

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TESI CHART national bureau of stanoards-1963-A

Botanical Descriptions of Forty Artificial

Pine Aybrids

By ELBERT L. LITTLLE, JR., and FRANCIS I. RIGHTER

The authors are, respectively, dendrologist, Forest Service, U.S. Department of Agriculture, Washington, D.C., and geneticist (retired), Institute of Forest Genetics, Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Berkeloy, Calif.

Technical Bulletin No. 1345
Ǔ.S. DEPARTMENT OF AGRICUETURE - FOREST SERVICE
Washington, D.('. 20250
October 1965

[^0]
CONTENTS

Pane
lntroduction]
Review of fiternture 2
Procedure 2
Designating hybrid forest trees 3
Descriptions 4
Sofl pine hybrids, Pinus subrenas Strobus FIaplorylon(l).. 5
Pinus lambertiana Dongl. $\times P$. armandii Franch. (ig. 1) 5
Pinus lambertiana Dougl. \times P' koraiensis Sieb. \& Zuce. 6
Pinus flexilis James $\times P$. strobiformis Engelm ${ }^{6}$
Pinus monticola Dougl. $\times P$. strobiformis Engelm. 7
Pinus monticola Dougl. \times P. flexilas James S
Pinus monticola Dongl. $X P$. strobus L. and reciprocal cross (fig. 2) 8
Pinus monticola Dough. \times P. peuce Grisob. 10
Pinus peuce Criseb. $\times P^{P}$. strobus L. 11
Pinus flexilis dames $\times P$. priffthii McClelland (fig. 3). 11
Pinus strobus L. $\times I^{\prime}$. griffthii MeClelland, P. Xschoveriniu Fitschen (Gg. 2) 12
Pinus monticola Dougl. X P. ariffithii MeClelland (fis. 2) 14
Hard pine hybrids, Pinus subgenus Pinus (Diploxylon) 15
Pinus nigra Arnold $\times P$. resinose Ait. (fig. 4) 15
Pinus elliottii Engelm. \times P. palustris Mill. and reciprocal cross 17
Pinus elliottio Engelm. $\times P$. taeda L. and reciprocal cross (fig. 5) 17
Pinus echinata Mill. \times P. elliottii Engelm. (fig. 5) 18
Pinus echinata Miill. $\times P$. taeda L. (fig. 5) 19
Pinus pungens Lumb. \times P. echinata Mill. (fig. 4) 20
Pinus rigida Mill. \times P. echinata Mill. and reciprocal cross (fig. 5) 21
Pinus rigida Mill. \times P. taeda L. ($\mathrm{fig}, 5$) 23
Pinus rigida Mill. \times. serotina Michs. (fig. 4) 23
Penus ponderosa Laws. var. ponderosa X var. arizonica (Engolm.) Shaw 24
Pinus ponderosa Laws. var. ponderosa \times P. montezumate Lamb). (fig. 6) 25
Pinus ponderosa Laws. var. scopulorum Engelm. $\times P$. montesumae Lamb. (fig. 6) 26
Pinus engelmannii Curr, $\times P$. montezumae Lnmb. 27
Pinus jeffreyi Grov. \& Balf. \times P. montezumac Lamb 28
Pinus ponderosa Laws. var. ponderosa $\times P$. engelmannii Carr. and reciprocal cross (igg. 6) 28
Pinus engelmannii Carr. $\times P$. ponderosa var. arizon:a (Engelm.) Shaw. 30
Pinas engelmanniz Cars. $\times P$. ponderosa var. scopulorum Engelm. and reciprocal cross 30
Pinus jeffreyi Grev. \& Bali. X P. ponderose Laws. var. ponderosa and reciprocal cross (fig. 6) 31
Pinus jeffreyi Grov, \& Balf. $\times P^{\prime}$. ponderosa var. scopu- lorum Engelm. 32
Pinus jeffreyi Grov. \& Balí. x p. washoensis Mason \& Stockwell 33
Pinus vashoensis Mason \& Slockwell \times P. ponderosa Laws. var. ponderosia and reciproeal cross 34
Pinuts washocnsis Minson \& Slockwell $\times P$. ponderosa var. scopuloram Engelm 34
Pinus jeflreyi (irev. \& Bulf. ※ I^{2}. coulteri D. Don (fig. 7) 35
Pinus contorta vat, marrayana (Grev. \& Balf.) Engelm. \times P. bambsuna Inamb, P. Xnturraybanksiana Rightor \& Stockwell (lig. 8). 36
Pinus virginiana Mill. $\times \mathrm{F}$. clausa (Chapm.) Vasey (fig. 8).. 38
Pinus patula schiede \& Deppe $\times P$. greggii Engelm. 39
Pinus patula Schiede \& Deppe $\times P$ radiata D. Don 40
Pinas atlenatato Lemm. $\times P$. radiata D. Don, P. Xat- lenuradiata Stackwoll \& Righter (fig. 8) 41
Pinus athenuata lemm. X I^{\prime}. muricata D. Don (P. re' mortla Mason) (hig. S) 42
Discussion 43
Summary 44
Literature eited 44

INTRODUCTION

Botanical descripions of 40 artificial first-generation pine hybrids (genus Pinms) growing at the Lnstitute of Forest (enetics, Phacerville, Calit., fre rerorded here. These inelude 3.t first-geneation (F_{1}) interspecific hybrids from 3:2 species, 5 additional crosses involving at different ratiety of one of the parent species, and i intervacital hybricl.
Many of these hybrids and other hybrids from the Iustitute are being tested to determine their udaptability and economie nerformance in various lowalities. Those tound superior to the standard, or commonly used, form in a partienlar locality may be plated widely. For example, one hybrid has been under mass production sinco iant in South Korea ($2,2,2.3$)." Others may serve as breeding stock for additional crosses and for thrther tests to determine inheritance of chazacteers.

These botanient or taxonomir descriptions, acompanied by herbarium speciment, will document these artificial hybeids, will desigmate them by formulas, will add in identification of supposed or artifirial hybrids and, by compurison with similar crosses elsewhere, will form the buses for studies of inheritance of various morphological chatacters.

Needle charateristics of most of these hybrid pines and their parental species are compared in tables presented by Keng and Little (25).

Performance tests of these hybrids will be published later. Several other F, hybrids, including some too small in 1962 for adefuate comparison mad deseription, will be reported hater.

The Instilule has other hybrids wot reported here. Some are between varieties of the satme spenies. Others ate backecrosses, secondgoneration (F_{2}) hybrids, and hybrids with three and four species in their pedigreps. No attempt wifl be made to describe these beause of their rartability. Individuals within progenies are highly variable as a result of expected segregation and recombination of parental chatracters.

Records on the parents, including geurraphical source, of these hybrids are on file at the Institute. Some of the parent trees are growing in the Eddy Arioret mm. Some of these crosses have been made at other phares, and a few are known also as natual hybrids. We have not compared theso hybrids with others elsewhere. Howover, the descriptions would serve that purpose. Minor or major diflerences in certain traits might ocetr in the same hybrid if it was made from parents or raves other than those nsed at the Institute.

Acknowledrment is due the staff of the Institute for their painstaking work in producing these pine hybrids. Their critical attention to cross-pollination, sed haurling, sewing in the musery, outplanting, and core in the arboretmon wasie to the sucesss of the hybridization program at the Instifute.

[^1]
REVIEW OF LJTERATURE

Several detailed summaries of intersperifo hybrids in the genus Pinus bave been made. Duffield (14) made a thenomic revision of subsection Pinuster of the hard pines that was based chiefly on crossing resulta obtained at the fustitute. If right (88) sompiled the species crosses in the b-needle white pines. Weteht and Gabriel (49) summatized data on nomerous chatactens of species hymids in series Latriciones (Syluestes) of the but pues. Critebitiold (ID) summarized the crossability of the pimes of Sounhentem Irited States. Schatt (10), in a comprelensive review, presented a compilation of hybeids in this genus.
The Eddy Arboretum of the hastitate probably comans the most inclusive collection of pines in the word: Abon fir spectes, numerous varieties of varions species, and some po hyprid combinations, inehuding first-gencration (F_{t}), second-gencation (F), barkerosses, and
 have been mentioned in previnus arlieles ($12-15,525,20,37$).
Two of these interspecifir hybids previously deseribed tormatly with Satin mmes have been inchuded here for comparison and reference. They are Pimus \times atlenuraluta Stockwoll \& Righter ($/ 6$) -or P. uttenahta Lemm. $\times P$. rudiath D. Don-and Pinus \times murnc.jbenk-
 \& Balf.) Engelm. $\times l^{\prime}$, banksima Lamb.

Entomologists have investigned the suseptibility of hybrids and their parents at the tastitufe to several destmetive forest insects. Miller (30), (ithaham (9), and Smith (43) have reported on resistance and susceptibility of 11 F , hybrids, other bybrids, and species to
 (4) has stadied resistane of hybrids and their parents to Dendroc-
 sistance of sereal li, hybrids and parent speries to the pine needesheath miner, Zelleriu haimbuchi Busek.

Itybids produred tht the Institute have been subjects for sundry studes. These ne rariewed following the deseription of the hybrid to which they pertain.

PROCEDURE

Rotanden descriptions are based upon living piants growing at the tastitute. They were prepared hargely by the senior author white he was working at the Lastimte in fune Angust That, August-Sieptember 1936, and Aprid-May 1962. ILe added a tew additional details, mostly about comes, in June fuly tocid. The junior anthor made or hetped make many of these hybrids, idenified and selected most of them in the mursery, and for many yeas superysed the Institutes pino hybridization remomissmae.

Limerons plants ot most hytrids wero arimbin for study, though several hybrids wepe represented by only a fow individuats. Many aroses had heom made more that one from parents of diferent locilities. Several recipronl crosses weme represented. Isually, hybrids nud nonhybrd progeny of the sume serd parent and same nge were phated side by side; themfore, they fould be readily compared. In
the study of needle characters of these hybrids by Keng and Littie (25), the samples we o selected at random.

Herbariun specimens were collected by the senior author from one representative tree of each hybrid. Where possible, trees bearing cones wero selected. Most collections were made in August and September, when twigs had formed dormant buds. A few collections of old cones were made later. To document these hybrids, duplicate sets of sperimens have been deposited in the following herburia: Institute of Forest Cenetics, Placerville, Colit.; Forest Service Herbarium, Washington, D.C.; Amold Arboretum, Harvard Tniversity; and Bailey Hortoriam, Cornell University.

DESIGNATING HYBRID FOREST TREES

luterspecilie plant hybrids may be designated by a formula or, when nse ful or nexessary, by a Latin binary or "specific" name, according to the International ('ode of Botanical Nomenclature. Hybrids of cultirated plants are given distinctive variety (eultivar) names, or common names, in modern linguares, based on the International Code of Nomendature for ('ultivated Plants. Many natural inierspecific hyprids of forest trees and a few artificial hybrids have been given Latin or scientific names. I Soth methods have been compared by Little (28). Fo reported that most forest reneticists in the Cnited States, inchuding those serving on the Committee on Forest Tree Improvement of the Hociety of Americin Foresters, proferved formulas, opposed Latin binomials, and endorsed the International Code of Nomenclature for (cultivated Plants for maming varieties (cultivars) in modern languares.

Thus, no new Latin names are proposed here, though two hybrids reported here had been previously named and a few othors already possesse Intin binomials. The International Code of Nomenclature for ('ultivated Phants (Article to) requests that a variety (cultivar) name be given to the particular deseribed plants when an interspecific hybrid or similar hybrid is introduced into cultivation. This original hybride cm then be distinguished from other, and perhaps different, crosses mada later from the same parent species.

As rultiwation and commereial produetion are just begiming for a Pew Pherville hybrids, it seens umecessiny to assign variety (cultirar) mones now. (Of course, those hybrids of demonstrated value that are worthy of production in quantity will be given distinctive variety (cultivar) names in due course. Teanwhile, the term "Placerrilje hybrid" will, when clesirable. distinguish these from crosses of similat parentage made elsewhere.

It is hoped that plant taxonomists likewise will refrain from publishing Latin binary names for the interspecific hybrids described in this bulbetin and thereby avoid londing the scientific nomenclature wirin unnecessary names.

Formulas designate the hybrids described here. The female parent. or seed parent, is listed first, followed by the male parant, or pollen parent. Reciprom crosses made at the Tnstitute are mentioned also. In such cases the formula corresponds to the cross as it was first made at the Institute. Any linary names previously given to interspecitic hyhrids are cited as synonyms. Common names
and ranges of parents are inclucled. Citations of place of publication of accepted scientific names of patents have been added for reference and for precision in nomenclature.

Nomenclature of the species and varieties of Pinus native to the
 exceptions. The white pine of the Mexican border region is designated as a separate species, Pinus atrobiformis Engelm., sonthwesterm white pine, instead of P. flexilis var. reflea; Engolm. The Rocky Mountain variation of ponderosa pine is distugnished here as a variety, P. ponderosa var. scopulonuan Engelm., Rocky Mountain ponderosa pine. Lodgepole pine in Sierra Nevada is distinet, according to Critchfield (1), and is accepted here as a variety, P. controta var. morrayana. (Grev, \& Balf.) Engeim., Sierra lodgepole pine. Also, P. muricata D . Don, bishop pine, of the Check List and this bulletin, includes the form separated by sone authors as P. remorata Mason.

DESCRIPTIONS

The hybrids are listed and described approximately as in the natural classification by Shaw (47) and the groups by Duffield (14). This order was followed also by Keng and Little (05) in their tabulations of the needle anatomy of most of these hybrids. The botanical or taxonomic descriptions emphasize characters in which the two parent species differ. Parts described include bark, twig, bud, leaves, and needle anatomy in cross section (middle portion). Some hybrid plants were young and had not produced cones. However, for most of these hybrids, male strobili (male cones or pollen cones), female or orulate strobili at pollination, the year-old conelets, cones, and seed are described.

The general statement "tree intermediate between parents" could have been inserted in each botaniend description. These hybrids can be identified and recognized by their taxonomic or morphological characters partly between the well-known, published descriptions of the parent species (or rarieties). The overall impression of each hybrid from in integration of all characters is intermediacy. Un(loubtedy most traits, and particularly those governing overall tree size and form, are governed by n number of genes with additive effects. However, miny traits of hybrids having taxonomic value are not intermediate between the pareit species. In some characters the hybrids may be nearer or iike one parent or the other.

After each description the herbarimen specimen of a representative hybrid tree is cited by Little's collection number. The Institute's symbols for the parent species, individual tree number, and row/line position of the tree in the arboretum are given in parentheses. These symbols, numbers, and locations are described by Liddicoet and Righter (26).

Also, each hybrid and its parents are compared briefly with respect to the characters by which the parents differ. No attempt has heen made to tirbuhte similarities or differences. The history of this hybrid at the Institute is mentioned with years of pollimations and sowing of seeds. Information on the approximate numbers of progeny and the sizes of the oldest when studied or when measured at the age of 10 or 20 years tisually is given. Measurements in the botanical
descriptions follow the metric system, but tree heights and diameters are in feet and inches, according to forestry practice in the United States.

Cones of 22 hybrids are compared with cones of the parents (figs. 1-8). One fairly cypical cone is used to illustrate the intermediate character of the cones in size, shape, and number of scales.

SOFT PINE HYBRIDS, PINUS SUBGENUS STROBUS (HAPLOXYLON)

Eleven hybrids and 1 reciprocal cross involve 9 species of soft pines (Pinus subgenus Strobus, formerly Haploxylon). One of these, P. peuce \times strobus. was not produced at the Institute. Five of the 12 species of soft pines mative in the United States are represented. The other 4 species crossed ure introduced.

Pinus lambertiana \times armandii
 Sugar pine \times Armand pine (fig. 1)

Artificial hybrid between Pinus lambertiana Dougl. (Linn. Soc. London Trans. $15: 500.1827$), of Pacific coast region of North America, and Pinus armandii Franch. (Paris Mus. Hist. Nat. Nouv. Arch. Sér. 2, 7: 95-96, t. 12. 1885), of China, Taiwan, and Japan. Bark of small trunks slaty gray, smooth. T'wigs light greenish to tan and slightly glaucous, nearly glabrous but slightly and minutely puberulent, beconing light brownish gray and glabrous. Buds conie, acummate, slightly or not resinous. Leaves 5 in a fascicle, slender, flexible, and spreading, $7-11 \mathrm{~cm}$. long, acuminate, serrulate, green; stomata none on dorsil surface, $3-\overline{0}$ rows on each ventral surface. Needle tnatomy in cross section: Ifypodermis uniform, of 1 layer of cells; resin canals \mathscr{O} dorsal external and sometimes also 1 ventral medial.
Male strobili cylindric or ovoid, $7-13 \mathrm{~mm}$. long, 45 mm . in diameter, light yellow, becoming light pink on drying. Conelets single or paired, after pollination erect, long-stalked, cylindric. Cone (description based upon 1 maturing in 1962) pendent on stout peduacle 4 cm . long, narrow cylindric, 18 cm . long, 9.5 cm . across when open; apophyses slightly thickened, with lines and grooves and usuaily a weak central ridge, rounded and slightly curved outward at apex, fulvous brown, with terminal obtuse umbo slightly raised and usually bearing resin; basal scales spreading to cefexecl. Seeds dark brown, com,osed of ovoid body about 8 mm . long and oblong wing $10-14$ mm . long. Specimens: Little y 123 (Tree Lam 4, 169/42); 18818 (Tree LAm 1, 169/40).
The hybrid resembles Pinus armandii in absence of dorsal stomata on leaves and in the slightly glaucous, nearly glabrous twigs but, is like P. lambertiant in having usually 2 resin canals in the leaves. The single hybrich cone is intermediate in size and has lines and ridge on apophyses as in P. armandii. Seeds have a relatively short wing intermediate bet ween the rudimentary wing in P. armandii and the long wing in P. lambertiana.
Four seeds resulted from pollination in 1946 but failed to germinate. The 7 seeds from pollination in 1947 were germinated in 1949 by Stone and Duffeld (47) after the seedcont was removed. The 5

Surviving phants were normal and up to 6 feet in height by June 1956 and $2-10$ feet high at 10 years of age. Two plats from another pollination in 1947 were germinated in 1051 by a similar technique and were 2 and 5 feet in height at 10 yeurs. Three more plants were obtained without special culture from pollination in 1957. Seed were sown and germinated in 1959.

