

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S

INHERITANCE IN KENAF AS RELATED TO SELECTION OF INBRED LINES FOR COMPOSITE VARIETIES

technical bulletin no. 319

Agricultural Research Service
UNITED STATES DEPARTMENT OF AGRICULTURE

Contents

Pago
Review of literaiure 2
Materials and methods 3
F_{1} spring nursery 4
F_{1} summer inursery 4
F_{2} summer aursery 5
Single-plant measurements and calculations. 6
Laboratory measurements and fiber determinations 0
Explanntion of methods 1-4 7
Calculation of means 7
Estimation of missing values 8
Calculating sums of squatrea 8
Calculating F_{4} midparent and F_{2} /midiparent ratios 8
Calcunting estimates of general combining ability 8
Results 9
Original pollitations 0
Spring nursery 10
Date of first flower (maturity) 10
Dinmeter aud height 14
Percent fiber 16
Fiber weight per sarople. 18
Fiber yield 19
Heritability estimates and progeny performance from high and loty parents 20
Discussion 21
Summary 26
Literature cited. 27

INHERITANCE IN KENAF AS RELATED TO SELECTION OF INBRED LINES FOR COMPOSITE VARIETIES

By l. G. Nelson, formerhy research apronomist, und E. D. Wilson, regcarch

Kenaf (hibisus romationus T.) is a subtropical species of the Mal-
 eral omamental species of //ihisen ate members of the family that are betar fimown in the laned sitates.

Kenat is usel manly for the manrfoture of burlat, and is probably indigenous to Aloth. Hose of it: commercial production is in
 derest darimg 1 forfl War $1[$ when a jute substitute was needed. Komal gher is shighly cuasere and weake than jute, but it can be separatod more retuify by mechaniat mothods, and the crop is less restrietive in its soil able elimatio requirements.

Conder fatomble conditions the plants grow 8 to 10 teet high in abont 160 days. 'lite Liabralorian variety has been most widely trown in tho trestern Ifemisphere. Soveral of its inbeed lines were used in this study. It bloomsonly when dity lengths are about 19, 2 hours or less, aceording to the (F.S. Depurtment of agricultaco (13). Daylength response is a varietal characteristic.

When errown for fiter in Florida, where most of the domeatie mterest in kenat is centered, kemal is planted any fime from May to Angust; but June plants produce highest yields. Farvest at the befinning of flowering gives the best, most easily cleaned fiber. Becanse of a rapid decrense in fiber ruabity after the plants begin to flower, liber from seod fiekdis seldom saved.

Since kerate is still at the stage where high yield and disease resistance ane more somarh for in a varicly than guthity relinements, phant breders hato been concemed with getting variedies that are productive. Nost breeders have worked to develop pure-line parieties, although some havo buthed pura lines and introduced them as "synthetio varieties.": In these. however, some undesiable segregates havo resutted. This has revented the reed for studying inheriance in tha hybrid progeniss that would develop from natural coss-bollinattion in a composite of lines (a composite vaciety).

[^0]Although hybrid vigor in kenaf had not been studied as such, it had been observed in various breeding programs. Since there is no practical method of producing hybrid kenaf seed on a commercial basis, a composite variety is now the only means of utilizing heterosis.

The research that has been done on natural crossing has not demonstrated the effectiveness of this means of using hybrid vigor. Studies along this lime have been limited, however, to the amount of natural crossing and, in the present study, to eflects of crossing on specific variables.
To bo successful commercially, composite rarieties of kenaf must first of all be uniform in date of first fower (maturity). Also, they must contain lines that are vigorous and produce vigorous offspring. They should bo uniformly tall, and the percent fiber should be high. In order to extend the harvest season, composite varieties should differ in maturity, ranging from early to very late, each with a narrow range in date of first flower.

The inheritance of these chanacters has been studied primarily to evaluato factors that a plant breeder would need to consider in putting together suitable inbred lines for a composite variely. Many varinbles can bo considered in selecting such inbred lines, but certain ones are particularly limiting. Except for disease resistance, the most critical of these huve been considered in this study.

REVIEW OF LITERATURE

Littlo scientific information on kenaf is arailable. Most of what has been published concerns studies of existing types and varieties and natural cross-pollination. The most extensive literature on work done with existing types of kenaf is that of Howard and Howard (4). 'They described oight agricultural types and divided them into five varieties. These they classified mainly on leaf shape, maturity dates, and stem and petiole color. The commercial Salvadorian variety, which is the source of inbred lines $1,2,6,7$, and 8 in this study is a mixture of two basic types that are most nearly Hibiscus cannabinus vas. viridis How. \& How and H. cannabinus vas. vulgaris accordmg to the descriptions by Howard and Howard. The Javanese kemaf also used in this study-parent 0 and one parent of inbred lines 3,4 , and 5-is H. cannabinus var. purpureus How. \& How. The Foward and Yoyard yatietics were reported by Baque (1) as having typical yield and quality characteristics. However, Lym et al. (9) and others found a fairly wide range in yield, quality, and other agronomic characteristics within these varieties.

Pate, Seale, and Gangstad (11) reported that Javanese varieties are lower in Gber percentage and have fewer capsules per plant than the commercial Salvadorim kemat. They also found lover yields of stalks per acre, which, with low fiber percentages, made even more marked differences in net yield of fiber.

Seyeral workers, including Baque (1) and Horst (3), chass ${ }^{\text {Pod }}$ kenaf as a "naturally self-pollinated" crop, and it has been hanaied on that basis in most breeding and commercial production undertakings. But Howard and Howard (4) observed that when varieties were grown close together, cross-pollination was very common. They noticed that when the flowers began to close about midday, frequently
no pollen was on the stigmas. Thus, pollen brought from other flowers by insects would have resulted in cross-fertilization any time during the morning. They believed that self-pollination is nearly always offected by the closing of the petals in the afternoon.
Jones and thmargo (7) found that matural cross-pollination in varieties grown in alternate rows varied from 1.70 to 23.76 percent, with an average of 7.23 percent for the sir strains tested. Varieties included in this test differed in maturity date. The ones of similar maturity date, as would be used in a composited variety, were found to have the highest percentage of natural crossing. This suggested to the authors that the percentage of natural crossing might be greatly inctersed if compatible varieties of similar maturities were grown in areas where the chief pollinators, the honeybee, were plentiful.

Jones and Tamargo (C) found in another study that wild bees and wasps died some cross-pollination, but that the wild bees were too searce in Cuba to be a lactor; the wasps worked on kenaf flowers only if forced to do so when the supply of other nectar was short. Honeybees were the most effective insects in pollinating kenaf flowers.

Some incompatibility between lines of kenaf has been observed. This may have been the result of timing, or it may have been from other canses.

Jones, Puentes, and Suarez (5) reported considerable hybrid vigor in matural kenaf hybrids and related their findings to those in cotton. They noticed that the natural lybbids were large enough to make roguing easy by looking tor large plants.

MATERIALS AND METHODS

The inbued material used in this study originated from two basic types-Salvadotimn and Javanese. Both had been brought into the United States as varieties, but they were actually mixtures of types. All the material had been selfed for five or more generations. As shown in table 1, parent 0 is an inbred selection from the Javaneso introduction; parents $1,2,6,7$, and 8 are inbred selections from the

Taber 1.-Inbred lines used in maling diallel crosses in fall of 1957, Lake Worth, Fla. (planted in September)

Parcnt No. N	Source ofselection 1	Date of first flower (No- verr bur lat	Plant belgbt	Retted Hiber
0	Javanese	${ }^{3} 13$	Inches 47	Percent 2. 90
1...--	Salvadorian.	17	49	3. 67
	---- - do.-	5	40	4. 30
3	Javancse \times Salvadorian	4	53	4. 49
4.---	---(io.	4	48	
5	---do	4	53	
(3----1	Salvalorian	11	52	5. 10
7----	--- do.	9	47	5. 88
	-do	9	42	4. 84

[^1]Salvadorian introduction; and parents 3,4 , and 5 are inbred solections from Javenese-Sutradorian hybrids, ${ }^{3}$ in which the disease resistance of the Salvadorian variety had been incorporated. These will bo refered to as $J \times S$ lines. The farmese line was ineluded in order to provide a divergent source of germ plasm.

In the fall of 1957 the inbred lines described in table 1 were crossed in all possible combinations, using each line as a male parent and as a female parent. Crosses were made in the fields. Flower buds were emasculated in the afternoon, and pollinations were made early the following moming. Kenaf pollen grains are easily seen on the exposed stigmas, which were observed through a magnifior before the pollen was applied. Very few emascunated llowers had to be discarded becauso of foreign pollen. Potals were romoved during emascalation and thus the bees were not attracted to the emasculated flowers.

F_{1} Spring Nursery

On January 20, 1958, parents and F_{1} progenics of crosses in all possible combinations between the nine lines of kenaf were planted in the greenhouse at Belle Glade, Palm Beach County, Fhi. On March 3 they were transterred to the feld at Lake Worth in the same county on sandy soil, using two randomized blocks of 80 plots each- 35 F ,'s (one progeny missing), 36 reciprocal F_{1} progenies, and the nine parents.

Each plot consisted of three greenhouse phats spaced 2 feet apart in rows 2 feet apart. The wide spacing wats to encourage banching and flowering. Wach parent and each reciprocal of each cross were treated us a separate plot.

Datia on several characters were taken, but only intormation on dato of first flower (days after Jfaceh 31) was amyzed and is reported here.

The main purpose tor this spring nusery was to produce seed tor an F_{2} hursery. Notes taken were incidental.

To supply the missing F_{1} hybids and to supplement the seed supply from the fall crossing block for some progenies, a few cross-polinations were made in the spring nursery. All flowers of F_{1} plants were selfed to provide F_{a} seed. Solfug was assured by applying a pinchtype paper clip to the petals that protrude from the bud the evening before the flower opens. Efforts were made to obtiin as many F_{z} seeds as possible trom all F_{1} progenies. However, some of the F_{1} plants produced few seeds and some did not produce any because of minavorable day lengths. (IEnaf flowers only when days are short.)

F_{1} Summer Nursery

The F_{1} summer nusery was phated on July 22,1958 . Seed originated from the sume crosses as for the spring nursery and was phated on tho same soil type.
In 40 -inch E_{1} plots, five F_{1} seeds were phanted in 20 inches of row and five reciprocally prodned seeds of the same F_{2} were planted in the

[^2]other 20 inches of the same row. Where seed was insuflicient or missing, additional seeds of the reciproenl cross were planted. In parent plots, 11 seeds were planted 4 inches apart in the rows. Progeny and parent rows were spaced 3 feet apart with guard rows of Everghades 41 variety of kenaf on each side of ench row, 1 foot from the progeny row. Also, a guard row of the same vaciety was planted across each end of the plots. The interplanted ated gated rows were pulled from around each progeny at the time of havest.

Notes were talien in the field on each plant lor date of first flower (days aftor August 31). All other dalit reported here wore taken on harvested stoms.

Most of the F_{1} and inbred plants were liturested 7 to 10 days after tho first flowers opened, but a fow were onfside that eange. (Tho irregularity of havest is assumed to have contributed to experimental error.) The plants, cut 5 inches niove the ground, wew then measured for height, and a 15 -inch section was eht trom the base of each stem and weighed to the nearest rram. These 15 -inch samples wore partly dried in an oven to aroid spoilage in tratusit to the fiber haboutory at Boltsville, Mcl.

Fa Summer Nursery

The F_{2} summer mursery was planted on Joly $23,1958-1$ day later than the F_{1} mursery und in the same field. The $1+$ plots (15 liybrid plots and 6 parent plots) were randmized in each of fone replications. (F, progenies involving parents 6,7 , and 8 were so late in the spring mussery that no flowers, or only a lew, developed on many of them.) Thiriy-five seeds of each F_{z} progeny were phanted in in 16foot row, and 35 seeds of its reciprocally related progeny were planted in an adjacent row 1.2 inches away. 'Lhirty-live seeds of each parent were planted in a 16 -foot, row, and monrolated seed was phanted in tho adjacent row to make parent, plots the same size as the progeny plots. A guned row of Tiverglades 41 was phanted on ench side of ench plot atnd across the ends of the plots in the alley.

Deginning in Soptember, a few early plants from all four replientions of the F_{a} numery were haryested at the time of fiust flower, and notes were taken on the havereted plants tor thate of first flower (days after August 31) and plant height. Basal sumples were cut and woighed as in the F_{1} unsery, but green-stem diameters were not measured. Alf harvesting of H_{a} plants wats temporarily discontinued on October 18 because of the amount of time repuired and the resulting delays that woukd oceur in the F_{1} harvest. Metmwhile, notes continued to be taken in the field on standing plints. Date of first flower, plant hoight, and stem diameter were wecorded for ench plant of all four replications. Ffurvesting was resumed on October 29 only of the plants in the second replication. Basal samples were cut and woighed as in the F_{1} nursery. No further harvesting was done in the Sirst, third, and foucth replicntions. FIarvesting in the second replication was continued at intervals as the plants flowered until all except a few very late phants were harvested. Then, after a lib-day interval, those of the late plants that had grown for 20 to 30 days were harvested; 30 days later the remaining few plants were harvested.

Single-Plant Measurements and Calculations

Diameter measurements of the stems in the Fs nursery in the field wore made 20 inehes above the ground with a caliper on the standing plants. Geeen-stem diameters were not measured in the F_{4} nursery. Dry-stom diameter measurements were made on all plants harvested, both F_{1} and F_{2}. The dry stem measurements (in millimetors) wero made at the upper end of the 15 -inch sample section, which, including the $\overline{\text { Dinch }}$ stubble, had been 20 inches above the ground. With only dry-stem dimetor moasurements from the Tr nursory and only greenstem meusurements from the first, third, and fourth replications in the Fy nursery, a conversion factor was necessary. This was established as a ratio of the measurements in the second replicution in the F_{2} nursory, where both diy and green-stem measurements were available. With this factor, all green-stem diameter measurements on wharrested plants were converted to an estimated dey-stom diameter (in millimeters). Conversions were made on individual-plant data. Subsequently, only dry-stem measurements-uctual or converted-were used in all analyses and frequoncy distributions.

Height of plants was measured in inches from the ground to the top of the plant. (For harvested plants, measurements took into necount the $\overline{5}$-inch stabble.)

In the F_{1} nusery and the second replication of the F_{2} nursery, these measurements were made as the plants were being harvested. The plants in the F_{2} nursery that were not harvested (first, third, and fourth replications) wers measured at about the middle of the flowering period.

Laboratory Measurements and Fiber Determinations

At Beltsville the stems were dried for 2 days or more at about 70° C. with air circulation. Thoy were then held in a room where 65 percent humidity and $21^{\circ} \mathrm{C}$. were constant. Aftor the samples reached it constant moisturo content, each was weighed to 0.1 gram, and the ditumeter was measured to the nearest millimeter.

From 3 to $31 / 2 \mathrm{~kg}$. of sample stems were cooked in a copper wash boiler in $30-35$ fiters of 2 -percent sodium hychroxide sohtion. Pressure in the autoclavo was brought up to 9 pounds. The automatic control was then set at 6 pounds pressure and maintained for 1 hour, after which all valves were closed and the steam was turned off. Bringing the antoclave up to 0 pounds' pressure with that quantity of solution required about 40 minates; cooling to atmospheric pressure required about one-half hour more. Thus, the samples were cooked for more then 1 hous.

After being thoroughly washed by ruming tap water throngh the boiler, the stems were allowed to stand overnight in a weak solution of approximately 0.2 -percent acetic acid.

Sinco two batches were required to cook a complete replication, such factors as dilution, temperature, ratio-of-stems to solution, and timo wero carefully controlled, even though small differences in cooking aro probably not important. As a test, some extra samples of cooked and washed fiber were put through a complete second cooking and washing and lost only about 5 percent in weight.

Gums and nonfiber cells were washed out of the fiber by working it by hand under ruming water before it was slipped off the woody central cylinder of the stem. The fiber was dried ovemight at about $70^{\circ} \mathrm{C}$. in a forced-dratt oven and then allowed to reginin a constant weight at $6 \bar{o}$-percent relative humidity and 21°. Fiber samples were weighed to the nearest 5 mg .

Percent fiber was then calculated for each plant. Calculations were made on the basis of the dry weight of fiber from the 15-inch section of stem divided by the dry weight of that stem section and multiplied by 100. Since it is kown that fiber percentares are affected by stem size-tho larger the stem, the lower the percent fiber on gencrally homogencous material-percentames were adjusted to compensate for such effects (percentage $=y$ on diameter $=x$). (In the F_{1} nursery, $b=$ -0.429 and in the F_{2} nursery $b=-0.4 \mathrm{tb} 5$. These regression coellicients were calculated on a within-plot basis.) Adjustments were made on the individetal-plant data. The term "percent fiber" in this bulletin refers to adjusted data unless otherwiso noted.

Explanation of Methods 1-4

In the calculation of the amalysis of pariance, four methods were used. Theso were based on (1) whether or not the parents were included and (2) whether single-plant data were averaged as a separate figuro for each reciprocal progeny or as a combined figure for the two reciprocul progenies.

The following four methock were used: (1) Reciprocals averaged separately, parents not included; (2) reciprocals averaged together, parents not included; (3) reciprocals nveraged separately, parents inchuded; and (4) reciprocals averaged together, parents included.

Calculation of Means

All F_{1} spring nursery plots were calculated with reciprocals separate, since reciprocals were planted as whole plots rather than split plots, as in the summer nurseries.
F_{1} progeny means from the summer nursery were calculated (1) on the basis of reciprocals averaged separately and (2) with reciprocals averaged together. Since the means with reciprocals sepatate have 12 missing values, lis plots with only one plant and 43 plots with only two plants, they were used only for the analysis of reciprocal differences (method 1). For all F_{1} analyses on the F_{1} summer nursery the data were averaged with reciprocals together (methods 2 and 4). Thus averaged, only one plot was missing, two means represented only two plants each, turd four represented three piants. All other means represented more plants.

Means for the F 's were calculated only with reciprocals separato (methods 1 and 3), since 10 or more plants were processed from all except one (split) plot, which had 8 plants and all four replications of ore cross (0×5) that were missing. Twenty or more plants were harvested from most of the plots. For cross 0×5, missing in all replications, the reciprocal values 5×0 were substituted.

Since flowering dita on some plants were missing in seperal progenics in both murseries, those metns were calculated on fewer plants
than for other variables. Also, in several F_{1} plots, flowering data on all plants were missing. Values had to be estimated on more plots for flowering than for other variables.

Estimation of Missing Values

Reciprocal values wore substituted for missing plots throughout the calculations reported here except in the second replication of 6×7 in the F_{1} summer nursery, where both crosses were missing. These values were estimated by a formula proposed by Yates (14).

Calculating Sums of Squares

The procedure used here follows closely that described by Sprague and Tatum (18) with modification described by Kempthorne (8, pp. 119-119).

Using each line as a male as well as a female, p inbred lines were crosed in all possible combinations. Thus, there are $p(p-1)$ progenies with reciprocals separate; there are $\frac{p(p-1)}{2}$ progenies with reciprocals averaged together:

Analyses of variance were made on plot means calculated by one or more of the four methods (1). T).

The F_{1} sums of spuares were calculated by methods 2 and 4 for all except reciprocal ollects; these were by method 1.

The F_{2} sums of squares were calculated by methods 1 and 3 . F_{n} plot means of the separate reciprocals were totaled for main plot offects, since the F_{2} nusery contained sufficient plants per plot and the variation in number per plot was small enough to permit such a procedure.

Calculating $F_{1} /$ Midparent and $F_{2} /$ Midparent Ratios

The $F_{1} /$ midparent and $F_{2} /$ midparent ratios were calculated from nrray means. The term "array" refers to the mean or sum of all replications of all progenies with a common parent. Parent values are not included. The $F_{1} /$ midparent and $F_{2} /$ midpacent ratios for each inbred as it appears as a common parent were calculated by the following formula, beginning with table 3 :

$$
\frac{2(p-1) \bar{x}_{t}}{S \bar{x}_{t i}+(p-2)\left(\bar{x}_{t .1}\right)}
$$

Where
$p=$ number of parents or inbred lines.
$\bar{x}_{\text {t. }}=$ mean of all progenies with common parent.
$\bar{x}_{11}=$ mean of all plots of parent line.
S $\bar{x}_{\text {tf }}=$ sum of all parent means.

Caiculating Estimates of General Combining Ability

Estimates of general combining ability ($\hat{g}_{1 .}$) were calculated from array sums. The formula used in calculating $\hat{g}_{t, .}$ in method 1 , where reciprocals are areraged separately (F_{2} data), is as follows:

$$
\frac{X_{1}+X_{i .}-2 X_{\ldots} \ldots p}{2 n(p-2)}
$$

Where

$$
X_{i .}=\text { sum of proxenies with } i \text {-th parent as female. }
$$

$X_{1}=$ sum of progenies with i-th parent as male.
X... $=$ sum of all progenies (parents excluded).
$p=$ number or parents or inbred lines.
$n=$ number of replications.
The lormula used for caleulating \hat{g}_{1}. in method 2, where reciprocals are averaged together (F_{1} datn), is as follows:

$$
\frac{x_{1 .}-2 X \ldots p}{n(p-2)}
$$

Where
$X_{1},=$ sum of progenies with i-th parent as both male and female, totaled atter two reciprocals were averaged in each replication.
$\lambda^{\prime} .=$ sum of all progenies (parents excluded). Note that its value is approximately one-half that of X..., as used in method 1 (preceding formula).
n and p are the same as for the preceding formala.

RESULTS

In this stucty, amalyses of variance showed some reciprocal differonces, especially in the F_{1} nurseries. Fowever, these are assumed not to be renl, except perhaps in cross-compatibility, for the following rensons: The number of F_{1} phants per plot was small, numerous plots were missing in the F_{1} nurseries, the mature of the differences in the F_{1} nurseries was erratic, and only one of the variables-date of first flower--in the F_{2} nursery had significant eeciprocal differences. On the basis of this assumption, the information from both reciprocals has been combined as follows: For the F_{1} data in the summer nursery, as a single mean for each pair of reciprocals; for the F_{1} spring nursery and the F_{2} datin, as the sum of the two means (see $p .7$). In this way the information has been combined in all calculations beginning with table 3.
'Tho results of the analyses are assumed to be essentially the same whether the means are added together as in methods 1 and 3 or whether it is necessary that the two reciprocals be combined from the original datars in methois 2 and 4 .

Original Pollinations

The number of seeds from each cross-pollination made in the nursery between specific inbred lines, as shown in table 2, is an indication of cross-compatibility. Indications are that the differences between individual crosses (lybrids) and bet ween specific combining ability (s.c.a.) values are not significant, but that diflerences between the general combining ability (g.c.a.) values (all the progenies of each parent combined as an array) are significant.

Table 2-SSeeds produced per pollination in crossing blook, showing male and female array means and general combining ability, fall of 1957^{1}

Inbred line No.	Menn scedis jer pollmation as-		(tenternl combintas ablity ${ }^{*}$
	Male parent	Fenule parent	
0.	Number 7.9	Number 7.8	$\stackrel{\hat{g}_{\text {... }}}{-0.499}$
1	10.0	5.5	$-.535$
2	11.8	7. 4	-. 002
3.	9.2	8.7	-. 192
	8.0	11.0	-. 036
5	11.3	13. 1	. 737
6	0. 3	11. 6	. 230
7.	Q. 9	11.2	. 262
S.	0. 3	10.2	. 03.5
Mean.	9.6	9.6	---------

*1)ifferances signifiennt at 5 -parcent level of probability.

- Data not replieated.

The deductions arrived at from the above analysis are based on a method used by Yates (14) for unreplicated datin. Without a true ertor value, reciprocal mean squares have been used for testing the other sources of variation. Observation in the field indicated a strong probability of reciprocal effects; certain crosses were successful whenever tried out, but with the reciprocal cross, repeated pollimations failed to produce seed. Such effects would cause the mean square for reciprocils (the error) to be large. The mean square value tor g.can. would have been even larger had there been no reciprocal difierence.

Spring Nursery

The spring nursory was grown primarily to obtain F_{2} seed. However, notes were taken, and those on date of first flower are summarized in table. 3. Since kemaf is not ordinarily planted in the early spring in Florida, except in a breeding nursery, these data have lithe importance except for the light they shed on denetic relationships in daylength response. Thus, unless specifically indicated, all subsequent material deals with summer nurseries.

Date of First Flower (Maturity)

The inbred line parent 0 shed buds early in the season, as did many of the progenies of that line and a few of the progenies of parent 1 . This somewhat complicated the reporting and interpreting of the results on maturity. When bud shedding on a plant was noticed in time, it seemed practical to estimate the date of howering by relating bud scars to the buds that acually opened in the same progeny. Siuperficial checks in the field suggested that such an estimate was faitly reliable. Little, if any, bud shedding occurred on the latomaturing secrregales. All plants bloomed eventumhly, but for those that lost their early buds, flowering date was either estimated as indicated or was not recorded.

Table 3.-Date of first flower: Summary by parent and array, with parent-progeny comparisons and estimates of general combining ability, F_{1} spuning narsery

Parent or array No.	$\underset{\text { Prray пепай }}{\text { P* }}$	Parent mean ${ }^{-2}$		General combining ablifty**
	Days after	Days after		
0.	March 31. . 21.	Marer ${ }^{2} 1$ 30.5	Ratio 0	多. 6
1.	15.7	17. 2	. 80	${ }_{0}{ }^{2}$
2	13.2	14.2	. 74	-2.9
	15. 1	12.0	. 87	
4	13. 7	15.5	. 73	-2.3
5	13. 2	11.0	. 81	-2.9
6.	18.0	${ }^{4} 40.0$. 56	2.6
7.	15.9	37.0	. 56	. 2
Genaral mean				
General mean.	15.8	22.2		----

**Differences significant at 1 -percent level of probability.
${ }^{1}$ Mean of all progenies with parent indicated.
${ }_{2}^{2}$ Mean of 2 replications of each parent.
${ }^{3}$ Sec text for method used in calculating ratio.

- Indicates buds formed but shed, as days became too long for flowering.
- So many progenies failed to fiover that they could not be included.

The F_{2} data on flowering, as shown in tables 4 and 5 , indicate that the flowering behavior of Javanese and Salvadorian varieties is controlled by different genes. F_{2} plants from crosses between parent, 0 , the Javanese, and any of the other lines-all of which contained Sal. vadorian germ plasm-ranged from very early to very late; some progenies had a range of about 90 days in date of first flower from earliest to latest plant. This range is well beyond that of either parent, especially in lateness. Also, many of the progenies of the other eosses showed more range than the parental material did.

Evidunce of multiple factors for flowering is found in the plant frequency distribution given in table 5 . As an example of breeding behavior of all lines considered, parent 0 represents one type in this table and parents 1 and 2, all the others. F_{2} 's and F_{2} 's, with their parents, were grown in adjacent narseries. All distributions except F_{1} progenies are from F_{2} nursery data. The modes for the parents occurred for the same period in both nurseries. This table shows the wide range in maturity in the F_{2} progenies of crosses with parent 0. It also shows two modes in the frequency of flowering. The greatest frequency occurred between the modes of the parents (period 10-19 for P_{0} and period 40-49 for P_{1} or P_{2}), but about 60 days later a second and smaller mode appeared in progenies of four (only two shown in table) of the five crosses with parent 0 . This second mode could have been the result of weather.
Earliness seems to be at least partly dominant. The values shown in table 4 for the F_{1} divided by the two-parent, or midparent, mean and averaged on the basis of each array (progenies with a common parent) show a ratio of less than 1 in all \boldsymbol{F}_{1} arrays. The dominance

Table 4.-Date of first flower: Summary by parent and array, with parent-progeny comparisons and estimates of general combining ability, F_{2} and F_{2} summer nurseries
F_{1} NURSERT

Parent or array No.	Progeny array mean ${ }^{\circ *}$	Parent mean ${ }^{-0}$	Progenyt midparent (array metan)	Genersl combiniag ability"
0	$\begin{array}{r} \text { Days after } \\ \text { Aug. it. } \\ 20 . \mathrm{S} \end{array}$	Days after Aug. 31 18.0	$\begin{aligned} & \text { Patio } \\ & 0.64 \end{aligned}$	$\stackrel{g_{\text {i.. }}}{-21.1}$
1.	40.5	4 S .0	. 89	1. 4
2	41.9	46.5	. 92	3. 0
3.	38.1	38.2	. 92	-1.3
4	40.1	44.0	. 91	1. 0
5.	41.4	44.3	. 94	2. 4
6	45.8	54.5	. 95	7. 4
7	42.5	46. 8	. 94	3.7
S	42.3	47.5	. 93	3.5
Means:	39.3		S9	
General-	39. 3	4 S S		
High parent		4.3.		
Low pareat....-.		37. 4		

F_{2} NURSERT

** Differences significant at 1 -percent level of probability.
1 Mean of all progenies with parent indicated.
2 Mean of 4 replications of each parent.
${ }^{3}$ See text for method used in calculating ratio.
of earliness is particularly striking in crosses involving parent 0 . In four out of the five crosses, the F_{1} mode coincided with the early parent 0 . In the F_{2} nursery (table 4) the progeny/midparent ratios were all greater than 1. This appears to be due to the earliness of parent 0 . The progeny/midparent ratio for parent 0 is high (1.58). The very small value of the common parent (0) decreases this midparent value, which, when divided into the 0 progeny array mean, gives a ligh ratio. In the other ratios (ranging from 1.11 to 1.18) parent 0 occurs only once. I_{n} nearly all F_{3} progenies, the frequencies were skewed toward the fater periods (table 5).

Table 5.-Date of furst flower: Plant frequency distribution of 3 selected groups, ach composed of parcents (P_{o}, $\left.P_{1}, P_{p}\right), F_{1}^{\prime} s$, and $F_{\varepsilon} ' s$

Parent and cross	Number of plants during Indicated periods (days after Aug. 31) when frst flower appeared											Nutriber of flants withno	Mean days after Aug. 31 ln-	
	10-10	20-29	30-39	40-49	50-50	60-60	70-70	80-89	290	100-109	110-119		Fi nursery	Fi nursery
P_{0}	273											73	${ }^{2} 18.0$	218.0
$\mathrm{F}_{1} 0 \times 1$	11	3							10	9		5	18.8	
	273											73	${ }^{2} 18.0$	218.0
$\mathrm{F}_{1} 0 \times 2$	17	3										1	19.0	
$\mathrm{F}_{2} 0 \times 2$	1	27	41	29	13	12	18	6	14	7	5	32		54. 5
P_{2}	---			64	11							5	46. 5	46.8
				49	11							5	48. 0	40, 8
$\mathrm{F}_{1} 1 \times 2$				20								6	43.8	
$\mathrm{F}_{2} 1 \times 2$			1	71	50							18		49.1
P_{2}				64	11							5	46. 5	40. 8

1 In some cases, buds were shed before flowors opened. In others, plants had started late and were badly stunted. Since stunted plants were observed in parent plots to have delayed maturity, they were generally omitted.

2 Date of flowering estimated from a few F_{1} plants of same inbred line on which flowers were produced without buds dropping. Fonc of these 73 plants flowered, but apparently their buds matured about the same time.

The mean date of flowering for the parents was significantly different from that of the progenies in all three nurseries. In the F_{1} nursery, parents were significantly later and in the F_{2} nursery, significantly earlier.
As would be expected, lateness appears to be associated with high yield. A correlation between the estimated fiber yield per plot and maturity date has an r yalue of 0.68 . This may arise from the fact that the time daring which nutrients are going into vegetative development in early-maturing types is shorter than in late-maturing types, for kemaf plants continue to increase in size while setting seed, but grow more slowly after flowering starts.

Diameter and Height

In this study stem diameter and plant height were treated as separate rariables. However, the diameter: height correlations of 0.83 for progenies and 0.70 for error indicate that they may be two measurements of essentially the same thing-vigor. As a further indication, estimates of general combining ability for both diameter and height are high or low in the same arrays (progenies with a common parent).

In the F_{1} nursery, hybrid vigor is evidenced by progeny array meins, as shown in table 6, that exceed the high-parent mean in all except the 0 arma. The mean diameter of all parents (inbreds) in the F_{1} nursery was 12.5 mm ., and the high-parent mean was 14.0 , both considerably below the progeny mean of 15.5 . The difference between diameters of inbreds and progenies is highty significant.

It is obvious from table 6 that none of this hybrid vigor continued into the F_{2} generation. Progeny and parent means were almost identical and, as would be expected, the difference between hybrids and inbreds was nonsignificant.

General combining ability in the F_{1} nursery was high; the mean square was approximately nine times as large as for the specific combining ability in the F_{1} nursery. In the F_{2} nursery, general combining ability was significant, but the mean squares for general combining ability wero only a little more than twice as large as for specific combining ability. Specific combining ability was not significant.

Parents 0 and 3 were poor combiners for diameter in both the F_{1} and F_{2} nurseries. In general, parent 0 (the Javanese) and parents 3 , 4 , ankl $5(J \times S)$ were smaller in diameter as inbreds and produced smaller progenies than the Salvadorian types.

Correlations between diameter measarements and dry weight of a 15 -inch section of stem (the actual weight of the sample that was estimated by diameter measurements in this study) had an r value of 0.97 .

Diameter measurements proved to be especially useful in this study in estimating yield. For first, third, and fourth replications in the F_{2} nursery, time did not permit the customary harvesting, weighing, measuring, and processing. Thus, diameter (and height) measurements were made in a short time without destroying the plants. This simple method provides a reliable estimate for yield if the stand is fairly constant, as it was in this experiment.

Table 6.-Stem diameter: Summary by parent and array, with parentprogeny comparisons and estimates of general combining ability, F_{1} and b_{2} summer nurseries
F_{1} NURSERY
[Dinmeter measurements in millmeters, 30 laches above ground]

Parent or array No.	Progeny ${ }_{\text {merray }}^{\text {men }}$	Parent mean ${ }^{3}$	$\begin{gathered} \text { Progenyl } \\ \text { midiparcat } \\ \text { (array mean) } \end{gathered}$	General combining abilty ${ }^{2}$
			Ratio	87.
0.	13. 2	8. 5	1. 23	-2. 58
\pm	16.3	13. 2	1. 27	. 88
2	16.0	14. 5	I. 20	. 53
3	14.4	10. 5	1. 24	-1.22
4	16. 1	9. 2	1. 46	. 71
5.	15.1	11.5	1. 25	. 44
6	16. 9	15. 2	1. 24	1. 64
7	16. I	14.8	1. 19	. 67
8.	15.3	14. 8	1. 13	. 19
Means:				
General	15. 5		1. 24	
Figh parent		14.0		
Low parent.	--	11.0		

F_{z} NURSERY

[^3]Measurements for height showed less evidence of heterosis than those for cliameter; a progeny/midparent ratio averaged 1.11, as shown in table 7. E_{1} progenies of parent 0 , the most divergent in origin, were the shortest; they averaged about 20 inches less than the next shortest array mean. Only one of these progenies was taller than its taller parent, whereas all except one of the progenies of parents 1-8 exceeded the taller parent in height, and that one progeny was as tall as its taller parent. Nevertheless, the differences were small, as the following means show : All progenies, 112.7 inches; the high parents, 109.9 inches; and the means of all parents, 101.4 inches.

Table 7.-Plant height: Summary by parent and array, with parentprogeny comparisons and estimates of general combining ability, F_{s} and $F_{\text {: }}$ summer nurseries

F2 NURSERY
[Helgint of plant measured in inches at time of hatyest]

Parente or array No.	$\underset{\text { Progeny }}{\text { array mean }}$	Parent mean ${ }^{-4}$	Progeny maldparent (brsy mesa) ${ }^{2}$	Oeneral combinlag Bbilty ${ }^{*+}$
	$\overline{\mathrm{x}}$ i.	$\dot{x}_{i j}$.	Ratis	8.
0.	92	72	1. 04	-23. 27
1	117	104	1. 14	4. 98
2	110	115	1. 09	4.55
3	112	98	1. 12	-. 73
4.	116	8.1	1.24	3. 52
5	113	102	1. 11	. 37
6.	116	108	1. 11	4. 69
7	118	116	1. 09	5. 59
S.	114	112	1.07	. 91
Menns:				
General	112.7	101. 4	1. 11	
fligh purent.		109.9		
Low parent.		92.9		

F: NURSERE

**Diterences significatit at l-percent level of probability.
A Mean of all progenies with parent indicated.
2 Mean of 4 teplications of ench parent.
${ }^{3}$ See text for method used in calculating ratio.
The difference between parents and progenies in the F_{2} nursery is small, as shown in table 7 , and is not significant.
The g.c.a. mean scuare for height was more than 30 times the s.c.a. in the F_{1} summer nursery and more than double the s.c.a. in the F_{2} nursery. As would be expected trom the data reported above, the g.c.r. estimate for parent 0 was extremely low (-23.27 for the F_{2} 's and -7.35 for the F_{2} 's). That for parent 3 was also low.

Percent Fiber

The percent fiber in the stem of a bast fiber plant decreases as the diameter of the stem increases. This is based on the ratio of diameter (or circumference) to cross-sectional area. Although the bark con-
taining the filur is thicker on a large stem, it does not compensate for the ratio mentioned above. Thus, to minimize the effect of diameter, the actual fiber percentages were adjusted in this study, on the basis of regression coefficients (see pp. 6-7). Only adjusted, or corrected, percent fiber is reported here, and "percent fiber" not otherwise modihed refers to adjusted percentages.

The data in table 8 give no clear-cut evidence of dominance for high or for low pereent fiber. The progeny/midparent ratios are near unity, varying slightly above or below in the two nurseries.

Tabce 8.-Adjusted percent fiber: Summary by parent and array, with parent-progeny comparisons and estimates of general combining ability, F_{1} and F_{z} summer nurseries
F_{2} NURSERT
[Percentages adjusted on basls of dumeter $=x$ and percent aber=y)

Parent or array No.	Progesy array meant	Parent trean	$\begin{gathered} \text { zrogenyl } \\ \text { midicasreat } \\ \text { (array mean)2 } \end{gathered}$	General combining ablity :
0	${ }^{51} 19.4$	${ }^{7+18} 18.6$	Ratio 1.01	$\text { 觡. } 0.69$
1	10.9	19.2	1. 02	-. 04
2	19.4	18.5	1.01	-. 59
3	10. 5	18. 2	1.03	$-.48$
4	19. 1	17. 2	1. 02	- 1.01
5	19.6	20.0	. 98	-. 46
6	21.3	23.2	1. 00	1. 51
7	21.4	22.9	1. 01	1. 60
3.	20.1	19.4	1. 03	. 17
Means:				
General	20.0	19.7	1. 01	
High parent.		20.9		
Low parent.	--------	18.		

H_{2} NURSERY ${ }^{5}$

[^4]Results as a whole on adjusted fiber percentages indicate there was no heterosis. Somo F_{1} progenies are below the low parent and some are above the high parent, but most values are intermediate. This is the only variable studied in which the average of the F_{2} progenies was not significantly higher or lower than the average of the parents. Only three crosses show possible heterocic ettects. In 0×2 and 2×4, the F_{1} mode is above either parent and in $U \times 3$ both tho F_{1} and F_{2}, modes aro below either parent.

On the other hand, the heritability of percent fiber is strong. There is a close relationship between the midparent and progeny armay mens, as shown in table 10 , as well as between individual crosses and their respective parents. Table 11, comparing progeny performance from different combinations of high and low parents, brings out the extremes and again shows a very close relationship between parents and progenies.

Fiber percentage is an important component of fiber yield. Total yiedd, as calculated by fiber weight \times height \times phant connt, is significantly correlated ($r=0.55$) with adjusted percent fiber in the \bar{F}_{2} nursery. Thus, in this study the fiber percentage is responsible for about 30 percent of the variation in fiber yield.
Data on percent fiber are further evidence of the poor performance of inbreds 0 and 4 as potentials for a composite variety.

Fiber Weight Per Sample

In the F_{1} nursery the mean square for specific combining ability for fiber weight per sample was only about 7 percent as large as the mean square for general combining ability-an indication that dominance was relatively unimportant in obtaining the high values found for the hybrid progenies. However, dominance apparently had some effect, as indicated by the highly significant F value for s.c.a. In the F_{2} nursery, as given in table 9 , the progeny/midparent ratios were varied; some were less than 1 and some were greater than 1 . This might be interpreted as differences in dominance in some of the inbreds. For example, parent 0 might have dominance for high fiber weight and parent 1 might have dominance for low fiber weight. The 0 progeny/ midparent ratio was 1.23 ; the ratio for 1 was 0.89 .

Fiber weight per sample in the F_{1} nursery showed pronounced heterosis-more than my other variable studied. The progeny array mean (0.340) was much greater than the parent mean (0.239), and this difference is highly significant. The progeny mean was also well above the h'gh parent mean (0.306). Also, a frequency distribution (not included here) shows that 10 of the $36 \mathrm{~F}_{1}$ progenies had modes that exceeded cither parent, and 2 of these were two units above the higher parent. Even in the F_{z} generation, there was some evidence of heterosis, especially in the 0 progeny array. The 0 progeny array mean (0.216) was only a little below the average for all F_{2} progenies (0.230). In fact, 0 progeny array produced relatively much better in the F_{2} nursery than in the F_{2} nursery. For the F_{2} nursery as a whole, the F_{2} mean was below the mean for the higher parents, which would somewhat discount evidence of F_{2} heterosis.

Parents 6 and 7 (included in the F_{2} nursery only) had not only the highest fiber weights as inbreds but also the highest general com-

Table 2.-Fiber vecight per sample: Summary by parent and array, with parent-progeny compurisons and estimates of general combining ability, F_{s} and $F_{ \pm}$nurseries
F_{I} NURSREL
[Weight in gratus of dry fleer from 15 -fach section of stem]

Parent or array No.	Progury array tricaa ${ }^{12}$	Parent méan ${ }^{2}$	$\begin{gathered} \text { Progeny } \\ \text { (amkigarent } \\ \text { (atray mean }), ~ \end{gathered}$	Gencral combinlsig nbilfy
0			Ratio 1.36	
1	. 37.4	. 250	1. 53	. 039
2	. 3.43	. 296	1. 30	. 004
3	. 303	. 160	1. 48	-. 042
4	. 329	. 100	1. 8.1	-. 013
5.	. 300	. 169	1. 47	-. 030
0.	. 430	. 397	1. 39	. 102
7	. 389	. 363	1. 33	. 056
8.	. 3.41	. 314	1. 25	. 001
Means:				
(iencral	. 3.40	. 239	1. 44	
lligh parent		- 306		
Low parent.		. 173	--------	

$\mathrm{F}_{2} \mathrm{NOHSERX}^{5}$

[^5]bining ability for this varinble, indicating how well they would be suited for a composite variefy. Parents 1 and 2 were next best in combining ability in the F_{1} nursery and produced well as inbereds. In the F_{2} nursery, parents 1 and 2 also showed high combining ability.

Fiber Yield

Estimates of fiber yield per plot were made by combining data on fiber weight per sample, plant height, and plants per plot. Data thus calculated may be considered as "fiber yield." In general, the
results found for fiber yield are essentially the same as for fiber weight per sample except that fiber yield differences are relatively greater. This shows that fiber weight per sample is a good indicator of fiber yield in this experiment; the calculated yield data are not shown here.

Heritability Estimates and Progeny Performance From High and Low Parents

All the chancters under consideration show high heritability, as indicated by a correlation between progeny array means and parent means: r values ranged from 0.68 to 0.98 (r^{2} from 46 to 06 percent) in the F_{1} summer nursery and from 0.03 to 0.04 (r^{2} from practically 0 to 88 percent) in the F_{2} nursery. The r values squared are shown in table 10 and represent an estimate of the amount of variability in the F_{1} and F_{2} progenies that is attributable to heritability.

Table 10.-Heritability estimates (r^{2}) based on oorrelations between progeny array means and parent means, F_{1} and F_{2} summer nurseries

In order to demonstrate simply the high heritability of the factors being studied, the two highest and the two lowest inbreds for each variable were selected on inbred performance only. The performance of hybrids involving them is presented in table 11. (The high \times low represents one cross only-the highest \times the lowest. Also, the parents that excel are not the same in the different variables.)

Table 11.-Comparisons of progeny performance from different com. binations of high and low parents, with selection based on inbred performance only, F_{3} and F_{2} summer nurseries ${ }^{1}$
F_{1} NURBERY

Patent jerformance	First fower	Stem Ctameter	Plant height	Adjusted percent Rber	Fliber welght
High \times high	50.2	17. 5	120	22.7	0.504
Figh \times low.	34. 8	16.0	92	21.8	. 361
Low \times low.	16. 5	11.5	87	17.7	. 155

F_{2} NURAERY

High \times high	49. 1	14. 6	112	20.6	
High \times low.	50. 5	13. 8	109	18. 2	0.275 .241
Low \times low.	46. 9	14.2	108	17. 8	. 160

[^6]For the F_{1} comparisens, the high \times high inbred produced the highest progeny, the low \times low produced the lowest, and the high \times low was intermediate.
For the F_{2} comparisons, the differences in general were less consistent and smaller than for the F_{1} comparisons, but nevertheless they show strong trencls. In some variables, particularly in adjusted percent fiber and fiber weight, diflerences were consistent and fairly large. Inbreds 6 and 7 , which were the most prodactive in the F_{1} nursery, were not available for F_{2} comparisous; cliameter, fiber percentage, and fiber yield were particularly high in those two inbreds and their progenies.
The resulis of the two methods of demonstrating heritability are comparable. Date of first flower in the Fy nursery shows little heritability by either method. Howerer, the F_{g} stem thameter measurements showed little heritability in table 11, but they have relatively high z^{2} value (table 10). In other variables in the two nauseries, both heritability estimates and high and low comparisons give strong evidence of heritability.

DISCUSSION

In selecting lines for a composite variety, two characteristics are of primary importance-high fiber yield of the inbred and miform flowering date of both the inbred and progenies that restlt from intercrossing. A third claracteristic is cross-compatibility; incompatible lines would be eliminated when crosses were first being made, but would not have the disastrous effect on a composite that low fiber yield or variation in flowering date woudd have. Most of the other variables considered-diameter, height, percent fiber, and fiber weight per-sample-are components of yield. Other variables, which are not included in this bulletin and which wond exclude th line from consideration, are tendency to lodge, bratheh, or produce unusually large or small seeds and, most of all, susceptibility to disease.

The inbreds chosen for this study of differences and inheritance provide good examples of lines whose performance would exclude them from consideration tor use in a single composite variety: The differences in maturity dates-the earliness of parents 0 and 3 and the lateness of parent 6-the shortness and the low fiber percentage of parent 0 , and above all the low fiber yield of parents 0 and 4.

Otherwise desirable inbreds would also be eliminated from consideration if incompatibility were found when the original crosses were made. Such incompatibility would affect the composition of the first few subsequent generations of a comnosite variety and would also have the same effect on inbreeding in tie composite as would a reduction in the number of component lines.

It can be expected that inbred lines of kenaf that would be considered for a composite variety will have had relatively little, if any, testing for combining ability, since kenaf has traditionally been handled on the basis of inbred lines. The much higher variances for g.c.a. than for s.c.a. found in this study are in agreement with the findings of Sprague and Tatum (12). They found that previously tested and selected lines of corn showed higher s.c.a. than g.c.a. variances in nearly all cases. The untested lines they studied showed a higher g.c.t. in about half of the combinations.

Nlwo according to Sprague and Tatum (12) and Matzinger and Fempthorne (10), g.c.a. and s.c.t. mensure diflerent types of gene action. G.c.a. variances measure additive eflects; s.c.a. variances measure nonadditive effects. Thus, from the point of view of the plant breeder who is testing inbreds for use in at composite variety, g.c.a, gives the information that will help him to select lines that would perform well in a composite. Strictly from the point of viev of logic, it would follow that in a composite variety, any one line will be crossed with all the other lines at random, and the number of times that a specilic combination oceurs would make the performance of that particula cross relatively unimportant. If, on the other hand, the plant bereder is tooking for single- or double-eross combinations, both fr.a. and s.c.a. information helps him to find the lines with a combimation of additive and nonadditive eflects necessary to obtain maximum production.

In working with material like kenaf about which little is known concerning inheritmee, the knowledge of combining ability gained in this study gives a tirm basis lor eliminating undesirable types or selecting the ones that are most promising. In putting together any such set of randonly selected lines, the plant breder can expect the general results to be similar to those reported here, but they may be of difterent magnitudes. However, performance of the individual lines, as indicated by their geca. estumates, can be expected to differ from the results that would le obtained with inother set of inbreds. Thus, the grecte and the se.al. mean squeres (for all lines taken topether) may be considered on the basis of having been random selections of lines from a population. Isut the combining-ability estimates for the rations indivitual inberd lines and combinations cannot be considered on the basis of madomly selected variables, and interences can be made on that basis only about the individual lines in the sample-not about a population that they might represent.

In order to make maximum use of the high combining-ability potertial, cross-pollination must be encouraged. With compatible lines that bloom at the same time, as much as 0 -perent natural crossing in kenaf should be readily attaiued, and under ideal conditions more than that muel should be possible. Some kemaf breeders believe that varielies differ in susceptibility to matural crossing. This should be checked. Jones and Twmarg (7) found as much as 23.76 -percent matural crossing between lines that were selected only on the basis of marker arenes and without providing supplemential bee population. Lower percentages were found among lines that bloomed at difterent times. Furthermore, theic results were based on plants in altemate rows, and crossing was not so extensive as it would have been if the plants had been surrounded by contrasting types, as they would be in a composite variety. In a limited supplemental experiment, dones and Tamargo found that, with aliernate plants, the amount of natural crossing was increased more than wo percent-from 11.07 percent in ilternate rows to 18.32 with alternate plants.

On the hasis of 25 -percent matural crossing and the estimated heterosis effects in the F_{1} plants of $4 t$ percent in fiber weight per sample found in this study (table ?, column 4), a theoretical advantage of a composite of lines is an increase of about 11 percent. Futhermore, part of this increased vigor or productivity would continue into the
F_{2} generation, athough the amont of increase there would be small. Preliminary tests on one or two composite rarieties have not supported this estimate.

Even on the assumption that 25 -percent crossing would occur, there woudd also be a large amount of inbreting. For this reason, if for none other, the lines selected must be good producers as inbreds.
Another important reason for requiring inbreds that are productive and have other desirable agronomic characteristics is the consistent relationships between parent and progeny performance, especially as to tiber percentages and yiekl. The good performance of the high x high parents in diameter, perent fiber, and fiber weight, as given in table 11, is in agreement with the findings reported by Hayes and Johnson (2) for com. However, the high \times low performers in corn wero rolatively better than those in kenaf. This difference may be attributed to the fact that the high and low parent lines of kenaf were selected entiedy on the basis of inbred pertormance; the corn inbreds were selected on tho basis of top cross performance.
Diversity of origin within adaptation limits should normally produce a maximum of hybrid vigor, but with the material used in this study it was less important than good performance of the inbred. Yield difforenes had heen observed earlier, but these inbreds had not been eviluated on the basis of the more specific variables studied here. Some of the diffrences found in this stuly were of considerable mag-nitude-much greater than had been expected, eren though the inbreds were chosen on the basis of difterences.

From a practical point of view in kemaf breeding, this close relationship between inbred performance and progeny performance greatly simplifies the selection of inberds for a composite. Yield tests of hybrid progenies prior to the bulking of the inbred lines are not necessury. Tha tests that are required in the F_{1} and F_{2} generations can be made by obscrvation and from field notes.

Although the tests that must be made on hybrid progenies are simple compared to yield tests, they are nonetheless important. Salvadorian, the variety from which several of the inbreds used in this study came, is a composite variety and a fairly successtul one. Possibly natural selection has improved it. More recent attempts to develop composite varicties (usually called synthetic varieties by kenaf breeders) have not met with success, usualy becanse of segregation in flowering dates. The inbred components of these reernt composites have not been tested as hybrid combinations, nor probably had the components of Sulvadorian, but no records are arailable on its development. It has been assumed that Salvadorian was a fortunate accident. Findings in this study emphasize the importance of examining F_{2} and F_{2} behavior of all combinations of inbred lines before they are put together as a composite rariety. This is especially clear in the findings on maturity, as indicated by date of flowering. Here, wide segregation was found in some $\mathrm{F}_{\text {s }}$ progenies whose parents had flowering dates as inbreds that did not differ enough to eliminate them from consideration.

One of the inbred lines and some of its progenies shed buds carly in the senson. The date that flowering would have oceurred if buds had not fallen might have been earlier than that shown. It would not have been later, since the method used to est imate these dintes was based on a comparison of buds and bud scars with buds and flowers of apparently nomal phants in the same progrny.

The shedding of buds in the lybrid progenies as well as in the inbreds is a characteristic that needs basic study. An important question is whether or not the fiber becomes lignified and brittle if the plane drops buds and contimues to grow. The fiber does develop these poor characteristics as the plant contimues to flower and mature seed. It is not known, howeret, whether the same physiological processes are initiated and continued if the buds drop before the flowers open; but it has been, for the purpose of this discussion, arbitrarily and tentatively asumed that either the liguification does not occur during bud shedding or the process is greatly retarded. If this assumption is true, the shedding of buds would have the same effect as late maturity. Lowever, until more is known abont the relationship of bud shedding to fiber quality, inbreds that shed buds or produce offspring that shed buds should be aroided in solecting lines for a composite variety.
Another aspect of flowering date to be considered in solecting lines for a composite variety is kenaf's strong photoperiodic response; the flowering behavior of the spring-planted crop shows little rolation to that of the summer phanting. In the former, the seed is planted during short days, and the date of first flower depends on factors other than day length; in summer plantings, which bloom in the fall, the date of liest flower is limited by day-length effects as well as by other less tangible factors. In this study progenies of the pure Javanese lino (parent 0) were among the latest in the spring nursery (table 3), but the earliest, of all in the summer nursery (table 4). The pure J Jauese line has another umusual characteristic ; inbred 0 and several of its progenies continued to bloom in the spring, long after other inbreds and their progenies had stopped beause of long days. Thus, the faranese line seems to be less sensitive to day length than the Salvadorian.
Day-length response is an indication that flowering date of the Jaranese types is controlled by different genetic factors than is the Salvadorian. Iowever, segrevation was no wider in the $\mathrm{F}_{\text {g }}$ generation in a cross between Salvadorian and inbred progenies of $J \times S$ types thon in erosses between Salvadorian lines.
In kenat, neither eirliness nor lateness per se is always undesirable. It is desimble to have at least one reasonably enrly- and one latematuring variety. For efficient use of harvesting and processing machinery, procucers should be able to start their harvesting on an early-maturing type and to extend their harvest by the use of latematuring types. Thus, more than one composite would need to be developed. A type such as might be developed from inbreds from the Thte-maturing segregntes of this study would supplement the earlier maturing salmadorian variety.
In evahating lines for a composite from the standpoint of yield, one of two methods may be usel; actual yields may be determined or yields may be estimated from diameter-height measures and plant count. Both were explored in this experiment.

Diameter and height were studied primarily as indicators of vigor and yield. The dry weight of the 15 -inch stem samples was also determined. but the correlation of 0.97 between stem-sample weight and diameter indicated that the density of the various types being studied was stfficiently consistent that there was no advantage in reporting both dimneter and weight. In other words, they were essentianly
measurements of the same thing-vigor. Sitem-sample weight was used for calculating percent dry fiber. Howerer, since diamater meusurements can be readily determined without processing the stems, they are more useful generally for estimating yield. Thus, diameters were stadied in more detail and were reported under results. For this, more sampling and testing need to be done. By measuring stem diameters and plant height and by determining the stand prior to harvesting and processing samples, it should be possible to accumulate data that would give a reasonably accurate estimate of yields of total phant material, and perhaps of fiber yield, without catting the plants. This study shows that on the basis of present knowledge, diameter, height, and plant-cont information is satisfactory for estimating yields in early-generation testing within a given experiment. Dr. S. D. ('handhuri, a jute specialist from Pakistan, stated that jute researchers use a similar method of plot evaluation, but make diameter measurements about midway between the ground and the top of the plant rather than at a predetermined height, as in this study.

It is essential that kenaf grow tall in order to produce well and to be suitable tor harvesting and processing by methods now employed. However, since most varieties that are being grown commercially or tre being used in kenat breeding programs grow fairly tall if conditions are favorable and since there is a close relationship between yield and height, data on height have not been given much attention in recent breeding promeams.

It kenaf is harvested and processed by a combine-type havester (now in the development stage), high fiber content is important only as it affects yield. However, with present methods of handing, a high fiber percentage is especially important, because the stems are moved to a central area for processing, and thus a low fiber percentage means moving greater amounts of unsabable material.

Fiber percentages are greatly aflected by moistrure content of the stems, which varies with stage of maturity, atmospheric humidity, and soil moisture at the time of harvest. 'Iherefore, in evaluating fiber porcentages of an inbred, this variation can be minimized by using dry weights of the stems or by adjusting the green weights to a constantmoisture basis after actual moisture determinations have been made on the samples.

An estimate of yield based on fiber weight per stumple, height, and plant count is considered far more reliable than plot totals when there aro such wide differences in number of plants per plot as in the E_{1} nursery of this study. Generally speaking, however, such in estimate is more subject to error than plot totals would be. In fact, if it had been recognized at the time of harvest that yield cetimates would be wanted later, all plants in the F_{2} nursery would have been sampled even it they had made an abnommal-type growth due to injury or had been abnormally small. Then plot totals would have been more reliablo than estimates caiculated from components.

In selecting inbreds for use in a composite variety, considerable expense may be saved if selections and eliminations are made in this order:

1. Inbred performance. Select inbreds with similar maturity dates and with the good yield and agronomic chanacteristics sought for any variety.
2. Compatibility. Eliminate lines that are not generally cross-compatible.
3. F_{1} performance. Eliminate F_{1} progenies by visual examination, taking out lines that produce progenies apparently lacking in vigor, differing in maturity, susceptible to clisease, or otherwise undesinable.
4. F_{0} performance. Make observations similar to those for F_{1} progenies, paying particular attention to range of maturity and diseaso susceptibility.

The actual combination of the composite material may be accomplished by bulking the seed either from the inbreds or from the F_{1} hybrids. The simplest and, with kenaf, the most practical method is to bulk an equal quantity of seed from each of the inbred lincs being considered. This method has the additional advantage of providing a considerable quantity of seed in a short time. In the second method, the F_{1} hybrids between all the lines finally selected for the inbreds may bo made and this seed bulked. In cither case, equal quantities of seeds should be included from each line or each cross. 'Tho result should be essentially the same. The material should be grown in isolation to avoid cross-pollination with undesirable types, but cross-pollination among the selected material is essential if the advantage of heterosis is to be obtained. Since matural crossing is dependent on insect pollination, insects should be kept plentiful. For example, hives of bees located in or around the seed field would be desitable.

Seed increases and seed production shonld be limited to late summer and fall plantings in Florida unless the flowering habits of the inbreds and the hybrid combinations have been studied in different photoperiods and found to be satisfactory on the basis outlined for maturity date. Otherwise, seed produced in the spring nursery might completely upset the batance of lines in a composite variety.
Though several researchers are working to develop kenaf lines that can be composited as a variety, nothing has been found in the literature or in this experiment that proves the advantage of the composite versus the inbred. However, the good performance of the original Salvadorian composite variety as compared to the highest yielding selections taken from it as well as the F_{1} heterosis found in this study cannot be overlooked.

Before a firm case can be made for the use of kenaf composites versus kenaf inbreds as varieties, extensive comparisons must be made between inbreds and actual composites developed as described in this bulletin.

SUMMARY

Inheritance as related to selection of inbred lines of Ikenaf for composite varieties was studied in a diallel-cross analysis of data from nine lines of kenaf grown in Palm Beach County, Fla. The more critical variables studied were date of first flower, stem diameter, plant height, percent fiber, and fiber weight.
In making the original crosses, incompatibility between some of the inbred lines was found. Such incompatibility between any two lines would immediately oliminate one of them from consideration in a composite varicty.

Also, wide segregation in flowering date was found in some of the crosses between lines, which as inbreds had bloomed at the same time. Thus, it is essential that all combinations of inbreds be tested in hybrid combinations through the F_{3} generation to avoid the serious consequence of segregation in maturity date.

For fiber yield and yiedd components-stem diameter, plant height, and percent fiber-this study showed that the high-producing inbred lines invariably resulted in high-yielding offspring and, conversely, that the low-yielding Tines produced low-yielding offspring.
Fainly strong hybrid vigor was evidenced in the F_{1} generation, but little was found in the F_{2} generation. As indicated by fiber yield per sample, production was increased by $4 t$ percent over the inbred lines in the F_{2} generation. In the F_{2} generation, only slight and relatively unimportant increases were noted.

Variances were found relatively much higher for general than for specific combining ability in the lines included in this study.
In general, this analysis shows that heritability of the variables studied is high. High \times high, high \times low, and low \times low inbreds produced high, intermedinte, and lon progenies, respectively. Further eviclence of high heritability of the factors considered was demonstrated by high correlation between means of inbred lines and progeny array means. The high heritability found and other evidence of the close relationship between performance of inbreds and hybrid progenies clearly demonstrate that extensive studies of yield or of the various yield components in hybrid progenies are not necessary. Only a caretul observation is needed during tests on such factors as date of flowering to avoid including lines that, though rood performers as inbreds, perform badly in hybrid combinations. No such lines were found in this study.

LITERATURE CITED

(1) MAQDE, D. G.
1903. the pebformanoe of etve vaheties of menae. Philippine agf. 37: 130-141.
(2) Hayes, H. K., and Jorinson, I. J.
1939. The ibeeding of inpboved self ilines of corn. Amer. Soc. Agron. Jour. 31: 710-724.
(3) Eorst, W. A.

199: studney uber den gabbomanf. Faserforschugg 4: 61-124.
(4) Howabd, A., and Howard, C. L. C.
1911. grudes in indiant fiber plants. Yndia Dept agr. Mem. Bot. Ser. v. 4, No. 2, pp. 9-36.
(5) Jones, M. D., Puentes, C., and Suarez, r.
1050. isolation of kenaf fof sesd incleabe. Amer. Scc. Agron. Jour. 47: 256-255.
(6) - and Tamakoo, S. A.
1954. agents concerned with natural crobsing of benaf in cubs. Aner. Soc. Agron. Jour. 45: 459-462.
(7) - and Tascaboo, S. A.
1904. Natural ceobs-fekthization in eenaf. Amer. Soc. Agron. Jour. 46: 456-459.
(8) Kempthorne, 0 .
1052. the degion and analygis of experiments. 631 pp. New York.
(9) Lynn, II. D., Jones, M. D., Suarez Garcia, R., and Ros Jimenez, A.

19ธ̃3. PRUEBAB DE VARIEDADES DE KENAF EFECTUADAS EN CUBA DUBANTE 1952. Cuba M1t. Agr. Cir. Agr. No. 2, 14 pp.
(10) Matzinqre, D. F., and Eelipthobne, O.
1950. the modified diallel table wite partlal mbrefoing and interactions witi envibonyent. Genetics 41 : $829-833$.
(11) Pate, J. b., Seale, C. C., and Gangbtad, E. O.
1954. garietal studies of kenaf, hibiscos oannabinus l., in gooth flomida. Amer. Soc. Agron. Jour. 46: 75-77.
(12) Spradet, G. F., and Tatum, I. A.
1912. oeneral vs. brecifio combining ability in gingle crobses of corn. Amer, Soc. Agron. Jour. 34: 923-032.
(18) U.S. Derpatment of aghiculture.
1951. KENAF, A YaCt bieni on a new goft-fiben chop for the amebicab. Agr. Res. Adnain. and Off. Foreign Agr. Relat., 4 pp.
(14) Yates, F.
1033. the analysis of heblioated experiments when the field besults abe incomplgte. Empire Jour. Expt. Agr. 1 (No. 2) : 129-142.

END

[^0]: 'Italice numbers in mentineses toffer to Titemature Cited, ar. an,

 Athomata kana' hateders rembently apply the term to a composite at lines, "eomfosho viriet $y^{" \prime}$ is the more "tatal terminologs.

[^1]: 1 Varicty (usaally named for sourec country) from which selection was made.
 3 Decorticated fiber further cleaned by retting.
 ${ }^{3}$ Not checked for shedding of buds.

[^2]: *The Taynaese selections are inghy gusceptible to Oolletotrichum hibisci Poll., a disease of kenaf that conkl destroy ansentible line.

[^3]: ${ }^{\text {t Mean }}$ of all progenies with parent indicated.
 ${ }^{2}$ In F_{1} nursery, diferences significant at I-percent level of probability; in $\mathrm{F}_{\mathbf{2}}$ nursery, at 5 -percent level.

 3 Mean of 4 replications of each parent; differences significant at 1-percent level of probability.

 - See text for method used in calculating ratio.

[^4]: I Mean of all progenies with parent indicated; differences significant at I-percent level of probability.
 ${ }^{2}$ In F_{1} nursery, mean of 4 replications of each parent and differences significant at I-percent level of probability; ia F_{2} nursery, 1 replication and no significant differences.
 ${ }^{3}$ See text for method used in calculating ratio.
 4 Differences significant at l-percent level of probability.
 S In absence of true error term, reciproeal mean square is used, as suggested by Yates (14), for determining F values.

[^5]: I Menn of all progenies with parent indiented.
 ${ }^{2}$ In F_{1} mursery, differences sigmificant at I -percent lovel of probability; in $\mathbf{F}_{\mathbf{2}}$ nursery at 5 -percent level.
 ${ }^{3}$ In ${ }^{1}$ mirserys mean of 4 replications of each parent; in F_{2} nursery, 1 replica tion; differences signilicent at 1 -percent level of probability.

 S See text for method used in calculating ratio.
 sin absence of lrue error tem, rediprocal mean spuare is used, as suggested by Yates (lí), for determining J^{\prime} values.

[^6]: ' Progeny means from parent types indicated.

