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Estimating a model for pest management 

Abstract 
l\1odels for pest management need to incorporate information from many subject areas, 
including biology, agronomy and economics. The information sources are unrelated except 
by the structural assumptions of the bio-economic model that is used. Rigorous model 
estimation is often at the expense of ignoring much of the available information. This 
paper illustrates how a Bayesian approach using the Gibbs sampler can allow the 
incorporation of potentially valuable prior information. This approach provides posterior 
distributions for the important model relationships, gh~ng an indication of confidence in 
the model and providing a natural starting point for stochastic decision making. 
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Estintating a ntodel for pest management 

1 Introduction 

'lllis paper uses a Monte Carlo Markov Chain method {MC.MC) to estimate a. nonlinear 

Bayesian state space model of weed populations m a cropping system. The system, like many 

natural resource systems, has the followmg features which make estimation difficult 

i. \Veed population densities are not easily observed. There are several different sources of 

information on population available, all of them imperfect Combining them requires updating .of 

parameter estimates. 

ii. Data is sparse, and what there is comes from many unrelated experiments of different 

design done under different conditions and measuring different variables. This poses a significant 

missmg data problem. 

iii. ~1odel structure 1s complex. Many functions arc nonlinear and stcehastic, the plants life 

cycle needs to be considered, and there are many exogenous variables that should be taken into 

account. The problems is also explicitly dynamic. 

While there are serious model specification problems, there are dependable basic model 

structures which provides valuable information; for example: 

population change= growth· harvest- natural mortality. 

Therefore abandoning structural modelling in favour of non-structural time series mcxlels 

would be wasting valuable information. 

Part t\vo below briefly reviews state space modelling and Gibbs samphng. In part three, a 

simplified state space model of ryegrass population dynamics and control is .presented, A 

hypothetical data set generated from this model is used to cxatnine the effectivcn(!ss of Gibbs 

sampling in estimating dynamic biological models. 
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2 ~-tethods 

State space models 

Stnte space models consist of an equation of motion{2), which describes how the states of 

the system (~) change over time. and an observation equation (I), whicb describes .how the st&tcs 

are related to observations on the system .. 

1) Yt = f(Xt, a. u\) 

2) Xt = g(~-ha ,Ct) 

The state space frarnework allows the relationship between the observations and 

underlying system to be explicitly defined, with ent error terms associated with obsen-ation 

error (ut) and. \\~th the randomness or uncertainty m the underlying process (Ct). Lags, exogenous 

influences, control variables and seasonality can also be built in. As such state space models 

provide a powerful framework for modelling pestS and other natural resources 

Linear state space models witl1 normal additive enors can be estimated with the Kalman 

filter. (See Harvey 1989). However. for biological systems state equations must be nonlin(!af, at1d 

so are difficult to estimate. Carlin, Polson and Stoffer(1992) demonstrate how the Gibbs ·sampler 

can be used to estimate nonlinear state space models ,,..;th nonnonnal error terms iu a Bayesian 

framework. 

A brief overview of Gibbs sampling. 

Gibbs sampling is a MCMC method for generating random draws from the full joint 

probability density function Gpdf) without having to calculate the density .function. From the full 

jpdf the marginal densities of the variable of interest can be readily approximated. !b~ techniqiJe 

is applicable to a wide nmge of problems and requires only that nmdom <4-aws from. the full 

conditional probability distributions of all parameters are possible. Caselle~ CJ.lld George {1992) 

provide an introduction to the Gibbs sampler a.Ild Smith and Roberts (l993) S\lppJy a 'mo.re dcf4lileti 

overview. Gelfand and Smith (199()) cli$cuss how Gibbs san1pling relates to other .Monte Carlo 

Markov Chain procedures. 

The method works as follows : 



the model consists of finding the .1T41rginal density of the pai11ITietcrs conditional on the cia~ that 

is· [U,JYJ, fori= l. .. k. 