Pinus lambertiana \times koraiensìs Sugar pine \times Korean pine

Artificial hybrid between Pinus lambertiana Dougl. (Linn. Soc. London Trans. 15: 200. 1827), of the Pacific coast regrion of North . Imerica, and Pinus koraiensis Sieb. \& Zucc. (Fl. Jap. 2: 28, t. 116, fig. 5-6. 1844), of northeastern Asia from Manchuria and eastern Siberia to Korea and Japan. Twigs tan, densely puberulent, later light gray and glabrous. Buds conic, acuminate, sliphtly or not resinous. Leaves 5 in a fascicle, slender, flexible, spreading, $5-7 \mathrm{~cm}$. Iong (small plant), acuminate, serrulate, green: stomata none on dorsal surface, $3-4$ rows on each vent ral surface. Needle anatomy in cross section: Fypodermis uniform, of I layer of cells: resin canals 3,2 dorsmi exterma, or 1 extemal and 1 medial (or often subexternal), and also 1 ventral medial, the epithelial cells thin-walled, sometimes thickwalled. Specimen: 17104 (Tree LK 1, 169/45).
The hybrid resembles Pinus koraiensis in the tan twigs, absence of dorsal stomata on leaves, and needle anatomy with hypodermis of 1 layer of cells and with 3 resin cmals bordered by usually thin-walled epithelial cells. The position of the 3 resin canals in the hybrid is distinctive and intermediate between the medial position of P. lorraiensis and the external position of P. lambertiana.

Stone and Duffield (4r), after removing the seedcont, succeeded in germinating in 1949 the single seed resulting from pollination in 1947. In June 1956 this plant was less than 3 feet high and in 1959, at 10 years of age it was 5.2 feet high.

Pinus fexilis \times strobiformis Limber pine \times southwestern white pine

Artificial hybrid between Pinus flexilis James (Exped. Rocky Mts. 2:25. 35 . 1823), of western North America, and Pinus strobiformis Engelm. (in Wisliz, Mem. Tour North. Mex. 102. 1848); P. fexilis var. vefleca Engelm.), of northern Mexico and adjacent Arizona and New Mexico. Twigs slender, ghacous, whitish green when young, minutely puberulent or glabrons, the second year becoming light gray, older twigs gray, smooth. Buds light brown, the attemuate scales whitish bordered, not resinous. Leaves 5 in a fascicle. slender. flexible, straight, spreading, $5-8 \mathrm{~cm}$. long, $0.9-1.2 \mathrm{~mm}$. wide, acuminate, slightly serrulate at and near apex, whitish green; womatal rows 1-3 on deep dorsal surface and $3-5$ on each glaucous, winitish ventral surface. Needle anatomy in cross section: Eypodermis uniform, of 1 layer of slightly thick-walled cells; resin canals external, 2 , sometimes 3 or 4,2 dorsal and sometimes also 1 or 2 smaller ventral; transfusion tissue without thick-walled cells or these scattered. Specimen: 797.89 (Tree FStr 6, 175/46).
The two related species, often regarded as varieties of one, are similar in needle characters. Pinus flexilis usually has entire needles

F-810123
Ftorne 7.-Cones, left to right. Pinus lambertiana, P. Iambertiana \times armandii, and P^{\prime}. armandii. One-fourth natural size.
with 2-4 rows of dorsul stomath, while P. strobiformis usuatly has serrulate, more slender needles without dorsal stomata or sometimes with 1 or 2 rows. Small phants of the hybrid are intermediate in having needles slighty serrulate at apex and often in the apical one-fourth and with $1-3$ rows of dorsal stomata. The parents and hybrid are scarcely distinguishable in needle anatomy.

This ross with female parent from Calitomia and male parent from C'biricmhar Mountains, Ariz, was made in 1955. Five plants from seed sown in 1957 were about 1.5 teet high by the end of 1961.

Pinus monticola \times strobiformis Western white pine \times southwestern white pine

Awticial hybud beween Pinhe montionly Dourl. (ex D. Don in Lamb., Descr. (renus Pinus. Ed. $3\left(8^{\circ}\right)$, v. 2, umumbered p. between
 ('olumbin, and rimus strobiformis Engelm. (in Wistiz, Mem. Tour North, Mex. 102. 18t8: P'. ffexilis var. reflexa Engelm.), of northern Mexiso and adjacent Arizona and New Mexico. Twigs hight brownish green, densely reddisi-brown puberulent, the second year becoming
light gray and glabrous. Buds conic, acuminate, not resinous. Leaves 5 in a fascicle, slender, flexible, $6-8 \mathrm{~cm}$. long, acuminate, slightly serrulate, green; stomata none or 1 row on dorsal surface, $2-4$ rows on each ventral surface. Needle anatomy in cross section: Stomata slightly sunken; hypodermis uniform, of 1 or sometimes 2 layers of slightily thick-walled cells; resin canals external, 2 , sometimes 3 or 1 , 182/57).

Hybrid plants resemble Pinus monticola in most characters, such as the densely puberulent twigs, but have lighter green foliage and greatly exceed in vigor the nonhybrid progeay of that parent. Though needle anatomy of parents is similar, the hybrid is like P. monticola in variability of resin canals.
The male parent came from the Chiricahua Mountains of Arizona. Eight normal plants obtained from pollination in 1946 and seed sown in 1949 weye about 4 feet high in June 1956 and about 12 feet high by
the end of 1961 .

Pinus monticola \times fexilis Western white pine \times limber pine

Artificial hybrid between Pimus monticola Dougl. (ex D. Don in Lamb., Deser. Genus Pinus. Ed. $3\left(8^{\circ}\right), \nabla .2$, unnumbered p. between pp. 144-145. 1832), of Western (Tnited States and southern British Columbia, and Pinus flexilis James (Exped. Rocky Mts. 2:27, 35. 1823), of western North America. Twigs slender, plaucous, whitish green when young, minutely puberulent with pinkish hairs when young, becoming tan and the second year light gray, smooth. Buds light brown, conic, acuminate, not resinous. Leaves 5 in a fascicle, slender, flexible, straight, spreading, 46 cm . long (small plants), acuminate, with few teeth near apex or entire, whitish green; stomatai rows $1-2$ (3) dorsal and $3-5$ rows on each ventral surface. Needle anatomy in cross section: Hypodermis uniform, of I layer of slightly thick-walled cells; resin canals external, 2 dorsal, transfusion fissue without thick-walied cells. Specimen: 1914,1 (Tree MtF 1, 178/41).

The parent species and hybrid are similar in most. needle characters. Needles of small hybrid pliants have dorsal stomata as in Pimus feaxilis, though fewer, but are like P monticola in having usunlly a few teeth neat tupex, hypodermis of 1 layer of cells, and no thick-walled cells in transfusion tissue.
This cross was made in 1955. Two plants from seed sown in 1957 averaged about 2 feet high in 1964.

Pinus monticola \times strobus Western white pine \times eastern white pine (fig. 2)

Also reciprocal cross. Artificial hybrid between Pinus monticola Dougl. (ex D. Don in Lamb. Descr. Genus Pinus. Ed. $3\left(8^{\circ}\right) . v^{\circ} 2$, unnumbered p. between pp. 144-145. 1832), of Western Enited States and southern British Columbia, and Phus strobus L. (Sp. Pl. 1001. 1753), of eastern North America. Burk of smanl trunks slaty gray. smooth. Twigs when young light green and minutely pinkish or reddish brown puberulent, becoming light gray. Bads conic, acuminate, not resinous. Leaves 5 in a fascicle, slender, flexible, $5-9$ cm . long (small plants), acute-acuminate, servulate, green; stomata

8-510126

 atrobsw. Gne-thard matura! siza.
none on dorsal surface, $3-5$ rows on each ventral surface. Need anatomy in cross section: Itypodermis unform, of 1 (rmely 2) layer of slighily thicle-walled eclis: resin cmats external. 2 domal, sometimes also I ventral, with thin- or think-walled epithelial cells.

Year-old conelets erect, short cylindric, about 2 cm . long, 1 cm . in diameter. Cones single or parred, sometimes in whorls of 3 or 4 , pendent on peduncles $2-4 \mathrm{~cm}$. Iong, narrow cylindric, often slightly curved, $8-15 \mathrm{~cm}$. long, $2-2.5 \mathrm{~cm}$. in dirmeter when closed, $5.5-6 \mathrm{~cm}$. in diameter when open; apophyses thin. smooth, flat and conforming to surface of closed cone, fulvous brown, with terminal obtuse umbo slightly raised; basal scales narrowly oblong, beconing reflexed. Seed, including narrowly oblong dark brown wing, about 2 em. long. Specimens: 17177 (Tree MtSt 71, 209/46) ; reciprocal cross, 18877 (Tree StMt 15, 204/59).
First-generation hybrids of several crosses including reciprocal are similar, as vegetative differences of the closely related parents are minor. Though the parents are scarcely distinguishable by needle anatomy, the hybrid is like Pinus monticola in sometimes having I ventral resin camal. Cones of the small hybrid trees are intermediate in diameter. According to Shaw (41, p. 30), the phyllotaxis in P. strobus is $5 / 13$ and in P. monticola, $8 / 21$. In the narrowly oblong reflexed basal cone scales, the hybrid resembles P. monticola, while P. atrobus has broader, slightly spreading basal scales.

About 90 phants of this hybrid are growing at the Institute. Pollination with Pinur monticola as seed parent was made as early as 1939. Sources of P. monticolu from Idaho, Washington, and Gatifornin were tested. Right plants from seeds sown in 1941 averayed 12.6 feet in height and 1.9 inches d.b.h. at 20 years, while 8 plants from sowing in 1942 averared 10.2 feet and 1.3 inches dib.h. at 20 years More than 50 younger plants from seeds sown in 1949 were $3-5$ feet high in 1956, when some bore cones or conelets, and ayeraged 7.8 feet in height at 10 years. The reciprocal cross was made in 1047 , and seed were sown in 1949. At 10 years 16 plants averaged 7.9 feet high and 1.0 inches d.b.h.

This hybrid was included in a study by Righter (35) of the relation of seed weight and seedling size to inherent vigor. Elsewhere, Bingham, Squillace, and Pation (σ) and others have made detailed investigutions of the same interspecific hybrid, particularly in relation to resistance to blister rust.

Pinus monticola \times peuce Western white pine \times Balkan pine

Artificial hybrid between Pinus monticola Dougl. (ex D. Don in Lamb., Descr. Genus Pinus. Ed. 3(8°) v. 2, ummubered p. between pp. 144 -145. 1839), of Western United States and southern British Columbia, and Pinns peuse Griseb. (Spicil. Fl. Rumel. Byth. 2:349. 1844), Balkan pine, known also as Macedonian pine, of the Balkan Mountains. Twigs light green and glabrous, becoming brownish gray. Buds conic, acuminate, slightly or not resinous. Jeaves 5 in a fascicle, slender, fiexible, $5-8 \mathrm{~cm}$. long (smail plants), acute-acuminate, serrulate, green to yellow green, slightly shiny; stomata none on dorsal surface, $3-4$ rows on each ventral surface. Needle anntomy in cross section: Fypodermis uniform, of 1 (rarely 2) layer of cells; resin canals external, 2 dorsal, sometimes also 1 ventral with thin- or thickwalled epithelial cells.

Year-old conelets erect, short cylindric, about 18 mm . hong and 8 mm . in diameter. Cones single or paired, pendent on peduncles 1.5-2 cm . long, marrow cylindric, slightly curved, $8-9 \mathrm{~cm}$. long, 2.3 cm . in
diameter when closed; apophyses smooth, slightly convex and in part weakly keeled, the apex with obtuse rufous brown umbo flat against scale beneath; basil scales broadly oblong, slightly spreading. Specimen: $1 \sim 118$ (Tree $\operatorname{MtPe} 10,195 / 54$).

In the light green, glabrous twigs, this hybrid is like Pinus peuce. Needle anatomy of parents is similar, the hybrid being like P. monticola in sometimes having 1 ventral resin canal and like P. peuce in the epithelial cells partly thin-walled. Cones of the hybrid are intermediate, having slightly convex scales and slightly spreading basal scales, but like P. peuce in the umbo, flat against the scale beneath. Peduncle length is intermediate, longer than in P. peuce.
Sixteen plants were raised from seed sown in 1949 following pollination in 1947. In June 1956 they were about 3 feet high; 1 had cones and 5 bore conelets. At 10 years they averaged 5.9 feet in height.

Pinus peuce \times strobus Balkan pine \times eastern white pine

Artificial hybrid between Pinus peuce Griseb. (Spicil. Fl. Rumel. Byth. 2:349. 1844), Balkan pine, known also as Macedonian pine, of the Batkin Mountains, and Pinus strobus L. (Sp. Pl. 1001. 17:33), of eastem North America. Twigs tan and glabrous, jater light brownish gray. Buds conic, acuminate, not resinous. Leaves 5 in a fascicle, slender, flexible, $t 9 \mathrm{~cm}$. long (small plants), acute, serrubate, green; stomata none on dorssil surface, $3-4$ rows on each ventral surface. Needle anatory in cross section: Hypodermis uniform, of 1 layer of cells; resin canals extemal clorsal, 2 , sometimes 1 or 3 , with thin- or thick-walled epithelial cells. Specimen: 17125 (Tree PeSt G1, 170/44).
This hybrid retains the glabrous twigs of Pinus peuce. Though needle anatomy of parents is scarcely distinguishable, the hybrid has the more variable number of resin canals like P. strobus and variation in epithelial cells Tike P. peuce.

Although not produced at the Institute, this hybrid was propagated through grafting scions on stocks of Pinus monticola in 1951. and outplanting in 1952 . In June 1956 the 3 plants were $1.5-3$ feet high; the largest bore a conelet. The 2 survivors at 10 years were 4.6 and 6.0 feethigh.

Seven scions were received from Carl L. Heimburger, Research Branch, Ontario Department of Lands and Forests, Maple, Ontario. Fowler and Feimburger (17) compared in detail this hybrid with the parent species, using the hybrid index method.

Pinus flexilis \times griffthii Limber pine \times Himalayan pine (fig. 3)

Artificial hybrid between Pinas fexilis James (Exped. Rocky Mts. $2.27,35.1823$), of western North America, and Pinus griffithii McClelland (in (rriffith, Notul. Pl. Asiat. 4: 17. 1854; Icon. Pl. As. t, t. 365. 185̈t; P. cacelse Wall., not Lam., P. wallichiana A. B. , rackson) of Himataya Mountains and from Afghanistan to Burma. 'lwigs glatucous, glabrous, light brownish green when young, becoming light gray. Buds conic, acuminate, not resinous. Leaves 5 in a
fascicle, slender, flexible, spreading, $7-9 \mathrm{~cm}$. long, acuminate, serrnlate, green to blue green; stomatia none (rarely 1 row) on dorsal surface, 4-6 rows on each ventral surface. Needle anatom in cross section: Hypodermis uniform, of 1 layer of slightly thick-walled cells; resin canals external dorsal, 2 or sometimes 1 , with thin-walled or slightly thick-walled epithelial cells.
Male strobili (old and dry) cylindric but tapering, $9-1 \pm \mathrm{mm}$. long, $4-5 \mathrm{~mm}$. in diameter, pinkish tinged. Young female or orulate strobili $1-3$, erect on stont stalks, cylindric. Cones usually single or paired, pendent on peduncles 2 cm . long, narrow eglindric, $13-18 \mathrm{~cm}$. long, 4.5 cm . in diametey when closed; apophyses smooth, with terminal obtuse umbo; basal scales oblong, slightly reflexed. Sjpecimens: 77127 , 19160 (Tree FEx L, 191/ă3).

The hybrid has spreading leaves of infermediate length between the stratight erect ones of Pinuts Alexilis and the slightly drooping, longer ones of P. grifithii. The servilate leaf margin of the hybrid is chatacteristic of the latter. In number of stomatal tows the hybrid is intermediate thongh like P. griffithii in usually lacking dorsal stomata. Parents and hybrid are scarcely distinguishable in needle anatomy. The cones are intermediate in size but have the slightly reflexed basal scales of P tleailis.

Six plants from pollination in 1947 and seed sown in 1949 were about 6 fect high and vigorous in June 1956 and at 10 years averaged 10.8 feet high.

Pinus strobus \times griffithii Eastern white pine \times Himalayan pine (fig. 2)

Artificial hybrid between Pinus strobus L. (Sp. Pl. 1001. 1753), of eastern North Americh, and Pimus griffithic MeClelland (in
 P. earelpa Wall., not Lam., P. whllirhuena A. B. Jackson) of Fimalaya Mountains and from Afghanistan to Burma. (Pinus Xschwerinai Fitschen.) Bark of small trmks slaty gray, smooth. Twigs ghatucous, when young almost glabrous or minutely puberulent and light oreen, becoming light brownish gray. Buds conic, acuminate, slightly or not resinous. Leaves 5 in a fascicle, slender, flexible, spreading, 8-12 cm . longr, acute-acuminate, serrulate, green to blue green: stomata none on dorsal surface, 3 -6 rows on each ventral surface. Needle anatomy in cross section: Hyporlermis tulform, of 1 layer of slighty thick-walled cells; resin canals external dorsal, 2.

Malo strobili (old and dry) cylindric but tapering, $\$-12 \mathrm{~mm}$. long. 4 mm . in diameter, pale yeilow, pinkish tinged. Female or ovulate strobili at pollination $1-4$, erect on stout stalks $1-3 \mathrm{~cm}$. long, cylindric, $10-15 \mathrm{~mm}$. long, 4 mm . in cliameter. Year-old conelets erect, short cylindric, $1.8-2 \mathrm{~cm} . \operatorname{long}, 8 \mathrm{~mm}$. in diameter. Cones single or paired, sometimes in whorls of 3 , pendent on pectuncles $9-4 \mathrm{~cm}$. Iong, narrow rylindric, often slightly curved, $11-1.9 \mathrm{~cm}$. long, about 2 cm . in diamefer when elosed, 6 cm . in dimmeter when open; apophyses smooth, slightly convex, fulvous brown, with terminal obtuse nmbo flat against scale beneath in closed cone; brisal scales broadly oblong, slighty spreading. Seed, including narrowly oblong dark brown wing, about 2.5 cm. long. Specimens: $/ 7 / 19$ (Tree $\mathrm{StEx} 27,207 / 57$) : $/ 8 \mathrm{c} \% 19$ (Tree StEx 24, 207/54).

Froure 3.-Cones. left to right, Pinus flexilis, P. fexilis \times grifithii (immature, closed cone), P. griffthii. One-third natural size.

The hybrid is characterized by spreading needles of intermediate length. Young twigs have the ghatous light green color of Pinus grifithii and a trace of the pubernlence of P. strobus. Needles of hybrid and parents are not distinguishable in cross section. The intermediate cones with slightly convex scales have the umbo flat against the scale beneath, as in P. griffthii.

Pollination was made here first in 1940 and again in 1947. Seven plants from the first poltimation averaged 11.8 feet (maximum 22.3 feet) at 20 years. Eight phants in their eighth growing season in June 1956 were $3-6$ feet tall and vigorons, 4 bearing cones and 3 also conelets. At 10 years they iveraged 10.0 feet high.
(allaham (IO) reported this hybrid to be highly resistant to white pine bister rust (('ronartium ribicola Fischer). A spontaneous hybrid tree in Gemmany about 34 years old in 1930 was given the binary name Pinus Xschwerinuil Fitschen (in Beissner, Handb. Nadelh. Ed. 3, 729. 1930).

Pinus monticola \times griffthii Western white pine \times Himalayan pine (fig. 2)

Artificial hybrid between Pinus monticola Dongl. (ex D. Don in Lamb., Descr. Genus Pinus. Ed. $3\left(8^{\circ}\right)$, v. 2 , unnumbered p. between pp. 144-145. 1832), of Western T「nited States and southern British Columbia, and Pinus griffithii McClelland (in Grifith, Notul. Pl. Asiat. $4: 17$. 1854; Icon. Pl. As. 4, t. 365. 1854; P. eacelsa Wall,, not Lam., P. vallichiama A. B. Jackson), of Himalaya Mountains and from Afghanistan to Burma. Bark slaty gray, smooth. Twigs light brownish green and slightly puberulent or almost glabrous when young, becoming light brownish gray. Buds conical, acuminate, not or slightly resinous. Leaves 5 in a fascicle, slender, flexible, spreading, $0-12 \mathrm{~cm}$. long, acute-acuminate, serrulate, green to blue green; stomata none on clorsal surface, 4-6 rows on each ventral surface. Needle anatomy in cross section: Hypodermis uniform, of 1 layer of slightly thick-walled cells: resin canals external dorsal, 2 , sometimes 1 or 3 , with thick- or thin-walled epithelial cells.
Male strobili (old and dry) cylindric but tapering and slightly curved, $8-15 \mathrm{~mm}$. long, 5 mm . in diameter, pale yellow, pinkish tinged. Female or ovulate strobili at pollination 1 or 2 , erect on stout stalks $1-3 \mathrm{~cm}$. . cylindric. $10-15 \mathrm{~mm}$. long, $3-4 \mathrm{~mm}$. in diameter, pink red. Year-old conelets erect, narrow cylindric, about 2 cm . long and 1 cm . in diameter. Cones single or paired, sometimes in whorls of 3 , pendent on peduncles $2-3 \mathrm{~cm}$. long, narrow cylindric, often slightly curved, $8-12 \mathrm{~cm}$. long, $2.3-2.7 \mathrm{~cm}$. in diameter when closed, 6 cm . in diameter when open; apophyses smooth, slightly convex, fulvous brow, with terminal obtuse umbo flat agrainst scale beneath in closed cone; basal scales narrowly oblong, becoming reflexed. Specimens: 17120 (Tree MtEx 30, 217/50), 18820 (Tree MtEx $55,208 / 54$).

Pinus griffthii has drooping, blue-green, relatively long needles, while the hybrid is recognized by its spreading needles of intermediate length and is also intermediate in its slightly puberulent twigs and slightly resinous buds. The hybrid resembles P. griffthii. in lacking dorsal stomata but is intermediate in number of rows of ventral stomata and in the thick- or thin-walled epithelial cells of the resin canals. Cones are intermediate in the slightly conver cone scales, are like P. ariffthii in the umbo flat against scale beneath, and are like P. monticola in the slightly reflexed basal scales.

About 40 plants were grown at the Institute from this cross made in $1.941,1942,1944$, and 1947 with seed parents from Idaho, Washington, and California. Twelve plants from seed sown in 1946 averaged 12.2 feet high and 1.9 inches d.b.h. at 15 years. Twenty-four hybrids from seeds sown in 1949 were $4-5$ feet high in June 1956 and normal to vigorous. Cones or conelets were present on 6 and absent from plants of both parent species of the same age. At 10 years these plants averaged 8.8 feet in height.

Cailaham (10) reported that this hybrid is susceptible to white pine blister rust (Cronartium vibieola. Fischer).

HARD PINE HYBRIDS, PINUS SUBGENUS PINUS (DIPLOXYLON)

Twenty-nine hybrids and 7 reciprocal crosses involve 23 species (1 with 3 varieties) of hard pines (Pinus subgenus Pinus, formerly Diploxylon). The hybrids may be grouped as follows: 23 first-generation (F_{1}) interspecific hybrids, 5 additional interspecific hybrids involring another variety of 1 parent species, and 1 intervarietal hybrid.

Two of the 23 species, Pinus nigra and P. montezumue, are exotics. The 21 others represent all the 24 hard pine species native in the United States except P. leiophylla, P. sabiniana, and P. torreyana.

Pinus nigra \times resinosa Austrian pine \times red pine (fig. 4)

Artilicial hybrid between Pinus nigra Arnold (Reise Mariazell. 8, t. IT55), of southern Burope and Asia Minor, and P. resinosa Ait. (Fort. Kew. 3: 367. 1789) of Northeastern [nited States and southeastem Canada. Spring shoots uninodal. Twigs slender, glabrons, when alongating glaucous to yellow green, year-old lateral twigs 6-8 mom. in diameter, light brown, the bases of bracts decurrent, smoothish, and forming narrow rectangular phates; older twigs light gray or

Ficrue 4 .-.-(ones, left to right, top row, pinus niara, P. nipra \times resswosa, F. rekinosu; middle row, l. pungens. l. pung/ens \times echinult, s. ch-hinata; bothon row, P, rigidn, P. rigita \times serotint, P. serotina. One-third maturn size.
light gray brown, smoothish, becoming slightly fissured. Buds acuminate, often slightly resinous, reddish brown, the scales with white fringed margins.

Leaves 2 in a fascicle, straight, slightly stiff, erect, $5-11 \mathrm{~cm}$. long, $1.3-1.5 \mathrm{~mm}$. wide, a cuminate, serrulate, green; stomatal rows $8-13$ dorsal and $\tau-10$ ventral; basal sheath $10-15 \mathrm{~mm}$. long in bud, becoming $5-8 \mathrm{~mm}$. long, gray brown. Needle anatomy in cross section: Epidermis of nearly square cells, stomata slightly sunken; hypodermis uniform, of 1 or 2 layers of slightly thick-walled cells, inner border straight; resin canals 2-5, external and medial, or external, all dorsal, usually 2 large near angles, medial, 1 external and 1 medial, or 2 external, and usually 1-3 smaller external or medial, bordered by thickwalled cells; endodermis in outline elliptic, of thin-walled cells; transfusion tissue with thick-walled cells outside phloem.

Year-old conelets with stout stalk about T mm. long. ovoid, about 1 cm . long, ambo with weak keel and minute weak point or prickle or almost none on basal scales. Mature cones oroid, about 5 cm . long, 2.5 cm . in cliameter closed, 5.5 cm . in diameter open, tawny yellow, slightly shiny, opening and shedding soon after maturity. Cone scales weakly keeled, umbo with minute weak point or prickle or almost none on basal scales. Seed about 22 mm . long, including obovoid body about 5 mm . long and 2.5 mm . wide and long membranous wing. Specimen : 19135 (Tree NiRe 2, 159/79).
The hybrid has slightly stiff needles intermediate between the very stiff ones of Pinus nigra and the flexible ones of P. resinosa. Needles of the hybrid and P. resinosa have similar green color, while those of P. nigra are dark green. In needle amatomy the two parent species differ conspicuously, while the intermediate hybrid is easily separated from both. The greater stiffness of needles of P. nigra apparently is related to the thicker hypodermis and to the slightly thickened epidermis of mostly rectangular, long and narrow cells in cross section. P. nigra has a well-developed hypodermis of 2-4 layers of thick-walled cells, P. rasinosa has Ω weak hypodermis of 1 layer of thin-walled cells, and the hybrid is intermediate with 1-2 layers of slightly thick-walled cells. P. resinosa is recognized by 2 large external ventral resin canals and often $2-5$ additional external and medial, dorsal and ventral, while P. nigra has medial resin canals, 2 dorsal near angles and up to 8-14 additional dorsal and ventral (rarely 1 external or internal). The hybrid has resin canais of several intermediate combinations but none external ventral, 2 large dorsal resin canals near angles, ustually both external or 1 or both medial, and usually 1-3 smaller dorsal external or sometimes medial. Some are subexternal and aimost medial, being connected to hypodermis by a single cell in cross section. Thick outor endoclermal cell walls charactorize P. resinosa, thongh small plants of both parent species and the hybrid have thin-walled endodermal cells.
Cones and conelets of the hybrid are intermediate between the larger cones of Pinus nigra, having keeled scales with small prickle, and the smaller ones of P. resinosa, having scales not or weakly keeled without prickle. Cone color in P. nigra and the hybrid is tawny yellow and in P. resinosk nut brown.
Critchfield (13) has described this distinctive rase hybrid and its history and has compared it with its parent species. This is the first successful cross between hard pines of the Eastern and Western Hemispheres as well as the first interspecific hybrid of Pinus resinosa.

Other attempts to make this cross have been unsuccessful, both at the Institute and elsowhere. From crass pollination at the Institate in 1955 and seeds planted in 1957, out of 42 seedlings, 4 with superior heighn growth and of lighter green than seedlings of P. nigra apparently were hybrids. After $\overline{3}$ yeurs these 4 plants averaged 4.7 feet high, considemably taller than nearby plants of both parent species.

P ̈̀nus elliottii \times palustris Slash pine \times longleaf pine

Also reciprocal cross. Artificial hybrid between Pinus elliottii Engelm. (Acad. Sci. St. Lowis Trans. 4; 186, t. 1-3. 1880) and Pinas palustris Mill. (Gard. Dict. Ed. 8, Pinus No. 14. 1768), both of Southeastern ['nited States. Bark rough, thick, furrowed into long scaly, slightly shaggy phates, bhekish glay with brown exposed in (deep) furrows and where sealed off. Spring shoots uninodal. Twigs stout, afabrous, light yellow green the first year, beconing light brown the second year. Euds large, reddish brown and whitish, the seales whitish fringed. [eat sheaths whitish, light tan toward base, $2-3 \mathrm{~cm}$. long, in age only absut 1 cm . long. Leaves 3 and 2 in a fascicle, stout, stiff, straight to curved or drooping, $15-30 \mathrm{~cm}$. long, acute-acuminate, serrulate, green; stomatal rows of leaves in 3s 8-12 dorsal and 3-6 on each venteal surface, of leaves in 2 s $10-15$ doral and $6-10$ ventmal. Fpedle anatomy in cross section: Hypodermis biform, of $2-4$ layers of cells, the inner border curved or straight; endodermis of thin-walled colls: resin cimals internal and medial, or internal, 2, sometimes 3-4. Specimens: 17020 (Tree EIPa 4, 199/88) : reciprocal cross, 17145 (Tree PaEl 2, 8/7).

Parontare of Pinus palustris is indicated by the stout twigs, large buds with white-fringed scales, whitish leaf sheaths, very long leaves, and uninodal spring shoots. Leaves partly in 2 's suggest P. elliottii. In needle anatomy the parents and hybrid are similar and not readily separated, but the hybrid has hypordermis often intermediate in thickness.

The lirst seed was supplied by Philip C. Wakeley, Southern Forest Experiment Station, New Orleans, La., who made the cross in Louisiatha in (19\%) with Pinus palustris as female parent. From seed planted in 1933, 19 progeny trees were grown. These averaged 12.7 feet high at 10 years, were $10-25$ feet high and 3-5 inches d.b.h. in 1956, and ippparently had not borne cones. Five plants were raised from the reciprocal cross made at the Institute. Pollination was in 1950 , and seeds were sown in 1952. The hybrid trees have not grown well at the Institute. Some have broken crowns, perhaps from snow clamage, or slender narrow form.

Pinus elliottii \times taeda Slash pine \times lobloliy pine (fig. 5)

Also reciprocal cross. Artificial hybrid between Pinus elliottii Engelm. (Acad. Sci. St. Louis Trans. 4: 186, t. 1-3. 1880; typical varjety, $I_{\text {. plliotizi var. ellioltii) and Pinus taeda L. (Sp. Pl. } 1000 .}^{2}$ 1753), both of southeastern (nited States. Bark rough, thick, furrowed info swaly plates, blackish gray with brown exposed in deep furrows. Spring shoots multinoclal. Twigs glahrous, ghacous when young, light yellow green the first year, becoming brown the second
year. Buds reddish brown, the scales whitish fringed. Leaves 3 and 2 in a fascicle, stout, stiff, $10-19 \mathrm{~cm}$. long, acuminate, serrulate, green; stomatal rows of leaves in 3 's $7-12$ dorsal and $\$ 8$ on each ventral surface, of leaves in 9 's 12-14 dorsal and $9-10$ ventral. Needie anatomy in cross section: Fyypodermis biform, of 2, sometimes 3, layers of cells, the inner border straight; endodermis of thin-watled cells; resin canals medial, internal and medial. or partly subinternal, 2-7, 2 large asually medial at angles and often 1-5 additional smaller.

Cones 1-4 at a node, almost sessile, ovoid conic, symmetrical, $7-11$ cm . long, $5-7 \mathrm{~cm}$. across when open at maturity, persistent 1 year or more: apophyses dull nut brown, elevated along a transverse keel, umbo rased and about 3 mm . high including the sharp spine. Specimens: 17147, 18843 (Tree EIT 10, $7 / 12$) ; reciprocal cross, 18842 (Tree TE1 4, 9/3).

The occurrence of leaves partly in 2's is similar to Pinus elliottii, as P. taeda has needles uniformly 3 in a fascicle. Parents have similar needle anatomy except that resin canals are mostly medial in P. taeda, mostly internal in P. elliottiz, and intermediate in the hybrid. Hybrid cones are intermadiate between the small cone with stout spines in P. taeda and the large cone with smaller prickles in P. olliottii. Cones of P. taeda and the hybrid are dull nut brown, while those of P. ellioltia are shiny reddish brown.

Four trees at the Institute were from pollination in 1931 with Pinus taeda as female parent and from seed sown in 1933. Three trees with P. elliottio as female parent were from pollination in 1033 and seed sown in 1935. In 1956 these trees were about 30 feet high and Binches di.b.h.

Pinus echinata \times elliottii Shortleaf pine \times slash pine (fig. 5)

Artificial hybrid between Pinus echinata Mill. (Gard. Dict. Ed. 8, Pinus No. 12. 1708) , of Eastern United States. and Pinus elliottii Engelm. Acad. Sci. St. Louis Trans. 4: 186, t. 1-3. 1880; typical variety. P. ellioitii var. elliottii), of Southeastern Tnited States. Mark rough, thick, furrowed into scaly plates, blackish gray. Spring shoots multinodal. Twigs glabrous, glaucous when young, light yellow green and shiny the first year, becoming brown the second year. Learves 2 or sometimes 3 in a fascicle, stout, stift, $11-20 \mathrm{~cm}$. long, acuteacuminate, serrulate, green; stomatal rows of leaves in 2's 13-16 dorsal and 10-12 ventral, of leaves in 3 s $11-14$ dorsal and $5-7$ on pach ventral surface. Needle anatomy in cross section: Hypodermis biform, of 2 or sometimes 3 (rarely 4) layers of cells; endodermis of thin-wailed cells; resin canals medial, or medial and internal, 2 large medial at angles and often 1-4 additional, about. $0.03-0.06 \mathrm{~mm}$. in diameter.

Cones $1-4$ at a node, almost sessile, ovoid conic, symmetrical, 5-7 cm . long, 3.5 cm . in diameter when closed, $5-6 \mathrm{~cm}$. across then open. persistent 1 or 2 years; apophyses elevated along a transverse keel, the umbo raised and ending in a sharp prickle about 1 mm . long. Specimen: 17146 (Tree EE1 10, 8/6).

In needle length and cone size the hybrid is intermediate, though with smaller organs nearer to Pinus echinath. The two species differ but slightly in needle anatomy. The hybrid resembles P. echinata in the resin canals mostly medial.

F-\$10127

 fourth natural size.

Five trees were planted in 1033 from the cross made in 1931. When 2.) years old these trees were $30-35$ feet high and 6-9 inches d.b.h., mestly with grod form and nurow crowns.

Pinus echinata \times taeda Shortleaf pine \times loblolly pine (fig. 5)

drificial hybrid bet ween Pinus erhinata Mill. (Gard. Dict. Ed. 8, Pinus No. L2. 1708), of Eastern ['nited States, und Pinus taeda L. (Sp. Pl. L000. 1T03), of Southeastern Taited States. Bark rough. thick, furowed into loug scaly plates, gray. Spring shoots multinoclal. Twigs grabrous, glancous when young, light yellow green and shiny the first year, becoming light reddish brown the second year. Buds actuminate. hight reddish brown, resinous. Leaves 3 , sometimes mostly 3 and less frequently 2 , in a fascicle, slightly stont and stiff, T-12 cm. long, acute-acuminate, serrułate, green; stomatal rows $9-15$ (lowst and, $\boldsymbol{z}-\mathrm{T}$ on earh ventral surface or $10-1.2$ on vent al surface of leaves in $\stackrel{3}{3}$. Needle anatomy in cuss section: Hypodermis usually bifom with 2 (maely 3) layers of cells, sometimes uniform with 1 hayer, the inner border staight; endodermis of thin-walled cells; resin amals medial, sometimes medial and intermb, 2 large medial at angles and often $1-t$ add litional. about $0.04-0.08 \mathrm{~mm}$. in diameter.

Male strobili $\left(d_{r} y\right) 10-18 \mathrm{~mm}$. long, $3-5 \mathrm{~mm}$. in dinmeter, orange brown. Cones single or pitited, sometimes in whorls of 3 or 4 , amost
sessile, ovoid conic, symmetrical, $6-8 \mathrm{~cm}$. long, $4.5-7 \mathrm{~cm}$. across when open, often persistent for several years on old branches; apophyses dull pale falvous brown, elevated along a transverse keel, the nut-brown umbo forming a sharp stout curved prickle or spine about 3 mm . long. Winged seeds $17-27 \mathrm{~mm}$. long, the detachable wing nut-brown, body ovoid, $0-6$ mum. long, blackish. Specimen: 17148 (Tree ET 5, 2/16).

The hybrid might appear to be a variation of Pinas taeda with small cones, having the sharp stout prickles of the cone scales. In needle length and cone size the hybrid is intermediate. The number of needles in a tascicle, 3 and 2 , distinguish the hybrid, because P. taeda has 3 uniformly, while P. echinuta has usually 2 . In needle amatomy the hybrid is intermediate between the slightly diftering parents.

This cross was made at the Institute as early as 1933. The reciprocal backeross with Pinus taeda was made in 1948. The hybrid occurred spontaneously there prior to its artificial production. More than 90 phants of this interspecific hybrid are growing at the Institute, a few having arisen spontaneously. Additional plants are progeny of hybrid trees by open pollination. Twenty-two trees from seed sown in 1939 averaged 30.4 feet high and 6.7 inches d.b.h. at 20 years.
Intermedinte plints of matural hybrids have been reported as common in enstern Texis and probably occur at other localities where the parental species yrow torether in the Southeastern United States. Zobel (51) noted that seedlings found in nature resembled artificially produced hybrids. Though differences in time of pollination prevent crossing, he suggested that unusual wenther may induce early pollen shedding in Pinuses echinata while the female strobili of P. taeda are still receptive. Hybrids tested at Bogalusa, La, from seed supplied by the Institute were reported by Fienry and Bercaw (20) to be resistant to fusiform rust (Cronartium fusiforme (Arth.) Hedge).

Pinus pungens \times echinata Table-Mountain pine \times shortleaf pine (fig. 4)

Artificial hybrid between Pinus pungens Lamb. (Anm. Bot. 2: 198. 1805), of mountains of Eastern United States, and P. echinata Mill. (Gned. Dict. Ed. S, Pinus No. 12. I768), of wide ranure in Eastern United States. Spring shoots multinodal. Twigs slender, glabrous, glaucous, light yellow green when elongating, becoming whitish purplish brown, year-old hateral twigs $5-7 \mathrm{~mm}$. in diameter, the bases of bracts decurrent and forming narrow rectangular plates. Bark of branches and trunk light gray brown, scaly. Buds acuminate, often resinous, reddish brown, the scales with white, slightly fringed margins.

Leaves in tascicles of both 2 and 3, stout, slightly flatened, stiff, slightly twisted, $7-10 \mathrm{~cm}$. long (as short as 5 cm . on late summer twirs), 1.1-1.8 min. wide, acuminate and appearing sharp-pointed when touched owing to stiffness, serrulate, dull yellow green ; stomatal rows $17-20$ dotsal and $9-15$ ventral on needies in 2's, 10-14 dorsal and 5-8 on each ventral surface on needles in 3's; basal sheath 4-6 mm. long. Needle anatomy in cross section : Stomatia slightly sunken; hypodermis biform, of 2 or 3 layers; resin canals usuaily 2 dorsal medial at angles, sometimes also 1 ventral internal, small and large, bordered by thin-or thick-walled cells; endodermis in outline elliptic, sometimes constricted elliptic or triangular, of thin-walled cells; transfusion tissue with thick-walled cells outside phloem.

Male strobili (old and dry), cylindric but tapering and slightly curved, $10-16 \mathrm{~mm}$. long, $3-4 \mathrm{~mm}$. in diameter, orange brown. New female or ovulate strobili or conelets $1-5$ in a whorl, sometimes in 2 whorls on vigorous shoots, on stout, scaly, slightly ascending stalk 8 mm . long, ovoid, when closed after pollination 12 mm . long, light yellow green, the scales with saft slender tapering point $2-3 \mathrm{~mm}$. long. Year-old conelets with umbo about $4-5 \mathrm{~mm}$. long, light brown, with long prickle $2-3 \mathrm{~mm}$. long and pointed toward apex. Cones sessile, ovoid, conic, symmetrical or nearly so, $5-5.5 \mathrm{~cm}$. long, $5-6 \mathrm{~cm}$. घcross when open at maturity, persistent 1 or 2 years; apophyses dull fulvous brown. much raised along a transverse keel, the umbo forming a stout, thattened, sharp spine $2-5 \mathrm{~mm}$. long, slightly incurved. Seed with 3 -angled blackish body 5 mm . long and membranous, light brown detachable wing $15-18 \mathrm{~mm}$. long. Specimens: 18804, 19199 (Tree PuE 1, 191/83).
Fybrid plants, resemble those of Pinas pangens of the same age in branching habit, with broader crown of fewer, long, coarse, spreading branches, in the slightly stout twigs of larger diameter, in the deeper green needle color, and absence of the short twigs and needles along the trunk. The needles of the hybrid are long and 2 or 3 in number as in ". echinuth. mosily intemediate in widith, and twisted as in P. pungens. Needles ot P. pungens are stift and cause pain when touched, those of P '. achinuth are fiexible, while the intermediate needles of the hybrid are stiff and short-pointed but do not produce pain. The needle serrulation consists of minute teeth close together in P. sohinuth, larger teeth farther apart in P. mingens, and intermediate teeth nearer (he latter in the hybrid. The stomata of the needles appear on the surface as minute white dots in P. echinata and are larger in the hybrid and largest in P. mungens, boing slightly sunken in last two. Needle natomy is similar in ill three, though the hypodermis in the hybrid is intermediate between the weak, uniform or biform hypodermis of $1-3$ layers in P. echinata and the well-developed, biform hypodermis of $\underline{4} 4$ layers in P. pungens. Conelets show the influence of P. pungens in the long pointed scales. The cones are small as in P. echinatu but intermediate and nearer P. pungens in keel of apophyses and length of spines.

From pollination made here in 1955 and from seeds sown in 1957, 2 plants were raised. In 1962, after 5 growing sensons, they were about 5 feet high, slightly larger than adjacent plants of Pinus pungens of the same age and slightly smaller than average plants of the other parent species. Plants of P. pungens and the hybrid began needle elongation before those of the other parent in the growing season of 196%.

Pinus rigida \times echinata Pitch pine \times shortleaf pine (fig. 5)

Aso reciprocal cross. Artificial hybrid bet ween Pinus rigida Mill. (Gard. Dict. Ed. 8, Pinus No. 10. 1768), of Northeastern United States and southeastern Canada, and P. echinata Mill. (Gard. Dict. Ed. 8, Pinue No. 12. 1768), of Eastern United States. Bark of branches and trunk reddish brown, sculy, the trunk sometimes bearing a few short twigs with needles. Spring shoots multinodal. Twigs slender, glabrous, when elongating yellow green and slightily shiny or glaucous and whitish green, becoming purplish brown, year-old lateral
twigs 4.6 mm . in dianneter, the bases of bracts decurrent and forming narrow, rectangular plates. Buds acuminate, often slightly resinous, reddish brown, the scales with white, slightly fringed margins.
Lenves 3 or sometimes 2 in a fascicie, straight, erect, $6-9 \mathrm{~cm}$. long, 1.1-1.9 mm. wide, acuminate, serrulate, dull yellow green; stomatal rows $10-17$ dorsal and $5-9$ on ench ventral surface ($8-10$ ventral in paired leaves) ; basal sheath becoming $5-8 \mathrm{~mm}$. long, Needle anatomy in cross section: Stomata slightly sunken; hypodermis biform, of 2 or 3 layers; resin canals 2-10, usually 2 or 3 medial at angles and additional smaller medial and internal, small or sometimes large, bordered by thin- or thick-waLled cells; endodermis in outline elliptic or sometimes triangular, of thin-walled cells; transfusion tissue with thickwalled cells outside phioem or none.
Male strobili (old and dry) cylindric, about 15 mm . long and 4-5 mm . in diameter, orange brown. New female or orulate strobili on young plants 1-3 in a whorl on stout, scaly, slightly ascending stalk $5-7 \mathrm{~mm}$. long, ovoid, after pollination about 6 mm . long, dark red, turning light green, the scales with soft point more than 1 mm . long. Mature cones sessile, ovoid, about $5-5.5 \mathrm{~cm}$. long and broad when open, 3.5 cm . broad when closed, dark brown wenthering to gray, opening at maturity, persistent; scales with weak prickle less than 1 mm . long. Sperimen: 18805 (Tree RiE 3, 165/79).

The hybrid plants resemble those of Pinus rigida, having often slightly crooked axis and bronder crown of fewer, long, conse, spreading branches and slightly stont twigs of larger diameter. Adjacent plants of P. echinata have better form with st raight axis and narrower crown and begin growth later. In needle number the hybrid is intermediate in sometimes having 2 in a fascicle, though generally 3. The hybrid has broader needles like P. rigida. though the single plant of the reciprocal cross has narrow needles the P. echinata. P. echinata has needle serruhation of minute teeth close together, while P. rigida and the hybrid have slightly larger and fewer teeth. Stomata appear as minute white dots on needles of P. echinata and are slightly larger in the other two. In needle anatomy all thee are similar. The hybrid is intermediate in having the biform hypodermis of 2 or 3 layers.

Plants of both the hybric and Pinus rigida. were producing cones when examined. Conelets and cones were similar except that mature rones of the latter, originating from a closed cone viriation in southern New Jersey, remnined closed after maturity. Male cones produced by one hybrid plant were similar to those of P. rigidn.

This cross pollination was made here in 1941, 1954, and 1957. Five plants from seeds sown in 1956 averaged 3.1 feet high at 5 years. Nine others were grown from seeds planted in 1959 . One plant of the reciprocal cross, Pinus echimata \times rigida. from poilination in 1954 and seed sown in 1956, was 4.3 feet high at ob years. This plant of the reciprocal cross was similar to the others; however, it was perhaps of below normal vigor, Inter in beginning growth, and with the new elongating twigs glaucous whitish green. From the reciprocal cross repeated a year later the single surviving plant was poor.
S. Little and Somes (29) reported that hybrids in a New Jersey field test from Institute seed were mostly of very poor form and of no exceptional vigor. Similar results were observed in southern Illinois (1). According to Austin ($\mathcal{L}, 3$), natural hybrids between these species occur.

Pinus rigida \times taeda Pitch pine \times loblolly pine (fig. 5)

Artificial hybrid betseen Pinus rigida Mill. (Gard. Dict. Ed. 8, Pinus No. 10. 1768), of Eastorn United States, and Pinus taeda L. (Sp. Pl. 1000. 1753), loblolly pine, of Southeastern United States. Bark rough, thick, furrowed into scaly plates, blackish gray, the trunk sometimes bearing short twigs with needles. Spring shoots multinodal. Twigs glabrous, light ybllow green and shiny the first year, becoming light brown the second yenr." Buds acute, reddish brown, resinous. Leaves 3 in a fascicle, stout and stitt, $10-20 \mathrm{~cm}$. long, rcute-acuminate, serrulate, green; stonratal rows $10-15$ dorsal and $5-8$ on each ventral surface. Needle anatomy in cross section: Hypodermis biform, of 2-5 layers of cells, the inner border often angled; endodermis of thinwalled cells; resin camals medial (ravely also internal), 2 (rarely 3), about $0.04-0.08 \mathrm{~mm}$. in diuneter; a line of thick-walled cells often outside phloem in transfusion tissue.

Male strobili (old and dry) $17-25 \mathrm{~mm}$. long, 45 mm . in diameter, orange brown. Cones 3,2 , or 1 at a node, almost sessile, ovoid-conic, symmetrical, $7-8 \mathrm{~cm}$. long, 4.5 cm . in diameter closed, serotinous, opening after 1 or more years, long persistent in quantity for several years; apophyses pale fulvous brown or tawny yellow, dull or slightly shiny, elevated along a transverse keel, the nut-brown umbo forming a sharp stout prickie or spine about 3 mm . long. Winged seeds about 25 mm . long, the detachable wing nut-brown, body ovoid, 5 mm . long, blackish. Specimen: 17150 (Tree RiT 3, 8/16).

In needle amany the hybrid and both parents are similar. The hybrid is like Pinus taeda in the large resin camals, while P. rigida has diameters of about $0.02-0.04 \mathrm{~mm}$. Needle length is intermediate. The intermediate cones have the larger, stout prickles of P. taeda and the slightly serot inous habit of P. rigida in this variation from southern New Jersey.

This hybrid with Pinus rigida as female parent was made at the Institute first in 1933 and was backerossed with P. rigida in 1942. The cross has been repeated in 1941 and later years, and 13 trees are growing here as well as plants from open pollinated seeds of a hybrid tree. Nine trees from seed sown in 1945 averaged 22.6 feet high and 5.2 inches d.b.h. at 15 yenrs.

Hyun and Ahn (24) deseribed this hybrid as made in Korea, recording its principal chamateristics there in comparison with the parent species. They further designated this hybrid as Pinus \times rigitaedth but did not publish a formal Latin diagnosis for that binomial. The hybricl is under mass production in Koren (22, 23).

In southern Hlimois, hybrids from seed supplied by the Institute were reported to be vigorous, of good form, and more frost hardy than P.echinuta and P. taedu (1, p. 88).

Pinus rigida \times serotina Pitch pine \times pond pine (fig. 4)

Artificial hybrid between Pinus rigida Mill. (Gard. Dict. Ed. 8, Pinus No. 10. 1768), of Northeastern United States, and P. serotina Michx. (Fl. Bor-Amer. $2: 205,1803$), of the Constal Plain of Southeastern United States. Bark of branches and trunk becoming rough and thick, composed of gray brown scaly plates and exposing brown
in crevices, the trunk sometimes bearing a few short twigs with needles. Spring shoots multinodal. Twigs slender, glabrous, glaucous, light green when young, becoming pinkish brown, year-old lateral twigs $6-7$ mm . in diameter, purplish brown, the bases of bracts decurrent, rough, and forming narrow rectangular plates long persistent. Buds cylindric, acuminate or acute, often resinous, reddish brown, the scales with white, slightly fringed margins.
Leaves 3 in a fascicle, straight, stift, erect, $9-12 \mathrm{~cm}$. long, 1.4-1.7 mm. wide, acuminate, serrulate, slightly flattened, dull green; stomatal rows 16-20 dorsal and $6-10$ on each ventral surface; basal sheath becoming $7-13 \mathrm{~mm}$. long, gray brown. Needle anatomy in cross section: Stomata slightly sunken; hypodermis biform, of 2 or 3 , sometimes 4 , layers; resin canals $3 \div$, usually 3 medial at angles and additional smaller medial and internal, small, bordered by thin- or thick-walled cells; endodermis in outline elliptic or sometimes triangular, of thinwalled cells; transfusion tissue with thick-walled cells outside phloem.

Male strobili (old and dry) cylindric, $8-24 \mathrm{~mm}$. long and $4-5 \mathrm{~mm}$. in diameter, orange brown. New female or ovulate strobili 1-3 in a whorl and sometimes 2 whorls in a year, on stout, scaly, brown, slightly ascending stalk about 1 cm . long, ovoid, shortly after pollination about 8 mm . long, pink purple, turning light green, the scales with soft point 2 mm . Iong. Year-old conelets ellipsoidal or subglobose, $15-20$ mm . long and $12-15 \mathrm{~mm}$. in diameter, pinkish red and green, scales with prickle nearly 2 mm . long. Mature cones sessile or nearly so, ovoid, symmetrical, about 6-6.5 cm . long and $3.5-4.5 \mathrm{~cm}$. broad when closed, tawny yellow but weathering to light gray, persistent and remaining closed; apophyses nearly fat, umbo raised and ending in straight, sharp, weak prickle 1-2 mm. long. Specimens: 18806, 19158 (Tree RiSe 5, 181/75).

These hybrids are slightly larger than adjacent plants of Pinus rigida of the same age. The only significant difference in the two groups is in needle length, $6-10 \mathrm{~cm}$. in P. rigida and $9-12 \mathrm{~cm}$. in the hybrid, while the parent plant of P. serotina has needles $12-20 \mathrm{~cm}$. long. The parent species and hybrid are indistinguishable in needle anatomy. Cones of the hybrid and adjacent plants of P. rigida are similar.
Five plants from pollination in 1952 and seeds sown in 1954 averaged 5.7 feet high at 5 years and were about 11 feet high after 9 growing seasons. The female parent wis from Atlantic City, N.f., and the male parent from near Starke, Fla.

Pinus rigida and P. serotina are closely related species, or according to a few authors, geographical varieties of the same species. P.serotina has longer needles spreading to slightly drooping in age and broader, nearly spherical, closed cones. However, P. rigida sometimes has closed cones, for example, in these plants from near the range of P. serotina.

Pinus ponderosa var. porderosa \times var. arizonica Ponderosa pine (typical variety) \times Arizona pine

Artificial intervarietal hybrid between Pinus ponderosa Laws. var. ponderosa (Laws., Agr. Man. 354. 1836), of western North America, and P. ponderosa var. arizonioa (Engelm.) Shaw (Pines Mex. 94, t. 17, figs. 4-5. 1909), Arizona pine, of northern Mexico and adjacent Arizona and New Mexico. Bark of dark gray scaly plates, becoming rough, cracking off, and rusty brown beneath. Spring shoots
uninodal. Twigs glabrous, glaucous when young, whitish or yellowish to brownish green, becoming brown the second year, later light brownish gray and rough. Buds conic, acuminate, reddish brown, resinous, the basal scales whitish fringed.
Leaves 4 or 5 , sometimes 3 , in a fascicle, slightly slender or stout, mostly spreading or slightly drooping, $11-22 \mathrm{~cm}$. long, $1-1.5 \mathrm{~mm}$. wide, acuminate, servilate, dull green; stomatal rows $4-9$ dorsal and $3-6$ on each ventral surface. Needle anatomy in cross section: Stomata slightly sunken; hypodermis biform, of ${ }^{2}-3$, sometimes 4 , layers of cells, the inner border straight or sometimes curved; resin canals medial, 2 at dorsal angles and rarely 1 also at ventral angle; endodermis elliptic or sometimes circular in outline, cells with thick outer walls; thick-walled cells in transfusion tissue forming lines outside phloem and xylem.

Cones single or paired, sessile, ovoid conic, symmetrical, $6-8.5 \mathrm{~cm}$. long, $5 . \overline{5}-7.5 \mathrm{~cm}$. across when open at maturity, early deciduous and usually leaving a few basal scales on twig; apophyses dull yellow brown, with prominent transverse keel, the umbo raised and 1-2 mm. high including the weak prickle. Specimens: 17 201 (Tree PAr 21, 193/35), 18840 (Tree PAr 54, 212/65).

This intervarietal hybricl is intermediate in needle number and associated character such as needle width and also cone size, by which the parents are distinguished. The glacous young twigs suggest var. corizonica.

With the typical variety from the Eldorado National Forest, Calif., as seed parent, this cro:- was made at the Institute in 1946, 1948, and 1954. Pollen for the first cross came from Mount Lemmen, Pima County, Ariz. Pollen parents in later crosses were grown from seed collected in the Chiricahua Mountains, Cochise County, Ariz. About 70 of these hybrids are growing at the Institute, and many are under test for performance on the Eldorado National Forest, Calif. At 10 years, 10 plants from seed sown in 1949 averaged 8.6 feet in height, and 30 from 1950, 8.3 feet. In an investigation of natural attack by the weevil Cylindrocopturus eatoni Buch. on plants in nursery tests, Callaham (θ) found the hybrid to be more susceptible than P. ponderasa var. ponderosa.

Pinus ponderosa var. ponderosa \times montezumae Ponderosa pine (typical variety) \times Montezuma pine (fig. 6)

Artificial hybrid between Pinus ponderosa Laws. var. ponderosa (Laws., Agr. Man. 354. 1836), of western North America, and Pinus montezumae Lamb. (Descr. Genus Pinus. Ed. 3 (8°), 1: 39, t. 22. 1832), of Mexico. Bark rough, thick, furrowed longitudinally into gray scaly plates, exposing rusty brown inner layers; bark on branches smoothish, brown or gray. Spring shoots uninodal. Twigs glabrous, glaucous when young, becoming shiny greenish brown, the second year brown and smoothish. Buds cylindric, acuminate, reddish brown, resinous, the scales slightly whitish fringed.

Leaves 4, sometimes 3 or 5 , in a fascicle, slender, flexible, drooping, $14-27 \mathrm{~cm}$. long, more than 1 mm . wide, acuminate, serrulate, dull green; stomatal rows $5-12$ dorsal and $3-5$ on each ventral surface. Needle anatomy in cross section: Stomata slightly sunken; hypodermis multiform or sometimes biform, of 2-4 layers of cells; resin canals medial, 2
at dorsal angles and sometimes also 1 at ventral angle; endodermis elliptic, sometimes circular, in outline, cells with thick outer walls.
Cones (1 pair seen) almost sessile, ovoid conic, slightly asymmetrical, $10-11 \mathrm{~cm}$. long, 9.5 cm . across when open tat maturity, scales numerous, apophyses dull or slightly shiny, yeliow brown, thick with prominent keel, the raised umbo including weak prickle 2 mm . high or less. Specimens: 17139 (Tree PMz 3, 218/47), 18841 (Tree PMz 26, 226/66).

The intermediate character of the hybrid is shown by the 4 leaves in a fascicle, though their slender, drooping appearance suggest Pinus montezumae. Needle anatomy likewise is intermediate. Cones also are intermediate in the weak prickles.
This hybrid was first produced at the Institute in 1946 and again in 1948, 1951, and 1954. From seed sown from 1948 to 1956, more than 50 plants were grown. Twenty-two plants from seed sown in 1950 averaged 12.8 feet high after 10 growing seasons. The source of the female parent, the typical variety of ponderosa pine, was the nearby Eldorado National Forest, Calif. The hybrid is under test for field performance in several places in Culifornia. Seedling vigor of the hybrid was discussed by Righter (36). Callaham (9), observing natural attack by the weevil Oylindrocopturus eatoni Buch. in nursery tests, found the hybrid to be more susceptible to the weevil than Pinus ponderosa.

Pinus ponderosa var. scopulorum \times montezumae Rocky Mountain ponderosa pine \times Montezuma pine (fig. 6)

Artificial hybrid between Pinus ponderosa var. scomulonum Engelm. (in S. Wats., Bot. Calif. 2: 126. 1879), of the Rocky Mountain region, and Pinus monteaumae Lamb. (Descr. Genus Pinus. Ed. 3 (8°), 1:39, t. 22. 1832), of Mexico. Bark on small trunks gray, becoming rough and furrowed into scaly plates, with orange brown furrows. Spring shoots uninodal. Twigs glabrous, glaucous when young, becoming shiny brown, the second year light brownish gray and slightly fissured. Buds cylindric, acuminate, reddish brown, resinous, the seales slightly whitish fringed.

Leaves $3-4$, sometimes 5 , in a fascicle, slender, flexible, curved and spreading to drooping, $10-22 \mathrm{~cm}$. long, more than 1 mm . wide, acuminate, servulate, dull green or slightly shiny yellow green when young; stomatal rows $6-10$ dorsal and $3-5$ on each ventral surface. Needle anatomy in cross section: Stomata slightly sumken; hypodermis multiform, sometimes biform, of $2-4$ layers of cells; resin canals medial, 2 at dorsal angles and sometimes also 1 at ventral angle or rarely 1 dorsal; endodermis elliptic in outline, section, the outer cell walls often thick.
Cones sessile, ovoid conic, symmetrical or nearly so, $7-8 \mathrm{~cm}$. long, 6-7 cm . across when open at maturity, early decidnous and usually leaving a few basal scales on twig; apophyses dull yellow brown, with prominent keel, the raised umbo including weak prickle 1-2 mm. high. Specimen: 17141 (Tree PScopMz $5,176 / 65$).

Leaves of the hybrid are intermediate in length, number in a fascicle, curved and spreading position, and anatomy. Cones also are intermediate in the weak prickies.

This cross with Pinus ponderosa var. scopulorum as female parent was made here in 1948. Seven vigorous plants from seed sown in 1950 averaged 8.4 feet high after 10 growing seasons.

F-510129
Figure 6.-Cones, left to right, top row, Pinus jeffreyi, P. jeffreyi \times ponderosa var. pmanerosa, P. ponderosa var. potuterosa, P. powderosa var. ponderosa X enpelmannii, P. mplemannit; bettom row, P. ponderosa var. ponderosa, P. ponderosa var. ponderoda \times mondezumae, P. montczamac, P. ponderosa var, scopulorum X montczumac, P. ponderosa vur. scopulorum. One-fifth natural size.

Pinus engelmannii \times montezumae Apache pine \times Montezuma pine

Artiliciai hybrid between Pinus engelmannia Carr. (Rev. Hort., Sér. t, 3: 2-2: 1.sut: known also is P. latifolia Sarg. and P. apacheca Lemm.) of northern Mexico and adjacent Arizont and New Mexico, and Pinus montezumap Lamb. (Descr. Genus Pinus. Ed. 3(8°), 1: 39, t. 22. 1832), of Mexico. Bark on small trunks gray, thick, rough, beroming irregular turrowed into scaly plates. Spring shoots uninodat; on leader shoots the twigs stout and buds large. Twigs glabrous, ghancous when young, becoming purplish brown ind the second year light brownish gray. Buds eylindric, acuminate, reddish brown, resinous, the scales slightly whitish fringed.

Letves 3 , otten 4 , sometimes 5 , in a bascicle, slender, fleable, spreading to clrooping, $19 \sim 29 \mathrm{~cm}$. long, more than 1 mm . wide, acuminate, serrulate, denl green ; stomatal rows $5-10$ dorsal and $3-4$ on each ventral surface. Needle anatomy in cross section: Stomata slightly sunken; hypodermis biform or multiform, of 2-4 layers of cells, the inner border straight or curved; resin canals medial, 2 at dorsal angles and sometimes also 1 at ventral angle and (or) 1 dorsal; endodermis elliptic, sometimes mearly circular in outline, the outer cell walls thin or thick. Specimen: 17135 (Tree ApMz 6, 214/71).
roung hybrid plants have twigs and buts of normal size, except on leader shoots, not like the very large ones of Pinus engelmannii.

Leaves are intermediate in number, width, and position. Needle anatomy, though intermediate, is more like P. nonterumae.
This cross was made at the Institute in 1951. Twenty plants were raised from seed sown in 1953. When studied after 4 growing seasons the young plants were 1.5 feet high, but at 9 years they had grown rapidly to about 10-15 feet (minimum 6 feet).

Pinus jeffreyi \times montezumae Jeffrey pine \times Montezuma pine

Artificial hybrid between Pinus jeffrezi, Grev. \& Balf. (in A. Murr., Bot. Exped. Oreg. [Rpt. No. 8] 2, t. 1853), of the Pacific coast region, and Pinus montezumae Lamb. (Descr. Genus Pinus. Ed. 3 (8°), 1: 39, t. 22. 183:), of Mexico. Bark on small trums gray, smoothish, becoming furroved into scaly plates with orange brown furrows. Spring shoots minodal. Twigs glabrous, glaucous when young, later brownish tinged, the second year light gray, smoothish, and slighty fissured; crushed twigs with slight odor and taste of lemon. Buds cylindric, acuminate, reddish brown, resinous, the scales whitish fringed.

Lenves 3 , sometimes 4 , in a fascicle, slender, flexible, spreading to drooping, $14-34 \mathrm{~cm}$. Iong, about 1 mm . wide, acuminate, serrulate, dull green; stomatal rows $\tilde{5}-8$ dorsal and $2-\overline{5}$ on each ventral surface. Needle anatomy in cross section: Stomata slightly sunken; hypodermis multiform, sometimes biform, of $2+4$ layers of cells, the inner border curved; resin canals medial, $2-8$, 2 at clorsal angles and often also 1 at ventral and $1-3$ dorsill; endodermis elliptic in outline, the outer cell walls thick. Male strobili (dry) cylindric, $25-35 \mathrm{~mm}$. long, $\overline{5}-6$ mm . in diameter, orange brown. Conelet and immature cone with prominent prickle. Specimen: 17140 (Tree $\mathrm{JMz} 3,1 \overline{7} 6 / 69$).
The hybrid's smoothish twigs with slight odor of lemon suggest Pinus jeffreyi, while the resinous buds and dull green color of leaves are characteristic of P. montezumue. Leaves are intermediate in number, length, position, and anatomy.

This cross with Pinus jeffreyi as female parent was made at the Institute in 1951. Three young plants from seeds sown in 1953 were vigorous and almost 3 feet high after 3 growing seasons. At 9 years they were $7-16$ feet high. In 1962 the largest produced a few male strobili. The long drooping needles, smoothish gray branches, and long internodes give these trees a handsome appearance. This attractive hybrid should rank among the best for ornamental planting in mild climates.

Pinus ponderosa var. ponderosa \times engelmannii Ponderosa pine (typical variety) \times Apache pine (fig. 6)

Also reciprocal cross. Artificial hybrid between Pinus ponderosa Laws, var. ponderosn (Laws., Agr. Man. 354. 1836), of western North Amerigl (California), and Pinus engelmann"̈ Carr. (Rev. Hort., Sér: 4, 3: 227. 1854: known also as P. latifolia Sarg. and P. apacheca Lemm.), of northern Mexico and adjacent Arizona and New Mexico. Tree with straight axis and thin crown of whorled horizontal branches. Bark rough, thick, furrowed longritudinally into scaly pates, blackish gray, rusty brown in furrows; bark on stout older branches dark gray,
rough, in regular plates. Spring shoots uninodal, the internodes mostly long and on leaders mostly with fascicled leaves from base of each year's growth upward and without a bare basal zone; branching coarse, with relatively few stout branches. Twigs mostly stout, 1 cm . or more in diameter, glabrous, shiny yellow green to brownish green, the second year brown. Buds conic to cylindric, acuminate, reddish brown, resinous, the scales slightly whitish fringed.
Leaves 3 (rarely 4 or 5) in a fascicle, stout, stiff, erect to spreading, $17-30 \mathrm{~cm}$. long, acuminate, serrulate, dull green; stomatal rows $10-15$ dorsal and 4-s on each ventral surface. Needle anatomy in cross section: Stomata slightly to deeply sunken: hypodermis biform, sometimes multiform, of $2-5$ layers of cells, the inner border curved, sometimes angled; resin canals medial, 2 at dorsal angles, sometimes also 1 at ventral angle (rarely $1+4$ more dorsal); endodermis often with thick outer cell walls.

Year-old conelets $1-3$ on scaly stalk about 1 cm . long, about 22 mm . long and 16 mm . brond, ellipsoidal. light brown, graucous, scales with slender, straight, slightly incurved or recurved prickie about 1 mm . long. Cones nearly sessile, large, conic, symmetrical, 11-13 cm. long, $8-9 \mathrm{~cm}$, broad open, yellow green when immature: the seales with apophysis ta wny brown, slighty shiny, about $5-6 \mathrm{~mm}$. thick including horizontal keel, the light gray umbo, and straight, sharp prickle about 1 mm . lonr. Specimens: $1723 S$ (Tree PAp 1, 13/5) ; reciprocal cross, 7 7138 ('Tree $\Delta \mathrm{PP} 7,184 / 6 \mathrm{~F}$).
The leader shoots of the hybrid and Pinus engelmannii mostly bear fascicled leaves from base of each years surowth upwat, while in P. ponderosa var. ponderosa a bare zone is present above the whorl of branches. However, the hybric has a leafless zone on lateral shoots and sometimes also on the leader. Twigs of the hybrid are stout, as in P. angelmannii. In needle length and anatomy and in cone, the hybrid is intermediate.

Differences between seedlings of the hybrid and of Pinus ponderosa war. ponderowa have been recorded by Righter and Duffield (38). Hybrid 1-0 and ≥-0 seedlings differed from the seedings of P. ponderosa in shorter tops, longer and heavier roots, larger stem-caliper at ground level, thicker bark, longer primary leaves, longer needles pointing upward, henvier foliare, and much higher water content. In these chameters the hybrid appears intermediate between the parent species. P. engflmannii produces needle fascicles the first year, P. ponderosa mostly not until the second year, and the hybrid partly the first year. The third year the hybrids started needle growth earlier and without a bare length of twigs. Though shorter the first year, the hybrids were taller than plants of P. ponderosa the third to sixth years.

With more than 20 trees of Pinuts ponderosa var. ponderosa from California as seed parents, this hybrid was made at the Institute mainly in 1943, 1948, and 1951, and more than 100 of the progeny were plinted at the Institute. There is also 1 hybrid tree planted in 1933 from the first cross in 1929. The reciprocal cross with P. engelmannii from southeastern Arizona as seed parent was made at the Institute in 1948, from which 9 plants grown from seed sown in 1.950 averaged 1.4.8 feet high at 10 years. Additional crosses with the hybrid as parent have been made.

In one test hybrid plants were about 6 feet tall after 7 growing seasons, and in another they averaged about 15 feet in height and 4 inches
d.b.h. after 12 growing seasons. The oldest tree was about 40 feet tall and 10 inches d.b.h. at 23 years of age. The hybrid is under test at numerous places in California. In an investigation of natural attack by the weevil Cylindrocopturus eatoni Buch. on plants in nursery tests, Callaham (9) found the hybrid to bo more susceptibla than Pinus ponderosa.

Pinus engelmannii \times ponderosa var. arizonica Apache pine \times Arizona pine

Artificial hybrid between Pinus engelmannii Carr. (Rev. Hort., Sér. 4, 3:227. 18ju; known also as P. latifolia Sarg. and P. apacheca Lemm.), and Pinus ponderosa var. arizonica (Engelm.) Shaw (Pines Mex. . - t, t. 17, figs. 1-5. 1909), both of northern Mexico and adjacent Axizona and New Mexico. Bark on small trunks gray, thick, rough, becoming furrowed into scaly plates with orange brown furrows. Spring shoots uninodal, the internodes mostly long and on leaders mostly with fascicled leaves from base of each year's growth upward and without a bare basal zone; branching coarse. Twigs stout, 1 cm . or mors in diametor, glabrous, ghacous, becoming pinkish brown, the second year light gray brown. Buds large, conic, acuminate, reddish brown, resinous, the scales slightly whitish fringed.
Leaves 43 , sometimes 5 , in it fascicle, slender, flexible, spreading, $15-28 \mathrm{~cm}$. long, more than 1 mm . wide, acuminate, serrulate, duil green; stomatal rows $7-11$ dorsal and $3-6$ on each ventral surface. Needle anatomy in cross section: Stomata slightly to deeply sunken; hypodermis biform, often multiform, of $2-5$ layers of cells, the inner bordor angled, resin canals medial. 2 at. dorsal angles, sometimes aiso 1 at ventral angle and 1-2 more dorsal ; endodermis elliptic, sometimes circular in outhine, often with thick outer cell walls.

Cones sessile, ovoid conic, symmetrical, $6.5-7 \mathrm{~cm}$. long, $6.5-7 \mathrm{~cm}$. hroad open, deciduous and leaving a few basal scajes on tree; apophyses dull yellow brown with prominent transverse keel, the umbo raised and $2-3 \mathrm{~mm}$. high including the weak sharp prickle. Specimens: 17136 (Tree ApAr 7, 192/67), 18828 (Tree ApAr 8, 192/68).

The hybrid has the stout twigs and large buds of Pinats engelmannai and also the lenders with fascicled leaves from base of each year's growth upward. Leaves are intermediate in number and length. In needle anatomy the hybrid is intermediate though possessing the welldevoloped hypodermis with angled inner border as in P. engelmannizi. Cones are small as in P. ponderosa var. arizonica.

This cross was made at the Institute in 1948 and 1953 with Pinus engelmannii from southeastern Arizona ns female parent. Twelve plants from seed sown in 1950 averaged 9.3 feet high at 10 years. One of these matured a whorl of 3 cones in 1961 . The 2 surviving plants from seed sown in 1950 were about 3 feet high after 7 years.

Pinus engelmannii \times ponderosa var. scopulorum Apache pine \times Rocky Mountain ponderosa pine

Aso reciprocal cross. Artificial hybrid between Pinus engelnannäi Carr. (Rer. Hort., Sér. 4, 3: 227. 185̄3; known also as P. latifolia sarg. and (' upachect Temm.), of northern Mexico and adjacent Avizona and New Mexico, and Pinus ponderosa war. scomdowm. Engelm. (inS. Wats., Bot. Calif. 2: 126. 1879), of the Rocky Momtain region. Bark gray, becoming rongh and furrowed into sealy plates
with brown exposed in furrows. Spring shoots uninodal. Twigs not stont, glabrous, glaucous, becoming shiny yellow green, the second year light brown, older twigs light gray, smoothish to rough. Buds cylindric, acuminate, reddish brown, resinous, the seales slightly whitish fringed.
Leaves 3, sometimes 2, in a fascicle, stout, stiff, erect to spreading, $14-23 \mathrm{~cm}$. long, acuminate, serrulate, dull green; stomatal rows of leaves in 3's 9-12 clorsal and 3-6 on each ventral surface, of leaves in $2{ }^{2}$ s $10-13$ dorsal and $\tau-9$ ventral. Needle anatomy in cross section: Sromata slightly sunken; hypodermis biform, of $2-\overline{0}$, sometimes 6 , layers of cells, the inner border curved, sometimes angled; resin canals medial, $2-4$ (rarely 6), 2 at dorsal angles, often also 1 at ventral angle and I (rarely 3) dorsal; endodermis mostly with thick outer cell walls.
('ones nearly sessile, oroicl conic, symmetrical, $5.5-7 \mathrm{~cm}$. long, $5.5-$ 6.5 cm . broad open, deciduous and usually leaving a few basal scales on tree; apophyses dull yellow brown with prominent transverse keel, the umbo raised and $1-2$ mun. high inchuding the weak prickle. Specimens: If 137 (Tree ApPScop 4. 182/69), 18830 (Tree ApPScop 10, 177/70); reciprocal cross, 19159 (Tree PScopAp 7, 211/67).

Lacking the stout twigs of Pinus engelmannii, the hybrid has leaves intermedinte in length and number. In needle anatomy the hybrid is intermediate though with deeply sunken stomata and well-developed hypodermis as in P. engelmannii. Like both parents, the hybrid produces fascicles mostly the first year. Cones are small as in P. pondprosa var. scopulorum.

With Pincs engelmannii from southeastern Arizona as seed parent and with pollen parent from the Monument Nursery in Colorado, the cross was made at the Institute in 1948. Ten plants from seed sown in 1050 averaged 10.0 feet high at 10 years. From the reciprocal cross made at the same time, 20 plants averaged 7.0 feet.

Pinus jeffreyi \times ponderosa var. ponderosa Jeffrey pine \times ponderosa pine (typical variety; fig. 6)

Also reciprocal cross. Artificial and natural hybrid between Pinus jeffrey; Crev. \& Balt. (in A. Murr., Bot, Exped. Orog. [Rpt. No. 8] 2, t. $15 \overline{3} 3)$, of the Pacitic const region, and Pinus ponderosa Laws. var. ponderowh (Laws., Agr. Math. 354. 18:36), ponderosal pine (typical variety), of western North America. Tree with stright axis and narrow crown. Bark rongh, thick, turrowed longitudinally into sealy plates, blackish gray, lighlit brown in furrous and where plates have been shed. Spring shoots uninodal. Twigs glabrous, glancous when young, yellow green, beeming gray brown the second year, later gray and rough; crushed twigs and resin with odor and taste of lemon. Buds cylindric, acuminate redrlish brown, resinous, the scales whitish fringed.

Leaves 3 (rarely 2) in a fascicle, stout, stiff, erect and spreading to slightly drooping, $14-2 \% \mathrm{~cm}$. long, acuminate, serrulate, dull green; stomatal rows 8-12 dorsal and 3-7 on each ventral surface. Needle anatomy in cross section: Stomata deeply sunken, hypodermis multiform or biform, of $2-5$ layers of cels, the inner border curved, resin canals medial, $2-5$ (7), 2 at dorsal angles and often 1-3 ($\overline{5}$) additional ventraj and dorsal: endodermis with thick outer cell walls; thickwalled cells in transfusion tissue forming lines outside phloem and xylem and sometimes nearly continuous between vascular bundles.

Male strobili cylindric, 45 cm . long, 7 mm . in diameter. Year-old conglets single or paired on stout scaly stalk less than 1 cm . long, about $20-22 \mathrm{mun}$. long, $16-18 \mathrm{~mm}$. broad, ellipsoidal, light brown, scales with slender, straight, sharp prickle $2-3 \mathrm{~mm}$. long. Cones sessile, ovoidconic, symmetrical, about 12 cm . long and 9 cm . in cliameter (sometimes smaller) when open, deciduous and leaving a few basal scales on tree; apophyses slightly shiny brown with prominent transverse keel, the umbo raised and about 3 mm . high, including the stout prickle. Specimens: 17229 (Tree JP 9, 10/12): reciprocal cross, 18827 (Tree PJ 1, 13/4).

This intermediate hybrid has the resinous buds, green, slightly longer needles, and rough twigs of Pinus ponderosa var. ponderosa and the resin with odor and taste of lemon from P. jeffreyi. Needle anatomy of parents and hybrid is similar, though the hybrid resembles P. jeffreyi in the fewer rows of dorsal stomatt, the deeply sunken stormata, and usually multiform hypodermis. The cone in size and phyllotaxis is between that of P. ponderosa and the larger one of P. jeffreyi with more scales.

The Institute has one atamal hybrid planted in 1929 from seed of an open-pollinated tree of Pinus jeffreyi; specimen: Little 17149 (Tree 70/33). Five plants were produced in 1956 from open-polli nated seed of this tree.
With Pinus jeffreyi as female parent, cross pollinations were made at the Institute in 1929, 1931, and 1946. Seed from the first two was plimted in 1933 and from the last in 1949. From these crosses 23 trees were raised, 10 from the last averaging 10.0 feet at 10 years. There is also one tree of the reciprocal cross made in 1929 and from seed planted in 1933. The progeny at 23 years of age were about 40 feet high and 1 foot d.b.h.
Mirov (31) first recorded this natural hybrid in Californiat in 1929 and has studied the chemical and other differences. This hybrid was included in analyses by Callaham (8) of needle oils of certain pines and pine hybrids. Haller (19) made a comprehensive study of the variation and natural hybrictization of ponderosa and Jeffrey pines and of the hybrids at the Institute.

Baciscrosses of this hybrid with both parents were made in 1948. Also, trihybrids were obtained by pollination from Pinus engelmannii Carr. first in 1947 and from the hybrid P. jeffreyi \times coulteri in 1949. Pollen from this hybrid was used to pollinate the cross P. ponderosa \times engelmannii in 195ㄹ, producing the presumed 3 -species hybrid: (P. ponderost \times engelmunnii $) \times(P$.jeffreyi \times ponderosa $)$.

Pinus jeff reyi \times ponderosa var. scopulorum Jeff rey pine \times Rocky Mountain ponderosa pine

Artificinl hybrid between Pinus jeffreyi Grev. \& Balf. (in A. Murr., Bot. Exped. Oreg. [Rpt. No. 8] 2, t. 1853), of the Pacific coast region, and Pinus ponderosa var. scopulorum Engelm. (in S. Wats., Bot. Calif. 2: 126. 1879), of the Rocky Mountain region. Bark on young plants smoothish light gray, becoming rough, furrowed into scaly plates and orange brown furrows. Spring shoots minodal. Twigs glabrous, glancous, becoming greenish brown, the second year light brownish gray and smoothish? ;crushed twigs and resin with odor and taste of lemon. Buds cylindric, acuminate, reddish brown, resinous, the lowest scales whitish fringed.

Leaves 3, sometimes 2, in a fascicle, stont, stiff, erect and spreading, (11) $15-20 \mathrm{~cm}$. long, acuminate, sermatate, dull green; stomatal rows of leaves in $3 \leq 7-9$ dorsal and $4-5$ on each ventral surface, of leaves in 2's $9-11$ dorsal and $5-6$ venturn. Needle antamy in cross section: Stomata deoply sanken; hypodermis multiform, sometimes biform, of $3-5$ layers of cells; resin canals medial, 2 , sometimes 3 , at angles; endodermis of thin-walled cells. Male strobili cylindric, about 15-25 mm . long, and $7-8$ nom. (5 mm . dry) in diameter, pink red and pale yellow, tarning ormge brown on drying. Specimen: 1\%193 (Tree JPScop 4, 200/69).

The habit of the hybrid is that of Pinus ponderosa var. scopulorum, as adjncent plants of P. jeffreyi have fewer and coarser branches, stouter twigs, larger nontesinous buds, gray green foliage, and longer needles. I lowever, the hybrid does have a weak lemon odor of twigs from P. jeffrcyi. In needle length the hybrid is intermediate. The needle anatomy of the hybrid is like P. jeffreyi in fewer rows of dorsal stomata, deeply sunken stomata, and usually multiform hypodermis. Small hybrid plants cliffer from both parents in having thin-walled endoclermal cells.

Polination with Pinus jeffreyi as female parent was made at the Institute in 1948. From seed sown in 1950, 14 plants were $3-5$ feet high in 1956 and averuged 8.2 feet at 10 yeurs.

Pinus jeffreyi \times washoensis Jeffrey pine \times Washoe pine

Artificial hybrid between Pinus jeffreyt Grev. \& Balf. (in A. Murr., Bot. Exped. Oreg. [Rpt. No. 8] 2, t. 1853), of the Pacilie const region, and Pinus washoensis Mason \& Stockwell (Madroño 8: 62. 1945), rate and lowal on Mount Rose, Washoe County, Ner., and north to southerm Warner Mountains in California (18). Bark of branches and smull trunks smoothish, brownish gray to gray, becoming rough and furrowed into scaly plates. Spring shoots uninodal. Twigs glabrous, glateous when young, becoming brown, the second year brownish gray and smoothinh; crushed twigs and resin with odor and taste of lemon. Buds cylindrie, acuminate, reddish brown, resinous, the scales whitish famand. Leares ") (rarely 2) in at fascicle, stout, stiff, orect and spreading, $10-20 \mathrm{~cm}$. long, neuminate, servulate, dull green; stomatal rows $8-12$ doazal and $3-5$ on each vental surface. Needle anatomy in cross section: Stomata slightly sunken; hypodermis multiform, sometimes biform, of 2-4 tayers of cells; resin canals medial, 2 at clorsal angles and sometimes i at ventral angle; endodermis with thinwalled cefls. Specimen : 19738 (Tree JW $2,221 / 62$).

The lemon odor of twigs is from Pinus jeffreyi, while the resinous buds are from P. washoensis. The foliage color of the hybrid was recorded as green, dillerent both from the slightly gray green in P. washoensis and the distinctive gray green of P. jeffreyi. Both parent species difler only slightly in needle antomy. 'Tho hybrid resembles P. jeffrey: in the prominent, usually multiform hypodermis (biform in P. washoensis) and smanl number of resin canals and is like P. washoensis in haviner stomata only slightly samken. Smadl hybrid phants have thin-watled endodermal cells, while in the parents the outer cel! walls usually tre thickened.

IVith Pimus jeffreyi as seed parent, this cross was made at the Institute in 1948 . Five progeny from seeds planted in 1950 were $3-4$ feet high by 1956 and averaged 5,8 feet at 10 years.

Pinus washoensis \times ponderos α yar. ponderosa

 Washoe pine \times ponderosa pine (typical variety)Also reciprocal cross. Artificial hybrid between Pinus washoensis Mason \& Stockwell (Madroño 8: 62. 1945), ,are and local on Mount Rose, Washoe County, Nev., and north to southern Warner Mountuins in California, and Pinus ponderosu Laws. var. ponderosa (Laws., Agr. Man. 354. 1836), of western North America. Bark of branches and small trunks smoothish, gray or brownish gray, becoming dark gray, rough, and furrowed into scaly phates and orange brown in furrows. Spring shoots uninodal. Twigs stout, ghbrous, glaucous when young, greenish brown the first year, becoming brownish gray and smoothish the second year. Buds cylindric, acuminate, reddish brown, resinous, the lowest scales slightly whitish tringed.

Leaves 3 (rarely 2) in a fascicle, stont, stiff, erect and spreading, $11-23 \mathrm{~cm}$. long, acuminate, servalate, dall green; stomatal rows $8-13$ dorsal and 46 on each ventral surface. Needle anatomy in cross section: Stomata slightly sunken; hypodermis biform or multiform, of usually 3, sometimes $?$ or 4 , layers of cells, the inner border st raight or slightly curved; resin canals medial, 2 , sometimes 3, at angles; endodermis with outer cell walls thin or slightly thickened. Specimens: 19130 ('Tree WP 37, 231/41) ; reciprocal cross, $7 \% 131$ (Tree PW $9,228 / 44$).

Older twigs and branches of the hybrid are smoothish and gray as in Pinus washoensis, not rough and dark gray as in P. ponderosa var. ponderosa. In needle anatomy the parents and hybrid are similar, though in both parent species the outer cell walls of endodermis usually are thickened. In the hybrid and P. ponderosa the hypodermis is bitorm or nultitorm.

With Pinus wushoensis as female parent and pollen from localities in Calitornia, this cross was first made at the Institute in 1.941 and 1946. Twenty-nine trees were grown from seeds planted in 1943 and 1048. The progeny were mostly 6-8 feet high at 13 years of age. The reciprocal cross was made in 1946, and a plants were raised from the seed sown in 1948.

Pinus washoensis \times ponderosa var. scopulorum Washoe pine \times Rocky Mountain ponderosa pine

Artifiein hybrid between Pinus washoensis Mason \& Stockwell (Madroño 8:62. 1945), rare and local on Mount Rose, Washoe County, Nev., and north to southem Warner Mountains in Californin. and Pimus ponderosta var. scopulomum. Engelm. (in S. Wats., Bot. Calif. 2:126. 1879\}, of the Rocky Mountain region. Bark of smad trunks light gray, smoothish, becoming furrowed into scaly plates. Spring shoots uninodal. Twigs glabrous, glaueons and greenish brown the first year, becoming light brownish gray and smoothish the second year, later light gray. Buds cylindric, acaminate, reddish brown, resinous, the lowest scales slightly whitish fringed. Leaves 3 in a fascicle, stout, stitt, erect and spreading, $10-16 \mathrm{~cm}$. long, achminate, serrulate, dull green; stomatal rows $8-11$ dorsal and $3-\%$ on each ventral surface. Needle anatomy in cross section: Stomata slighty suaken; bypodermis bitorm, of $2-4$ layers of cells; resin canals medinl, 2 , sometimes 3, at angles; endodemis of thin-walled cells. Specimen: 19137 (WP'scop 2,221 ' 6 i).

The hybricl has leaves intermedinte in length between the parents and uniformly 3 in a fascicle as in Pinte washochsis but dull green as in P. ponderosa var. scopulovim. In needle amatomy the hybrid scarcely is distinguishable from the two species. Howerer, in both parent species the onter cell watls of endodermis usually are thickened.

This cross was male at the Institute in 1948 with Pinus ruashoensis as seed parent. From seeds sown in 1950, 5 plants averaged 4.6 feet in height at 10 years.

Pinus jeffreyi \times coulteri Jeffrey pine \times Coulter pine (fig. 7)

Artificial hybrid between Pinhers jeffreyi Grev. \& Balf. (in A. Murr., Bot. Exped. (Oreg. [Rpt. No. 8] $2, \mathrm{t}$. 1853), of the Pacific coast region, and Pinus roulleri D. Jon (Linn. Soc. London Trans. $17: \pm 40$. 1836), of (aliforman and northern Baja (Galitomia, Mexico. Tree with straight axis and whorls of asending branches. liants on older branches smoothish and light gray, on trut rough and becoming fissured into loose. stightly curlech, thin sably plates and exposing mange brown immer burk. Sipring shoots uninodal. Twigs glatueons when young, ghabrous, whitish blue, beconing light brownish gray the second yenr, older twigs smoothish. Buds cylindric, acominte, reddish brown, resinous, the scales whitish tringed.

Lewes :3 in a filscicle, stout, stitt, erest to spreading or slightly drooping in age, $16-2 \bar{i} \mathrm{~cm}$. long, acuminate, servatate, dull gray green; stomatal rows i-10 dorsal and 3 -5 rentral, the stomatia appearing as

 Ond-fittit matural size.
minute white dots; membranous sheath about 20 mm . long, light brown, persistent but in age only about 7 mm . long. Needle anatomy in cross section: Stomata deeply sunken in a U-shaped cavity; hypodermis multiform, of 3-5 layers of cells, the inner border curved; resin canals medial, 2 at dorsal angles; endodermis of thin-walled cells; thick-walled cells of transfusion tissue forming lines outside phloem and xylem.

Male strobili (old and dry) cylindric, $20-22 \mathrm{~mm}$. long and $4-5 \mathrm{~mm}$. in diameter, pale yellow with pinkish tinge. Cones sessile, very large, ovoid-oblong, slightly oblique and asymmetrical at base, large and heavy, about 16 cm . long and 12 cm . in diameter when open; scales numerous, apophyses tawny yellow, very thick with prominent keel, the umbo together with stout broad spine $\bar{\sigma}-6 \mathrm{~mm}$. long. Specimen : 17219 (Tree JCl 91, 232/45).

This intermediate hybrid hats reddish brown resinous buds, as does Pinlus coultern, with scales slightly whitish fringed but, lacking the whitish color of the conspicuously white-fringed bud scales of P. jeffreyi. In needle length the hybrid is intermediate. The stomata are as in P. jeffreyi, deeply sunken in U-shaped notches and under a hand lens appearinur as minute white dots close together or on young leaves connected in longitudinal white lines along the needle surfaces. P. coulteri has distinctive stomata deeply sunken in large V-shaped notches and under a hand lens appearing as larger white squares, fewer and farther apart but also in lines. In needle anatomy the paronts and hybrid are similar, but the hybrid has the thin-walled ondodermal cells of P. coulteri. The cone is intermediate in size, shape, and phyllotaxis, having many flat scales as in P. jeffreyi but oblique and with stout, short spines, indicating relationship with P. coulteri.

The artificinl cross with Pinus jeffrey i as seed parent was made at the Institute in 1941,1946 , and 1905 but has yielded very low proportions of sound seed. About 35 first-generation hybrid trees are growing at the Institute. though many others were produced and plunted in field tests elsewhere. Five trees from seed sown in 1946 averaged 29.6 feet in heimht and 7.1 inches d.b.h. at 15 years. Eleven trees from seed sown in 1949 averuged 12.8 feet in height and 3.0 inches $d . b$.h, at 10 years.

The natural hybrid between these species in southern California was studied in detail, described, and illustrated by Zobel (50). Cahaham (8) reported charncteristics of the needie oils of backcross and other lybrids.

Pinus contorta var. murrayana \times banksiana Sierra lodgepole pine \times jack pine (fig. 8)

Artificial hybrid between Pinus contorta Dougl. vir. murayana (Grev. \& Brlf.) Engelm. (in S. Wats., Bot. Calif. 2: 126. 1879), Sierra lodgepole pine, of Sierra Nevada of California, and P. banksiona Lamb. (Descr. Gemus Pinus 1: 7, t. 3. 1803), jack pine, of Canada and Fortheastern United States. (P. ×mumraybanhesionat Righter \& Stockwell, Madroño 10: 69. figs. 1, 2, 1949.) Bark dark gray, rough, with scaly plates. Branches stiff, ascending, strmight, gray brown, scaly and slightly rough. Spring shoots maltinodial. Twigs slender, glabrous, glaucons and yellow green when young, becoming purplish brown, year-old lateral twigs 4 mm . in clameter, the

Figere S....Cones, left to right. top row, Pinhs contorta var. marrayana, P. contoria

lutses of bats decurent and forming narrow, rectangular plates. Buls acominate, resinoms. reddish brown.
Lave: : in a fascicle, straight or slightly twisted, slightly divergrout, stifl, erect, 35 em. long, $1.2-1.6 \mathrm{~mm}$. wide, slightly thattened, arote, rerrulate, slightly shiny dark green: stomatal rows $0-14$ dorsal nad i 10 ventral: lysial sheath about 7 mm . in bud, beeoming 3 mm . long, gray brown. Needle anaiomy in cross section: Stomata not anken : equidermal eells nearly square to slightly rectanguhar; hypodermix bilom, of 2 , sometmes 3 , layers of cells: resin cmals 2 (some(imes; 3) medial at angles, small to large, with thick-walled epithetial (edls: endodermis alliptic. usually constricted, outer cell wall usually shighly thickened; rascular bundles 2 , widely separated by thinwalled trathstusion tissue.

Male strobili cylindric, $8-1.4 \mathrm{~mm}$. long and $3-\mathrm{tmm}$. in diameter; pellow brown, beeming orange brown when dry. Cones single or paired. sussile. reflesed or spreading, oroid conic, nearly symmetrical, $I_{i} \mathrm{~cm}$. long, $4-4.5 \mathrm{~cm}$ across when open, opening at maturity but persistent Ior yeass: apophyses slightly shiny, tawny yellow, flat, umbo that usuaty with weak prickle less than 1 mm . long. Seed with Wighty triangular brown body 3 mon. long and narrow membanous why about 15 mm, Kong. Specimen: / 8844 ($\mathrm{Tree} \mathrm{MyBa} 14,198 / 49$).

Jooth parent apecies and the hybrid are similar in many vegetative.
characters. The hybrid is like Pinus contorta var. munrayana in the stiff, ascending, straight branches. The needles are slightly divergent as in that parent but often short as in P. banksicunt. In needle anatomy all are sumilar in most characters, but the hybrid approaches P. contorta var. murrayana in shape of epidermal cells. In cone characters the hybrid is intermediate in the short weak prickle, nearer P. contorto. rar. muruyana in the almost symmetrical reflexed or spreading cones opening completely at maturity, and like P. banksiama in the flat apophyses and early abundant cone production.

This cross was made at the Institute first in 1939 on Pinus contorta vas. murrayana, and the seeds were planted in 1941. In 1944 and later years the cross was repeated. About 50 trees of this cross are growing there. At the age of 20 years, 13 of the original hybrids treraged 21.3 feet in hoight and 5.1 inches d.b.h.

Righter and Stockwell (39) named and described this hybrid and compared it with the parent species in a tabie. Mirov (9P) compared the chemistry of the turpentines from this hybrid and its parents. Buchhole (7) included this hybrid in a stucly of embryological aspects of hybrid vigor, ind Righter (35) included it in a study of the relation of seed weight and seedling size to inherent vigor.

Where the ranges of the parent species meet in central and northwestern Alberta, Moss (34) observed this naturat interspecific hybrid, and Mirov (39,33), analyzing chemical composition of the turpentine, found turpentine of the hybrids to be intermediate between the parent species. However, the parent of the natural hybrid represents a different variety, Pinus contorta var. Zatifolia Engelm., Rocky Mountain lodgepole pine, as separated by Critchfield (11).
The Institute has made also this artificial interspecific hybrid with a third variety, Pinus comtorta var. sontorta, shore pine as P. contonta var. contorth. \times bunkisimut. Seed from this cross was first planted in 1949.

Pinus virginiana \times clausa Virginia pine \times sand pine (fig. 8)

Artifial hybrid between Pinus rirginuant Mill. (Gard. Dict. Ed. 8 , Pinus No. 9. 1768), of Fastern Trited States from New York to Indiana, Mississippi, and Georgia, and P. clausa (Chapm.) Vasey (ex Sarg., T.S. Census, 10th, 1880, v. 9 (Rpt. Forests No. Amer.): 199. 1884), of Florida. Bark of small trunks gray, rough, with scaly plates, Spring shoots multinodal. Twigs slender, glabrous, plaurous, whitish green when young, becoming purplish brown, smoothish. Buds acuminate, nomresinous, reddish brown, the attenate scales with white margins becoming fringed.

Leaves 2 (rarely 3) in a fascicle, stort, often slightly flattened, slightly twisted, stiff, spreading at nearly right angle, 46 (7) cm . long (as short as 2.5 cm on late summer twigs), $1.2-1.6 \mathrm{~mm}$. wide, acute, servalate, dull green to yellow green; stomatal rows 10-17 dorsal and $8-12$ ventral ($6-8$ rentral on leaves in 3 s). Needle anatomy in cross section: Outer epidermal cell walls slightly arched; hypodermis biform, sometimes uniform, of 2 or 1 haver; resin camals 2 , medial, dorsal near angles, bordered by thin- or thick-walled cells; endodermis elliptic, of thin-walled cells; vascular bundles separated slightly less than bundle width; thick-walled cells mostly absent in transfusion tissue.

Male strobili (old and dry) cylindric, $7-12 \mathrm{~mm}$. long and $3-4 \mathrm{~mm}$.
in diameter, orange brown. New female or oyulate strobili or conelets on horizontal brown scaly stalks $5-8 \mathrm{~mm}$. long, after pollination 1 cm . long, ovoid, scales with weak prickle more than 1 mm . long. Cones sessile, ovoid conic, $4.5-\overline{5} \mathrm{~cm}$. long, $4-4.5 \mathrm{~cm}$. across when open at maturity, persistent: apophyses shiny nut-brown, raised along a transverse keel, the umbo forming a prickle about 1 mm . long. Specimen: 18803 (Tree VCla $4,164 / 74$) ; 19140 (Tree VCla $5,164 / 75$).
As both pacent species are closely related and similar, the hybrid is distinguished from the parents with difficulty by partly variable characters. Study of older plants shows a few changes in needle characters reported on 2 -year seedlings by Keng and Little, (25, table 17). Pinus nirginiant and the hybrid have the needles often slightly fattened and slightly broader than the semicircular needles of P. clecusa. The hybrid is intermediate in the outer epidermal cells shightly arched, less than in P. clousin. and in the 2 vascular bundles separated by only slighty less than bundle width, less than in P. virginiuna. It is like P. virginiana in the hypodermis usually biform, rather than mostly uniform, and like l '. clause in the endodermis elliptic in outline, not constricted. Cones of hybricl and parents are similar. Though P. clausa typically is characterized by closed cones, the pollen parent was from Pensacola, within the range of the western open-cone race.
Five plants of this hybrid from cross pollination in 1953 and from seeds sown in 1955 averaged 5.2 feet high after 5 years.

Pinus patula \times greggit Mexican weeping pine \times Gregg pine

Artificial hybrid between Pinus patula Schiede \&Deppe (in Schlecht. \& Cham., Limaes 6:354. 1831), of eastern and central Mexico, and P. greggii Engelm. ex Parl. (in DC., Prodr. 16(2) : 396. 1868), of northeastern Mexico. Bark of small trunks light brownish gray, smoothish but becoming furrowed into plates with orange brown furrows. Spring shoots multinodal. Twigs slender, glabrous, glaucous, whitish brown, becoming light orange or reddish brown and slightly scaly on larger branches and trunk. Buds conic to cylindric, acuminate, resinous or nonresinous, reddish brown, the long attenuate scales with white margins becoming fringed.

Leaves \bar{B} in a fascicle, slender, flexible, slightly drooping, $10-15 \mathrm{~cm}$. long (as short, as 5 cm . on late summer twigs), $0.9-1.2 \mathrm{~mm}$. wide, acuminate, serrulate, yellow green; stomatal rows 7-9 dorsal and 2-5 on each ventral surface; basal sheath $7-12 \mathrm{~mm}$., the scales brown with whitish borders, the longest whitish and spreading at end. Needle anatomy in cross section: Stomata slightly sunken; hypodermis weak, uniform, of 2 or sometimes 1 layer; resin canals 2-4, medial or medial and internal, usually 2 dorsal near angles, bordered by thin-walled cells: endorlermis of thin-walled cells; transfusion tissue with lines of thick-walled cells outside phloem and xylem.

Mate strobili (old and dry) cylindric, $9-20 \mathrm{~mm}$. long, $4-5 \mathrm{~mm}$. in diameter, orange brown. Year-old conelets (in 1962 a single plant with 2 at different nodes) reflexed on stout, light brown, scaly stalks about 1 cm . long, ovoid, about 2 cm . long, the umbo glaucous, light brownish gray, weakly keeled, with minute prickle about 1 mm . long. Specimen: : 880 z ('Tree PatGr 10 1, 189/81).

The hybrid is intermediate in leaf characters and has slightly or latit-drooping needles of intermediate length and width between the
shorter, straight, erect needles of Pinus greggii and the longer, weak, drooping or weeping needles of P. patula. P.greggit has smooth gray branches, while the hybrid and P. patula have reddish brown, scaly branches. The basal sheath of leat fascicles is intermediate in length between the longer sheath ($10-15 \mathrm{~mm}$.) of P. patula and the shorter ($5-8 \mathrm{~mm}$.) of P. greggii. In needle anatomy the parents and hybrid are similar in most characters.

Fifteen plants of this hybrid were produced at the Institute from a cross pollination made in 1953 and from seeds planted in 1956. At 5 years they averaged 6.3 feet in height. In 1962, after 6 growing seasons, they were mostly vigorous and slightly larger than plants of the two parent species the same age and in adjacent rows. In 1962 plants of Pinas patula and the hyirid began needle elongation before those of P. greggii.

Fielding and Nicholson (16) made this cross in Australia in 1950. The hybuds were intermediate between the parents in foliage characters and grew more rapidly than open-pollinated progenies of the parents.

Pinus patula \times radiata Mexican weeping pine \times Monterey pine

Artificial hybrid between Pinus patula Schiede \& Deppe (in Schlecht. \& Cham., Limnaea 6: 35.4. 1831), of easterm and central Mexico, and Pinus radiata D. Don (Linn. Soc. London Trans. 17:442. 1836), native locally on the const of central California and Guadalupe Island of Mexico. Bark on small plant orange brown, scaly. Spring shoots multinodal. Twigs slender, glabrous, orange or reddish brown, becoming scaly. Buds conic, acuminate, nonresinous, reddish brown, the long attenuate scales with whitish margins. Leaves 3, sometimes 4 or $\overline{5}$, in a tascicle, slender, flexible, slightly drooping to spreading, (8) $11-15 \mathrm{~cm}$. long on young plant, $1.2-1.3 \mathrm{~mm}$. wide, acuminate, the serrulate margins hyaline, yellow green; stomatal rows $8-10$ dorsal and $4-5$ on each ventral surface; bassal sheath $9-12 \mathrm{~mm}$. long. Needle anatomy in cross section : Stomata slightly sunken; hypodermis weak, biform or sometimes uniform, of 2 or 1 layer; resin canais medial, 2 dorsal near angles, bordered by thin-walled cells; endodermis of thin-walled cells; transfusion tissue with scattered thick-walled cells. Specimen: 19794 (Tree PatR 2, 214/88).

The singie hybrid plant was compared with nearby plants of both parent species of the same age. The hybrid is intermediate, conspicuously in the slightly drooping needles between the lengths of parent species, partially displaying the wapping characteristics of Pinus patula. Both P. patula and the hybrid sometimes have 4 or 5 needles, while P. ruliata sometimes has 2. The orange or reddish brown twigs resemble those of P. raliuta, though lacking the glaucous color when young. The basal sheath of leaf fascicles is intermediate in length between the longer sheath ($10-15 \mathrm{~mm}$.) of P. putula and the shorter sheath ($5-10 \mathrm{~mm}$.) of P. radiath. The servilate teeth of the leaf margins are intermediate between the short, weak teeth of P. patula and the large, stout, curved tecth of P. radiata. These minute differences in teeth can be felt by ruming the fingers down the needles.
In needle anatomy the hybrid has the small stomata of Pinus patala. and not the modified epidermal cells conspicnously arched over the
stomatal court characteristic of P. radiath. Both parents and hybrid are similar in most detaiis. The hypodermis is biform or sometimes uniform in the hybrid, biform in P. rodiata, and uniform in P^{P}. patula, P. putult has $2-5$ resin canals in cross section, P. roulate usually 2 , sometimes (1--1, while? were observed in the hybrid.
This pollination wats made at the Institute in 1955. One hybrid plant from seed sown in 195T was outplanted in 1959 and was about 4 feet high in 1962.

Pinus attenuata \times radiata Knobcone pine \times Monterey pine (fig. 8)

Artificial and natural hybrid between Pinus attenuata Lemm. (Mining and sci. Press (64: +5.) 1892) of California, adjacent Oregon, and Baja ('aliformia, Mexico, and Pinus ruduata D. Don (Linn. Soc. London Trans. 17:4t2. 1836), native locally on the coast of central (alifomia and Guadalupe Island of Mexico. (P. \times albenuradiatu Stockwell \& Righter, Madroño 8: 160. 1946.) Tree of rapid growth, with tall straight axis, many ascending to spreading branches, and broad crown. liark gray, smoothish and slighty scaly; on lower part of large trunks becoming rough and shallowly furbowed into longitudimal scaly ridures. Spring shoots multinodal. Twigs glabrous, light brown. Buds cylindrical, acute, reddish brown, not or slightly resinous.
Leaves 3 in a fascicle, slender, spreading and becoming slightly drooping, 8-1.2 (18) cm. long, 1.1-1.2 (1.5) mm. wide, acuminate, serrulate, dull dark green; stomatal rows $7-10$ dorsal and $3-\overline{5}$ on each ventral surface: membranous sheath about $10-15 \mathrm{~mm}$. long, light brown, persistent but in aqge only about 5 mm . long. Needle anatomy in cross section: Stomata usually deeply sunken in an urn-shaped dep"ession with walls of modified epidermal cells arched over stomatal court : hypodermis biform, of ≥-3, sometimes 4 , layers of cells, the inner border staight or nearly so: resin canals 2 medial at dorsal angles, sometimes only 1 or none, small, about $0.02-0.04 \mathrm{~mm}$. in diameter; endodermis of thin-walled cells: thick-walled cells in transfusion tissue forming line outside phloem or absent.
Male strobili clustered, cylindrical, about 15 mm . long and 3 mm . in diameter, pink red, with brown scales at base. Year-old conelets 1,2 , 3 , or more elustered together, often 2 whorls produced in a year, slightly reflexed on stout scaly pedmeles nearly 1 cm . long, slightly oblique, about 18 mm . long and 11 mm . broad, the keeled umbos with sharp prickle about 1 mm . long, nearly straight and pointing slightly toward apex. Cones subsessile, reflexed against twig, oblique conic, about $9-13 \mathrm{~cm}$. long and $4.5-5.5 \mathrm{~cm}$. in diameter when closed, brownish, long persistent, serotimous; apohyses 4 -sided, with faint horizontal keel, those in lower part of outer side with prominent tubercle or pyramid ' $3-10 \mathrm{~mm}$. high ; umbos ending in sharp, nearly straight, persistent prickle $1-2 \mathrm{~mm}$. Iong. Specimen : 17203 (Tree AtR $45,191 / 41$).
This hybrid is like Pinus radiata in its rapid growth and tall straight axis but is intermediate in tranching. It approtehes P. attenuata in its late batk formation, with smoothish batk except on lower patts of latge trunks. The needles are dark preen as in the former, intermediate in thickness, and spreading to slighty drooping as in the latrer. In needle anatomy the hybrid is more like P. madiata in the modilied epidermal cell walls usually arching over the stomatal court,
the smaller number of resin canils, and thick-walled cells outside phloem in transfusion tissue.
Stockwel! and Righter (46) described and named this hybrid and compared it with the parent species in a table. This cross was made at the Institute in 1927 as its first pine hybrid and was repeated in 1947. Abour 80 progeny trees were grown from seeds planted in 1929 and 1949. Twenty trees measured at the age of 30 years averated 73.2 feet high and 17.4 inehes d.b.h.
At the Institute this hybrid has grown more mpidly than the other hybrids, even greatly exceeding native ponderosn pine. Though intermediate, this promising hybrid exhibits great vigor and combines the rapid growth of Pinus madiatu and the cold and drought resistance of P. atteruutur. It is being mass produred by the ['.S. Forest Service for fiek trials in several places in Californit. Through treatment of seeds and buds with colchicine, Hyon (21) obtained mixoploid plants of this hybrid.

Bannister (4), using seven chatacters of seedings, found the F_{1} hybrids to be intormediato between the parents in most characters. Bamister: Brewertom, and MeIDonald (5) used rapor-phase chromatography in a study of the chemical composition of the turpentines of hybrids and parents. They included five F_{t} s from Placeryille. They found those F_{1} :s to be intermediate in the A-pinene/B-pinene ratios and an almost perfect relationship between this chemical ranking and a subjectivo taxonomie ranking based on morphological characters and evidence from progeny tests.

Pinus attenuata \times muricata Knobcone pine \times bishop pine (fig. 8)

Artificial hybrid between Pinus attenuata Lemm. (Mining and Sci. Press 64: t5. 1892), of ('aliformia. adjacent Oregon, and Baja Californin, Mexico, and Pinas muricuta D). Don (Linn. Soc. London Trans. $1 \mathrm{i}: 4+1$ 1836), of the const of (alifornia and adjacent Baja Califorma. The pollen parent is the variation of the litter species described also ats. P. remortitu Mason (Madroño 23: 9. 1930). Tree with straight axis, ascendine branches, and broad conical, pointed mown. Bark on trunks and large branches smoothish, slightly fissured, light brownish gray. Spring shoots multinodal. Twigs glabrous, otange brown, older: twigs tan or light brown. Buds erfinclric, acute to acuminate, pink red, slightly resinous, the seales slighty white fringed.

Leaves 3 and \because in a fascicle (on some shoots or plants either anmber may be commoner), stout, stiff, mostly erect to slightly spreading. 10-16 (18) cm. long, acute-acuminate, serrabate, dill light green: stomatal rows of leaves in 3 's 11-18 dorsal and $6-10$ on each ventral surface, of leaves in 2 s $15-2+4$ dorsal and $11-18$ ventral: membenons sheath about 20 mm . long, light brown, persistent but in age only. about 5 mm . long. Needle anatomy in cross section : Stomata decply smben in an urn-shaped carity: hypormis biform, of 2 or 37 tayers of cells, the imner border st might; resin camals medtial, or medial and intermal (or subintermal). $3 \cdot-7,3$ medial at angles, sometimes $1+$ additional smaller dersal and ventral. from less than 0.02 mm. to 0. 0.2 mm . in dinmeter; endodernis of thin-walled eells: thick-walled rells absent from tanstusion tissue or sometimes forming line outside phloem.

Male strobili clustered, cylindric, about $18-20 \mathrm{~mm}$. Iong and 4 mm . broad, pink red, with brown scales at base. Year-old conelets 3-6 (sometimes only 1 or Ξ) together, often 2 whorls produced in a year, spreading to slightly pendent on stout scaly peduncles about 1 cm . long, oroid, slightly oblique, about 20 mm . long and 17 mm . brond, the umbos with prominent unequal incurved spines $2-5 \mathrm{~mm}$. long, fulvous brown. Cones subsessile, reflexed against twig, obligue, ovoid to conic, $\tau-12 \mathrm{~cm}$. long. $4.5-3.5 \mathrm{~cm}$. broad closed, long persistent, serotinous, remaining elosed indefinitely ; apophyses mostly 4 -sided, pymmidal with hotizontal keel. $3-15 \mathrm{~mm}$. high including umbo ending in stout, sharp, slightly incurved spine $2-5 \mathrm{~mm}$. long, the apophyses, mombos, and spines very short on side next to twig and longest on op-

This hybrid is like Pinus manicata (P. remorata) in the stiff, erect to slightly spreading dull green ieaves, while P. attenuata has slender, often slightly fonger yeifow green leaves that spread widely and droop the second year. The hybrid rombines the 2 leaves per fascicle of P. mutricaln with the 3 of $P^{\prime \prime}$. attenuata and retains the latter's long needles. The neve-acuminate needle apex is between the achte to obtuse apex of the former and the acminate of the latter. Needle anatomy of parents and hybrid is similar in most chatacters.

Combining chatacters of both parents, the cone is intermediate in size and shape, often latger than in P'inus maricuta and as latge as some cones of P. attemath, sarying from the ovoid shape of the former to the elongated conic shape of the latter. The stout spines are intermediate in length and nearly straight or slightly incurved, but in P^{\prime}. muricult longer and recurved (or incurved in $P_{\text {. }}$ remorda) and in /'. attemata shorter and slighty ineurved.

This cross wats made at the tustitute in 1946 with Pinus attenuata as seed parent and the pollen parent the rariation of P. muricata known also as P. whorath. Twelse progeny trees were grown from seed planted in 1949. At s veats of are they were about $16-18$ feet high and +5 inches d.b.h. it 13 years they were about 25 tect high and s_{s} inches d.b.h.

DISCUSSION

Notes on the identification of many of these hybrids by needle chararters and on the intheritance of needle chameters have been repocted by Keng and Little ($2 \cdot \mathrm{~F}$). In Pinus, cone features are more defintive, and bence more useful, than regetative chancters in identifrine speries and hybrids. As many young hybrids lack cones, the needle, bud, twig, and bark chatacters can be used. These deseriptions should be helpful in identifyimg many putative natural and antificial hybrids.

Many charaters of hybuds ace intermediate : others are like or more rosely resemble those of one or the other parent. The first-renemation (F_{1}) interspecifi, hybrids ate intermediate in nearly hate of the needle charasters and resemble each parent in ronghy a louth of the characters, thomigh many ditterences are slight (20̈). Reciprocal crosses were all identical.

SUMMARY

Botanical descriptions are presented of 40 artificial pine hybrids made at the Institute of Forest Genetics, Placcrville, Calif., 11 of soft pines and 29 of hard pines. These include 34 first-generation (F_{1}) interspecific hybrids from 32 species, 5 additional crosses involving another rariety of I parent species, and I in ervarietal hybrid. One interspecific hybrid grown but not produced at the Institute is included. These hybrids are designated by formulas. Of the 36 species of pines native in the United States, 26 , including 5 of soft pines and 21 of hard pines, are represented in these crosses.

LITERATURE CITED

(1) Anonymous.
1055. Research prorress at the Minois Agriculturai Experiment Station. 111. Agr. Expt. Sta. Rpt. $1952^{2}-\overline{5} 4,135 \mathrm{pp}$., illus.
(2) Austin, Lloyd.
1928. Breeding pines for more mpid growth. Jour. Hered. 19: 288-301, ithis.
(3)
1929. Tho Eddy Tree Breeding Station. Madroño 1: 203-212, illus.
(4) Bannister, M. I.
1958. Variation in samples of two-year-old P innes attenuata, P. radiata and their hybrids. Royal Soc. New Zealand Trans. $85(2): 227-236$, ilus.
(5) ——, Brewerton, F. V., and MeDonald, I. R. C.
1959. Vupour-phase chromatography in a stady of hybridism in Pinus. Svensk Papperstidning $6 *: 567-573$, illus.
(6) Bingham, R. T., Squillace, A. E., and Patton, R. F.
1956. Vipor, disease resistance, and field performance of the hybrid Pinus monticola Dougl. \times Pinus strobus L. Zeitschr. f. Forstgenetik a. Forstpfanzenziicht. 5: 104-112, illus.
(7) Buchholz, John T.

19t5. Embryological aspects of hybrid vigor in pines. Science 102: 135-142, illus.
(8) Callaham, Robert Z.
1006. Needle oils of threa pine species and species hybrids. Forest Sci. 2: 101-105.
1960. Observations on pine susceptibility to weoriks. U.S. Forest Serv. Pacific Southwest Forest \& Range Expt. Sta. Tech. Paper 51, 12 pp .
1962. Resistance of three interspecific white pine hybrids to blister rust. Jomr. Forestry 60: $409-410$.
(11) Critchfield, William B.
1957. Geographic variation in Pinus contorta. Harvard Univ, Marin Moors Cabot Found. Pub. 3, 118 pp., illus.
1963. Hybridigation of the southern pines in California. Forest Genet. Workshop Proc. 1962 . South. Forest Tree Impr. Com Path. 22. pp. 10-48, ithus.
1964. The Austrian \times red pine hybrid. Silvae Genetica 12: 187-192, illus.
(14) Duffield, J. W.
1952. Relationships and species hybridization in the genus P imus. Zeitschr. f. Forstgenetik u. Forstpflanzenzücht. 1: 93-97, illus.
(15) -and Righter, E.I.
1953. Ammotated list of pine hybrids made at the Institute of Forest Genetics. I.S. Forest Serv. Calif. Forest \& Range Expt. Sta. Res. Note 86, 9 pp.
(16) Fielding, J.M., and Nicholson, D. I.
1956. A hybrid between Pinus patula and Pinus greggii. Austral. Forestry 20 : 104-105.
(15) Fowler, D. P, and Heimburger, C,
1958. The hybrid Pinus peuce Griseb. \times Pinus strobus L. Silvae Genetica $\mathbf{T}: 81-86$, illus.
(18) Haller, John R.
1961. Some recent observations on ponderosa, Jeffrey and Washoe pines in northeastern Califormia. Madroño 16: 126132.
1962. Variation and hybridization in ponderosa and Jeffrey pines. Calif. Univ. Pubs. Bot. $34 \cdot 123-167$, illus.
(20) Henry, B. W., and Bercaw, T.E.
1056. Shortleaf-loblolly hybrid pines free of fusiform rust after 5 years' exposure. Jour. Forestry $54: 779$.
(21) Hyun, Sin Kyu.
1954. Induction of polyploidy in pines by means of colchicine treatment. Zeitschr: f. Forstgenetik u. Forstpflanzenzücht. 3:2n-33, illus.
(22)
106. Mrass production of control-pollinated seed of conifers. Fifth World Forestry Cong. Proc. 2: 787-792.
(23)
——— and Amm, Kun-Yong.
1050. Mass production of the pitch-loblolly hybrid pine (x Pinus rigitneda) seed. Inst. Forest Genet., Suwon, Korea, Res. Rpt. 1:11-已 4 , illus.
(2t) —— rad Am, Km-Yong.
1059. Principal characteristics of \times Pinus rigitueda. Inst. Forest Genet., Suwon, Koren, Res. Rpt. 1: $3 \overline{\mathrm{a}}-50$, illus.
(25) Keng, Fstuan, and Little, Fibert L., Ir.
1961. Needle characteristies of hybrid pines. Silvae Genetica $10: 131-146$, illus.
(26) Liddicoet, A. R., and Righter, F.I.
1960. Trees of the Eddy Arboretum. ए.S. Forest Serv. Pacific Southwest Forest \& Range Expt. Sta. Misc. Paper 43, 41 pp., illas. (Rer. 1961.)
(으) Little, Elbert L., If.
1953. Check list of native and naturalized trees of the United States (including Alaska). V.S. Dept. Agr., Agr. Fandb. 41 , 472 pp.
(28)
1960. Designating hybrid forest trees. Taxon 9:220-231.
(29) Little, S., and Somes, H. A.
1951. No exceptional vigor found in hybrid pines tested. U.S. Forest Sery. Northeust. Forest Expt. Sta. Res. Note 10, 4 pp. (30) Miller, John M.
1950. Resistance of pine hybrids to the pine reprodaction weeril. U.S. Forest Sorv. Calif. Forest \& Range Expt. Sta. Res. Note 68, 1 T pp., illus.
(31) Mirov, N.T.
1929. Chemical analysis of oleoresins as a menns of distinguishing Jeffrey pine and western yeilow pine. Jour. Forestry 27 : 176-187, illus.
1956. Composition of turpentine of lodgenole \times jack pine hy(33) brids. Canad Jour. Bot. $34: 443-457$, illus.
1961. Composition of gum turpentines of pines. [T.S. Dept. Agr. Tech. Bul. 1239, 158 pp., illus.
(34) Moss, E. FI.
1049. Natural pine hybrids in Alberta. Cand Jour. Res. Sect. C, Bot. Sci. $27: 218-229$, illus.
(35) Righter, F,I.
1945. Pinus: The relationship of seed size and seedling size to inherent vigor. Jour. Forestry 43 : 131-137, illus.
1955. Possibilities and limitations of hybridization in Pinus. Third South. Conf. Focest Tree Impr. Proc. 1953: $54-63$, illus.
(3i) _ and Duifield, , d. W.
1951. Interspecies hybrids in pines. Jour. Hered. 42:75-80, illus.
(38) ——and Duffield, J. W.
1951. Fybrids between ponderosa and A pache pine. Jour. Forestry 49: 34tā-349, ilhus.
(39) —._ and Stockwell, Pilmer.
1949. The fertile species hybrit, Pinus marraybantsiana. Madroíno 10: 65-69, illus.
(to) Schiitt, P.
1959. Züchtung mit. Kiefern. Teil JI. Kreazungen, Resistenzzüchtung und Zytologie. Bundesforschungsinst. für Forst- u. Ftolzwirtschaft Mitt. 42, 40 pp ., illus.
(41) Shaw, George Russell.
1914. The genus Pinus. Arnold Arboretum Pub. $5,96 \mathrm{pp}$., illus. Cambridge : Riverside Press.
(42) Smith, Richard FE.
1957. Observations on the biology of the pine needle-sheath miner, Zellerit haimbuchi Busck. U.S. Forest Serv. Calif. Forest \& Range Expt. Str. Prog. Rpt., T pp. itlus.
(43)
1960. Resistance of pines to the pine reproducion weevil, Cylindrocopturus catoni. Jour. Econ. Ent. 53 : 1044-1048, illus.
1960. The fumigrant toxicity of three pine resins to Dendroctonus brevicomin and $/$. jeffreyi. Jour. Econ. Ent. 54: 365-369.
(45) Stevens, Robert E.
1959. Biology and control of the pine needle-sheath miner, Zelleria haimbachi Busck. (Lepidoptera; Hyponomentidae). U.S. Forest Serv. Pacifc Southwest Forest \& Range Expt. Sta. Tech. Paper 30, 20 pp., illus.
(46) Stockwell, Palmer, and Righter, F.I.
1946. Pinus: the fertile species hybrid between knobcone and Monterey pines. Madrono 8: 150゙-160.
(47) Stone, E. C, and Dulfield, J. W.
1950. Hybrids of sugar pine by embryo culture. Jour. Forestry 48:200-204, illus.
(48) Wright, Jonathan Wr.
1959. Species hybridization in the white pines. Forest Sci. 5: 210-222.
(49) ——and Crabriel, W. T.
1958. Species hybridization in the hard pines, series Sylvestres. Silvae (renetian \bar{i} : 109-1 15 .
(50) Zobel Bruce.
1051. The natural hybrid between ('oulter and Jetfrey pines. Evolution $5:+40-1 \mathrm{P}$, , ilus.
(51)
1053. Are there natural lobiolly-shortleaf pine hybrids? Jour. Forestry 01 : $494+49$, illus.

END

[^0]: For sale by the Superintendent of Documents, t^{+}.S. Government Printing Office Washington, D.C., 20.102 - Price 25 cents

[^1]:

