

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

TECHNICAL BULIETIN NO.1395 - ECONOMIC RESEARCH SERVICE
U. S. DEPARTMENT OF AGRICULTURE

PFERACE

The wheat industry is a major sector of U.S. agriculture. It currently accounts for about 5 percent of the gross income accruing to farmers in the United States, Moreover, wheat is the most important agricultural commodity exported and makes up about 20 percent of total U.S. agricultural exports.

The measurement of factors that affect domestic consumption and prices of wheat is necessary for carrying out programs to maintain equitable incomes to wheat producers and for determining the long~run economic outlook for the industry.

The analysis deals only with aggregate demands for wheat. The behavior of wheat supplies was not analyzed due to statistical and certain data problems. The analysis offers only a first approximation of the probable economic character of the total U.S. wheat industry and further studies are needed.

A significant part of the report is devoted to analysis of a particular econometric methodology. The mathematical background necessary for the reader to understand this report is some knowledge of vector and matrix operations, calculus, and probability theory. Several mathematical and technical derivations are included in the appendixes.

CONTENTS

Page
iii
Introduction 1
The Model 1
Sources of Supply and Types of Utilization 1
An Econometric Model 3
Statistical Estimation 8
Estimation Methods 11
Data Adjustments 12
Estimated Structures 15
Analyses, Implications, and Projections 17
Short-run Impact Multipliers 17
Iong-run Impact Multipliers 19
Projections 24
APPENDIX
A. Some Properties of Estimation Procedures of a Recursive System 36
B. Two-Round Least-Squares Estimation Procedures 44
C. Basic Sample Data 45
L. Method of Determining the Stability of a Dynamic System 47
E. Estimation of the Derived Reduced-Form Coefficient Matrix of the Structure and the Short-Run and Long-Run Impact Multiplier Matrices 50
F. Estimation of the K-periods Impact Multiplier Matrices 54

SUMMARY

The econornetric model described in this report can be used to make conditional long-run profections of utilization and average farm prices of wheat, and to estimate quantitatively the short-run and long-run impact of a change in the wheat support price on the wheat utilization In the United States. The model assumes that production is given, i.e., no attempt is made to explain changes in production.

The basic model, consisting of 6 equations, is a simple dynamic recursive system. Because of its recursive featore, the parameters of the structural relations were estimaced by the ordinary least-squares and the two-round least-squares procedures. All signs of the estmated coefificients obtained from both procedures were in accordance with the theoretical and logical expectations. The estimated multiple correlation cosfficients of the 6 equations ranged from 0.84 to 0.97 .

The estimated short-run impact (single period) multipliers indicated that a dollax per bushel increase in the wheat support price, with all other predetermined variables in the system beld constant, will lead to (I) an increase of 91 cents per bushei in average farm wheat price, (2) a decline of 0.21 bushel per capita per year in wheat food consumption, (3) a deciline of 132 million bushels in wheat used fo:: feed, (4) an increabe of 116 million bushels in Government stocks, (5) a decline of 64 million bushels in commercial stocks, and (6) an increase of 24 milition bushels in total U.S. wheat exports. The positive relation between exports and wheat price suppors (and also the farm wheat price) results from the way in which wheat programs were operated during the analysis period 1928-64. During this period there usually was a considerable effort to reduce Government-held stocks through export programs.

The long-run impact (infinite period) multipliers are relevant only if the underlying model is a stable dynamic system. The stability of the dynamic system was established by a standard test. The estimated matrix of long-run multipliers revealed that a sustained increase of $\$ 1$ per busheln wheat support price will generate in the long-run (1) an Increase in Government stocks of 453 million bushels-about 4 times as large as the short-run effect, (2) a decline in commercial stocks of 123 million busheis--about 2 times as large as the short-run effect, and (3) an increase in total U.S. wheat exports of 158 million bushels--7 times as large as the short-run effect.

Before using the estimated model for making predictions, retrospective analyses were made for testing the predictive performance of the model. The analyses indicated that (1) the predictions of average farm wheat prices and per capita wheat food consumption had a smaller prediction error in terms of absolute or relative magnitudes than the predictions of total wheat used for feed, Government stocks, commexcial stocks, and U.S. wheat exports, and (2) the predictions of total Government wheat stocks; commercial wheat stocks, and total U.S. wheat exports have a very large relative overprediction error at the very low levels of the observed vaiues.

Long-run projections were made under four alternative wheat support prices and other exogenous variables which were estimated by an auto-regressive time trend model.

AN ECONOMIC ANALYSIS OF THE DYNAMICS OF THE UNITED STATES WHEAT SECTOR

by
William Y. Mo
Economic Research Service

INTRODUCTION

The specific objectives of this study are (1) to identify and measure quantitadively the basic demanc structure of the U.S. wheat sector, (2) to estimate the short-run and long-run impact multipler matrix, and (3) to adapt the estimaied model in making long-run projections of U.S. wheat utilization.

In attempting to quantify the important underlying demand structure of the U.S. wheat sector, a very simple and highly aggregate econometric model is formulated in the first part of the study. The reasons for formulating such a simple and highly aggregate model are: (1) Adequate empirical data with which to estimate a more complex and much disaggregated model are lacking and (2) the simple aggregate model is much easier to use in making future precictions than a more complex one. Of course, such a simple aggregative model has limitations because it does not reflect explicitly the many varieties of wheat produced and many different end products involved in the wheat market. The empirical results are presented in the second part of the study. Finally, the implications deduced from the estimated aggregate model and its applications in making predicticns are analyzed and discussed in the last part of the study.

THE MODEL

To facilitate the presentation of the econometric model of the U.S. wheat sector, a simplified descriptive version of wheat supply and utilization is given in the following section.

SOURCES OF SUPPLY AND TYPES OF UTILIZATION

The sources of supply and types of utilization of wheat in the United States are shown, in simpliffed diagrammatic form, in figure 1 . The physical variables are identified by a letcer symbol in each box. The subscript " t " of letrer symbols refers to the current time period, while " $t-1$ "' refers to the preceding time period.

As indicated in figure 1, the sources of total current supply (Q_{t}) consist of current domestic production (O_{c}), total import (Mr_{c}), and total carry-in stock from the preceding time period ($\mathrm{C}_{\mathrm{t}-1}$). During 1959-63, imports of wheat accounted for only 0.24 percent of the total supply in the United States. Hence, domestic production, together with carry-in stock, constiture the major sources of total supply.

The total available supply is distributed into different utilization outlets--current domestic consumption (qt), export (qet) and carryout stock (C_{t}). The total carryout stock $\left(\mathrm{C}_{\mathrm{t}}\right)$ consists of commercial stock (C_{ct}) and Government stock (C_{gt}). There are four major types of domestic wheat consumption: (1) Wheat consumed as food (qhe), (2) wheat used for feeding livestock (q_{f}), (3) wheat used as seed (q_{st}),

U.S. WHEAT SUPPLY AND UTILIZATION

Figure 1
and (4) wheat diverted to induatrial uses (qit). The total aggregate wheat supply is normally in excess of domestic requirements for food or other domestic uses. The excess b1ther enters export channels or is retained as a carryout stock. During 1959-63, approximately 24 percent of the total available supply was allocated to domestic consumption channels and 27 percent to the export market; 49 percent was retained as carryout stock, Of total domestic consumption, wheat consumed as food is the major component. During the marketing years 1959-63, wheat consumed as food averaged around 84 percent of total domestic consumption, and the remainder, approximately 16 percent of the total, was used for feed and seed, Only a negligible amount was diverted to industrial uses.

AN ECONOMETRIC MODEL

The markut for wheat in the United States, of course, is much more complex than the one indicated in figure 1. On tie production side, there are many varietes of wheat produced in different areas. Similarly, there are many different end products. However, figure 1 provides us with a simple macro framework which suggests (1) a reationable partition of the consumption sector, and (2) some of the relevant vartables entering in the system.

As indicated in the preceding section, imports of wheat and wheat diverted to industrial uses account for only a negligible portion of the total. The analyses of these two sectors, therefore, were excluded from the model. Also, no attempt was made to incorporate any analytical explanations of wheat used as seed.

Farm Price and Support Price Relation

To some extent, since the price support program was established in 1938, the U.S. domestic wheat market has not operated under a free competitive market situation. Under the price support program, average wheat prices received by farmers are influenced largely by the suppori prices. Before 1938, in the absence of price supports, average farm prices of wheat were closely related to farm prices of other feed grains. Therefore, in the model the following farm price and support price relation is postulated:

$$
\begin{equation*}
P_{t}=f_{1}\left(P_{s t}, K_{t} P_{f o t}\right) \tag{2.1}
\end{equation*}
$$

where
$P_{t}=$ average wheat price received by farmers at dime t (dol. per bu.)
$P_{\text {St }}=$ average wheat support price at time t (dol, per bu.)
$K_{t}=\left\{\begin{array}{l}\mathrm{I}, \text { if no price support program at time } \mathrm{t}, \\ \mathrm{O}, \text { otherwise }\end{array}\right.$
$P_{\text {fot }}=$ farm price index of other feed grains (corn, oats, barley, and sorghum) at time $t(1957-59=100)$

Under normal conditions, the average wheat price received by farmers will change in the same direction as the change in support price, in other words, we would expect that the partal derivative of P_{t} with respect to $P_{s t}$ will be posidve, i.e.:

$$
\begin{equation*}
\frac{\partial \mathrm{r}_{\mathrm{t}}}{\partial \mathrm{p}_{\mathrm{st}}}>0 \tag{2,2}
\end{equation*}
$$

In the absence of a support price, we would expect that the farm wheat price would change in the same direction as the change in other farm feed grain prices, i.e.:

$$
\begin{equation*}
\frac{\partial P_{t}}{\partial P_{\text {fot }}}>0 \tag{2.3}
\end{equation*}
$$

Food Consumption Relation

On the hasis of classical demand theory, the quantity demanded of a particular commodity is a function of its price, the prices of other commodities, and income. But classical theory gives no suggestion as to whecher the dernand function is linear or nonlinear. Engel's law suggests that the relation between food consumption and income tends to be curvil'near. Examination of U.S. per capita wheat consumption data reveals that the increase in per capita consumption of wheat is associated with a rise in per capita income only at lower income levels. Beyond a certain low income level, per capita wheat consumption declines as income rises. Therefore, in the model the relationship of per capita wheat consumptign to income is postulated to be curvilinear as follows:

$$
\begin{equation*}
\mathrm{q}_{\mathrm{ht}}^{*}=\mathrm{f}_{2}\left(\mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{ct}}, \mathrm{G}\left(\mathrm{I}_{\mathrm{t}}\right)\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{q}_{\mathrm{ht}}^{*}= & \begin{array}{l}
\text { domestd } \\
\text { per capita) }
\end{array} \\
\mathrm{P}_{\mathrm{t}}= & \begin{array}{l}
\text { average capita use of wheat for food at time } \mathrm{t} \text { (bus. } \\
\\
\text { per but) }
\end{array} \\
\mathrm{P}_{\mathrm{Ct}}= & \text { consumer price index at time } \mathrm{t}(1957-5 \% \mathrm{I} 00) \\
\mathrm{I}_{\mathrm{t}} \quad= & \text { per capita disposable income at time } \mathrm{t} \text { (dol. per capita) }
\end{aligned}
$$ and,

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{I}_{\mathrm{L}}\right)= & \text { a nonlinear transformation of variable } \mathrm{I}_{\mathrm{t}} \text { (the explicit } \\
& \text { form of transformation is discussed in detail in the } \\
& \text { estimation section) }
\end{aligned}
$$

In the above formulation, we would normally expect that changes In per capita food consumpiton of wheat, q ht, will be (1)negatively related to changes in farm price of wheat, P_{t}, (2) positively related to changes in consumer price index, $P_{\text {et }}$, and (3) positively or negatively related to changes in income depending upon the levels of income, i.e.:

$$
\begin{align*}
& \frac{\partial q_{\mathrm{ht}}^{*}}{\partial \mathrm{P}_{\mathrm{f}}}<0 \tag{2,5}\\
& \frac{\partial \mathrm{q}_{\mathrm{t}}}{\partial \mathrm{P}_{\mathrm{ct}}}>0
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathrm{q}_{\mathrm{ht}}}{\partial \mathrm{I}_{\mathrm{t}}} \leqq 0 \text { (depending upon the income level) } \tag{2.7}
\end{equation*}
$$

Feed Consumption Relation

The demand for wheat as feed for livestock is related to the price of wheat, the prices of other competing feed grains, and the numbers of llvestock undts fed annually. During World War II, the Government encouraged the use of wheat for feed in an effort to increase livestock production. To reflect this situation, a dummy variable is used in the following postulated feed consumption relation:

$$
\begin{equation*}
q_{f t}=f_{3}\left(P_{t}, P_{\text {for }}, L_{t}, D_{t}\right) \tag{2.8}
\end{equation*}
$$

where
$\mathrm{q}_{\mathrm{ft}}=$ domestic use of wheat for feed at time t (mill, bu.)
$\mathrm{P}_{\mathrm{t}}=$ average wheat price received by farmers at time t (dol. per bu.)
$P_{\text {for }}=$ farm price index of other feed grains (corn, oats, barley, and sorghum) at time $t(1957-59=100)$
$\mathrm{L}_{\mathrm{t}}=$ grain-consuming animal units of livestock fed annually at trme t (mil. units)
$D_{t}=\left\{\begin{array}{l}l, \text { during World War II } \\ 0, \text { otherwise }\end{array}\right.$
The other feed grains are competitive with wheat as a livestock feed grain. The use of wheat for livescock feeding will decline if the price of wheat is substandally high in relation to other feed grain prices. As a consequence, we would normally expact (1) the partial derivative of I_{f} with respect to $P_{\text {for }}$ to be positive, (2) the partial derivatue of $\mathrm{gif}_{\mathrm{t}}$ with respect to P_{t} to be negarive, and (3) the partial derivative of aft with respect to L_{t} to be positive, i.e.:

$$
\begin{align*}
& \frac{\partial q_{\mathrm{ft}}}{\partial \mathrm{P}_{\mathrm{t}}}<0 \tag{2.9}\\
& \frac{\partial \mathrm{q}_{\mathrm{ft}}}{\partial \mathrm{P}_{\mathrm{fot}}}>0
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial q_{f r}}{\partial L_{t}}>0 \tag{2.11}
\end{equation*}
$$

Government Inventory Relation

Slnce 1938 a certain portion of wheat production has been dellivered by producers to the Commodity Credic Corporation, (CCC), under the price
support program. Under the opexarion of the prtce support program, a producer may obtain a loan from the CCC with his wheat as collateral, and may repay the loan by delivery of the wheat to the CCC. Thus, the amounts of wheat which are delivered to the CCC will be a function of the support price and production. Moreover, because wheat can be stored for relatively long periods, it is possible that certain amounts of wheat accumulated in a given year will be carrled into the succeeding year. Therefore, a lagged stock variable is included in the following postulated Government inventory relaton:

$$
\begin{equation*}
C_{g t}=f_{4}\left(P_{s t}, R_{t} \bar{D}_{t-2} O_{t}, C_{g t-1}\right) \tag{2.12}
\end{equation*}
$$

where
$C_{g t}=$ Government wheat inventory at the end of time $t(m i l . ~ b u)$.
$P_{8 t}=$ average wheat support price at dme t (dol, per bu.)

$$
\begin{aligned}
& \bar{K}_{t}=\left\{\begin{array}{l}
1, \text { if there is a Government price support program at time } t \\
0, \text { otherwise }
\end{array}\right. \\
& \overline{\mathrm{D}}_{\mathrm{t}}=\left\{\begin{array}{l}
0, \text { during World war II } \\
1, \text { otherwise }
\end{array}\right. \\
& O_{\mathrm{t}}=\text { gotal U.S. wheat production at time } \mathrm{t} \text { (mil, bu.) }
\end{aligned}
$$

There are two dummy vartables, $\overline{\mathrm{K}}_{\mathrm{t}}$ and $\overline{\mathrm{D}}_{\mathrm{t}-2}$, in the reiation (2.12). The inclusion of the product of these two dummy vardables means that wheat production will not have any effect on the accumulation of Government stocks if there are no Government price support programs or a major war similar to World War II oceurs.

The method of operating the price support program for wheat since 1938 has been animplicit offer by the Government to buy the amount of wheat produced in excess of the quantity that would sell during the marketing year at the support price. As a result, we would expect the Government wheat tnventory to be posituvely related to support prices, production, and lagged inventory, i.e.:

$$
\begin{align*}
& \frac{\partial C_{g t}}{\partial P_{G \tau}}>0 \tag{2.13}\\
& \left.\frac{\partial C_{g t}}{\partial \bar{K}_{t} \bar{D}_{t-2} O_{t}}>0 \quad \text { (Provided } \bar{K}_{t}=1 \text { and } \bar{D}_{t-2}=1\right) \tag{2.14}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial C_{g t}}{\partial C_{g t-1}}>0 \tag{2.15}
\end{equation*}
$$

Commercial Inventory Relation

The amount of wheat witheld as commercial stock is related to farm prices of wheat, Government stocks, and lagged commercial stocks in the following postulated relation:

$$
\begin{equation*}
C_{c t}=f_{5}\left(P_{t}, C_{g t}, C_{c t-1}\right) \tag{2.16}
\end{equation*}
$$

where
$\mathrm{C}_{\mathrm{ct}}=$ commercial wheat inventory at the end of time t (mil. bu.)
$P_{g} \quad$ a average wheat price received by farmers at time t (dol. per bu.)
$C_{g t}=$ Government wheat inventory at the end of time t (mil. bu.)
$\mathrm{C}_{\mathrm{ct}-1}=$ commercial wheat inventory at the end of time $\mathrm{t}-1$ (mil ${ }_{n}$ bu.)

The price support and storage operations of the CCC tend tostabilize farm prices of wheat. As a result, the amount of wheat stored as private commercial stocks tends to be low when Government stocks are high. Hence, we would normally expect the partial derivative of C_{ct} with respect to P_{t} and C_{gt} to be negative and with respect to $\mathrm{C}_{\mathrm{ct}}-1$ to be positive, i.e.:
$\frac{\partial \mathrm{C}_{\mathrm{Ct}}}{\partial \mathrm{P}_{\mathrm{t}}}<0$
$\frac{\partial \mathrm{C}_{\mathrm{Ct}}}{\partial \mathrm{C}_{\mathrm{gt}}}<0$
and

$$
\begin{equation*}
\frac{\partial \mathrm{c}_{\mathrm{ct}}}{\partial \mathrm{C}_{\mathrm{ct}-1}}>0 \tag{2.19}
\end{equation*}
$$

ExportRelation

The variables entering the following postulated export relation are the current per capita dnmestic wheat consumption, the total lagged Government stocks plus total lagged commerctal stocks, and the lagged exports.

$$
\begin{equation*}
\mathrm{q}_{\mathrm{Et}}=\mathrm{f}_{6}\left(\mathrm{G}_{\mathrm{ht}}^{*} \mathrm{C}_{\mathrm{ct}-1}+\mathrm{C}_{\mathrm{gt}-1}, \mathrm{qEt}_{\mathrm{Et}}\right) \tag{2.20}
\end{equation*}
$$

where

$$
\begin{aligned}
& q_{\text {Et }}=\text { total U.S. export of wheat at dime } \tau \text { (mil. bu.) } \\
& \text { qht }=\text { domestic per capla use of wheat for food at time } t \\
& \text { (bu. per capita) } \\
& \mathrm{C}_{\mathrm{ct}-1} \text { a commerclal wheat fnventory at the end of time } \mathrm{t}-1 \\
& \text { (mill bu.) } \\
& C_{g t-1}=\text { Government wheat inventory at the end of time t-l } \\
& \text { (mil. bu.) } \\
& { }^{q_{E t-1}}=\text { total U.S. export of wheat at time } t-1 \text { (mil. bu.) }
\end{aligned}
$$

Large portions of the U.S. exports of wheat were channeled through the various Government programs. As a consequence, we would normally expect total exports to be positively related to the total carryin stocks and the lagged exports. On the other hand, if per capita domestic wheat consumption is increased, then we would expect smallex exports of wheat Hence, we would expect the following relations:

$$
\begin{align*}
& \frac{\partial \mathrm{q}_{\mathrm{Et}}}{\partial \mathrm{q}_{\mathrm{Ht}}}<0 \tag{2,21}\\
& \frac{\partial \mathrm{qE}_{\mathrm{t}}}{\partial\left(\mathrm{C}_{\mathrm{ct}-1}+\mathrm{C}_{\mathrm{gt}-1}\right)}>0 \tag{2.22}
\end{align*}
$$

and
$\frac{\partial Q_{t}}{\partial Q_{t-1}}>0$

STATISTICAL ESTIMATION

In the preceding section, six relations were formulated for the model. These six relations were expressed by a set of exact determinate, rather than stochastic, functional relationships among variables. The postulated relations do not include all the relevant variables in the syatem. On the contrary, only maln variables for which rellable empirtcal data were available were considered in each relation, and other concelvable determining variables were left aside intentionally or unintentionally. The influences of such omitted varlables ate treated as distrubances and explicitly recognized by introducing a random disturbance term, u_{10}, into each of these six relations.

For simplifying the estimation procedures, all postulated stochastic relations in the formulated system are assumed to be linear in parameters. In estimating the parameters of the formulated system, the varlables were divided tnto the following sets of endogenous variables and predetermined variables:

Endogenous Variables
$P_{t}=$ average wheat price received by farmers at time t (dol. per bu.)

Qht = domestic per capita use of wheat for food at time: (bus per capita)
g_{ft} \# domestic use of wheat for feed at time t (mid. bu.)
$\mathrm{C}_{\mathrm{gt}}=$ Government wheat inventory at end of time t (mil. bu.)
$\mathrm{C}_{\mathrm{ct}}=$ commerctal wheat inventory at end of time t (mil. bu.)
$\mathrm{q}_{\mathrm{Et}}=$ total U.S. wheat exports at time t (mil. bu.)

The set of predetermined variables consists of the lagged endogenous vartables in the system and the following exogenous variables:

$$
\begin{aligned}
& P_{s t}=\text { average wheat support price at time } t \text { (dol. per bu.) } \\
& K_{t}=\left\{\begin{array}{l}
1, \text { if there is no price support program at time } t, \\
0, \text { otherwise }
\end{array}\right. \\
& P_{\text {fot }}=\text { farm price index of other feed grains (corn, oats, barley. } \\
& \text { and sorghum) at time } \mathrm{t} \text { (1957-5<100) } \\
& G\left(I_{t}\right)=\text { a nonlinear transformation of U.S. per capita disposable } \\
& \text { income at time } t \text { (the unit of per capita disposable in- } \\
& \text { come is dollars per capita) } \\
& \mathrm{L}_{t}=\text { grain-consuming animal units of livestock fed annually } \\
& \text { at time } \mathrm{t} \text { (mil. units) } \\
& D_{t}=\left\{\begin{array}{l}
1, \text { during World War II, } \\
0, \text { otherwise }
\end{array}\right. \\
& \bar{K}_{\mathrm{t}}=\left\{\begin{array}{l}
1, \text { if there is a Government price support program at time } t, \\
0, \text { otherwise }
\end{array}\right. \\
& \bar{D}_{t}=\left\{\begin{array}{l}
0, \text { during World War II, } \\
1, \text { otherwise }
\end{array}\right. \\
& O_{t}=\text { total U.S. wheat production at time } t \text { (mil. bu.) }
\end{aligned}
$$

Structurai Syatem

Under the additional specifications discussed in this section, the complete structural system formulated in the preceding section can be summarized and written in the following simple matrix form:

$$
\begin{equation*}
A y_{t}+B y_{t-1}+C x_{t} \neq u_{t} \tag{3.1}
\end{equation*}
$$

where
$y_{\mathrm{c}}=$ vector of endogenous vaciables $=\left[\begin{array}{c}P_{t} \\ q_{\mathrm{ht}}^{*} \\ q_{\mathrm{ft}} \\ C_{g t} \\ C_{\mathrm{ct}} \\ q_{\mathrm{Et}}\end{array}\right]$
$y_{t-1}=$ vector of lagged endogenous variables $=\left[\begin{array}{l}P_{t-1} \\ q_{h t-1}^{*} \\ q_{f t-1} \\ C_{g t-1} \\ C_{c t-1} \\ q_{E t-1}\end{array}\right]$
$x_{t}=$ vector of exogenous variables $=\left[\begin{array}{l}P_{s t} \\ K_{t} P_{f o t} \\ P_{c t} \\ G_{\left(I_{t}\right)} \\ P_{f o t} \\ L_{t} \\ D_{t} \\ \bar{K}_{t} \bar{D}_{t-2} O_{t} \\ 1\end{array}\right]$
$A=$ matrix of the parameters tassociated with endogenous variables
$=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ a_{21} & 1 & 0 & 0 & 0 & 0 \\ a_{31} & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ a_{51} & 0 & 0 & a_{54} & 1 & 0 \\ 0 & a_{62} & 0 & 0 & 0 & 1\end{array}\right]$
$B=$ matrix of the parameters associated with the lagged endogenous variables
$=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{55} & 0 \\ 0 & 0 & 0 & b_{64} & b_{65} & b_{66}\end{array}\right]$
$C=$ matrix of the parameters associated with the exogenous variables
$=\left[\begin{array}{lllllllll}c_{11} & c_{12} & 0 & 0 & 0 & 0 & 0 & 0 & c_{19} \\ 0 & 0 & c_{23} & c_{24} & 0 & 0 & 0 & 0 & c_{29} \\ 0 & 0 & 0 & 0 & c_{35} & c_{36} & c_{37} & 0 & c_{39} \\ c_{41} & 0 & 0 & 0 & 0 & 0 & 0 & c_{48} & c_{19} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{59} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{69}\end{array}\right]$
and

$$
u_{t}=\left\{\begin{array}{c}
u_{1 t} \\
u_{2 t} \\
u_{3 t} \\
u_{4 t} \\
u_{5 t} \\
u_{6 t}
\end{array}\right\}
$$

There are two distinctive features of the formulated structural systern (3.1): (1) The matrix of the parameters associated with the endogenous variables in the system, A, is a triangular matrix, and (2) the matrix of the parameters associated with the lagged endogenous variables in the system, B , is not a null macrix. By definition, a structural system is called (1) "recursive system" if the matrix of the parameters associated with the endogenous variables in the system is a triangular matrix, and (2) a "dynamic system" if the matrix of the parameters associated with the lagged endogenous variables in the system is not a null matrix. Therefore, the formulated structural system (3.1) is essentially a " dynamic recursive system,"

ESTIMATION METHODS

The choice of an estimation method to be used in estimating the parameters of a stochastic structural system depends critically on the specifications of the model. It can be shown that the direct ordinary least-squares estimation of the coefficients of a structural relation in a system does yield, in general, inconsistent estimates. But it does yield consistent estimates for the case of a diagonal recursive system. A structural system is called a "diagonal recursive system" if it is recursive and if in addition the variance-covariance matrix of the disturbance terms, $U=E\left(u_{t} u_{t}\right)$, is a diagonal matrix, that is, the dis. turbances in all the structural relations are uncorrelated so that the variance-covarlance matrix has only zeros off the diagonal. Furchermore, if we assume that the disturbance term u_{t} is serially independent and is multivariate normally distributed with zero mean and with a diagonal variance-covariance marix, then it can be shown that the fullInformation maximum likelihood estimates are identical with the direct
ordinary least-squares estimates. The detailed derivations are given in appendix A, If we adopt the preceding specifications in the formulated structural system (3.1), then we could apply the ordinary least-squares directly to each of the structural relations in the system, and obtain the full-information maximum likelihood estimates of the structural coefficients in the system. If we do not assume the variance-covariance matrix to be a diagonal matrix, then we can use the two-round leastsquares estimation procedure. The two-round least-squares procedures of estimating the coefficients of the formulated systern (3.1) are described in appendix B.

The two-round least-squares estimation procedure does yield consistent estimates. But it does not yield asymptotic efficiency estimates as the maximum likelihood estmation procedures do. The empirical estimates of the coefficients in the formulated structural system were estimated by both the least-squares and the two-round least-squares methods.

The properties of consistency and asymptotic efficiency are all large-sample properties. But we are working with only a small sample of data. Therefore, the small-sample propertes of various estimation procedures should be an important criterion for making the choices among different alternative estimation procedures. But due to the mathematical difficulties, few analytic results of the small-sample properties of various estimation procedures are available. Hence, at the present time, we do not have enough information to use the smallsample properties as a criterion.

DATA ADJUSTMENTS

The basic sample data used in the estimation of the formulated scructural system (3.1) were taken from U.S. Department of Agriculture publications. The detailed numerical sample daca are given in appendix C. The sample period covers the marketing years from 1928 through 1964. The choice of the sample period was dictated largely by the availability of reliable dara.

Among the eight exogenous variables included in the formulated strictural system (3.1), there are three transformed variables $K_{t} P_{\text {fot }}$ $\bar{K}_{t} \bar{D}_{R-2} \mathrm{O}_{\mathrm{L}}$, and $G\left(\mathrm{I}_{\mathrm{t}}\right)$. The adjustments of the two exogenous variables $P_{\text {fot }}$ and O_{t} are straightforward and self-explanatory. But the transformation $G\left(I_{\mathrm{t}}\right)$ requires a detailed explanation.

As indicated previously, there exists a nonlinear functional relation between U.S. per capita wheat consumption and per capita disposable income. The empirical data plotted in part A of figure 2 show that per capita consumption is highest when the income level is approximately $\$ 650$. Consumption declines as income increases beyond that point, and approaches a relatively stable level as income approaches \$2,000. To incorporate such a nonlinear relationship between per capita consumption and per capita disposable income into the model, there are rwo approaches which can be used: (1) Simply fitting a nonlinear relation to the original data; or (2) making a nonlineax transformation of the original data first and then fitting a linear relation with the transformed variable. We use the second approach because it is much simpler and more flexible.

part a: u.s. per capita wheat consumption AND INCOME RELATION

PART R: TRANSFORMATIONS OF THE U.S. PER CAPITA DISPOSABLE INCOME

Figure 2

In performing the transformation of U.S. per capita disposable income it, the following family of nonlinear functions was selected;

$$
\begin{equation*}
G\left(I_{t}\right)=K_{1} e^{-0.001 I_{t}}-K_{2} e^{-0.002 I_{t}} \tag{3.2}
\end{equation*}
$$

where K_{1} and K_{2} are parameters to be determined and they are assumed to be positive, and $\mathrm{e}=2.71828=$ the base of the natural logarithm.

We selected this family of noninear functions because it has the desired propertes: (i) For all nonnegative values of I_{t}, K_{1} and K_{2}, and $K_{1} \geq K_{2}$, the values of the function are positive; and (2) at the lower levels of I_{t} the values of the function $G\left(I_{t}\right)$ will increase as It increases and reaches its maximum value at a certain level of I_{t}. Beyond such a level, the values of the function will decine as I_{t} increases and will asymptotically approach a constant level.

As indicated in part A of figure 2, U.S. per capita wheat consumprion approaches its maximum level when per capta disposable income is approximately $\$ 650$. Hence, in making a choice of the transformation function, we would like to select two parameters K_{1} and K_{2} such that the transformation function $\mathrm{G}\left(\mathrm{I}_{\mathrm{t}}\right)$ reaches its maximum value at $\mathrm{I}_{\mathrm{t}}=\$ 650$, i.e., Max. $G\left(I_{t}\right)=G\left(I_{t}=\$ 650\right)$. This can be done by the following simple steps:
(1) Taking the derivative of $G\left(\mathrm{t}_{\mathrm{t}}\right)$ with respect to I_{t} and setting it equal to zero, i.e.,

$$
\begin{align*}
\frac{d G\left(I_{t}\right)}{d I_{t}} & =\frac{d}{d I_{t}}\left(K_{1} e^{-0.001} I_{t}-K_{2} e^{-0.002 I_{t}}\right. \\
& =-0.001 K_{1} e^{-0.001} I_{t}+0.002 K_{2} e^{-0.002} I_{t} \\
& =0
\end{align*}
$$

(2) Solving for the ratio of K_{2} and K_{I} and evaluating (3.3) at $\mathrm{I}_{\mathrm{t}}=\$ 650$, i.e.,

$$
\begin{aligned}
& -0.001 \mathrm{~K}_{1} \mathrm{e}^{-0.001 \mathrm{I}_{\mathrm{t}}}+0.002 \mathrm{~K}_{2} \mathrm{e}^{-0.002 \mathrm{I}_{\mathrm{t}}=0} \\
& -0.001 \mathrm{~K}_{1} \mathrm{e}^{-0.001(650)}+0.002 \mathrm{~K}_{2} \mathrm{e}^{-0.002(650)}=0 \\
& -0.000522046 \mathrm{~K}_{1}+0.000545064 \mathrm{~K}_{2}=0
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{K}_{2} / \mathrm{K}_{1}=0.9578 \tag{3.4}
\end{equation*}
$$

By the preceding derivations, we found that $K_{2}=0.9578 \mathrm{~K}_{1}$. Therefore, we should select the cransformation function from a small subfamily of functions $G\left(I_{t}\right)$ which satisfies the condition $K_{2}=0.9578 \mathrm{~K}_{1}$. To select a particular transformation function among this subfamily of functions, we use a second criterion. The second criterion is simply selecting a particular transformation function from the subfamily of functions so that the curvature of the selected transformation function is approximately similar to the average curvature of the empirical data as indicated in part A of figure 2 . The procedures of the selection are: (1) Plotting several curves of this subfamily of functions, and
(2) comparing the curvatures of these plotted curves with the curvature of the empirical data, and gelecting the particular function which has approxtmately the similar curvature as the curvature of the empirical data. For example, in part B of ftgure 2, we plotted three curves of this subfamily of functons. In each curve, there are two parameters. The parameters of curve 1 are $K_{1}=12$ and $K_{2}=0.9578(12)=11.4936$. Similarly, the parameters are $K_{1}=6, K_{2}=5.7468$ for curve 2, and $K_{1}=4, K_{2}=3.8312$ for curve 3 . The curvature of curve 2 is similar to the curvature of the emptrical data. Therefore, we used the transformation function (3.5) in the formulated structural system (3.1):

$$
\begin{equation*}
G\left(I_{t}\right)=6 e^{-0.001 I_{t}}-5.7468 e^{-0.002} I_{t} \tag{3.5}
\end{equation*}
$$

where $e=2.71828$ a the base of the natural logarithm.

ESTIMATED STRUCTURES

The empirical estmates of the formulated structural system (3.1) were obtained by ordinary least-squares and two-round least-squares procedures. The following are these two sets of estimatedempirical structures. The ftgures in parentheses below the estimated parameters are the standard errors of the esrimates, and R is the estimated coefficient of the multiple correlation:

ORDINARY LEAST-SQUARES RESULTS
Farm Price and Support Price Relation

$$
\begin{equation*}
P_{t}=0.1492+\underset{(0.0448)}{0.9189} P_{\text {st }}+\underset{(0.0014)}{0.0108} K_{t} P_{\text {fot }} \quad R=0.9747 \tag{3.6}
\end{equation*}
$$

Food Consumption Relation

$$
\mathrm{q}_{\mathrm{ht}}=1.1989-\underset{(0.0678)}{0.2284} \mathrm{P}_{\mathrm{t}}+\underset{(0.0042)}{0.0077} \mathrm{P}_{\mathrm{Ct}}+\underset{(0.2254)}{1.6005 \mathrm{G}\left(\mathrm{I}_{\mathrm{t}}\right)} \mathrm{R}=0.9747
$$

Feed Consumption Relation

$$
\begin{array}{r}
\mathrm{q}_{\mathrm{ft}}=-137.8420-\underset{(37.4650)}{143.7966 \mathrm{P}_{\mathrm{t}}}+\underset{(0.5804)}{1.6302} \mathrm{P}_{\mathrm{fot}}+\frac{1.7860 \mathrm{~L}_{(0.8894)}+}{}+\underset{(34.3702)}{159.4989 \mathrm{D}_{\mathrm{t}}} \\
\mathrm{R}=0.8775 \tag{3.8}
\end{array}
$$

Government Inventory Relation

$$
\begin{array}{r}
\mathrm{C}_{\mathrm{gt}}=-182.9923+\underset{(78.0566)}{115.6075 \mathrm{P}_{\mathrm{st}}}+\underset{(0.0913)}{0.1806} \overline{\mathrm{~K}}_{\mathrm{t}} \overline{\mathrm{D}}_{\mathrm{t}-2} \mathrm{O}_{\mathrm{t}}+\underset{(0.0974)}{0.7446 \mathrm{C}_{\mathrm{gt}-1}} \\
\mathrm{R}=0.938 \mathrm{t} \tag{3.9}
\end{array}
$$

Commercial Inventory Relation.

$$
\begin{align*}
\mathrm{C}_{\mathrm{ct}}=200.2999-64.4016 \mathrm{P}_{\mathrm{t}}-\underset{(24.5510)}{-0.0422} \mathrm{C}_{\mathrm{gt}} & +\underset{(0.3270)}{0.3635 \mathrm{C}_{\mathrm{ct}-1}} \\
\mathrm{R} & =0.8367 \tag{3.10}
\end{align*}
$$

Export Relation

$$
{ }^{\mathrm{c}_{\mathrm{E}}}=433.5437-\underset{(80.3589)}{112.0979} \mathrm{q} \mathrm{q}_{\mathrm{ht}}+\underset{(0.0695)}{0.0967}\left(\mathrm{C}_{\mathrm{ct}-\mathrm{I}}+\mathrm{C}_{\mathrm{gt}-1}\right)
$$

$$
+\underset{(0.1361)}{0.6494} q_{E t-1}
$$

$$
R=0.9274
$$

TWO-ROUND LEAST-SQUARES RESULTS
Farm Price and Suppor: Price Relation

$$
\begin{equation*}
P_{t}=0.1492+\underset{(0.0448)}{0.9189} P_{s t}+\underset{(0.0014)}{0.0103} K_{t} P_{\text {fot }} \quad R=0.9747 \tag{3.12}
\end{equation*}
$$

Food Corsumption Relation

$$
\begin{array}{r}
\mathrm{q}_{\mathrm{Ht}}=1.1339-\underset{(0.0704)}{0.2835} \mathrm{P}_{\mathrm{t}}+\underset{(0.0040)}{0.0093} \mathrm{P}_{\mathrm{ct}}+\underset{(0.2105)}{1.6237 \mathrm{G}\left(\mathrm{I}_{\mathrm{t}}\right)} \\
\mathrm{R}=0.9747 \tag{3.13}
\end{array}
$$

Feed Consumption Relation

$$
\begin{align*}
& \mathrm{q}_{\mathrm{ft}}=-140.5809-\underset{(35.0491)}{113.1157} \mathrm{P}_{\mathrm{t}}+\underset{(0.5096)}{1.0316} \mathrm{P}_{\text {fot }}+\underset{(0.9790)}{1.8828 \mathrm{~L}_{\mathrm{t}}} \\
&+\begin{array}{l}
160.2604 \mathrm{D}_{\mathrm{t}} \\
(37.6104)
\end{array} \\
& \mathrm{R}=0.8660
\end{align*}
$$

Government Inventory Relation

$$
\begin{align*}
\mathrm{C}_{\mathrm{gt}} & =-182.9923+\underset{(78.0566)}{115.6075} \mathrm{P}_{\mathrm{St}}+\underset{(0.0913)}{0.1806} \overline{\mathrm{~K}}_{\mathrm{t}} \overline{\mathrm{D}}_{\mathrm{t}-2} \mathrm{O}_{\varepsilon} \\
& +\underset{(0.7446 \mathrm{C}}{(0.0974)} \mathrm{gt-1} \\
& \mathrm{R}=0.9381
\end{align*}
$$

Commercial Inventory Relation

$$
\begin{array}{r}
\mathrm{C}_{\mathrm{Ct}}=199.0957 \underset{(25.4078)}{-79.5079 \mathrm{P}_{\mathrm{t}}} \underset{(0.0317)}{-0.0084} \mathrm{C}_{\mathrm{gt}}+\underset{(0.1458)}{0.4231} \mathrm{C}_{\mathrm{CE}-1} \\
\mathrm{R}=0.8426 \tag{3.i6}
\end{array}
$$

Export Relation
$q E_{t}=543.5585-\underset{(75.6830)}{139.7191} q_{h t}^{*}+\underset{(0.0706)}{0.0809}\left(\mathrm{C}_{\mathrm{ct}-1}+\mathrm{C}_{\mathrm{gt}-\mathrm{I}}\right)$
$+\underset{(0.1362)}{0.6190}$ qEt-1
$R=0.9327$
In the above estimated structures, all the estimated standard errors are smaller than their corresponding estimated coefficients,
except the coefficient of $\mathrm{C}_{\text {gt }}{ }^{\mathrm{j}}$ (3.16). The estimated multiple correlation coefficients range from 0.8367 for (3.10) to 0.9747 for (3.6), (3.7), (3.12), and (3.13). The signs of all the estimated coefficients obtained from ordinary least-squares or two-round least-squares methods are in accordance with the theoretical and logical expectations specified in the formulation of the model in the section begining on page 3 .

ANALYSES, IMPLICATIONS, AND PROJECTIONS

In making economic policy decisions, one usually asks questions such as these: (1) If a policy instrument were changed during a given the perlod, what would be the effects on the related policy targer or on other important variables in the system during the same time period? (2) What would be the impacts of such a change during each of the successive time periods? (3) What would be the total impacts over a long period of time? To answer such questions, we need a knowledge of the underlying economic structure. In the framework of our formulated model, the above questions are equivalent to the general problem of finding the solutions of the short-run and long-run impact multiplier matrices of a dynamic recursive system.

SHORT-RUN IMPACT MULTIPLIERS

To derive the short-run impact multiplier matrix for the dynamic recursive system (3.1), we consider the following reduced form of the underlying structure (3.1):

$$
\begin{equation*}
y_{t}=D_{1} y_{t-1}+D_{2} x_{t}+v_{t} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{align*}
& D_{1} \times-A^{-1} B \tag{4,2}\\
& D_{2}=-A^{-1} C \tag{4,3}
\end{align*}
$$

and

$$
\begin{equation*}
v_{t}=A^{-1} u_{t} \tag{4.4}
\end{equation*}
$$

By taking the partial derivative of y_{t} (4.1) with respect to x_{t}, we get the derived reduced-form coefficient macrix D_{2}, that is,

$$
\begin{equation*}
\frac{\partial y_{t}}{\partial x_{t}}=D_{2}=\left[d_{21 j}\right] \tag{4.5}
\end{equation*}
$$

The element ${ }^{2}{ }_{2 j}$ in the above matrix D_{2} is the partial dexivative of the 1 -th endogenous variable, $y_{i t}$, in the vector y_{t} with respect to the j-th exogenous variable, x_{j}, in the vector x_{t}. By definition, the short-run multiplier is defined as the impact of a unit change in the j -th exogenous variable during a given time period on the 1 -th endogenous variable during the same time period. Therefore, the derived reducedform coefficlent matrix D_{2} is precisely the deduced short-run impact multiplier matrix for the dynamic recursive system (3.1).

Detalled calculations of the estimated reduced form obtained from the ordinary least-squares results are given in appendix E.

One important policy instrumental variable among the exogenous variables of the system (3.1) is the support price variable (P_{st}). The short-run impact multipliers of the support price are summarized in table 1. These short-run impact multipliers correspond to the first column of the estimated derived reduced-form coefficient matrix D_{2}.

Table 1.--Short-run impact multipliers: Impacts of the support price on the endogenous variables in the system

Endogenous variables	Identification	Short-run impact multipliers of support price (P_{sc}) $1 /$	
		$\begin{gathered} \text { Ordinary } \\ \text { least- squares } \\ \text { estimate } \\ \hline \end{gathered}$	$\begin{array}{lc} \hline & \text { Two- round } \\ : & \text { least-squares } \\ : & \text { estimate } \end{array}$
Average farm price of wheat (ciol. per bu.)			
	(Pt)	0.9189	0.9189
Per capita wheat consumption (bu.)			
	(9110)	-0.2099	-0.2605
Wheat used for feed (mil, bu.)	(9ft)	-132.1347	-103.9420
Government wheat inventory (mil. bu.)			
	(C)	115.6075	
		15.6075	115,6075
Commercial wheat inventory (mil. En.)			
	(C_{cc})	-64.0573	-74.0309
Totol US. whear exports (mil, bu.)			
	$\left(9_{E L}\right)$	23.5268	36.3980

1/ Dollar per bushel.

These estimates of the short-run support price impact multipliers obtained from the ordinary least-squares results imply that an increase of \$1 per bushel in supportprice, with all other predecermined variables in the system held constant, will lead to (1) an increase of 91 cents per bushel in average farm wheat price, (2) a decline of 0.21 bushel per caplta in wheat food consumption, (3) a decline of 132 million bushels in wheat used for feed, (4) an increase of 116 million bushels in Government stocks, (5) a decline of 64 million bushels in commercial stocks, and (6) an increase of 24 million bushels in total U.S. wheat exports during the same time period.

The apparent paradox of increased price supports (and also domestic farm prices) leading to higher exports is explained by the operation of the price support program. When Government stocks mounted to relatively high levels, due to the operation of the price support program, the policy usually was to reduce them through export programs. The same interpretations can be applied to estimates of the short-run mulripliers of the other exogenous variables. The estimated numerical values of these multipliers are given in appendix E.

Given the dynamic system (4.1) and given the inital conditions of endogenous vartables (y_{0}) and the time-path of exogenous vartables (x_{t}, for $t=1,2, \ldots, k$) in the system, then the time-pach of the endogenous variables (y_{t}, for $t=1,2, \ldots, k$) can be determined as follows:

$$
\begin{align*}
& y_{1}=D_{1} y_{0}+D_{2} x_{1} \\
& y_{2}=D_{1}^{2} y_{0}+D_{2} x_{2}+D_{1} D_{2} x_{1} \\
& \cdots \cdots \cdots \cdot \tag{4.6}\\
& y_{k}=D_{1}^{k} y_{0}+D_{2} x_{k}+D_{1} D_{2} x_{k-1}+\cdots \cdots+D_{1}^{k-1} D_{2} x_{1}
\end{align*}
$$

Stability Conditions of a Dynamic System

Withn the framework of our anslysis, the analysts of stability condtion ts important because the long-run impact multipliers are relevant only if the underlying dynamic system is stable. The dynamic system (4.1) will be stable if the marix D_{1}^{K} in (4.6)approaches a null matrix as k increases. The matrix D_{1}^{k} will approach a null matrix if the latent roots of the matrix D_{1} are all in the interior of the unit circle. 1/Hence, the stability of the dynamic system (4.1) is determined by the magnitude of the maximum (dominant) latent root of the matrix D_{1}. The numerical method of determining the stabllity of a dynamic system is presented in Appendix D. Examinaton of the stability conditions shows that the two estimated structures are both stable.

Long-Run Impact Multipliers

Having established the stability of a dynamic system, we are now able to analyze the following question: If an exogenous vartable is raised by one unit and remains at its new level in successive time perlods, then what would be the impact of such a change on the endogenous variables in the system during the successive time periods and over a long pertod of time?

Let us consider the case where the exogenous variables remain at a constant level, i.e.,

$$
\begin{equation*}
x_{1}=x_{2}=x_{3}=\ldots .=x_{k}=x^{*} \tag{4.7}
\end{equation*}
$$

Given (4.7), the relation (4.6) becomes:

$$
\begin{equation*}
y_{k}=D_{1}^{k} y_{0}+\left(I+D_{1}+D_{1}^{2}+\ldots . .+D_{1}^{k-1}\right) D_{2} x^{*} \tag{4.8}
\end{equation*}
$$

It is clear from (4.8) that the effect of a sustafned unit increase in an exogenous varlable on endogenous variables of a dynamic system over successive years can be obtained by simply taking the partial derivative of y_{k} with respect to x^{*}, i.e.,

$$
\begin{equation*}
\frac{\partial y_{k}}{\partial x^{*}}=\left(I+D_{1}+D_{1}^{2}+D_{1}^{3}+\ldots+D_{1}^{k-1}\right) D_{2}, \text { for } k=1,2, \ldots, n \tag{4.9}
\end{equation*}
$$

1/ For detailed derivations, see Arthur S. Goldberger, Econometric Theory, John Wiley \& Sons, Inc., New York, 1964, pp. 376-78.

The empirical ordinary least-squares estimates of the k -periods impact multiplier matrices (4.9) are given in appendix F. The effects of a sustained unit increase in wheat support price on Government and commercial wheat inventory for successive time periods are summarized in table 2.

Table 2.--The k-periods impact multipliers: The impact of a sustained increase In wheat support price by mne dollar per bushei on Government commerclal wheat inventory in successive time perlods

1/Ordinary and two-round least-squares estimates.

The empirical estimates in table 2 imply that: If the wheat support price is ralsed by $\$ 1$ per bushel and remains at its new level during successive time perlods, then it will lead to (i) an increase of 116 million bushels in Government stocks in the first year, 202 million bushels in the following 2 years, 266 million bushels in the following 3 years, and so on; and (2) a decline of 64 million bushels In commercial stocks in the first year, 91 million bushels in the following 2 years, 103 million bushels in the following 3 years, and $s 0$ on,

The time-paths of these estimated k-periods impact multipliers are shown in figure 3. The magnitudes of the absolute differences of impact multipliers between two successive time periods decrease as the time increases. This implies that the response of the change in stock to a change in support price will be much larger in the immediate time periods than fn future time pertods.

The first-period impact multipliers are in fact the same as the short-run impact multipliers which were obtainedin the preceding section. It can be shown by setting $k=1$ in (4.9), i.e.,

$$
\begin{equation*}
\left.\frac{\partial y_{k}}{\partial x^{*}}\right|_{k=1}=D_{2} \tag{4,10}
\end{equation*}
$$

Figure 3

Comparing (4.10) with (4.5) reveals that they are the same. Thus, the short-run impact mulitplier matrix is a special case of the k -periods impact multiplier matrix, namely the 1 -period impact multhpler matrix. As a result, the numerical values in the first row of table 2 are the same as the ones in the fourth and fifth rows of table 1 .

Since the sum of series $I+D_{1}+D_{1}^{2}+\ldots+D_{1}^{k-1}$ canbe expressed as ($\left.1-D_{1}\right)^{-1}\left(I-D_{1}^{k}\right)$, the relation (4.8) can be rewritten as:

$$
\begin{equation*}
y_{k}=D_{1}^{k} y_{o}+\left(I-D_{1}\right)^{-1}\left(I-D_{1}^{k}\right) D_{2} x^{*} \tag{4.11}
\end{equation*}
$$

For a stable dynamic system, the matrix D_{1}^{k} will approach a null matrix as k increases. Hence, if the exogenous variable vector is indefinitely sustained at the level of x^{*}, then the endogenous variable vector will approach the long-run stationary equilibrium state:

$$
\lim y_{k}=\left(I-D_{1}\right)^{-1} D_{2} x^{*}
$$

$k \rightarrow \infty$
Therefore, the long-rur: impact multiplier matrix of a stable dynamic system 1s:

$$
\begin{equation*}
\left(1-D_{1}\right)^{-1} D_{2} \tag{4,13}
\end{equation*}
$$

The elements of the matrix (4.13) measure the ultamate or longrun response of endogenous variables to a sustained unit change of exogenous variables.

Estimates of the long-run impact multiplier matrix obtained from the ordinary least-squares results are given in appendix E. The longrun impact multipliers of the wheat support price are summarized in table 3.

The estimated long-run multipliers derived from the ordinary leastsquares results indicate that a sustained increase of $\$ 1$ per bushel in wheat support price will generate in the long run (1) an increase in Government stocks of 453 million busheis, (2) a decline in commercial stocks of 123 million bushels, and (3) an increase in total U.S. wheat exports of 158 million bushels.

Long-run impact multipliers are not very meaningful for a pure static system. In a static system the matrix $D_{1}=0$, and the long-xun impact multiplier matrix given by (4.13) becomes D_{2}, which is the same as the short-run impact multiplier matrix given by (4.5). In our formulated model, there are no lagged endogenous variables involved in the first three relations. As a result, the estimated long-run impact multipliers are identical to the estimated short-run impact multipliers in the first three rows of tables 1 and 3.

In making a policy decision, it is useful to know the relative magnitudes between the long-run impact multipliers and their corresponding short-run impact multdplers resulting from a change in policy insurumental varlable. Table 4 gives the estimated relative effects of an increase in support price.

Tsble 3.- The long- run impact multipliers: Impacts of the support price on the endogenous variables in the system

1/ Dollar per bushel.

Table 4.--Relative magnitudes between the long- run and short-ran impact multipliers: Relative effects of support price on the endogenous variables in the system

Based on the results derived from the ordinary least-squares estimated structure, the long-run effects of a change in wheat support price on Government wheat stocks, commercial wheat stocks, and total U.S. wheat exports will be $3.9,1.9$, and 6.7 times as large as the corresponding short-run effects.

PROJECTIONS

An important application of an econometric model is in predicting future values of endogenous variables. An econometric model is valid for predictue purposes only if the structure of the system, the estimates of the parameters, can be assumed to be unchanged in the future. Thus, before using the model for making predictions, the extent to which the model ts able to simulate the past should be examined.

Retrospective Analysis of Predictive Performance

Predicted values of endogenous variables from 1928 to 1964, based on the ordinary least-squares estimated structures, are compared with observed values for the same period in figures 4 and 5.

In evaluating the past predictive performance of a model, one often uses the correlation coefficient between the predicted and observed values as a criterion. But a high correlaton colefficient berween predicted and observed values does not always imply a good prediction, therefore an alternative measure of predictive accuracy was proposed by Theil: 2/

where $F_{t}^{*}=$ the predicted value at time t, and $F_{t}=$ the observed value at time t .

The Theil-U measure (4.14) has the property of varying between zero and one; and the higher the overall predictive accuracy, the closer is U to zero. ithe computed Theil-U measures for all the endogenous variables in the system are given in table 5 . The computed values of U vary between 0.0150 and 0.1616 . Table 5 indicates that (1) predictions of per capita wheat consumption and average farm prices of wheat in the sample period were more accurate than predictions of other endogenous variables in the system, and (2) the overall accuracy of predictions based on ordinary least-squares estmated structuresis more or less the same as that of predictions obtained from two-round leastsquares estimated structures.

The Thell-U values measure only the overall accuracy of the predictions. They do not provide detalled information about the direction of prediction errors. Therefore, it is useful to plot the predicted values $\left(F_{t}^{*}\right)$ against the corresponding observed values $\left(F_{t}\right)$ as in figure 6.

2/ H. Thell, Economic Forecasts and Policy, North-Holland Publishing Company, Amsterdam, 1961.

PREDICTED* AND OBSERVED VALUES OF ENDOGENOUS VARIABLES

Figure 4

PREDICTED* AND OBSERVED VALUES OF ENDOGENOUS VARIABLES

* ordinary least. squares estimates.

Figure 5

GRAPHIC ANALYSIS OF PREDICTION ERRORS

Figure 6

The deviations between the predtcted values (F_{t}^{*}) and their corresponding observed values (F_{t}) are prediction errors ($F_{t}^{*}-F_{t}$). If $F_{t}^{*}-F_{t}=0$, then we have perfect prediction. Otherwise, we will have overprediction ($\mathrm{Ft}-\mathrm{F}_{\mathrm{t}}>0$) or underprediction ($\mathrm{Ft}-\mathrm{F}_{\mathrm{t}}<0$). Therefore, the line os (45° line) in figure 6 is the line of perfect prediction, i.e., all points on the line are points of perfect prediction, points below the line are underprediction, and points above it are overprediction. For example, point b is perfect predtction, point c is underprediction, and points a, J, h, and f are all overprediction. Line $p w$ is the iso-d-deviate prediction error line. All the points on line pw have the same vertical deviation from line os. Thus, points h and J have the same magnitude of prediction error d. Line oq is the iso-k-relative prediction error inne. The points on the same iso-k-relative predtction error line have the same magnitude of relative prediction exror k. Hence, polnts a, h, and f have the same reladve prediction error, but they have dffferent magnitudes of absolute prediction errors. On the other hand, points h and j have the same magnitude of absolute prediction error, but polnt i has a smaller reiatdve prediction error than point h. Therefore, the graphic analysis of prediction errors is a useful tool because it provides detailed information as to the frequency of overprediction or underprediction in terms of both relative and absolute errors. The results obtained from the ordnary least-squares estmated structures are shown in figures 7 through 9. Careful examination of figures 7 through 9 indicates: (1) The predtctions of average farm prices of wheat and per capita wheat consumption have smaller prediction errors in terms of absolute or relative magnitudes than the predictions of total wheat used for feed, Government wheat inventory, commercial wheat inventory, and toral U.S, wheat exports, and (2) the predictions of total Government wheat inventory, commercial wheat inventory, and total U.S. wheat exports have very large relative overprediction errors at the very low levels of the observed values.

Table 5.-- Measures of overall predictive accuracy: Computed Theil-U measures for endogenous variables, 1928-64

This rerrospective analysis has suggested that the model's predictions of average farm prices of wheat and per capita wheat consumption can be expected to have smaller predicion errors than predicuions of other endogenous variables in the system.

GRAPHIC ANALYSIS OF PREDICTION ERRORS

Ordinary Least-Squares Estimates 1928.64

Flgure 7

GRAPHIC ANALYSIS OF PREDICTION ERRORS

Ordinary Least-Squares Estimates 1928-64

Figure 8

GRAPHIC ANALYSIS OF PREDICTION ERRORS

One of the purposes of this study is to demonstrate how the model could be used to r.ake altemative projections based upon dffferent sets of conditions and assumptions. In using the estimated dynamic recursive structure in making predictions, four alternative wheat support prices-$\$ 1.00, \$ 1.25, \$ 1.50$, and $\$ 1.75$ per bushel-are considered and the other exogenous variabies in the system are estimated by using the following autoregressive model:

$$
\begin{align*}
& X_{f t}=a_{1}+b_{1} T_{t}+u_{i t} \tag{4.15}\\
& T_{t}=T_{t-1}+1 \tag{4.16}\\
& u_{1 t}=x_{1} u_{1 t-1}+e_{i t} \tag{4.17}
\end{align*}
$$

where

$$
\begin{aligned}
& X_{f t}=1-t h \text { exogenous variable at time } t \\
& T_{t}=\text { time }\left(T_{1928}=28\right) \\
& u_{i t}= \text { disturbance terms } \\
& e_{i t}=\text { a non-serfaliy-correlated disturbance term, and } a_{i}, b_{1}, \text { and } \\
& r_{1} \text { are che parameters to be estimated. }
\end{aligned}
$$

Because of the nature of the relation (4.16), the estimaton procedure can be simpliffed as follows:

From (4.15) and (4.17), we have;

$$
X_{i t}-a_{i}-b_{i} T_{t}=r_{i} X_{i t-1}-a_{i} r_{i}-b_{j} r_{i} T_{t-1}+e_{i t}
$$

or

$$
\begin{equation*}
X_{i t}=a_{1}\left(1-r_{1}\right)+r_{i} x_{i t-1}+b_{i} T_{t}-b_{i} I_{i} T_{t-1}+e_{i t} \tag{4.18}
\end{equation*}
$$

Substituring (4.16) into (4.18), we get:

$$
\begin{align*}
X_{1 t} & =\left\{a_{1}\left(1-r_{1}\right)+b_{i}\right\}+r_{1} X_{i t-1}+b_{1}\left(1-r_{i}\right) T_{t-1}+e_{i t} \\
& =s_{0 i}+g_{1 i} X_{1 t-1}+s_{21} T_{t-1}+e_{i t} \tag{4.19}
\end{align*}
$$

The coefficients $s_{o i}, s_{l i}$, and $s_{2 i}$ can be estimated by the ordinary least-squares method. And the parameters a_{1}, b_{1}, and r_{1} can be uniquely estimated by the following formulas:

$$
\begin{align*}
& I_{1}=s_{11}^{*} \tag{4.20}\\
& a_{i}=s_{01}^{*} /\left(1-s_{11}^{*}\right)-s_{21}^{*} /\left(1-s_{11}^{*}\right)^{2} \tag{4.21}
\end{align*}
$$

and

$$
\begin{equation*}
b_{1}=s_{2 \mathrm{i}}^{*} /\left(1-s_{1 \mathrm{i}}^{*}\right) \tag{4.22}
\end{equation*}
$$

where s_{0}^{*}, s_{1}^{*}, and s_{2}^{*} are the ordinary least-squares estimates of $\mathrm{E}_{01}, \mathrm{~s}_{1}$, and s_{21}, respectively.

The following relations were obtained by applying the above procedures to the 1928-64 data:

$$
\begin{align*}
& \mathrm{P}_{\mathrm{fot}}=2.3008+0.7426 \mathrm{P}_{\mathrm{fot}-1}+0.4900 \mathrm{~T}_{\mathrm{t}} \tag{4,23}\\
& \mathrm{P}_{\mathrm{ct}}=-5.6133+0.8464 \mathrm{P}_{\mathrm{ct}-1}+0.3908 \mathrm{~T}_{\mathrm{t}} \tag{4,24}\\
& \mathrm{~L}_{\mathrm{t}}=36.7710+0.7282 \mathrm{~L}_{\mathrm{t}-1}+0.1560 \mathrm{~T}_{\mathrm{t}} \tag{4.25}\\
& \mathrm{O}_{\mathrm{t}}=131.6000+0.4370 \mathrm{O}_{\mathrm{t}-1}+9.3000 \mathrm{~T}_{\mathrm{t}} \tag{4.26}\\
& \mathrm{I}_{\mathrm{t}}=-324.3000+0.8162 \mathrm{I}_{\mathrm{t}-1}+12.4000 \mathrm{~T}_{\mathrm{t}} \tag{4.27}
\end{align*}
$$

From a predictive point of view, the above relations are better than the following simple ordinary least-squares non-autoregressive time trend model:

$$
\begin{align*}
& \mathrm{P}_{\mathrm{fot}}=-8.1955+2.2316 \mathrm{~T}_{\mathrm{t}} \tag{4.28}\\
& \mathrm{P}_{\mathrm{ct}}=-14.6210+1.9257 \mathrm{~T}_{\mathrm{t}} \tag{4.29}\\
& \mathrm{~L}_{\mathrm{t}}=134.5753+0.5676 \mathrm{~T}_{\mathrm{t}} \tag{4,30}\\
& \mathrm{O}_{\mathrm{t}}=308.1900+14.9800 \mathrm{~T}_{\mathrm{t}} \tag{4.31}\\
& \mathrm{I}_{\mathrm{t}}=-1273.1400+53.0300 \mathrm{~T}_{\mathrm{t}} \tag{4,32}
\end{align*}
$$

To Indicate the overall predictive performance of both models during the sample period, the Theil-U measures are computed and summarized in table 6 .

Table 6 clearly indicates that the autoregressive model is substantially better than the non-autoregressive model as a prediction device. Therefore, in making conditional predictions, the future values of exogenous variables are estimated by using the autoregressive relations (4.23) through (4.27). The estimated exogenous variables, based on the 1964 initial conditions, are given in table 7 .

Given the estimated dynamic recursive structure (3.6) through (3.11), and the estimated exogenous variables in table 7, the conditional predictions of the endogenous variables implied by the model axe summarized in cable 8.

The conditional predictions given in table 8 can be properly interpreted only by keeping in view several limitations:
(1) The rellability of the conditional predictions rests on the validity of the assumption that the structure of the system, or the esdmates of the parameters, will not change in the future. If there is reason to believe that they will change, then the required changes should be incorporated into the model before making predictions.

Table 6.-- Measure of overall predictlve accuracy: Comptuted Thell-U messures for autoregressive and non-autoregressive models of exogenous variables in the system, 1928-64

Exogenous varlables	Identification	: Theil-U measures		
		$\begin{aligned} & \vdots \\ & \vdots \\ & : \text { Autoregressive } \\ & \vdots \\ & \vdots \end{aligned}$	(2) Non-autoregressive mode!	$(2) /(1)$
Other feed grains, farm price index	$P_{\text {fot }}$	0.1001	0.1503	1.50
Consumer price index	$P_{\text {ct }}$	0.0153	0.0525	3.43
Grait-consuming livestock andmal units	Ls	0.0237	0.0341	1.44
U.S. wheat production				
	O_{t}	0.0693	0.0781	1.13
U.S. per copita disposable income:				
		:		
	${ }_{5}$	0.0179	0.0582	3.25

Table 7.--Estimated exogenous variables, based on autoregressive model, 1965-80

Table 8.- Predictions of endogenous variables, based on the ordinary leastsquares estimated structure and the autoregressive estmated
exogenous variables, 1970,1975 , and 1980

(2) The predictions are based on the assumption that all future values of the disturbances are equal to their expected value, zero. But we have every reason to belleve that the future disturbances will in fact take on some nonzero values even though they might be distributed around zero as in the past. As a result, there are some errors involved in our predictions.
(3) The predtction errors also result from errors in estmating the exogenous varlables in the system. When using such a model for making long-run profections and policy analysis, more sophisticated methods than simple excrapolative models axe needed for projecting the exogenous vartables. The extrapolative method was used here to demonstrate the mechanics of using the model to make long-run projectons. Because of these limitations, the profections axe conditioned by the data, assumptions, and model used.

APPENDIX A

SOME PROPERTIES OF ESTIMATION PROCEDURES
OF A RECURSIVE SYSTEM
A system of Inear stochastc structural relations can be written in the following stmple matrix form:

$$
\begin{equation*}
A y_{t}+B^{*} z_{t}=u_{t} \tag{A-1}
\end{equation*}
$$

where
$A=a G$ by G matrix of coefficients of current endogenous variables,
$B^{*}=a \operatorname{G}$ by K marrix of coefficfents of predetermined vartables,
$y_{t}=a \quad$ by G column vector of endogenous variables in time period t,
$z_{t}=a \operatorname{l}$ by K column vector of predetermined variables in time perlod t,
and
$u_{t}=a \operatorname{by} G$ column vector of random disturbance terms in time period t.

DEFENTIONS

A system of itnear stochastic structural relations (A-I) is called a recursive system if the matrix (A) of the coeffictents associated with the current endogenous variables in the system is a triangular matrix.

A system of linear stochastic structural relations (A-1) is called a dagonal recursive system if (1) the matrix (A) is a triangular matrix, and (2) the vartance-covariance marrix is a diagonal matrix, that is, $U=E$ (ut u_{t}^{\prime}) is a diagonal matrix.

PROPERTIES OF ESTIMATION

Nonparametric Case

The direct ordinary least-squares estmation of the coefficients of a structural equation in a system of structural relations (A-1) does not, in general, yleld consistent estimates. But it does yield consistent estimates for the case of the diagonal recursive system. An estimate θ^{*} of a parameter θ is sald to be consistent if the probability that the absolute deviation between the estimate θ^{*} and the true parameter θ be less than any given arbitraxily small number d, approaches one as the size of the sample approaches infinity, that is,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} p\left[\left|\theta^{*}(t)-\theta\right|<d\right]=L \tag{A-2}
\end{equation*}
$$

where P is probability and t is the sample size.

If $\Theta^{*}(t)$ has the property (A-2) it is said to possess the probability limit Q, and the relation ($\mathrm{A}-2$) is also denoted as:

$$
\begin{equation*}
\operatorname{plim}_{t \rightarrow \infty} \theta^{*}(t)=\theta \tag{A-3}
\end{equation*}
$$

For simplifying the exposition, let us consider the following simple càse: $1 /$

Structural System

Demand relation:

$$
\begin{equation*}
P_{t}+a_{12} Q_{t}+b_{l o} \quad=u_{l t} \tag{A-4}
\end{equation*}
$$

Supply relation:

$$
\begin{equation*}
a_{21} P_{t}+Q_{t}+b_{20}+b_{21} z_{1 t} \quad=u_{2 t} \tag{A-5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{t}}=\text { price at time } \mathrm{t} \\
& \mathrm{Q}_{\mathrm{t}}=\text { quantity at time } \mathrm{t} \\
& \mathrm{z}_{\mathrm{t}}=\text { a supply shiftex, and } \\
& \mathrm{u}_{\mathrm{it}}=\text { disturbance terms }
\end{aligned}
$$

Rewriting the above system of structural relations (A-4) and (A-5) In the matrix form (A-1), we have:

$$
A y_{t}+B^{*} z_{t}=u_{t}
$$

or

$$
\left[\begin{array}{ll}
1 & a_{12} \\
a_{21} & 1
\end{array}\right]\left[\begin{array}{l}
P_{t} \\
Q_{t}
\end{array}\right]+\left[\begin{array}{ll}
b_{10} & 0 \\
b_{20} & b_{21}
\end{array}\right]\left[\begin{array}{l}
1 \\
z_{1 t}
\end{array}\right]=\left[\begin{array}{l}
u_{1 t} \\
u_{2 t}
\end{array}\right](A-6)
$$

In this model, we assume: (1) The expected value of the disturbance tertn is zero; and (2) the variance-covariance matrix is $\mathrm{U}=\mathrm{E}\left(\mathrm{u}_{\mathrm{t}} \mathrm{u}_{\mathrm{t}}^{3}\right)$, i.e.:

$$
E\left(u_{i}\right)=\left[\begin{array}{l}
E\left(u_{1 t}\right) \tag{A-7}\\
E\left(u_{2 t}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0
$$

and

$$
\begin{align*}
& U=E\left(u_{t} u_{t}^{\prime}\right)=E\left(\left[\begin{array}{l}
u_{1 t} \\
u_{2 t}
\end{array}\right] \quad\left[u_{1 t} u_{2 t}\right]\right)=E\left(\quad\left[\begin{array}{ll}
u_{1} t^{u} 1 t & u_{1 t} u_{2 t} \\
u_{2 t} t_{1 t} & u_{2 t} u_{2 t}
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
E\left(u_{1 t}\right)^{2} & E\left(u_{11} t_{2 t}\right) \\
E\left(u_{2 t} t_{1 t}\right) & E\left(u_{2 t^{2}}\right)^{2}
\end{array}\right] \times\left[\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right] \tag{A-8}\\
& \text { 1/The principal derivations of a general model are, of course, } \\
& \text { similar to the derivations of this simple model. }
\end{align*}
$$

If the marrix (A) is assumed to be nonsingular, then the structural system ($\mathrm{A}-6$) can be expressed in terms of the following reduced form:

Reduced Form

$$
\begin{equation*}
y_{t}=D z_{t}+v_{t} \tag{A-9}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
D & =\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right]=-A^{-1} B^{*} \\
& =-\left[\begin{array}{ll}
1 & a_{12} \\
a_{21} & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
b_{10} & 0 \\
b_{20} & b_{21}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\left(-b_{10}+b_{20} a_{12}\right) /\left(1-a_{12} a_{21}\right) & \left(b_{\left.21 a_{12}\right) /\left(1-a_{12} a_{21}\right)}^{\left(-b_{20} \cdot+b_{10^{2}} 21\right) /\left(1-a_{12} a_{21}\right)}\right.
\end{array}\right]\left(-b_{21}\right) /\left(1-a_{12} a_{21}\right)
\end{array}\right] .
$$

and

$$
\begin{align*}
v_{t} & =\left[\begin{array}{l}
v_{l t} \\
v_{2 t}
\end{array}\right]=A^{-I_{u_{t}}} \\
& =-\left[\begin{array}{ll}
1 & a_{12} \\
a_{21} & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
u_{1 t} \\
u_{2 t}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(u_{1 t}-a_{12} u_{2 t}\right) /\left(1-a_{12} a_{21}\right) \\
\left\{-a_{21} u_{1 t^{+}}+u_{2 t}\right) /\left(1-a_{12} a_{21}\right)
\end{array}\right] \tag{A-11}
\end{align*}
$$

Now, if the demand relation (A-4) is fitted directly by the ordinary least-squares method, then the ordinary least-squares estimate a劵2 of the coefficient a_{12} is:

$$
\begin{equation*}
a_{12}^{*}=\frac{\stackrel{\Sigma}{L_{t}}\left(P_{t}-\bar{P}\right)\left(Q_{t}-\bar{Q}\right)}{\underset{t}{\Sigma}\left(Q_{t}-\bar{Q}\right)^{2}} \tag{A-12}
\end{equation*}
$$

where \bar{P} is the mean value of P_{t} and \bar{Q} is the mean value of Q_{t}.
From the reduced form (A-9), we have the following relations:

$$
\begin{equation*}
P_{t}=d_{11}+d_{12} z_{1 t}+v_{1 t} \tag{A-13}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{P}=d_{11}+d_{12} \bar{z}_{1}+\bar{v}_{1} \tag{A-14}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{t}=d_{21}+d_{22} z_{1 t}+v_{2 t} \tag{A-15}
\end{equation*}
$$

or

$$
\begin{equation*}
\overline{\mathrm{Q}}=\mathrm{d}_{21}+\mathrm{d}_{22} \overline{\mathrm{z}}_{1}+\overline{\mathrm{v}}_{2} \tag{A-16}
\end{equation*}
$$

where \bar{z}_{1} is the mean value of $z_{l t}, \bar{v}_{1}$ is the mean value of $v_{1 t}$, and \bar{v}_{2} is the mean value of $\mathrm{v}_{2 \mathrm{t}}$.

By substitudng ($A-13$), ($A-14$), and ($A-15$) into the numerator of ($A-12$), and ($A-15$) and ($A-16$) into the denominator, we obtain:

$$
\begin{align*}
\sum_{t}\left(P_{t}-\bar{P}\right)\left(Q_{t}-\bar{Q}\right) & =d_{12} d_{22} \sum_{t}\left(z_{1 t}-\vec{z}_{1}\right)^{2}+d_{12} \sum_{t}\left(v_{2 t}-\bar{v}_{2}\right)\left(z_{1 t}-\bar{z}_{1}\right) \\
& +d_{22} \sum_{t}^{\Sigma}\left(z_{1 t}-\bar{z}_{1}\right)\left(v_{1 t}-\bar{v}_{1}\right)+\sum_{t}\left(v_{1 t^{-}}-\bar{v}_{1}\right)\left(v_{2 t}-\bar{v}_{2}\right) \tag{A-17}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{\mathrm{t}}\left(\mathrm{Q}_{\mathrm{t}}-\overline{\mathrm{Q}}\right)^{2} & =\mathrm{d}_{22} \sum_{\mathrm{t}}^{\Sigma\left(\mathrm{z}_{1 \mathrm{t}}-\bar{z}_{1}\right)^{2}+2 \mathrm{~d}_{22} \sum_{\mathrm{t}}\left(\mathrm{z}_{\mathrm{lt}}-\overline{\mathrm{z}}_{1}\right)\left(\mathrm{v}_{2 \mathrm{t}}-\bar{v}_{2}\right)} \\
& +\sum_{\mathrm{t}}\left(\mathrm{y}_{2 \mathrm{t}}-\overline{\mathrm{v}}_{2}\right)^{2} \tag{A-18}
\end{align*}
$$

Now, we define the following notations:
$\operatorname{plim}_{t \rightarrow \infty} \sum_{t}\left(z_{1 t}-\bar{z}_{1}\right)^{2}=H_{11}$
$\operatorname{plim}_{t \rightarrow \infty} \sum_{t}\left(v_{1 t}{ }^{-\bar{v}_{1}}\right)^{2}=w_{11}$
$\operatorname{plim}_{t \rightarrow \infty} \sum_{t}\left(v_{2 t}-\bar{v}_{2}\right)^{2}=w_{22}$
$t \rightarrow \infty$
plim $\sum_{t \rightarrow 0}\left(v_{1 t}-\bar{v}_{1}\right)\left(v_{2 t}{ }^{-\bar{v}_{2}}\right)=w_{21}$ or w_{12}
$\underset{\mathrm{t} \rightarrow \mathrm{oo}}{\mathrm{plim}} \sum_{\mathrm{t}}\left(\mathrm{z}_{1 \mathrm{t}}-\overrightarrow{\mathrm{z}}_{1}\right)\left(\mathrm{v}_{\mathrm{ft}}{ }^{-} \overline{\mathrm{v}}_{\mathrm{i}}\right)=0$ for $\mathrm{i}=1,2$.
By taking the probability limit of the direct ordinary least-squares estimate a_{12}^{*}, and noticing the relations from (A-17) through (A-23), we have:

$$
\begin{align*}
\operatorname{plim}_{\mathrm{t} \rightarrow \infty} \mathrm{a}_{12}^{*} & =\operatorname{plim}_{\mathrm{t} \rightarrow \infty} \frac{\sum_{\left(\mathrm{P}_{\mathrm{t}}-\overrightarrow{\mathrm{P}}\right)\left(\mathrm{Q}_{\mathrm{t}}-\overline{\mathrm{Q}}\right)}^{\sum_{\mathrm{t}}\left(\mathrm{Q}_{\mathrm{t}}-\overline{\mathrm{Q}}\right)^{2}}}{} \\
& =\left(\mathrm{d}_{12} \mathrm{~d}_{22} \mathrm{H}_{11}+\mathrm{w}_{12}\right) /\left(\mathrm{d}_{22}^{2} \mathrm{H}_{11}+\mathrm{w}_{22}\right) \tag{A-24}
\end{align*}
$$

Furthermore, the values of w_{12} and w_{22} can be expressed in terms of the disturbance terms $u_{i t}$ and the coefficients $a_{i j}$ of the structural system as following:

$$
\begin{align*}
E\left(v_{t} v_{t}^{\prime}\right) & =E\left(\left[\begin{array}{l}
v_{1 t} \\
v_{2 t}
\end{array}\right]\left[\begin{array}{ll}
v_{1 t} & \left.v_{2 t}\right]
\end{array}\right]=\left[\begin{array}{ll}
E\left(v_{1 t}\right)^{2} & E\left(v_{1 t^{2}} v^{\prime}\right) \\
E\left(v_{2 t} v_{1 t}\right) & E\left(v_{2 t}\right)^{2}
\end{array}\right]\right. \\
& =\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right] \tag{A-25}
\end{align*}
$$

By substituting the relations of (A-11) and (A-8) into ($A-25$), we obtain:

$$
\begin{align*}
w_{21} & =E\left(v_{1 t^{v}} v_{2 t}\right)=E\left[\left(\frac{u_{1 t}-a_{12} u_{2 t}}{1-a_{12} a_{21}}\right)\left(\frac{-a_{21} u_{1 t}+u_{2 t}}{1-a_{12} a_{21}}\right)\right] \\
& =\left(1-a_{12^{a}}{ }_{21}\right)^{-2} E\left(u_{1 t}-a_{12} u_{2 t}\right)\left(-a_{21} u_{1 t}+u_{2 t}\right) \\
& =\left(1-a_{12} a_{21}\right)^{-2} E\left(-a_{21} u_{1 t}^{2}+a_{12^{a}}{ }_{21} u_{11} t_{2 t}+u_{1 t^{u}}{ }_{2 t}-a_{12} u_{2 t}^{2}\right) \\
& =\left(-a_{21} k_{11}+a_{\left.12 a_{21} k_{12}+k_{12}-a_{12} k_{22}\right) /\left(1-a_{12} a_{21}\right)^{2}}\right. \tag{A-26}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{w}_{22} & =\mathrm{E}\left(\mathrm{v}_{2 \mathrm{t}}\right)^{2} \\
& =\left(\mathrm{a}_{21}^{2} \mathrm{k}_{11}-2 \mathrm{a}_{21} \mathrm{k}_{12}+\mathrm{k}_{22}\right) /\left(1-\mathrm{a}_{12} \mathrm{a}_{21}\right)^{2} \tag{A-27}
\end{align*}
$$

By substtturing the relations ($A-10$), ($A-26$), and ($A-27$) into ($A-24$), we finally obtain:

$$
\begin{equation*}
\operatorname{plim}_{t \rightarrow \infty} a_{12}^{*}=\frac{-a_{12}\left(b_{21}^{2} H_{11}+k_{22}\right\}-a_{21} k_{11}+\left(1+a_{12} a_{21}\right) k_{12}}{\left(b_{21}^{2} H_{11}+k_{22}\right)+a_{21}^{2} k_{11}-2 a_{21} k_{12}} \tag{A-28}
\end{equation*}
$$

It is clearly indicated in the above relation ($\mathrm{A}-28$) that the direct ordinary least-squares estimate a_{12}^{*} is nor a consistent estimate of che coefficlent a 12 .

Now, if we assume that the structural system (A-6) is a diagonal recursive system, that is, (1) $a_{21}=0$ in the matrix (A) of ($A-6$) and (2) borh k_{12} and k_{21} are zero in the matrix U of ($A-8$), then the last two terms of both numerator and denominator in (A-28) are equal to zero. Hence, we have:

$$
\begin{equation*}
\operatorname{plim}_{t \rightarrow \infty} a_{12}=-\mathrm{a}_{12} \tag{A-29}
\end{equation*}
$$

Therefore, we have shown that the direct ordinary leasr-squares esclmation of the coefficients of a scructural relation in a structural system does not, in general, yield consistent estimates; but it does yield consistent esdmates for the case of a diagonal recursive system.

Paramerric Case

In the previous section, we considered a nonparametric case in which the distribution of the disturbance term u_{t} is not specified or
restricted to be one of a certain class of probabtlity distributions, In thls section we consider a parametric case and assume the disturbance term u_{t} to have a multivariate normal distribution with a zero mean vector and with a constant vartance-covartance matrix U, where $U=E\left(u_{t} u t\right)$ for $t=1,2, \ldots$, . Moreover, we assume: (1) the disturbance terms are serially independent, and (2) all exogenous vartables in the system are independent of the disturbance terms. Under these assumptions, the likelihood function for the endogenous variables, conditonal upon the values of predetermined vartables z_{t}, is: $2 /$

```
\(\begin{aligned} \mathrm{L} & =\mathrm{P}\left(\mathrm{y}_{\mathrm{t}} \mid z_{\mathrm{t}} \text { and } \mathrm{t}=1,2, \ldots n\right) \\ & =\mid \operatorname{det} A^{\mid n}(\mathrm{I} / 2 \pi)^{1 / 2 G n}(\operatorname{det} U)^{-1 / 2 n} e^{-1 / 2} \sum_{\mathrm{f}=\mathrm{I}}^{n} \mathrm{u}_{\mathrm{t}}^{2} U^{-1} \mathrm{u}_{\mathrm{t}}\end{aligned}\)
where
\(u_{t}=A y_{t}+B^{*} z_{t}\),
\(|\operatorname{det} A|=\) the absolute value of the deterninant of the matrix \(A\),
det \(U=\) the determinant of the variance-covariance matrix \(U\),
\(\pi=3.1416\)
\(e=2.7183\), and
\(G=\) the number of endogenous variabies in the system.
To show the equivalence between the full-information maximum likehhood estimates and the direct ordinary least-squares estimates In a diagonal recursive system, we consider again the structural system (A-6) foumulated in the previous section and assume that the system ( \(A-6\) ) is a diagonal recursive system, i.e.,
\[
A=\left[\begin{array}{ll}
1 & a_{12}  \tag{A-31}\\
0 & 1
\end{array}\right]
\]
and
\[
U=E\left(u_{t} u_{t}^{l}\right)=\left\{\begin{array}{ll}
k_{11} & 0  \tag{A-32}\\
0 & k_{22}
\end{array}\right]
\]

Under the assumptions of (A-31) and (A-32), we have the following simple relations:
\[
\begin{align*}
& \operatorname{det} A=1  \tag{A-33}\\
& \operatorname{det} U=k_{11} k_{22} \tag{A-34}
\end{align*}
\]
and

2/ For detailed discussion, see J. Johnston, Economerric Method, McGraw-Hill, New York, 1960, pp. 240-42 and pp. 264-65; and also see W. C. Hood and T. C. Koopmans (eds.), Studies in Econometrlc Merhod, Cowles Commission Monograph No. 14, Willey, New Yorik, 1953, pp. 190-91.
and
\[
\begin{align*}
-1 / 2 \sum_{t=1}^{n} u_{t}^{1} U^{-1} u_{t} & =-1 / 2 \sum_{t=1}^{n}\left\{\left[u_{1 t} u_{2 t}\right\} \quad\left[\begin{array}{ll}
k_{11} & 0 \\
0 & k_{22}
\end{array}\right\}^{-1}\left\{\begin{array}{l}
u_{1 t} \\
u_{2 t}
\end{array}\right\}\right\} \\
& =-1 / 2 \sum_{t=1}^{n}\left(u_{1 t}^{2} / k_{11}+u_{2 t}^{2} / k_{22}\right) \tag{A-35}
\end{align*}
\]

For this diagonal recursivesystem, we have the log of the likelihood function as following:
\[
\begin{align*}
& L^{*}= \log _{e} L=n \log _{e}|\operatorname{det} A| \\
&+n \log _{e}(1 / 2 \pi)-1 / 2 n \log _{e}(\operatorname{det} U) \\
&-1 / 2\left(\sum_{t=1}^{n} u_{t}^{k} U^{-1} u_{t}\right) \log _{e^{e}} \\
&= n \log _{e}(1 / 2 \pi n)-1 / 2 n \log _{e} k_{11}-1 / 2 n \log _{e} k_{22}-1 / 2 \sum_{t=1}^{n}\left(u_{1 t}^{2} / k_{I I}\right)  \tag{A-36}\\
&-1 / 2 \sum_{t=1}^{n}\left(u_{2 t}^{2} / k_{22}\right)
\end{align*}
\]
where
\[
\begin{align*}
\sum_{t=1}^{n} u_{l t}^{2} & =\sum_{t=1}^{n}\left(P_{t}+a_{12} Q_{t}+b_{10}\right)^{2} \\
& =\sum_{t=1}^{n}\left(P_{t}^{2}+2 a_{12} P_{t} Q_{t}+2 b_{10} P_{t}+a_{12} Q_{t}^{2}+2 b_{10} a_{12} Q_{t}+b_{10}^{2}\right) \tag{A-37}
\end{align*}
\]
and
\[
\begin{equation*}
\sum_{t=1}^{n} u_{2 t}^{2}=\sum_{t=1}^{n}\left(Q_{t}+b_{20}+b_{21} z_{1 t}\right)^{2} \tag{A-38}
\end{equation*}
\]

Therefore, the maximum likelihood estimates, \(a_{12}^{* *}\), of the coefficient \(\mathrm{a}_{12}\) can be obtained by following steps:
(1) Taking the partal derivatue of \(L^{*}\) with respect to \(\mathrm{a}_{12}\) and setting it equal to zero:
\[
\begin{equation*}
\frac{d L^{*}}{d \hat{a}_{12}}=-\left(1 / k_{11}\right) \sum_{t=1}^{n}\left(P_{t} Q_{t}+a_{12} Q_{t}^{2}+b_{10} Q_{t}\right)=0 \tag{A-39}
\end{equation*}
\]
(2) Taking the parial dertvative of \(L^{*}\) with respect to \(b_{10}\) and setting it equal to zero:
\[
\begin{equation*}
\frac{d L^{*}}{d b_{10}}=-\left(1 / k_{11}\right) \sum_{t=1}^{n}\left(P_{t}+a_{12} Q_{t}+b_{l o}\right)=0 \tag{A-40}
\end{equation*}
\]
(3) Solving b \({ }_{10}\) from (A-40):
\[
\begin{align*}
& \sum_{t=1}^{n} P_{t}+a_{12} \sum_{t=1}^{n} Q_{t}+{ }^{n} b_{10}=0 \\
& b_{10}=-(1 / n) \sum_{t=1}^{n} P_{t}-a_{12}(1 / n) \sum_{t=1}^{n} Q_{t} \\
&=-\left(\bar{P}+a_{12} \bar{Q}\right) \tag{A-41}
\end{align*}
\]
where \(\bar{P}\) is the mean value of \(P_{t}\) and \(\bar{Q}\) is the mean value of \(Q_{F}\).
(4) Substrutang (A-41) into (A-39) for \(b_{10}\) and solving for a 12 :
\[
\begin{align*}
& \sum_{t=1}^{n} P_{t} Q_{t}+a_{12} \sum_{t=1}^{n} Q_{t}^{2}-\left(\bar{P}+a_{12} \bar{Q}\right) \sum_{t=1}^{n} Q_{t}=0 \\
& \sum_{t=1}^{n} P_{t} Q_{t}+a_{12} \sum_{t=1}^{n} Q_{t}^{2}-n\left(\bar{P}+a_{12} \bar{Q}\right) \bar{Q}=0 \\
& \sum_{t=1}^{n} P_{t} Q_{t}-n \bar{P} \bar{Q}+a_{12}\left(\sum_{t=1}^{n} Q_{t}^{2}-n \bar{Q}^{2}\right)=0 \\
& \left.a_{12}^{* *}=-\left(\sum_{t=1}^{n} P_{t} Q_{t}-n \bar{P} \bar{Q}\right) / t \sum_{t=1}^{n} Q_{t}^{2}-n \bar{Q}^{2}\right) \\
& =-\frac{\sum_{t=1}^{n}\left(P_{t}-\bar{P}\right)\left(Q_{t}-\bar{Q}\right)}{\sum_{t=1}^{n}\left(Q_{t}-\bar{Q}\right)^{2}}
\end{align*}
\]

Comparing ( \(A-42\) ) with ( \(A-12\) ), we find that the maximum likelyhood estimate a \({ }_{12}^{* *}\) is exactly equal to the direct ordinary least-squares estimate a 2 . Therefore, we have shown that the full-information maximum itkelihood estimates of a diagonal recursive system are identical to the direct ordinary least-squares estimates.

\section*{APPENDIX B}

\section*{TWO-ROUND LEAST_SQUARES ESTIMATION PROCEDURES}

The two-round least-squares procedures of estimating the coefficients of the formulated system (3.1) can be summarized by the following steps:
(1) Estimating the farm price and support price relation directly by the ordinary least-squares procedures to obtain the estimated values \(\left(\mathbb{P}_{q}\right)\) of \(P_{q}\), i.e.:
\[
\begin{equation*}
\widehat{P}_{t} \approx c_{19}^{*}+c_{1}^{*} P_{S t}+c_{12} K_{t} P_{\text {fot }} \tag{B-1}
\end{equation*}
\]
where \(c_{i j}^{*}\) are the least-squares estimates of the coefficients \(c_{1 j}\).
(2) Substituting the estimated values \(\widehat{P}_{t}\) obtained from ( \(B-1\) ) for \(P_{t}\) in the food consumption relation and applying least-squares procedures again to obtain the estimated values ( \(\mathrm{c}_{\mathrm{ht}}\) ) of Ght, i.e.:
\[
\begin{equation*}
\hat{q}_{h t}^{*}=c_{29}^{*}+a_{21}^{*} \hat{P}_{t}+c_{23}^{*} P_{c t}+c_{24}^{*} G\left(I_{t}\right) \tag{B-2}
\end{equation*}
\]
where \(a_{i j}^{*}\) are the least-squares estimates of \(a_{i j}\).
(3) Substituting the estimated values \(\hat{P}_{\mathrm{I}}\) obtained from (B-1) into the feed consumption relation and applying the least-squares procedures again, i.e.:
\[
\begin{equation*}
\mathrm{q}_{\mathrm{ft}}=\mathrm{c}_{39}^{*}+\mathrm{a}_{3}^{*} \hat{\mathrm{P}}_{\mathrm{t}}+\mathrm{c}_{35}^{*} \mathrm{P}_{\text {fot }}+c_{36}^{*} \mathrm{~L}_{\mathrm{t}}+c_{37}^{*} \mathrm{D}_{\mathrm{t}} \tag{B-3}
\end{equation*}
\]
(4) Estimating the Government inventory relation by applying directly the ordnary least-squares procedures to obrain the estimated values \(\left(\hat{C}_{g t}\right)\) of \(C_{g t}\), i.e.:
\[
\begin{equation*}
\widehat{\mathrm{C}}_{g t}=\mathrm{c}_{49}^{*}+\mathrm{c}_{41}^{*} \mathrm{P}_{s t}+\mathrm{c}_{48}^{*} \overline{\mathrm{~K}}_{\mathrm{t}} \overline{\mathrm{D}}_{\mathrm{t}-2} \mathrm{O}_{\mathrm{t}}+\mathrm{b}_{44}^{*} \mathrm{C}_{\mathrm{gt}-1} \tag{B-4}
\end{equation*}
\]
where \(b_{i j}^{*}\) are the least-squares estmates of \(b_{i j}\).
(5) Substituting the estumated values \(\widehat{P}_{t}\) obtained from ( \(B-1\) ) and the estimated values \(\mathrm{C}_{\mathrm{gt}}\) obtafned from ( \(\mathrm{B}-4\) ) into the commercial inventory relation, and applying the ordinary least-squares procedures again, l.e.:
\[
\begin{equation*}
\mathrm{c}_{\mathrm{ct}}=\mathrm{c}_{59}^{*}+\mathrm{a}_{51}^{*} \widehat{\mathrm{P}}_{\mathrm{t}}+\mathrm{a}_{54}^{*} \widehat{\mathrm{C}}_{\mathrm{gt}}+\mathrm{b}_{55}^{*} \mathrm{C}_{\mathrm{ct-1}} \tag{B-5}
\end{equation*}
\]
(6) Substituting the estimated values \(\widehat{\mathrm{q}}\) t \({ }^{\text {obtained from ( }} \mathrm{B}-2\) ) into the export relation and applying the ordinary least-squares procedures again, i.e.:
\[
\begin{equation*}
q_{E_{t}}=c_{69}^{*}+a_{62}^{*} \hat{q}_{h t}^{*}+b_{64}^{*}\left(c_{c t-1}+c_{g t-1}\right)+b_{66}^{*} q_{E t-1} \tag{B-6}
\end{equation*}
\]

\section*{BASIC SAMPLE DATA}

Table C-1.--Basic sample data, endogenous variables
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Year \\
(c)
\end{tabular} & Average form price of wheat ( \(\mathrm{Pt}_{\mathrm{t}}\) ) & \begin{tabular}{l}
Per capita : whest consumption \\

\end{tabular} & Wheat used for feed (9ft) & Government wheat inventory ( Cgt ) & : Commer :
: cial
: wheat
inventory
: \(\left(C_{c t}\right)\) & Total U.S. whest exports (9Et) \\
\hline & \[
\begin{aligned}
& \mathrm{DOl}_{2} \text { per } \\
& \text { bu. }
\end{aligned}
\] & Bu. per capita & \begin{tabular}{l}
Mil. \\
bus.
\end{tabular} & \[
\begin{aligned}
& \text { Mil. } \\
& \text { bu. }
\end{aligned}
\] & \begin{tabular}{l}
Mil. \\
bu.
\end{tabular} & \[
\begin{aligned}
& \text { Mil. } \\
& \text { but. }
\end{aligned}
\] \\
\hline 1928 & 0.99 & 4,22 & 63.87 & 0 & 226.82 & 141.22 \\
\hline 1929 & 1.03 & 4.14 & 28.90 & 0 & 291.12 & 240.35 \\
\hline 1930 & 0.66 & 3.98 & 179.50 & 0 & 312.51 & 112,43 \\
\hline 1931 & 0.38 & 3.90 & 190.24 & 0 & 375.26 & 122,90 \\
\hline 1932 & 0.38 & 3.95 & 142.81 & 0 & 377.75 & 31.87 \\
\hline 1933 & 0.74 & 3.58 & 102,36 & 0 & 272.89 & 25.60 \\
\hline 1934 & 0.84 & 3.64 & 113.49 & 0 & 145.89 & 10.53 \\
\hline 1935 & 0.83 & 3.86 & 83.34 & 0 & 140.43 & 4.44 \\
\hline 1936 & 1.02 & 3.86 & 100.15 & 0 & 83.17 & 9.58 \\
\hline 1937 & 0.96 & 3.81 & 114.86 & 0 & 153.11 & 103.89 \\
\hline 1938 & 0.56 & 3.83 & 141.69 & 28.10 & 221.92 & 108.08 \\
\hline 1939 & 0.69 & 3.74 & 101.13 & 11.90 & 267.82 & 45,26 \\
\hline 1940 & 0.67 & 3.72 & 111.77 & 207.80 & 176.93 & 33.87 \\
\hline 1941 & 0.94 & 3.59 & 114.25 & 419.20 & 211.58 & 27.77 \\
\hline 1942 & \$.09 & 3.78 & 305.77 & 398.00 & 220.90 & 30.96 \\
\hline 1943 & 1.35 & 3.74 & 511.23 & 117.10 & 199.46 & 42.73 \\
\hline 1944 & 1.41 & 3.73 & 300.10 & 125.70 & 153.48 & 49.11 \\
\hline 1945 & 1.49 & 3.71 & 296.55 & 32.50 & 67.59 & 320.03 \\
\hline 1946 & 1.90 & 3.46 & 177.53 & 0.70 & 83.14 & 328.05 \\
\hline 1947 & 2,29 & 3.39 & 178.31 & 0.80 & 195.14 & 340,22 \\
\hline 1948 & 1,98 & 3.25 & 105.35 & 243.50 & 63.79 & 327.83 \\
\hline 1949 & 1.88 & 3.28 & 111.26 & 361.20 & 63.51 & 179.21 \\
\hline 1950 & 2.00 & 3.19 & 108.81 & 207.60 & 192.27 & 334.51 \\
\hline 1951 & 2.11 & 3.18 & 102.40 & 154.90 & 101.08 & 470.35 \\
\hline 1952 & 2.09 & 3.09 & 82.48 & 492.50 & 113.04 & 315.65 \\
\hline 1953 & 2.04 & 3.03 & 76.64 & 849.90 & 83.61 & 215.70 \\
\hline 1954 & 2.12 & 2.97 & 60.07 & 990.00 & 46.18 & 273.42 \\
\hline 1955 & 1.98 & 2.89 & 53.14 & 976.60 & 53.89 & 346.27 \\
\hline 1956 & 1.97 & 2,84 & 47.40 & 836.70 & 72.13 & 549.54 \\
\hline 1957 & 1.93 & 2.82 & 41.98 & 853.10 & 28.27 & 402.92 \\
\hline 1958 & 1.75 & 2.83 & 46.86 & 1,242,70 & 52.37 & 443.29 \\
\hline 1959 & 1.76 & 2.80 & 40.78 & 1,287.40 & 26.12 & 510.24 \\
\hline 1960 & 1.74 & 2.80 & 45.73 & 1,367.90 & 43.28 & 661.95 \\
\hline 1961 & 1.83 & 2.71 & 54.39 & 1,191.60 & 130.27 & 719.86 \\
\hline 1962 & : 2.04 & 2.69 & 21.38 & 1,188,90 & 6.03 & 642.30 \\
\hline 1963 & : 1.85 & 2.67 & 12.34 & 881.50 & 19.69 & 858.70 \\
\hline 1964 & 1.38 & 2,67 & 70,02 & 705.50 & 113.41 & 728,00 \\
\hline
\end{tabular}

Table C-2,--Basle sample data, exogenous variables


\section*{APPENDIX D}

\section*{METHOD OF DETERMINING THE STABILITY OF A DYNAMIC SYSTEM}

The dynamic system ( \(\mathrm{D}-1\) ) is a stable system, if the matrix \(D_{1}^{k}\) approaches a null matrix as k increases.
\[
\begin{equation*}
y_{t}=D_{1} y_{t-1}+D_{2} x_{t} \tag{D-1}
\end{equation*}
\]
where
\(y_{t}=a\) vector of endogenous variables in the system at time \(t\),
\(y_{t-1}=\) a vector of lagged endogenous variables in the system at time t-1,
\(x_{t}=a\) vector of exogenous variables in the system at tume \(t\),
\(D_{1}\) and \(D_{2}\) are coefficient matrices.
The matrix \(D_{1}^{k}\) will approach a null matrix if the latent roots of the matrix \(D_{1}\) are all in the interior of the unit circle. Hence, the stability of the dynamic system (D-1) is determined by the magnitude of the maximum (dominant) latent root of the matrix \(D_{\mathrm{I}}\). The latent root of matrix \(D_{1}\) is defined as a scalar \(w\) such that the determinant \(\left|D_{1}-w l\right|=0\), where \(I\) is the identity matrix. The determinant \(\left|D_{1}-w i\right|=0\) can be expressed in terms of a polynomial \(F_{0}(w)\) of \(n-t h\) degree in \(w\) as ( \(\mathrm{D}-2\) ), \(n\) is the rank of the matrix \(\mathrm{D}_{1}\) and the roots of ( \(\mathrm{D}-2\) ) are the latent roots of \(\mathrm{D}_{1}\) :
\[
\begin{equation*}
F_{o}(w)=d_{n^{w}} w^{n}+d_{n-1} w^{n-1}+\ldots+d_{1} w+d_{0}=0 \tag{D-2}
\end{equation*}
\]
where
\[
a_{n}>0
\]

Without the use of a computer, finding the roots of (D-2) may be quite cime consuming, eapecially if \(n\) is large. But fortunately, there is a relatively simple method with which we can determine whether or not all the roots of ( \(\mathrm{D}-2\) ) are in the interior of the open unit circle without solving for the roons themselves. This method was introduced recently by Jury. 1 / The necessary and sufficient conditions for the roots of ( \(\mathrm{D}-2\) ) being in the interior of unit circle are simply the following three condtions, (D-3), (D-4), and (D-5):
\[
\begin{align*}
& F_{0}(w=1)>0  \tag{D-3}\\
& F_{0}(w=-1)<0, \text { if } n \text { is an odd number; or } \\
& F_{0}(w=-1)>0, \text { if } n \text { is an even number, and }  \tag{D-4}\\
& \left|s_{1}\right|<1, \text { for } 1=0,1,2, \ldots, n-2 . \tag{D-5}
\end{align*}
\]

\footnotetext{
1/ E. I. Jury, "A Stability Test for Linear Dibcrete Systems Using a Simple Division," Institute of Radio Engineers Proceeding, Vol. 49, No. 2, December 1961, pp. 1948-49.
}

Conditions (D-3) and (D-4) can be easily checked by substating 1 or -1 for \(w\) in ( \(D-2\) ). If they are not satisfied, then it can be established that (D-2) has at least one root that is not in the interior of the unit circle and, consequently, the dynamic system associated with (D-2) is an unstable dynamic system. There is then no need to check condition (D-5). Condidon (D-5) has to be checked only when (D-3) and (D-4) are satisfied. The values of \(s_{i}\) in (Dn5) can be obtained as follows:

Given a polynomial such as (D-2), we define the reverse polynomial \(\mathrm{F}_{\mathrm{o}}{ }^{-1}(\mathrm{w})\) of (D-2) as (D-6):
\[
\begin{align*}
F_{o}^{-1}(w) & =w^{n} F_{o}(1 / w) \\
& =w^{n}\left[d_{n}(1 / w)^{n}+d_{n-1}(1 / w)^{n-1}+\ldots+d_{l}(1 / w)+d_{o}\right] \\
& =d_{o} w^{n}+d_{1} w^{n-1}+\ldots+d_{n-1} w+d_{n} \tag{D-6}
\end{align*}
\]

By comparing (D-2) with (D-6), we can see that the only difference is that the coefficients are reversed.

Dividing (D-6) by (D-2), we obtain one quocient term so and a remainder \(\mathrm{F}_{1}^{-1(w) \text { as indicated in (D-7). }}\)
\[
\begin{equation*}
\frac{F_{0}^{-1}(w)}{F_{0}(w)}=s_{0}+\frac{F T^{1}(w)}{F_{0}(w)} \tag{D-7}
\end{equation*}
\]

The remainder \(\mathrm{F}_{1}^{-1}(w)\) will be a polynomial of degree \(n-1\), and the quotent term \(s_{0}\) is simply equal to \(d_{0} / d_{n}\). The other successive quotient term \(s_{i}\) (for \(i=1,2, \ldots, n-2\) ) can be obtained by the following recursive relation (D-8):
\[
\begin{equation*}
\frac{F_{i}^{-1}(w)}{F_{i}(w)}=s_{i}+\frac{F_{i}^{-1}(w)}{F_{1}(w)} \quad \text { for } i=0,1,2, \ldots, n-2 . \tag{D-8}
\end{equation*}
\]

The estimated empirical reduced-form coefficient matrix \(D_{1}\) obtained from the ordinary least-squares estimated structure is given In \(D_{1}\) of appendix \(E\). For the purpose of checking the stability of the estimated dymamicsystem, we delete the first three rows and the first three columns of the estimated matrix \(D_{1}\) because the rank of the matrix \(D_{1}\) is three in this case, and consider the following characteristic polynomial:
\[
F_{0}(w)=\left|\begin{array}{cll}
0.7446-w & 0.0000 & 0.0000 \\
-0.0314 & 0.3635-w & 0.0000 \\
0.0967 & 0.0967 & 0.6494-w
\end{array}\right|=0
\]

Or
\[
\begin{equation*}
F_{0}(w)=w^{3}-1.7575 w^{2}+0.9903 w-0.1758=0 \tag{D-9}
\end{equation*}
\]

By substituting 1 and -1 for \(w\) in ( \(D-9\) ), we obtain:
\[
\begin{align*}
& F_{o}(w=1)=0.0570>0  \tag{O-10}\\
& F_{o}(h=-1)=-3.9236<0 \quad(n=3, \text { odd number })
\end{align*}
\]

Since both condtrions (D-3) and (D-4) are satisfied in (D-10) and (D-I1), we therefore proceed to check condtiton (D-5):
\[
\begin{aligned}
\frac{F_{0}^{-1}(w)}{F_{o}(w)} & =\frac{-0.1758 w^{3}+0.9903 w^{2}-1.7575 w+1}{w^{3}-1.7575 w^{2}+0.9903 w-0.1758} \\
& =-0.1758+\frac{0.6813 w^{2}-1.5834 w+0.9691}{w^{3}-1.7575 w^{2}+0.9903 w-0.1758}
\end{aligned}
\]
and
\[
\begin{aligned}
\frac{F_{1}^{-1}(w)}{F_{1}^{(w)}} & =\frac{0.6813 w^{2}-1.5834 w+0.9691}{0.9691 w^{2}-1.5834 w+0.6813} \\
& =0.7030+\frac{-0.4703 w+0.4901}{0.9691 w^{2}-1.5834 w+0.6813}
\end{aligned}
\]

Because \(n=3\), we have to check the absolute value of \(s_{0}\) and \(s_{1}\). In our case, the absolute value of \(s_{0}\) is 0.1758 and the absolute value of \(s_{1}\) is 0.7030 . Since they are both less than one, condition (D-5) is satisfted. Hence, the estmated dynamic system obtained from the ordinary least-squares method is a stable dynamic system. Similarly, it can be shown that the estimated dynamic system obtalned from the two-round least-squares method is also stable.

\section*{APPENDIX E}

ESTIMATION OF THE DERIVED REDUCED-FORM COEFFICIENT MATREX OF THE STRUCTURE AND THE SHORT-RUN AND LONG-RUN IMPACT MULTIPLIER MATRICES

Structural System:
\[
A y_{t}+B y_{t-1}+C x_{t}=u_{t}
\]

\section*{Derived Reduced Form:}
\[
y_{t}=D_{1} y_{t-1}+D_{2} x_{t}+v_{t}
\]
where
\[
D_{1}=-A^{-I_{B}}
\]
\[
\mathrm{D}_{2}=-\mathrm{A}^{-1} \mathrm{C}
\]
and
\[
v_{q}=A^{-1} u_{t}
\]

Short-Run Impact Multiplier Matrix:
\[
\mathrm{D}_{2}=-\mathrm{A}^{-1} \mathrm{C}
\]

Long-Run Impact Multplier Matrix:
\[
\left(I-D_{1}\right)^{-1} D_{2}=-\left(I+A^{-1} B\right)^{-1} A^{-1} C
\]

Ordinary Least-Squares Estimates (1928-1964):


Structursl Coefficient Metrix: B


Structural Coefficient Matrix: C


Inverse Matrix: \(-A^{-1}\)


Short-Run Impact Multiplier Matrix: \(D_{2}=-A^{-1} C\)


Derived Reduced-Form Coefficient Matrix: \(D_{1}=-A^{-1} B\)



Long-Run Impact Multiplier Matrix: \(\left(1-D_{1}\right)^{-1} D_{2}\)


\section*{APPENDIX F}

\section*{ESTIMATION OF THE k-PERIODS IMPACT MULTIPLIER MATRICES}
k-periods Impact Multiplier Matrix:
\[
\left(1+D_{1}+D_{1}^{2}+\ldots+D_{1}^{k-1}\right) D_{2}
\]

Ordinary least-squares estmates (1928-64);



```