To do this with the Gibbs sampler: 

1 Ch {u. <o>u co) u· (o) ·u <~>)} b. . . · · r· · 1 . .· oose . 1 , .2 , 3 , ... , k ~an ar ttracy set o. startmg v~ ues. 

2 Randomly draw a t:lCW set of values from the conditional probability .{Unctions, 

conditioning on these startiqg values and the data as follows: 

ut<'>- ru1(1>1 u2 <o>,u) <o>, ••• ,u\;<o) ,YJ 

up>- [Utml u,m,ua (tl', ... ,uk<o> .YJ 

3 Repeat this process j times using the new set of values for U as a .starting point. 

0)·· 6). (j) .(j) Under certain conditions, and for j sufficiently l;u·ge {U1 ,Uz ,U) , ..• ,Uk } will 

effectively be a draw from thejpdf [U~,Uz,Uh···ctU" l Y] 

4. Obtain multiple (K) draws from the posterior jpdfeither by repeating this pr~ure or 

by increasing the number of iterations and sampling every j iterations, 

The sample can then be used to calculate features ofthe posterior distribution of interest~ 

For example the posterior m~ ofU1 is simply 
/( _1" u.1 

K £..-. ' 
1=d 

Higher order moments and other functions of the po~eoor are equally strn..igllt forwarq. tQ 

calculate, Multivariate features ofthe posterior can a1so b(;} e~plor(;}d. 

The posterior distribution can be estimated by ave~ii1$ over th~ c<mciiUPnal gell$ity 

estimates based on all the sample sets. That is 
1 . K. 

f(U,) ·~ -.· .. ·I f(fl, IU ~,,J') 
K ~·;:··t 
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The Gibbs sampler is c}l:trcmcly flexible, n, c;tn. be.! scalP!· .Qr vcc:.t9r va}l}oo1 ~cl .mi$sifig 

data can be treated as simply another parameter to be esdmatect. The tec.ht:tit;tll~ ·ha$ ~\J¢ces$fi!lly 

estima,ted models in many areas where the model sp®ification or irt~mlla.r crrqr ~erms make other 

methods intractable. However the mctltod dQes have i($ problems. lt is diffic=U,n to· tesJ. tor 

convergence of the Gibbs sampler to the jpcif. (See GclllUlQ. anc,l Rllhin., l992 and 0¢yer\ · 199:4) 

Ora wing random samples from nonstandard conditional distributions qlJl :prove diftictH~ however a: 

range of nc\v methods are available, see Smith ancl Gclf<\fld·(l992;) 

The technique is still relatively nC\'-', so fl.'U.Ul)" mndarncnw.l issues about the. method ~ still 

being debated. The method has been applied to estimating Generalis.ed linear models, hiera,rcluca1 

models in epidemiology and drug. trials as well as state !?pace me>delling. s~ CasCllt\ cmd 

Oeorge(l992). Issues relevant to Gibbs sampling for state spa~. mcxleUmg ·are. discus~ecibelow. 

Gibbs samplilzgjor state space models 

Carlin Polson and Stoffer ( 199Z) demonstrate how the Gibbs .sampler can be \JSed Jo 

estimate nonlinear state space models with nonnormal error te~ in a l3~yesiM ft.J,mcwodc. 

\Vork by Liu, Wong and Kong (1994) suggests that where variables ar~ highly correla~ed 

convergence of the Gibbs sampler to the true jpdf can be slow. CCll1cr .;:m~ Kolin {1994) not~ Umt 

in state spa~ models the state variables C<).Il be highly correlat~. For linear stat~ $pil:~ mod~ls 

they '-lSe the Kalman filter to estimate .the conditioiUll distribution .of the $tl\tes. This cstiinatejs .then 
be used to genemte the entlre state vector simultaneQusly, with.ln one step .of :the Gibb~ sawpler. 

This removes the correlation and avoided the problem slow ronver~cmce. 1h.ei.r res4lts indica~ 

that convergence can be dramatically speed .up using this methcxl. Sc;ipone-forbes (1,994) exw.n~e4:1. 

this work to nonlinear models by using the extended Kalman fiJter to generale eminmt¢$ qf;tJtt! 

states conditional distributions aml used ·a MetropoUs.;ll41Stip~; ~~ori~ ai1. alt¢~t1v~ ::rvtGMC 

method, to generate .the state vari~bles. ot11er work on titne ~series MONIC ·~· tll!eo :gqo¢ Ql~ 

Shephard .(1994), .anci McCulloch and Tsay(l994). 



3 A stochastic weed Jll~{tagemelll 'f!H)del~ 

This section presents a :simplifi¢d model of ·ryt:,srn$s .infc~ti9n Qt a: Wll~~: ~ra,p. Th¢: 

models is d~signed.to capt11rc: the kc:y fca,turc;s. ofthe rca.lproblcm in or<Jcr to·tcs~.·the 4!i¢fUln¢S$ qf 

Gibbs sampling in th.is sit\lation. Ute model isJOQscly b~e4 on a mcx!cl of cy~&,rass·in.1esmticm.ofa 

wheat cr()p in tlte Western Australia.o wheat belt. 

TI1e model divides each year into fo1,1r stages. In stage one, a proportion (M.) of .the ~eeds 

from tl1c previous year die from nab,lral ~uses over summer. ln .stage nvol a proportion(Ol·of't.h~ 

surviving seed gcnninate. In s~1ge threel the gcrmin:lted weeds ar~ sprayed ''~th .a s¢l~cUv~ 

hcrbici<!e1 and a certain proportion survive and grow to .ro11turity. S~d production c:x:curs .in stclge 

four and the ne.'\'t year begins. 

At the end of each sU1gc there is an imperfect observation on the system (Yu.l:;:; 1 . .4)> 'WQ a 

state variable (x,h t = 1.. .4) is defined as the true value of the weed or seed d~nsity at this time. 

The model is defined as follows: 

Observs.tion Equations 

Post summer seed. count 

3. 

Seedling count 

4. }'21. = X21. • Clt 

Mature weed count 

s. 
Seed set count 

6. 

St~te Equations 

Seed Mortality over summer 

7. Xit= X4·l. M 

S~ling germination 

8. X2t =xh·l • G 

Post emergent hcrbicic:le kill 

9. 

G .... be~(~ bg) 
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Seed production 

10. ~ = Nm (l ... e~p(B • ~l~·•> 

Pour further state variables ate dcfin¢d whiQh inciic.,'lte th¢ s~c ofth~ mo9cl switch lo ·th.~ 

appropnatc equattons however these are not required in estimation pf the rno<iel.. Tin~ errors on the 

observations (yls) are multiplicative and nom1ally distributed with m!!arll and unkmlwnvari@ce. 

TI1e possibility of negauve seed counts is rcmoVl~ by keeping the YariM~· $mall. N~mral mqrta.lit:y 

over summer (!\-1) tUld gemtination (0) arc defined as proportions, they vary between 0 a.nd l. They 

are random variables drawn from beta distributions \vith \lOknovm p.arametcrs ~, hm~ tmci ag, b8 

respectively. ln equauon 9 a proportion l-<.1sp(A •tl) c>f the weeds are ki1lc4 vlhere H is the 

herbtcJde rate applied and A is the herbicide efficacy parameter. A is random variable from a 

normal distribution ·with unk"nown mean and variance. 

Equation l 0 is the seed production function. x.;t seeds arc produced. from x3H mature 

weeds. For now b is CQnsidcrcd fixed .and kllown, while Nm, the ~~imu,m po$sible seeq 

production is random and norin;llly distributed with unknown parameters. 

Note that a. different random value for the panunctt!rs is dra·wn each yC(!r. Therefor~ the 

state equations are stochastic. TI1ey are also nonnolllUl and nonlinear making cstimati9n by 

standard techniques intractable. 

This model ts designed to capture some important aspects of r®-l weed mo9els ~d tp 

provide a challenging Monte Carlo test of the Gibbs state space estimation technique. 

Model Estimation. 

Ten years of simulated data was used to estimate the model. The model pararneters ·'41cl tile 

priors used are listed in table one. Parameter priors were chose11 to be .rel~tivcly \lninformativt:! ~d 

sli&}ttly biased. TI)c model was estima~ usi11g Exc.cl s C~.nd Vis4al :Basic, however lower l~vel 

languag~ are required, for reasqna.blc q:>rnpu~r t:!fficjency. Fortran 9n~. C ~re popular choi~~ 

Three chain~ of 3000 iterations were gcnerau-41 apd .af\cr :visual iiJspection for cQnvergenC(;'!,. the 

first 500 iterations were .di$regardecl. Of the remairlder every thir4 ite@tion WB$ U$~: tq '~t~~ 
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tllc posterior densities. The state variables were not siml11Wte<lt.J~ly ~stittu1t~ ~ T~om.m~nd~:4'PY 

Carter and Cohn a.od only visual inspection was l1~cd to assess C;onv!;!n~cn¢~. Conju~~~~ pnors wei'~ 

used for the priors on the parameters of normal and a~~ cii~tributions. Te1blc l r~pprts the 

parameter values. used to generate the data and the prior distnbutio~ used m esthnati.on. 

4 Preliminary results from model e$dmation. 

Figures one to four report the true values of the four state variC1bles, the meAA of the 

posterior distributions and the 90 percent. confidence interval. Confidence intervals were c;l}cu.lat(X.{ 

usi,ng the posterior densities. 67% of the state variables were within their 90% GOnfidcn~ int<;rvals. 

In particular x, and x.. arc consistently overestimated. Apart from this the .estimaf~s C1ppca,r to trnck 

the system very well. 

Figures five and six show the prior, .posterior and tnJc distributions of gennination (G) and 

Natural Mortality (Nm) variables respectively. The prior and posterior distribQtio~ were 

~lculatcd using the mean of the distributions of~' b~ and aa, am. Note that for ~ch parameters 

there were only ten observa.tions with which to update the prior density. The resu.lts indiq~.tc ~ 

moYe towards the true distribution however not enou.gh data w~ available to over ride.1.he biased 

priors. ln. future .applications 1 hope to use data from multiple sites in a hieratical model to 

overcome this data deficiency. 

Table two reports the complete list of the means of the priors and posteriors and Uleir 

relationship to the true values. Some variables are well estitn,qted, however the po~tedor estinu\tes 

of the variance parameters tend to be ovcrestirna~ and the posterior mean of Nm is biasC{J 

upwards. This result appears to be due to an overly strict prior 011 one ofthe parameters. This. nmy 

also explain the consistent ovcrcst.inl,a.tion of '4 and x1 

Figure 7 and 8 show histograms of the posterior densities of the me@ of'Nm @d A .• ·111c 

posterior of JlN is biasc:xl ypwards as mentioncxl. The true y~l.~e ofJ.LA is wit.hln the 90% CQntideQC(: 

interval of the posterior distribution. 

While the overall estimates were poor? this appears tq be due to ~ oyt:fly stric:t and 'bi~t:4 

prior. Des pi~ thls the rm::thoq see~ (:ap~\:)1~ Qf~ting .~ m94eJ qftm~ ~)'pe wi~ vqry litil~. em~. 
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S DiscussiQn •Ad Ccmclu$ions. 

The purpose of this pap~r was to 'point o~t. the pot~mtial ofGltlb$ srmtpUng @d TQla;ted 

MCMC)s for the estimation of natural rcsm1rce mogc)s. Tho result$ reporte<J here Sl\gge$1. th,at tJw 

technique is capable of providing ac<;urate and informative ppsterior distribl!tions for a. m.oot!l·with 

nmny of -the features of a real natural resource problem. The model used here has relat\v¢ly few 

obsetvations (40), nonlinca,r state cquationsi some nonnorm~l error tenus and g moderately 

complicated model structure. The tnte value of the sw.te varjiibles fell within the 90% cqnncien~ 

mterval 67% of the time, despite problems with incorrect prior$. 

Tile unportMt difference between this hypothetical m()det and a rC(ll applic;Ition is 

k'Tlowledge of the model structure. However there is the scope \vithin this fhllncworl< for testing of 

restrictions and assumptions and the possibility of using flexible functional forms to ~pt~re 

un.ccrtamty about nonlinear functions. Olhcr real world problems missing from this ~;~ar,qpl~ 

include tl1c problem of missing observations and the use ofnonconjuga,tc and informative priors. 

Missing obsetva1ions are easily handled by Gibbs sampling ay tre;1ting the.missing values 

as another parameter to be estimated the true posterior density for the mis~ing obs~rvation.s i.s 

obtained and inference is based on this distribution. (See Gelfand tU a/1990). 

The use of nonconjugate prior increases the computational burden but othc:rwise ~::1\l~~ no 

problems. Obviously, as the problems here illustrate, it is important that the prior density provides 

support over the range a fall feasible values. 

In summary the Gibbs sampler, although not \\~thout its problemst has the potential to 

allow estimation of complete biological anci bioeconomic models making full use ofthe informa:tion 

available. This represents a significant improvement over the alternatives cutiently availiible. 
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Table 1. Parameter Values and Priors. 

PMametcr True Value Menn of Prior Std Dev of Prior 
r· 

0.3 10 0'! OJ -
cr2 J.3 0.1 10 

cr3 0.3 0.1 10 
~~ ......... 

0'4 0.2 0.1 10 
X1o 3032 2500 soq 
Rm 4 -- 0.83 0.36 
bm 6 L2 0.73 
~ 9 2.6 4.4 
b\1: 1 1.0 0.53 
JlA -7.5 ·9.3 10 --
erA 0.25 4 13 

-llNm~ 5000 4379 1000 
O'Nm 500 11000 10500 

Table 2 
Companson of the True parameter values with the mean 
of the prior and posterior estimates 

. 
Parameter Prior r1lean Postenor True Value '% Improvement 

1vlean tn Estimate 

01 0.32 0.59 03 -1681 

Ch 0.32 OJS 0.3 .. 387 

0'3 0 32 0.83 0.3 -3156 

cr4 0."'1 .)..., 0.39 0.2 -63 

X10 2500 3134 49 3032 81 
~ 

am 0.83 2.53 4 54 
bm l.IS ).72 6 ll 
all 2.63 6.14 9 55 
be l 04 1.70 1 -1650 

P11 -9 3 ~8.41 -7.5 50 
cr., 2 1.03 0.25 I 

55 

~ln 4379 9480.'76 5000 -622 

O'n 11000 1460.61 500 I 91 

Fonn of Prior 
rnvcrs~ gamnla 
Invgrse gamma 
lnverse grunma 
l1werse gamma 
Normal 
Eet! Likelihood 
Beta Likelihood 
Betn Likelihood 
Bem Likelil\ood 
Nonnat 
Inverse gamma 
Nonnal' ~ 

Inverse gamma 
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Figure 4 Seed Production (X4) 
Prediced, True and 90°/o Confidence Interval 

14000~------------------~--------·---------------~ 

10000 . 

--5 
u 8000 -· .::J 
'0 
a 
:t 
'0 6000 - • .... IL 
C) .. .. .. 
C) 
"f) ......... 

4000 

2000 . 

I 

.... 

0+-~~---~~---r----+---~~----~----~~~--~~ 

1 2 3 4 5 6 7 10 

I-+-PREDICTE 
\·:.-TRUE 
~....-.... ._____,._ __ 

~PREDICTED 

- •- TRUE 



a-
.n 
ro 
.0 
0 ... n. 

Figure 5 
Prior, True and Estimated Distribution of Seedling Germination (G) 
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Figure 6 
Prior, True and Estimated Distribution of Seed Mortality over Summer(M) 
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Figure 7 
Histogram of the mean of Nm 
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