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Abstract

The effects of anthropogenic greenhouse gas emission to climate change are uncertain; how does
this uncertainty affect the optimal carbon abatement policy? Tackling this classic problem is
challenging; not only does it require integrated assessment analyses that consolidate an
adequate representation of both climate and economy, but also a sensible understanding
of hedging incentives and decision making under uncertainty. In the Integrated Assess-
ment Model (IAM) community, this representation is severely restricted by computational
burdens and model intractability (Webster, Santen, and Parpas, 2012). I provide a mini-
mal framework that relies on the transparency of mathematical programming, to assess
precautionary mitigation as a means to hedge against the risk and uncertainty of climate
catastrophes. The scope of the paper encompasses the following:

• assessment of optimal abatement under parameter uncertainty and endogenous learn-
ing;

• decomposition of optimal abatement with respect to mitigatory incentives;

• assessment of policy sensitivity to assumed distributions of uncertain temperature
thresholds.

I introduce DICESC, a multistage stochastic control version of Nordhaus’ DICE model
to demonstrate that policy optimization in which the hazard rates of climate catastrophes
can be controlled significantly increases incentives for precautionary abatement. Despite
the drastic level increase in precautionary abatement the proposed formulation achieves,
I stress the importance of understanding the distributive properties of uncertainty for the
robust assessment of optimal policy.
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1. Introduction

An increase in global atmospheric concentration of carbon dioxide (CO2) and other indus-
trial greenhouse gases (GHGs) such as methane and chlorofluorocarbons (CFCs), will result
in climate damages. Although the full damage impacts of carbon emissions is uncertain, the
series of reports by the Intergovernmental Panel on Climate Change (IPCC) conclude that the
accumulation of GHGs bring about higher global surface temperature, greater variability in
precipitation levels, rise in sea levels and more frequent extreme climate catastrophes (Metz,
Davidson, Bosch, Dave, and Meyer, 2007).

In addressing the economic impacts of climate change, numerical Integrated Assessment
Models (IAMs) of varying complexity have assumed a significant role; i.e. an integrated
framework that models climate science (how GHGs function to increase atmospheric tem-
perature), the projected abatement costs and climate damages to economic welfare (Pindyck,
2013). Well known IAMs that utilize optimal economic growth models to couple economy
and climate such as DICE (Nordhaus and Sztorc, 2013; Nordhaus, 1994) and MERGE (Manne,
Mendelsohn, and Richels, 1995; Manne and Richels, 1992), optimize the trade off between
abatement today and climate damages in an uncertain future. (Keller, Bolker, and Bradford,
2004).

Despite the growing complexity of climate IAMs, Pindyck (2013) and others (Kaufman,
2012; Kelly and Kolstad, 1999) point out that the elements of uncertainty in climate change
policy can present seriously misleading optimal abatement policies. Pindyck (2013) further
argues that the most important driver of the social cost of carbon is the possibility of a catas-
trophic climate outcome; the likelihood of a catastrophic impact triggered by an increase
in atmospheric temperature past a temperature threshold. Hence, a scenario of active pre-
cautionary abatement is non-credible without considering the possibility of climate induced
catastrophes. The need for incorporating catastrophes to climate IAMs was acknowledged
previous to both Pindyck and Kaufman; policy-relevant climate induced catastrophes that
are assumed to take place when atmospheric temperature increase exceeds a tipping point,
has entered numerous IAM models.

Representing catastrophes such as the Atlantic Thermohaline Circulation collapse (THC)
and the Greenland ice sheet melting to optimal growth models is technically challenging;
optimal climate policy optimizes between climate damages and lost opportunities for eco-
nomic growth and must also consider the non-linearity of tipping elements and hysteresis.
To make matters worse, the combined effects of uncertainty in the global climate system and
non-linearity of tipping elements can pose intractable computational problems in policy as-
sessment (Keller, Bolker, and Bradford, 2004). Including Keller et al.’s work, a number of
studies have integrated a stochastic framework into IAMs such as DICE to demonstrate the
policy response to low probabilities and high consequences of catastrophic outcomes; major
studies include Manne and Richels (1992), Ackerman, Stanton, and Bueno (2010), Kelly and
Kolstad (1999) , Cai, Judd, and Lontzek (2012), Hope (2006), Lemoine and Traeger (2010),
Lemoine and Traeger (2013), Keller, Bolker, and Bradford (2004), Webster (2000).

Recent work shows that the scientific understanding of the climate system has improved
and awareness of the relevance of uncertainty modeling has heightened. As a result climate
models have become larger and more complex, yet the uncertainty of the climate system
still remains predominantly unresolved (Urban, Holden, Edwards, Sriver, and Keller, 2014;
Pindyck, 2013). Efforts to formulate an intricate decision analysis framework in response to an
uncertain climate outcome, outlining a lower bound to near-term abatement is consequently
deemed important given the slow rates of climate learning that takes place. I review the
characteristics of stochastic decision analysis frameworks currently employed by IAMs.
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On one hand, efforts to formulate the optimal policy in response to climate uncertainty
have conveniently steered the IAM community to integrate recursive dynamic programming
frameworks to economy-climate IAMs. However obtaining a numerical solution through
dynamic programming has proved to be computationally burdensome and dimensionally
restricted, especially for assessing sequential decision policies characterized by a large set of
actions (Dixit, 1990).

On the other hand, efforts to adequately represent the structure of uncertainties and the
non-linear character of climate damages introduce computational problems such as non-
smooth gradients and local optima (Keller, Bolker, and Bradford, 2004). Such cases may
limit the use of commercially available optimization solvers to obtain numerical model solu-
tions. Detailed representations of the integrated system can moreover restrict the embedding
of stochasticity within the model framework itself and confine uncertainty analyses to Monte
Carlo simulations (Webster, Santen, and Parpas, 2012).

The difficulties IAMs face point out the need for transparent frameworks that allow for
sufficient expansion to the scope of mitigatory actions, while maintaining model tractabil-
ity. In this paper, I present DICESC, a multistage stochastic programming with recourse
formulation of Nordhaus’ DICE2013 in which the climate hazard rates are endogenously con-
trolled. The model is conveniently written as a mathematical program for the framework’s
action set to be easily expanded to hedge against uncertain risky outcomes. More impor-
tantly, DICESC maintains a recourse structure that avoids the scaling limitations of classical
multistage stochastic programming, and can be solved in a tractable way using commercial
optimization solvers (Defourny, Ernst, and Wehenkel, 2012).

Previous Studies: Stochastic Framework for Modeling Tipping Points

Unlike IAMs that focus on the avoidance of market and non-market damages as an incen-
tive for near-term mitigation, recent work by Lemoine and Traeger (2013) and Cai, Judd, and
Lontzek (2012), along with previous work of Keller, Bolker, and Bradford (2004) have intro-
duced a precautionary motive for mitigation by modeling the uncertainty of climate tipping
points. The three papers aforementioned all incorporate stochastic irreversible climate dam-
ages to Nordhaus’ DICE model and contribute uniquely to the stochastic formulations of
assessing the impacts of uncertain climate thresholds.

The work of Lemoine and Traeger (2013) and Cai, Judd, and Lontzek (2012) use recursive
dynamic programming methods in their model formulations. Although both model irre-
versible climate disasters that impose a permanent shock to economic production, each paper
employs contrasting assumptions to characterize uncertainty and risky outcomes. Lemoine
and Traeger (2013) use a continuous distribution of tipping points for which endogenous
learning about the tipping points reduces the uncertainty domain of threshold temperatures,
whereas Cai et al.’s DSICE uses discrete markov states with no scope of learning. Neverthe-
less both conclude that uncertain possibilities of tipping climate increases the overall level of
abatement, and further demonstrate that near-term mitigation is desirable since it reduces the
rate of temperature change, thereby decreasing the likelihood of catastrophic impacts.

In more detail, DSICE assumes that a climate catastrophe that permanently reduces eco-
nomic output by 10 percent occurs when atmospheric temperatures trigger a tipping element.
As a result, the optimal abatement trajectory increases monotonically until the tipping point
and drastically decreases thereafter, representing the economy’s anti-tipping efforts despite
the rising costs of abatement. In the stochastic setting, the probability of transitioning to
a markov state characterized by a lower tipping point (worse state) is a function of the at-
mospheric temperature at each time period; higher temperatures lead to higher probability
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of moving to a worse state. Lemoine and Traeger (2013) additionally establishes the role of
Bayesian learning about the location of the threshold. The policy maker in this model acts and
observes the climate system’s response; at each time period the economy realizes if its actions
have triggered climate tipping. Through learning, the economy updates its prior belief in the
tipping point distribution and updates the effective hazard rate of crossing the threshold at
each time.

Keller, Bolker, and Bradford (2004)’s model, FRANC in contrast, puts more emphasis on
the non-linearity of hysteresis modeling and models the risk of climate tipping by introducing
uncertainty to the climate sensitivity parameter. In other words, uncertainty of tipping lies not
in temperature, but in climate sensitivity. In contrast to Lemoine and Traeger’s representation,
tipping points in this formulation denote the critical equivalent carbon dioxide concentration,
PCO2Crit assumed for each climate sensitivity parameter value included in the uncertainty
domain. Characterization of uncertainty in climate sensitivity as well as threshold damages
are calibrated to the IPCC’s AR4 (Metz, Davidson, Bosch, Dave, and Meyer, 2007), to output
refined non-convex abatement trajectories for each deterministic state of the world. Keller et
al. shows that optimal policy that weighs the costs and total discounted utility of catastrophe
mitigation at every period, can in cases of very high climate sensitivity, choose a less stringent
abatement path than in the case of lower sensitivity. The stochastic setting applies a Monte
Carlo simulation to randomly draw the parameters of uncertainty, and does not provide
room for endogenous hazard rates. Lastly, expected utility is formulated as a single policy
that maximizes the sum of utilities for the sampled deterministic states.

Keller, Bolker, and Bradford (2004); Lemoine and Traeger (2013); Cai, Judd, and Lontzek
(2012) all demonstrate optimal hedging strategies under an act-then learn decision problem;
the policy maker makes decisions for the future under uncertainty of the tipping element,
which motivates the optimal hedging strategy to adopt abatement levels that lie among all
stochastic states (Manne and Richels, 1992). Near-term abatement is then justified by adverse
stochastic states that experience catastrophic disasters and increase the expected abatement
trajectory. In addition to the stochastic nature of the decision problem, endogenous haz-
ard rates prove to further drive precautionary abatement by incentivizing the economy to
decrease the likelihood of climate tipping.

For improved representation of the climate system however, the majority of policy assess-
ments using IAMs are deterministic. They are characterized by a learn-then act framework
in which policy optimization takes place given perfect information of the state. I point out
that evaluating the influence of parameter uncertainty to optimal policy in a learn-then act
framework cannot provide a fully comprehensive assessment and further demonstrate how
the framework characterization can result in seriously misleading policies.

In the following section, I provide a minimalist framework of precautionary mitigation
using a stochastic control version of DICE2013, DICESC, to investigate the impact of uncertain
catastrophic loss on near term mitigation. Following Lemoine and Traeger 2013, I adopt en-
dogenous learning of the tipping point distribution, which accordingly updates the hazard
rate at each time period. Stochastic control in this context, refers to stochastic programming
with recourse in which the probabilities of each state of the world taking place is a function
of the decision variables today. For robustness of the optimal policy, the model builds upon
the stochastic control framework assuming only the distribution of tipping points and the
Bayesian learning mechanism through which the hazard rate is determined. I further stress
the computational transparency of the model as DICESC is formulated as a one-shot opti-
mization problem that can replicate results from the relatively complex recursive methods
presented in Lemoine and Traeger (2013) and Cai, Judd, and Lontzek (2012), in a matter of
minutes.
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2. DICESC: The Model

2.1 Introduction to DICE

DICESC uses the 2013 version of the DICE model developed by Nordhaus to demonstrate the
relevance of stochastic control. DICE2013 (hereafter cited as DICE) is an updated version of
the original climate IAM authored in 1994 (Nordhaus, 1994), calibrated to be consistent with
the IPCC Fifth Assessment Report (Stocker, Qin, Plattner, Tignor, Allen, Boschung, Nauels,
Xia, Bex, Midgley, et al., 2013). As one of the first policy optimizing climate IAMs, DICE
describes the impact of GHG emissions control to the economy which is governed by the
model’s carbon cycle and climate system. In this section, I briefly state the main equations of
interest in each sector for readers who are unacquainted with the model.

W =
Tmax

∑
t=1

1
(1 + ρ)t U[c(t), L(t)] (1)

U[c(t), L(t)] = L(t)
[

c(t)1−α

(1− α)

]
(2)

EInd(t) = σ(t)[1− µ(t)]Q(t) (3)

W in equation (1) is the social welfare function, where U(c(t), L(t)) denotes the utility of
consumption in period t. It is important to note that c(t) represents the decision variable,
per-capita income, whereas L(t) is an exogenous parameter that represents population size.
The objective of the model is to maximize the sum of the discounted value of utility through
the economic horizon (years 2015 to 2115). Also note that ρ is the pure rate of time preference
and α, the elasticity of marginal utility of consumption, which are parameterized to be 0.15
and 1.45, respectively. Equation (3) describes the amount of GHG emitted through economic
production, Q(t); here σ(t) denotes the GHG emissions to output ratio and µ(t), emissions
abatement or the fractional reduction in carbon emissions. While the emissions output ratio
is an exogenous parameter that decreases every period at a fixed rate, µ(t) is the decision
variable central to this research.

Q(t) =
[1−Λ(t)]A(t)K(t)γL(t)1−γ

[1 + Ω(t)]
(4)

Ω(t) = Ψ1TAT(t) + Ψ1[TAT(t)]2 + dcat · 2
[

.00644
(

TAT(t)
T̄AT

)3]
(5)

Λ(t) = θ1(t)µ(t)θ2 (6)

Equations (4)-(6) show the dynamics of climate damages and costs taking place as a frac-
tion of gross output. Q denotes economic output net of climate damages (Ω(t)) and abate-
ment costs (Λ(t)), where A(t) is the Hicks-neutral total factor productivity and K(t), the
capital stock. Equation (6) expresses the ratio of abatement costs to output, (Λ(t)), as a
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convex function of abatement and (5) presents damage impacts from climate change as a
function of atmospheric temperature. The third term in equation (5) represents catastrophic
damages, which drastically increase climate damages when atmospheric temperature moves
past a threshold temperature, T̄AT. The dummy parameter dcat conveniently enables the mod-
eling of irreversible climate catastrophes.

MAT(t) = EInd(t) + ELand(t) + φ11MAT(t− 1) + φ21MUP(t− 1) (7)

F(t) = ηlog2

[
MAT(t)

MAT(1750)

]
+ FEX(t) (8)

TAT(t) = TAT(t− 1) + ξ1F(t)− ξ2TAT(t− 1)− ξ3[TAT(t− 1)− TLO(t− 1)] (9)

The last set of equations describe the process of how industrial emissions increase the
mean atmospheric temperature. Equation (7) shows that emissions adds to the carbon concen-
tration in the atmosphere MAT(t), which in turn increases the radiative forcing of greenhouse
gases F(t) (8). Lastly and most importantly, equation (9) displays the response of TAT(t), the
mean atmospheric (surface) temperature, to the increase in radiative forcing.

Parts of DICE are deemed as being overly simplified and to lack empirical support; to
settle on a concrete policy that requires minimal margin for error such as the social cost of
carbon, a much more detailed IAM should be used (Nordhaus, 2011). However, the trans-
parency of DICE is convenient to introduce methodological steps that can suggest effective
directions in which optimal policy should move toward, a reason why the model is dis-
cussed so extensively for decision analysis in climate risk and uncertainty. The small size
of the model also allows for policy optimization problems to be solved using conventional
optimization tools.

2.2 The Model

This section presents specific modifications made to DICE. While maintaining the simple
non-linear optimization format of DICE, I introduce a recourse tree that can integrate various
states of the world.

Recourse

Note again that the time horizon t of economic activity extends to 2115 with time periods
of five years (t = 2015, 2020, . . .), while the time horizon of climate evolution and damages
extends to year 2300. To this structure I add states of the world, s; scenarios each associated
with the year in which catastrophic damage takes place (see Figure 1.). Figure 1. gives the
planner (who at the moment lives in t = 2015) a recourse tree of four states of the worlds
(SoWs); s = 2015 represents the unlikely scenario that an irreversible climate catastrophe
occurs at year 2015, which the planner will only realize in the subsequent period, year 2020.

The never state represents a world in which catastrophic outcomes do not take place and
corresponds to the recourse path [1 → 2 → 4 → 7]. Then for SoW 2020 and 2025, the
corresponding paths initially share the never path but deviate down the catastrophe path at
time 2020 and 2025, respectively. In each SoW, the dcat in equation (5) takes the value 1 at
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t = s, to model an irreversible catastrophic outcome that hits at the corresponding time. It is
important to note that with recourse, a SoW varying temperature threshold is applied (along
with other SoW varying decision variables) to equation (5) resulting in a state varying damage
equation (10).

Ω(s, t) = Ψ1TAT(s, t) + Ψ1[TAT(s, t)]2 + dcat · 2
[

.00644
(

TAT(s, t)
T̄AT(s)

)3]
(10)

T̄AT(s) = TAT(never, t = s) (11)

I model catastrophic outcomes which are triggered by temperature thresholds. A technical
point worth mentioning is that while the uncertainty lies in the tipping point, the state varying
threshold temperatures in equation (10) are assigned temperature values associated with time.
This is shown in equation (11) in which T̄AT(s) equals atmospheric temperature value at time
t = s on the never path, to represent tipping points that initialize catastrophes in each SoW.
In Figure 1., T̄AT(s) corresponds to atmospheric temperature at nodes [1, 2, 4]. In the next
section, I introduce the concept of Stochastic Programming and further elaborate on why SoWs
are assigned to the time of catastrophic outcomes rather than tipping points themselves.

Figure 1. Stochastic Control Recourse Tree

Stochastic Programming with Recourse: Act Then Learn

I have so far introduced the concept of recourse to DICE. In this section, I demonstrate how
this recourse tree is used to deal with uncertainty in climate tipping points.

The act-then learn nature of DICESC’s stochastic problem motivates the planner to make
economic decisions for the future without knowledge of when, or at which tipping point
the climate catastrophe will take effect. Let us consider a constant hazard rate h̄r(t), the
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conditional probability of a catastrophic outcome during period t assuming there has been
no such catastrophe to that point in time. Hence for each time period, the planner is able to
hedge against the risk of experiencing a catastrophe in the immediate next period given the
hazard rate. In the next period the planner realizes one of two states; the planner either faces
a state of catastrophe, or finds itself continuing down the never path, yet to encounter the
problem of hedging against the next period’s uncertain outcome (act then learn).

Given a constant hazard rate and a recourse tree, the planner assigns a probability to a
each SoW path. The conventional hazard rate is mathematically expressed as:

hr(t) =
f (t)

1− F(t)
(12)

where f (t) denotes the probability density of a hazard and F(t), the cumulative distribution
of a hazard at time t. As the hazard rate at time t is defined as the probability of a catastrophic
outcome conditional on the probability that no catastrophe has taken place before t, we can
allocate a probability Π(s), to state of the world s by:

Π(s) = Γ(t) · hr(t), t = s (13)

where Γ(t) is the survival rate, the probability of no climate tipping until time t = s. By
assigning a probability to each deterministic path in which the planner has perfect knowledge
of when the catastrophe takes place, the economy is able to hedge against the uncertainty of
risky outcomes throughout the entire stochastic horizon.

Again, I come back to the model assumption that uncertainty lies in tipping points. Then
why not assign probabilities directly to tipping points? By assigning probabilities to tipping points,
the model formulates deterministic states of the world in which the temperature threshold is
known. Optimizing each deterministic scenario thus becomes a learn-then act problem. This
problem formulation is easily implemented, but cannot properly model the hedging behavior
against risky outcomes, especially when recourse options are available.

Instead, by dealing with uncertainty under a stochastic programming (act-then learn)
framework, the planner learns of the tipping point distribution at every time period. Let us
go back to the simple recourse tree in figure 1. For instance, given the hazard rate in 2020, the
planner hedges against the risky outcome at 2015, only to realize at 2020, the world is still on
the no catastrophe SoW. The planner consequently learns that the tipping point is not located
at TAT(2015) and lives further to hedge against next period’s risky outcome. In contrast, if
the planner were to realize in 2020 that the world is at node [3], it learns that TAT(2015) is the
threshold temperature that triggers the catastrophic outcome. The stochastic programming
framework allows for a gradual resolution of uncertainty in climate temperature thresholds,
T̄AT(s).

In Figures 2.1 and 2.2, I use DICESC results to represent decision analyses resulting from a
stochastic programming formulation with recourse. Note that each branch of the tree denotes
a state of the world; e.g. 2030 represents the SoW in which climate tipping occurs at year
2030 and is realized at year 2035. The act-then learn framework is presented in the recourse
structure; all states of the world share the never branch path until the true climate state is
realized.
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Figure 2.1. Optimal Near-term Abatement in an Act-then Learn Framework

Figure 2.2. Optimized Damages (trillion USD) in an Act-then Learn Framework
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Stochastic Control: Endogenous Learning & Controlled Hazard Rates

In the previous framework of stochastic programming, the planner can be characterized as
executing passive learning. Although the planner progressively learns of the tipping point
distribution at each time point in the never path, stochastic programming does not allow
for the hazard rate to be updated accordingly and learning remains ineffective. Following
Lemoine and Traeger 2013, I adopt a simple prior; I now assume that the planner is informed
of the distribution domain of the tipping point, T̄AT. Note that the maximum temperature
threshold in the domain, T̄max, is the temperature at which the planner believes with certainty
that the climate catastrophe occurs.

T̄AT ∈ [T̄0, T̄max] (14)

The planner’s prior belief in the domain of tipping points is stated in (14). Learning down
the never path sets the domain in which uncertainty is distributed at time t to be:

T̄AT ∈ [TAT(never, t), T̄max] (15)

Why consider temperatures that the mean global atmospheric temperature has already ex-
ceeded and are known to have failed to trigger a catastrophic outcome? This active learning
is thus incorporated into the hazard rate:

h(t) =
F(T̄AT > TAT(t + 1))− F(T̄AT > TAT(t))

F(T̄AT > T̄max)− F(T̄AT > TAT(t))
. (16)

When assuming a uniform prior as does Lemoine and Traeger (2013), the (16) is equivalent
to:

h(t) =
TAT(t + 1)− TAT(t)

T̄max − TAT(t)
. (17)

The hazard rate expression in expression (17) provides an intuitive explanation to the role of
learning. Temperature increase incurred between times [t, t + 1] heightens the probability of
experiencing a catastrophe at the end of the time period. The abatement level at time t thus
influences the likelihood of risky outcomes tomorrow and alters the probabilities assigned to
each SoW in the recourse tree. While stochastic programming could only justify mitigatory
abatement to minimize threshold damages, stochastic control provides reason to abate today
as to change the likelihood of the occurrence of risky outcomes.

Although not entirely separate from the numerator’s implications of the stochastic con-
trol hazard rate, the denominator stresses the Bayesian update aspect of stochastic control. As
the global atmospheric temperature reaches higher temperatures without triggering a catas-
trophe, the prior belief of the tipping point distribution is updated to gradually resolve the
uncertainty in climate tipping points (given that TAT(t + 1) > TAT(t)). Lastly, note that a
smaller tipping point domain (as temperatures increase along the never path) bears a greater
the likelihood of a catastrophic outcome in response to a unit increase in atmospheric tem-
perature.

Stochastic Control vs. Stochastic Programming

High-level problem formulation for stochastic control and stochastic programming can be
conveniently written as a function of abatement.
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Stochastic Programming

max
x ∑

s
Πs · Fs(x) (18)

Equation (18) characterizes the stochastic programming formulations in which Πs denotes
the probability assigned to state of the world s and x, the vector of abatement trajectories
for the entire time horizon. Fs(x) then can be viewed as the Lagrangian for each state of the
world that encompasses the welfare objective W(s) and the numerous constraints that reflect
the social cost of abatement. Note that abatement level x only enters the problem through
state indexed Lagrangians. The optimal abatement vector x satisfies the following first order
condition:

∑
s

Πs
dF(x)

dx︸ ︷︷ ︸
damage minimizing incentive

= 0 (19)

Hence the optimal policy in stochastic programming is one that optimizes expected welfare,
given a fixed set of probabilities for each state of the world. In other words, the optimal
abatement strategy is solely characterized by damage minimizing efforts in response to a pre-
destined likelihood of risky outcomes.

Stochastic Control

max
x ∑

s
Πs(x) · Fs(x) (20)

In stochastic control however, abatement x enters both the state likelihood and the state
welfare. In a stochastic control formulation, optimal abatement satisfies:

∑
s

Πs(x)
∂Fs(x)

∂x︸ ︷︷ ︸
damage minimizing incentive

+ ∑
s

Fs(x)
∂Πs(x)

∂x︸ ︷︷ ︸
precautionary incentive

= 0 (21)

Equation (21) shows that optimal abatement in a stochastic control setup is hence motivated
by two incentives; a precautionary incentive to delay or even avoid catastrophes by controlling
the hazard rate; and an incentive to minimize catastrophic damages given the probabilistic
risky outcomes. Policy optimizes the likelihood of states such that damage minimization
results in the highest possible welfare.

3. Results

This section shows results obtained from using DICESC to model the Arctic ice-sheet melting
(ASI). The Arctic sea-ice melting (ASI) is characterized to be set off by an increase in global at-
mospheric temperature between [0.5, 2] ◦C with a rapid 10 year transition timescale to a new
stable equilibrium; among the policy-relevant tipping elements discussed in Lenton, Held,
Kriegler, Hall, Lucht, Rahmstorf, and Schellnhuber (2008), Lenton et al. show that the major-
ity of climate tipping such as the Greenland ice sheet melting or the Atlantic thermohaline
circulation (THC), are characterized with a significantly longer transition time of over 100
years. The irreversible catastrophic outcomes of ASI are known mainly to be of amplified
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warming; the absence of ice exposes a darker ocean that absorbs more radiation (Lenton,
Held, Kriegler, Hall, Lucht, Rahmstorf, and Schellnhuber, 2008). Lenton et al. further con-
clude that the strong non-linearity in the decrease of sea-ice coverage may be indication that
tipping has already taken place. Considering the 5 year time period used in DICE, and the
assumption in DICESC that climate catastrophes are realized in the period after they take
place, the Arctic summer sea-ice melting’s relatively short transition timescale rendered Arc-
tic sea-ice melting a good fit for the model.

The stochastic horizon is fixed to be 80 years, making the last SoW to take place at year
2095. Additionally, I let T̄AT denote the increase in global atmospheric temperature since
year 1900. Lastly, we set the distribution domain for the temperature increase threshold to be
[0.8, 2.0] ◦C. Note that T̄0 corresponds to the initial increase in atmospheric temperature since
1900, which is parameterized as 0.83◦C in DICE.

The running time for DICESC with T̄max = 2.0 with a stochastic horizon of 80 years is
under 3 minutes using NLP GAMS solver CONOPT on a laptop computer.

Optimal Abatement

This section compares three optimal abatement policies.

• DICE2013

• DICESC: DICE stochastic control with T̄max = 2

• DICESP: DICE stochastic programming

DICE2013 consists of the original version of DICE that does not assume catastrophic dam-
ages. For DICESC, I assume a uniform distribution for the tipping points with a distribution
domain of [0.83, 2.0]. To perform comparative analysis between DICESC and DICESP how-
ever, I equate DICESP state probabilities to the optimal probability assignments in DICESC;
i.e. Πs = Π∗s (x) ∀s. This results in:

∑
s

Πs
∂Fs(x)

∂x︸ ︷︷ ︸
DICESP

= ∑
s

Π∗s (x)
∂Fs(x)

∂x︸ ︷︷ ︸
DICESC

(22)

which allows for the comparison of the two runs to assess the additional abatement promoted
by precautionary abatement incentives; abatement that arises only when the hazard rate is
endogenous. Lemoine and Traeger (2013) show the decomposition of optimal abatement
using first order derivative equations similar in nature to equations (19)− (21), and denote
the contribution of endogenous hazard rates, the marginal hazard effect. I demonstrate this
decomposition using numerical solutions in Figure 3..

The difference in abatement levels between DICESP and DICE2013 alone displays the
increase in near-term abatement when uncertainty of catastrophic risks are taken into ac-
count. The discrepancy represents the planner’s hedging strategy to minimize impacts of the
risky outcome. Figure 3. demonstrates this point; stochastic programming shows a steady
increase in the expected abatement path to control for future catastrophic climate damages
but shows no sign of precautionary abatement, since it cannot help delay or avoid catas-
trophic outcomes. DICESC however demonstrates that in a world in which hazard rates can
be influenced through temperature control, policy commits significantly more to near-term
abatement. In figure 3. I display the portion of optimal abatement specifically used to alter
hazard rates; i.e. abatement motivated by precautionary incentives.
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Figure 3. Optimal Near-Term Abatement

4. Sensitivity Analysis

So far I have demonstrated the increase in optimal abatement due to precautionary abatement
motives under the risk of a tipping catastrophe using DICESC. But how robust are the results?
In this section I perform sensitivity analyses to the optimal control trajectory and demonstrate
its strong dependence on the distribution of uncertain climate thresholds. The analysis reveals
that both damage minimizing and precautionary abatement incentives are susceptible, further
stressing the knowledge value of the prior distribution. I conclude the section by assessing the
value of perfect information of the tipping threshold for a range of distributions assumptions.

Does Uncertainty Increase Abatement?

I note that the notion of robustness is difficult to characterize for decision analyses with century
long time horizons. Answering the question at hand serves as a quick but informative mea-
sure for policy robustness. Using DICESC, I follow Keller et al.’s approach of comparing the
optimal policy with parameter uncertainty to the policy without parameter uncertainty. The
conclusions are then compared with that of Keller, Bolker, and Bradford (2004) to demonstrate
that the limited efficacy of precautionary abatement in a classical act-then learn framework
leads to significantly undervaluing the role of parameter uncertainty to optimal policy.

Keller et al. compares the expected optimal abatement path with a deterministic abate-
ment path in which the tipping point is believed with certainty to be at the distribution’s ex-
pected tipping point. Assuming a uniform distribution over the tipping point domain [0.8, 2] ◦C,
the expected tipping point becomes 1.4 ◦C. I respectively determine the state of the world
s∗ that maximizes social welfare W assuming climate tipping at the expected tipping point
E[T̄AT] and conclude s∗ = 2045 for T̄AT = E[T̄AT] = 1.4. Figure 4. below compares the opti-
mal stochastic control abatement path assuming a uniform distribution to the deterministic
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optimal abatement path assuming T̄AT = 1.4. The DICESC optimal abatement path given
T̄max = 2.0 solves the problem:

max
x ∑

s
Πs(x) · F2.0

s (x), (23)

and is compared to the optimal policy neglecting uncertainty, which in turn solves the fol-
lowing deterministic problem:

max
x

FE[T̄AT ]
s∗ (x). (24)

In this comparative setting, (24) corresponds to:

max
x

F1.4
2045(x). (25)

Figure 4.1. Decision Analysis Under Tipping Point Uncertainty

While Keller et al. concludes that parameter uncertainty decreases optimal abatement,
DICESC suggests otherwise; under a uniform tipping point distribution on the domain
[0.8, 2.0] ◦C and a deterministic threshold damage function, I show that uncertainty can in-
crease optimal abatement. Since Keller, Bolker, and Bradford (2004) further incorporates un-
certainty in threshold damages, DICESC also implements stochastic optimization assuming
low threshold damages; in this run, the order of the threshold damage term is changed from
cubic to linear. The previous comparative analysis is applied to the case of uncertain tip-
ping points and low threshold damages, only to prove moderate robustness of the conclusion
previously obtained (Figure 4.2.).
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Figure 4.2. Decision Analysis Under Tipping Point Uncertainty & Low Threshold Damages

So was Keller, Bolker, and Bradford (2004) wrong to conclude that uncertainty decreases
optimal abatement? Keller et al. base their conclusions on specific distributive assumptions
about the uncertain parameters; climate sensitivity is assumed to be normally distributed
between 1.5 and 4.5 degrees and threshold damages, uniformly distributed between 0 and 3
percent of Gross World Product. Also note the model incorporates no scope for endogenous
hazard rates. Based on these presumptions Keller et al.’s conclusions remain valid. However
in a formulation in which optimal abatement is susceptible to the assumed distribution that
characterizes uncertainty, Keller’s conclusion only represents a fragmentary assessment of the
question at hand.

To demonstrate the constrained validity of their claim, I replicate Keller et al.’s conclusions
using a stochastic programming formulation of the problem. Figure 5.1. shows that the
deterministic optimization path dominates the optimal abatement trajectories obtained using
a stochastic programming framework, regardless of the assumed distribution priors. Less
abatement in the stochastic run compared to the deterministic intuitively implies that optimal
abatement is high for the expected tipping point, but decreases significantly as we move
toward the right tail of the distribution (Keller, Bolker, and Bradford, 2004). By assuming
a uniform tipping point distribution then, the social planner’s decisions recognize that all
tipping points in the domain are equally likely to trigger a catastrophe. Without control over
hazard rates in a deterministic setting, the welfare benefits from moving right of the expected
tipping point outweigh the costs of moving left, resulting in an act-then learn stochastic
abatement trajectory that decreases with parameter uncertainty. Further deterministic runs
however show that this dominance is limited to maximum tipping points (T̄max) within the
domain [2, 4] ◦C (Figure 5.2.).
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Figure 5.1. Replicating Keller et al.’s Conclusions in a Stochastic Programming Framework

Figure 5.2. Robustness Check for Keller et al.’s Conclusions
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Cases for T̄max ≥ 4.0 or T̄max ≤ 2.0 generate contrasting results. When assuming T̄max ≥
4.0, the expected tipping point takes a value greater than 2.4 ◦C, for which the economy’s cost-
benefit analysis of abatement chooses to completely avoid climate tipping. This decision is
prompted by the fact that controlling atmospheric temperature increase below 2.4 ◦C does not
impose stringent constraints on economic production. Considering tipping point uncertainty
for T̄max ≥ 4.0 consequently results in an increase in abatement (Figure 5.2.). The case of
T̄max ≤ 2.0 gives rise to the same outcome for different reasons. The decision analysis for
T̄max = 1.5, for which the expected tipping point takes value approximately 1.2 is displayed
in Figure 5.2.. In this case a scenario in which the economy lets go of temperature control and
allows tipping to take place in year 2035 is optimal, suggesting that the cost of controlling
temperature increase below 1.2 ◦C is unsustainable.

Although strictly speaking the results of DICESC and FRANC are not directly comparable,
a simple stochastic programming formulation that replicates Keller et al.’s conclusion, reveals
the lack of robustness of damage minimizing optimal abatement to the distribution domain of
tipping thresholds. Nevertheless, the optimal abatement decomposition in Figure 3. shows
that the abatement deficiency in FRANC is largely attributed to the absence of precautionary
abatement, motivated by the endogeneity of the hazard rate. The next section further analyzes
the sensitivity of precautionary abatement to stress the relevance of distributive assumptions
for a robust, comprehensive assessment of optimal abatement.

Decomposing Precautionary Abatement

The decomposition of optimal abatement presents precautionary abatement as abatement in
surplus of optimal abatement under stochastic programming. Since this surplus abatement is
a direct product of endogenous hazard rates, sensitivity of precautionary abatement can be
presented by decomposing the effects of abatement to hazard rates.

Following Lemoine and Traeger (2013), DICESC defines the endogenous hazard rate as
a function of atmospheric temperature and the cumulative distribution function of tipping
points. I take the total derivative of the hazard rate with respect to abatement to obtain:

dhr(F(TAT))

dx
=

(
∂hr(F)

∂F

)(
∂F(TAT)

∂TAT

)
︸ ︷︷ ︸

(1)

(
∂TAT(x)

∂x

)
︸ ︷︷ ︸

(2)

. (26)

While term (2) corresponds to the sensitivity of atmospheric temperature to abatement, which
directly relates to climate sensitivity, term (1) represents the hazard rate sensitivity; the hazard
rate’s reponsiveness to changes in atmospheric temperature. Note that while the climate
sensitivity inevitably affects the optimal abatement path regardless of whether uncertainty
is taken into account, the hazard rate sensitivity exclusively affects precautionary optimal
abatement under uncertainty.

I perform sensitivity analyses to term (1), to elucidate the pathways in which the distri-
bution of tipping points influence the level of precautionary abatement. To decrease the value
of the maximum temperature threshold means to assume a sure event of climate tipping at a
lower temperature and as a result, a unit increment of warming bears a greater risk of hazard.
So overall, a lower T̄max increases hazard rate sensitivity and gives rise to more precautionary
abatement, under the assumption of a constant climate sensitivity effect. Figure 6 displays
the optimal precautionary abatement levels at year 2020 for different T̄max values, assum-
ing a truncated normal threshold distribution. It displays decreasing levels of precautionary
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abatement as the threshold distribution is spread across a greater temperature domain, and
demonstrates the sensitivity of abatement to the domain of the threshold distribution.

Figure 6. Optimal Precautionary Abatement Levels at Year 2020

Hazard rate sensitivity is also affected by the assumed class of the threshold distribution.
To assess the sensitivity of DICESC to the assumed tipping point distribution, the first and
second moments of the truncated normal distribution are fixed to be identical to those of
the previously applied uniform distribution. Figure 7. displays the truncated normal tipping
distributions obtained by calibrating moments to the corresponding uniform distributions.

Figure 7. Truncated Normal Threshold Distributions

I display the difference in abatement levels between assuming a truncated normal and
uniform tipping distribution, in Figures 8.1. & 8.2.. The discrepancy in expected abatement
can be explained intuitively by characterizing abatement trajectories at each end of the distri-
bution tail. The act-then learn formulation of the problem requires the planner to consider all
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deterministic states of the world ranging from a disastrous scenario in which climate tipping
occurs at temperatures as low as 0.9 ◦C, to ones in which climate tipping can be avoided with
ease. While the left-end of the tail is often characterized by non-smooth abatement trajec-
tories that represent drastic measures of mitigation, less stringent thresholds located toward
the right of the distribution constitute smooth convex or concave policies to exhibit a gradual
increase in temperature control.

When assuming a truncated normal distribution, the extreme scenarios associated at each
end of the tail are not given much weight, allowing for a steady increase in expected opti-
mal abatement throughout time. The steady decrease in precautionary abatement is caused
by the gradual convergence between stochastic programming and stochastic control optimal
control paths, which represents the increasing role of damage minimizing abatement relative to
precautionary abatement.

Figure 8.1. Optimal Abatement at T̄max = 2 ◦C for Two Threshold Distributions

Assuming a uniform distribution, equal weight is imposed on all tipping point scenarios in-
cluding the tails of the distribution, which is reflected at each end of the stochastic trajectory.
On one hand, significant weight put on the right end of the distribution gives rise to less
optimal abatement in the immediate couple of decades; analysis proves that for thresholds
above 1.5 ◦C, immediate near-term abatement decreases at an increasing rate. Moreover, for
certain disastrous states that assume tipping at T̄AT ≤ 1.5 ◦C, cost-benefit analysis of abate-
ment proves that it is economically beneficial to allow tipping catastrophes to occur as early
as the year 2030, since temperature control below the threshold becomes economically unsus-
tainable. In such scenarios, precautionary abatement is kept at moderately low levels in the
early stages.

On the other hand, significant weight allocated to the left-end of the tail generates high
abatement levels later in the time horizon. Although this result is mainly achieved through
stringent temperature control in the lower-end of the distribution, a significant portion of
precautionary abatement is attributed to scenarios associated with less stringent thresholds;
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further analysis shows that efforts to avoid threshold damages with a greater likelihood gen-
erates convex precautionary abatement paths even for thresholds located at the right-end of
the tail. Again, the decrease in precautionary abatement is explained by the convex-damage
minimizing abatement paths that lessens the output difference between stochastic control and
stochastic programming.

Figure 8.2. Optimal Precautionary Abatement at T̄max = 2 ◦C for Two Threshold Distributions

Assessing the Expected Value of Perfect Information (EVPI)

The discussion thus far brings to light key factors that determine optimal abatement under
tipping point uncertainty; namely, the responsiveness of hazard rates to the economy’s mit-
igatory efforts and the assumed distribution of climate thresholds. The distinct pathways in
which threshold distributions influence components of optimal abatement reveals the opti-
mal abatement policy’s sensitivity to distributive assumptions under the risk and uncertainty
of climate tipping. Lastly, I assess the Expected Value of Perfect Information (EVPI) in DICESC;
the value of instantaneously resolving all uncertainty to obtaining perfect information of
the temperature threshold. The results in this section illustrate the drastic decrease in the
EVPI through means of learning and endogenous hazard rates, for which the levels again
marginally vary depending on the distribution of tipping points. I adopt the approach pre-
sented in Manne and Richels (1992) in computing the EVPI index and present the results in
Figure 9..

The EVPI is computed by comparing the expected welfare resulting from optimization
under uncertainty, to the expected welfare under perfect information:

EVPIT̄max
=
∫ T̄max

T̄0

W∗T̄AT
f (T̄AT)dT̄AT −WU

T̄max
(27)
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where W∗T̄AT
= W(s∗) (28)

WU
T̄max

= ∑
s

Πs(x∗) · Fs(x∗)

for x∗ = arg max
x

∑
s

Πs(x) · Fs(x)

for which I compute the discretized formulation:

EVPIT̄max
=

T̄max

∑̄
T0

W∗T̄AT
f (T̄AT)−WU

T̄max
(29)

Figure 9. Expected Value of Perfect Information

Note that f (·) is the pd f of the initial prior and that the EVPI percentage index in Figure 9. is
expressed as a ratio over the expected utility under uncertainty, WU

T̄max
. The figure illustrates

two important points. Firstly, while the EVPI value resulting from fixed hazard rates (stochas-
tic programming) hovers around one percent of expected welfare, the EVPI index generated
by DICESC displays values that are far less significant. The discrepancy represents the value of
learning adopted in the stochastic control setting. In stochastic control, endogenous learning
gradually resolves uncertainty and also drives efficient hedging by means of precautionary
abatement; hence the gains from obtaining perfect information are not extensive. A stochastic
programming formulation however incorporates no scope for learning, and the value of re-
solving uncertainty is considerable as the means of hedging against the risky outcome is only
limited to damage minimizing abatement. Because the likelihood of experiencing catastrophic
damages are fixed despite the economy’s mitigatory actions, expected threshold damages
are significantly greater than those resulting from stochastic control; this adds more value to
resolving uncertainty.

Although the EVPI indices are reasonably robust to the assumed threshold distributions,
there is a notable difference in the trend of the two EVPI plots. First note that as T̄max −→ ∞,
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the two expected welfare paths will eventually converge. The upward trend when assum-
ing a truncated normal tipping point distribution then represents the slow convergence of
expected welfare under uncertainty to that under perfect information. This can be explained
intuitively by the properties of marginal increase in expected welfare with respect to T̄max un-
der each distribution. A unit increase in T̄max puts more weight on the right-end of the prior
under a uniform distribution relative to a truncated normal distribution. Since higher temper-
ature thresholds are characterized with higher welfare, expected welfare under uncertainty
subsequently increases at a faster rate when assuming a uniform threshold distribution. De-
spite the contrasting rate of convergence between the two expected welfare trajectories under
uncertainty, expected welfare under perfect information remains relatively robust to tipping
point distribution which brings about the distinct EVPI trends displayed in Figure 9..

5. Conclusion

The research demonstrates the role of precautionary abatement when hedging against tip-
ping catastrophes. Using a stochastic control version of DICE, I show that the possibility of
a catastrophic outcome in the future increases abatement levels not only to minimize catas-
trophic damages, but also to delay or even avoid the occurrence of such outcomes. I decom-
pose optimal abatement with respect to mitigatory incentives and numerically illustrate the
precautionary abatement efforts that can increase optimal abatement under uncertainty. Sensi-
tivity analyses expose the policy’s heavy dependency on the distribution of uncertain climate
thresholds. A decomposed analysis of abatement reveals that both damage minimizing and
precautionary abatement incentives are susceptible to assumed distributive properties, fur-
ther emphasizing the knowledge value of the prior distribution for robust policy assessment.
Lastly, an EVPI analysis shows that endogenous hazard rates and learning significantly de-
creases the value of perfect information regarding the uncertain temperature threshold.

Modeling risk and uncertainty is more than merely simulating catastrophic damages and
parameter uncertainty; stochastic control points to sensible representation of learning and
decision making within a stochastic setting, as yet another critical aspect that models cannot
afford to overlook. Although the IAM literature on the representation of catastrophic climate
outcomes is too underdeveloped to benchmark a well-rounded model, models that omit such
integral elements in modeling climate uncertainty cannot provide a comprehensive decision
analysis. Finally, this research demonstrates that decision analyses under climate uncertainty
alone cannot outline a robust hedging strategy. Improved understanding of tipping point
distributions and refined assessment of threshold damages by climate researchers is deemed
crucial for a comprehensive assessment of optimal policy.
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