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I. Introduction 

Predicting total production of a grain crop, for a given geological area in a given 

time period, is a frequently-faced problem in agricultural economics. One approach to 

this prediction problem is to carry out the following three steps: ( 1) Specify separate 

yield and area response equations. (2) From a time series of past observations, use 

econometri.c methods to estimate the parameters of each equation. (3) Use the 

estimated equations to make separate predictions of yield and area~ and predict output 

as the product of predicted yield and predicted area. The argument for estimating 

separate area and yield equations rather than one single equation for output is usually 

based on the different decision processes and different variables that tend to underlie 

the area and yield equations. The area that is planted tends to .depend upon price 

expectations (for the crop of interest as weU as those of alternative crops), habit 

persistence (usually captured by a lagged dependent variable), input costs and rainfall 

at sowing time. Yield, on the other hand, depends upon. climatic .. factors throughout 

the season and a variety of technology factors such as new plant varieties, new 

fertilizers and advances in crop rotation technologies. For further discussion of the 

specification of area response equations in Australian broad acre .. agriculture .refer to 

Anderson (1974), Fisher (1975), Griffiths and Anderson (1978), Sanderson et at 
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( 1980) and Fisher and Munro ( 1983 ). For further discussion of the specification of 

yield equations refer to Guise (1969), Francisco and Guise (1988), Del Vaile and Ray 

( 1990) and Dillon and Anderson ( 1990). Two studies which consider the specification 

ofboth area and yield equations are Fisher (1978) and Coelli (1992). 

One difficulty with modelling area and yield separately, and predicting output as 

the product of predicted yield and predicted area, is that it is not obvious that the 

simple product is an optimal predictor~ and an appropriate expression for the standard 

error of the prediction error does not seem to be available in the literature. The object 

of this paper is to fill this gap. Assuming the area and yield equations comprise a two ... 

equation system of seemingly unrelated regressions (Zellner, 1962), two predictors are 

suggested and the corresponding standard errors o.f their prediction errors are derived. 

The methoonlogy is illusta uted by predicting wheat output for the Corrigin Shire in 

"V-.1 estern Australia 

2. Model and Predictors 

To explain previously generated observations on yield and area~ assume we have 

the two equations 

(1) 

(2) 

where A and Y are T -dimensional vectors containing T past observations on area and 

yield, respectively; X
3 

and XY are (T x Ka) and (T x Ky) matrices containing past 

observations on the explanatory variables that help describe movements in A and Yt 
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re&pectively; ~a and (\, are (Ka xl) and (Kyxl) area .response and yield response 

coefficients, respectively; and U a and U Y are (Tx l) normally distributed random 

vectors with zero means.. Denoting tl1e individual elements of U n and U >t by uat and 

u._
1

, we represent the contemporaneous covariance matrix as 

(3) 

The subscript t in equation (3) denotes the t .. th observation (t = 1.21 ... ,T). It is also 

assumed that the errors are uncorrelated over time in which case the joint covariance 

matrix tor the complete error ve.ctor (U~ U~ Y is given by i: ® I,.T where lT is the T-

dimensional identity matrix Further, let 

(4) 

The model described by equations (l) through (4) is a two equation example of 

the standard seemingly unrelated regressions model introduced by Zellner (1962). The 

best linear unbiased estimator for J3 is the generalized least squares estimator 

(5) 

with covariance matrix 
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(6) 
at·· .. , ]"'l 

a ... x:x.·y. 
a»' X' X 

'J y 

In equation (6) the symbols cru, aYY and a~Y denote the elements of 4:""1; the 

submatrices vaa' vav and v~'Y have been introduced because they appear in 

subsequent expressions for predictors and their standard errors. ln practi.ce the 

elements in the contemporaneous error covariance matrix I: are unknown and ate 

estimated using least squares residuals. Details of this procedure and other information 

about the seemingly unrelated regressions model can be found in any standard 

econometrics text~ see, for example, Judge et aL ( 1988, Ch.ll ). 

Given values for the explanatory variables in the nexi period, denoted by the 

(K
4 

x 1) and (KY x I) vectors xa and x>', respectively, the problem is to predict next 

period's output, which is the product of next period~s area a, and next period's yield y, 

with the latter two quantities being given by 

(7) 

(8) 

a= x'n +u aiJa a 

The random errors u a and u Y ate assumed to be a joint drawing from the bNariafe 

normal distribution N(O, I:), consistent with the data generating process for the sample 

observations. 

Thus) we are attempting to predict 



{9) q =a.y 

= (x~Pa + U11 xx~p>' + uy) 

=(x:PaXx~J3Y)+x:Pauy +x;.Pyua +U<luY 

The choice of predictor and the variance of' the prediction error depend on the level of 

recognition of parameter unceJtainty. Three cases involving dif:l'ering degrees of 

recognition of parameter uncertainty can be identified. the three cases are: (i) assume 

all parameters (J3
3

, Py and S) are known~ (ii} recognjze that ~a and f3y are unknown 

but assume :E is known~ and (iii) recognize that Pa, f\ and L .are all unknown. 

The usual approach under case (i) is to: (I) Assume all parameters 

(f3a. Py and :E) are known. (2) Derive the relevant predictor and the variance of the 

prediction error under this assumption. (3) In the expressions derived under (2), 

replace the unknown parameters by estimates. This ts the approach typically adopted 

in time-series analysis when autoregressive and/or moving-average models are:'used for 

forecasting. See, for example, Judge et al. ( 19&8, p. 705-713 ). Under case (ii) we 

recognize that ~a and ~Y (but no.t the elements in :E) are unknown before a predictor 

is chosen, and derive the variance of the prediction error under this assumption. In this 

case only i: and its elements are replaced . by estimates to make. the predlct.or 

operational. This is the approach typically taken for best linear unbias.ed .prediction .in 

generalized least squares models. See, for example, Judge,et al. {1988, .p .. 343o.c34o), 

Under case (iii) where we recognize uncertainty in both (a a, ~Y) ~d S the finite 

sample properties of the predictors appear intractable. We therefore do :no.t considt:!t 
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this third case :in this papec The properties ·Of the predictors or cases. (i) and (il} iar~ 

discussed. below. 

2.1 Cgse {i): AU Parameters Assumed Kno.wn 

When all parameters are assumed known~ t:he minimum variance pr¢dictor for .q 

.is the expectation of equation {9) that is given by 

(10) 

This predictor is an unbiased predictor in the sense that the expectation of its 

prediction error is zero. That is. E(ql- q) = 0. It is made operational by replacing 

~a, ~ >' and o ay by their estimates a a, ~ r and cr a)' . Compared to what might be 

tenned the naive predictor (x~~aXx;~Y}' note the existence of the additional term 

o ay • A positive correlation between the errors implies that, on average, their product 

will be positive, and conversely for negatively correlated .errors. In the Appendix we 

show that variance of the prediction error is given by 

(11) 

The square root of this quantity is the standard error of the prediction error t.t'Jat c<m be 

used in conjunction with q1 to form a confidence interval for future output. Since, in 
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practice, {3 a, ~ Y and the elements in I: are replaced by consistent estimates; such a 

confidence interval will be a large sample approximate one. 

2.2 Case (ii): Only L Assumed KnO:JrVn 

The expression for the prediction error variance in equation {1 'l) recognizes 

uncertainty about the values of the future errors ua and uy but it does not recognize 

the sampling error that occurs in the estimation of f3,., ~Y and E. To recognize the 

uncertainty in {3 a and {3 Y it is natural to suggest the predictor 

(12) 

However, this predictor is biased because 

(13) 

In the Appendix we show that 

(14) 

Consequentlyt a predictor q2 that recognizes uncertainty in the estimation of {3
3 

and 

{3 Y , and that is unbiased jn the sense that the expectation of its prediction error is zero, 

E(q2 -q) 7 0, IS 

(15) 

Furthermore, from the Appendix we see that the variance of its prediction error is 
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The first five terms in this expression represent the added uncertainty associated with 

estimation of f3
3 

and f3y; the last five tenns are identical to E[(q 1 -qf]. For 

computational purposes a partial matrix algebra representation of (16) might be 

convenient. It can be shown that 

(17) E[(<J 2 - qf] = z'[ :E + x•[x·( :E-1 
® r)xr x]Z+ x: V,.x.x~ V,-yxy 

+(x'V x )
2 

+cr a +cr2 
a ay' y aa yy ay 

where 

{18) 

After replacing unknown parameters with their estimates, the predictor q2 and 

the corresponding standard error of prediction error, calculated as the square root of 

( 16) or ( 17), can be used to construct a large sample approximate confidence interval 

for next period's output. Since q2 and its standard error reflect uncertainty in the 

estimation of f3 
3 

and ~ Y , we would .expect this predictor to lead to a better 

approximation in finite samples than q 1 and its standard error. 
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2.3 Uncorrelated Errors 

If it happens that the error for the yield eqi.iation is uncorreJated .with the error 

for the area equation, then the expressions for the predictors and the variances of the 

prediction errors simplifY considerably. For the case vfknown parameters we have 

(19) 

(20) 

Recognizing uncertainty in the estimation of ~a and {) Y yields 

(21) 

Note tha~ in this case, the naive predictor is the natural one and that Pa artd ~Y are 

"' ( )-1 ... ( )-1 the ordinary least squares estimators Pa = X~ xa X~A and Py = x~xy x;.Y 

( )
-1 ( ) ... J • Also, using the fact that v. = cr X' X and V = cr X' X , the vanance of aa aa aa YY Y>' Y'i 

the prediction error is given by 

+ craa(x~Pyr[l+x:(x~xaf1 xa] 
+ cr,.crw[I+x:(x;XJ1 x,x~(x;:xJ1 

x1 J 
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Whether one opts for the uncorrelated error version in equations (21) and {22) 

or the correlated error version in ( 15) and ( 16) will depend on whether there are likely 

to be common omitted factors that int1uence both yield and area. For those who prefer 

to base their decision on an hypothesis test, the Lagrange multiplier test suggested by 

Breusch and Pagan (1980) can be empl.oyed. Under the null hypothesis H0 : a
11
Y = 0, 

the statistic A. = T cr !Y I a 3ll cr yy has an approximate chi-square distribution ·with one 

degree of freedom. This statistic. as weU as the likelihood ratio test statistic value for 

the same hypothesis are routinely printed by the computer soft .vare SHAZAJ\1 ( 1993). 

3. An ExamP.I~ 

To illustrate the methodology we used data collected from the Corrigin Shire in 

Western Australia. This Shire is located approximately 200 km east of Perth. It is a 

typical wheat-sheep broadacre farming area with predominantly winter rainfall and an 

average annual rainfall of 365 mm. Equations for wheat yield and for area sown to 

wheat were specified. The explanatory variables used in the area equation were 

L lagged area (Al_1): This variable is typically included in supply response 

functions of this nature to reflect partial adjustment towards a desired area, the 

partial adjustment being attributable to inability to make short-run changes to fixed 

input levels. 

2. lagged yield (Yt-t) : The yield achieved in the previous year has been included to 

pick up the 'catch up' effect. It appears to be a widely held belief that following a 

poor year farmers tend to plant more wheat. Some argue that the farmers wish to 

replace grain reserves run down during the poor year. Others argue that farmers 
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wish to catch up on lost income. Some also argue that during a poor year the 

applied fertiliser is not fully utilised, hence another wheat crop is put in the next 

year to use up the unused nutrients. It is also argued that seed bed preparation 

after a poor year is much cheaper due to smaller weed populationst hence 

encouraging an increase in plantings. 

3. lagged price (Pt-l) \Ve assume that, prior to planting, the wheat grower bases 

his/her estimate of the likely wheat price at hatvr>'>t time largely on the price 

received for the pre\~ous crop. Based on past studies, and on what he sees as the 

likely behaviour of farmers, Coelli ( 1992) argues for this choice in preference to 

more compte\. adaptive or rational expectations structures. 

4. lagged input: prices (Pit-t). An index of input prices lagged by one period was 

included with the expectation that a rise in the price of inputs would have a 

negative influence upon the area planted. As the wheat crops are generally planted 

in May or June of one finandal year and harvested in November or December of 

the following financial year, the use of lagged input prices appeared appropriate. 

5. quota dummy (D, j . A dummy variable which takes the value 1 in the years 1970 

and 1971 and 0 elsewhere was introduced to capture the likely negative effect of 

quota restrictions that were in place during those years (see Fisher 1975). 

6. trend (T
1 

) : A linear time trend was included in the area equation to attempt to 

prox'}' factors such as the release of land for agriculture and technological change 

which may have a systematic effect upon the area planted to wheat in a shire. A 

quadratic effect was initially considered but the squared tenn was omitted because 

of its statistical insignificance. 
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7. rainfall at sowing time (RS,): Breaking rains are likely to be an important 

variable influencing fanners• decisions to plant wheat. Rainfall for the 3-month 

period April, Nlay and June has been included. along with its squared term (RS;), 

the squared term being introduced to allow for the possibility of diminjshing 

rerums to breaking rains Rainfall was expressed as a ratio, relative to the average 

rainfall over the sample period. 

To explain average wheat yield in Corrigin Shire, we used monthly rainfalls and a 

linear trend variable to reflect technological change. The distribution of rainfall is 

important since rainfall during the germination, growing and flowering periods is 

necessary. and is likely to have differing effects on yield For tllis reason monthly 

rainfalls~ from May through to October (R\. R6
1

, .. , Rl Ot) as well as their squares 

(Rs;, R6;, .. , R l o;), were included. The estimated coefficients of the August rainfall 

variables were observed to be very small relative to the estimates for the other months, 

highly insignificant, and of the incorrect sign. An examination of the rainfall pattern 

over the sample period for June and July indicated good reliable rrunfall, suggesting 

soil moisture was unlikely to be a limiting factor in August. The August rainfall 

variables were therefore dropped from the yield equation and the system of equations 

re-estimated. 

The data set consisted of39 observations for the period 1950-88. Details of the 

data sources are described in Coelli (1992). Briefly, observations on yields and areas 

planted were taken from various publications of the Australian Bureau of Statistics. 

Rainfall figures were those recorded at the Corrigin Post Office. Wheat price and the 
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general input price index were taken from the Commodity Statistical Bulletin published 

by the Australian Bureau of Agricultural and Resource Economics. 

The area and yield equations were initially estimated using 3 7 observations, the 

first observation being dropped to allow for lagged variables and the last observation 

being dropped to permit a comparison of actual and predicted values. The equations 

were estimated as a two-equation seemingly unrelated regression model allowing for 

contemporaneous correlation between the errors that may result from common omitted 

influences. The estimated equations, with standard errors in parentheses, are: 

At = 9.48 + 

(8.03) 

+ 

yt =-0.186 + 
(0.323) 

0.631 A._1 

(0.088) 

0.239 Pit-t 

(0.049) 

16.6 RSt 

(11.9) 

0.0156 Tt 
(0.0033) 

-

-

+ 

14.3 yt-1 + 0.183 pt-i 

(3.0) (0.048) 

12.1 D
1 + 0.994 T1 

(3.2) (0.156) 

7.3o Rs; 

(5.36) 

R 2 =0.954 

0.434 R5t - 0.133 R5; 

(0.209) (0.090) 

+ 0.527 R6t - 0.196 R6: + 
') 

0.360 R7t - 0.208 R7; 
(0.283) (0.113) 

+ 0.427 R9 
1 

- 0.0597 R9~ + 

(0.199) (0.0693) 

(0.255) (0.1 07) 

0.153 RIOt­

(0.166} 

0.0705 RIO: 

(0.0600) 

R2 = 0.680 

In the area equation all estimated coefficients have the correct signs and, with the 

exception of the rainfall variables, are significantly different· from zero at a 5% 
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significance level. Although we have not been able to obtain precise estimates of the 

effects of the rainfall variables, they are retained because of their obvious importance. 

A similar remark can be made about the various rainfall variables in the yield equation. 

Few are significantly diftbrent from zero, but all are obviously important, and they do 

have the correct signs. Evidence on the existence of contemporaneous correlation 

between the errors \vas not conclusive, The Lagrange multiplier test statistic value of 

3 07 was less than the 5~~ critical value of 3.84 from the x;1) distribution~ but the 

Likelihood ratio test value of 7 09 was greater We retained the assumption of 

contemporaneously correlated errors for our calculations of the predictions and their 

standard errors. To check for autocorrelated errors we estirnated each equation 

separately and computed the values of the Durbin-\Vatson statistic} and Durbin's 

h-statistic. There was no evidence of autocorrelation. 

The estimated area and yield equations were used to predict area and yield for 

the next period and to compute values for the various predictors of output and their 

standard errors. Also,. the equations were re-estimated an additional 4 times, omitting 

the last 5, 4. 3 and 2 observations, respectively. In each case one-step ahead 

predictions were made. 

The various results appear in Table 1. There are a number of observations we 

can make. First, the naive predictor ( x:~~ a)( x;~ Y), the predictor that does not 

recognize any parameter uncertainty q1, and the predictor that recognizes coefficient 

uncertainty q 2 , all give essentially the same predictions. T.he values for q 1 are slightly 

higher than those for (x~~a)(x;~Y), reflecting a positive value forthe error correlation 
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Table 1 

One .. Step Ahead Predictions for Output With 
CoiTesponding Standard Errors and Confidence Intervals 

Year 

1984 1985 1986 1987 1988 

Actual Output 175 8 80 3 134.$ 128.7 156.9 

( x;~a )(x;.~ y) 144 0 114.0 126.3 124 . .2 119.5 

<it 144 6 114.5 126.8 124.5 119.8 

se(q 1 -q) 23 2 204 19.7 19.8 17.4 

95%CJ (99.1,190.1) (74 5.154.5) (88.2~165.4) (85.7,163.3) (85.7.,153.9) 

ql 144.5 114.4 126.7 1'24.5 119.8 
se(q~- q) 25.8 23.4 23.2 22.6 19.6 

95%CI (93.9~ 195.}) ( 68. 5' 160.3) (81.2.172.2) (80 2, 168.8) (81 .4, 158.2) 

cr ay ~· and the values for q.2 are very slightly less than those for q1 • In general, we 

would expect the predictors to give similar values when the estimated equations are 

good fits with high R 2 's. Under these circumstances that part of the prediction 

attributable to the systematic components (x~~a) and {x~Py) will be large relative to 

the covariance between the errors. The predictors are likely to yield differertt 

predictions when the equations are poor fits, and the contemporaneous error 

correlation is high, 

Although the new predictors we have derived do not, ·in this particular case;; yield 

results very different from the so-called naive predic;tions, it is important to assess the 

reliability of predictions~ and the expressions for standard errors that we 'have derived 
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are useful for this purpose. Values for these standard errors~ and the 95% prediction 

confidence intervals derived from them~ also appear in Table L \Vitb the exception of 

the interval dedved from q1 in 1988, each interval contains the correspondiflg actual 

output tbr that year. Thus, although some of the predictions miss the matk rather 

badly, if a proper assessment of the reliability of the predictions is givent the 

realizations of output should not generate surprise.. Note that the standard errors for 

q 2 are only slightly greater than those for q 1 , indicating that most of the prediction 

uncettainty originates from equation error uncertainty not coefficient uncertainty. 

Summarv and Conclusions 

Although the problem of predicting output from separate yield and area 

equations is a common one, issues relating to choice of an appropriate predictor, and 

the standard error of the prediction error~ seem to have been neglected in the literature. 

We have attempted to fill this void within the context ·Of the general seemingly 

unrelated regressions modeL Results for the case where the errors of the yield and 

area equations are uncorrelated emerge as a special case. In our empirical example the 

correlated errors had little bearing on the predictions, but it was clear that assessment 

of the reliability of the predictions, through computation of appropriate standard 

errorst was important. 

Although the results that are derived are exact finite s~mple results, they lose 

their exact finite sample applicability when unknown parameters are r~placed with 

estimates. Apart from the use of large sample approximations, there does JlOt seem to 

be any easy solution to this problem within a . .sampling theory fntmework. From a. 

Bayesian perspectivet however~ estimation of the predictive probabiltty ;d¢n~ity 
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function for .output, and its mean and va.riance, does not prescrit ia problem. :Research 

in this direction is in progress. 

'Finally, it is worth noting that the methodology introduced in this paper has 

wider applicability than is suggested by the empirical example. It can be used not ¢nly 

for predicting the product of area and yield, but also for predicting the product of any 

two dependent variables within a regression framework whether or not they can be 

classified as "seemingly unrelated". For example, for predicting the total quantity of 

sa\vntimber used for dwellings. the Australian Bureau of Agricultural and Resource 

Economics ( 1989) estimates separate equations to explain the quantity of timber used 

per dwelling, and the number of new dwellings. They do not seem to have considered 

methodology like ours for the construction of their predictions and associated standard 

errors. 



.Appendix 

To economize on repetitive symbols. let 

,.. . ,;;_ 
Z = X.,.p .. 

a .... '" 

Our first task is to derive the prediction-error variance given in equation (ll ). 

\Vorking in this direction. we have 

(AI) 

Using the fact that all third moments for the bivariate normal distribution are zero, the 

expectation of this quantity is 

From equation (6) in Bohrnstedt and Goldberger (1969), 

(A3) 

and hence 
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which agrees with equation ( 11 ) 

~foving to the predictor which recognizes uncertainty in the estimation of Pa and 

Pr, we wish to evaluate 

(AS) 

Now, 

(A6) E[~P'] = Var(B) + E(P)E(P)' 

= [x'(L-1 ®r)xr' +~W 

where Var(-) denotes the covariance matrix. Substituting (A6) into (AS) gives 

which is the result in equation ( 14). 
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Finally, to derive the prediction-error variance. in equation '(To), 

Retaining only those terms with nonzero expectations, we have 

Again utilizing equation (6) in Bohrnstedt and Goldberger (1969) yields 

(AlO) E[(q" -q)2
j=z

2
x'.V x +z2x'V x +2z z x'V. x 2 a ~ Y) ) y a a.a a a y a ay y 

+ x: Vaax.ax~ v)1XY + (x~ vayxy yz + z:cryy +z;a:ta 

+2zazycray +O'aacryy +O'~Y 

This is the result in equation ( 16). 
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