

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

Output Per Man-Hour
1243

In Factories Processing
Farm Food Products

Technical Bulletin No. 1243

Indexed by subject in master index

UNITED STATES DEPARTMENT OF AGRICULTURE Agricultural Marketing Service

Preface

Various legisiative and economic groups concerned with agricultural policy have long been interested in the relation between charges for marketing farm food products and pryments to the farmer-producer for his products. A marked decline in these payments relaite to consumer expenditures for farm food proruets since World War It has focused attention on the need for additional information to amalye past and future trends in factors underlying changes in marketing costs.

The index of output per man-hour in factory production of domestic farm food products presented in this report was developed as part of at larger investigation of changes in output of marketing services related to domestic farm food products and changes in utilization of resources employed in providing these services. A major objective of this investigation is to develop long-range projections on the agricultural food marketing bill which will supplement Department of Agriculture Jong-range projections on the demand for and output of farm Cood products.
dabor costs in factories processing farm food products are a major component of total labor costs in marketing these products: Within reent years payrolls in factory processing accounted for about onc-fourth of total direct liblor costs in the marketing bill. This is the second report related to the investigation of output and utilization of resourees in factory processing of farm food products; the first was "Output of Fnctories Processing Farm Food Products in the Cnited States, 1909-58," Technical Builctin No. 1223. Additional studies will be reported as they are compleied.

Acknowledgnent is made to Frank de Seceuw, Division of Research and Statistics, Board of Governors of the Federal Reserve System, and to Imogene Bright, Xarketing Economics Research Division, Agricultural Marketing Service, for suggestions and review of technisal nspeets of the report, and to Clara Whiliams and Richard Sutor for their assistance with the statistical analysis.

Contents

Page
Summary and conclusions 1
Introduction 5
The problem 5
The coverage 5
Definitions 6
Trend in production per man-hour 7
All processed foods 7
Comparison with the total private economy 9
Postwar trends among industry groups 10
Factors affecting output per man-hour 14
Capital in food mathufactures 15
Technology 16
Output per weighted man-hour 18
Comparison with farming 19
Comparative trends 19
Capital in farming 19
Cnit costs in factory processing 20
Enit labor charges 21
Unit nonlabor charges. 24
Unit processing charges 24
Appendix A: Method and sources 20
Factory production 26
Man-hours 27
Employment 27
Average hours s
Weighted man-hours 30
Appendix B: Comparison of Sabor-capital productivity in food manu- facturing and in farming 30
Methods and qualifications 31
Comparison with farming 32
Ontput per man-hour as an indicator of tabor-capital productivity. 33
Literature cited 35
Washington, D.C.

[^0]
Summary and Conclusions

During the postwar period 1947-58, output per man-hour worked in factories processing domestic farm food products increased at an avernge annual rate of 2.7 percent. Rates among industry groups differed widely : Output per man-hour rose 4.6 percent per year in factories processing fruits and vegctables compared with 1.4 percent per year in factories manufacturing bakery products. Output of factories processing farm foods rose slightly less than output per man-hour from 1947 to 1958 as the number of man-hours worked by all employees declined slightly during the period. The postwar rate of growth in output per man-hour did not set a new all-time high; the rate was equaled in the decade following World War I. During the four decades 1919-58 as a whole, output per man-hour in factories processing farm foods grew at an average rate of 2.0 percent per year.

The annual rate of growth of output per man-hour in food processing industries from 1947 to 1958 was significantly smaller than the annual rate (3.5 percent) for the total private economy, but about the same as the yeariy rate in the privaie nonfarm sector. The smaller rate of growth in food processing industries than in the total private economy was caused, in part, by shifts in production from industries with higher levels to industries with lower levels of output per man-hour. Output per man-hour in food processing industries, adjusted for changes in the product mix, showed about the same yeanly rate of growth as the series for the total private economy.

The postwar increase in oulput per man-hour in food manufacturing was accompanied by a substitution of total capital (fixed plus working capitnl) for labor. Howerer, the increase in the stock of total capital per man-hour worked was apparently confined to working capital; the ratio of fixed capital to man-hours remained virtually unchanged. In fact, there was no substitution of fixed capital for labor from 1929 to 1957; technological improvements in food manufacturing after 1.929 were at least as much fixed-capital saving as labor saving.

The estimates of the stock of total capital do not reflect changes in the quality of new machinery, equipment, and other kinds of enpital goods employed in processing foods; in particular, the estimates do not reflect new technology. Surveys of food processing plants indicate that technological developments in materials handing, contimuous processes, electronic temperature and humidity controls, packaging, grading, and other developments have had a dramatic impact on output per min-hour, particularly since the end of World War TK. Development of frozen foods, blended and prepared flour mixes, and other new products also contributed to the rise in output per mar-hour.

Changes in the "quality" of labor inputs through education, training, experience, and other kinds of investment in human capital contributed to the growth in output per man-hour. During the postwar period, the
number of engineers, tecmicians, and other highly trained employees working in food processing phants incrensed markedly; however, to some extent, interindustry shifts in employment offsct the contribution of increased quality of habor inputs within plants.

Net output per man-hour in farming grew at an average annual rate of 6.2 percent from 1947 to 1958 -dramatically faster than in food processing industries. However, between 1919 and 1939, output per man-hour rose about twice as fast in food processing plants as in farming. Because of the rapid rate of increase since the begiming of World War II, the average amual rate of growth of net output per man-hour in farm production during the four decades $1919-58$ as a whole was 2.8 percent, substantially larger than in factory processing. The postwar era witnessed a large substitution of capital-mainly real estate and machineryfor labor in farming. In fact, the substitution was more than enough to explain the faster rate of growth of output per man-hour in farming than in food processing. Therefore, on the basis of available data on labor and eapital, there is no indication that there was a larger mate of grow th in resource efficiency or of technology in farming than in food processing during the post-World War II period or during the entire four decades since the end of World War I. (Indexes of output per unit of labor and capital combined-so-called "total productivity" indexes-in farming and in food manulacturing are discussed in appendix B.)

In 1958, hourty eamings of employees in factories processing farm food products (based on hours worked by all employecs) were about 65 percent above the $194 \vec{t}-49$ average, and output per man-hour was about 30 percent higher; consequently, unit hbor costs were up nearly 30 percent. The shap rise in houly eamings was not confined to food manufactures, but was part of a sharp postwar inerense in all manufactures. In fact, the postwar rise in unit labor costs in factory prosessing was about the same as the inflationary price rise in the cconomy as a whole (measured by the Implicit Price Deflator for Gross National Product). Houny earnings in farming rose substantally less than in food mandacturing during the postwar period. In contrast to the experience in food processing phants, the postwar rise of output per man-hour in farming more than offset the rise in hourly earnings so that unit habor costs in farming declined. During the lour decades 1919-58 us a whole, hourly earnings in factories processing farm lood products rose about $3: 35$ percent, outpat per man-hour rose about 140 percent, and unit labor costs increased noaty 85 percent.

Sonlabor charges (including profits) per unit of output in 19 है were about 35 percent above the $1947-49$ average, slighty more than the rise in unit labor costs. Between 1919 and 1958, uni nomblor rosts incrased about 125 percent, again significantly more than unit labor costs. The long-term incerase in nonhbor costs rehtive to habor costs in fook processing reflects the substitution of capital, tedmology, and other produc-
tion inputs for labor; but it also reflects large increases in advertising and simila operating expenses, particularly in the postwar yenrs.

Totnl unit processing costs ("value added" per unit of output) in 1958 were about one-third larger than in 1947-49. This rise was somewhat larger than the inflationary price rise in the total economy, and increased the sprend between wholesald prices of processed food products and the farm price of the raw materials. From 1919 to 1958, unit processing costs rose about 110 peremt.

Judging from Department of Agriculture studies of income elasticities ol different food products, it appears that shifts in production from industries with higher levels to industries with lower levels of output per manhour miny continue for some time in the luture, as they have in the past, to retard the vearly rate of growth of output per ann-hour in factories processing farm foods. Discovery and adoption of new technology and expanded education and training of labor (including managerina) will andoubtedlis continue to contribute to the rise in output per man-hom within food processing industries and phants. Cnfortunately, however, nothing can be said about whether the ammal mate of growth will inerease, decrease, or remain the satme. This depends in part upon the rate of subscitution of capital for tabor; but, much more importantly, it depends upon changes in new teehnology, quality of haber inputs, economics of seale, and other factors whelo camnot be statistically estimuted. On the busis of current knowledere and sereml eritical assumptions, about onefifth of the rise in output ol factory processing from 1919 to 1958 cm be explaned be the rise in habor-eapital inputs; the remaining four-fifths are attributable to factors which are not amemble to separate statistical measurement.

OUTPUT PER MAN-HOUR IN FACTORIES PROCESSING FARM FOOD PRODUCTS

IS: Whatam 1I. Wabdobe, fconomist
Marketing Economics Researeh Division, Agricultural Macketing Gorvice

Introduction

The Problem

Civilian consumers in the United States spent $\$ 58.7$ billion for domes. tie farm foorl products in 1959; $\$ 39.0$ billion went to agencies for nssembling, transporting, processing, and distributing eommodities; and \$ 19.7 billion went to farmer-producers for their products. Lablor costs for marketing farm food produets were $\$ 18.5$ bilion-nends hals of the total marketing bill. ${ }^{2}$ During the posiwar period, payrolls in factories proeessing domestic farm food products necoumed for one-fourth of total habor costs in the marketing bill. Except in 1950, consumer outlays to marketing agencies have increased ench year since the beginning of Worli War [I, and labor costs have parableled this upward trend. Historically, the marketing bill has grown substantially faster than the farm value (4,18).

The importance of labor costs in the total marketing bill and the fact that these costs have paralleled a continued apward tread in tomal marketing charges linve focused attention on the aeed for information on changes in output per man-hour in marketing domestice farm food products (2). The major objectives of this report are to (I) gage trends since 1919 in output per man-hour in factories processing domestic from food products, (2) amalye factors undertying these trends, (3) compare devolopmensis in output per man-hour in factory processing with those in farming and (4) rovew the implications of these develop-
ments for changes in unit Labor costs in factory production of farm food products.

The Coverage

The series oa factory production of farm food products, man-hours, and output per man-hour compiled. for this report are for manufacturing establishments primarily engaged it processing domestically produced firm lood products (except fluid milk, cram nad eggs). ${ }^{\text {a }}$ This produetion inclades factory processing of foods for export, for members of the

[^1]Armed Forecs, and for Government purchases used in various relief programs as well as food for sale to civilian consumers. It excludes factory processing of imported foods, seafoods, and other foods net produced on domestic: farms. It also excludes manufacture of alcoholic and nonalcoholic beverages.

Definitions

Efficiency is generally defined as output divided by combined inputs of habor and other resoures where other resoures include fixed capital, working capital, management, and other factor inputs (10,20). Changes in the quality of these factor inputs should also be reflected in changes in prolletion inputs. This means that the index of output per man-hour is only a partial masure of changes in efficiency: It is aftected by substitution umong labor, eapital, and other factor inputs; ehanges in the quality of factor mputs; and changes in efliciener resulting from shanges in the extent of the market (economies of sente). (hanges in the intensity of labor eflort are also reflected; however, this probably acrounts for onfy a minor proportion of the historical rise in oulput per man-bour.

Outpul per man-hour is a useful tool, along with others, for analyzing developments in labor inputs and habor costs: When consistemter defined, unit habor costs are identically equal to average hourly camings divided by output per "man-hour. The reciprocal of oupat per man-hour-mite man-hour reguirements -measures changes in labor utilization. If labor accounts for a large share of combined labor and capital imputs and there has been hitile or molstatuon between capital and labor, long-tem wemds in output per man-hour may be a reasomble approximation to longterm trends in labor-rapital produrlivity (output per combined unit of tabor and sapitat): apparents. this has beron the experience in food
manufacturing for the entire period sine the end of World War.

The index of factory production, the numerator of the output per man-hour ratio, is designed to measure changes in net physical output of factorics engaged in processing domestic farm food products. ${ }^{3}$ However, because of lack of data, it is only an approximate mensure of net physical output. ${ }^{4}$

The series on man-hours used in romputing ou!put per man-hour is based on all employers and aremge hours worked, as defined in the ('ensus of Mamafartures. Datn on man-hours for years prior to World War II were derived from published reports of the Burau of the Cemsus, Bureat of Labor Stitistics, mul studies made be trade and prisate research organizations. ${ }^{\text {a }}$

Estimaters of the stock of capital invested in food and kindred products (excluding Beverages) mamufactures used in this report have ben made especially araidable by Dr: Daniel (remmer (7,25). Thesie estimates are based on book value of insested cupital reported to the Burean of Intemal Revenue doflated for price changes. This menns that the estimates of the stock of total capital measure only phasical assels shown in the bulame shed, not all phesical assets used in food manufacturing. The figures omit

[^2]plant and equipment rented or leased from other sectors of the economy; however, there has been no apparent shift to the use of rented eapital goods by food manufacturers, judging from Internal Revenue data on rent and deprecintion. The estimates are net of depreciation. Like all other data on the stock of capital, these estimates are subject to important limitations ($\bar{\sigma}, 6$). Because of inadequacy of the price deflators used to estimate the quantity of cupital in constant dollars, changes in the stock of capital do not reflect inereased quality (including new technology). Consequently, changes in
the stock of capital in food manufactures used in this report may be thought of as changes in a stock of capitul measured in the quality of capital goods employed during the weight period. There is also the difficult accounting problem of estimating depreciation and obsolescence: Chpital goods are sometimes still in use long after they have been depreciated "out of existence" as during the wartime and early postwar period. In periods marked by rapid technological change, fixed capital is often scrapped early--that is, carlicr than expected-because of obsolesecnec.

Trend in Production Per Man-Hour

Output per man-hour in finctorics processing domestic farm food products grew at an average rate of 2.7 percent per year during the postwar period, $194 \overline{7}-58$, compured with 3.5 perent for the total private economy. ${ }^{6}$.The rise in output per man-hour in factory processing of foods was slightly faster than the rise in production; the number of man-hours workerl declined slightly during the period. The postwar trend in output per man-hour for all lood processing refleets divergent trends among mifor lood processing industries. In liect, the comparitively slow rate of grow th the allfood series was partly the result of shifts in production from food processing industries with higher rates of output per man-hour to industries with lower rates. Output per man-hour in all food processing, adjusted for changes in the profluct mix, was about the stme ils the annual rate for the cotal private economy. When we include depression, wartime, and postwat experiences from 1910 to 1958 , output per man-hour in factories processing farm food products grew at an arerage ammal rate of 2.0 perrent.

All Processed Foods

Oulput per man-hour in factory production of domestic farm fond products during 1958 was 29 percont above the 1947-49 average (table 1). Except for a small dip in 1948, output per man-hour increased during each of these postwar years (fig. 1). The umbun trate of growth during 1947-5S wat about the same as the rate during 1919-29. Production per man-hour Teveled ofl during most of the thirties and dimbed very slowly between 19339 and 1947, because of shortages of fixed capital and other resoures imputs imposed by Wortd Wir it. During the 40 veirs 1910-58, ontput per man-hour in factories procassing food products rose nembly 140 perent.

The receprocal of the index of ontput per mathour measures changes in man-fowr requirements per unit ol output in factorices processing domestic farm food prod-

[^3]Table 1.-Fiactory production of domestic farm food products, manhours, and production per manhour, United States, 1919-5S
$[1047-10=160]$

Year	Pindurthen 1	Aman-hatrse	
1019	53	97	-
1021	47	S0	59
1923	55	87	3
1925	58	85	(is
$192 \overline{7}$	¢0	S5	70
1929	6.5	22	7.
1931	60	75	80
1933	55	68	80
1935.	(i)	75	81
1937	68	85	80
1930	72	78	92
1947	101	101	100
10.18	99	- 100	99
19.99	100	99	101
1950	103	99	16.
19.51	106	101	105
1952	108	102	106
1053	112	598	5115
1904	113	97	117
1955	117	98	119
1956	121	100	12.
$19 \overline{\text { à }}$	12.	18	126
1058.	120	97	130

: Measures physic al output of mandfacturing establishments processiag domestieally produced farm food products, Output excludes processing of fuid milk, cream, and eggs; it includes food beproductis.
${ }^{2}$ For all cmployees of mamafocharing establishments, ineluding those cugared in distribution and construction work; the extent to wheh sath employers are included in figutes for yetrs befure 1930 is not known.

Mun-hours index for years sitice 1947 is bused on hours morked; those for years between 5019 and 1923 bresed on prevailing hours, adjusted to approximate actual hours. Destimates of average wewly hours worked by employees other than production and rehated workers are based on assumed trend.
${ }^{3}$ Computations for production per mathour are based on onrounded figurts.

- Fstimated from Bareat of labor Statistics data.
: The bureat of the Censas revised the sampling plan and universe in Antatal Shreeys of Manfatelares beginning in 1953, wheh somewhat olfset. comparability of man-hours and output per man-
ucts. ${ }^{7}$ About four-fifths as many man-hours were required per unit of factory output in 1958 as in 1947. The anmual rato of decline in unit man-hour requirements was about $21 / 2$ times is fast between 1919 and 1939 as between 1939 and 1947. This decelerated rate of deche duping the war and carly postwar period dramatizes the difficulty of extrapolating historical rates of change in unit man-hour recuirements to periods marked by severe restrictions on other fuctor imputs. Beween 1919 whd 1958 , unit man-hour requirements in faclory production of farm food produets decreased about three-fifths.

Factory production of domestic farm food products grew slightly less than output per man-hour during the posiwar period 1947-58; the number of man-hours worked Gended slightly downward. Both the directionand percentage changes in production and man-hours were nbout the same in the two postwar periods, 1947-58 and 1919-29. During the four decades 1919-58, production outpared the growth in output per man-hour, and manhours showed a small but significant upward trend.
'lhe small rise in the number of man-hours employed in factory processing since tha emo of Workl War T was the result of an increase in number of employees that more than offset a dedine in the twerage

[^4]

Figere 1
number of hours worked. ${ }^{8}$ Among production and related workers, most of the decline in the average workweek took place within about the first three decades; within the last decade, average weokly hours worked by production and related employees have declined only slightly.

Since World War II, there has been a shift from production to nonproduction workers employed in factories processing domestic farm food products (3): The number of production and related workers reported in the Census and Annual Surveys of Manufactures declined

[^5]5 percent between 1947 and 1958 , wherens the number of all other onployees rose $2 \overline{5}$ percent. Despite changes in Ceasus definitions, it appers that between 1919 and 1929, when the rise in output per manhour equaled the rise during the post-World War II period, the num.ber of production workers showed litule or no change, wherens the number of nonproduction workers deelined substantially. The shift from production to nonproduction workers since 1947 reflects the introduction of new, more complex technology that requires especially trained technicians and engineers, along with greater mphasis on sales, management, and related functions.

Comparison With the Total Frivatz Economy

Output per man-hour worked in the total private economy grew at an average annual rate of $3 . \overline{\text { E }}$ percent during the postwar period 1947-58 (38), substantially faster
than in factories processing domestic furm food products (trble 2). The larger rate of increase in the total private economy resulted mainly from the sharp rise of output per man-hour in farming. The postwar anmual rate of growth of output per man-hour in the private nonfarm sector of the economy (2.9 pereent) was roughty the suma is in food processing industries. During the entire four decades following the end of World War T, output per man-hour worked in the total private economy inereased at arerage rate of 2.7 perent per year; this was also substantially greater than the ycarly mate of growth in factories processing farm foods. The average amanal rate of growth in the private nonfarm sector of the conomy (2.3 percent) during the four dreates as a whole was somewhat higher than in food processing.
Table 2.-. Aberage annual percentage change in urtput per man-hour in factories processing farm fool products and in the oital private economy, Inited States, 10.47-58 and 1910-5S

Series:	19:3-4\%	1996
Factory processing	Perren	Percea
of farm fooclis....	2. 7	20
Private nonfarm sector?	2.9	
Total private conomy "	3.5	

[^6]
Postwar Trends Ameng Industry Groups

Average amual rates of growth in output per man-hour shown in this report refleet changes resulting from shifts in production mong plants manalacturing the same or different kinds of food products with different rates of output per man-hour as well as increases in output per man-hour within individuni plants. Data are not available lor separating these sources of change; it is evident, however, that the aggregate index averages extremely divergent trends among individual food plants and industries. Postwar trends in output per man-hour varied widely among major industry groups (table 3). Output per man-hour in factories processing fruits and vegetnbles, domestically grown sugnr, manufactured dairy products, and grainmill products rose laster than the average for all lam loods (lig. 2). ${ }^{9}$ On the other hand, output permanhour in factory production of conlectionery products, meat products, and bakery products rose at a slower rate than the average for all processed loods.

Produrtion trends among industry groups also ranged widely between 1947-49 and 1958. At the lower extrme, industrias manulacturing grain-mill products registered only a slight rise in production; at the upper exterme. produetion of processed fruits and vagetables rose about 50) pereent (table 3). ${ }^{19}$ Tha

[^7]

Fraure 2
index of output per man-hour for all processed foods used in this report is affected by changes in the product "mix." For example, the postwar shilt from gruin-mill products, where output per man-hour is above the average for all proc: essed foods, to meat products, where it is below the average, retarded
the rate of growth of output per man-hour for all food products. Elimination of the effects of changes in the product "mix" among the major industry groups on the growth in output per man-hour for all larm foods indicates that there have been substantial shifts in output from those industry groups in which out-

Table 3.-Factory production, man-hours, and production per man-hour, by industry group, United States, 1947-58 ${ }^{1}$ $[1947-40=100]$

Year	All foods ${ }^{2}$			Meat products ${ }^{3}$			Manufactured darry products ${ }^{\text {4 }}$			Processed fruits and vegetables s		
	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Man-hours	$\left\|\begin{array}{c} \text { Prothe- } \\ \text { tion per } \\ \text { man-hour } 10 \end{array}\right\|$	Procluc- Lion	Man-hours	$\left.\begin{gathered} \text { Produc- } \\ \text { Hion yor } \\ \text { manthour } 10 \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { Produc- } \\ & \text { tiont } \end{aligned}$	Man-hours	Producthon per man-hour	Produc- tion	Man-hours	Producdion per man-hour ${ }^{10}$
1947	101	101	100	105	102	103	105	- 109	97	97	103	93
1948	99	100	99	96	98	98	98	100	97	99	100	99
1949	100	99	101	99	100	99	97	91	106	104	97	108
1950	103	99	10.4	101	100	101	95	96	98	106	98	108
1951	106	101	105	100	104	97	91	90	101	124	107	115
1952	108	102	106	105	105	100	91	88	104	122	102	119
1953	112	1197	${ }^{11} 115$	113	${ }^{11} 102$	${ }^{11} 111$	96	1190	${ }^{11} 106$	129	${ }^{11} 98$	${ }^{11} 131$
1954	113	97	117	116	101	115	96	83	115	128	97	132
1955	117	98	119	125	103	120	99	84	117	135	98	137
1956	124	100	124	130	107	122	102	83	123	151	102	148
1957	124	98	126	124	101	124	104	82	126	144	103	139
1958	126	97	130	119	95	124	104	79	131	147	104	141
Year	Crain-mill products o			Bakery products ${ }^{\text {7 }}$			Sugar ${ }^{\text {s }}$			Confectionery ${ }^{\text {a }}$		
	$\begin{aligned} & \text { Produe- } \\ & \text { tion } \end{aligned}$	Man-hours	$\left\|\begin{array}{c} \text { Produc- } \\ \text { tion per } \\ \text { nam-hour } 10 \end{array}\right\|$	$\begin{aligned} & \text { Produc- } \\ & \text { Hon } \end{aligned}$	Man-hours	Production per man-hour ${ }^{\text {to }}$	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Man-hours	Producthon per min-hour	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Man-hours	Production per man-hour ${ }^{10}$
1947	105	104	101	99	98	101	110	113	97	100	99	101.
1948.	104	100	104	100	100	99	90	96	94	102	102	100
1949	91	96	95	101	102	100	100	91	109	98	99	99
1950	90	95	95	104	101	102	122	102	119	106	- 105	100
1951	94	95	99	107	105	101	92	96	96	101	88	11.4
1952.	95	105	90	106	107	99	96	93	104	102	92	111

1953	04	1191	11103	106	1197	11109	110	11100	1110	102	${ }^{1187}$	11.117
1954	95	84	113	105	97	108	118	85	138	97	85	114
1955	94	87	109	107	99	108	103	80	128	95	86	110
1956	98	8.1	117	111	100	111	113	78	144	98	88	111
1957	101	80	126	114	100	114	122	80	151	104	85	122
1958	104	79	131	117	99	118	126	90	139	104	83	126

${ }^{1}$ Man-hour indexes bused on all employees and hours worked; figure for 1948 interpolated from Bureau of Labor Statistics data on all employecs and hours paid for. See footnotes to table 1.
${ }^{2}$ Includes poultry dressing plants and establishments primarily engaged in manufacturing leavening compounds, shortening and cooking oils, margarine, corn wet milling products, flavorings, macaroni and sparhetti, and peanut butter, as well as industry groups shown in table.
${ }_{3}$ Includes meatpacking plants and establishments specializing in prepared meat products.
${ }^{4}$ Includes establishments primarily engaged in manufacturing creamery butter, natural cheese, concentrated milk, ice cream and ices, and special dairy products; it excludes processing of fluid milk and cream.
${ }^{5}$ Includes establishments primarily engaged in manufacturing canned fruits and vegetables, dehydrated fruits and vegetables, pickles and sauces, and frozen fruits and vegetables.
${ }^{6}$ Includes establishments primarily engaged in manufacturing flour and meal, cereal products, rice milling, and blended and prepared flour.

7 Includes establishments primarily engaged in manufacturing biscuits and crackers, wholesale bakeries, grocery chain bakeries, house-to-house bakeries, and retail multi-outlet bakeries (exclud-
ing those with direct sales to consumers on premises). In 1954, establishments which were part of a chain and were producing for direct sale on premises were reclassified from the Census of Manufactures to the Census of Retail Trade; however, this did not significantly affect compurability of the series between 1947 and 1054. Establishments which bake primarily for direct sale to consumers are not included.
${ }^{8}$ Includes establishments primarily engaged in manufacturing raw cane sugar from domestically grown sugaroine and plants mainly engaged in production of beet sugar. The index of raw cane sugar also includes an adjustment for refining domestic cane sugar.
${ }^{-}$Includes establishments primarily engaged in manufacturing candy and other confections.

10 Computations for production per man-hour are based on unrounded figures.
${ }^{11}$ Census Bureau revised sampling plan and universe in Annual Survey of Manufactures beginning in 1953 which somewhat offsets comparability of man-hours and output per man-hour series with earlier years.

Compiled from Census of Manufactures, Annual Surveys of Manufactures and data published by the Departments of Labor and Agriculture.
put per man-hour is higher to those in which it is lower. If the 1947 product mix had remained constant through 1957 and each industry group had experienced its same rate of growth in output per man-hour, the average annual rate of increase of factory production per man-hour would have been 3.3 percent instend of 2.7 percent. ${ }^{11}$ The adjusted figure (3.3 percent) for food processing is about the same as the postwar figure (3.4 percent) for the total private ceonomy adjusted for intersector shifts in output between farming and the total private nonfarm sector of the coonomy (38). This means there is no evidence that, on the arerage, output per man-hour within individual food industries or plants grew at a slower rate than the arerage within indiridual industries or establishments for the total prirate economy.

It appears that changes in the product mix may continue for some time to exert a dampening effect on the growth of output per manhour in lactory processing of famm food products. Comparison of income elasticities for farm foods estimated by the Department of Agriculture ($S, 11$) indicates that as "real" per capita income rises (other things remaining the snme) consumers will tend to shift to meat products where output per manhour is currently below the arecage for all processed foods and to
shift from grain-mill products where output per man-hour is currently above the average. In the base period 1947-49, meat products accounted for nearly 20 percent, and grain-mill products for nearly 10 percent of total (weighted) factory production of processed farm foods. To some extent, these dampening influences will be tempered by probable developments in manufactured dairy products where income clasticity and output per man-hour are both higher than the averages for all processed foods. Among the other major food groups-bakery products, fruits and vegetables, and sugar and confectionery products-outpat per manhour is roughly the same and close to the all-food average.
The number of man-hours worked within cach industry group in 1958 was cither the same or smaller than in the base period 1947-49. The number of man-hours worked remaned the same in industry groups that experienced substantial increnses in production; the number declined among groups in which production declined or stayed the same. In all groups, outpui per man-hour increased. These developments indiente that food manufacturers tended to substitute other inputs-capital. new techology, entreprencurship, more highy skilled employees, and other inputs for man-hours.

Factors Affecting Output Per Man-Hour

Apparently food manufacturers did not substitute fixed capital for Inhor in food manufactures from 1929 to 1957. Changes in technology were at least as much fixed capital saving as labor saring during the period. Between 1048 and 1957, the stock of working cippital rose substantially relative to the

[^8]number of man-hours worked and contributed to the postwar growth in outpat per man-hour. Industry survers nod other indicators point to a cramatic growth in new technology in food processing, particulaty since the end of Ford War II, but information is not nvaibble to measure the impact of new techoologs on the rise in oufput per manhour.

Changes in the extent of educa-
tion, training, experience, and other forms of investment in human capital also affect changes in output per man-hour. A man-hours series by occupation weighted by wages and salarics would reflect changes in the "quality" and composition of lalbor inputs. As a first approximation to such a series, the number of manhours of prodaction workers and of nonproduction workers within each industry were separately weighted by average hourly earnings. The weighted man-hours index showed the same arerage annual rate of change as the unweighted manhours series during the postwar years 1947-5S because interindustry shifts offset intri-industry shifts from production to nomproduction workers. The weighted and unweighted man-hour indexes also showed about the same annual rate of change for the entire four decades, 1919-58.

Capital in Food Manufactures

Estimates of the stock of total capital (fixed plus working capital) and the stock of fixed capital in Food and kiodred products (excluding Beverages) manufactures have been constructed be Dariel Creamer (7, 15) for selected years; data on the stock of capital emplored in factories primarily, engaged in processing domestic farm fond products are not available.? This information can be used to gage trends in capital inputs (that is, capital of base-period quality) and the extent of substitution between capital and labor in lactorics y rocessing farm food producis. In order to climinate efferes of business fluctuations on trends in capital per worker and enpital-output ratios, Creamer selected years representing

[^9]similar positions in the business cycle (6). Therefore, the effect of changes in capacity utilization on trends in capital per worker, capital per man-hour, and capital per unit of output are probably minimized for long-term comparisons; the effect on short-term comparisons, particularly in the postwar periorl, may be siguificant, however.

During the postwar period, 194857, the stock of total capital used in Food and kindred products (except Beveriges) manufactures inincreased substantially (table 4).

Tabrie 4.-Slock of total capital in Food and kindred products (excluding Reverages) manufactures, United Slates, selected years. 191057

Year	$[1929=100]$			
	Total capital 1	'Total capital per-		
		Eloy- ${ }_{\text {E }}$	Man;	Coin of output 4
1910	78	76	76	95
1929	100	100	100	100
1937	86	77	93	83
19.48	91	LS	85	57
1953	102	77	98	56
1057	120	88	11.3	60

${ }^{1}$ Includes fixed capital (land, buildings, machinery, and equiphent) and working capital (cash, inventorics, and accounts receivable). Data made available by Dr. Daniel Creamer: 1919, 1029, 1937, and 1948 from Capital in l/arujacturing and Mining: Its Formation and financing, by Creamer, Dobrovolsky, and Borenstein (r); 1953 and 195 from study in Business Economics, National Industrial Conference Board (is).
2 Index based on number of all employees in Food and kindred products (exemding beverages) manufactures reported in Census of Manufactures and in Ammal Survey of Manafactures.
${ }^{3}$ Based on estimate of man-hours worked by all employecs.

- Based on approximate net output index for Tood and kindred products (excluding Beverages) manufactures employing same method used to compute index of factory production of slomestic farm food products for years between 1919 and 1948 . For years after 19.8, the Industrial Prochuction ladex for Food products (Food and kindrecl products, excluding Bevecages) compiled by the Federal Peserve Board was used (2?).

This rise was accounted for by an inerense in the stock of working capital (cash, inventorics, and accounts receivable); the stock of fixed capital (land, buildings, machinery, and equipment) remained virtually unchanged (table 5). In contrast to the postwar experience nearly all of the decline in total capital stock between 1929 and 1948 was due to a change in the stock of fixed capital.
In sum, trends in capital per man-hour and per employee in food manufacturing indicate that (1) there has apparently been no substitution of fixed capital lor labor in the postwar period 1948-57, and, in fact, none since 1929, the first year for which these data are available: but (2) there has been a substantial rise in the stock of working capital relative to the number of man-hours cmployed during those yents. The increase of working copital relative to labor contributed to the xise in output per man-hour in the postwar period; however, the leveling off of fixed cepital per
Table 5.-Stock of fixed capital in Fool and kindred products (excluding Beverayes) manufactures, United States. selected yiears, 192957

Jear	[$1920=100]$			
	$\left\|\begin{array}{c}\text { Fixed } \\ \text { capfal }\end{array}\right\|$	Fixers mapital per-		
			Man Isour ${ }^{2}$	Conit of output ${ }^{2}$
1929	100	100	100	100
1937	73	66	79	70
2948	Si.	61	75	50
1953	73	60	76	44
1957	79	58	74	39

${ }^{1}$ Inclades land, buiddings, machinery, and equipment shown in the balance sheet of food manufacturing corporations; excludes fixed eapital which is leased or rented from other sectors of the ceonomy: Judging from Internal Revenue rlata, there was no significant frend in the use of rented eapital in food manufacturing. Statisties obtained from 1)r. Daniel Creaner; see table 4 , footnote 1 , and references $(\gamma, 15)$. Data for 1010 not available.
${ }^{2}$ See table 4 , footnotes 2,3 , and 4 .
man-hour indicates that, at least since 1929, the rise in output per man-hour in food manufacturing resulted manly from other factors such as new technology, a more skilled labor force, economies of scale, and other factors.

During both the postwar period 1948-57 and the period 1929-57 as a whole, technological improvements in food manufacturing seem to have led to savings in both fixed capital and labor per unit of output. The fixed capital-output ratio in 1957 was three-filths below the 1929 figure (table $\overline{5}$); unit man-hour requirements in Food and kindred products (excluding Beverages) manufactures declined about onehall in the same period. During the postwar rears 1948-57, both the fixed capital-output ratio and unit man-hour requisements in food mamulactures declined by about onc-fifth. Working capital per unit or output increased in the postwar period.

Technology

New technology is probably the most dramatic factor contributing to the growth in output per manhour in factory processing of farm food products, partionarly since Worde War IT. Data for gaging the impact of nes techoology on ontput per man-hour are not availalle. A brief industry survey of major developments suggests that technological changes in tood mathefacturing during the last three decades were both labor saving and fixed-crapital saving. Between 195.3 and 1957, firms engnged in mantuFacturing Food and kindred produets substantially increased their oullass for research and derclopment. These outlays are fargety for development of new food products, some of which contributed to the increase in output per mat-hour.

A Department of Agriculture survey of technology in ninketing of fook products (2S) lists major technologieal developments in commercial processing between 1930
and 1950-developments in materials handing, continuous processes, packaging, grading, sanitation, and others. In materials handling the trend has been towards bulk bandling. This includes the introduction of hydroconveying, pacumatic convering, and the extension of the dump truck principle to grains and other products. The adoption of bulk handling probably has been largely labor saving.
The development and adoption of continuous processes replaced much of the old-fashioned discontinuous batch and vat methods. These continuous processes also gave impetus to development of techniques lor short-time sterilization at high temperatures, packaging equipmeut, and other innovations. Introduction of electronic temperature and humidity controls have also enlarged the usefulness of electric control systems. Technological changes associated with continuous processes suggest the importance of eapital-saving innovations as well as labor-saving immovations in food processing.

Growth in kilowatt hours of elcetric power used also suggests the importance of new teclnology in increasing output per man-hour in food manulacturing. During the postwar period 1948-57, the stock of fixed capital remained mohanged and the number of man-hours worked declined slighty whereas the number of kilowatt hours consumed in lood manufacturing rose about 50 percent. This rise in electric power consumed reflects increases in air-conditioning, lighting, and other electric appliances; however, in addition, it also reflects the emplorment of more electric power-driven equipment in bulk handling, continuous production processes, and other technological changes in production.

The National Science Foundation has sponsored severnl sample surveys (16, 17) during the postwar years which estimate employment
and outhas for research and development by United States industries. According to these reports, the estimated cost of research and development within the Food and kindred products industries in 1956 was $\$ 75.9$ million, about 40 percent greater than in 1953. These industries employed 15,400 engincers, chemists, and other matural scientists as of January 1957, about 5 percent above the number in Jinuary 1954. These figures on costs and employment within food manufacturing industries are largely for rescarch and development of new products. New products often contribute to increased output per man-hour. In production of prepared and blended flour mixes, for example, output per man-Lour is much greater than in white flour milling, and in the postwar period output of prepared flour increased much faster than white flour production. Similarly, the dramatic growth of frozen foods contributed to the substantial postwar rise in output per man-hour in the processed fruits and vegetables industry group. At any rate, the figure for Food and kindred products manufactures substantially understates total oullays for research and development related to food manufactares; it exdades research and development related to food processing undertaken by the chemicul industry, the food machinery products industry, the electrical equipment industry, universities, Goremment agencies, and other groups. ${ }^{13}$

[^10]
Output Per Weighted Man-Hour

The index of output per man-hour reflects changes in "quality" of labor-that is, chonges in the degree of education, experience, and other kinds of investment in labor employed in processing farm food products. The man-hours series used to compute the index of output per man-hour is a simple aggregnte of hours worked by employees with heterogeneous skills and trainingcorporate executires, engineers, secretaries, production line workers, janitors, and others. Thhis means that an hour worked by an engineer has the same weight as an hour worked by an unskilled laborer. In order to gage some of the effect of the change in quality of labor inputs, the number of man-hours worked by production and nonproduction workers has been weighted by average hourly earnings by industry (0,12) (table 6). In this weighted man-hour series. an your worked by an employee who carns $\$ 2$ per hour is counted is equivalent to two hours worked by an employee who carns $\$ 1$ per bour. At best: these romputations are only suggestive: The classification of
Table 6.- Herage annual percentage change in man-hours worked and in production per man-hour in factories processing domestic farm food products, based on weighted and unucighted manhours, $19.17-5 S$ and 1010-5 8

Series	1917-53	1010-35
Man-hours:	Percent	Percent
Weighted ${ }^{\text {a }}$	-0.3	
Troductighted....	-. 3	
Production pera		
Weighted man-	9.7	2. 0
Trnwoighted man-	$\underline{0.7}$	2.0

[^11]nonprodaction workers includes salesmen, secretaries, engineers, clerks, corporate execulives, and other groups of employees with highly divergent skills. The manhours series should be classified by occupation and should bo weighted by wages and salaries, not by average hourly earnings.
During the postrat period 194758 , the index of weighted manhours worked in tactory processing of domestic farm food products decreased at an average annual rate of 0.3 percent-the same as the unweighted man-hours index (table 6). The decline in the weighted mith-hours index resulted from two contrasting movements: An interindustry shift in man-hours worked by all employess, from higher to lower paying industries, more than offset the intra-industry shift from production and related jobs to other jobs that, on the average, paid more. Factory production per weighted manhour rose an average of 2.5 percent per year from 1947 to 1958, also the same as output per unweighted man-hour. During the entire period 1910-5s, the picture was much the same: The weighted man-hour index paralleled the unseighted man-hour index :and. consequently, output per weighted man-hour and output per unweighted man-hour showed the same arenage annual rate of grow ha (2.0 perenat). in sum, it appeats that increases in output per manshour caused by increased quality of labor within indivitual industries were at least partially offsel by interindustry shifts. ${ }^{14}$

[^12]
Comparison With Farming

Net output per man-hour in farming grew at an average annual rate of 6.2 percent during the postwar period 1947-58, nearly $2 \frac{1}{3}$ times as last as in factories processing farm food products (table 7). During the 40 years between 1919 and 1958, output per man-hour in farming rose at an average annual rate of 2.5 percent, about 1% times as fast as in factory processing. The markedly faster rate of growth in output per man-hour in farming than in factory processing can be accounted for by a large substitution of capital for labor in farming, particularly since World War II. ${ }^{15}$

Comparative Trends

During the postwar period 194758 , net output per man-hour rose about 110 percent in farming, as estimated by the Bureau of Labor Statistics (33), compared with about 30 percent in fictories processing farm food products (hg. 3). ${ }^{18}$ Output per man-hour rose significantly fister in factory processing than in farming in the interwar period,

Table 7.-Average annual percentage increase in output per man-hour in factories processing farm food products and in farming, Chited States $199^{4} 7-58$ and 1010-58

Eerres	1977-3s	1990-3s
Factory production of farm foodi...	${ }^{\text {Pemerent }}$	$\stackrel{\text { Prceent }}{2}$
Furmins ${ }^{\text {a }}$-.........	6. 2	2.8

[^13]1919-39; howerer, since the beginning of World War II net output per man-hour rose faster in farming than in factory processing. During the period 1919-58 as a whole, net output per man-hour increased about 210 percent in farm production and about 140 percent in factory processing.

Capital in Farming

In contrast to Food and kindred products (excluding Beverages) manufactures, the sharp rise in output per man-bour in farming since nbout the beginning of World War Il was accompanied by a large substitution of fixed capital for labor. Estimates by the Agricultural Research Scrvice (23,25) of value of assets employed in farm production (in 1947-49 dollars) indicate that total capital per farm worker rose about s0 percent and capital per man-hour rose about125 percent between 1940 and $19: 57$

[^14]
OUTPUT PER MAN-HOUR

In Factory Processing of Farm Foads and in Agriculture

Figure 3
(Lable 8). More than threc-fourths of the increase in total capital per man-hour was accounted for by an increase in real estate and machinery per man-hour; betweea 1937 and 1957, fixed capital per manhour in food manufactures remained virtually unchanged. Further comparison of capital-ontput ratios and unit man-hour requirements indicates that improvements in technology in farming during this period were largely labor saving and very little fixed-capital saving; in food manufactures, improvements in technology tended to be somewhat more fixed-capital saving than labor saving.

Data for carlice years on capital in farming estimates by Alrin S . Tostlebe (21) indicate that there was a significant upward trend in total capital per farm worker and per man-hour between the two Forld Wars. The total slock of capital per employee in food manufactures also rose from 1919 to 1029, but by 1937 it had dropped back to the 1919 level. During the entire four decades since the end of World War I, percentage increnses in the stock of total capital per worker and per manhour have been much harger in farming than in food manufactures.

Unit Costs in Factory Processing

From 1939 to 1958, houly earnings based on hours worked in frctories processing farm food producis sulstantially outpaced the rise in output per man-hour and, as a result, unit labor costs rose sharply.

In contrast, during the interwar period, 1919-39, output per manhour in food processing rose faster than hourly enmings, fand unit labor costs declined. The marked upward trend in average hourly

Table S.-Capilal used in farm production, in constant prices, United States, selected years, 1020-57

Ycar	Cmuital	Capial per--		
		Farmer	Mant: hom	$\left\lvert\, \begin{gathered} \text { cint of } \\ 0 \because\{p u t)^{3} \end{gathered}\right.$
1920	101	94	96	101
11930	100	100	100	100
19.9	100	113	111	80
19.48	108	130	$1+6$	S.
1953	121	170	199	93
$1!9.7$	125	206	261	91

- Beginning in 1040 , indexes based on walte of assets used in farm production, in 1047-40 prices, computed by ligrienhthral Reseateh Servie (23); includes farm real estate, less value of dwelling; livestock; macbinery and motor vehieles, lass 60 pereent of the value of automobiles; erop inventories held for livestock feed; and a portion of the demand deposits dotermined for each year by adjusting drposits of Jan. 1, 1942, by an index of production costs. Indexes for earlicr yours based on estimates made by Arin S. Tostlebe (2l). The two series are somewhet dilferently defined; however, the series linked in 19.40 can be used to gage long-term trends in capital used in farm production.
? Based on farme employment (family phus hired workers) and man-hours estimatted by the U.S. Department of Agrirulture.

3 Based on farm output net of intermerliate goods and sersices purchased from the nonfarm sector ("gross national farm product's, estimated by the L.S. Dipartment of Commerce (30).
rarnings in lood manufactures in the last two decades was part of a similar trend in all manulatures. During both the postwar period 194i--5S and the four decades 191958, nonlabor charges (including profits) per unit of output in food processing rose siguificantly more than unit labor costs.

Unlike the marked postwar rise of unit lathor costs in factories procassing fium food products, unit dabor costs in farming derlined substantially from 19.47 to 195\%. The dectine of mit labor eosts in farming was the result of a moderate
rate of incrense in average hourly earnings-substantinlly slower than in lactory processing-that was more than offset by the rapid rate of growth in output per man-hour.

Unit processing costs in factories manufacturing farm lood products rose slightly faster than unit labor costs from 1947 to 1958. This postwar rise in unit processing costs contributed to an increase in the wholestale price of processed foods relative to the farm priess of the raw products. Unit processing costs and unit habor costs have shown roughly the same long-term pattern; however, between 1919 and 195S, unit processing costs rose significantly faster than unit labor costs.

Unit Labor Charges

Hourly earnings per employee based on hours worked in factories processing domestic farm food products were nbout 65 percent larger in 1958 than in the base period (table 9), 1947-49; howerer, because of a 30 -percent rise in oulput per man-hour, unit habor costs were only about 30 perecnt above the base period average (fig. 4). ${ }^{1 /}$ Between 1919 and 1939, output per man-hour grew faster than hourly earnings and, consequently, unit lofer costs declined. For the entire period 1919-58, hourly carnings rose about 335 percent, output per man-

[^15]Table 9.-Hourly earninys, unit labor costs, unit nonlabor costs, and unit processing coits in factory production of farm food products, United States, 1910-58
[197\%-49=100]

Yar	$\begin{aligned} & \text { Hourly } \\ & \text { carn2 } \\ & \text { mgs } \end{aligned}$	$\begin{aligned} & \text { Unit } \\ & \substack{\text { lubor } \\ \text { costs }} \end{aligned}$	Unt nonlabor costs cost	Unt proc essing costs:
1919	38	70	60	63
1921	42	72	52	60
19233	42	66	56	60
1925	± 2	62	62	61
1927	4	62	62	6
1029	± 3	61	69	65
1031.	± 2	53	59	56
1033	37	48	52	43
1935	44	55	50	51
1937	46	57	5.3	5.4
1939	47	51	58	55
1947	04	94	99	97
1948	5 101	103	${ }^{8} 98$	$\bigcirc 100$
1949	105	103	- 103	-103
1950	110	106	107	107
1951	121	115	110	(112
1952	127	120	117	119
1953	13.4	117	119	118
1954	140	119	111	115
1955	145	129	122	129
1956	15\%	12:3	128	126
1957	158	126	13.4	130
1958.	166	128	136	132

- Obtained by dividing index of payrolls by index of man-hours worled by all employees (table 1). Changes in amount of paid vacations, paid sick leave, and extra pay for overtime work result in changes in hourly carnings. Conceptually this series differs from the Burean of Labor Statistics published series on average hourly carnings which is bawed on hours paid for.
${ }^{2}$ Obtained by dividing index of payrold hy factory production index shown in table 1 .
${ }^{3}$ Obtained by dividing index of nonlabor costs (value added minus payrolls) by factory production inder shown in tatide 1 . Nondabor costs include profits.

TObtained by dividing indes of valoe added as defined by the Census Burean by factory produetion index thown in table 1.

5 Honrly earnings interpolated from BIS series on twerage houry earnings.

- Value added estimated from data published in Sitaistics of Income, Internal Revemue Service.

Payroll and value-added data com-
hour rose about 140 percent and, as a consequence, unit labor costs in factories processing farm food products were about 80 percent greater in 1958 than at the end of World War I.

Data on hourly carnings based on hours worked are not available for other sectors of the economy; however, data on average hourly earnings bused on hours paid for, published by the Bureau of Labor Statisties, can be used to compare trends in average hourly earnings between food manufactures and other sectors of the cconomy. These statistics indicate that, on the whole, the sharp increase in hourly earnings in food manufactures since the beginning of World War II paralleled a simifar inerease in all manufactures. Between 193 ? and 1958, average hourly earnings in Food and kindred products manufactures rose about 230 percent, the same as in all manufactures. Average hourly earnings in food manufactures lagged somewhat behind the rise in all mannfactures from 1939 to 1947; between 1047 and 1958 , they rose somewhat faster than in all manufactures.

The sharp postwar incrense in hourly earnings reflects, among other things, inflationary price and wage rises in the economy as a whole. The Department of Commorce serics on the Implicit Price Defintor for Gross National Product, the most comprehersive price series available, rose about 28 percent from 1947-49 to 1958 . Comparison with the rise in hourly carnings in food processing between 1947-49 and 1958 (table 9) indicates that roughly half of the rise in hourly earnings can be attributed to the general price and wage infiation. The remnining half resulted from a shift to more tech-
piled manty from Biethmat and Secennial Censuses of Dimufactures and Amman Surveys of Mamufactures. Other data obtained from [.S. Jepartments of Tabor and Agriculture.

Figere 4
nienl, higher paid jobs, which increased the all-employee average, and "nomma!" market forees which require food manulacturers to pay competitire wages in order to attract and hokd employees. 'flse noninfationary inerease in hourly eamings in fool processing from $1947-49$ to 1958 was about the same as the growth of output per man-hour. This suggests that il there had been no overall inflation, mit labor cost in food processing industries would have remained fairly constant during the postwat years.

The picture was notably different in farming. ${ }^{\text {is }}$ Average hourly earnings in the postwar period $194 \overline{7}-58$, rose about 70 pereent in Food and kindred products manufactures and about 40 perent in firming. This reversed an eurlier tend between 1939 and 1047 when average hourly earnings in tood manafuctures mose about 85 percent and average hounly carnings in faming rose about 230
pereent. For the entire period, 1939-58, average hourly camings in Food and kindred products mantifactures rose 230 pereent compared with a 355 -peremit rise in asriculture. Despite this trend toward closing the gap, average hourly enmings in $195 \mathrm{~S}^{\text {w }}$ we about S 2 in food manufarturing and only 76 conts in farming.

It is apparent that, in contrast to the rapid increase of unit labor costs in lateries processing farm food products during the postwar years,

[^16]unit labor costs in total farm production declined. ${ }^{19}$ Comparison of the rise in average hourly earnings and the rise in output per man-hour in farming indieates that unit labor costs-based on cash wages-declined about 35 percent from 1947 to $1958 .{ }^{20}$ By contrast, during the war and carly postwar period 1939-47, unit labor costs in farming rose neerly 200 percent-about $2, \frac{1}{3}$ times as fast as in factories processing farm food products. For the entire period 1939-5̌S, unit labor costs rose nearly 200 percent in farming and about 150 percent in factory processing.

Unit Nonlabor Charges

Mensured by "value added" minus payrolls, nonlabor charges (including profits) per unit of output in factory processing during 1958 were about 35 percent above the 1947-49 average (fig. 5)-somewhat greater than the rise in unit labor costs. ${ }^{21}$ Unit nonlabor charges comprise profits, depreciation, maintennnce and repair, rent, interest charges, advertising outlays, taxes, and other operating expenses. In 1957, these nonlabor charges accounted for about 5 b percent of total value added. During the four decades 1919-2̄S as a whole, unit nonlabor charges rose about 125 percent and unit labor costs about $\$ 5$ percent. The historical increase in unit nonlabor costs relative to unit labor costs reflects, among other things, the substitution of capital, new technology, and other inputs for labor; however, it also reflects sharp increases in advertising outlags and similar operating expenses.

Unit Processing Charges

Unit processing charges (value added per unit of output) in factory production of domestic firm food products were 32 percent greater in 1958 than cluring the base period 1947-49 (table 9). This percentage increase was somewhat larger than the relative incrense in unit labor
costs, but less than the rise in unit nonlabor charges. The increase in unit processing charges was somewhat larger than the inflationary price rise in the economy as a whole, as shown by the Implicit Price Deflator for Gross National Product. The postwar rise in unit processing charges increased the spread between the price of farm raw food materials and the wholesale price of processed foods. In 1958, the Wholesale Price Index for processed food products published by the Bureau of Labor Statistics was 11 percent above the 1947-49 average; the Wholesale Price Index for crude foodstuffs and feedstuffs, most of which are used in manufacturing foods, was 7 percent below the 1947-49 average (fig. 6). The gen-

[^17]
Factory Processing of form Foods

PROCESSING, LABOR, AND NONLABOR COSTS PER UNIT OF OUTPUT

Fgure a

Figlire 6
erally continuous upward trend in unit processing charges also dampened the response ol wholesale prices lor processed food products relative to changes in farm prices
for tood raw materials. During the period 1919-58 as a whole, unit processing charges rose 110 percent, more than unit labor costs but less than unit nonlabor charges.

Appendix A: Method and Sources

Factory Production

The index of factory production of domestic farm food products is designed to measure changes in the net physical output of establishments primarily engaged in processing domestic farm lood products (except fluid milk and cream and processed eags) entering commercial channels. The index includes processing for commercial and Government stocks, for export, for Govemment purchase for relief and other programs, for military use, and for civilian consumption. It excludes factory processing of imported loods, seafoods, and other loods not produced on domestic liums. It ilso excludes manularture of alcoholic and nomatcoholic beverages.

The index of factory production was constructed in two stages. First, anmul data for individual products were weighted by value added per unit of product or be average factory prices in order to obtain indexes for individual (Census 4-digit) industries. At the second stage, these individal induster indexes were weighted by industry whit value added in order to derive indexes for industry groups and total lood processing. Coverage adjustments were made at both states to take necount of missing products and missing industries. and to put the indexes on an indus-try-not product-basis. That is, the index of output of meat products shown in this report measures the output of estalblishments spechalizing in slaughtering and curng meats; it does not measure the output of meat products wherever manulactured. The index-number
formula used in computing the series at both stages is Ω modified cross-weighted formala. The series have been weighted decennilly between 1909 and 1939, and in 1947 and 1954.

The snnunl factory production index was computed from data published regulary by the Department of Agriculture, other Government agencies, and private organizations. Most of the output inflexes of the component industries (Census 4 -digit) are benchmarked to factory production indexes constructed from data reported in decemial and biemnial Censuses of Manufactures. In general, the scope of the output index is the same as the scope of the Census of Manufactures.

The factory production index is subject to the following concerptual qualifications:

1. The formula used is only an approximate measure of net output.
2. Like all physical output indexes, it does not fully reflect changes in quality.
3. The serics includes brproducts of food processing establishments.
4. The inder applies to factory processing only; it excludes processing within establishments primarity engiged in wholesale and retail trade.

Among these four qualifications, the first two are the most imporitat, the third is, on the whole, statistically smatl, and the importance of the fourth depends upon the use made of the index. The earlier technical report (30) contains a detailed appendix on method and soures used in compiling the factory production judex. The entier
report also mensures factory procossing of fluid milk, cream, and eggs, which are excluded from this report because of inadequate data on man-hours.

Man-Hours

The man-hours index is designed to measure changes in man-hours worked by all employees. Nearly all of the basic data are from the Census of Manufactures; this assures comparability with the output index. Dita were also obtained from the Bureal of Labor Statistics and published studies by private research organizations. In general, statistics for years since 1947 are notably more complete than those for carlier years.

Employment

Data on the average number of all employees in factory production of domestic farm food products are from the C'ensus and Amual Surver of Manufactures for the postwar years $1949-58$; for the prewar years 1919-39, data on atll employees are from the decennial and biemial Censuses of Manufactures. In effect, the Census figure on average number of employes measures equivalent full time number of work-ers-that is, it measures the number of persons who woukd have been employed if the work actually done were performed by persons engaged in full and continuous employment (10).

Conceptually, the number of employees included in the manhours index should comprise the total number of persons contributing to value added in manufactures, as defined for the output index. Such complete coverage has never been available; however, coverage in the Census of Manufactures has becu nearly complete and consistent since 1939. In the Census of Manufactures for 1954, all entployens were defined to include (1) production ad related workers, (2) force account construction work-
ers, and (3) administrative, sales, supervision, technieat, office, and other personnel. Officers of corporations are included as employees whereas proprictors and partners of unincorporated firms are excluded. This Census definition indicates the scope of the all-employees serics used in the man-hour index since 1947; no estimates were made of the number of proprietors and partners of unincorporated firms in food manufnctures, but these firms accounted for only a small percentage of total production during the period studied.

In general, Census data on the number of production and related workers are consistent in scope and coverage since 1919 . The numbers of production and refated workers were used essentially as publisied in the Census volumes since 1919. In the Bienmial Censuses of 1935 and 1937, and particularly in the Census of 1939, the Bureat of the Census changed the wording of the schedules sent to manufacturing firms, which seriously affected the coverage of distribution and other nonproduction workers employed b- ruanulacturing establishments. The extent of this problem is illustrated by the fact that the total number of nonproduction workers reported by the Census in all lood manulacturing increased from 61,000 in 1937 to 148,000 in 1939. In order to link the manhours series for pre- and postWorld War II years the number of nonproduction employers for certain lood industries hatd to be estimated for 1935, 1937 and 1939 using the r'ensus definition (terminology) emplored in Census questionnaires from 1919 to 1933; nearly all of the estimates pertain to 1939 . The pre-1939 series wit! the less inclusive coverage was linked in 1939 to post-1939 series with more inclusive coverage.

In sum, the man-hours series since 1939 includes employes of manufacturing establishments who
are engaged in distribution and construction work; the extent to which the man-hours series between 1919 and 1939 includes such employes is not known. Because the number of nonproduction workers accounts for only a minor proportion of all employees, the effect of this discontinuity on the all-eraployees man-hour series is small. In 1939, the estimated number of all employees based on the definition used since 1939 was about 5 percent alowe the number of all emplovees based on the definition used for the period 1919-39.

Average Hours

Data on average hours worked by production and related workers are from Censuses and Annual Survers of Manufactures for tears between 1947 and 1958, and from the Burean of Labor Statistics and other sources lor years between 1919 and 1039. Statistics on average hours worked by employecs other than production workers are not available and a trend for this series had to be determined on the basis of qualitative information.

In the Census of Manufactures, the Burens of the Census defined the number of man-hours worked by production and related workers to include actual overtime hours (not straight-time equivalent hours), and to exclude hours paid for racations, for holidays, and for sick leave when the employee is not at the plant. Conceptually, this differs from Bureau of Labor Statistics data on average weckly hours for production workers which are based on hours paid for rather than on hours worked. The Bureau of Labor Statisties series include overlime hours on straight-time equivalent bases, and hours for paid vacations, for paid holidays, and for paid sick lenve (33). The data netuilly reported by the Bureau of the Census and the Burcau of Labor Statistics also reflect differences
in statistical methods used in collecting the information. In fact, statistics on average weekly hours for production workers in Food and kindred products manufactures reported by the two agencies showed the same postwar trend from 1947 to 1958 (table 10).
Statistics on average hours for production and related workers in food manufacturing industries are sparse and of varying definitions for the prewar years 1919-39. The question of using hours worked or hours paid for is important only for years since World War M; for the prewar period, the problem is to obtain data on actual hours worked

Table 10--Aterage weekly hours in food and kindred products manufactures as reported by the Burean of the Census and by the Bureau of Labor Statistics, United States, 19.47-58

Year	Bureau of the Census 1	Burean of Labor Sta tistics'
	Hours	Honer
$19 \cdot 17$	41.0	43. 0
1948	$\left.{ }^{3}\right)$	42. 1
1949	39.7	41. 6
1950	39.7	41.6
1951	39.5	41.9
1952	39.6	41.6
1953	39. 2	41.2
195.4	39. 1	41. 0
1955	39.0	41.2
1956	39.2	41.0
1957	39. 1.	40.5
1958....	39.0	40. 7

[^18]rather than on prevailing hours. Prevailing hours, which represent average or scheduled hours, tend to be higher and less flexible than actual hours (36). For most food manufacturing industries, data on actual hours between 1933 and 1939 are avaiable from published data of the Bureau of Labor Statistics (34). Data for earlier years were obtained from a variety of special studies on hours and earnings (14, 36) and on output per man-hour $(1,2,13)$ in manufacturing.

In general, statistics on average hours for earlier years, particularly 1919-29, are for prevailing hours. Where supple entary information was also available, prevailing hours were adjusted to approximate actual hours. However, to the extent that prevailing hours eren after adjustment are higher than actual hours worked during those years, this tends to overstate the rise in output per man-hour since the end of World War I. Estimates of arerage weekly hours were imputed for industries and ycars for which no dataz are arailable.

Statistics on avernge hours worked by employees other than production and related workers are not arailable. On the basis of qualitative information, it was assumed that arerage weekly hours worked by nonproduction workers followed a linear trend from a $00-$ hour week in 1919 to a 40 -hour week in 1939; a continuance of the 40 -hour weok between 1939 and 1947; and a linear trend from a 40 -hour week in 1947 to a 38 -hour week in 1958.

Another possible assumption is that the trend in average weekly hours of nonproduction workers has been the same as for production workers. In effect, the two assumptions represent "reasonable" limits to the trend in average weekly hours worked by nonproduction workers. For the period considered, long-term rates of change in man-hours and, consequently, in
output per man-bour in factory production of farm food products are the same based on either assumption. Output per man-hour based on the assumed trend in average weckly hours worked by nonproduction employees, and used in the body of this report, shows an average annual rate of growth of 2.7 percent in the postwar period 1947-58, and 2.0 percent in the entire period 1919-58; the rates of growth were the same when estimates were based on the alternative assumption that average weekly hours worked by nonproduction

Table 1.-Factory production of domestic farm food products, weighted man-hours, and production per weighted man-hour, Lnited States, 1919-58

[1947-19 = 100]			
Year	Proinc- tion:	Welghted hans:	Producweinnted man-inour
1919	53	101	52
1921	47	83	56
1923	55	90	62
1925	58	St	68
1927	60	85	70
1029	65	91	72
1931	60	7.1	80
1033	5.5	68	80
1935	60	7	81
1937	68	83	S2
1939	72	78	93
1047	101	101	100
$19+8$	99	1100	98
1949	100	99	101
1850	103	101	102
1951	106	101	104
1952	108	$103{ }^{\prime}$	105
$195 \overline{3}$	112	98	11.4
1954	113	97	117
1055	117	98	119
1950	12.4	100	123
1957	12.4	99	125
1958.	126	90	130

[^19]workers were the same as for production workers. The results were the same because man-hours of production workers accounted for such a lave proportion of all employee man-hours.

Weighted Man-Hours

The index of weighted man-hours is bused on man-hours series for production and nonproduction workers weighted by thent respective average hourly emmings. by Census t-digit industries. Wuge and salary data for compating the woights are from the ('ensus of Sanulactures: Arerage hourly carnings for production and related workers were computed from wage data, and arerage hourly eamings for emplopers other than production workes we based on total payrolls for all emplosees minus wages of production and related workers.

The weighted man-hour index
was compuied by using a modified cross-weighted (Xarshall-Edge worth) formula, similar to the one used in computing the factory production index. The weight rears were also generally the same as those used in the factory production index (85). Specifically, the weights for computing the weighted man-hours index are averages of hoully eamings of the following pairs of weight years: 1909 and 1919,1919 and 1929.1929 and 1937. 1937 and 1939,1939 and 1947, and 1947 and 1954. The weighted annut man-hour indexes were linked at terminal vears of the weight periods and put on a basc of 1947 $49=100$. Table 11 shows the indexes of production, weighted man-hours, and output per weighted man-hour for factories processing domestic farm food products for vars in which the weighted manhours index was calculated.

Appendix B: Comparison of Labor-Capital Productivity in Food Manufacturing and in Farming

The index of ont put per man-hour in lactors processing of farm food products was constructed in orter to stude the relation between changes in hourly earnings per employed and unit habor cosis, and to use, along with other information. for making fong-term projections of unit man-honer requitetments for food processing industries. The primare purpose of this appendis is to show that, on the hasis of arailable diath, there is no eridence that the growth of resouree efficiener or of technology wats ans greater in farming than in fool mantart turing during the period $193 \overline{3}$. 2 and the period 1919 -ist as n whole. The importint guestion of which of the two sextors waprienced the greater increase in efficiener is still opern; the answer requires mote and better datia. This alsomerms that the use of the index of out put per man-hour as :an indicator of changes in effi-
riener ean result in wery deceptive conclusions.
An inder of labor-capital productivitr (output per unit of labor and capital combined, For Food and kindred products (exeluding Berera (yes) manufictures was constructed for solected vars emploving Croaner's estimates (7, l:5) of the stock of total capital and estimates of weighted and unweighted manhours. The index of tabor-copital productivits, like the index of output per minth-hour, is onle a partial measure of changes in efine iencer, as define ${ }^{\text {an }}$ in the begiming of this report. Employing soveral eritiend assumptions discussed below, the index of laber-capital productivity can be riewed as a somethat more comprobensive menatire of changers in aflicicury than the index of outpat per man-hour. In genemal. output per man-hour in hatheress processing farm food products lans
been a tolerable indicator of long-term-but not short-term-trends of labor-capital productivity in food processing industries.

Methods and Qualifications

The labor-capitnl input indexes for Food and kindred products (excluding Beverages) manufactures (table 12) were constructed by weighting the man-hour serics by an estimate of average houry compensation (average fourly payrolls plus an allowance for fringe benefits). and by weighting the stock of total capital by an estimate of net returns to capital (rents, profits, interest, etc.).2. The weighting emplors a cross-weighted index nunber formula using aretage hourly compensation and net returns to total capital for 1929 and 1957 . The factory production index was then divided by the combined labor-capial input index to obtain the labor-capital productivity index.
As indicated in the introduction. changes in the stock of matal and in the man-hour series do not refled changes in the quality (including

[^20]new techmology) of these factor inputs. Consequenty, resources employed in increasing the qualityof capital and labor inpuis are not counted as resource inputs, but instead contribute an unknown proportion to the incrense in laborcapital productivity. There is also the difficult accounting problem of realisticalty mensuring depreciation of capital goods. The estimates of the stock of total eapital exclude physical assets used in production which are rented or leased; however, there was no apparent trend in the use of rented capital by food manufacturers.

Besides these statistical and accounting problems, there is also the critical assumption that the flow of capital services ased in production is proportional to the stock of total capital and that the flow of labor servies is proportional to the number of man-hours worked. ('onceptually. an index of labor-capital productivity should relate the flow of output to a flow of imputs of labor and capital services; the computed inder of labor-capital productivity ases the stork of total capital and the assumption that the flow of capital services is proportional to the stock. Labor-capital produc-

Table 12.--Labor-capital productivity in Food and kindred products (escluding Becerages) manufactures, L'nited States, selected y/fars 191\%:\%

[^21]tivity indexes were computed using 1929 weights and 1957 weights separately, and the results were essentially the same. This suggests that the stock-flow assumption for food manufacturing industries may not be too restrictive for long-term comparisons. Also, the use of "prosperous" years to minimize the problem of under- or over-utilization of capacity is probably "reasonable" for long-term comparisons, but perhaps tenuous for short-term comparisons.

Comparison With Farming

Labor-capital productivity (based on unweighted man-hours) in Food and kindred products (excluding Beverages) manufactures grew at an average annual rate of 2.5 pereent from 1937 to $1957 .{ }^{23}$ During this same period, which was marked by a large substitution of capital for labor in farming, the index of productivity estimated by Agricultural Resench Service (table 13) rose 1.3 percent per year. ${ }^{24}$ For the period 1919-57 as a whole, labor-capital productivity rose at an average annual rate of 2.2 percent in food manufacturing and at a rate of 1.3 percent per year in farming. These figures mean that the ratio of output to resource inputs which can be statistically measured-not total resource inputs-has grown at a faster rate in food manufacturing than in farming since the end of World War I and in the period after

[^22]1937. Thus, there is no indication that the growth in total resource efficiency or technological change has been greater in farming than in food manufacturing.

Differences between the explained proportion (measured inputs) and unexplained proportion of the rise in output in both food manufacturing and farming are too large to conclude whether efficiency rose faster in one sector than in the other. For the entire period 1919-57, only about one-fifth of the rise in factory production of Food and kindred products (excluding Beverages) can be accounted for by the rise in laborcapital imputs; four-fifths of the increase is accounted for by increased labor-capital productivity. Based on data constructed by Agricultural Rescarch service, increases in (measured) production inputs contributed about one-sixth to (gross) farm output; about five-sixths of the increase in output was accounted for by the rise in productisity. That is, most of the rise of output in food manufactures and

Table 13.-Productirity in farming, United States, selected years, 1010-57
$[1020=100\}$

Year	Farfin out. put	lroducton imput	1 rortuc(is)ly ${ }^{2}$
1919	89	93	96
1929	100	100	100
$19.3{ }^{\circ}$	111	96	114
19.18	1-11	10.3	1.37
1953	1.7	105	139
1957	$15 \cdot 1$	102	150

[^23]farming since the end of World War I is due to a statistically unexplained residual (productivity). Since technology and labor skills employed in the two sectors are markedly different, the conclusion is that comparison of the rate of growth in efficiency in food manufacturing and in farming is still an open question.

Output Per Man-Hour As an Indicator of Labor-Capital Productivity

In food manufacturing, the index of output per man-hour may be, for some purposes, an acceptable approximation for gaging long-termbut not short-term-trends in the index of labor-capital productivity. This can be illustrated by comparing yearly rates of growth between output per man-hour and laborcapital productivity in Food and kindred products (excluding Bererages) manufactures:

Serics	Annual rate of growth during I-	
	$\begin{array}{c:c} 1910-19-18- \\ 57 & 57 \end{array}$	$\frac{19.53-}{57}$
	Per- Per cont cent	Percent
Output per unweighted man-hotr.-.-..---	2.3 ± 2.5	I. 9
Labor-capital productivity (total capital and unweighted man-hours) ----	$\begin{array}{l\|l} 2.1 & 1.0 \end{array}$	1.2

${ }^{1}$ Annual rates based on compound interest formula between terminal years shown in table !2.
This tabulation shows that if the anuual rate of growth in output per man-hour was used to gage the annual rate of growth in Iabor-capital productivity (both based on unweighted man-hours), the amual rate would have been overstated by about 10 percent for the 38 -yerr period (1919-57); by about 30 percent for the 9 -jear period (194857); and by about 60 pereent for the

4-year period (1953-57). The conclusions are essentially the same if the comparison is made between output per weighted man-hour and labor-capital productivity using weighted man-hours (fig. 7).

The long-term rates of growid in output per man-hour and in laborcapital productivity in lood manufactures are similat because labor accounts for a latge fraction of total inputs, and the substitution of capital for labor has been relatively small in lood manulacturing industries, particularly since 1929. In 1957, the weights for the man-hour index relative to the total capital index were about 4 to 1 ; the ratio was about the same in 1929 . Also, between 1929 and 1957 the stock of total capital per matu-hour rose only about 15 percent. From 1919 to 1929, when there was a large substitution of eapital for latbor, the rise in output per man-hour greatly overstated the rise in labor-capital produclivity (fig. 7).

Indexes of output per man-hour are misleading indicators for comparing teends in labor-capital productivily between food manufitcturing and larming. During 1937-5̄, output per man-hour rose at an amual rate of $2 . \overline{7}$ percent in Food and kindred products (exCluding Bererages) manufiactures compared with 4.0 pereent in farming (33). ${ }^{36}$ As indicated abore, charing the same period the ammal rate of growth in labor-cupital productivity was greater: in food mamufacturing than in farmingjust the opposite ranking shown by rates of growth of outpit per manhour. From 1919 to 1937, output per man-hour rose faster in food manularturing than in farming; but, Por the period 1919-5a as a whole, the average annual nte of growth of oulpat per man-hour was 2.3 peremt in food manufacturing and

[^24]

Furcre 1
2.7 percent in farming. Thus, the rank of the 38 -year rates of growth in output per man-hour betwen the two sectors was the reverse of the rates of growth in labor-cupital produclivity indicated above. On the assumption that the labor-rapital productivity index can be weated as
a somewhat more comprehensive mensure of effieieney than the index of output per man-hous, the above compurison indicates that indexes of output per mata-hour mo misLeading indientors of teonds in afficience between food manalactaring athed liaming.

Literature Cited

1）Sowben，Witt
19\％．WAGES，HOtRS，AND 1RODVCIVITY OF INDI＇STRLAL LABOR， 1009 TO 1030. ［．5．Dept．Jabor，Donthly Labor Ret．，Sept．10．to．
（2）Brafird，TMoresiv．

 $11: 115-120$.
（3）$-19 \overline{5}$

 tion，Juls 195解pp．16－21．

 and Transportation Sitution，Nov．1958，pp．19－28．
（5）Crbamer，DaNiEh．
 Ficrones．lapers and Procedings of Soventeenth Anmund Deeting Ans．Ficon．Assoc．， $48: 3-49-259$.
（6）$-\cdots-\cdots$
 Oecastonal laper fl，Nat．Bur．Feon．Res．，Sne．，Sow York．

（B）D．MN，Rex F．
 Feon．R（2s．S：73－！01．

 Bur．Eeon．Pistatine，New York．
$(10)-\frac{19.0}{19}$.

 Nuw York．
（11）……，and Fox，Kaki A．
 Thas．TV．S．Dept．Agro Agr．Jecon．Res 3：（0）－Sti．

 of the Joint Mereting of the Armer．Farm．Beon．Aseoce and Catadiam

 Jart JI．

 lock．

（lb）Sivnosme Nomete Forndatos．
 s（C）EEY．
（17） 1358.

（19）Sonctiz，＇latomone W．

（20）sumater，（itataris I．
 ブos lork．
(21) Tostiere, Alvif S.
1954. tie growtil of phivical capital in aghiculture, 1870-1950. Ocensional Paper du, Nat. Jur. Fcon. Res., Ine., New York
(22) U.S. Boarb of (iovernons of the Fedmal. Reserve System,
960. innestriata probuction, ig5s hevision. Washington, D.C.
.S. Department of Amricyetilie.

1059.
(25)

- Statis. Bul. 233 . (Revised Sept. 1959.)

1950. agrictiturmi ofthook chabts 'bo. is pp. (illus.).
1951. major statistical sertis of tife u.s. debartment of agricultche, how they are constricted and how they are tsed. Vol.?,

1952. trends in cost of laior in marketing farm foon products. U.S.
(28)

- 195% Agr. Mikg. Serv., Mikig and Transportation Situation, Apr. 1956.

1902. technology in food marketing, a shevey of develobments ant TRENDS in the phocessing and mistmhution of rarm-ltodyced
(20) Fooms. Agr. Mronog. 14.
 (30) \qquad
195S. tis. ancome and oltput, a strpdemext to the survey of ccharat
(31) ~atsisens. Ollice Bus. Jeoun.

(32)

1938
(33) T.S. Dbeartabevt of hafactur.
1959. TREADS IN OTVCLT PER MAN-HOYR IN THE PRNATE ECONOMY, 1000-105s.
(3.) Bur. Labor Statis., Bul. No. I2l9.
1942. horbs and earmings in tife enteb states, 1032 -40. Bur. Labor
(35) Wadonf, Witham 1

(30) Wommas, Who.
 Bul. 71 .

[^0]:
 Washlugton as, D.C'. Price we ents

[^1]: The labor cost figure does not inelude lahor cosis of matroats and other for-hire carrifts; it includes an estimate for cost of fringe benefits. "* * * the marketing bill measures the difrerouce between consumer expenditures for farm products and payments wecived by farmers forequivalent quantities of produce. In this contexi, marketing inelutes all oprations iovolved in movitr agricultural products from farms on which they are produced to consumers the the time and in the form they are bought." See Ogren (15). (Thalic mombers in parentheses refer to ifens in hitertture Citerl, page 35.)

 The tofal markuing bill for comestic farm food products is publisherd annuatly in The Darkeding and Transportation Sitmation, Agrieultural Markeling Servies, Lniter States Deparment of Agrichilure.
 ${ }^{2}$ This report exeludes phats proeessing flutiol milk, cram, abd uges becaus athquate emptosment tanta for these plants are not avalable la the base period, 191-49, huid mik, cream, and processed (xgs areounted for about is berent of (weighted) factory production of ail donestic firm ford produets. The series used in this report adsumelude ondput and math-hats in prochurion of ferod byproducts manfactured in estabishments specializing in processing farm fond prodients.

[^2]: 3 That is, whenover jossible physiemal fatanditise were weighted by value adeled. "Palue arldea," as used in the (emsus of Mambactares (0.s. Daph. ('ommerep). is "eatematern by subtracting the esst of matarials, supplies, somblinurs, furl. purebaseri wectris chorery, ath! contract work from the teatal ralue of shipments," For att anatysis of the valus adrled con-

 1 For a briof disoription of the index of factary protuction, ser apmondix A; for a desaited descriptiont of semsemi ebat

 SFor dofinitions of all emploferes and bones worked, and for artatal destription of sumpets of data abot mathorls waral in reritibe the math-hontrs fudex, sefe atppendix 1 .

[^3]: i ("uldes wherwise matrol, thromghout
 war e computed from leasel spatare tided of the logetrithas of the indox intmbers for years shuwt in table 1 .

[^4]: " Atore spereflealiy, the recibroeal of ontput per math-hour as compiled in this report measares changes in that manhour matimomonts for a changing product "mix.,"
 hour series with ourber years. Comparison of emplogmenti einia reported in Ammal Survegs ami by the hasi surgests that averatge amomal rate of growh in otaput per man-hour from 154 to 1908 was not signifieantly affected by the revision,

 Compiled from Bienmial and Deceminal
 Ambual Furvers of Manmfactures (29) nad data publishet by the Departmonts of Labor and Agriculbure.

[^5]: ${ }^{8}$ Data on average weekly hours are available for production and related workers only. During the period 1010 58 , production and related workers accounted for at least three-fourths of all employens, l'roduction and related workers as defined in the Census of Hanufictures for $195 \cdot 1$ include workers up through the working foreman level engaged in production operations or in serviees elosity associated with these operations (for example, watchmen, janitors, record keepers).

[^6]: ${ }^{1}$ Avortage athatati mator for cotely sedor are bused on biennial amd anmatl datal for years shown in tatho 1 . Arepage ammal mates for the total pricatio exomemy and for the private nonfarm secedar woild ise about the some if computed from anmatal datia.

 2 Compuntret from Bureath of Taibor Statistics festimates of "roal prodmed per man-hour in the frivate ecomong" (53). leat prordact per math-herur foir total private eqomsmy and for private nomfarm sector based on matimatas for gross national produtt in constant doliars construetsd by oflice of duanimes bernomics, C.S. Departmont of Commerest: man-hours data from Monthly heporl of the Labor froree, Bumenta of thit Census, sad based on persional interviews of sample of households.

[^7]: 0 The arerate ammat fitros of growth showe by the slopes of the libes in ligure ? atre, of eotirste, afferted by the chole of Phars (191\% t! aseragi and llose): therefore, referemer shembed also be bathe ta table 3 for comparjson with other years.

 10 Production of poultry products rost* roughls 250 prement from $1597-49$ to lobs. (.omparable data on mathomes are incomplete and cammet be shown separately meverlbeless, it is appareot from avaibible information that output per man-home in poultry dresifus plants gres at a substantially fater rate than in any induatry group shown in table 3 .

[^8]: II If the 1957 product mix is held constant, the estimated average yearly increase is 3.5 percent.

[^9]: ${ }^{12}$ Jn 1957 , value added by manufacturing establishments included in the output per man-hour index for factory processinut of domestic fiarm food products accountied for 83 pereent of total value adeled by all establishments elassified in Food nnel kindred products (excluding Boverages) manufictures.

[^10]: ${ }^{33}$ Comparison with data for Food and kindred prochucts manfactures pablisibed in the Smmal surser of Mambactares for 1950 badicate? that research and development costs as reported by the Xitional Sicmer Foundation accounted for about 0.5 percent of value added and that the total number of physical sejentists accounted for about 1 percent of ail employees (nearty 3 percent of nonproduction workers). The ratios for emplovees would not be significantly larger if the estimates the included technicinns engaged directly in researela and development.

[^11]: 1 Based on ycars shown in table I.
 ${ }^{2}$ Man-hours for production and nonproduction workers by industry weighted by arrage hourly earnings estimated from Cemsas of Mamufactures data.

[^12]: " 'Jtife weighted man-hour indes reilcd.s interindustry shifts by all employees and intra-industry shiffe between production and nomproduction worters only; "upgrading" within production and nonproduction workers separalely would not be reflected. The comparison of the weighted and unweighted man-hours series probably understates inereases in "quality" of hafor inputs bectuse of the necessity of using broad classifications.

[^13]: 1 Based on manal and biembial data for years shown in table 1 ; the average annatal rate of growth in output per manhour for farming based on ammat data is the same as that stown in this table.

 2 Computed from Burena of Labor Statistics estimates of "real prodiect per man-hour in farming' (3). BTA series based on estimates of gross mational farm product, compiled by the Olfiee of Business EConomics, ÉS. Hepartment of Commeres.

[^14]: ${ }^{5} 5$ For comparison of trends of output per man-hour and habor-capital productivity between food manufacturing and farming, see appendix B.
 ${ }^{16} \mathrm{Net}$ farm ontput per man-hour is based on estimates of "gross mational farm product" compiled by the Omice of Business Liconomics, U.S. Department of Commerce (30). Gross mational farm product (in $105+$ dollars) measares total value of farm ontput net of the value of nonfartm materials (gasoline, chemical fertilizers, etc.) and services (rents, etn.) used in farm production. Conceptually, gross national farm product, in constant prices, is athalogons to the index of factory production of farm food products. The finder of outpat per man-hour in farming used in this report differs conceptually from the prodtretion per manhour index compiled by Agricultural Resmareh Sorvice, (SD)A. According to ARS estimaties, fross farm output per man-hour rose about 105 percent in the postwar period 1017-58, and 300 percent in the four decades $1906-58(24)$.

 In the period 1947-49, farm production of food prodacts, our primary interest in this report, accomnted for roughty to pereent of total farm production; the pereentage was the same in the period 1035-39 (26).

[^15]: ${ }^{17}$ The index of homly earnings bused at homess wortied is the ratio of in index of total payrolls, as reported in the Census of Manufartures, and the indere of man-houre marked by ath employees, shown in table I. Conerphatly this series differs from tworage hourly carning for production workers published by the lureall of Jabor Statistics, whim is based on hours paid for (that is, imeluding paid vacations, siek leawe, ete. There are other conecptual ats well as statistiena diferences getwen the two seris. Both series on hourly earnings emit fringe bencfits whieh have grown as a prementage of total labor compensation, partictharly since World Wir 11 (2̂). hecording to entimates of the - hepariment of Commerce, total payralls: iccomment for abour 93 perect, of total moployers' eompensation in Fousl and kindred products mantimenes during 1057.

[^16]: ${ }^{14}$ Average hemrts camings in farming ate based an :a weighted average of all farm wage rator of a per-hemr hasis. As compiad by AMS, the farm wage rate series mensints only cash rater: it con-
 the free use of howse or frete reom and board which :are commomly furnished to hired workers on farmi. In lang, these
 hatf billion doli:w compared io $\$ \mathbf{Q} .6$ billion in can wagts that in, cath wage atcounted for abom sis pereent of what habor cosis.

[^17]: ${ }^{10}$ There are important definitional problems in comparing average hourly earnings in food manufacturing and in farming. Average hourly earnings in food mamufatures omit fringe benefits, atud averuge hourly carnings in farming omit nonoush wages; therefore, the two series are only quililitied measures of tabor coists per man-hour in the two sectors. Historieally, fringe benefits have grown it it faster rate than total payrolls in food manufacturing and casth wages have grown at a faster rate than noncish wages in farming, indicating that the biasess itttrodued by using the two qualified series on arerage hourly earnings result in atn understatement, rather thin an overstatement, of the conclusions in the text.
 ${ }_{20}$ The index of output per man-hour is bised on net farm output (table 7). The percentage decline is unit laimer costs in :igrienture during the postwar period 19.47-58, is shbout the same whet her bused on net or gross farm output. The generit conclusions would probably be the same for a comparison belwe ent farm production of food products only and food processing industries.
 ${ }^{21}$ Lnit processing eharges were derived by dividing an index of "ralue added" by thic index of factory prodnetion. Tuis ritio is, of course, subject to the statistical errors and biases inherent in both the numerator and the denomimator. The analysis in this report excludes fatory proiessime of fluid milk, cremm, and eggs; therefore, estimates of changes in minit value added shown in this study difter from those given in an emrlier liechnical renort (30°) which included datia for these phints.

[^18]: ${ }^{1}$ Census figures on average weekly hours worked were computed from datt published in the Censuses and Annual Surveys of Manufactures on man-hours and number of production and related workers; the average annual number of hours was divided by 32 .
 ${ }^{2} \mathrm{BLS}$ series on average weekly hours paid for were obtained from Burcau publication, Employment and Earnings, Anniual Supplement Figures. There are also unexplained differences between the Census and BLS series due to differences in scope, coverage, and unexplained statistical factors.
 ${ }^{3}$ Not available.

[^19]: I Fe cable 3 , foomote:
 2 Method of comphting weighted manhour index deseribed in text.
 ${ }^{3}$ ("nrounded figures used in computations.
 -Interpolated on basis of data from Bureat of Labor Statistics.

[^20]: ${ }^{22}$ Set returne to capital were osimetord by subtracting total Iftoor compermsation from an estinate of ineome originatious in Food and kindred prodtuets (excluding leverages) maminctures.

[^21]:

 tions for libor-capital productivity are based on anrourded figures.

[^22]: ${ }^{23}$ Average anaual rates of growh of labor-capilal producivity were compthed for years shown in tables 12 and 13.
 ${ }^{2}$ The index of productivity for farming compiled by ARS is based on gross output divided by a weighted sum of inputs of labor, capital, and intermediate goods and services used in farm production (25). Using a measure of net output ("gross national farm products') and the stock of tankible-not total-capital. Kendrick (12) estimated that "total factor productivity" in farming inereased about 3.1. perecnt per year from 1937 to 1957. Both the ARS series and Kendrick's series differ conceptunlly from our index of productivity for food manufactures.

[^23]: 1 Yolume of farm produetion avablable for eventual hitmatn use, lucluders nonfurm imputs of intermediate goods and serviees consumed in farm production.

 2 Combined volume of farm labor; land and service buildings; machinery and equipment; fertilizer and time; purehasits of feed, seed, and livesuck; and miseellameons production items, in terms of constant dollars. thysical asserts used in proriuction are net of depreciation.
 ${ }^{3}$ Outpat per unit of production inuuts.
 Estimated by Agricultural Researeh Service (25).

[^24]: ${ }^{35}$ Avertgr anmaal rates of growth for output per man-hour were computed for sears shown in tables 12 and 13.

