

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S

Factors Affecting the

Protection Period

of Mosquito Repellents

Technical Bulletin No. 1285
Agricultural Research Service
UNITED STATES DEPARTMENT OF AGRICULTURE

Contents

$\mathrm{Page}_{\mathrm{ab}}$
Materials and methods 2
Fate of repellents on skin and clothing 7
Physical loss 7
Deterioration on skin 13
Excretion in urine 16
Fictors affecting proiection period 17
Rewidual effectiveness and rate of loss in relation to protection puriod 17
Atractiveness in relation to protection perion 20
Mintmum effective tosage 21
Haid and sebum 2.4
Bifectiveness of repellente on human and amimal skin 32
Smmary 3.4
Literathre citen 36

Factors Affecting the Protection Period of Mosquito Repellents

 Fred Acree, Jr., hat Claude H. ScHimid, Whtomology Rescach Division, Agricullural Research Service:

Since 1942 thousands of componads have been sevened and evalnated as mosquito repellents at Orlanko, Tla. These sfudies have beon summarized by King (1954) and Gilbert et al. (1057).: In most of this work the criterion of effectiveness has been the protection period, or length of time a liberal application of the repellent has prevented mosquitoes from biting through treated skin or clothing. This eriterion has also been used in most of the insectrepellent, studies by Granett (1940), Pijoan et at. (1045), Pijoan (1047), and Kisman et al. (190:) . Occasionally effectiveness has been judged by the mimimum concentration required to prevent biting at the time of application, or tho intial repellency of a rery small dosage. 'This second criterion was used in studies by Almen and Smith (1955), Bar-Zeev and Smith i1050), Gilbert et al. (1957), and Gouek et al. (70737). The protection priod usually varies meatly, not only between repellents but also between different indiriduals with the same repellent, different populations of mosquitoes, and diferent enrirommental conditions.

In 1907 studies were undertaken at Ortando to determine the factors that afect the length of the protection period, with particular emphasis on the manner in which the repellent is lost trom the treated surtace.

The protection period conveyed by any giren dosage of repellent obrionsty depends on (t) the minimun eftective dosage, hereafter flesigmated the ALPD, which is the minimum amont per wit of surfice required to proted against the given population of insects, and (2) The rate at whith the applied dosare is depleted to the level of the MES), that is. the rate of lose. The MET) may be set at any level, sueh as (3-perent protection, 50 -perent protedion, one confimed bite. or bivebites in ? minutes. [[owever, at ans given lesel it will presumable he ablected by factors other than thoe inherent in the repellent, such as (1) the aridity ot the infects and (2) the desimbitity of the host. Such encionmental conditions as temperature and relative humidity may bo expected to exert the reater part of any eflect they may have on the $\triangle E D$ through one of these two factose alihough high temperature concerably could increase the eftectiveness of a repellent by increasing the rate of volatilization and thas affect the MES ,

[^0]The rate of loss has been presumed to depend principally on actual physicul loss, which may be due to (1) abrasion, (2) evaporation, and (3) absorption. Destruction of the repellent on the skin has atso been postulated as a possible mode of loss by Kasman et al. (1953). At the begiming of these studies it also appeared possible that the repellent might lose effectiveness on the skin, though not be destroyed, by admixture with such emanations from the body as sweat and carbon dioxide. It is well established that sweating conditions reduce the protection period with most, it not all, repellents, but this reduction has been attributed to increased attractiveness of the host, increased evaporation or absorption of the repellent, and dilution of the ropellent.

Since in practical use much of the repellent is rubbed of the skin by contact with the clothing or other objects, abrasion probably consitutes the principal mode of loss. The loss by abrasion is subject to extreme variation, depending on the activity ot the user. Abrasion is aroided in most experimental evaluations, where the arms are protected from rubbing in order to compare other aspects of the effectiveness of the repellents. Howerer, complete evaluation of a repelient (Simith 195S) should include stadies of its resistance to loss by abmasion. Gilbert et al. ($195 \overline{5}$) have shown that repellents rary widely in this attribute. They reported that diethyltolumide withstood 2 to 4 times as much wiping as ethyl hexancliol (ibid.) and at least 10 times as much as dimethyl phthatate (mpublished (ata).

MATERIALS AND METHODS

The repellents used in these studies were dimethyl phthatate, ethyl hexanediol, and deet ($N^{\prime},{ }^{2}$-diethyd-m-tolumide, teclunical, about 9 percent meta isomer). They are representative of three chemical groups, and all have been extensively tested against a harge number of species under many difierent conditions.

111 tests were made with the yellow ferer mospuito (A edes acgypti (h.)) from a colony that has been mantaned at the laboratory for many years. Tho species is casy to rem and populations in test cages mantain a uniform biting rate over a longer test period than the common malaria mosquito (Anopheles qucturimaculatus Say), another speries colonized at the Jaboratory. Studies by Gonde and Smith (1062) showed that the avidity of eaged popuhations of mosquitoes When exposed to marginal concentations of repelients increased rapilly with age up to 0 days and was more uniform thereafter, but at all ases aridity was mach lower each morming than during the previous atternoon. To obtain the greatest miformity, 7 - to 8 -day-old mos(quitoes were used in these studies, and dosages were adjusted so that. tests could be completed in a halt day whenerer possible. Except as noted, all tests were run in the moming.
Wost of the tests on human subjects were conducted with six Caueasion men, designated as subjects A through F. In some studies two young Caucasian women. desiguated G and FL , also served as subjects.
Biting-rate lests were made to determine the relative attractiveress of different subjects to the mosquitoes when no repellent wats on the skin. In preparing for the tests each subject put his arm into a stock cage infested with a large number of mosquitoes and allowed about 50 to stare biting. Ife then removed his arm carefully and deposited
the mosquitoes in a test cage. Each subject performed this task twice. This assured a test cago stocked with arid mosquitoes not too numerous for acourate comits. In conducting at test two subjects exposed their right arms simultaneously and then their left arms simultaneonsly in the test cage. Counts of biting mosquitoes were made at the end of 1 minute. Each test consisted of two exposures. The results were averaged in compating the counts on the basis ot bites per square inch. When three subjects were participating, the tests were ran in a roundrobin series, or incomplete block design. Each subject paired arms with eath other subject, as shown in figure 1 , for an equal number of times.

Ergore 1.-Biting-tate reat, in which two subjects expose untreated arms in a cige of mosquitoes and count the mosquitoes that bite in 1 minute.

In protection tests the repeltents were applied it full strength or at vations dilutions in echanol to measured areats of the forearms of subjects. The hands were protected by coton gloves. The ams were exposed in cares of mosquitoes for:3 minutes, or until a contirmed bite (a bite followed by mother in the sime or the subsequent exposire period) or a harger given number of bites was received, as shown in ligure 2. The required number of bites and the intervals between exposures varied from one experiment to another. The repellents were applied from individually alibrated pipetes and spead with at glass mod. The repellent tenaining on the rod was recovered by rinsing with alcohol. The amonat recovered was determined by spectrophotometric measurement and was subtracted from the amont defivered from the pipette to detemine the actaal amome applied, which varied slightly from the intended dosage. In most experiments the tests wero condacted in one or more round-robin series.
To determine the rate of evaporation from various surfaces, measured areas of the forenms of human subjects, rumea pigs, or pieces of Woth were treated with the repellents at full strength or at vations concentrations in ethanol and exposed in evaporation chambers, which consisted of two s-hiter comien percolators placed horizontaly in a ruck, as shown in figure 3. The harge end of eath percolator was closed by a plastic disk, perforated with a circle of twelve $3 / 2$-inch

 Some of the mosiquitues that apmear to be on the am may actually be on the wire sereen between the arm and the camera.
holes to admit aim. Tn iests with treated ams the disk had a central orifec with a Monel ${ }^{3}$ metal sleeve to permit entry of the amm. In tests with cloth it had two small openings to permil the passarge of water tuhes. The smatl end of each percolator was comected by $3 / 8$-inch ropper babing to a series of two $500-\mathrm{ml}$. and two 200 m - ma . gas-washing bottles, which in turn were connected to a vacuam pump, which maintaned a flow of wir through thesystem.
'The air How was aljusted to a rate of 20 hiters pea monde, as measured by a flowmeter inserted in the system directly following the percolator. During all test periods ane was constantly passing orer tho enelosed arm. guinea piar, or cloth, out the smatl end of the vessel, and through ethanot in the gas-mashing bottes, where the evaporating mpellent was collected. A themometer in fle percolators was used 10 observe the temperature, whely varied between 85° and $87^{\circ} \mathrm{F}$.

In tho skin tests a treated and an hatrated amm of a subject were enclosed in the petcolators immediately alter the repellent had been applied, and the Monel metal sheres were seated to the upper arms with adhesive tape. Lir was dram ove the treated am for 2 hours,

[^1]
 dram b bs a ricuman pomp orer the treated aroms of the subjecs ant through almonol in the gas-washing bottes, where the repellent is coliected.
immediately after which the repellent rematining on the atm was recorered by rinsing it with $\mathbf{t h} \mathrm{ml}$. of distilled ethathol, as shown in ligure t. The same procelate was used on matreated ame to establish blanks for the spectrophotometric readings. After a latree number ot tests had demonstrated that the blank realings were negligible, treated arms of two subjects were exposed simultanconsly, ind tests were conducted in round-robin series.

The percolators were rinsed with ef hanol to more any athering repelient. The anounts of repellent in the examol from the gaswashing bothes and rimsed from the arm and perolator were determined spectrophotometrically. 'ithe methods of Schmide et al. (105S) for deet, and of Bowman et al. (1259) for ethyl hexamediol were used. Dimethyl phthatate was read at $2.25 \mathrm{~m} \mu$. Alt mensurements were computed in terms of milligrams of repellent per square inch of skin.

The guinea pigs were restrained in a tack in a supine position. and a \bar{T}, \vec{b}-spure-ind area on the shaved ventral surface wats freated with the repellent. Other tesif procedures were the same as hose with treated atms, except that thour exaporation periods weye used in some tests.

Cloth tests were made with sleeves of coton shecting ? inches in circumference and 71,2 inches long. The slecese were washed and axtracted to remose etham-soluble impurities and ben st ret ched over rhass cylinders 83 inches in diameter and 11 inches long. The repellent was applied in a 5 -pereent othanol solution to assume thorengly saturation of the cloh. ('rlinders with temated and batreated eloh were placed in the percolators and maintained at a temperature of $05^{\circ} \mathrm{F}$. with warm water, which wat cireubated through he eytinders by means of tubes passing through the dists closing the percolators.

Fouse fa-minsing a treated arm with elhanol to remove the mellent remainins affer a test for measurement of the residue by ultaviolet spectrophotometry. The man at the left is blowing a tite stream of ethanol from a washing bothe over the teated arm, from wheh it runs through the fanmed into the fask.

After a 2 -hour eraporation period, the sheeting was cut from the ryinder and the remaning repellent was recovered by extaction with ethanol in a Soxhet apparitus.

The amome of repellent absorbed into the skin of the atm or the guinea pig was determined by subtracting tho amount hast by evaporation and the amounts rimsed from the skin and percolators from the total amount applied. Less than \tilde{j}-pereent error was incured in this method, is demonsitated in studies with guinea piges by Schmidt at ad. (1959) with (${ }^{4}$-labeled dect. Raltonctivity equiralent to 95 - 06 perent of the dosige calculated to be absorbed wats recovered in the urime, feces, and samples of the skin and hatip, although some atectivity still romainet in the latit two, and the total recovery reached os-an pereme ot the applied dusare.

A batanced, incomplete block design, or romil-tobin series. was (mployed in most experiments, except those wifla a mane of dosates. With this design each repellent, subject or axperimental condition in tho series was paired anainse each other repelthen, subjeet, or condilion. An adjusted a werage, which compensates for ratiation betwern hosts and lesting conditions, wats computed loy a statistical medhod suggested by J. I. Mer (ulime of the Entomok dey Researeh Division and modified from Kemphorne (/2, Th). From the analysis of vatime
 repellents, subjects. or conditions was deremined. In some ciperiments the rations repellents, subjects. or conditions were tested in : series of pats, mather tham in a single integrated design. In such experiments the signifiemt difference betwen means was computed from the "t" ralue of the standard errot of the mean dilfetence.

FATE OF REPELLENTS ON SKIN AND CLOTHING

Repollents are cifective far math fonger periods when applied to tho clothing than when applied to the skin and persish tor days or weeks rather than hours. It the beximing of these studies it was assamed that lasses by eraporation from skin and elothing wouk bo comprable, but Hat skin appliations would also be subject on losses by absorption and deterioration. Experiments were mado wilh apphentions to the ams, guine piges, and choth to determine loss by exapontion. To the arms and arinea pigs to detemine loss by absorption, and to the ams only to themen less ly deferiomation.

Physical Loss

A. Prebiminary series of tests was conducted bo determine the fomomas of dimethey phathate lost by apmation in ehoms from hemy and medim appliations on the arms of six subjerts. The arerages ol the resula sobatined wer as follows:

The loss by eraporation was amost ilemieat at hoth dowares when expresem in milligrams per equare inch of skin surface and lwice as great at the medimm rate as at the hery mie when expersed as a perentage of the amoun applad. Finman er al. (70.53) likewise noted that the eraporation of dimethy phthatate from fiter paper
 pliet. From these results it is appurent that peremtage fosses are
 value was had thromghom the remainder of these stadies.
Whational teste were made to detemine do individal ratiation in waporation rates on six subjeets feated with thmethy phathate at a mifom rate. The bos in 2 hous was faily wiforn, ranging troms 0.32 to 0.06 mg . per square bill, as shown in table 1.

1 serige of testo was condected to determine the total amoments of thee repellents fost from the arms owe varims periods of fime when
 so" F . The repellents were appliad at arematy measured dosiges
 120, and 240 miantes the aras were rinsed with disfiled ateonol to

 This mome was subtarded trem the total bot in each of the other

 of the exposimp prion was erident in this seties. Over the longere

Tames 1.-Evaporation of dimelhyl phthatate from arms of 6 subjects dwing a hours in gluss perrelators. (Lir flow : 6 -i-2\% liters perminute; average of 2 tests)

Subject	Surface of arm ireated	Amount of repellent per square ineh	
		Applied	Firaporated
A.	S_{q} in. 62.9	7.77^{Vg}	${ }_{0} \mathrm{M} / \mathrm{O}$.
13.	70. ${ }^{\text {f }}$	C. 89	. 55
$\left({ }^{\circ}\right.$	75.3	6. 93	. 61
1).	69.3	6. 99	. 57
15	75.7	6. 65	. 53
F^{\prime}	66.1	6. 97	. 57
Average.	60.08	7.032 5.1331	. $573 \pm .016$

A similat series was conducted in which each repellent was applied to the same three subjects. The results of this second series are shown in table?

There was relatively little diflerence between the rates of loss on tho different subjects and no consistent difference. In this series of tests tho losses were, in general, slightly lower than in the preceding series. The loss of deet after 30 minutes was thexplaimably low for atl thee subjects, and there was less trend toward decreased rates of loss with longer exposure periods.
In a thind secies of tests the repellents were applied to two female subjects. The arerage indiridual iosses in two tests are shown in table 2.

There were no consistent differenees in the rates of loss between the two subjects. In general, loses were slightly higher flam in the two preferling series on men, but were not consistenty so. The overall averare Enses in milligrams per square inch ber minute were 0.010 for dimethyl phthalate, 0.009 for dect, and 0.00 s for ethyl hexanediol.
The losses by ermporation and absorption of repellents applied to lare male and fwo female subjects, guinea pigs, and coth were investigated in eight series of tests. The results are presented in trible 3.
The firsit two series were conducted to compace the losses of riimethyl phthatate and dect on subjects A and C, who had shown long and short protection periods, respectively (see p. 18). 'The results tor both subjects were very similar. Dimethyl phthalate evaporated about twiee as fast as deet, but the later was more mipidy alsorbed, and the total losses of hoth repellonts were about the sutue. In the thircl series the losses of ethyt hexanerliol on these suljeede mad subject; In were detemineal. Again the losses by evaporation for the three subjeets were similar, hat there were shighty larger ditterences in alsorpfion. The rale of craporation was smilar on that of dimethyl phithalate, but absorption and total loss wren generally lower, except for sulbject C.

In series it the losses of atl there repelents were compared on two women, subjects f and IT , and in series 5 on the two women and it

Table Q.-Evaporation per minute of 3 repellents from arrss of 5 subjects during various intervals after treatment in 3 test series. (6.75-7.25 mg.per sq. in. applied)

SERIES 1 (6-3 712STS)

- In sories I the results with three or four subjects were pooled.
man, subject B. Rates of ovaporation in milligrams per square inch were similar on all subjects for deet ($0.25-0.29$), slightly less for dimethyl phthatate ($0.48-0.5 \%$), and still move diverse tor ethyl hexanediol ($0.33-0.16$). Tosses by absorption generally showed greater variation between subjects-0.32-0.aiz for dimethyl phathate, $0.4 ;$ 0.58 for deet, and 0.30 to $0 .+3$ for ethyl hexanediol. Total losses per minute wero about the same for dimeilyy phthalate and deet, weraging 0.008 , and were slighty lower for ethyl hexamediol (0.006).

Losses of dimethyl phthatate and deet from guthei pigs were determined in seties 6 . There was more variation between imividual guinea pigs than between individual human subjects, and losses wece higher on guinea pigs by both evaporation and absorption. Dimethyl

Thisle 3.-Evaporation, absorption, and loss per minute of 3 repellents applied to human subjects, guinea pigs, and bleached muslin during 2 hours in glass percolators in 8 test series. (Applied as 30-percent solutions in ethanol)

SEllIES I (G TESTS)

Repellent and subjeet	Amount of repellent per square inch			
	Applied	Evaporated	Absorberl	Lost per minute
Dimethyl phtimate: A-..---------------	Mg. 7.02 7.01	$\begin{array}{r} M g \\ 0.54 \\ .53 \end{array}$	$M g$. 0. 48 . 54	Mg. 0. 009 009
Skries 2 (5 dests)				
Deet:				
${ }_{\mathrm{C}}^{\mathrm{C}}$	7. 03	0. 24	0. 80	0.009
	6. 38	. 24	. 77	. 008

SEHIES 3 (3 TESTS)

Ethyl hexanediol:				
A.-	7. 03	0.57	0. 30	0.007
${ }^{\text {C }}$	7. 46	. 52	- 45	. 008

SFRIES - (2 THSTS)

Dimethy phthalate:				
(i.	6. 60	0. 54	0. 52	0. 009
H	7.10	. 50	. 40	. 008
Deet:				
G	6. 53	. 25	. 43	. 006
	6. 89	. 29	. 49	. 007
Fuyl hexanediol:				
G	6. 43	. 36	. 30	. 006
H	6. 63	. 33	. 34	. 006

SERIDS 5 (4 TESTS)

Thble 3.-Evaporation, absorption, and losi per minute of 3 repellents applied to human subjects, guinea pigs, and bleached muslin during \otimes hours in glass percolutors int 8 test series. (Alpplied as 30-percent solutions in ethanol)-Continued

SEHIES O ([.2 TESTS)

Repellent and subjeet	Amount of repeltent per square ineh			
	Applied	Wraporated	Ansorbed	Losh per minute
Dinncthyl phthalate, guinea pig: A	Mg. 80		$\stackrel{\text { Mg. }}{\text { i. }} 71$	${ }^{\text {Mgt. }}$ U. 322
A_{2}	8.00	. 62	. 56	. 010
A3	S. 00	. 78	2. 40	. 026
Deeti, ruinea pig:	7. 89	I. 01	2, 14	. 026
131.........	6. 72	. 35	1.00	. 011
132	6. 1^{12}	. 39	1. 18	. 013
133	6.48	. 33	. 96	. 010
134	(i. 47	. 35	1. 10	. 112
Cl	7. 85	. 9.4	1. 95	. 02 I
C 2	8.00	. 62	. 56	. 010
C3	8. 00	. 7 S	2. 40	. 027
SEMES 7 (1 TESTT)				
Deet, guineta pig:				
C1-	6. 38	0. 0 6	1. 68	0. 010
C_{2}	6. 31 i. 28	. 74	1.70	. 010
C4.	6.14	. 60	1. 45	. 009
Dimethyl phthatate, moslin...	6. 90	$\begin{array}{r} 0.23 \\ .11 \end{array}$		
Dert, muslin-	(i. 94			

[^2]phthalate evaporated about twice as fast as deet. In series 7 guinea pigs treated with deet were retained in the glass percolators for 4 hours instead of 2. The average losses by evaporation were abont double those for 2 hours (0.678 vs. 0.305), showing that the rate remained constant throughout this period even though the amount on the stin had decreased by about one-third. Losses by absorption were only about 50 percent larger than at 2 hours (1.59 vs. 1.05).

Losses by evaporation from cloch were determined in series 8. Dimethyl phthadite was lost twice as fast as cleet, but both were lost only halif as fast as by evaporation from human subjects and onethird as fast as trom guinea pigs.

The weighted-average losses are also given in table 3 for all the 2-hour tests on human subjects, guinea pigs, and cloth.

A test was made to determine the evaporation rate of deet from a guinea pig over a 24 -hour period. The ethanol traps in which the evaporated repellent was collected were changed every 3 hours. A total of 46.66 mg ., or 6.22 mg . per square inch, was applied. The amounts lost by eraporation during each 3 -hour interval after treatment were as follows:

Hours	Total (thount lost	Amount los per squtere inch
	Mg.	Mg.
1-3_	2.34	0. 312
3-6.	2. 35	. 312
$6-9$	2. 60	. 345
9-12	2.43	. $32 \pm$
12-15	2. 88	. 384
15-18	. 80	. 108
18-21	. 47	. 063
$21-2.1$	3.4	045

The evaporation rate was essentially constant over the first 12 hours, increased slightily during the next 3 hours, then decreased slarply, and continued to decrease more slowly. Since the rate of absorption has been shown to exceed that of evaporation by two or three times during the first 4 hours (table 3 , series 6 and 7), it seems probable that very little zepellent was left on the shin after' 15 hours, when the evaporation rate first declined.

The preceding tests, and others mentioned previously, indicate that the rate of eraporation of a repellent firm the skin remained fairly constant under uniform envirommental conditions even though the dosage or amount remaining per square inch might be changed, as long as the dosage remained high. Tests were made to compare the rates of evaporation of three repellents at high and low dosages on each of two human subjects.

A $6-\mathrm{mg}$. dosage per square inch was paired with a $1-\mathrm{mg}$. dosage on opposite arms of tho same subject, and a $12-\mathrm{mg}$. dosage was paired with 0.5 mg . To obtain the different dosages, different concentrations of repellent in ethanol were used, since it was impossible to cover the arms adequately with the full-strength repellent at the lower dosages. Tho two arms of the subject were exposed simultaneously in the glass percolators. The gas-washing bottles used to collect the dimethyl phthalate and deet were changed every half hour tor 2 hours. Those used to collect the ethyl hexanediol were only removed at the end of the 2 -hour test period. The repellent remaining on the arms at the
end of the 2 -hour test period was recovered by rinsing and the anome absorbed during the entire 2 hours was computed.

The results ate given in table 4. Ac all dosalges deet was lost about half as fast as the other repellents. There was some increase in the amount of ench repellent lost with each incerase in the flosage applied, but the amount lost did not represent a constant percentage of the amount applied. For example, of percent of the 0.5 mg . dosuge of dimethy phthatate was lost during 2 hours as opposed to only opercent of the 12 -mg. dosage. The rate of loss usallly remamed faity constant for each half-hour period, but at the $0.5-\mathrm{mg}$. dosage it derlinet in ewh successive pericxl.
Tuper 4.--Evaportion and absorption of 3 repellents churing rarious intervals after truatment from arms of 2 subjects (reated with maidous dosuges. (Average of 2 tests on cuch subject; all amounts in mg. persiq.in.)

Reprilemt and dosuge	Anount of mepellent exaporated in indeated interval after trathant				Total exaporated for subject-		Total abmorbed for subject-	
	$\begin{gathered} 130 \\ \text { minules } \end{gathered}$	$3!60$ нinute-	(j) 90 nimbes	$\begin{aligned} & 9 \cdot 120 \\ & \text { minutes } \end{aligned}$	A	C	A	C
12-..-	0. 169	0.170	0.163	0. 160	0. 6	0.70	0.78	0. 95
	. 1.41	. 141	. 134	. 135	. 53	. 57	. S 2	. S -
	. 102	. 091	. 084	. 080	. 32	. 40	. 55	. 60
. 5	. 096	. 085	. 064	062	. 30	. 31	. 39	40
Deet: \quad ¢								
12	.07S	. 080	. 075			. 32	3.131	1. 39
	. 075	. 073	. 071	. 075	- 26	. 32	. 56	. 80
	. 048	. 047	. 04.4	. 047	- 30	. 17	. 41	. 35
	. 0.19	. 039	. 034	. 032	. 10	. 15	. 25	. 20
Ethy!								
12.					. 12	. 63	. 73	. 80
(i,					. 133	. 61	. 60	. 80
					. 40	- 46	- 40	. $5 \cdot 2$
. 5.					.23	. 27	. 31	. 30

Deterioration on Skin

Studies wre conducted to determine whether the repellents deteriomated during a period ot aging on the skin, either by absorption of skin secrelions that redued their eflectiveness or by chemical breakdown.
Since the skin gives of carbon dioxide. and catbon dioxide attmacts mosquitoes at eerain concentrations, tests wero made to determine whether a decrase in the ettectiveness of a epellent was calused by passing cabon dioxide through it. Cabton dioxide was pissed through 100 ml . of dimethyl phthatate for 1,2 , 5 , mad 16 hours at tho tate of 2 liters per mimute. Brotection teets with tho repellent immediately atter remosal of the carbon diuxide flow showed no
decrease in eflectiveness in comparison with untreated dimethyl phthaiate. Cabbon dioxide deteminations were mado immediately after emoring the repellent from the flow and after 20 and 45 hours at room temperature. The repellent becune saturated in 16 hours or less and lost carbon dioxide rapidly after standing in open contimers at rom temperature.

A test with carbon dioxide passing through water-free and watersaturated dimethyl phthatate for 1 hour shoved no biological differences on cotton stockings, stin, or artificial membranes, or in blow supplying the artificial menbranes. The method for testing on cotton stockings is given by Smith (195S) and that on membranes or in blond by $13 \mathrm{H}-\mathrm{Zeer}$ and Smith (1959). The failure to obfain biological enferences may be caused by the rapid evaporation of the carbon dioxide whon applied to cloth, skin, artificial membrane, or blood.
Tests were conducted to determine the effect of adding sweat to three repellents. Sweat was collected from the arms of each of threc subjects. Ethanol solutions containing equal parts of sweat and repellent were tested on one atm of the same subject from which it was collected and paired with an equal concentration of the vepellent alone on the otler arm. The areage protection times to the first confirmed bite are given in table . ${ }^{\text {a }}$. The addition of sweat cansed mo consistent reduction in the eflectiyeness of the repeltent, alihough there was a signilicant reduction with deet on subject C .

Thace 5.-Protection time with ethanol solutions of 3 repellents, alone und mixed with equal concentrations of sweat, on 3 humun sabjects against Aedes argypti. (f testis)

Repellent foncentration amblimome per foreame and subject	l'rolection time		
	Whhout SH:at	$\begin{gathered} \text { With } \\ \text { sweat } \end{gathered}$	Ratio
	Mimutes	Minutes	
A.----..-- .-. .-..... - .	100	89	0.85
${ }^{1}$	140	130	. 97
Dect (10 prerea, limi):	$\underline{21}$	1.1	. 67
A............	353	385	1.03
${ }^{1}$	373	371	. 99
	339	2.46	1. 73
Ehyt hexamdiol ios peremt. 1 mit			
	$\underline{294}$	-263	. 89
	211	235	1. 13

1 Diferener siguifeane as 5-porent keve.
To determine whether bacteria on the sin contribute to der reasing the eflective period, dimetlyi phthalate was tested concarrently of mawashed arms and on arms inat had been washed twice with a $1: 1,000$ solution of merthiolate and ziased twice with alcohol. The merthiolate solation alone did not prevent biting. The period of protection was atmost identical on the areptic and nonaseptic ame of four sub-

Tasses 6.-I'rotection time with aseptic and nomseptice arms of is subjecto treatech with 1 gm . of dimethyl phthatute ugainst Aedes acgypti

jects and stighty knger on the nomaseptic arm of a fifth sulyject. The retaled results are ariven in table (i.

An additional series of texts was rouducted to determine whether a repellent treatment fated to give protection after a perion of aging on the skin solety berathe of the duantity kot or whether the rematiniug repelleat had deterionted and was therefore less eftective that an cuad amount of repellemt treshly applied. Dosages of deet smatl enough to permit completion of a test in at single momang were apphed to the right foreams of each of awo subjects. The subjects ahemately exposed their treated ams in the same cage of moquitoes unt liwe bies were revived in 3 minturs. The forenths were imme-
 detemination was immediately made by mbaviolet spectrophotometry. Fresh applimions of dee in the amont recovered from the ambs we then mate to the beft fomans of the same subjects, which were immediately lested in the sabue cage of moeraitoes.

The resthas are givel in table - The amome of repellem recovered immediately after hive hiter were receiver maned from 0.3\%) to th.7. me. per square inch for subjed A and from 6.37 to $0.4+$ mar. for shbject $($. Than appoximately eqtal amonts were applied to the ofther arm, A received live bites immedinely in so texts and tive bines after 30 minter in two ohters: (revelved tive bite jmmediately in three tests and five bites after (io minum in anome. The MED in this series of teats wat therfore betwem 0.3 and and me per equare inch, and frehly aphlied repeltent wat mone eflective than an equal amount of repellent remaming as an aged residue from a hearer original application.

In a further efloms to determine whether any chemian breakdown orented during the time the repellent was aging on the shin, samples
 One amo nobject I was treated with deet and one arm of subject (? with dimentrl phthatate. Ifter 6 homs of aging the repellents were recorem by chaing the arms with ef hanol and the untreated ame were abo wined with ethanol to provide a blank or backeremed reat ing. Through the kimhes of S. S. Hall and Morton Beroza of the Emomolegy Researeh l)ivision, Behorille, Md., these solutions were

Tabse t.-Effectiveness of fresh upplicutions of deet to left amms of a subjects in amounts equal to those recorered by rinsing from vight arms immediutely after receiving so bites from caged Ledes alegypti. (till amounts in mg. per sq. in.)

Subjert and anomm applied to right arti	Time to 5 bites	Amount meovered from right arm	Amombt applied to lefi imm	Time to 5 bites
A:	Minutes			Minutes
0.93 .	121	0. 50	0. 50	Immediately.
0.50	121	. 35	. 43	
0.00	180	. 3:3	. 34	30.
$\mathrm{C}^{\text {(3) }} \mathrm{b}$	30	. 11	. 43	Immediately.
$C: 0.30$				
0.79	00	$\stackrel{+1}{4}$	- 46	Do.
0.7	129	. 313	. 10	
0.33	30	. 36	.39	Immediately.

compared with standard solutions of the fresh repellents. The infrared curve indicated that there had been no appreciable change in either repellent.

Excretion in Urine

The possibility of recovering unchanged repelient from the urine of teated subjects was investigated. Known amounts of repellent were added to arine samples. I 100 -mi. sample of urine was shaken up with equal parts of isooctane for $\overline{3}$ minutes to mix thoroughly. A aij-ml. sample of the mixture of isooctane and urine was centrifuged to separate the isooctane from the solids. The clear sample of isooctane was run on the ultaviolet spectrophotometer. The amount of deef reeorered from the bist extraction was about at pereent and that of dimethyl phthalate about 100 percent of the anount used. Samples of urine from the matreated subjects were collected over a 24 -hour period and pooled. A check sample was rum on the spectrophotometer from these collections.
The torearms were then trated with about is mg . of deet or dimethy phthalate, which remamed on the arms for 6 hours. Urine samples collected for $2 t$ hours affer treatment and also samples for the $t \mathrm{~S}$-hour period after treatment were analyed for the repelients by spectrophotometry. So diferences were obscrved betweon the readings of the treated and check samples on the spectrophotometer, indicating that no deet or dimethyl phthatate in its original form was present in the urine, or that the amont elimmated unchaged was too emall for detemmination.
These results were confirmed in mbserquent studies by Schmidt et al. (19.0) with ("'labeled deet applied to guinea pigs. Their findings demonstrated that, although mose of the absobbed molionctivity was exereted in the urine no mehanged deet was present.

Kamm et al. ($1 \% 53$) found evidence that a metabolite of the repullent 1 -phent-2-laymoxpropanone-1 was present in considerable detantity in the ucine from a treated guinea pig. They concluded that ahompion was a signilient factor in repelient loss.

FACTORS AFFECTING PROTECTION PERIOD

Tho length of time any given dosage of a repellent remains effective depends not only on the tate at which it is lost trom the skin but also on the mimimm residut amount that will contime to prevent biting. at factor that has sometimes been overlooked. For example, Kasman et al. (1053) found that dmethyi phthalate was losi by reaporation from fillec paper at $0.000+4 \mathrm{mg}$, per square centimeter per minate. From this, assuming that it would evaporate at the same rate from a gunea pig, they calculated that the protection timo shond be 3,900 minates from a dosage of 1.7 gm . per square centmeter if exapomion were the only mode of loss, a computation that also assumes that the repellent wouk gire protection as long as any appreciable gtamity rematned on the skia.

The studes conductel at Ortando, howerer, showed that this is : minimam efle tive dosare or MED, which will preamathy he atfected by such factors as the widity of the inseds and the athenchemess of the host, as well ta the efleiency of the repellent. Variations in the avidity of tho mospuitoes as a fator in the MED were eliminated as much tas possible by the procedures deseribed mader Materiats and Methods. Studies on the eflect of the bosi on the protertion ohtamed inchaded experiments on the amomes of repellent remaining on different subjects at the time the first bites were received, thomomis reduired io provide protection when first applied, correhations between attactiveness of the host without repeldent and the probedion rereived, the eflect of hair and selmm on athactivenes and prodedion. and the relative eltect iveness of repellents on hamans and anmals.

Residual Effectiveness and Rate of Loss in Relation to Protection Period

Two series of fests were conducted to defermine the amonts of dimethyt phathate that wemaned on the arms of six subjects at the timo the repellong dropere to al level that allowed live bites in a 3 -minuto expesure. In the first series paired tesis were made in an incomplete block design that consisted of thre tests with each arm of each subject. This experiment was made early in the seneral stady before the fechaigue of recorery of repellent from the ams by rinsing had been dewoloped. As som an tive bites wete received, recovery was mado by wiphing the ams with ethanol-owked cotton pads and dry pads and extrathing the repellent from the pads. This techmigue proved to the lese eficient tham rinsing, and the actuat amomes of repellents remaining on the arms were probably slighty higher than the amonts measured. However, the data are presented in table s, as they provide a ratid comparison of the differences and similarities between subjects.
 differeni suljects. wihn an overall average of 148 minates. The ra-

 to 0.0:0 mg.. with an avenge of 0.31 . Wive sulyerts had amost identical amouns of repelleme remaning on the armis when five bites

 jreds affainst hedes amgypti, momont of repellent reconered by wip-

Subjeret	Protertiontime	Amount of mpathat per shuare inch		
		Rerosered	Lust	Losit per minute ${ }^{1}$
A		Mg. 4.3	Mg.	1/g. 010
13	$17 \cdot 2$	4.23	281	. 013
(90)	4. 37	2. 31	- $0 \div 0$
$1)$	15	1. 10	-3 61	. 015
E	32	-). 6-	1.34	. 015
F	1.17	I. 5	-3	. 016
Averthe. .	1.1s	-1. -1!	$2 \cdot 1!$. 015

 after applitation, anci lais amome was subera red from the total lost before the lospar misute wiss computed.
 Was inversely wereladed with the mate of loss. sibled E received bites with a higher residual dosage of repellent that the others and hal the shortest protection periond aven though he lost repellent at the awesue rate.

A second more axtensive series of rests was make with subjects 1 and (', who hats shown long and shote protection lines. respectively, to contim the ditherentes oberved in the fise series and to setemine Whether there was an signithent dillerenee berween the protection timest on opposite irms of the same subjere.

Six paicet lests were run. Fism the right arm of each subject, then the lelt amo of each, wase exposed in at single ange at each ex-

 mediately atore it berame inefertive, that is. when tive bites were allewed in : minutes. The resultsare given in table ?

- datin there were simbitant diferemes in the potection time and
 the same subjerts. Subject A, with the longest protection periont,
 0.01:) from the left. bout the same ats in the provions test series

 corered from the arms. atsoblyer a beerived bites with more repellent on hisarmstham =ubject (${ }^{\prime}$.

Righla arm

Laft :41th

110	4.42	2.59	.023

from the lotal lost before the bosis per mimute was computed.

Attractiveness in Relation to Protection Period

Seven series of tests were made to study the attractiveness of fire subjects to mosquitoes and the relationship of atractiveness to the protection period obtained with repellents. Attactiveness was measured by the biting-rate rests previonsly described (p. y^{2}). The first series was conducted to detemine the relative attractiveness of three subjects, $A, 3_{4}$, and (${ }^{\prime}$. who had shown long, intermediate, and short protection periods, respectively, with dimetly phthalate (table 8). Tests were made in the morning and aftermoon with each arm of each subject in a rombl-robin series. The results are shown in table 10.
 aegypti. (Lemage of a (lests)

${ }^{1}$ S0 lests.
Subject (. who hat the shortest profection perion, hat fewer bites I han subject A, who hat the lonerst. II werer, the difference was not signifiant in the mominar tests with either arm or with the left am in the alternoon. and the diblerence in the owerall amere was just sig-

 betwen them. 'There wats no monsislent difleme between the morn-
 Guate inch per minate in the norning and 0.50 in the afternoon.
 agatise low conventrabions al repeltent in the afternoon than in the horning. Itoweret, in the tesis reported hore no repellent was used,
 minutes bubure the lests were mate.

Wthough these iesis showed mo comelation boe ween the maturat athativeness of the subjeds and the relative protection they had whatined wink dimedter phathate, there was considerable variation in

the two phenomena concurrently. Six romerorobin series of tests were run, three with subjects A, B, and C, using three repellents, and three with subject A and two fenale subjects, (ir and M. The biting-rate tests and protection-time tests were made during the forenoons of the same days to assure identical avidity in both types of tests. As soon as the biting-rate tests were completer, the sanc measured area of the forearm was treated with repelfent. The treated amm was then exposed to mosquitoes a minutes after treatment and every 30 minutes thereatter matil a confirmed bite was received. The remining repellent was rinsed from the arm with ethanol and determined spectrophotometrically, and the amont lost per square inch of skin per minute was calculated. The results ate given in fable 11.
In all tests comparing subjects $\Lambda, 13$, and O (series ia, $1 b$, and ic), subject B showed the greatest natural attractiveness (highest biting mate) and subject (! the least. The diferences between B and A were always signifient ; those bet ween A and C were significant in two of the three series. Subject (alwas hat signifitmty shorter protection periods than B and A . He a lso lost repelient fater, significantly so in two of the three series. A received siguificanty longer protection than B with dimethyl phthatate only and showed no consistent differenco in mite of hos. In these teats the failare of the repellents to protect (as long as the other subjects cmmot be attibuted to greater natural attractiveness, but it was upparmity corvelated with a faster rate of loss.

In the three series with subjects (i, I. and A ($2 \mathrm{a}, 2 \mathrm{~b}, \mathrm{D}$) , there was no corremation between the reharive atractiveness of the subjects and the amont of proterion received, and only incomplete correlation between the tate of loss and the proketion time. Subject A, the man, was the least attractive in all lher series of tests. The differpaces were statistically simifitant in two series, but they closely approached significance in the other series. In the series of fests with deet, - was signitimaty less attracive than (i) but not IF, lost repellent taster than II but ion (i , and had a signifimatly shorter protection period than either G or H. With dimethyl phthalate, A did not lose repellent as fat as eibher (a or It but had a significantly shorter protection time than II. With ehay hexanedion. I had the smallest rate of loss and the longest promection ime. Subject Th was less attractive than (f in two series and more attractive in one, but always lost repeldent more showly and hat longer protection periods. Subjects fram If were not eompared divedly with B and C, but conpmasons may be made on the bisis of the ir matios to -1 , as given in table 11.

Additional experments by (Gourk and Bowman (1959) demonstrated that the ams of 13 , the most attractive subject, gave of the most cabon dioxide and the least water, those of (T, the least attractive subject, the least catbon dioxide and the most water, and those of A, intermediate quantifics. The application of repellents to the arms did not alfect the relense of moisture, but dimethyl phthatate, ethyl hexamediol. and deet reduced the carbon dioxide ontput of A and B, and deet reduced it on ('also. Mowever, no conchusive evidence indicated that the reduction of cathom-dioxile output resulted in the repellent action.

Minimum Effective Dosage

The minimum eflective dosage (MED) of three repellents on each of five subjects was determined in two series of tests, the first with subjects A, B, and C and the second with subjects A, G, and H. The MED will vary with the avidity of the mosquitoes, but a series of tests with mosquitoes of uniform avidity provides a valid comparison between different repellents and different individuals. In these tests a measured area of forearm was treated with varions dosages of each repellent. The arms were exposed to mosquitoes 5 minutes after treatment and at hald-hour intervals thereafter until a confirmed bite was received. The arms were rinsed with 500 ml . of distilied alcohol immediately after termination of the test, and the amomat of repellent recovered was determined by spectrophotometry.

If no variations occurred from test to test and the MEDD could be deternined exactly, it would be the lowest dosage that would barely prevent bites in the initinl test, and consequently it would always allow bites after 30 minutes, when some of the repellent had evaporated or been absorbed. Since variations do occur, the MED can be expected to permit bites in the initial exposure in some tests and to give protection after 30 minutes in others. The results of these tests are given in table 12.

The MED's for deet were rather miform on all subjects in both series of tests. Those for cthy hexamediol were always higher than those tor dect. They were much higher in the second series than in the first series (about three times as high on subject A), but were fairly uniform on all subjects in any one series.

The MED's for dimethyl phthatate were much higher than those for dect of ethyl hexanediol, but were faitly uniform on all subjects in both series of tests except on subject C , who was unable to obtain initial protection with dimethyl phthalate in most tests in this series, eren though it was applied to the point of runoff. This was not due entirely to the inordinate aridity of the mosquitoes.

A comparison between the MOAD's in these tests and the residual dosarges at the time of biting in table 11 shows that although the MED's for dimethyl phthatate were higher than the residues in table 11, those for the other two repellents were equal to the residues or lower, indicating that the aridity was within the nomal range.

Hair and Sebum

Studies were made to investigate the effect of hair and sebum on the relative attractiveness of subjects A, B, and C and on the protection obtained with repellents. The lett arm of each subject was :haved smooth. The ams were examined before each test and shaved when necessary to remore the stubble. The amount of hair remored from the arms was as follows:

	Amount of hair removed (mg.)	
Sutject	Total	$\begin{gathered} \text { Per squarc } \\ \text { inth } \end{gathered}$
A...	433.3	6.95
	30.93. ${ }^{\text {a }}$	3.63

Biting rates it round-robin tests were taken as deseribed previonsly. The results are shown in table 13.

The unshaved arms remained in the same order of attractiveness as observed previously, with subject B about three times as attractive as A and about four times as attractive as C. With the hair removed tho attractiveness of all subjects was about equal, indicating that the thicker hair of subjects A and C gave more natural protection than the hair of subject 13 .

Tests were conducted to determine the rates of craporation and absorption of three repellents from the shaved aud unshaved arms of the subjects. The two arms of each subject were treated with the sume repellent and exposed for 2 hours in the glass percolators. The results are given in table 14.

The evapoation rates were about the same on the shaved and unshaved arms of each subject with each repellent, except with ethyl hexanediol on subjects B fand C , where the rate was slightly higher on the unshaved arms. The absorption rates showed greater differences than the evaporation rates between shaved and unshaved arms (up to 200 percent), but there was no consistent difference attributable to shaving. The absorption rate was higher on the shaved arm of A with deet and lower with the other repellents, whereas the reverse occured with B and C.

The effect of hair on the profection time obtained with repellents and on the rate at which the repellents were lost from the skin was studied by means of paired tests with repellents applied to one shaved and one unshaved arm of each of three subjects. The results are given in table 10. The rates of loss were generally equal or aboat equal on shaved and unshaved arms, bat when differences did occar the greater loss was on the shaved arm. With dimethyl phthalate on subject C the difference was substantial. Differences between protection periods on shaved and unshaved arms were greater but less consistent. The longer periods sometimes occured on the shaved arms and sometimes on the anshaved. The amount of dimethyl phthalate required to give protection on subject C was much higher than in most previous tests, but it was lower than in the tests to determine the MED (table 12).
Tests were condacted to determine whether the sebum on the arm contributed to its attractiveness. The arms of two subjects were submerged to the elbow in 4 hiters of purfied acetone for 3 minutes every other day for 10 days. Alter the acetone was evaporated, the extracted sebum and particles of skin were left. The skin particles were removed by fittering. All but a trace of the sebum was soluble in reagent-grade chloroform, an indication of the absence of any proteinaccous material. The sebum recovered from stbject B , who had tho highest natural attractancy of the three subjects in previous tests, was 3.93 mg . per 100 square inches of skin per day and that from subject C, the least attractive, was 2.73 mg .

A scries of tests was run to compare the biting rates on the arms of the subjects when one arm was rinsed by submersion in acetone for 3 minutes to remove the sebum and 1 ml . of acetone was spread on the other atm to serve as a check. The opposite amm of each subject was tested against each other and against each arm of the other subject. The amms were allowed to remain in the cage for only 20 seconds so that the counts would be low and the mosquitoes would not have time to become fully ted, but the counts were recorled in bites per minte.

Tabre 12.-T'me required for confirmed bites by Aedes negypti with various dosages of 3 repellents and minimum effective dosage (ME'D) on 5 human subjects in 2 test series

'Tame: 13.-Biting rate of Aedes ilegypti on shaved and unshaved urms of 3 subjects

Subject	Arm	Bites per scyume inch per mimute	
		Rauge	Average
A3	$\begin{aligned} & \left\{\begin{array}{l} \text { Shaved } \\ \text { Sushated } \\ \text { Shaved. } \\ \text { Fnshared } \\ \text { Shaved } \\ \text { Coushaved. } \end{array}\right. \end{aligned}$	Sumber 6. 33-1. 19 . $033-.25$. $513-1.29$ - $2 \overline{3}-.70$ $.50-1.4$ $.03-.{ }^{-9}$	Number 0.76
			. 15
			. 76
			. 49
			. 82
			. 11
L.s.1) at-			
5 -perecut kere.			. 13
1-pereent livel.			IS

In ench test the arms were expoed fide and an average count was taken. The biting mates in six repliate tesis are given in table 16.
These results give some indication. not borne out by subsequent experiments, that remoral of the solbum berning decreased the attractiveness of the arms. The rinsed atms of B and C received less bites than the check arms, but the difference, though marked, was not statistically signilient at the J -pereput level. As in previous tests, B's cheek arm received significantly more hites than ©s check arm. However, when the arms of both subjects were rinsed, part of the difference was lost, and the bites received on B s rinsed arm were significant, at the T-percent level. There was no difference between the rinsed arm of Th and the check amm of (', As expected, B's check atm received signifiently more bites than ("s rinsed arm.

Another serves of tests was run to oberve the cffect of adding the exfracted sebum to the rinsed arms. Exposures wemade as in the preceding series. The two arms of eath silbject were first tested simultanconsly without treament to assure that no significant differences between the arms orentred. Then one arm was rinsed hy submersion for 3 minutes in atecone. dered, allowed to warm to normal temperature, and tested agranst the motreated arm. The rinsed arm was then reated with selom from the same sulject, npplied at the rate at which it had bein extrated and again tested atganst the untreated arm. Finalle, the treated arm was agiln rinsed in acetone, dried, warmed. treated with sebum from the ofher subject, and tested against tho untreated ame. The results are giren in table 17.

In this series of iests rinsing the arms io remore the sebum did not decrease the number of bites wereived and adding selnam did not increase the biting rate. In fact, the only significunt diflerence was a lowered biting tate on the arm of subject (', the less attractive subject, treated with sehum from], the nume atratedix. [t was concluded that the selym had no sontributed materiathy to the at ractiveness of the subjects. However, if is posible that selbom eontains some attractant that was lost during the evaporation of the acetone.
Susas 1.t-Evaporation and absorphion of 3 remellents from shaval and whothacd arms of 3 subjects during

'Lably Iö.-protection time with 3 repellents on shaved and unshared. arms of 3 subjects against Aedes aegrypti and rate of loss of repellents from arms. (tests)

Subject and arm	Anount of repellent per square inch			Protection time
	Applied	Recovered	Lost per infule	
A: Shaved.....	Mg. 13	Mg. 5.30	Mg. 0.011	
frishaved.	6. 91	5. 30 i. 38	0.011 .000	169 $1+2$
B: Shaved				160
Tnshaved...	6. 42	-1.38	.013	155
C:				
Shaved....-	1.7. 63	10.49	. 059	87
berat				
A:				
Sinved.	1. 11	0.3-4	0.003	271
Conhated	1.13	. 45	. 003	242
13: Shaterd.				
Shaved-.	1. 15	.41	. 004	210
C:	$2.1-1$			
Inshaved.	- 2.1	1.36 1.00	. 0005	$\underline{107}$
	ETHYL Hexasedtol			
Shaved.	2. 10	1. 32	0.005	169
(tnhated	2.26	1. 56	. 005	150
Sinved.	$\frac{2}{2} 16$. 6	. 005	262
C: \quad C				
Shaved.	2.00	1. 41	. 005	110
Tnshaved	1. 97	1. $3 \cdot 1$. 005	130

'lismes bi.... liting rete of dedes negypi on ams wilheut sebum. (, rinset) whe with sebem (check) of a subjects

 (teveded. (2) rinsed in acetone to remore the sebom, on (a) rinsed wht re-tretted with selom from the stame subject or the other subjert. (8) $12 \mathrm{~m} / \mathrm{s}$)

Rites per minute received hy.
latedama
lwirustad
170. 130.

Rinsed
Contrented
Bedman fromall
lutreated
solomen frem (.

Subjece 13

Range	Avernge
Ninmber	Vipmber
33330	143 : 36
48.2	[47:33
21. 309	119:31
47357	150:37
21.132	8.18
21207	100×23
3:3-151\%	$100: 17$
20. 168	75

Simber C

Rembs	Avツrgi
Stwimer	
14.163	7317
$18 \cdot 132$	$6 \mathrm{~S} \pm 1 \mathrm{~L}$
15. 96	5\% 512
18-93	5% 5
$12 \cdot 109$	57×13
12.01	19: 1*
15. 213	$70+28$
!] 4 i:	31 ! (i)

[^3]
EFFECTIVENESS OF REPELLENTS ON HUMAN AND ANIMAL SKIN

The relative initial eflectiveness of thee repellents on the skin of humans and animals was determined by means of the minimum eftective dosage (MED). In this experiment effectiveness was based on protection at the level of five bites in a 3 -minute exposure rather than a confirmed bite. The hair was clipped from the sides of a steet and rabbit and the belly of a pig and grinea pig. several dosages of each repellent were applied from a pipette to the chipped areas of the animals and to the unshaved arms of a man and a woman, subjects A and $($. 'The treated areas in square inches were 16 on the steer and pig, i. 5 on the rabbit and guinea pig, 63 on the man's arm, and $5 t$ on tho woman's. Within s minales after treatment the treated area was exposed to mosquitoes.

In theso tests the F - to S -day-old mosquitoes were confined in cylindrical wire cages 24 inches in diameter. There were from th to 111 mosguitoes per cage, with an areage of 69. During testing, the cover wats remored from one ent of the cage, and the open end was held agrinet the treated skin for 3 minutes, as shown in figure $\overline{5}$. If less than live bites were received, exposures were made each half-hour until five bites did occur. The resulte are shown in table IS
The MLDD for dimethyl phthalate was about the same (0.07 to 0.10 mg. per square inch) on all hosis except the steer, where it was about double (0.17 mg .).

Thase 18.-Minimutm effective dosage (MEI) of 3 repellents on ramious hosts agoinst ledes acerypti

Reprellent tard host
MED of repellent per symure inch diredty after treatment and 30 minules later:

0 mintuts
30 mimules

Jimmethy phatabate:	. $1 / y$. ${ }^{\prime}$	Ma	. $1 / \mathrm{g}$.	M/	M_{y}.
A.-.....	0. 17.	0.09	0. 09	O. 11	0.12
(i...	. 07	. 08	. 10	. 11	. 13
siter	. 15	- 15	. 19	. 21	. 2
Cuiburn pig	- 015	. 07	.07	- 10	\cdots
Rablit...	. 13	. 07	$\therefore 11$. 1.4	
1'ik	. 09	. 09	. 121	, 13	. 19
Deel:					
A -	. 1.5 :	. 15	. $16{ }^{\text {a }}$. 17	20
(1...	. 07	.07	. 09	. 09	
Stur. - -	\cdots	. $3 \pm$. 42	. i 1	
Sininca pig.	. 07 ;	- 07	. 07	$\bigcirc 10$	1.4
Rubbit.	.07	. 07	. 10	. 11	. 1.4
S'ive	. Ofi	$\bigcirc{ }^{\circ} \mathrm{Hi}$	\cdots	.11	
Ethyluxturdiat:					
A...	. 10	. 12	. 12	. 17	. 17
(1 -	, 10	. 10	. 13	.1:3	. 19
Sterer 48	. 50	.49	. 30	. 5 f
Cumeth yig	. 08	. 09	. 11	. 13	
Rabbit...	. 910	. 07	. 09	.09	
l'ig-.....	. 10	.20	. 19	- 20	.

${ }^{1}$ Bused un protertion at level of thetes in a-mintute exponure.
The MED for dent was about one to 0.09 mg. per square inch on subject $(t$, guinea pigr, rabbir, and pig. On subject 1 it was about, double this amonat (0.15 mg .), and on the steer it was about double that on sulbject A (0.3 si me.).
The MLED for uny hexandiol ranged from 0.08 to 0.12 mg . per
 about twice as hight on the pig (0.20 mg.) and foum times als high on the steer (0.0 mi .).

The residual effectiveness of the repellents on the varions skin surfaces, ats aflected by the ir lows ly evapomation and a haorption; wats also studied. A dosige of about o.b nur. per square inch aboer ihe MEF
 lection, allowing bites at on mintes, and the extrat 0.5 mg , shoultit extend the probection period beyond 30 minutes. Difterences in the protection period woukd hus be due solely to diflerences in the rate of loss of the atdiaimal maderial and woud not bo alfected hy diflerences in the relative eflertiveness om the diflerent hosks. The revolts are given in table 10.

Tho steer tost all three repe-llents fister than any of the onlec hosts. as shown be the shome protection time. There were no consistent dilferences bet ween either of the hman subjerts and the ruinea pig. pig, and rabbit, but subject 1 always had shorler protection periods than G.

Under the standardized combitions of these tesfs the repellents were whout ergully eftertive on human subjects, guinct pigy pig, and tabbit,

Tabla 10--Effectiveness of 3 repellents on rarious hosts against Aedes aegypti at dosages of 0.5 mg . per square inch above the MED). (4 tests)

Reprlfent and hort	Intended dosuge per equare inch	Dosage applied per sicuare ineh		Protection time	
		Rangrs	Average	Range	Average
Dimethyl phthalate:	Mg.	vg.	Mg.	Vimates	Minutes
	0. 59	0. $53-0.60$	0.54	60-150	120
G	. 59	. $59-$. 60	, 60	122-180	152
Stuer	. 67	. $66-.08$. 67	45-60	52
Ghinca pig	. 57	. $59-$ - 60	. 59	90-90	90
Rabbit.	. 59	. 63 - . 63	. 63	90-90	90
1 ${ }_{\text {ig }}$. 60	. $\mathrm{ic}^{\text {- }}$. 63	. 63	100-135	117
Deet:					
	. $6 \overline{5}$. 50- . 66	. 63	S4-149	112
	. 58	. $50-165$. 58	$165-159$	183
Sicer.-..	. 87	. $80-$. 82	. 81	60-90	81
Guiteat pig	. 57	. $62-.63$. 62	$210-210$	$\because 10$
$\mathrm{Rab}_{\text {Pax }}$	59	. $57-.62$	- 00	175-205	192
Ethyor hexamediol:	58	. $57-$. 61	. 57	-10-240	223
Ethyl hexaneciol:					
(i.	. 62	-60-. 62	. ${ }_{\text {G }}^{64}$	$60-120$ $207-210$	209
streer	1.00	. $92-.95$. 93	60-60	60
(huinm pig	. 59	. $59 \sim .59$. 59	$60-120$	90
Rabbit.	. 5 S	. $5 \mathrm{~S}-\mathrm{D}$ - 5 G	. 59	120-120	120
Pire..	. 70	. 69-. 73	. 71	198-240	220

bui less effective on the steer. The lower effectiveness on the steer was due in part to the higher MED and in part to the greater rate of loss. Howner, the higher MED was itself probably required by the obviously greater absorptivity of the skin, which also caused the more rapid loss. The rapid absorption of the repellent by the skin was visually evident at the time of application.

SUMMARY

The protection period conveyed by any given closage of repellent. depends on (1) the minimum effective dosage, or MED, which is the minimum amount pee unit of surface required to protect against the given population of insects, and (2) the rate of loss, or rate at which the applied dosige is depleted to the level of the MED.
The principat mode of loss of repellents in patical use is usually abrasion, cansed by rubling the treated surface of the skin agranst the cloching or other objects, and this will vary with the activity of the subject. E-nder experimental conditions, when loss by abrision was prevented. auljects lost repellent by craporation and absorption. Tnder uniform conditions of temperature, humidity, and air circulation, evaporation rates were usually about the satme on different men and women, but absorption tates showed more varition and probably account for most of the individual differences observed in the total rates of loss. Evaporation rates were aboui twice ats higla from haman skin and three times as high from guinea pigs as from cloth. Di-
methyl phthatate ame ethyl hexanediol evaporated about twice as fast as deet but were absorbed more slowly. The rate of evaporation in milligrams per square inch remained relatively constant through a wide range of dosages above a critical minimam level.

Deterionation of the repellent on the skin, which has also been postulated as a possible mode of loss, did not ocenr, and repellents did not lose eflectiveness on the skin by admixture with emanations from the body, such as sweat and carbon dioxide. The amount of deet remaining on the skin for 30 to 150 minutes after treatment was as effective as the same amount of deet freshly applied.

In extensive teets with three men and two wonen, one mate subject, subject $(1$, consistently showed the shortest protection time, particularly in tests with dimethyl phthatate. Ihis was associated in part with a higher MED for dimethyl phthatate on this subject, but more frequently with a more rapid rate of loss. Subject (was the least attractivo of the subjects. and his ams grave of the most water and the least carbon dioxide, wheras subject 13 , the most attenctive, arve oft the least waler and the most caton dioxide. The amount of hat on the arms appered to be inversely correlated with the biting ate of the mosquiloes on untreated ams, but it had no consisteni elfect on the protection periods obtained with repellents. Studies on the elfect of sobum were inconclusive. There were no consistent differences between the men and the wonuen subjects in evaporation, absorption, attuctiveness, or protection time.
'The D[E]) with any given repellent against mosquitoes of uniform aridity varied only slighty between fout of the five suljects. The MED for ethyl hexamediol wat 2 to 5 times as high as that for deet, and that for "limethyl phithate was about 20 times as high.

The relative intial effectiveness of dimethyl phthatate, deet, and ethyl heximediol, as defeminet by means of the MLED's, was about, the same on the skin of hamans and thas shaved skin of a pig, a rabbit, and a $\underline{\text { rumet pig, but on a steer the NFD's were two to six times as }}$ high ais on the otlere hosts. The strer also lost all three repellents faster than the other hosks.

Differnces in prolmotion periods between repellents appear to be duo primeipally to diferences in the WED, and secondarily to ditherenees in the rate of loss. where resistunce to loss by abrasion would be an imporfant tactor. Differences in protection periond between indivituals appear to be due primarily te diflerences in rate of loss, prinripally by abserption if loss by aborision is uniforth, and to a lesser extent to difterences in the Misl). Relative individet attataveness withome repellent is not, apparently, cormetated with the individual MED.

LITERATURE CITED

Altman, R. M., and Smetit, C. N.

Bar-Zeev, M., nud Smith, C. N.

bowalan, M. C., Beroza, M., and Acree, F., Jr.
 Agr. and Fooll Chem. $7: 2 \mathrm{Dan}-\mathbf{2} 61$.
Gitamert, I. II., Gouck, II. K., and Smith, C. N.
 1240.143 ; 43 (0) $=9540,109$.

Gouck, H. K., and Bowasx, M. ©.
 morspeme form humay abas. Jout. beon. But. 52: 1157-1150.

-and Smitio (N .

(insemp; 1-

Kasmas, S., Rombotese, 1. A. O., and Wment. (. F.

kemprionse, o.
 Fiso, w. V., complles.

l'roons. M.
 17:3, 170.
Jactowskr, L. A., Tr., Gerdovieh, IT. J., num Hopwoon, M. I,

 bat. TR:

smmif. C. N.
 (31 (3) : $12(1-133$.

[^0]: ${ }^{2}$ The authors are molded to A. W. Sindquist for many valmane angerofions
 and Rouselle . . Sutton of this Dirision for assistance in condmetiag the experiments.
 ${ }^{2}$ The rear in italies after the athors name is the ksy to fie wefomee in Literature Cited, y. 36t.

[^1]: ${ }^{3}$ the mention of monnetaty products does not constitute their endorsement by the U.S. Tepariment of Agricalture.

[^2]: 1-h-hour exposidre.

[^3]:

