.

Structure as for female. Harpe as broad as or broader than long with acute lower inner angle (pl. XI, 260); parapenis broad, not noticeably expanded toward center (pl. XI, 260) ; penis valve with dorsal lobe obsolete (pI. XI, 261).

The male will key out to marginicollis ($=$ caryicolus) in Stannard's 1949 key. It may be separated from marginicollis by the presence of the membranous area on the upper part of the mesepimeron, the shorter and broader harpe, the broader parapenis, and the shape of the penis valve.

Ver Records.-Connecticut, Florida, Maine, Ontario, Texas, Wisconsin.

Larva-Dyar included diluta in his 1898 key as having "two spines on the second annulet." He also described subgrogarium but as having "three spines on the second annulet." There may have been a mixup in the identification of these species. Dyar (1898) used diluta in his key on the basis of a brief description from "Riley's notes in Packard's Forest Insects (5th Rept. U.S. Ent. Comm., p. 206)." Dyar also stated: "The bred fies in collection [..S. Nat. Mus., have the lanceolate cell of hind wings unusually long, though still shortly petiolate at tip." There is one specimen of P. albicollis in the U.S. National Museum collection with the data "C. V. Riley Collection," "bred, willow." This may be the specimen to which Dyar is referring. However, there is also a specimen with the data "C. V. Riley collection," "larva on oak,
green with black branching spines, 3-29-79," "Monophadnus dilutus Cr.," which is Periclista inaequidens (Norton). I am not able to tell which species Dyar actually included in his key or to which specimen Riley was referring.

Discussion.-This species is close to marginicollis, but it is not known to feed on hickory. The female is entirely orange yellow, the apex of the sheath is truncate, and there is a membranous area on the upper part of the mesepimeron.

Periclista entella MacGillivray

Pericliata eutella MacGillivray, 1923e, p. 29, \&; Stannard, 1949, p. 26; Stannard, 1951, p. 65.

Female.-Length, 6.9 mm . Antenna and head black with labrum white. Thorax black with tegula, upper angles of pronotum, stripe on posterior margin of mesepimeron, and posterior margin of mesepisternum white; mesopleuron, outer margins of prescutum, outer margins of lateral lobes, and anterior margin of scutellum red brown. Legs mostly light brown, with base of each coxa, first segment of each trochanter, and base of each femur black. Abdomen black, suffused with various amounts of red brown and white on each segment. Wings hyaline.

Clypeus emarginate. Tarsal claw with inner tooth subequal to outer tooth in length and with basal lobe present (pl. II, 18). Upper part of mesepimeron with small membranous area. Hindwing with cell M present. Sheath pointed, truncate at apex (pl. VI, 132). Lancet with serrulae flat, with only one anterior subbasal tonth; similar to marginicollis.

This female will key out to marginicollis (= caryicolus) in Stannard's 1949 key. It may be separated from marginicollis by the emarginate and black clypeus, the presence of a membranous area on the upper part of the mesepimeron, the presence of cell M in the hindwing, and the trunrate apical part of the sheath. It may be separated from diluta and rileyi by the emarginate clypeus, entirely black head, and mostly black thorax and abdomen.

Host.-Adults have been taken from Quercus.
New Records.-California. Additional specimens have also been seen from Oregon.

Larva.-Unknown.
Discussion.-Stannard regarded this species as the western counterpart of marginicollis, differing by its feeding habits and emargination of the clypeus. The female seems to be most closely related to diluta by the sheath shape and membranous area of the mesepimeron. Stannard's contention that this is a distinct species, however, is here confirmed.

Periclista marginicollis (Norton)

Selandria marginicolisis Norton, 1861, p. 220, 9 ; Smith, 1966a, p. 249.
Periclista marginicolis, Stannard, 1949, p. 37; Stannard, 1951, p. 65; Smith, 1966a, p. 249.
Mogerus caryicolus Dyar, 1897, p. 193, \&. 9 ; Smith, 1966a, p. 249 (= marginicollis Norton).

Periclista caryicola, Stannard, 1949, p. 24; Stannard, 1951, p. 65; Raizenne, 1957, p. 40.
Is(i)odyctium atratum MacGillivray, 1008a, p. 290, ㅇ.
Periclista hicoriae Rohwer, 1917, p. 154, ㅇ.
Periclista xanthognatha Rohwer, 1917, p. 156, o ; Smith, 1966a, p. 249 (= marginicollis Norton. Transferred from P. incequidens (Norton).)
Periclista plesia Rohwer, 1920, p. 211, $\%$.
Periclista pecanivora Rohwer, 1920, p. 212, 9.
Upper part of mesepimeron completely sclerotized, without small membranous area. Hindwing with cell M absent.

New Records.-Florida, Kansas, Louisiana, Maryland, Michigan, Oklahoma.

This species has previously been known as caryicola (Dyar); however, Smith (1966a) correctly placed the name "marginicollis Norton," which has precedence by priority. This is the only species of this genus known to feed on hickory and pecan. The absence of the membranous area of the epimeron serves as a desirable character to distinguish this species, especially the males, which are very close to diluta in coloration.

Larva.-Dyar (1898) described the larva of caryicola as having "three spines on the second annulet," "head not spotted, spines mostly pale," and "spines more or less degenerate in last stage." Middleton (1922) described the larva of hicoriae Rohwer. His description is similar to the one below.

In late instar, head brownish, ocularium black. Body entirely light creamy colored; spines light, same color as body but darker at tips.

Clypeus with two selae on each side. Labrum with two setae on each side; very shallow central emargination present; epipharynx with 10 to 12 spines located in arcuate row on each half (pl. XIX, 351). Each mandible with one seta on outer lateral margin; left mandible with three ventral teeth and three sharp and one truncate lateral teeth (pl. XIX, 350) ; right mandible with two ventral teeth, two sharp and one truncate lateral teeth, and one molar tooth (pl. XIX, 349). Maxillary palpus four-segmented; second palpal segment with one seta on outer surface; palpifer with four setae; stipes with two setae; lacinia with 11 to 12 stout spines (pl. XIX, 352). Labial palpus three-segmented; prementum with three setae on each side.

Spines of thorax arranged as in plate XIX, 355. Thoracic legs normal, femur longer than tibia; setae numerous on all surfaces of each leg.

Abdominal segments 1 through 8 each with five dorsal annulets (typical segment shown in pl. XIX, 354). Annulets $1,3,5$ without spines; annulet 2 with three bifurcate spines on each side, the lower spine sometimes simple; annulet 4 with two bifurcate spines on each side; spines short, stout, their branches bent over sharply; first postspiracular lobe with one simple spine; second postspiracular lobe with one bifurcate spine; subspiracular lobe with anterior spine bifurcate, posterior spine simple; surpedal lobe with two simple spines.

Ninth abdominal segment with spines arranged as in plate XIX, 353. Tenth abdominal tergum with row of six spines on posterior margin, each of which are usually bifurcate (pl. XIX, 353). Subanal and suranal areas with numerous setae.

Since this is the only known Periclista to feed on hickory and since it also fits the description of this species by Dyar (1898) and Middleton (1922), the identification appears to be certain.

Periclista rileyi (Cresson)

Selandria (Monophadnus) rileyi Cresson, 1880a, p. 13, 9.
Periclista rileyi, Stannard, 1949, p. 28; Stannard, 1951, p. 65. Isodyctium floridense Dyar, 1898, p. 134, ㅇ.

Hindwing with cell M present.

New Record.-Texas.
This species is distinguished from diata only by the darker frons and whiter inner orbits of the eyes. Several specimens have been seen that are intermediates; however, insufficient material limits an evaluation of their status.

Larva.-Unknown.

Periclista stannardi, new species

Female-Length, 6.8 mm . Antenna and head black with clypeus and labrum white. Thorax black with tegula, upper angles of pronotum, line on posterior margin of mesepisternum, and spot on metapleuron white and with spot on prepectal area of mesepisternum, line on posterior margin of mesepimeron, outer margins of prescutum, outer and inner margins of lateral lobes, and anterior one-half of scutellum red brown. Legs light red brown with base of each coxa, first segment of each trochanter, base of each forefemur and midfemur, and most of hindfemur black; each tibia and tarsus infuscate. Abclomen usually black suffused with red brown and white on each segment; sheath black. Wings hyaline.

Antenna with second segment as wide as long; third segment longer than fourth segment (pl. III, 59). Clypeus slightly emarginate; malar space wider than cliameter of front ocellus; postorbital groove absent; postgenal carina absent. Prepectus absent; upper part of mesepimeron with small membranous area. Tarsal claw with inner tooth subequal in length to outer tooth; basal lobe present. Forewing with stub of $2 A$ and $3 A$ curved up at apex; vein $R s+M$ meets M before junction with $S c+R$. Hindwing with crossvein m-cu present, enclosing cell M; anal cell without petiole. Sheath very broadly truncate at apex (pl. VI, 131). Lancet similar to that of marginicollis; serrula each with one anterior subbasal tooth.

Male.-Unknown.
Holotype.-Female, Kerrville, Tex., March 30, 1959, W. R. M. Mason. Deposited in the Canadian National Collection.

Paratypes.-Iova: Ames, May 1, 1923, R. A. G. (ㅇ). Texas: Kerrville, April 10, 1959, W. R. M. Mason (19).

Disposition of Paratypes.-Paratypes have been deposited at Iowa State University and the Canadian National Collection.

Distribution.-Texas and Iowa.
Host.-Unknown.
Larva.-Unknown.
Discussion.-This species will key to marginicollis ($=$ caryicola) in Stannard's 1949 key. It is easily distinguished from that species by the broadly truncate sheath, the presence of cell M in the hindwing, and the presence of the membranous area of the mesepimeron. It differs from diluta and rileyi by the sheath shape and darker coloration. The white clypeus and truncate sheath will separate it from entella.

This species is named after L.J. Stannard of the Illinois Natural History Survey who revised this genus for North America.

Periclista sulfurana Stannard

Periclista sulfurana Stannard, 1949, p. 28, 今, ρ; Stannard, 1951, p. 66.
Hindwing with cell M present.
This species closely resembles diluta, but it is separated by the presence of more than one anterior subbasal tooth on each serrula of the lancet.

Larva,-Unknown.

Californica Complex

This complex includes three species that are all limited in distribution to the west coast of North America.

Fericlista californica Rohwer

Periclista californica Rohwer, 1917, p. 154, ㅇ ; Stannard, 1949, p. 30; Stannard, 1951, p. 65.

Hinclwing with cell M present.
Neto Records.-Additional specimens have been seen from California.

Larva.-Unknown.

Periclista electa MacGillivray

Pericliata electa MacGillivray, 1923a, p. 80, ô ; Stannard, 1949, p. 31; Stannard, 1951, p. $6 \overline{\text { b. }}$

Hindwing with cell M present.
New Recorrls.-Additional specimens have been seen from California and Oregon.

Larva.--Unknown.

Periclista vergorba Stannard

Periclista vergorba Stannard, 1949, p. 32, \%; Stannard, 1951, p. 66.

Hindwing with cell M present.
New Records.-Several more specimens from California have been examined that fit the color pattern of this species.

Larva.-Unknown.
Discussion.-This species is separated from electa on the basis of the red-orange abdomen; however, the color of the abdomen of electa varies considerably. Stannard uses the position of $2 r$ of the forewing as a distinguishing character. I have not used this character since its placement in relation to $3 r-m$ varies within species. Larger series will be needed to evaluate the status of this species. It may be only a color variation of electa.

Subgenus NEOCHARACTUS MacGillivray

Neocharactus MacGilivray, 1908a, p. 293; Stannard, 1949, pp. 34-37; Stannard, 1951, p. 66; Burks, 1958 , p. 15.
Type: Neocharactas bakeri MacGilivray. Monotypic.
Aphanisus MacGillivray, 1908a, p. 295.
Type: Aphanisus lobatus MacGillivray. Original designation.
There are four species in this subgenus, two of which are western and two eastern. Stannard (1949) defined this group.

Descriptions of Periclista Species

Periclista inceqquidens (Norton)

Selandria inaequidens Norton, 1872, p. 84, 9 .
Periclista inacquidens, Stannard, 1949, p. 33; Stannard, 1951, p. 66.
Isodyctium infrequens Dyar, 1898, p. 134, q.
Hindwing with cell M present.
New Record: New Hampshire.
Periclista xanthognatha Rohwer, 1917, was listed as a synonym of this species, but was transferred to marginicollis (Norton) by Smith (1966a).

Larva.-Dyar (1898) described the larva of infrequens as having "three spines on the second annulet," "head not spotted," and "spines only black at tips."

Periclista occidentalis Rohwer

Periclista occidentalis Rohwer, 1909c, p. 398, \&, ㅇ: Stannard, 1949, p. 36; Stannard, 1951, p. 66.

Hindwing with cell M present.
New Records.-Additional specimens from California have been examined. I took a series of this species from Quercus agrifolia Née.

Larva.-Unknown.
Periclista pallipes (Provancher), new combination
Monophadnus pallipes Provancher, 1895, p. 80, δ, ρ; Gahan and Rohwer, 1917-18, p. 103; Burks, 1958, p. 15.

Neocharactus bakeri MacGillivray, 1908a, p. 293, t. New synonymy.
Periclista bakeri, Stannard, 1949, p. 35; Stannard, 1951, p. 66.
Periclista leucostoma Rohwer, 1909c, p. 397, \%ै, O. New synonymy.
Hindwing with cell M present.
New Records.-Many new records from California. I collected a series of this species by beating Quercus agrifolia Née. Adults of occidentalis were taken on the same tree.

Larva.-Unknown.
Holotype.-Provancher's type (9) is located at the Museum of Quebec, Laval University, and it bears the yeliow label " 1675 " with the name label "Monophadnus pallipes Prov., Cal." This is undoubtedly the specimen Gahan and Rohwer (1917-18) designated as the lectotype, and it is here considered as the type.

Periclista subtruncata Dyar

Periclista subtruncata Dyar, 1898, p. 131, q; Stannard, 1949, p. 34; Stannard, 1951, p. 66.
Aphanisus lobatus MacGillivray, 1908a, p. 295, 2.
Aphanisus muricatus MacGillivray, 1908a, p. 296, 9.
Hindwing with cell M present.
New Records,--Indiana, Louisiana, South Carolina, Virginia.
Larrat.--Dyar (1898) described the larva as having "two spines on the second annulet," "dorsum entirely green," "head and spines partiy or wholly green," and "clypeus brownish, terminal spines dusky on the tips."

Unplaced Name of Periclista

Periclista mutabilis Konow

Periclista mutabilis Konow, 1904, p. 241, \& \% $\%$ Stannard, 1949, p. 37; Stannard, 1951, p. 65.

This species was described from Texas. It will be impossible to place until the type is examined.

Genus MONOPHADNOIDES Ashmead

Monophadinoides Ashmead, 1898a, p. 253; Konow 1905, p. 85 ($=$ Monophadnus Hartig) ; MacGillivray, 1916, p. 151; Ross, 1937, p. 100 (= Blennocampa Hartig) ; Ross, 1951, p. 68; Benson, 1952, p. 101; Takeuchi, 1952, p. 48; Lorenz and Kraus, 1957, p. 125.
Type: Monophadnus rubi Harris. Original designation.
Claremontia Rohwer, 1909c, p. 397; Ross, 1937, p. 100; Ross, 1951, p. 66; Malaise, 1964, p. 30. Vew synonymy.
Type: Claremontia typica Rohwer. Original designation.
Monophadnus subgenus Psexdomonophadnus Malaise, 1935, p. 167; Ross, 1951, p. 68 ($=$ Monophadnoides Ashmead).

Pseudomonophadnus Malaise, 1944, p. 1; Pasteels, 1948, p. 187.
Type: Tenthredo geniculnte Hartig. Original designation.
Monophadnas subgenus Pseudoblennocampa Malaise. 1935, p. 167; Pasteels, 1948, p. 188; Ross, 1951, p. 67 ($=$ Claremontia Rohwer) ; Malaise, 1964, p. 30. New synonymy.

Type: Tenthredo (Allantus) tenticornis Klug. Original designation.

Description.-Antenna various, long and filiform or short and stout; second segment as wide as long; third serment subequal in length to fourth segment, 1% times length of fourth segment, or subequal in length to segments 4 plus 5 (pl. III, 61-66). Clypeus truncate or slightly emarginate; malar space linear or equal to diameter of front ocellus; postorbital groove absent or indistinct; postgenal carina absent or indistinctly indicated below eye. Prepectus absent. Tarsal claw with long inner tooth, which may be either subequal in length and appressed to outer tooth or shorter than outer tooth and situated some distance from it; basal lobe always present, sometimes not obvious (pI. II, 18, 19, 21). Forewing with stub of $2 A$ and $3 A$ straight at apex (pl. I, 1). Findwing with crossvein m-ctu present or absent, leaving cell M closed or open. Penis valve of male genitalia with lateral spine and dorsal lobe (pl. XI, 2.13, 245, 247, 251). Lancet of female with serrulae lobelike, without teeth or with very few distinct subbasal teeth (pl. IX, 181-187).
There is considerable variation in many of these generic characters, but the members of this group all appear to be very closely related. This relationship is based on the tarsal claw, which is always bificl and with a basal lobe, vein 2.4 and $3 A$ of the forewing, which is always straight, and the male and female genitalia. The similarity of the known larvae also supports this relationship, as shown by Lorenz and Kraus (1957).

This genus could be separated into several genera or subgenera using the relative length of the antennal segments, length and position of the imner tooth of the tarsal claw, presence or absence of cell M of the hindwing, or width of the malar space as characters. I see no reason to slo this. On the same basis, the genera Periclista and Monophadnus could also be split, a tendency that has been followed too often in the past. In cloing so, relationships would be lost, and the taxonomy would become too cumbersome by using so many superfluous names.
('laremontic was previously separated by the third and fourth antennal segments being subequal in length and the tarsal claw lacking a basal lobe. Ross (1937) overlooked the basal lobe of the tarsal claw, and Malaise (1964) reestablished his genus Pseuloblennoctompa partially on this basis. The species that have been included in Claremontia do, in fact, have a basal lobe, and the two genera are here considered the same as Monophadnoides.

The genus Monophadnoides itself has been variously placed. Konow (1905) considered it congeneric with Monophadnus and Ross (1937) and Takeuchi (1952) considered it congeneric with Elennocampa. Monophadnus is rather distinct, as shown by characters in the key to genera, and is more closely related to the genera of the tribe Phymatocerini. Blennocampa is separated on the basis of veins M and $m-c u$ of the forewing converging toward the stigma, the second antennal segment being longer than wide, and the habit of living in the rolled-back margins of rose leaves in the larval stage. Lorenz and Kraus (1957) also separated the larva of the single species of Blennocampa from all the known larvae of Monophadnoides. Benson (1952) contributed significantly toward
the stabilizing of these genera, and this study of the Nearctic forms more than substantiates his position.

This genus has about 20 species known from the world. Benson (1952) included seven species from England, and seven species are known from North America. The larva and host for only one North American species are known, the Holarctic geniculatus (Hartig) that feeds on Rubus.

Key to Monophatnoides Species

1. Female 2Male82. Tarsal claw with inner tooth long, subequal in length to outer toothand usually appressed to it, basal lobe distinct (pl. 11, 21) ; outerorbits smooth and shining; hindwing with cell M present
M. geniculatus (Hartig)
Tarsal claw with inner tooth shorter than outer tooth and situatedhalfway between basal tobe and outer tooth, basal lobe always pres-ent but not always obvious (pl. II, 18, 19) ; outer orbits roughenedand shagreent; ; hindwing with cell M absent3
2. Third antemal segment subequal in length to fourth segment (pl. III, 65) ; antenna long and slender, usually more than twice width of head 4
Third antrnal segment longer than fourth segment (pl. III, 61-64); antenna short and stout, usually less than twice width of head 5
3. Thorax entirely black; west coast M. typicus (Rohwer)
Tegula white; pronotum mostly light rufons; eastern_M. quebecensis, n. sp.
4. Tegula white; pronotum mostly light rufous; antenna with segmentsnot expanded at apices, third segment $1^{1 / 2}$ times length of fourthsegment or less (pI. III, 62); sheath straight above, nearly truncateat apex (pl. Y, 118)M. conspiculatus MacGilivray
Tegula whitish or black; pronotum black; antenna with segmentseither expanded or not expanded at apices, third segment nearlytwice length of fourth segment or less than $1^{1 \prime 2}$ times length offourth segment (pl. III, 61, 64, 66) : sheath slightly rounded above,not truncate at apex (pl. V, 117, 122, 125)6b. Antenna with segments slightly expanded at apices, third segment
nearly twice length of fourth segment, segments 4 to 9 less thantwice as long as wide (pl. III, 64) ; tegula white to brownishAntenna with segments not expanded at apices, third segment lessthan $2^{1}:$ times length of fourth segment, segments 4 to 9 usuallytwice as long as wide (pi. III, 61, 66); tegula black or brownish..--(pl. III, 61) ; tegula brown or black; lancet with serrulae directedanteriorly (pl. IX, 181) ; west coast_----.-.-M.atratus (MacGillivray)Antenna stout, length less than 1^{12} times width of head (pI. III, 66);tegula black; lancet with serrulae directed downward (pl. IX, 187);eastern8. Tarsal claw with inner tooth long, subequal in length to outer toothand usually appressed to it, basal lobe distinct (pl. II, 21) ; outerorbits smooth and shining; hindwing with cell M presenthalfway between hasal lobe and outer tooth, basal lobe always pres-ent but not always obvious (pl. II, 18, 19); outer orbits roughenedand shagreened; hindwing with cell M absent9
5. Antenna with third segment subequal in length to fourth segment (pi. III, 65) M. typicus (Rohwer)
Antenna with third segment longer than fourth segment 10
6. Antenna with third segment more than 1^{1} s times length of fourth segment ($\mathrm{pl} . \mathrm{III}, 64$); antenna less than 11.2 times width of head; tegula usually brownish; east of Rocky Mountains
M.pauper (Provancher)

Antenna with third segment less than 1^{1} g times length of fourth segment (pl. III, 61); antenna neariy twice width of head; tegula black; west coast M.atratus (MacGillivray)

Descriplions of Monophadnoides Species

Monophadnoides atratus (MacGillivray), new combination
Blennocampa atrata MacGillivray, 1893, p. 239, 9 ; Konow, 1905, p. 83; Frison, 1927, p. 238; Ross, 1951, p. 67.
Erythraspides ashmeadi Kincaid, 1900, p. 345, 各, 우 Ross, 1951, p. 67 (=atrata MacGillivray).
Blennocampa ashmeadt, Konow, 1905, p. 83.
Frmale.-Average length, 6.9 mm . Entirely black with extreme apex of each femur and basal one-half of hindtibia whitish; tegula may be light brown. Wings lightly infuscate.

Antenna long and slender, length equal to more than $11 / 2$ times width of head, third segment $11 / 2$ times or less length of fourth segment, fourth to ninth segments more than twice as long as wide, segments not expanded at apices (pl. III, 61). Outer orbits roughened and shagreened; malar space less than one-half diameter of front ocellus; postorbital groove indistinct; postgenal carina absent or only slightly indicated below eye. Tursed claw with inner tooth shorter than outer tooth and situated halfway between outer tooth and basal lobe (pl. II, 18). Hindwing with crossvein m-cu absent, leaving cell M open. Sheath with upper and lower margins curved, terminating in blunt point at apex (pl. V, 117). Lancet with serrulae lobelike with three or four anterior subbasal teeth and several very fine posterior subbasal teeth; distinct notch separates ventral margin of lancet from anterior margin of each seruia; serrulae directed anteriorly (pl. IX, 181).

Hale.-A verage length, 6.4 mm . In color and structure similar to female. Harpe elongate (pl. XI, 242) ; penis valve and parapenis as in plate XI, 242 and 243.

Holotypes.-The type of B. atrata MacGillivray (o) is at the Illinois Natural History Survey and bears the data "Olympia, Wash., T. Kincaid, 5-7-93." E. ashmeadi Kincaid (ㅇ) is type No. 5282 at the U.S. National Museum and bears the data "Sitka, Alaska, June 16, 1899, Harriman Expedition, '99, T. Kincaid, collector."

Distribution.--West coast region from Alaska to Oregon (fig. 17, A).

North American Records.-Alaska: Sitka, June 16, 1899, Harriman Expedition, T. Kincaid. British Columbia: Vancouver, March 30, 1926, April 13, 1931, H. H. Ross; Univ. Campus, Vancouver, April 18, 1959, G. Scudder ; Robson, May 22-30, 1950, H. R. Foxlee; Gt. Central L., April 16, 1941, K. Graham. Northwest Territories: Norman Wells, May 25, 1953, C. D. Bird. Oregon: Boyer, April 11, 1936, shrub; Still Cr. Forest Camp, I mi. E. Government

Camp, July 14, 1956, F. F. Hasbrouck; 2 mi. W. Harlan, Lincoln Co., 250', April 7, 1960 ; Netarts Bay, April 7, 1962, J. Schuh; Rockaway, April 6, 1940, on willow, K. Gray and J. Schuh. Washington: Bumping Lake, Yakima Co., May 20, 1940, G. R. Ferguson; Olympia, April 5, 1895, T. Kincaid.

Host.—Unknown.
Larva.-Unknown.
Discussion.-This species is closely allied to pauper and osgoodi, but it may be separated by its longer and more slender antenna, the black or brownish tegula, the longer sheath, and characters of the male and female genitalia.

Monophadnoides conspiculatus MacGillivray

Monophadnoides conspiculata MacGillivray, 1908a, p. 293, ㅇ MacGillivray, 1916, p. 153; Frison, 1927, p. 252.
Blennocampa conspiculata, Ross, 1951, p. 67.
Female.-Average length, 6.5 mm . Antenna and head black with labrum light. Thorax black with tegula white and most of pronotum light rufous. Legs with each coxa and trochanter black; each femur, tibia, and tarsus light rufous to white; each tarsus infuscate. Abdomen black. Wings lightly infuscate.

Antenna short and stout, length equal to $13 / 2$ times width of head, third segment slightly less than $11 / 2$ times length of fourth segment, segments 4 to 9 about twice as long as wide, segments not expanded at apices (pl. III, 62). Outer orbits roughened and shagreened; malar space less than one-half diameter of front ocellus; postorbital groove indistinct; postgenal carina slightly indicated below eye. Tarsal claw with inner tooth shorter than outer tooth and situated halfway between outer tooth and basal lobe (pl. II, 19). Hindwing with crossvein m-cu absent, leaving cell M open. Sheath straight above, nearly truncate at apex (pl. V, 118). Lancet with serrulae truncate; small notch separates ventral margin of lancet from anterior margin of each serrula; serrulae directed anteriorly (pl. IX, 182).

Male.-Unknown. I have seen several unassociated males that may be this species, but there is no associated material available.

Holotype.-The type (\circ) is located at the Illinois Natural History Survey and bears the data "Ithaca, N.Y."

Distribution.-Eastern North America from Quebec and Nova Scotia to North Carolina (fig. 18, A).

North American Records.-Maryland: Cabin John, April 28, 1912, Knab and Malloch. New York: Ithaca, May. North Carolina: Balsam, April 24, 1938, Ross and Burks; Highlands, May 8, 1957, W. J. Brown. Nova Scotia: Grand R., July 6, 1931, M. L. Prebble. Ontario: Bells Corners, May 17, 1945, O. Peck. Quebec: Old Chelsea, May 30, 1952, J. F. McAlpine; Cascapedia R., June 17, 1934, C. C. Smith. Tennessee: Great Smoky Mt. Nat. Pk., May 20, 1957, W. R. M. Mason. Virginia: Arlington, collection W. H. Ashmead. West Virginia: "W. Va.," A. D. Hopkins.

Host.- Unknown.
Larva.-Unknown.

Discussion．－This is a rather distinct species and may be recog－ nized by the light－colored pronotum and the unusual sheath shape． It is not a commonly collected species．

Monophadnoides geniculatus（Hartig）

Tenthredo gt hiculatus Hartig，1837，p．274；Eversmann，1847，p． 31.
Monophadnus geniculatus，Kaltenbach，1867，p．105；Kaltenbach，1874，pp．231， 237,242 ；Konow，1886，p．244；Dalla Torre，1894，p．162；Konow，1905， p．86；Enslin，1914，p．292；Conde，1934，p．185；Malaise，1935，p．167； Berland，1947，p． 254.
Blemocempa geniculute，Thomson，1870，p．282；Thomson，1871，p．218；Cam－ eron，1877a，p．57；André，1881，p．308；Cameron，1882，p．236；Brischke and Zaddach，1883，p．279；Benson，1940，p． 207.
Paeudomonophadnuss femictlatus，Pasteels，1948，p． 188.
Monophadhoides gruiculatus，Ross，1951，p．68；Benson，1952，p．104；Maxwell， 1955，p．114；Lonenz and Kraus，1957，p．127；Benson，1963，p． 252.
Selandria（Hoplocampa）rebi Harris，1845，p．13；Harris，1850，p．33；Harris， 1860，p．235；Norton，1867，p．249；Riley，1869，p．52；Saunders，1873， p．101；Thomas，1875，p．61；Provancher， 1878 ，p． 99 ；Thomas，1881，p．67； Saunders，1884，p．209；Saunders，1885，p． 1 ；Ross，1951，p． 68 （ $=$ genicu－ latus Hartig）．
Eriactmpa rubi，Kirby，1882，p． 175.
Monophaduus rubi，Provancher，1888，p．350；Dalla Torre，1894，p．165；Dyar， 1895 c, p．200；Dyar，1898，p． 137 ；Konow， 1905, p． 86.
Monophadnoides rubi，Ashmead，1898a，p．253；MacGillivray，1916，p．153； Yuasa，1922，p．95；Lameere，1938，p．416；Zeller and Schuh，1944，p．43； Peterson，1956，p． 268.
Blmanocampa rubi，Ross，1937，p．08；Smith，1943，p． 385.
Selaudria nigclla Cresson，1880a，p．12，o ；Cresson，1916，p．6；Ross，1951，p． 68 （－－Ieniculatus Hartig）．
Monophadnus nigellt，Dalla Torre，1894，p．164；Konow，1905，p． 86.
Monophaduus hudsonicus Kirby，1882，p．176，δ ；Dalia Torre，1894，p．163； Konow，1905，p．86；Ross，1951，p． 68 （ $=$ geniculatus Hartig）．
Monophadnus atracormis MacGillivray，1893，p．239，o；Konow，1905，p． 86 （atricomis）；Frison，1927，p．253；Ross，1951，p． 68 （ $=$ geniculatus Hartig）．
Blennocampa gilletei Weldon，1907，p．304，$\%$ ；Rohwer，1909a，p．89；Ross， 1951，p． 68 （＝geniculatus Hartio）．
Monophadnoideg conspicuus MacGillivray，1908a，p．293，o ；MacGillivay， 1916，p．153；Frison，1927，p．252；Ross，1951，p． 68 （二geniculatus Hartig）．
Monophadnoides consobrinus MacGilitvray，1908a，p．294，o；MacGillivray， 1916，p．153；Frison，1927，p．252；Ross，1951，p． 68 （ $=$ geniculatus Hartig）．
Monophadnoides concessus MucGillivray，1908a，p．294，o，MacGillivray，1916， p．153；Frison，1927，p．252；Ross，1951，p． 68 （ $=$ geniculatus Hartig）．
Monophadnoides crassus MacGillivray，1908a，p．294，o ；MacGillivray，1916， p．153；Frison，1927，p．253；Ross，1951，p． $68(=$ geniculatus Hartig）．
Monophadnoides Gonspersus MacGillivray，1908a，p．294，f．MacGilhvray， 1916，p．153；Frison，1927，p．252；Ross，1951，p． 68 （ $=$ geniculatus Hartig）．
Monophadnoides costalis MacGillivray，1908a，p．295，o；MacGillivray， 1016 ， p．153；Frison，1927，p． 252 ；Ross，1951，p． 68 （三geviculatzts Hartig）．
Monophadnoides coracinus MacGillivray，1908a，p．295，t；MacGillivray，1916， p．153；Frison，1927，p．252；Ross，1951，p． 68 （＝geniculatus Hartig）．
Monophadhoides collaris MacGillivray，1908a，p．295，o；MacGillivray，1916， p．153；Frison，1927，p．252；Ross，1951，p． 68 （ $=$ geniculatus Hartig）．
Aphanisses nigritus MacGillivray，1908a，p．296， 9 ；MacGillivray，1916，p．154； Frison，1927，p．237；Ross，1951，p． $68(=$ geniculatuts Hartig）．
Aphani（s）us lenis Rohwer， 1909 c ，p． 399 ，δ ， 8 ；Ross，1951，p． 68 （＝genicu－ latus Fartig）．
Monophaduoides corflus MacGillivray，1923a，p．79，б；Frison，1927，p．252； Ross，1951，p． 68 （ $=$ geniculatus Hurtig）．
Monophadnoides consomts MacGillivray，192je，p．25， 9 ；Frison，1927，p．252； Ross， 1951, p． 68 （：\＃eniculatus Fartig）．

Monophadnoides constitutus MacGillivray, 1923c, p. 25, \%; Frison, 1927, p. 252; Ross, 1951, p. 68 ($=$ geniculatus Fartig).

Monophadnoides curiosus MacGillivray, 1923c, p. 25; q; Frison, 1927, p. 253; Ross, 1951, p. 68 ($=$ geniculatus Hartig).
Monophadnoides hincaidi MacGillivray, 1923c, p. 26, 9 ; Frison, 1927, p. 253; Ross, 1951, p. 68 ($=$ geniculatus Hartig).
Monophaduoides shavi MacGillivray, 1923c, p. 26, 与, ϱ; Frison, 1927, p. 253; Ross, 1951, p. 68 ($==$ geniculatus Hartig).
Parachuractus obversus MacGillivray, 1923c, p. 28, o ; Frison, 1927, p. 255; Ross, 1951, p. 68 (= geniculatus Hartig).

Female.-Average length, 6.5 mm . The coloration of this species is extremely variable throughout its range. There seem to be three primary color forms, and they are described separately. Although many specimens fit them, intermediate forms are often encountered.
(1) Entirely black with tegula usually brownish, and legs beyond extreme apex of femur whitish. Most common in West and Palaearctic region.
(2) Antenna and head black; clypeus may be light rufous. Thorax black with tegula and upper angles of pronotum white to light rufous. Legs beyond extreme apex of femur whitish. Abdomen black. Most common east of Rocky Mountains, and in this region it is most common in southern part of its range becoming less abundant north into Canada.
(3) Antenna and head black; clypeus may be light rufous. Thorax black with tegula white and upper angles of pronotum and, at times, areas on mesonotum rufous. Legs beyond extreme apex of femur whitish. Abdomen with various amounts of rufous, usually on central segments. Occurs in southern California, becoming less abundant in northern Calfiornia, and also east of Rocky Mountains, where it is most abundant in northern part of its range from Northern United States northward.

Antenna short and stout, about 1,2 times width of head; third segment equal to $1 \frac{1}{2}$ times length of fourth segment; segments 4 to 9 usually less than twice as long as wide; segments not expanded at apices (pl. III, 63). Outer orbits smooth and shining; clypeus truncate; malar space less than one-half diameter of front ocellus; postorbital groove indistinct; postgenal carina absent. Tarsal claw with inner tooth long, subequal to outer tooth in length and distinctly cioser to outer tooth than basal lobe, sometimes appressed and nearly lateral to outer tooth (pI. II, 21). Hindwing with crossvein m-cu present, enclosing cell M. Sheath various, usually straight above, rounded below and at apex (pl. V, 119), but sometimes short and nearly truncate at apex (pl. V, 121) or with apex acute (pl. V, 120). Lancet with 10 or 11 distinctly long and rounded lobelike serrulae, without subbasal teeth; each serrula separated from ventral margin of lancet by distinct notch on its anterior and posterior sides (pl. IX, 183).

Male.-Average length, 6.1 mm . Coloration follows pattern of female. Structure similar to that of female. Genitalia as in plate XI, 246, and 247. Penis valve with lateral spine and long dorsal lobe (pl. XI, 247).

Holotypes.--All MacGillivray's types are at the Illinois Natural

History Survey. They bear the following data, respectively: atracornis (9), "Olympia, Wash., April 30, 1890, T. Kincaid"; nigritus (\circ), "Riverton, N.J., $5-7-98$ "; collaris (ㅇ), "Ithaca, N.Y., June 30, 1895, G. F. Atkinson'; concessus (o), Ithaca, N.Y., May 27, 1897"; consobrinus (o), "Durham, N.H., W. and F."; conspersus (\circ), "Ithaca, N.Y., May 27, 1898"; conspicuus (ㅇ), "McLean, N.Y., May 31, 1897"; coracinus (5), "Wellesley, Mass., May 27, 1891"; costalis (ㅇ), "Wellesley, Mass., June 8, 1891"; crassus (9), "Durham, N.F., 1397, W. and F."; corytus (\ddagger), "Corvallis, Oregon, April 1918, A. L. Lovett"; consonus (q), "4-17-96, T. Kincaid collector"; constitutus (9), "Ottawa, May 8, 1912"; curiosus (7), "May 15, 1897, T. Kincaid, collector"; kincaidi (9). "April 7, 1895, T. Kincaid, collector"; shaze (ㄱ), "Hampton, N.H., May 16, 1904, S. A. Shaw"; obversus (q), "Corvallis, Oregon, May 10, 1912, E. S. Walters." S. nigella Cresson (9) is type No. 199 at the Academy of Natural Sciences of Philadelphia and bears the data "Nev." B. gillettii Weldon (9) is type No. 27724 at the U.S. National Museum and has the data "Colo." S. rubi Harris is type No. 26311 in the Harris collection at the Museum of Comparative Zoology; there are no data, and only the thorax remains on the pin. The type of M. hudsonicus Kirby (5) is at the British Museum. The type of A. lenis Rohwer: has not been located. Hartig's types are probably in the Zoological Museum of Munich.

Distribution.-Widespread throughout North America (fig. 17, B) : Europe and Asia.

North American Records.-Alberta: Gull Lake, June 7, 14, 1929, E. H. Strickland; Waterton, June 18, 1956, E. E. Sterns; Bilby, June 13, 1924, G. Salt. Arkansas: Hot Springs Natl. Pk., March 23, 1962, B. C. Marshall. British Columbia: Steelhead, June 1, 21, 1933, July 5, 22, 1933, F. B. Leech; 4 mi. N. Hope, Fuasier River, June 1, 1957 ; Cultus Lake, July 9, 12, 17, 1948, H. R. Foxlee; Royal Park, April 29, 1917, R. C. Treherne; Robson, May 5, 13, 1947, June 15, 1947, May 28, 30, 1948, May 15, 24, 1949, June 6, 1949, May 15, 22-30, 1950, June 23, 1950, August 4, 1950, H. R. Foxlee; 6 mi . S. Terrace, June 7, 1960, C. H. Mann; Terrace, May $31,1960,220^{\prime}$, B. Heming, June 1, 1960, G. E. Shewell; Kitsumkalum L., 20 mi . N. W. Terrace, May 31, $1960,500^{\circ}$, W. W. Moss; 6 mi. E. Terrace, June 17, 1960, W. W. Moss; Gagnon Rd., 6 mi . W. Terrace, 200^{\prime}, June 20,1960 B. Heming, June 8, 1960, J. G. Chillcott. California: Berkeley, May 14, 1915, M. C. Van Duzee, March 14, 1931, May 4, 1936, March 10, 1934; Yosemite Val., June 11, 1921, E. C. VanDyke; Los Angeles Co., March; Sta. Cruz Mts., A. Koebele; nr. Hidden Springs, San Gabriel Mits. Los Angeles Co., March 2, 1955, C. L. Hogue; Fieldbrook, May 19, 1908, H. S. Barber ; Putah Cyn., Yolo Co., March 20, 1960, F. D. Parker; Oakland, May 21, 1937, E. S. Ross; Mt. Davidson, San Francisco Co., April 5, 1954, E. I. Schlinger; Dutch Flat, Placer (o., May 2, 1954, E. I. Schinger; Fairfax, Marin Co., April 2, 1954, H. L. Mathis; Alameda Co., berry; Highland Dist., Santa Cruz Co., May 5, 1956. Colorado: "Colo."; C. U. Exp., March 28, 1894, March 30, 1914. Connecticut: Windsor, May 11, 21, 190̈6,
J. B. Kring; Wellingford, June 5, 1956, J. B. Kring ; Storrs, May, 1935, K. M. S.; New Haven, May 30, 1912, W. E. Britton; Hamden, June 7, 1919, M. P. Zappe; Lyme, flying, June 18, 1918, W. Middleton. Georgia: Thomasville, March 29, 1938, P. W. Fattig. Idlaho: Moscow, Moscow Mt., June 22, 1959, 4000^{\prime}, R. B. Hawkes. Illinois: Casey, July 18, 1950, H. H. Ross; Harrison, April 21, 1954, M. W. S.; Carbondale, May 27, 1910; Willow Springs, June 18, 1943, Ross and Sanderson; Muncie, April 16, 1929, Frison and Ross; Putnam, May 5, 1929, T. H. Frison; Warsaw ; Sherman, April 20, 1930, H. H. Ross; Mt. Carmel, April 15, 1930, Frison and Ross; Wolf Lake, May 5, 1933, H. L. Dozier; Pulaski, May 25, 1932, H. L. Dozier; Urbana, April 28, 1932, P. O. Ritcher, April 16, 1916; Urbana, Brownfield Woods, May 1, 1919 ; Orland Park, June 10, 1943, Ross and Sanderson; Snyder, April 14, 1930, Frisor and Ross; Bilett, May 1, 1942, Mohr and Burks; Garden City, May 15, 1930, Frison and Ross; Dubois, May 23, 1917; Elizabethtown, May 27-31, 1932, F. L. Dozier; Gossett, April 18, 1944, Ross and Sanderson; Robinson, April 14, 1930, Frison and Ross; Grand Tower, April 21, 1914, along river; Algonquin; Étreka, April, 1900. Indiana: Brown Co., May 1, 1960, T. G. Marsh. Iowa: Mt. Pleasant, May 10, 1934, Card., April 17, 1934, Dodds; Ames, May 2, 1948, J. Laffoon, April 29, 1959, M. J. Mart; Ledges St. Pk., June 20, 1949, Bart. Kunsas: Manhattan, A pril 16, 23, 1949, raspberry, J. B. Kring; Baldwin, J. C. Bridwell; Riley Co., April 13, Popenoe; Wichita, April 27, 1916, on raspberry, F. B. Millikan. Maine: Orono, May 21, 1913, H. M. Parshley; Augusta, June 7, July 4, 1946, June 22, 1947, A. E. Brower; Mt. Desert Is., May 22, 1933, on raspberry. Manitoba: Riding Mt. Pk., June 1, 1938, J. McDumnough. Maryland: Glen Echo, R. M. Fouts ; Travilah, April, 1900, on raspberry, F. C. Pratt. Massachusetts: Forest Hills, June 1, 1926, G. Salt; Chicopee, May 18, 1898, on currant; Lowell, April 15, 1926, May 17, 21, 1926, Rubus; Nantucket, July 4, 1904, J. A. Cushman; Melrose, May 20, 1932, Vaccinium, May 19, 1925, Fraxinus. Michigun: Flat River Game Area, Montcalm Co., May 14, 1955, R. L. Fischer; Copper Harbor, Keweenaw Co., June 19, 1957, R. W. Hodges; E. Lansing, May 25, 1937, C. W. Sabrosky, July 1, 1940; Midland Co., May 13, 1938, R. R. Dreisbach; Ag. College, June 9, 1909; 13 mi . N. Lapeer, May 30, 1937, C. W. Sabrosky; Lovell, Au Sable R., May 22, 1936, Frison and Ross; Whittemore, May 21, 1936, Ross and Frison; Bailey, May 9, 1940, Frison and Ross. Minnesota: Itasca, May 23, 1937, sweeping, H. R. Dodge; Eaglenest, May 25, 1959, June 1, 1959, May 31, 1961, W. V. Baldauf; Crookston, May 21, 196-, river valley, R. J. Pilf rey; Bena, May 21. 1960, spruce swamp, J. G. Chillcott, W. W. Moss, R. J. Pilfrey. Missouri: C. Mo., April, in curculio catcher, C. V. Riley; Charleston, April 16, 1915, G. W. Barber. Montana: Bozeman, May 31, 1907; Corvallis, May 16, 1935. Nele Bruaswick: Charlotte Co., May 30, 1952, W. T. A. Neilson, May 17, 1951, G. W. Wood; Bathurst, June 13, J. N. Knull; Fredericton, May 20, 1921. Neufoundland: Goose Bay, Labrador, June 23, 1948, F. C. Friesen; 5 mi. S. W. Deer Lake, June 28, 1966, D. R. Smith;

28 mi . N. W. Deer Lake, June 29, 1966, D. R. Smith; Gallants, June 27, 1966, D. R. Smith. Neu Hampshire: Hampton, May 15, June 2, 1908, June 30, 1915, S. A. Shaw. New Jersey: Lahaway, Ocean Co.; Ocean Co., May. New York: Ithaca, June 16, 19, 1918, May 15, 1915; Welcott, July 3, 1922; McLean Bogs Reserve, July 12; Taughannock Falls, April 30, 1949, J. C. Martin; Ringwood, Ithaca, May 8, 1950, J. C. Martin. North Carolina: Chadbourn, April 16, 1910, collected on dewberry, E. G., Smyth; Highlands, May 10, 1957, W. R. M. Mason, May 9, 1957, 3800', J. R. Vockeroth; Franklin, May 8, 1957, 2000^{\prime}, W. R. M. Mason. North Dakota: Rugby, May 17, 1955, J. R. Vockeroth. Northuest Territories: Norman Wells, July 10, 1949, W. R. M. Mason. Ohio: Put-in-Bay, S. Bass 1st, June 20-30, 1924. Ontorio: Jordan, May $9,23,1915$, June 1, 3, 1915, June 1, 8, 10, 1916, June 4, 6, 13, 30 , 1917, W. A. Ross; Ottawa, May 23, 1944, May 20, 1945, O. Peck, May 6, 1914, A. E. Kellett, May 10, 1960, B. S. Heming, May 5, 1942, G. S. Walley, June 8, 1954, May 12, 23, 27, June 1, 13, 14, 24, July 11; Vineland, June 8, 20, 1922, June 7, 1923, June 1, 3, 1925, May 22, 1929. May 30, 1930, May 5, 1938, W. G. Garlick; Merivale, May 25, 1930, J. de Gryse; Moose Factory, June 22, 1949, D. P. Williams; Miner's Bay, May 26, 1931, G. S. Walley; Trenton, May 3I, 1896, Evans; Grimsby, June 10, 1916, W. A. Ross; Rondeau Park, July 5, 14, 1962, S. M. Clark; Chatterton, May 24, 1954, June 22, 1956, J. C. Martin; Bells Corners, May 17, 1960, S. M. Clark, May 17, 1945, O. Peck, May 21, 1951, J. F' McAlpine; Crystal Beach, June 1, 1961, Kelton and Brumpton; Marmora, May 11, 1952, J. C. Mitchell, May 24, 1952, R. Lambert, May 9, 1952, J. R. Vockeroth; Blackburn, June 9, 1939, O. Peck; Carp, June 15, 1950, O. Peck; Spencerville, Limerick Forest, May 19, 1954, R. Lambert. Oregon: 1 mi. E. Brownsboro, Jackson Co., May 18, 1962, D. R. Smith; Grande Ronde, Polk Co., May 2, 1962, snswberry, K. Goeden; Alsea Mtn., May 13, 1936, R. G. Rosensteil, May 26, 1945; Siletz, June 12, 1963 , Rubus, N. L. H. Krauss; Mary's Peak, Benton Co., June 1, 12, 1962, D. R. Smith, June 10, 1963, rotary trap; 3 mi . N. E. Summit, Benton Co., April 11, 1962, D, R. Smith; Sulphur Springs, 6 mi . N. Corvallis, April 13, 1963, D. R. Smith, June 16, 1962, Rubus parviforus, D. and L. Mays; Mehama, Marion Co., April 12, 1962, snowberry, K. Goeden ; Summit, Benton Co., 650', July 5, 1939, H. A. Scullen; Corvallis, April 12, 1936, G. Ferguson, April, 1930, H. A. Scullen, March, 1959, P. F. Torchio, April 26, 1913, May, 1913, A. L. Lovett; Saddleback Mtn., Lincoln Co., June 2, 1960, J. C. DirksEdmunds; North Plains, April 9, 1960, thimbleberry, K. Goeden; Gresham, April 22, 30, 1944, on cultivated raspberry, J. Schuh; Applegate River, $7 \mathrm{mj}, \mathrm{S}$. Grants Pass, Josephine Co., May 18, 1962, D. R. Smith; Rock Creek, 5 mi . W. Philomath, May 2, 1962, D. R. Smith; Dead Indian Soda Springs, 12 mi . S. E. Lake Creek, Jackson Co., 2500', May 21, 1964, D. R. Smith; Bellfountain, Benton Co., June 3, 1964, C. W. Baker; 1 mi. N. W. Bellfountain, Benton Co., June 3, 1964, ex grass, C. W, Baker. Pennsylvania: Sunburg; Rockville, May 4, 1920, E. M. Craighead, May 4, 1920, Champlain; Castle Rock, April 3, 1910 ; Harrisburg, June 8, 1918,
P. R. Meyers. Quebec: Hul!, April 22, 1923, C. H. Curran, June 6, 1903; Wright, May 17, 1932, W. J. Brown; Burbridge, May 29, 1937, O. Peck; Fairy Lake, May 14, 1927, G. S. Walley; Harrington Harb., July 4, 1929, W. J. Brown; Cascapedia R., June 24, 1933, June 21, 1934, C. C. Smith; Laniel, May 30, 1938, A. R. Hull; Queens Park, Aylmer, July 23, 1924, C. B. Hutchings; Berthierville, July 11, 1940, A. Robert; Harrington Lake, Gatineau Pk., May 30, 1954, W. R. Coyles; Mistassimi Post, June 9, 16, 1956, J. R. Lonsway; Nominigue, June 12, 1941, O. Peck; Aylmer, June 1, 1924, H. L. Viereck; Cherry River, May 26, 1936, G. S. Walley; Montreal, June 10, 1906, G. Chagnon; Kingsmere, June 12, 1953, R. Lambert. Rhode Island: Kingston, May 7, 1905. Saskatchewan: Pike Lake, June 14, 1956, J. R. Lonsway. Tennessee: Burrville, May 19, 1957, H. and A. Howden. Texas: College Station, April 21, 1943, H. J. Reinhard; Victoria, March 13, E. A. Schwarz. Virginia: Falls Church, June 12-16, J. A. Keleher, April 29, 1922, reared, Rubus; E. Falls Church, 1930, S. A. Rohwer. Washington: Friday Harbor, June 1, 1906, J. M. A.; Lake Cushman, Mason Co., July 30, 1919, F. M. Gaige; Mt. Rainier, April 7, 1937, H. Benion. Wisconsin: Madison, May 25, 1931, C. L. Fluke.

Host.-This species has been reared from Rubus in North America. In Europe, it is also found on Geum and Filipendula (Benson, 1952), both also Rosaceae.
Larva.-The larva was first described by Harris (1845). Dyar (1895c) described the larva and included it in his key to the larvae of the Blennocampinae in 1898, and Yuasa (1922) also included a description of this species. Peterson (1956) and Lorenz and Kraus (1957) described this species.
In late instar, head capsule and thoracic legs light brown; body and spines creamy colored, spines usually slightly darker than rest of body. Spines of body long and numerous ranging from simple to some with five branches.

Clypeus with two setae on each side. Labrum with two setae on each side; with shallow central emargination; epipharynx with 10 to 12 spines located in arcuate row on each half (pl. XIX, 344). Each mandible with one seta on outer lateral surface; left mandible with two sharp ventral teeth and three sharp and one truncate lateral teeth (pI. XIX, 343); right mandible with one ventral tooth, three sharp and one truncate lateral teeth, and one molar tooth (pl. XIX, 342). Maxillary palpus four-segmented; second segment of palpus with one seta on outer surface; palpifer with three or four setae; stipes with one or two setae; lacinia with eight to 10 spines (pl. XIX, 345). Labial palpus three-segmented; three setae on each side of prementum.

Thorax with spines arranged as in plate XIX, 348; two spines on each side of prothorax five-branched. Thoracic legs normal; femur longer than tibia; setae numerous on all surfaces.

Abdominal segments 1 through 8 each with five dorsal annulets (typical segment shown in pl. XIX, 347). Annulets 1, 3, and 5 without spines; annulet 2 with three bifurcate spines on each side; annulet 4 with two bifurcate spines on each side; post-
spiracular lobe with one bifurcate spine; subspiracular lobe with two spines, anterior one bifurcate, posterior one simple; surpedal lobe with two spines, anterior one simple, posterior one bifurcate. Spines on ninth and 10th abdominal segments arranged as in plate XIX, 346; 10th tergum with row of eight simple and bifurcate spines on outer margin and central trifurcate spine; suranal and subanal area with numerous setae.

The illustrations show the typical arrangement of spines. The number of branches of each spine and their location sometimes vary from specimen to specimen. The main distinguishing features of this species are the same as the generic characters, as presented by Lorenz and Kraus (195\%), and include the central trifurate spine of the 10 th abdominal tergum and the one bifurcate and one simple spine on both the subspiracular and surpedal lobes. Several series of larvae were examined from different parts of the range of this species. Among these there was a slight variation in the relative length of the spines, the number of spines on the lacinia, the number of spines on the epipharynx, and the number of setae on the palpifer and stipes. There was no consistency in this variation however.

Discussion.-At first, it seemed possible that several species might be involved here. The coloration patterns are geographically failly consistent, but the consistency stops there. Variation in the sheath shape, shape of cell M of the hindwing, and differences in the shape of the harpe and penis valves of the male genitalia were not consistent and were even apparent within series taken from the same location. Slight larval differences did not enlighten the situation. The separation of this complex was consequently abandoned and it is here included as an extremely variable species. If sibling species are involved, further biological data and associated adult and larval series will be needed from each section of its reographical range to show this.

The coloration pattern is very constant in the Palaearctic region; however, in North America the color variation seems to be extreme. It is also interesting to note that in the West the red forms are most common in the south and the black forms in the north, whereas in the East the reverse is true.

Monophadnoides osgoodi, new species

Female--Length, 6.5 mm . Entirely black with extreme apex of each femur, outer surface of each foretibia and midtibia, and extreme base of hinditibia whitish. Wings lightly infuscate.

Antemna short and stout, less than $11 / 2$ times width of head; second segment as wide as long; third segment less than $11 / 3$ times length of fourth segment; each segment very slightly expanded at apex; sixth to ninth segments less than twice as lons as wide (pl. III, 66). Outer orbits roughened and shagreened: clypeus truncate; malar space linear; postorbital groove indicated; postgenal carina absent. Tarsal claw with inner tooth shorter than outer tooth and situated halfway between outer tooth and basal lobe (pl. II, 19). Prepectus absent. Forewing with stub of $2 A$ and $3 A$ straight at apex. Hindwing with crossvein m-cu absent, leaving cell M open. Sheath slightly arcuate above, round-
ed below, both sides tapering to blunt point at apex near dorsal margin (pl. V, 125). Lancet with serrulae lobelike and directed downward; notch absent between ventral margin of lancet and margins of serrulae (pl . IX, 187).

Male.-Unknown.
Holotype.-Female, 3 mi. E. Shelburne, Coos Co., N.H., May 22, 1966, David R. Smith. Deposited in the U.S. National Museum, type No. 69155.

Paratypes.-Maine: Piscataquis Co., Brownville Junction, May 27, 1966, D. R. Smith (10). Ontario: Rockport, May 9, 1961, C. Fi. Mann (19) ; Rockport, May 9, 1961, J. Stainer (1 $\%$).

Disposilion of Paratypes.-Paratypes have been deposited in the U.S. National Museum and the Canadian National Collection.

Distribution.-Ontario to Miaine (fig. 19, A).
Host.-Unknown.
Larca-Unknown.
Discussion.-This species is distinguished by its entirely black color, the third antennal segment less than $11 / 2$ times the length of the fourth segment, and characters of the lancet.

This species is named after Charles E. Osgood, a student in entomology at Oregon State Cniversity.

Monophadnoides pauper (Provancher), new combination
Selandria pultpera Provancher, 1882, p. 293, o; Provancher, 1882, p. 742; Gahan and Rohwer, 1917-18, p. 171; Burks, 1958, p. 16.
Btennocampa paupera, Provancher, 1888, p. 35̄0; Dalla Torre, 1894, p. 171; Konow, 1905, p. 84.
Monophadnoides cordahts MacGillivray, 1908a, p. 294, o; MacGillivray, 1916, p. 153; Frison, 1927, p. 252. New synonymy.

Blennocampa cordata, Ross, 1951, p. 67.
Blennoctmpa abnorma MacGillivray, 1908a, p. 296, i; MacGillivray, 1916, p. 10̄5; Frison, 1927, p. 238; Ross, 1951, p. 67 ($=$ cordetus MacGilliviay). Vew synonymy.
Blennociompa antennata MacGillivray, 1908a, p. 296, o ; MacGillivray, 1916, p. 155; Frison, 1927, p. 238; Ross, 1951, p. 67 ($=$ cordatus MacGillivray). New syounymy.
Blennocampa actminatt MaeGillivray, 1008a, p. 297, o; MacGillivray, 1916, p. 155̄; Frison, 1927, p. 238; Ross, 1951, p. 67 ($=$ cordatus MacGillivray). Niew synonymy.
Blennocampa adusta MacGillivray, 1908a, p. 297, ㅇ MacGillivray, 1916, p. 155; Frison, 1927, p. 238; Ross, 1951, p. $67(=$ cordatus MacGillivray). Yew symonymy.
Blennocampa angilata MacGillivray, 1908a, p. 297, o; MacGillivray, 1916, p. 155; Frison, 1927, p. 238; Ross, 1951, p. 67 ($=$ cordatus MaeGillivray). New synonymy.
Blennocampa aperta MacGillivray, 1908a, p. 297, ρ; MacGillivray, 1916, p. 155; Frison, 1927, p. 238; Ross, 1951, p. 67 ($=$ cordatas MacGillivray). New synonymy.
Erythraspides fuckeri Rohwer, 1909b, p. 145, g ; Ross, 1951, p. 67 ($=$ cordatus MacGillivray). New synonymy.
Parachartictus nigrisomus Rohwer, 1912, p. 231, f. New synonymy. Blennocampa nigrisomus, Ross, 1951, p. 68.

Female.-Average length, 6.4 mm . Antenna and head black. Thorax black with tegula white or brownish. Legs black with extreme apex of each femur, each tibia except extreme apex, and each basitarsus white; remaining tarsal segments black to infuscate. Abdomen black. Wings very lightly infuscate.

Antenna short and stocky, less than $11 / 3$ times width of head; third segment almost twice length of fourth segment; fourth to ninth segments less than twice as long as wide; third to ninth segments subserrate, each slightly expanded at apex (pI. III, 64). Outer orbits roughened and shagreened; postorbital groove indistinet; postgenal carina absent; malar space less than one-half diameter of front ocellus. Tarsal claw with inner tooth shorter than outer tooth in length and situated halfway between outer tooth and basal lobe (pl. II, 19). Hindwing with crossvein m-cu absent, leaving cell M open. Sheath slightly rounded above and below, terminating in blunt point at apex (pl. V, 122). Lancet with serrulae rounded, with three or four anterior subbasal teeth; notch separates ventral margin of lancet from anterior margin of each serrula (pl. IX, 184).

Figure 19.-Distribution of (A) Monophadnoides osgoodi (solid circles), quebecensis (open circles), and (B) typicus.

Male.-Average length, 6.0 mm . Color similar to that of female except for tegula, each tarsus, and base of hindtibia, which are black. Anterna slightly longer than that of female in relation to width of head and not as noticeably serrate; segments of same relative dimensions as those of female antenna. Other structures similar to those of female. Penis valve with short lateral spine and dorsal lobe (pl. XI, 245) ; harpe slightly ovate (pl. XI, 244); parapenis as in plate XI, 244 .

Holotypes.-Selandria panpera Provancher (\circ) is located at the Museum of Quebec, Laval University. It bears a yellow label " 696 " and a name label "Blennocampa paupera Prov." Provancher (1882) originally described this species under Selandria, then later put it in Blennocampa; consequently, the latter appears on the name label. Provancher's catalor proves this to be the type. This is probably the specimen Gahan and Rohwer (1917-18) recognized as the lectotype, and it is here considered as the type.

All MacGillivray's types are at the Illinois Natural History Survey. They bear the following data, respectively: cordatus (\circ), no data; abnorma (5), "Tthaca, N.Y., April 10, 1897"; antennata (9), "Durham, N.H., 1566 , W and F"'; acuminata (8), "Chicopee, Mass., April 26, 1897"; "dusta (\circ), "Wellesley, Mass., April 21, 1891"; angulata (0), "Wellesley, Mass., April 26, 1892"; aperta" (\%), "West Haven, Ct., April 25, 1905, E. B. Whittlesey." Rohwer's types are at the U.S. National Museum; tuckeri (o) is type No. 56336 and has the data "Lawrence, Kansas, E. S. Tucker, Apr."; nigrisomus (3) is type No. 14499 and has the data "Oxbow, Sask., May 21, 1907, Fred K. Knab collector."

Distrihution.-East of the Rocky Mountains from Alberta and Colorado east to Labrador and Virginia (fig. 18, B).

North American Records.-Alberta: Cameron L., W'tn. Natl. Pk., June 19, 1956, E. E. Sterns. Colorado: "Colo." collection C. F. Baker. Connecticut: West Haven, April 25, 1905, E. B. Whittlesey. Illinois: Algonquin, April 27, 1905, Nason; White Heath, April 22, 1917; Mrt. Carmel, April 15, 1930, Frison and Ross; Snyder, April 14, 1930, Frison and Ross; Fountain Bluff, May 15, 1932, Frison, Ross, and Mohr. Iowa: Fraser, April 23, 1949, J. Laffoon; Ames, April 25, 1944, C. Wings. Kansas: Lawrence, April, E. S. Tucker. Maine: Devil's Den, Mt. Porter, May 16, 1944, A. E. Brower. Maryland: Nr. Plummers Island, April 7, 1915, R. C. Shannon; Plummers Island, May 11, 1911, F. S. Barber, April 5, 1915, R. C. Shannon, April 5, 1914; Cabin John, April 1, 1917, R. M. Fouts; Glen Echo, April 13, 1919, R. M. Fouts; Upper Marlboro, April 20, 1963, Pinus virginiana, W. R. M. Mason. Massachusetts: Wellesley, April 21, 1891, April 26, 1892, May, 1898; Chicopee, April 26, 1897. Michigan: Bailey, May 9, 1940, Frison and Ross; Midand Co., April 21, 1938, R. R. Dreisbach; Bath, April 21, 1955, R. L. Fischer. Minnesota: Bena, May 21, 1900, spruce swamp, J. G. Chillcott. Missouri: Jefferson City, April 1, 1950, W. W. Dowdy. Newfoundland: Goose Bay, Labrador, June 15, 1948, W. W. Judd. New Hampshire: Durham; Pittsburg, May 30, 1937, C. A. Frost. New Jersey: Giassioro, April 25, 1944, W. F. Rapp, Ir.; Riverton, April 20,
1911. New York: MeLean, April 26, 1913, F. H. Knight; McLean Bogs Reserve, April 17, 1925, P. P. Babig; Fall Creek, Ithaca, April 30, 1949, J. C. Martin; Taughannock Falls, April 30, 1949, J. C. Martin; 6-mile Cr., Ithaca, May 5, 1951, April 30, 1949, J. C. Martin; Ithaca, April 10, 1897. Ontario: Bells Corners, May 1., 1951, J. F. McAlpine, May 14, 1941, G. S. Walley, April 30, 1941, O. Peck; Marmora, April 24, 29, 1952, J. F. McAlpine; Merivale, May 6, 1930, J. J. de Gryse; Port Hope, May 5, $1895 ;$ Ottawa, May 8, 9; Co. Hastings, May, 1897, Evans; Kinburn, August 29, 1957, J. E. H. Martin; S. Marsh, April 24, 1952, J. F. MeAlpine. Pennsylvania: Shingletown, April 24, 1947, S. W. Frost; Rockville, April 24, 1912, E. Doiche; Castle Rock, April 16, 1911, C. T. Greene, April 17, 1908. Quebec: Lac Bernard, May 13, 1962, S. M. Clark; Queens Park, Aylmer, April 29, 1924; Maniwaki, May 28, 1937, O. Peck; Burbridge, May 29, 1937, O. Peck; Welch's Bay, Norway B., May 9, 1937, E. G. Lester; Cascapedia R., June 29, 1933, C. C. Smith; Mt. Albert, June 20, 1954, G. P. Holland; Hull, May 7, 1924, C. H. Curran. Sashatcheu'an: Oxbow, May 21, 1007, F. K. Knab. Wisconsin: Madison, May 11, 1919.

Host.-Unknown.
Larva.-Unknown.
Discrassion.-This species may be distinguished from other members of this genus by the short, stout antenna, which has the segments slightly expanded at their apices. Other features include the white tegula, sheath, lancet of the female, and male genitalia. It is most closely related to atrata, but the antenna, coloration, and genitalia will separate these two. This is a widely distributed species east of the Rockies. As yet nothing is known of its biology.

Monophadnoides quebecensis, new species

Female.-Length, 6.5 mm . Antenna and head black with labrum light and mandible white at center, blending to red at apex. Thorax black with tegula and upper angles of pronotum light red brown. Legs beyond coxae white to light orange; each tarsus infuscate. Abdomen black. Wings hyaline.

Antemna long, filiform, length equal to twice width of head; second segment as wide as long; third and fourth segments subequal in length (pl. III, 65). Outer orbits roughened and shagreened; clypeus slightly emarginate; malar space slightly less than diameter of front ocellus; postgenal carina faintly indicated below eye; postorbital groove absent. Prepectus absent. Tarsal claw with inner tooth shorter than outer tooth and situated halfway between outer tooth and basal lobe; basal lobe present, but not obvious (pl. II, 19). Forewing with stub of $2 A$ and $3 A$ straight at apex. Hindwing with crossvein $m-c u$ absent, leaving cell M open. Sheath long, straight above, rounded below and at apex and decidedly slanted upward (pl. V, 124). Lance with dorsal margin servate. Lancet with serrulae lobelike, directed downward; one or two anterior subbasal teeth present, posterior subbasal teeth
absent; notch absent between ventral margin of lancet and margins of serrulae (pl. IX, 186).

Male.-Unknown.
Holotype.-Female, Maniwaki, Quebec, May 28, 1937, O. Peck. Deposited in the Canadian National Collection.

Paratypes.--Quebec: Cascapedia, June 10, 1933, W. J. Brown (1 \&). Locality unknown: "10-5," labeled as "Paratype, Phymatocera nigra Harrington, 9 , No. 179." (1ㅇ). Paratypes deposited with the holotype.

Distribution.-Known only from Quebec (fig. 19, A).
Host. -Unknown.
Larva.-Unknown.
Discussion.-This species is easily separated by the antenna, which is long and filiform with the third and fourth segments subequal in length. In this respect it is most closely refated to typicus; however, the nearly entirely white legs, white to redbrown tegula and pronotum, and characters of the lancet will separate this species from typicus.

The name is derived from the type locality.
Monophadnuides typicus (Rohwer), new combination
Claremontia typica Rohwer, 1909c, p. 397, \& ; Ross, 1937, p. 100; Ross, 1951, p. 67; Malaise, 1964, p. 35.

Female.-Average length, 6.8 mm . Entirely black with extreme apex of each femur and basal part of each tibia whitish. Wings hyaline.

Antenna long and filiform, length equal to slightly more than twice width of head; third and fourth segments subequal in length (pl. III, 65). Outer orbits roughened and shagreened; clypeus slightly emarginate; postorbital groove indistinct; postgenal carina absent; malar space equal to one-half diameter of front ocellus. Tarsal claw with inner tooth nearly subequal in length to outer tooth and situated halfway between outer tooth and basal lobe; basal lobe present, but not obvious (pl. II, 19). Hindwing with crossvein m-cu absent, leaving cell M open. Sheath long, straight above, rounded below and at apex; not strongly slanted upward (pl. V, 123). Lance with dorsal margin serrate. Lancet with serrulae lobelike, directed anteriorly, with one anterior subbasal tooth and several indistinct posterior subbasal teeth; small notch separates vertral margin of lancet from anterior margin of serrulae (pI. IX, 1.35).

Mate.-Average length, 6.6 mm . Color and structure as for female. Penis valve with small lateral spine and long, slender dorsal lobe equal to one-half length of valve (pl. XI, 251) ; harpe and parapenis as in plate XI, 250.

Holotype.-The type (7) is No. 56335 at the U.S. National Museum. It bears the data "Mountains near Claremont, Calif."

Distribution.-West coast of North America from British Columbia to southern California (fig. 19, B).

Nerth American Records.--British Columbia: Langley, March 22, 1931, K. Graham; Fitzgerald, April 17, 1922, W. R. Canter;

Wellington, April 2, 1903, Rev. G. W. Taylor. California: Mtns.nr. Claremont; Berkeley, May 3, 1935 ; Forterville, July 8, 1931. Oregon: Saddleback Mtn., Lincoln Co., March 3, 18, 1960, March 24, 1961, J. C. Dirks-Edmunds; 2 mi . W. Harlan, Lincoln Co., April 9, 1959, P. F. Torchio, April 7, 1960, D. R. Smith; Newport, May 14, 1964, beating spruce, K. Goeden.
Host. -Unknown.
Larva,-Unknown.
Discussion.-This species is easily separated from all other members of this genus by the long, filiform antenna with the third and fourth segments subequal in length and by its entirely black color. The antennal characters place it close to quebecensis.

Some of the specimens from the southern part of the range have considerably more white on the legs than do those from Oregon and British Columbia. Malaise (1964) chose to keep this species in a separate genus because he thought it lacked the basal lobe of the tarsal claw. However, the basal lobe is present.

Tribe CERATULINI, new tribe

The single monotypic genus on which this tribe is based is undoubtedly of tropical origin. The obviously serrate antennae make it distinct from all other Blennocampinae. The lack of a lateral spine on the penis valve and the six-annulate abdominal segments of the larva place it close to the Phymatocerini. However, it seems best to treat this species in a separate categury.

Description--Vein $2 A$ and $3 A$ of forewing straight at apex; veins M and $1 m$-cu parallel. Hindwing with crossvein $m-c u$ present. Tarsal claw with long inner tooth; basal lobe absent. Prepectus absent. Antenna distinctly ser-ate. Penis valve without dorsal lobe or lateral spine. Larva with abdominal segments 1 through 8 each six-annulet; body ornamentation consisting of large dark plates; thoracic legs relatively reduced.

Genus Included.-Ceratulus.

Genus CERATULUS MacGillivray

Ceratulus MacGilivray, 1908b, p. 454 ; Ross, 1937, p. 100; Ross, 1951, p. 63. Type: Ceratulus spectabilis MacGillivray. Original designation.

Description.-Antenna distinctly serrate; second segment twice as wide as long; fourth segment longer than fifth segment and twice length of third segment; segments 3 to 8 abruptly and widely expanded at apices (pI. IV, 71, 72). Clypeus slightly convex; malar space narrow, less than one-half diameter of front ocellus; postgenal carina absent; postorbital groove absent. Prepectus absent. Tarsal claw bifid, teeth subequal in length and closely appressed to each other (pl. II, 17) ; basal lobe absent. Forewing with stub of $2 A$ and $3 A$ straight at apex (pl. I, 1). Hindwing with crossvein m-cu present, enclosing cell M.

The serrate antenna of the single species of this genus makes it distinct from all other genera. It is known only from Texas, and the larva feeds on Cissus incisa (Nutt.) Desmoul.

Description of Ceratulus Species

Ceratulus spectabilis MacGillivray

Ceratulus spectabilis MacGilivray, 1908b, p. 454, 5, q; Frison, 1927, p. 239; Ross, 1937, p. 100 ; Ross, 1951, p. 63.

Female.-Average length, 7.4 mm . Entirely bright orange with antenna, narrow margins around each ocellus, extreme apex of each femur, each tibia, each tarsus, wing venation, and sheath black. Wings darkly infuscate.

Sheath straight above, rounded below (pl. VI, 127). Lancet with serrulae low, flat, and pointed with distinct subbasal teeth (pl. VIII, 176).

Male.-Average length, 7.0 mm . Color similar to that of female, except for apex of hypandrium and harpe of genitalia, which are black. Structure similar to that of female except for antenna, which is more strongly serrate (pl. IV, 72). Penis valve broad, flat, and rounded, without spines (pl. XI, 253) ; harpe and parapenis as in plate XI, 252.

Holotype.-The type (9) is at the U.S. National Museum, No. 12175. It bears the data "Dallas, Texas, October 1, 1908, E. S. Tucker, coll."

Distribution.-Known only from Texas (fig. 20, A).
North American Records.-Texas: Maxwell, July 4, 1930, R. W. Strandtmann; Austin, April 1, 192.4, R. H. Painter; Brownsville, June 9, 1932, J. O. Martin, April 1, 1924, J. N. Knul!; San Antonio, July 17, 1931, June 21, 1919, G. P. Englehardt, May 12, 1950, ovip. on honeysuckle vine, V. F. Pippin; Dallas, August 6, 1908, Cissus incisa, E. S. Tucker, October I, 1908, E. S. Tucker; College Station, April 27, 1931, October 14, 1936, H. J. Reinhard, August 31, 1936; Dickinson, October 12, 1918, H. S. Barber; Victoria, emer. April 15 to 16, 1920, on Cissus incisa, J. D. Mitchell; McAllen, May 9, 1940, on ivy.

Host,-Cissus incisa (Nutt.) Desmoul.
Larva.-The larva of this species has not previously been described.

In late instar, body covered with numerous dark plates with small papillae arising from center of each; plates less well marked in early instars. Head, plates of body, thoracic legs, and spiracles dark brown, rest of body light. All spiracles distinctly and darkly winged. Ocularium and apex of mandibles black.

Clypeus with two setae on each side. Labrum with three setae on each side; shallowly emarginate; epipharynx with seven to 10 spines, some clavate, located in arcuate row on each anterolateral half (pl. XVII, 320). Each mandible with one seta on outer lateral surface; left mandible with three ventral teeth and four lateral teeth (pl. XVII, 323) ; right mandible with four lateral teeth and three molar teeth (pl. XVII, 322). Maxillary palpus foursegmented; second segment of palpus with one seta on outer margin; first segment of palpus with three or four setae; palpifer with two setae; lacinia with nine or 10 spines (pl. XVII, 321).

Figure 20.-Distribution of (A) Ceratulis spectabilis, (B) Waldheimia bedeae, and (C) Erythraspiaes carbonarius.

Labial palpus three-segmented; prementum with two setae on each side.

Thorax with darkened plates arranged as in plate XVII, 326. Each sternum with pair of setiferous tubercles. Thoracic legs with trochanter reduced to narrow ring; femur subequal to tibia in length; setae on all surfaces of each segment of each leg. Legs reduced in size in relation to body; forelegs slightly shorter than midlegs and hindlegs.

Abdiominal segments 1 through 8 each with six dorsal annulets (typical segment shown in pl. XVII, 325). Annulets 1, 3, 5, and 6 without plates; annulets 2 and 4 each with two plates on each side; first and second postspiracular lobes, subspiracular lobe, and surpedal lobe each with one large plate. Ninth segment with plates arranged as in plate XVII, 324 . Tenth tergum with large dorsal plate; suranal and subanal areas with setae (pl. XVII, 324). Each proleg fattened, wide, and produced anteriorly into point.

The illustrations show the typical arrangement of plates on the body. This arrangement may vary slightly by the presence or absence of one or more plates. The larva is easily recognized by the flattened plates, winged spiracles, slightly reduced thoracic legs, and wide prolegs. The larva is very distinct and easily separated from other known larvae of the Blennocampinae.

Discussion.-This is the most distinct species of this subfamily known from North America. It is probably of tropical origin, but nothing resembling it has been seen from regions farther south.

Tribe WALDHEIMIIN, new tribe

Takeuchi (195.2) placed the genus Waldheimia in the tribe Blennocampini. Most of the members of this group are Neotropical and few of the larvae are known; therefore, it is difficult to determine relationships of this group until the Neotropical fauna is better known. The species included here appear to show affinities to both the Phymatocerini and the Blennocampini.

All the known larvae have six-annulate abdominal segments and the species of Erythraspides lack lateral armature on the penis vaive, thus appearing close to the Phymatocerimi; all the species have a basal lobe on the tarsal claw and the single species of Halidamia has a ventral spine on the penis valve, thus appenring close to some species of the Blennocampini. This tribe is set up, however, on the basis of the antenna, which has the apical four segments distinctly reduced, and it seems best to treat these species in a separate group at present. One species, Erythraspides carhonarius (Cresson), seems to show a more generalized condition in that the apical four antennal segments are not so distinctly reduced as in the other species, but all other characters place it in this group.

Description.-Vein 24 and 3.4 of the forewing curved up or straight at apex; vein M and $1 m$-cu parallel. Hindwing with crossvein m-cu present or absent. Antenna with four apical segments reduced in length. Tarsal claw with long inner tooth and basal
lobe. Prepectus absent. Penis valve with or without dorsal lobe; lateral spine absent but ventral spine present in Halidamia. Larvae with abdominal segments 1 through 8 each with six dorsal annulets; ornamentation of body various, consisting of dark conical protuberances or small glandubae.

Genera Inchuted.-Waldheimia, Erythraspides, Halidamia.

Genug WaLDHEIMIA Brullé

Waldheimia Brullé, 1846, p. 665; Norton, 1867, p. 265; Dalla Torre, 1894, p. 109; Konow, 1903b, p. 170; Konow, 1904, p. 242; Konow, 1905, p. 87 ; Rohwer, 1911b, p. 301; Malaise, 1935, p. 165; Ross, 1937, p. 98; Malaise, 1949, p. 9; Ross, 1951, p. 69; Takeuchi, 1952, p. 52; Togashi, 1963, p. 71.
Type: Tenthredo brasilicnsis Lepeleticr. Original designation.
Description.-Antenna with second segment longer than wide; third segment longer than fourth segment; apical four segments markedly reduced in length, together subequal in length to third segment (pl. III, 67) ; apical four segments with pale ventral sensory pits. Clypeus slightly convex (pl. II, 26) ; malar space linear; postorbital groove absent; postgenal carina absent; distance between eyes below shorter than length of eye. Prepectus absent. Tarsal claw bifid, inner tooth slightly wider and longer than outer tooth; basal lobe present (pl. II, 22). Forewing with stub of $2 A$ and $3 A$ straight at apex (pl. I, 1). Hindwing with crossvein m-cu present, enclosing cell M.

This genus is centered in the Neotropical region and probably consists of 70 or 80 species. Malaise (1949) gave a key to 51 species. The one species described here is the only one known to reach the Inited States, and it is known only from extreme southern Arizona.

Description of Waldheimia Species

Waldheimia bedeae, new species

Female.-Length, 8.2 mm . Antenna black with ventral light areas on apical four segments. Head entirely rufous with mouth parts and small area around ocelli black, and labrum white. Thorax black with mesonotum, tegula, pronotum, upper half of mesepisternum, and mesepimeron rufous. Legs and abdomen entirely black. Wings daykly infuscate.

Antenna with first and second segments sach longer than wide; third segment longer than fourth segment; fourth and fifth segments subequal in length; apical four segments markedly reduced in length, together subequal to third segment (pl. III, 67) ; apical four segments with pale ventral sensory pits. Clypeus slightly convex; malar space linear; postorbital groove absent; postgenal carina absent; distance between eyes below shorter than length of eye. Prepectus absent. Tarsal claw bifid, inner tooth wider and slightly longer than outer tooth; basal lobe present (pl. II, 22). Hindbasitarsus longer thrin remaining tarsal segments combined; hindtarsus subequal in iength to hindtibia (pl. II, 32). Forewing
with stub of $2 A$ and $3 A$ straight at apex. Hindwing with crossvein m-c u present, enclosing cell M. Sheath straight above, rounded below (pl. V, 126). Lancet with serrulae low and flat, with three or four anterior subbasal teeth and seven to 10 posterior subbasal teeth (pl. IX, 180).

Male.-Unknown.
Holotype--Female, Arizona, (tarr Canyon, Huachuca Mts., 5300^{\prime}, July 28, 1946, H. A. Scullen. Deposited in the U.S. National Museum, type No. 69156.

Paratypes.-Arizona: Huachuca Mts. (19) ; 5 mi. W. Portal, Chiricahua Mts., August 13, 1958, R. E. Rice (3 g o) ; 5 mi . W. Portal, Chiricahua Mts., August 13, 1958, D. D. Linsdale (I 9) ; Ramsey Canyon, Tuachuca Mts,, July 28 and 29, 1959, Nutting, Radford, and Sammuelson (1 o) ; Baboquivari Mts., Brown Canyon, August 8, 1953, G. D. Butler (1 \%) ; Sycamore Canyon, nr. Ruby, August 26, 1961, W. L. Nutting (19).

Disposition of Paratypes.-Paratypes have been deposited at the U.S. National Museum, Illinois Natural History Survey, University of Arizona, University of California at Davis, and Oregon State University.

Distribution--Known only from the mountains of southeastern Arizona (fig. 20, B).

Host--Vnknown.
Larva.-Unknown.
Discussion.-The unique and brilliantly contrasting red and black and darkly infuscate wings will immediately separate this species from ali other North American Blennocampinae. There seems to be no other similar species of Waldheimia described.

This species is named after Jan Bedea, a student in entomology at Oregon State University.

Genms ERYTHRASPIDES Ashmead

Erythruspides Ashmead, 1898b, p. 128; Konow, 1905, p. 87; Rohwer, 1011c, p. 224; MacGillivray, 1916, p. 155 ; Ross, 1937, p. 98; Malaise, 1949, p. 34; Ross, 1951 , p. 68; Pasteels, 1953 , p. 120; Mataise, 1964, p. 29. Type: Tenthredo pyomaea Say. Original designation.
Tumura Pastecls, 1949, p. 57; PasteeIs, 1953, p. 120 (= Erythraspides Ashmead).
Type: Tumura luteiventris Pasteels. Monotypic.
Description.-Antenna short and stocky; second segment longer than wide; third segment longer than fourth segment; apical four segments reduced in length, either noticeably or indistinctly so (pl. III, 68, 69) ; apical segments usually with ventral lightcolored areas. Clypeus slightly convex (pl. II, 26) or truncate; malar space linear; postorbital groove absent; postrenal carina absent. Prepectus absent. Tarsal claw with long inner tooth, nearly subequal in length to outer tooth; basal lobe present (pl. II, 20). Forewing with stub of $2 A$ and $3 A$ straight at apex (pl. I, 1). Hindwing with crossveir m-ccl absent, leaving cell M open; hindwing of male with or without peripheral vein.

This genus is closely related to both Halidamia and Waldheimia, differing from Folidamia by the straight stab of $2 A$ and $3 A$ of the forewing and from Waldheimia by the smaller inner tooth of the tarsal claw and the absence of cell M in the hindwing. The North American representatives of Erythrospides and Waldheimia are very few as compared to the numerous species found in the Neotropical region. A study of these Neotropical groups will be necessary in orf a forther evaluate the present generic groupings. At present it seems best to treat them separately.

There are probably about a dozen species of Erythraspides in the world. Pasteels (1053) described three from Africa, and the rest are found in Mexico and South America. There are two spesies in North America, vitis (Harris) and carbonarius (Cresson), which feed on Y'itis and Oenothera, respectively. The larvae have been treated for both species; however, that of carbonarius was described by Dyar and the specimens are no longer available.

Key (،) Erythraspides Species

L. Entirely black; forewing with basal two-thirds infuscate, apical onethird hyaline; apical four antennal segments not markedly reduced

Head and thorax with white and rufous markings; wings uniformly lightly infuscate; apical four antennal segments distinctiy reduced in

Deseriptions of Erythraspides Species

Erythraspides carbonarius (Cresson)

Selandria carbonaria Cresson, 1880a, p. 12, \bigcirc; Cresson, 1916, p. 3.
Blemocampa carbonaria. Dalla Torve, 1894, p. 170; Konow, 1905, p. 84; MacGillivray, 1916, p. 155.
Waldheimia carbonaria, Ross, 1937, p. 98.
Ery thraspides carbonarite, Ross, 1051, p. 68.
Selandria parra Cresson, 1880a, p. 12, ¿; Cresson, 1916, p. 7; Ross, 1951, p. 68 ($=$ carbonaria Cresson).
Blemoctmpe parve, Dalla Torre, 1894, p. 171; Konow, 1905, p. 84.
Erythrespides parves, MacGillivay, 1908a, p. 297; MacGillivmy, 1916, p. 156.
Blennocampt abjecta MacGiliviay, 1921, p. 22, o ; Frison, 1927, p. 238; Ross, 1951, p. 68 (-- carbonaria Cresson).
Blennocampa absona MacGilifyray, 1921, p. 22, \pm; Frison, 1927, p. 238; Ross, 1951, p. 68 (: carbonaria Cresson).

Female.-Average length, 6.6 mm . Entirely black with apex of each coxa, extreme base of each femur, extreme apex of forefemur and midfemur, entire foretibia and midtibia, and each tarsus whitish. Wings with basal two-thirds moderately infuscate, apical one-third hyaline.

Apical fou antennal segments reduced in length, but not noticeably so, being subequal to third plus fourth segments combined (pI. IIL, 69) ; apical four segments with ventral pale areas. Eye large, but not parallel to or close to hindmargin of head; eyes farther apart at base than length of one. Hindbasitarsus subequal in length to remainder of tarsal segments. Sheath long and broadiy rounded at apex (pl. VI, 128). Lancet with basal and central
serruat low and rounded with fine subbasal teeth; apical serrulae more pronounced (pl. VIII, 177).

Male.-Average length, 6.5 mm . In color and structure similar. to female. Hindwing without peripheral vein. Penis valve with dorsal lobe; lateral spine absent (pl. XI, 255) ; harpe and parapenis as in plate XI, 254.

Holotypes.-Both Cresson types are at the Academy of Natural Sciences of Philadelphia. S. carbonaria ($\%$) is type No. 187 and bears the data "Ga."; S. parw (:) is type No. 389 and bears the data "Col." Both MacGilliveay types are at the Minois Natural History Survey. B. abjecta (\%) bears the data "Ithaca, N.Y., Aug. 17 ," and B. absona ($\frac{1}{2}$) bears the data "Orono, Me., August 12. 1913."

Distribution.-Widespread in North America east of the Rocky Mountains; Maine to Georgia west to Texas, Colorado, and Saskatchewan (fig. 20, (').

North American Records.-Colorado: "Colo." Georgia: "Ga." Illinois: Algonquin, Nason; Meredosia, August 22, 1917, sand pit; Havana, May 31, 1933, C. O. Mohr, August 19, 1907, river shore; Hamel, May 6, 1943, Ross and Sanderson; Dongola, May 12, 1916. Indiana: Harrison Co., July 21, 1911. Maine: Bar Harbor, July 4, 1919, C. W. Johnson; Orono, August 12, 1913. Maryland: S. Mtn. near Pine Knob, May 14, 1918, R. H. Van Zwaluwenburg. Massachusetts: Beverly, July 18, 1932, Oenothera. Michigan: Cheboygan (\%., July 17, 1942, G. C. Crampton. Missowi: Shrewsbury, June 30, 1949, W. Downes. New Hampshire: Jefferson (?). June 25, 1895, H. C. Dyar. Neu Jersey: Trenton, May 24. New York: Ithaca, July 12, 1918, June 18, 1918, August 20, 1918, August 17. North DaLiota: Turtle Mtns., August 4, 1920, T. F. Hubbell. Ontario: Burks Falls, July 12, 1926, F. P. Ide; Toronto, June 2, 1932, G. ('. Crampton; Ottawa, May 30, 1941, O. Peck; Trenton, June 9, 1001, Evans; Simcoe, June 2, 1939, G. E. Shewell; Muskoka, July, 1888, E. P. V. Pennsyl rania: Mt. Holly Springs, July 4, 1918, R. M. Fouts; Cedar Run, July 12, 1920, J. N. Knull. Quebec: Isle de Montreal, August 19, 1906, Beauleau; Montreal, July 25, 1940 , J. Ouellet; Cap Rouge, July 9, 1953, R. Lambert; Ladysmith, July 9, 1953, R. Lambert. Sashatchewan: Waskesiu Lake, July 14, 1939, A. R. Brooks. South Dakota: Little Bend, August 22, 1927, H. C. Severin. Teras: Navasota, April 7, 1959, W. R. M. Mason; Dallas, April 8 , 1906, on dewberry, F. C. Bishopp; San Antonio, May 14, 1906, F. C. Pratt; College Station, April 21, 1932, April 17, 1931, May 9, 1945, May 9, 1946, May 1, 1947, April 5, 21, 22, 23, 24, 1947, June 2, 1951, H. J. Reinhard. Virginia: Rosslyn, H. H. Smith.

Host.-The larvae feed on Oenothera.
Larva.-I have not been able to obtain larvae for study. Dyar reared this species but did not publish data on it. In his unpublished notes he said the larvae were on a "plant like fire weed" on Long Island. He described the head as being whitish with a triangular black patch on the vertex or "resting behind each eye," and a "dusky arc in top of clypeus." He also said that the abdominal
segments are "regularly six-annulate," but he did not mention any spines such as those of the larva of ritis.

Discussion.-This species is easily separated from uitis by its entirely black color and partial infuscation of the wings. Ross (1997) considered it as a generalized member of this genus. Although the apical antennal segments are not noticeably reduced as in vitis, other characters substantiate its placement here.

Evythraspides vitis (Harris)

Tenthredo pugmuca Say, 1824, p. 318, 3, 9 ; Harris, 1835, p. 583; LeConte, 1859, p. 213; Ross, 1951, p. 69. Preoccupied by Tenthredo pygmaea KJug, 1814.

Selandria pyomaea, Harris, 1841, p. 380.
Blennocampa pygmaea, C'resson, 1S80b, p. 50 ; Dalla Torre, 1894, p. 172; Konow, $1905, p .84$.
Erythraspides pyomaea, Ashmead, 1898b, p. 128; Dyar, 1898, p. 137; MacGihlivray, 1915, p. $15 \overline{6}$; Britton, 1917 , p. 142; Horsfall, 1929, p. 174; Peterson, 1956 , р. 268.
Tenthredo vitis Harris, 1835, p. 583. Nomen nudum.
Selandria vitis Harris, 1841, p. 378 ; Norton, 1861, p. 219; Norton, 1867, p. 245; Scudder, 1869, p. 268; Provancher, 1878, p. 98; Thomas, 1881, p. 67; Provancher, 1882, p. 293; Provancher, 1883, pp. 200, 742.
Erythraspides vittis, Ross, 1951, p. 69; Malaise, 1064, p. 20.
Selandria caryoc Norton, 1869, p. 224 (adults only, Iarvae are Eriocampa juplandis (Fitch)); Norton, 1872, p. 83; Cresson, 1880a, p. 40; Packard, 1890, p. 338 (adults only, larvae are Eriocampa juglandis (Fitch)); Cresson, 1928, p. 4 ; Ross, 1951, p. 69 ($=$ vitio Harris).
Monophadus curyue, Kirby, 1882, p. 176; Dalla Torre, 1894, p. 161.
Erythraspides caryae, MacGillivray, 1916, p. 156.
Femole.-Average length, 6.6 mm . Head and antenna black with clypeus, labrum, paraantennal fields, and supraclypeal area white. Thorax black with dorsum, tegula, pronotum, and upper angles of mesepistermum rufous. Foreleg mostly dull yellow with basal half of coxa black; midleg and hindleg black with each trochanter, base of each tibia, and most of each tarsus dull yellow. Abdomen black. Wings uniformly lightly infuscate.

Apical four antennal segments distinctly reduced, slightly longer than third segment (pl. II, 68); apical four segments with ventral pale areas and sensory pits. Ese large, posterior margin close to and parallel with posterior margin of head; eyes separated at base by distance greater than length of one eye (pl. II, 12). Findbasitarsus subequal in length to remaining tarsal segments. Sheath straight above, rounded below (pl. VI, 129). Lancet with serrulae fat and serrate, only one anterior subbasal tooth and usualiy about six posterior subbasal teeth (pl. VIIT, 178).

Male-Average length, 6.3 mm . Color similar to that of female except for black mesepisternum and scutellum. Structure similar. to that of female except for hindwing, which has peripheral vein. Penis valve with dorsal lobe and lateral spine (pl. XI, 257); harpe and parapenis as in plate XI, 256.

Holotypes.-Three specimens (우) marked as types of Selandria pitis Harris are in the Harris collection at the Museum of Comparatise Zoology. Fach of these bears the label "MCZ Type 26314 " and one has been chosen as the lectotype. On the determina-
tion label next to the specimens and on a separate pin is written "Blennocampa pygmaea Say, vitis Harris type." S. caryae Norton (\ddagger) is type No. 10339 at the Academy of Natural Sciences of Philadelphia.

Distribution-New York to Florida and west to Louisiana and Iowa (fig. 21, A).

Vorth American Records.-Arkansas: Washington Co., July 20-24, 1928, on grape, reared by D. Isely. Florida: Gainesville, August 16, 1955, on grape, C. N. Patton; Paradise Key, Everglades Nat. Pk., March 23, 1954, K. V. Krombein. Georoia: DeWitt, July 24, 1912. Illinois: Pulaski, May 24, 1900, sweepings in upland woods; Oakwood, July 1, 1932, J. Alstarlund, June 22, 1983. H. H. Ross. Iowa: Des Moines, July 4, 1951, M. Crawley. Louisiona: Opelousas, May 7, 1908, on hickory, R. A. Cushman. Neu Hampshire: Mason, July 17, 1923, Vitis sp. Neu Yorh: Buffalo, F. P. V. Pennsylv'ania: Montgomery Co. ; North East, July 17, 1907, on grape, F. Johnson. South Carolina: McClellanville. May 13, 1944, H. and M. Townes. Virginia: Falls Church. June 11, 13, 1931; Bluemont, June 18, 1916, J. Knull; Glade Sping, July 27, 1938, on grape leaf, C. R. Willey.

Host.-Larvae feed on grape, Titis spp.
Larta-Warys (1841) included a description of the larva with his description of this species. Scudder (1869), Dyar (1898), Yuasa (1922), Forsfall (1929), and Peterson (19.56) have al treated the larva.

In late instar, head and body tubercles black; dark, broad, longitudinal stripe on dorsum of body; rest of body light, probably green when alive.

Clypeus with two setae on each side. Labrum with two setae on each sicle; with narrow central emargination; epipharynx with 10 to 12 spines, some furcate, located in arcuate row on each anterolateral half (pl. XVIII, 329). Each mandible with one seta on outer lateral surface; left mandible with four ventral teeth and three sharp and one truncate lateral teeth (pl. XVIII, 328) ; right mandibls with one ventral tooth, three lateral teeth, and four molar teeth (pl. XVIII, 327). Maxillary palpus four-segmented; second palpal segment with two setae on outer margin; palpifer with three setae; stipes with one seta; lacinia with 10 to 11 spines, some furcate (pl. XVIII, 330). Labial palpus three-segmented; two setate on each side of prementum.

Thorax with tubercles arranged as in plate XVIII, 334. Thoracic legs normal; femur longer than tibia; setae numerous on inner surface of each leg.

Abdominal segments 1 through 8 each with six dorsal annulets; annulets 5 and 6 narrow and may appear as one (typical segment shown in pl. XVIII, 333). Large conical tubercles mainly confined to dorsal surface of body. Annulets $1,3,5$, and 6 without tubercles; annulet 2 with three tubercles on each side; annulet 4 with two tubercles on each side; first and second postspiracular lobes, subspiracular lobe, and surpedal lobe each with one small tubercle concolorous with rest of body. Ninth segment with tubercles arranged as in plate XVII, 331. Tenth tergum with two large

Figire 21.-Distribution of (A) Erythraspides vitis ant (B) Hatidamith affinis.
tubercles located centrally and dark plate at apex; suranal and subanal areas with numerous hairs (pl. XVIII, 331, 332).

This larva is easily recognized by the large conical tubercles on the dorsum of the body.

Discussion.-The antenna, coloration, hyaline wings, and genitalic characters will easily separate this species from carbonarius. This species may be of minor economic importance and has received the approved common name "grape sawfly." Horsfall (1929) gave an account of the biology of this species.

In the original clescription of caryae, Norton (1869) described the adult: of this species, but the larvae are those of Eriocampa juglandis (Fitch). Even though the specimens were supposedly reared from the described larva, Norton mentioned that "4 specimens came forth about Aug. 22, all seemingly very small for so large larvae."

Genus HALIDAMIA Benson

Halidamia Benson, 1039, p. 111: Benson, 1940, p. 207; Pasteels, 1948, p. 187; Ross, 1951, p. 69; Benson, 1952, p. 104.
Type: Hylotoma affinis Fallén. Original designation.
Desrription.-Antenna with apical four segments reduced in length, together subequal in length to second plus third segments; second segment longer than wide; third segment longer than fourth segment (pl. III, 70) ; segments 6 to 9 each with ventral light-colored area. Clypeus slightly convex (pl. If, 26) ; malar space linear; postorbital groove absent; postgenal carina absent. Prepectus absent. Tarsal claw cleft, with inner tooth subequal in length to outer tooth; basal lobe present (pl. II, 20). Forowing with stub of $2 A$ and $3 A$ curved up at apex (pl. I, 6). Hindwing with crossvein m-cu absent, leaving cell M open.

Benson erected this genus primarily on the basis of the upturned vein $2 A$ and $3 A$ of the foreving. The other Waidheimini have this vein straight.

Only one species is known in this genus, H. affnis (Fallen), which has been introduced into North America.

Destriphion of Halidamia Species

Halidamia affinis (Fallén)

Hylatoma affinis Fallen, 1807, p. 907.
Phyllotoma affinis, Fallén, 1829, p. 31.
Blennocampa assimitis var. affinis, Dalla Torre. 1894, p. 170.
Blennocampa aftnis, Konow, 1005, p. 83; Enslin, 1914, p. 294; Conde, 1934, p. 185; Berland, 1945, p. 256.

Halidamia affinis, Benson, 1939, p. 111; Benson, 1940, p. 207; Pasteels, 1948, p. 187; Ross, 1951, p. 69; Bensen, 1952, p. 104; Woollatt, 195̄5, p. 143; Lorenz and Kraus, 1957, p. 122.
The Europer n synonymy is not presented here. The name applied is based on the interpretation of Enslin (1914) and Benson (1039). Enslin (1914) listed hyalina Klug, assimilis Thomson, and formosella Costa as synonyms.

Female.-Average length, 6.5 mm . Head and antenna black except for light spots on ventral side of antemal segments 6 to 9 and white maxillary and labial palpi. Thorax black with edge of tegula, metapleuron, and posterior central edge of mesopleuron orange. Legs entirely orange yellow with tarsi infuscate. Abdomen orange with basal plates, second tergum, apical tergum, and sheath black. Wings lightly infuscate.

Head and body smooth and shining with very fine punctures on head and pronotum and large punctures on posterior margin of scutellum. Sheath long and broadly rounded at apex (pI. VI, 130). Lancet with serrulae low and pointed, with equal number of anterior and posterior subbasal teeth (pl. VIII, 179).

Male.-Average length, 5.0 mm . In color and structure similar to femaie. Penis valve with long ventral spine curving laterally (pl. XI, 249); parapenis without posterior lobe (pl. XI, 248); harpe as in plate XI, 248.

Holotype.-Fallen's types are at the Zoological Museum, Lund, Sweden.

Distribution.-From Massachusetts and Maryland to Wisconsin (fig. 21, B). All Europe.
North Americun Records.-Connecticut: N. Branford, May 12, 1933, M. P. Zappe; Windsor, May 21, 1956, J. B. Kring. Maryland: Bowie, April 21, 1963, Pinus virgiana, W. R. M. Mason; Upper Mariboro, April 20, 1963, W. R. M. Mason; Cabin John, April 10, 1965, April 21, 1966, May 3, 7, 1966, D. R. Smith; 3 mi. W. Seneca, May 3, 1966, D. R. Smith. Michigan: Potterville, Eaton Co., May 10,1559, R. A. Scheibner; East Lansing, May 24, 1957, on alfalfa, H. C. Agarwal, May 15, 1954, R. L. Fischer, May 14, 1962, G. C. Eickwort; Bath, May 23, 1957, R. Scheibner, May 20, 1962, G. C. Eickwort; Watervliet, May 25, 1957, J. B. Tatter; Saubee Lake, Eaton Co., May 10, 1959, R. A. Scheibner. New Jersey: Haddon Hts., May 29, 1934, L. J. Bottimer; Warren Co., May 10, 1956, in apple orchard, L. O. Merril. New York: Orient, L.I., June 5, 1948, R. Latham; Cold Spring Harbor, L.I., May 4, 1931; Ithaca, May 14, 1951, J. F. Flynn, May 2, 1951. Ontario: Rondeau Park, June 22, 1962, S. M. Clark; Point Pelee, June 4-5, 1961, Kelton and Brumpton. Wisconsin: Racine Co., Rochester, June 7, 1966, sticky board trap, pear tree, M. S. Conrad; Jefferson Co., Jefferson, June 7, 1966, sticky board trap, pear tree, M. S. Conrad.

Host.-No host has been recorded in North America. In Europe the larvae feed on Galium aparine L. and G. mollugo L. (Benson, 1952).

Larva.-I have not seen the larva of this species. Lorenz and Kraus (1957) described it; the following description is taken from their account.

Head yellow brown with dark spot on each side. Body mostly light in color. Clypeus with two setae on each side. Labrum with three or four setae on each side. Mandible with one seta on outer surface. Second segment of maxillary palpus with two setae; palpifer with two to three setae; stipes with one seta. Thoracic legs normal. Abdominal segments 1 through 8 each with six dorsal
annulets; annulets 2 and 4 each with two or three glandubae on each side; spiracular and surpedal lobes without glandubae but with numerous setae.

This species is apparently separated from other European species by having two setae on the second segment of the maxillary palpus and the other characters given above.

Discussion.-This species is easily recognized by the orange abdomen, reduced apical four antennal segments, long sheath, and upturned vein $2 A$ and $3 A$ of the forewing. It is entirely parthenogenetic in the northern parts of its range in Europe and North America. Males occur in the southern part of its range in Europe, and I collected several males of this species in Maryland near Washington, D.C., which is its southernmost known occurrence in North America. Woollatt (1955) reported taking several males in Britain.

Taxa Excluded From Nearctic Fauna

The following taxa have been excluded from the Nearctic fauna. They were recorded as being found in North America by Ross (1951).

Genus BLENNOC:AMPA Hartig

Blennocampa Hartig, 1837, p. 266.
Type: Tenthredo (Allantus) pusilla Klug. Designated by Rohwer (1911a).
Ross (1951) included several species in this genus. They were primarily those species of the Blennocampini that had a long inner tooth on the tarsal claw with no basal lobe. These species have been transferred to either Monophadnus or Monophadnoides. This genus is monotypic, containing only the type species, the larva of which lives in the rolled-back margins of leaves of Rosa. It is found throughout Europe to Siberia.

Genus PaREOPHORA Konow

Pareophora Konow, 1886, p. 184, 187.
Type: Tenthredo (Allantus) luridiventris Klug. Designated by Rohwer (1911a)

Ross (1951) included two Nearctic species in this genus. They have been transferred to Eupareophora and Apareophora. Only one species is in Europe, P. pruni (Linnaeus) ($=$ luridiventris Klug), and one species, P. gracilis Takeuchi, in Japan. Both feed on Prunus in the larval stage.

Literature Cited ${ }^{1}$

André, E.
1879-82. SPECIES des hyméndptères d'edrope et d'algérie. V. 1, 642 pp. Beaune (Cote-d'Or), France.
1889. deux larves du rosier. Natural:ste, Ser. 2, 11: 285-286. Armitage, h. M.
1950. insect pest survey. (31st Ann. Rpt.) Calif. Dept. Agr. Bul. 39: 175-216.

1951a. Current insect notes. Calif. Dept. Agr. Bul. 40: 111-116.
1951b. insect pest survey. Calif, Dept. Agr. Bul. 40: 150-155. Ashmead, W. H.

1898a. CLASSIFICATION OF the horntails and sawflies, or the stibORDER PHYTOPHAGA. Canad. Ent. 30: 141-145, 177-183, 205-213, 225-232, 249-257, 281-287, 305-316.

1898b. tables on the generic synopsis of the blennocampinae. In Dyar, H. G., On the Larvae of Certain Nematinae and Blemnocampinae, With Descriptions of New Species, N.Y. Ent. Soc. Jour. 6: 127-129.
Beer, R. E.
1955. biological studies in the genus periclista (hymenoptera, tenthredinidae, blennocampinae). Kans. Ent. Soc. Jolir. 28: 19-26.
Benes, K.
1961a. A CONTRIBUTION TO THE BIONOMICS AND MORPhOLOGY OF RHADINOceraea reitteri knw. with a description of the larva (hym., tenthredinidae). Ent. Soc. Cechosloveniae Acta 58: 221-227.

1961b. RHadinoceraed bensont, n. sp., A new sawfly from czechoslovakia (hym., tenthredinidae). Eut. Soc. Cechosloveniae Azcei 58: 152-156.
Benson, R. B.
1930. Nine sawflies requiring new names. Entomologist 63: 107.
1938. On the classification of sawflies (hymenoptera: symphyta). Roy. Ent. Soc., London Trans. 87 : 353-384.
1939. FOUR NEW GENERA of british SAWFLIES (hymenoptera, symphyta). Ent. Monthly Mag. 75: 110-113.
1940. SAWFIIES OF THE BERKHAMSTED DISTRICT WITH A LIST OF THE SAWFLIES OE HERTFORDSHIRE AND BUCKINGHAMSHIRE, AND A SURVEY of the british species (hymenoptera: symphyta). Hertfordshire Nat. Hist. Soc. Trans. 21: 177-231.
1952. HYMENOPTERA (SYMPHYTA). FAMILY TENTHREDINIDAE. In Royal Entomological Society of London, Handbooks for the Identification of British Insects, v. 6, pt. 2 (b), pp. 51-137. London.
1954. SOME SAWFLIES OF THE EUROPEAN ALPS AND THE MEDITERRANEAN Region (hymenoptera: symphyta). Brit. Mus. (Nat. Hist.)
Ent. Bul. 3, pp. 269-295.
1962. holarctic Sawflies (hymenoptera: symphyta). Brit. Mus. (Nat. Hist.) Ent. Bul. 12, pp. 381-409.

[^4]1963. A CHARACTER GRADIENT IN SIREX JUVENGUS E. (MYM., SIRICIDAE). Ent. Monthly Mag. 98: 252-253.
1966. A NEW GENUS OF LYCAOTINI (BLENNOCAMPINAE) IN TURKEY (FYmenoptera: tenthredinidae), Roy. Ent. Soc., London Proc., Ser. B, 35: 75-77.
Berland, L.
1947. FAUNE DE FRANCE. V. 47. HYMÉNOPTERES TENTFREDOIDES. 496 pp. Paris.
BLaNCHARD, C. E.
1840. Histoire naterelee des animaux articulés. V. 3, 672 pp. Paris.
Bouché, P.F.
1834. Natukgeschicfite der Gazten insecten. 216 pp . Berin.

BRISCHKE, C. G. A., and Zaddach, G.
1883. BEOBACHTUNGEN ÜBER DIE ARTEN DER BLATT- UND HOLZWESPEA. Schr. Na"urf. Gesell. Danzig 5, pp. 201-328.

Brittont, W. E.

1917. SIXTEENTH REPORT OF THE STATE ENTOMOLOGIST OF CONNECTICUT for the year 19if. Conn. Agr. Expt. Sta. Ann. Rpt. 1916 (pt. 2) : 65-146.
1918. TVENTY-FOLRTH REPURT OF THE STATE ENTOMOLOGIST OF CONNECTIcut, 1024. Conn. Agr. Expt. Sta. Bul. 265, pp. 221-344.
1919. TWENTY-FIFTH REPORT OF THE STATE ENTOMOLOGIST OF CONNECTIGUT, 1025. Conn. Agr. Expt. Sta. Bul. 275, pp. 301-332.
Bruzlé A.
1920. HISTOIRE NATLRELLE DES INSECTS JIYMÉNOPTERES. Bd. 4, 689 pp . Paris.
Butzs, B. D.
1921. SMMPHYYA. In Krombein, K. V., ed., Hymenoptera of America North of Mexico, Synoptic Catalog, Ist Sup., U.S. Dept. Agr. Agr. Monog. 2, pp. 8-17.
Cameron, P.
1877a. NOTES ON BRITISH SPECIES OF BLENNOCAMPA. Ent. Monthly Mag. 14: 55-58.

1877b. II. ON A NEW SPECIES OF BLENNOCAMPA, (B. ALCHEMILLAE), WITH remarks on the spectes allied thereto. Glasgow Nat. Hist. Sce. Proc. 3, pp. 107-110.
1880. Notes ON tenthredinidae and cynipidae. Ent. Monthly Mag. 16: 265-267.
1882. A MONOGRAPH OF THE BRITISH PHYTOPHAGOUS HYMENOPTERA. V. 1, 340 pp . London.
Ceballos, G.
1941. Las tribus de los hrmenópteros de espana. Madrid Inst., Españ. de Ent. 17: 7-48.
Chapman, T. A.
1915. THE EGG-LAYING OF PHYMATOCERA ATERRIMA KLUG. Ent. Rec. 27: 145-149.
1917. THE LARVAE OF RHADINOCERAEA MICANS KLUG AND OF PHYMATOCERA aterrima Klug. Ent. Monthly Mag. 3: 224-228.
Christ, t. L.
1791. NATURGESGHICHTE, KLASSIFICATION UND NOMENGLATER DER INSECTEN VON BEINEN, WESPEN, UND AMEISENGESCHLECT. 535 pp . Frankfurt am Main.
Conde, O.
1934. östbaltische tenthredinompea. II. Korresp. BI. des Naturf. Ver. zu Riga 61, pp. 168-198.

Conde, 0 .
1937. ÖStbaltische tenthredinotdea. hi. nebst bemerkuncen zu enmigen anderen paliatritischen arten. Korresp. Bl. des Naturf. Ver. zu Riga 62, pp. 103-112.
Costa, O. G.
1859. FACNA dEL REGNO di NAPOLI. PT. 2. C. imenotteri. [n.p.] Naples.
Cressone, E. T.
1865. CATALOGLE OF HYMENOPTERA IN THE COLLECTION OF THE ENTOMOlogical society of philadelphla, from colorado territory. Phila. Ent. Soc. Proc. 4, pp. 242-313.

1880a.

 descriptions of new north american hymbnoptera in the collection of the american entomological society. Amer. Ent. Soc. Trans. 8: 1-52.1880b. Catalogue of the tentiredinidae and uroceridae of north amertca. Amer. Ent. Soc. Trans. 8: $53-68$.
1887. Synopsis of the families and genera of the hymenoptera of america, north of mexico, together with a cataloged of the described species and bibliography. (Amer. Ent. Soc. Trans., sup. vol.) 350 pp . Philadelphia.
1916. the cresson types of hymenoptera. Amer. Ent. Soc. Mem. I, 141 pp .
1928. THE TYPES OF hymenoptera in the academy of natural sciences of philadelphia other than those of ezra t. cresson. Amer. Ent. Soc. Mem. $5,90 \mathrm{pp}$.
Crevecoeur, A., and Maréchal, P.
1938. matériaux pocr sêryir a l'établissement d'un nouyeau capalogle des hyménopteres de belgique. Soc. Ent. de Belg. Bul. et Ann. 78, pp. 475-508.
Dadtrian, H. B.
1962. ON THE SAWFLIES AND THE HORNTAILS OF ARMENIAN SSR (INSECTAhYMENOPTERA, SYMPhYta). Ahad. Nauk Armianskoi SSR, Zool. Inst. Sbornik 12: 63-98. [In Russian.]
Dahlbom, A.
1836. CONSPECTUS TENTHREDINIDLM, SIRICIDUM, ORYSSINORUM, SCANDINAVIAE, HYMENOPTERORUM FAMLLIAE. 16 pp . Hafinae.
Dalla Torre, C. G.
1894. CATALOGUS HYMENOPTORUM. V. I. TENTHREDINIDAE incl. UROceridae (phyllophaga and xylophaga). 459 pp. Ifipsiae.
Diniz, M. A.
1960. notas sobre himenófteros de portugal, \%. combra. Coimbra Univ. Mus. Zool. Mem. e Estudos No. 266, 37 pp .
Dittrich, R.
1924. DIE TENTHREDINDOCECIDIEN, DURCH BLATTWESPEN VERURSACHTE pflanzengallen und thre erzeuger. Zoologica 61, pp. 587-635.
Dyar, H. G.
1895a. descriptions of the larvae of certain tenthredinidae. Canad. Ent. 27: 191-196.

1895b. On the larvae of some nematoid and other sawflies from phe northern atlantic states. Amer. Ent. Soc. Trans. 22: 301-312.

1895c. descriptions of the larvae of three sawflies. Ent. News 6: 199-200.
1897. NEW SAWFlies (tenthredinidae) with descriptions of laryae. N.Y. Ent. Soc. Jour. 5: 190-201.
1898. ON THE LARVAE OF CERTAIN NEMATINAE AND BLENNOCAMPINAE, WITH DESCRIPTIONS OF NEW SPECIES. N.Y. Ent. Soc. Jour. 6; 121138.
1899. SOME STRLGTURAL POINTS IN SAWFLY LarvkE. Wash, Ent. Soc. Proc. 4: 218-220.
Eide, P. M.
1948. A TIP-infesting gawfly on rose. Econ. Ent. Jour. 41: 819-821.

EDWARD JACOBSON'S JAYA-AUSBEUTE, FAMI TENTHREDINOIDEA (HYM.) NEBST BESTIMMUNGSTABELLE DER EINSCHLÄGIGEN GATtungen. Tijdschr. v. Ent. 55: 104-126.
1913. UEBER TENTHREDINIDEN AUS SPANIEN, NEBST EINER BESTMMMUNQSTABELLE DER PAEAARKTISCHEN TOMOSTETHUS. Arch. f. Naturgesch. 79: 165-172.
1914. die tenthredinoidea mitteleuropas. (Beit. Deut. Ent. Ztschr.) 1914, pp. 203-300. Berlin.
1920. DIE PADÄARKTISCHE RHADINOCERAEA-ARTEN. Arch. f. Naturgesch. 85: 316-320.
Eversmann, E.
1847. FaUna hymenorterologica volgo-uralensis. Soc. Imp. Nat. du Moscou Bul, 20: 3-68.
Fabricjus, 士. 0 .
1804. SYSTEMA PIEZATORUM. 440 pp. Brunsvigae.

Fallén, C. F.
1807. FÖRSÖK TILL UPPSTÄLLNING OCH BEKRIFNING PA DE I SVERIGE FUNNE arter af insect slägtet tenthredo linn. Vetensk. Acad. Handlingar 28: 179-209.
1829. MONOGRAPhia tenthredinetarum suecjae. 48 pp . Lund. Frison, T. H.
1927. a list of the insect types in tye collection of the illinois STATE NATURAL HISTORY SURYEY AND THE UNIVERSITY OF GLINOIS. 111. Nat. Hist. Survey Bul. 16, pp. 137-309.

Gahan, A. B., and RoHwer, S. A.
1917-18. LECTOTYPES OF THE SPECIES OF HYMENOPTERA (EXCEPT APOIDEA) DESCRIBED BY ABBE PROVANCHER. Canad. Ent. 49: 298-308, $331-336,391-400,427-433 ; 50: 28-33,101-106,133-13^{7}, 166-$ 171, 196-210.
GMelin, J, F.
1788-93. CAKOLI a LiNNÉ SYSTEmA Naturat. Ed. 13, 10 v . Lipsiae. Griffin, I. G.
1937. A FURTHER NOTE ON "PALISOT DE BEAUVOIS, INSECTES REC. AFR. AMER." 19051021 . Soc. Bibliog. Nat. Hist. Jour. 1: 121-122.
Hardouin, R.
1943. LE PEUPLEMENT ENTOMOLOGIQUE DE ROSIER. 382 pp. Paris.

Harrington, W. H.
1889. NEW SPECIES OF CANADIAN TENTHREDINIDAE. Canad. Ent. 21; 95-99.
1894. CANADIAN HYMENOPTERA - No. 4. Canad. Ent. 26: 193-196. Harnis, T. W.
1835. Vmi insects, In Hitchcock, Edward, Report on the Geology, Mineralogy, Botany, and Zoology of Massachusetts, pp. 55̃3-602, Amherst, Mass.
1841. REPORT ON THE INSECTS INJURIOLS TO VEGETATION. Ed. 1, 459 pp. Cambridge, Mass.

Harris, T. W.
1845. adoress nfw dearling. [As eited in Dalla Torre, C. J., 1894, Catalogus Hymenoptorum, v. 1, Tenthredinidae Incl. Uroceridae (Phyllopiaga and Xylophaga), p. 164. Lipsiae.]
1850. Sawfly of the raspberry, selandria hoplocampa rubi. N. Eng. Farmer 2: 33.
1860. description of hoplocampa rubi. Boston Soc. Nat. Hist. Proc. 7, pp. 235-236.
Hartic, T .
1837. die familien der blattwespen und holzwespen, nebst einer allegemeinen endeitung zur naturgeschicitte der hymenopteren. 416 pp. Berlin.
Horsfall, W. R.
1920. tile grapeyine sawfly (hym.: tenthredintdae). Ent. News 40: 174-177.
Jurine, L.
1807. NOUVELLE MÉTHODE DE CLASSER LES HYMÉNOPTÈRES ET LES DIPTĖRES. 319 pp . Geneva.
Kaltenbach, J. FL.
1867. die deutschen phytophagen aus der klasse der insekten, oder versich einer zusammenstellung der auf deutschlands pflanzen beobachteten bewohner und threr feinde. Naturhist. Ver. der Preuss. Rheinlande Verhandl. 24: 21-117.
1874. die pflanzenfeinoe aus der klasse der insekten. 848 pp . Stuttgart.
Kincaid, T.
1900. papers from the harriman alaska expedition, vif, entomologtCal rest'lts (1) : the tenthredinoidea. Wash. Acad. Sci. Proc. 2: 341-365.
Kirby, W. F.
1882. LISt Of hYMENOPTERA IN THE BRITISH MUSZUM. 450 pp . London. Klug, J. C. F.
1807. "ber die geschlechtsverschiedenheit der piezaten. Geself. Naturf. Freunde, Berlin, Mag. 1: 68-80.

1814-18. die blattwespen nach mben gattungen und arten zusammbngestellt. Geseli. Naturf. Freunde, Berlin, Mag. 8: 4284, 110-144, 179-219, 273-307.
1810. die blattwespen der fabricischen sammlung. Wiedemann's Zool. Mag., Altona, 2 (3): 64-91.
Konow, F. W.
1886. die elropaischen blennocampen. Wiener Ent. Ztg. 5: 183-188, 211-218, 243-246, 267-271.
1890. tenthredinidae europea. Deut. Ent. Ztschr. 34: 225-255.
1898. nele tenthrediniden. Wiener Ent. Ztg. 17: 228-238.

1903a. neue tenthrediniden. System. Hymenopterologie u. Dipterologie Ztschr. 3: 145-153.

1903b. neue chalastogastra (hym.). System. Hymenopterologie u. Dipterologie Ztschr. 3: 166-170.
1904. ueber einige exotische tenthrediniden. System. Hymenopterologie u. Dipterologie Ztschr. 4: 241-248.
1905. hymenoptera, fam. tenthredinidae. In Wytsman, P., ed., Genera Insectorum, fase. $29,176 \mathrm{pp}$. Bruxelles.

Konthanen, P.
1948. ZLR BIOLOGIE VON LYCAOTA XYLOSTEI GIR. (HYM. TENTHREDINIDAE).

Ent. Fennici Ann. 14: 15-19.
Kriechbaumer, J., ed.
1884. DR. F. KLUG'S GESAMMELTE AUFSATZE ÜBER BLATTWESPEN. 300 pp . Berlin.
Lameere, A.
1938. PRÉcis de zoologie. tome v, les insectes supérieurs. 536 pp . Brassels.
Langford, G. S., and McConnell, H. S.
1935. Biology of tomostethus multicinctus (rohi.), a sawfly attacking ash. Econ. Ent. Jour 28: 208-210.
Latreille, P. A.
1805. histoire natyrelle, générale et particulière des crustacés et des insects. V. $13,432 \mathrm{pp}$. Paris.
1807. genera crustaceorum et insectorum secundum ordinem NatuRalem in familias disposita. V. 3,258 pp. Paris.
LeConte, J. L.
1859. The complete writings of thomas say on the entomology of north amertch. V. $1,814 \mathrm{pp}$. Boston.
Lepeletier, A. L. M., de Sant-Fargenc.
1823. MONOGRAPHIA TENTHREDINETARCM. 176 pp . Paris.

Limnatis, C.
1758. Systema naturae, i. 826 pp . Stockholm.

Lorenz, M., and Kraus, M.
1957. dif larval systematik der blattwespen (tenthredinomdea und megalodontomea) . 339 pp. Berlin.
MacGillivray, A. D.
1893. washington tenthredinidae and uroceridae. Canad. Ent. 25: 237-244.
1895. New tenthredinidae. Canad. Ent. 27: 281-286.
1906. A STLDY OF the wings of the tenthredinoidea, a superfamity of hymenoptera. U.S. Natl. Mus. Proc. 29, pp. 569-654.

1908a. blennocampinae, descriptions of new genera, and species, Synonymical notes. Canad. Ent. 40: 289-297.

1908b. A new genes and species of blennochmpinae. Canad. Ent. 40: 454-455.
1909. Two new species of Saw-flies. Canad. Ent. 41: 402-404.
1916. tenthrednombea. In Viereck, H. L., Guide to the Insects of Connecticut, pt. 3, The Hymenoptera, or Wasp-Like Insects of Connecticut, Conn. Geol. and Nat. Hist. Survey Bul. 22: 25-175.
1921. New species of Sawfles (hymenoptera). Brooklyn Ent. Soc. Bul. 16: 22-24.

1923a. NEt sawflies, hymenoptera, from orecon. Psyche 30: 77-81.
1923b. NEw species of fenthredintdae from the east and middle west. Brooklyn Ent. Soc. Bul. 18: 53-56.

1923c. A century of tenthredinoidea. Ilt. Univ. But. 20: 6-38.
MaCNAY. C. G.
1953. outbreaks and new records. FAO Plant Protect. Bul. 2: 43-44.
1957. TOMOSTETHT'S MULTICINCTUS (ROHWER) IN CANADA. Ganad. Insect Pest Rev. 35: 184.

Malaise, R.

1932. ENTOMOLOGISCHE ERGEBNISSE DEA SCHWEDISCHEN KAMTCHATKAExpedition 1920-1922. Arkiv, för Zool. 23: 1-68.
1933. A NEW GENUS AND SYNONYMICAL NOTES ON TENTHREDINOIDEA. Ent. Tidskr. 54 : 50-59.
1934. ON SOME SAWFLIES (HYMENOPTERA: TENTHREDINIDAE) FROM THE indian muselm, calclitta. Indian Mus. Rec. 36: 453-474.
1935. NEW GENERA OF TENTHREDINOIDEA AND THEIR GENOTYPES (HYM.). Ent. Tidskr. 56: 160-178.
1936. A NEW SPECIES OF A BIPOLAR SAWFLY GENUS (HYM. TENTHR.). Arkiv. för Zool. 36: 1-5.
1937. THE GENERA WALDHEIMIA, PROBLETA, AND OTHER NEOTROPICAL tenthredinidae (Hys.). Arkiv. för Zool. 42: 1-61,
1938. HYMENOPTERA TENTHREDINOIDEA, SUBFAMYLY SELANDRIINAE, KEY TO GENERA OF THE wORLD. Ent. Tidskr. 84: 159-2I5.
1939. New genera and species of the surfamily blennocampinae (gYM., TENTHREDINIDAE). Ent. Tidskr. 85: 20-39.
Maxweld, D. E.
1940. THE COMPARATIVE INTERNAL LARVAL ANATOMY OF SAWFLIES (HYmenoptera: tenthredinidae). Canad. Ent. 87 (sup. 1): 1-132. Middlekauff, W. W.
1941. A rose tip sawfly nev to California. Pan-Pacific Ent. $34: 202$. Midoleton, W.
1942. DESCRIPTIONS OF SOME NORTH AMERICAN SAWFLY LARVAE. U.S. Natl. Mus. Proc. 61, pp. 1-31.
NORTON, E.
1943. notice of tife genus selandria. Boston Soc. Nat. Hist. Proc. 8, pp. 219-224.
1944. NOTES ON TENTHREDINIDAE, WITH DESCRIPTIONS OF NEW sPECIES. Phila. Ent. Soc. Proc. 3, pp. 4-16.
1945. CATALOG OF THE DESCRIBED TENTHREDINIDAE AND UROCERIDAE OF North america. Amer. Ent. Soc. Trans. 1: 31-84, 193-280.
1946. [DESGRIPTIVE FOOTNOTE.] In Packard, A. S., Guide to the Study of Insects, pp. 224-225. New York.
1947. NOTES ON NORTH AMERICAN TENTHREDINIDAE, WITH DESCRIPTIONS of New species. Amer. Ent. Soc. Trans. 4: 77-86.
OKUTANI, T.
1948. SOME RECORDS ON THE FOOD-PLANTS FOR JAPANESE SAWFLIES WITH a note on an egg-liying habit of macrophya apicalis (studes on symphyta iv). Hyogo Univ. Agr. Sci. Rpts. 2, pp. 1-2.
Osborne, H.
1884a. THE ASH SAWFLY (SELANDRIA barda say). Canad. Ent. 16: 148152.

1884b. THE ASH SAWFLY (SELANDRIA BARDA SAY). Ontario Ent. Soc. Ann. Rpt. 15: 32-34.
Packard. A. S.
1890. insects injurious to forest and shade trees. U.S. Ent. Comn. Rpt. 5 (Bul. 7 , rev.), 957 pp .
Padisot de Beauvois, A. M. F.J.
1805-21. INSECTES RECUEILLIS EN AFRIǪL'E ET EN AMERRQQE. 276 pp. Paris.

Panzer, G. W. F.
1798. Faunae insectorum germanicae initia oder delotschlinds insecten. V. 22,24 pp. Nürnberg.
1806. kritische revision der insekten fadna deutschlands, nach dem system bearbeitet. V. 2, 271 pp . Nürnberg.
Pasteles, J.
1948. notules sur des hyménopteres symphytes (4E SERie). Soc. Ent. de Belg. Bul. et Ann. 84, pp. 185-190.
1949. tenthredinidae (hymenoptera, tenthredinotdea). exploration du parc national albert, mission g. f. de witte. Fasc. 60, pp, 3-105. Bruxelles.
1953. hymenoptera, tenthredinoidea. exploration du parc national de l'upesiba, mission g. f. de witte. Fasc. 17, pp. 117131. Bruxelles.

Peterson, A.
1956. Larvae of insects. pt. 1. lepidoptera and plant infesting hYMENOPTERA. 315 pp . Ann Arbor, Mich.
Provancher, l'A. L.
1878. frune Canadienne, les insects, hyménoptères. Nat. Canad. 10: 97-108.
1882. FAUNE CANADIENNE, hYMENOPTERES, ADDItions et corrections. Nat. Canad. 13: 289-311.
1883. petite faune entomologiqle de canada. v. e. tyménoptéres. 831 pp . Quebec.

1885-89. AdDITIONS ET CORRECTIONS AU VOLUME il de la faune entomologique du canada. 477 pp . Quebec.
1805. Les dernières descriptions de l'abbé provancher. Nat. Canad. 22: 79-80.
Raizense, H.
1953. FOREST SAWFlies of SOUTHERN ontario and their parasites.

Riley, C. V.
1869. first annual report on the noxioles, beneficial, and other insects of the state of missolri. 172 pp. Jefferson City, Mo. Rohiver, S. A.

1908a. New western tentifredintdae. N.Y. Ent. Soc. Jour. 14: 103114.

1908b. Notes on tenthredinoiden, witfi descriptions of new species. I. species from colorado. Canad. Ent. 40: 175-180.

1909a. Notes on tenthredinoidea with descriptions of new species. IIt. Canad. Ent. 41: 88-92,

1900b. Notes on tenthredinoidea with descripions of new species. \%. (new western species). Canad. Ent. 41: 145-149.

1909c. Notes on tenthredinotdea with descriptions of new spectes. vit. New blennochmpinae. Canad. Ent. 41:397-399.
1910. Japanese sawfles in the collection of the united states national museum. U.S. Natl. Mus. Proc. 39, pp. 99-120.
1011a. technical papers on miscelianeout forest insects. in. the genotypes of the sawflies or woonvasps, or the superfanily tenthredinoidea. U.S. Bur, Ent. Tech. Ser. 20, pp. 69-1.09.

Rohwer, S. A.
1911b. New sawflies in the collection of the united states national miseum. U.S. Natl. Mus. Proc. 41, pp. 377-411.

1911c. a classification of the suborder cilalastogastra of the hymenoptera. Wash. Ent. Soc. Proc. 13: 215-294.
i911d. techmical papers on miscellaneous morest insects. iv. stidies in the sawfly gences hoplocampa. U.S. Bur. Ent. Tech. Ser. 20, pp. 139-148.
1912. NOTES ON SAWFLIES, Wiph descriptions of new species. U.S. Natl. Mus. Proc. 43, pp. 205-251.
1913. zoological results of the arbor expedition, 1011-19. hymenoptera, fil. Indian Mus. Rec. 7: 239-242.
1915. the mating habits of some sawflies. Wash. Ent. Soc. Proc. 17: 105-198.
1916. chalastogastra (IIym.). Sup. Ent. 5: 81-113.
1917. DESCHPTHNS OF THIRTY-ONE NEW SPECIES OF HYMENOPTERA. U.S. Nati. Mus. Proc. 53, pp. 151-176.
1920. deschiptions of thirty-fife new spectes of norti dmertcan hymenoptera. U.S. Natl. Mus. Proc. 57, pp. 209-231.
Ross, H. H.
1932a. records of additional european sawfles in america and descriptions of new varieties of north amerifan species. Canad. Ent. 64: 247-251.

1032b. the strfamily lychotinag, in north nmerica (hymenoptera: tenthiedintide). Canad. Ent. 64: 41-45.
1937. a generic classification of the nearctic sawfies (hymenoptera: symphyta). IIl. Biol. Monog. 34, pp. 1-173.
1945. Sawfly gentalia: terminology and study techniques. Ent. News 56: 261-268.
1951. tevthredinidae. In Muesebeck, C. F. W., et al., Hymenoptera of America North of Mexico, Synoptic Catalog, U.S. Dept. Agr. Agr. Monog. 2, pp. 22-64, 66-82.
Sasscer, E. R.
1911. NOTES ON A SAWFLY inJurious to ash (Hymenoptela: tenthredinidae). Wash. Ent. Soc. Proc. 13: 107-110.
Sato, K.
1928. The chalastocastra of morea (no. 1). Insecta Matsumurana 2: $178-190$.
Saunders, W.
1873. ON some of otr common insects. fi. tile raspberry saw-fly selandria rubi, harris. Canad. Ent. 5: 101-103.
1884. ANV信 address of the president of the entomologicil society of ontario. Canad. Ent. 16: 204-213.
1885. the raspbebry sawfly, selinbria bubi harris. Canad. Ent. 17: 1-2.
SAY, T.
1824. appendix. l/ Keating, W. H., Narrative of an Expedition to the Source of St. Peter's River. Lake Wimnepeck, Lake of the Woods, Performed in the Year 1823. by Order of the Honorable J. C. Cahoun, Secretary of War. Under the Command of Stephen H . Long, Major, v, 2, pp. 253-378. Philadelphia.

1836, DESCRIPTIONS UF NEW SPECIES OF NORTH AMERICAN HYMENOPTERA and observations on some slresdy described. Boston Nat. Hist. Jour. 1: 210-305.
Schrank, F. vos P.
1781. ENEMERATIO INSECTORUM AISTRIAE INDIGENORLM, AUGCST. 548 pp. Vindelicor.
Sct'DDER, S. H. , ed.
1869. ENTOMOLOGICAE CORRESPONDENCE OF THADDEIS W. HARRIS. (OCCASHNAL PAPERS OF THE B'STON SHCIETY OF NATURAL HISTORY, I.) 375 pp . Boston.
SMiTH, D. R.
1965. a Name cilange and New synonymy for a spectes of ardis in NORTf AMERICA (HYMENOPTERA: TENTHREDINLDAE). Pan-Pacific Ent. 41: 9-10.

1966a. TAXONOMIC CHANGES IN TYE TENTHREDNIDAE (HYMENOPTERA: SYMPEYTa). TVash. Ent. Soc. Froc. 68: 247-250.

1gG6b. THE IDENTITY OF THREE SHOOT-HORINO SAWFLY LARVAE OF ROSES (IY'uENOPTERA: TENTHIEDINHAE). Amer. Ent. Soe. Ann. 59: 1292.

Smith, J. B.
1900. INSECTS OF NEW JERSEY, A EIST OF THE SPECIES OCCIBRINC IN NEW JERNEY, WITH NOTES ON THOSE OF ECONOMHC IMPORTANCE (SUP. to 27 th Ann. Rpt. of State Bd. Agr., 1899.) $75 \overline{5}$ p. Trenton, N.J.

Smarm, R. C.., Keheey, E. G., DEAN, G. A., and others.
1043. Convon insects of Kansis. (Kans. State Bd. Agr. Rpt., June, $194 \%\}$.440 pp . Topeka, Kans.
Stancard, L. J.
1540. TfE NEARCTIC SAWFLEES OF THE GENIS PERICLISTA (HYMENOPTERA: Tenturedinidie). Amer. Ent. Soc. Tyans. 75:7-42.
1951. PERtelista. In Muesebeck, C. F. W. at al., Hymenoptera of America North of Mexico, Synoptic Catalog, V.S. Dept. Agr. Agr. Mrnag. 2, pp. 8!-66.
Steriv, R. V.
1887. TFNTHREDiNOEOGNCHE Stimen Xif. Ent. Nachr. 13: 165-173.

STEPHENS, J. F.
18\%5. HLLESTRATHNS OF BRITISIL ENTOMOLOGY; MANDIBTLATA. V.7,312 pp. Lontion.
Takerciri, K.
1952. A GENERIC CLASSIFIGATION OF THE JAPANESE TENTHREDINIDAE (HYMENOMERA: sympHyTA). 90 pp. Kyoto.
Taschesberg, E. I.
1866. DIE HYVENGPTERFN DEUTSCHLANDS NACII IHREN GATTINGEN UND TYEICWEISE NACH MMREN ARTEN ALS WEGWEISER. 277 pp. Lripzig.
Thomas. C.
1875. SIXTII RFPORT OF THE STATE FNTOMOLOGINT ON THE NOXIOUS AND BENEFICLAL INSECTS OF THE STATE OF HLENOTS. Pt. I, 61 pp . Springfielt, T11.
1881.

TFNTH REPORT OF THA STATE FNTOMOLOEIST ON THE NOXIOUS AND BENEFICLAR NSECTS OF THE STATE OF hlemOLS (5th Ann. Rpt. w (yrus Thomas, State Ent.) 238 pp. Springfield, Ill.
Tmomson, C. G .
1870. RPUSCIEA ENTOMOLOCICA, FASCICITES SECUNDUS. 304 pp Lund.

[^5]Togasmi I.
1963. the japanese sawfles of the genus waldhemia brullé. Kontyū 31: 71-73.
1964. the gents apareophora sato (hymenoptera, symphyta) of Japar. Kontyû 32 : 403-405.
Villers, C.J. De.
1789. caroli linnaei entomologla. V. 3.656 pp . Lugduni.

Vollenhoyen, S.C.S. van.
1876. de inlandsche blidwespen in hare gedaantewisseling en leyenswijze beschreven. Tijdschr. v. Ent. 19: 258-277.
Weldon, G. P.
1907. tenthredinidae of colorado. Canad. Ent. 39: 300-304.

Will, H. C.
1932. A LIST OF THE SYNONYMY OF THE TENTHREDINIDAE (HYMENOPTERA) of america, North of mexico. Pa. Acad. Sci. Proc. 6: 42-46.
Woollatt, L. H.
1955. THE male of halidamia affinis fallén (hym., tenthredinidae) in bettain. Ent. Monthly Mag. 91: 143.
Yuash, H.
1922. a classification of the laryae of the tenthredinidag. Ill. Biol, Monog. 7, pp. 1-172.
Zeller, S. M., and Schum, J.
1944. DISEASES AND INSECT peSts of can frutits in orecon. Oreg. Agt. Expt. Sta. Bul. 148, 58 pp.

Index

This index contains both superspecific and trivial names. Valid names are in roman and synonyms in italic.

Page	Pake
abjecta MacG., Blennocampa_-_ 158 !	californica Roh., Periclista .-_- 131
abnorma MacG., Blennocampa_-- 147	californicus (Roh.), Monophad-
absona MacG., Blennocampa.....- 158 (
acuminata MacG., Blennocampa_ 14	earbonarius
adustu MacG., Blennocampa_m-a 147	Erythraspides -----------158
aequalis MacG., Monophadnus_- 83	caryae Nort., Selandria_...----160
aeratus Mac(a., Monophadnus_-- 90	caryicolus Dyar, Mogerus_-----128
affinis (Fallén), Halidamia..--- 163	Ceratulini, n . $\mathrm{tr} \ldots \ldots \ldots$
albicollis (Nort.), Periclista_..- 125	
albipennis Zadd., Fenthredon-... 123	chionanthi Dyar, Periclista_--- 119
albipes Gmelin, Tenthredo	cinereipes Klug, Tenthredo_---- 101
aldrichi (MacG.), Rhadinoceraea 71	circina MacG., Monophadnoides_ 108
andrei Knw, Periclista_.........- 12'3	Claremontia Roh_-....-.-.-.-. 133
anguleta Macd., Blennocampan- 147	collaris MacG., Monophadnoides_ 140
antennata MacG., Blennocampa 147	coloradensis (Roh.), Blenno-
Aparcophora Sato -----...----16	generis _------.-.-.-.-.-.-. 22
Apericlista Einslin ------------123	concessus MacG., Monophadnoides 140
aperta MacG., Blennocampa_.-- 147	conductus MacG., Monophad-
Aphymatocera Sato .--------116	confuse MacG., Periclista___-. 126
Ardis Knw-------------107	consobrinze MacG., Monop
ushmeadi Kine., Erythraspides_- 136	
assaracus MaeG., Monophadnus- 85	consonus MacG., Monophadnoides 140
assimilis Fallen, Tenthredon..... 103	conspersts MacG., Monophad-
ussimilis Thoms., Blennocampa-- 163	
aterrima Klug, Tenthreda......- 41	conspiculatus MacG., Monophad-
Atomostethus Enslin --..------- 99	
atracornis MacG., Monophadnus_ 140	conspicuts MacG., Monophad-
atrata (Hgtn.), Ardis. \qquad 108	noides \qquad
alratum MacG., Is (i) odyctium_- 129	
atratus (MacG.), Monophadnoides	noides \qquad 140
	contortus (MacG.), Monophadnus 90
bokeri MacG., Neocharactus_n_ 133	cortacinus MacG., Monophad- noides \qquad
bakeri, n. sp., Monophadnus.-.-- 86	cortatus MacG., Monophadnoides 147
bardus Say, Tenthredon_-------37	cordigera (Beauv.), Tethida_-_ 37
bedeae, n. sp. Waldheimia_-_-.. 156	corytus MacG., Monophadnoides_ 140
bensoni Beneš, Rhadinoceraea__ 67 bipartita (Cress.), Periclista \qquad 127	costalis MacG., Monophadnoides_ 140
bipunctata Klug, Tenthredo_-_-- 109	crassus MacG., Monophadnoides_ 140
bipunrfatus MacG., Monophadinus 94	ctenidium, n. sp., Rhadinaceraea 67
Blennocampa Htg	curiosus MacG., Monophadnoides 141
Blennocampini Knw-...-------106	
Blennogeneris MacG_-........-. 20	Dicrostema Benson .-...------- 57
bouquetensis, n. sp., Lycaota__-- 29	diluta (Cress.), Periclista_-----127
brasiliensis Lep., Tenthredo_..-. 10.0	distinctus MacG., Monophadnus_ 61
bruneri Roh., Lycaota_-_----132	
brunteus Roh., Lycuota [5] - 25	dubia Cress., Selandria_---.--- 37
brunniventris (Htg.), Ardis_-- 109	dubius Gmelin, Teathredo_.... 101
brysonensis, n. sp., Rhaslinoceraea $\mathrm{G}^{\text {a }}$	dyari (Benson), Apareophora__- 117

Page
electa MacG., Periclista $2 \overline{5}$ $1: 3$
Paste
elongatula (Klug), Cladardis---
emarginuta Dyar, Periclista_ 125 125emurginata Thoms., Blennocampa 9.4
tmaryinatus MacG., Mogerus_-- $1 \stackrel{1}{-1}$entelia Mack., Periclista_-......12.
ephippium (Panzer), Eutomoste- thus 100
Erythraspides Ashm 157
Eupartophora Enslin 119
Eutomostethus Enslin 99
:xarmata Thoms., Blennocampa. 19
Horidam (ress., Nelandria 126
thridense Dyar, Isodyctium.-... $18:$
formesella Custa, Blennocampa_ 163 99
forsythae Sato, Apareophora 116
frusini l.ep., Tenthredo. 97
indaii Roh., Monophalnus 97
fulignoses (Schr.), Stethomostus 96
fumipennis (Nort.), Phymatocera 4.
funereus (Klug), Stethomostus.. 915finteri Pensom, Monophadnus_--9.4
furvu: Knv., Monophadnus.....
fasra Roh., Lyeaota 9.1
hisripemis Lep., Tenthredo 31 103
fisons Lep., Tenthredo.
yrniculatus (Htg.), Monophad- mindes 14
gillte: Weldon, Blennocampa 141
gittinsi, a. sp., Blennogeneris. $\because 4$
graclicornis (Zadd.), ['arachar- actus - 7
xratilis Takeuchi, Pareophora... $1 ;$
thom MacG., Pareophora 119
gutron Mac(z., Pareophora 119
Halitlamia Benson 163
farmiter Ruh., Periclista 121 121
Indsomicks Kirby, Monophadnus_ 140
huraina Klug, Tenthredo 103
hivalinus (fltg.), Paracharactus. 4
Hyparyyricus MacG_41
inatquidens (Nort.), Periclista_ 132
inireyuens Dyar, Isodyctium
inireyuens Dyar, Isodyctium 133
inf fisfatits MacG., Hypargyricus. 51mhabilis Nort., Selandria-n----
100msularis (Kinc.), Rhadinoceraea
irrunata Cress., Selandria 1097.1
Ssodyctium Ashm Tosyom Ashm 123
jacintensis, n. sp., Rhadinoceraea $7 \overline{7}$
jauptaf, n. sp., Lecaota
jauptaf, n. sp., Lecaota 29 29
japmica Takeuchi, Apareophora_ 160
juglandis: (Fiteh), Eriocampa
kiveridi Mac(r, Monophadnoides_ 1.11
L.agonis Ross 77
lattoni, n. sp., Monophatinus 01 01Page Pageosgoodi, n. sp., Monophadnoides_- 146oratus Schrank, Tenthredo....... 101
similaris Roh., Pericista 126
similata (MacG.), Phymatocera 51
smilacinae, n. sp., Phymatocera. 55
sodalis (Cress.), Lyeaota 31 153
pallescens (Gmelin), Monophad- nus 94
pallipes (Prov.), Periclista 132
Paracharactus MacG
parallehus MacG., Aphanisus....- 111
spicula Stan., Periclista spicula Stan., Periclista- 126 81
parea (Cress.), Eupareophora.... 119
Pareophora Knw 165
prevet Cress., Selandria 108
pauper (Prov.), Monophadnoides 147
pecanitora Roh., Periclista
pecanitora Roh., Periclista 129 129
Pectinia Brulle 423
Periclistini Takeuchi 123
Phymatocera Dahlb 106
Phymatocerini Roh 40
Phymatoceropsis Roh 43 43
plana Klug, Tenthredo
plana Klug, Tenthredo 113
${ }^{p}$ plamest MacG.j Monop 7 c
plicutus MaeG, Monophadnus 8.2
pruni (L.), Pareophora 165
Pseudoblennocampa Mal 133
Pscutomonophadnus Mal 133
pulia, n. sp., Monardis 114
purpuriforsum Dyar, Periclista_ 126
pusilla Klug, Tenthredo 16.2 16.2
pygmeta Say, Tenthredo 160
quebecensis, n. sp., Monophad- noides 150
guercts Roh., Periclista 125
racemosae, n. sp., Phymatocera_- 49
reitteri (Knw.), Rhadinoceraea_ 67
Rhadinoceraca Knw 65
rileyí (Cress.), Periclista 130
rostirum Knw., Monophadnus 9.4
rossi, n. sp., Apareophora 118
rtdi Harris, Selandria 140
rutlis (Nort.), Paracharactus 63
rufula Nort., Selandria 63
rusculla (MacG.), Phymatocera 56
scelestu Cress., Selandria
spiracae Bris. and Zadd., Blenno-
campa 117
spiratae Dyar, Blennocampa_- 117
spissipes (Cress.), Blennogeneris 2.4
stannardi, n. sp., Perichista 130
Stethomostus Benson 96
sutareyarium Dyar, Isodyctium. 127
subtruncata Dyar, Periclista_-... 133
sulcata (Cam.), Ardis 108
sulfurana Stan., Periclista 131
tenuitornis Klug, Tenthredo 133
Tethida Ross 37
tiliae Nort., Selandria 9.2
tomostethi Mal., Forsia 99
Tomostethini Bensor 32
Tomostethopsis Sato 90
Tomostethus Knw. 33
tronsiersus MacG., Monophadnus 83
trunctitus Roh., Monophadnus_-_ 83
tuckeri Roh., Erythraspides 147
Tumura Past 157
typicella MacG., Blennocampa- 25
typicus (Roh.), Monophadnoides_ 151
utahensis, n, sp., Rhadinoceraea -_ 70
Vralco Ross 107
repplaris Benson, Monophadnus_ 76
Veratra, n. subg. 70
vergorba Stan., Periclista 131
vitis (Harris), Erythraspides 160
Waldheimia Brullé 156
waldheimii (Gimmer.), Mono- pharlnoides 94
Valdheimiini, n. tr 155
xanthognatha Roh., Periclista 199
xyiostei (Gir.), Hoplocampoides_ 28
zabriskíei (MacG.), Phymatocera 66
scelesta MacG., Neopareophora- 76
shawi MacG., Monophadnoides_ 141 141

Forewing (1) and hindwing (2) of Monophadnoides pauper; forewing of Eupareophora parca (3); anal cell of forewing of Lycaota sodalis (4), Blennogeneris spissipes (5), and Apareophora rossi (6); forewing (7) and hindwing (8) of Rhadinoceruea nigra; forewing of Tomostethus multicinctus (9). $[A=$ anal cell; $1 . A, 2 A, 3 A=$ first to third anal veins; m-e $u, 1 m$-cu= mediocubital crossvein; $M=$ media, medial cell; 2 =second radial crossvein; $R s+M=$ radial sector and media; $S c+R=$ subcosta and radius.]

Head, lateral, of Eupareophora parca (10) and Lagonis nevadensis (11); head, frontal, of Erythraspides vitio (12); tarsal clar of Tomostethus Multicinctus (13), Tethida cordigera (14), Monophadnus contortus (15), Phymatocera offensa (16), Ceratulus spectabilis (17), Monophadnoides atratus (18), M. pauper (19), Ardis brunniventris (20), Monophadnoides geniculatets (21), and Waldheimia bedeae (22); basal plates of Monophatinus lattini (23), M. pallescens (24), and Periclista inaequidens (25); clypeus of Erythraspides cartonarius (26) and Phymatocera funipennis (27) ; prepectus of Eutomosteti- se ephippium (28) and Tomostethts matticinctus (29) ; inner front tibial spur of Eutomostethus ephippium (30) and Stethonootns fuliginosus (31); hindtarsus of Waldheimia bedeae (32); middle tibial spurs and basitarsus (33) and back tibial spurs and hindtarsus (34) of Blenuogeneris spissipes; middle tibial spurs and basitarsus (35) and back tibial spurs and hindtarsus (36) of Blennogeneris coloradensis; middle tibial spurs and basitarsus (37) and back tibial spurs and hindtarsus (38) of Blennogeneris gittinsi.

Middle tibial spurs and basitarsus (39) and back tibial spurs and hindtarsus (40) of Lycaota sodalis; antenna of Blennogeneris spissipes (41), Lycaota janetae (42), Tethida cordigera (43), Phymatocera offensa (44), P. similata (45), F. racemosae (46), P. similacinae (47), Paracharactus montivagus male (48) and female (49), Rhadinoceraea ctenidium (50), R. nubilipennis (51), R. aldrichi (52), Monophadnus aequalis (53), M. bakeri (54), M. californicus (55), M. lattini (56), M. pallescens (57), Eutomostethus ephippium (58), Monardis pulla (59), Eupareophora para (60), Monophadnoides atratus (61), M. conspiculatus (62), M. geniculatus (63), M. paper (64), M. quebecensis (65), M. osgoodi (66), Waldheimia bedeae (67), Erythraspides vitis (68), E. carbonarias (69), and Halidamia affnis (70).

Antenna of Ceratulus spectabilis female (71) and male (72) ; sheath, lateral (73), posterior (74), and dorsal (75), of Blennogeneris coloradensis; sheath, lateral (76), posterior (77), and dorsal (78), of Blennogeneris spissipes: sheath, lateral (70), posterior (80), and dorsal (81), of Blennogeneris gittinsi; sheath, lateral (82) and dorsal (83), of Lycuota boutquetensis; sheath, lateral (84) and dorsal (85), of Lycaota janetae; sheath, lateral (86) and posterior (87), of Tethida cordigera; sheath, lateral, of Tomostethus multicinctuts (88), Phymatocera fumipennis (89), P. similata (90), P. offensa (91), Paracharactus montivagus (92), Rhadinoceraea nigra (93), R. utahensis (94), R. aldrichi (95), R. insularis (96), R. jacintensis (97), R. nubilipennis (98), Lagonis nevadensis (99), and Monophadmus aequalis (100).

Sheath, lateral, of Monophadnus assaracus (101), M. bakeri (102), M. californicus (103), M. contortus (104), M. lattini (105), M. pallescens (106), Stethomostus fuliginosus (107), Eutomostethus ephippium (108), and E. tuteiventris (109); sheath, Iateral (110) and posterior (111), of Monardis pulla; sheath, lateral, of Ardis brunniventris (112), A. atrata (113), Apareophora dyari (114), A. rossi (115), Eupareophora parca (116), Monophadnoides atratus (117), M. conspiculatus (118), M. geniculatus (119-121), M. pauper (122), M. typicus (123), M. quebecensis (124), M. osgoodi (125), and Waldheimia bedeae (126).

Sheath, lateral, of Ceratutus spectabilis (127), Erythraspides carbonarius (128), E. vitis (129), Halidamia affinis (130), Periclista stannardi (131). P. entella (132), and ' P. marginicollis (133) ; serrulae and apex of lancet of Blennogeneris coloradensis (134), B. gittinsi (135), and B. spissipes (136); serrulae of Lycaota bouquetensis (137), L. jcnetae (138), L. sodalis (139), Tomostethus multicinctus (140), Tethida cordigera (141), and Phymatocera fumipennis (142).

Lancet, central segments, of Phymatocera ofensa (143) and P. similata (144); lancet (145) and serrulae, central (146), of Phymatocera racemosac; serrulae, central, of Phymatocera smilacinae (147) ; lancet (148) and serrulac, central (149), of Paracharactus rudis; serrulae, central, of Paracharactus niger (150), Rhadinoccraea brysonensis (151), and R. ctenidium (152); serrulac, central and apical, of Rhadinocercuca nigra (153); scrulae, central, of Rhadinocercen utahensis (154), R. aldrichi (155), and R. insutaris (156); serrulae, central and apical, of Rhadinoceraea jacintensis (157) and R. nubilipennis (158).

Serrulae, central and apical, of Lagonis nevadensis (159); serrulae, central, of Monophadnus aequalis (160) and M. assaracus (161); serrulae, central and apical, of Monophadnus bakeri (162), M. californicuts (163), M. contorlus (164), M. lattini (165), M. pallescens (166), and Stethomostus fuliginosus (167) ; serrulae, central, of Eutomostethus ephippium (168); serrulae, central and apical, of Eutomostethus lucteiventris (169); serrulae, central, of Ardis atrata (170), A. brunniventris (171), Apareophora dyari (172), A. rossi (173), and Monardis pulla (174); serrulae, central and apical, of Eupareophora parca (175), Ceratulus spectabilis (176), and Erythraspides carbonaritus (177); serrulae, central, of Erythraspides vitis (178) and Halidamia affinis (179).

187

Serrulae, central, of Waldheimia bedeae (180), Monopharlnoides atratus (181), M. conspiculatus (182), M. geniculatus (183), M. pauper (184), M. typicus (185), M. quebecensis (186), and M. osgoodi (187); harpe and parapenis (188) and penis valve (189) of Elennogeneris spissipes; harpe and parapenis (190) and penis valve (191) of Lycaota sodalis; harpe and parapenis (192) and penis valve (193) of Lycaota janetae; harpe and parapenis (194) and penis valve (195) of Tomostethus multicinctus; harpe and parapenis (196) and penis valve (197) of Tethida cordigera; harpe and parapenis (198) and penis valve (199) of Phymatocera fumipennis; harpe and parapenis (200) and penis valve (201) of Phymatoccra similata; harpe and parapenis (202) and penis valve (203) of Paracharactus montivagus; harpe and parapenis (204) and penis valve (205) of Paracharactus rudis; harpe and parapenis (206) and penis valve (207) of Rhadinoceraea nigra.

Harpe and parapenis (208) and penis valve (209) of Rhadinoceraca utahensis; harpe and parapenis (210) and penis valve (211) of Rhadinoceraca aldriehi; harpe and parapenis (212) and penis valve (213) of Rhadinocertea insularis; harpe and parapenis (214) and penis valve (215) of Rhadinoceraea jacintensis; harpe and parapenis (216) and penis valve (217) of Rhadinoceraca nubilipennis; harpe and parapenis (218) and penis valve (219) of Lagonis neradensis; harpe and parapenis (220) and penis valve (221) of Monophadnus aequalis; harpe and parapenis (222) and penis valve (223) of Monophadnus assaracus; harpe and parapenis (224) and penis valve (225) of Monophadnus califorvicus; harpe and parapenis (226) and penis valve (2271 of Monophadnus contortus; harpe and parapenis (228) and penis valve (229) of Monophathus Lattimi; harpe and parapenis (230) and penis valve (231) of Stethomostus fuliginosus; harpe and parapenis (232) and penis valve (233) of Ardis abrata; harpe and parapenis (234) and penis valve (235) of Ardis brumiventris; harpe and parapenis (236) and penis valve (237) of Apareophora dyari; harpe and parapenis (238) and penis valve (239) of Aparcophora rossi.

Harpe and parapenis (240) and penis valve (241) of Euparcophora parca; harpe and parapenis (242) and penis valve (243) of Monophadnoides atratus; harpe and parapenis (244) and penis valve (245) of Monophadnoides pauper; harpe and parapenis (246) and penis valve (247) of Monophadnoides geniculatus; harpe and parapenis (248) and penis valve (249) of Halidumia affinis; harpe and parapenis (250) and penis valve (251) of Monophadnoides typicks; harpe and parapenis (252) and penis valve (253) of Ceratulus spectabitis; harpe and parapenis (254) and penis valve (255) of Erythraspides carbonurius; harpe and paraperis (256) and penis valve (257) of Erythraspides vitis; harpe (258) and penis valve (259) of Perielista marginicollis; harpe and parapenis (260) and penis valve (261) of Periclista dinta.

272
207

Blennogeneris spissipes larva: Right mandible, ventral (262); left mandible, ventral (263) and interior (264); epipharynx (265) ; maxilla, dorsal (266) ; ninth and 10th (267) and third (268) abdominal segments; head and thorax (269). Tethida cordigera larva: Right (270) and left (271) mandibles, ventral; epipharynx (272) ; maxilla, dorsal (273). Tomostethus multicinctus larva: Right (274) and left (275) mandibles, ventral; epipharynx (276) ; maxilla, dorsal (277); ninth and 10th (278) and third (279) abdominal segments.

Phymatocera sp, larva: Right (280) and left (281) mandibles, ventral; epipharynx (282); maxilla, dorsal (283); ninth and 10th (284) and third (285) abdominal segments; head and thorax (286).

Rhadinoceraea aldrichi larva: Right (287) and left (288) mandibles, ventral; epipharynx (289) ; maxilla, dorsal (290); ninth and 10th (291) and third (292) abdominal segments; head and thorax (293). Rhadinoceraea nubilipennis larva: Epipharynx (294); maxilla, dorsal (295); third abdominal segment (296). [1psl, $2 p s l=$ first and second postspiracular lobes; ssl=subspiracular lobe.]

300
301

304

309

Paracharactus niger larva: Epipharynx (297); maxilla, dorsal (298); right (299) and left (300) mandibles, ventral (mandibles worn) ; prothoracic leg area (301). Ardis brunniventris larva: Right (302) and left (303) mandibles, ventral; epipharynx (304); maxilla, dorsal (305); eighth, ninth, and 10th abdominal segments, lateral (306). Monophadnus aequalis larva: Right (307) and left (308) mandibles, ventral; epipharynx (309) ; maxilla, dorsal (310); third abdominal segment (311); head and thorax (312).

Lagonis nevadensis larva: Ninth and 10th (313) and third (314) abdominal segments; head and thorax (315) ; right (316) and left (317) mandibles, ventral; epipharynx (318) ; maxilla, dorsal (319).

Erythraspides vitis larva: Right (327) and left (328) mandibles, ventral; epipharynx (329); maxilla, dorsal (330); ninth and 10th abdominal segments (331); 10th abdominal segment, dorsal (332); third abdominal segment (333); head and thorax (334). Eupareophora paroa larva: Right (335) and left (336) mandibles, ventral; epipharynx (337); maxilla, dorsal (328), ninth and 10 th abdominal segments, dorsal (339); ; third abdominal segment (340) ; head and thorax (341). [spl=surpedal lobe; $s s l=$ subspirac-
ular lobe.]

343

345

353

Monophadnoides geniculatus larva: Right (342) and left (343) mandibles, Ventral; epipharynx (344); maxilla, dorsal (345); ninth and 10 th abdominal segnents, dorsal (346) ; third abdominal semment (347); head and thorax (348). Periclista marginioollis Iarva: Right (349) and left (350) mandibles, ventral; epipharynx (351); maxilla, dorsal (352); ninth and 10th (353) and third (354) abdominal segments; head and thorax (355). [sp $t=$ surpedal lobe; sat=subspiracular lobe.]

END

[^0]: For sale by the Sunerintendent of Douments, U,S. Government Printing Office Wrashington, D.C. 20402 - Price $\$ 1.2$ a

[^1]: ${ }^{2}$ This bulletin is based on information contained in a thesis submitted to the Graduate School of Oregon State University, Corvallis, in partial fulfillment of the requirements for the degree of doctor of philosophy.
 "The year in italic after the author's name is the key to the reference in Literature Cited, p. 166.

[^2]: ${ }^{3}$ Throughout this bulletin all information pertaining to distribution records is given essentially as it appeared on the insect labels.

[^3]: 1. Female 2
 Male 4
[^4]: ${ }^{1}$ References by same author for same year are listed chronologically according to date published in that year, not alphabetically by title.

[^5]: 1871.

 HYMENOPTERA SCANDINAVLAE. V. I. Pirytophach. 342 pp . Lund.
 Togasilt, 1.
 1958. OS THE SPECIES OF TIIE CENI'S PIYMATOCERA DAHILBOM FBOM JAPAN (Hymenopterd: TENTIREDALIDAE). Kontyû 26: 161-162.

