

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S

REGIONAL

A Linear

Programing Analysis

BY ALVIN C. EGBERT, AGRICULTURAL ECONOMIST, FARM ECONOMICS RESEARCH DIVISION, AGRICULTURAL RESEARCH SERVICE; AND EARL O. HEADY, PROFESSOR, DEPARTMENT OF ECONOMICS AND SOCIOLOGY, IOWA AGRICULTURE AND HOME ECONOMICS EXPERIMENT STATION
U.S. DEFT. OF AGRICULTURE, WASHINGTON, D.C., IN COOPERATION WITH IOWA AGRICULTURE AND HOME ECONOMICS EXPERIMENT STATION CENTER FOR AGRICULTURAL AND ECONOMIC ADJUSTMENT

PREFACE

This report is the first of a series based on exploratory studies, regional in nature, analyzing the farm surplus situation and the corollary adjustment problems of agriculture. Wheat and feed grains-the larger and more pressing facets of excess agricultural output-provide the theme of this first analysis. Economic efficiency, limited by certain specific assumptions, is the framowork within which this andysis was made. Factors noneconomic in nature also are involved in the location of production. These factors are (1) for the most part nonquantifiable and (2) probably of less importance in influencing the location of produciser than those of costs and prices. Hence, this andysis is limited to economic factors.

The results presented bere are necessarily tentative because of the complexity of the analysis problem and data deficiencies. Readers, therefore, should look on these results as first approximations and as a basis for further analysis. Extended manyses in progress are designed to crase many of the analytical limitations ovident herein. Because of the nature of the analysis problem, a particular mothodology and its implications are emphasized in this report.

Because of space limitations only brief explamations of methods used to colleat and estimate the data required for this study and only argyegrates of these data are presented here. However, additional explanation uf the methodology and more detailed data are available in A Linear Programing Analysis, supplement to this butletin, which may be had on request from, the Information Division, Agricultural Research Service, U.S. Department of Agriculture. Included in the supplement are: (1) Mathematical notes for economic models, the programing matrix, and weights used for grain yields and production costs; (2) notes and supplementary data for yields, acreages and production costs; and (3) in formal presentation of the method used to estimate demand restraints.

Specialists in the Tnited States Department of Agriculture and at many State Ayricultural Experiment Stations furnished much of the basic information used in the study. The authors gratefully acknowhedge this assistance. Special apprectation is expressed to K . L. Bachman, G. T. Barton, C. W. Crickman, R. A. Loomis, mad H. I. Stewart, Farm Economics Research Division, Agricultural Research Service, for raluable suggestions in regard to conceptual as well as data problems and to L. A. Then of the Department of Economics, Iowa State Triversity, who assembled and analyed mach of the basic data.

CONTENTS

Page
SUMMARY 1
INTRODUCTION 3
The General Problem 3
The Scope of the Problem 5
The Speeific Problem 5
ECONOMIC MODELS s
Basic Assumptions 6
The Specific Models 7
Limitations of the Models 9
BASIC DATA AND COEFFICIENT DERIVATION 10
Grain-Programing Regions 10
Regional Acreages 12
Regional Yields. 16
Production Costs 19
Demand Restraints 26
Grain Prices 27
The Programing Coofficients 29
Limitations of the Data 35
EMPIRICAL RESULTS 35
Model A 35
Model B 40
Model C 44
Model D 48
Model E 53
Some Comparisons of Model Results 59
FURTHER RESEARCE PROBIEMS 63
LITERATURE CITED 65

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C.-Price 30 cents

Regional Adjustments In Grain Production

A Linear Programing Analysis

Abstract

3 y Alvin C. Egberr, Agricutural Beonomist, Farm Economics Researeh Division, Agricularal Research Service, U.S. Department of Agricultare; and hant O. Heaby, Professor, Department of Fconomics and Sociology, Iowa Agricultare and Home Economics Experiment Station

SUMMARY

The study reported here was a regional aggregative analysis of the wheat and feed-grain economy in the United States. The general objective was to ascertain the regional production location of wheat and feed grains if annual oubpub were in balance with an assumed level of demand, and if production were located in those areas that produce the grain requirements most efficientiy. Problems of surplus production of individual grains cannot be investigated independently. As expericnce in the last decade has shown, controt of the acrenge of one grain crop usunlly leads to an increase in the acrage of one or more of the others. Recent developments in mathematical programing provido methods for analyang simultancously possible production adjustments for various crops.

Alhough the progrnming stady is partly methodological, empirical results can be used to specify the relatively high-cost grain-producing regions in the United States with the prodection restraints and costs specified. The restrants were the acreage of land considered to be available for production of grains in each region and the cquantities of whent and feed grazins required for consumption in 1954. Given the chosen levels of production restemints, product prices, and production costs, the optimum regional location of production was determined by those areas that produce the specific graia requirements at cither (1) minimm cost or (2) maximum profit, depending on the assumptions of the nalysis.

One hundred and four unique major grain-producing regions in the Thited States were delinerted for the analysis. These regions do not include the total land area of the Nation, but in 195.t, they necounted for around 90 percent of all feed grains and wheat produced in this country. The smati quantity of grain produced in the omitted areas was assumed to be independent of the system. The eensus yoar 1954 was used as a base year for determining production cosis, grain prices, yields, and consumption requirements, and 1053-when no acreage-control programs were in effect-was the base year for estimating maximum grain acreares.

Five models, designated as A, B, C, D, and E, were formulated to determine the optimum production locations for wheat and feed grains. The maximum regional grain acreages were common to all five. Food wheat, feed wheat, and a feed-grain rotation were the regional production possibilities (aclivities) in models $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and E , but for model D , the regional production possibilities were food whoat,
feed wheat, corn, oats, berler, and grain sorghums. Other differences between the models were: (i) Models A, B, O, and D were nuinimum total production cost models, but model E was a maximum total profit model; (2) annual Iand rents were included in the activity production costs for model B, but not for models A, C, D, and E; and (3) whent and feed-grain activities had separate regional production restraints for model C only.

The linear programing solutions of the models, though not alike, show a high degree of similarily; especially the solutions of models A, B , and E , which proved to be tive most realistic solutions. These three models ngreed in showing that 58 particular regions would be needed for production of grain. The solutions also agreed in showing that 33 specific regions would not he needed for production of grain. There was disagreement for only 16 regions. Two solutions agreed in showing that 7 of the 16 regions would be required, and that the remaining 9 regions would not be required. Production of leed grains was consistently specified by the solutions to these three models for the Corn Belt, Delaware, New Jersey, eastern Pennsylvania, and Maryland. Production of whent was designated in each solution for the Pacifie Northwest and northeastern Colorado. The three prograning soltrtions differed most from model to model in the Lake States and the Northern Plains, particularly in North Dakota and South Diksota. Production specificintions for North Dakota and South Dakota varied from all feed grain (meaning large quantities of barley) for model B to nearly all whent for model E .

Production of feed grains and what was not specificel in any model for Michigan, southenstern Colorado, eastern New Mexico, the Delta States, and the Southeast, except that model Especified production of a small quantity of wheat in southern Alabama and a small quantily of feed grain in western Kentucky and eastern Virginian.

On the basis of the study, arens for which little or uo production of grain was specified were those in which most of the adjustments in the use of resources in grain production would be needed. The number of acres specified as not needed would be 31.9 anillion acres for model A, 34.7 million acres for model 3, 22.9 million acres for model C, 62.4 milion acres for model D, and 28.8 million acres for model E.

Competitive prites of wheat sund feed grains were determined for models A, B, C, mad D througin the dual programing solution. Land. rents were delerunimed by the dual solution to ench of the five models. In genern, these rents can be described as residual or imputed values. In terms of the ruodels, however, the derived rents can be described also ns competitive prices of land used for procuction of grain.

In interpreting the results for all models, it should be remembered (1) that spatial production patterns were computed under the assumption of production technifues reflected in the technical coefficients equal to the arerage of the region, and (2) that the coofficients were constant for the delineated regions. Locational variations from the regiomal coefficients used would menn that some acreages in the "outgoing" reqions would remain in grain production and some acrages in the "staying-in" regious would be withdrawn. Only grain crops were used as competitive alternatives in progrationg, although inclusion of land rent as a cost in model B gave some recognition to alternative crops.

Assumptions and data with such limitations were used for this exploratory stage in the analysis because of computational problems. The empirical task was a heavy one. Gathering data and making computations involved sizable efforts. About 4 man-years were spent in routine development of coefficients. Had manpower and computational funds been more adequate and had cruder coeflicients been used, a somewhat more uppropriate model could have been coustructed. This model would have grain and nongrain crops and livestock activities and an objective function of return maximization.

Under ideal conditions for conducting a study to analyze regional resource problems, adequate funds, computational facilities, and time would be available. Aclequate stores of information on coefficients would be available for indicating shifts at both extensive and intensive margins of production. Many homogeneous production areas would be delineated with supply and demand functions and commodity prices predicted for each. A general equilibrium model, considering the full range of farm and nonfarm opportunities in use of resources, would be used. The possibility of contracting intensity of production through use of less fertilizer per acre, for example, in regions having relatively lower costs would be considered also.

Is time and funds become available, work should proceed that will account for alternative crops, regional demands, transportation costs, and new farbaing techniques. In a model that considers production patterns under potential techniques, some parts of the 21 regions programed in the Southeast, for example, probably would "remain" in grain production. Some grain production would bo expected to remain in each of the other regions also, if such things as intraregional variations in production functions and complementary and supplementary relationships ware ceflected adequately in the model.

From a practical viewpoint, the solutions reported here provide a starting point for considering spatial adjustment of production of grain. But further refinements and improvements are essential for final design and implementation of adjustments based on regional comparative advantage in grain production.

INTRODUCTION

The General Problem

One of the major short-run problems of agriculture in the United States is the accucaulation of surplus stocks of feed grains and wheat. These accumulated stocks are only a material indication of a more basic problem-the growing tendency of the industry to produce in excess of domestic requirements and foreign outlets. With the rapid accumulation of stochs of grains in the last severel years, it becomes inereasingly important that alternatives be found to bring production into line with annual recuirements for such crops as feed grains, cotton, and wheat.

Stocks of all feed grains combined on October 1, 1959, were more than three times the normal earryover. Without including production from the 1959 crop, these stocks were large enough to produce a national pig crop of averuge size. Relatively, stocks of wheat were
even greater. The carryover of wheat has exceeded anaual production most of the time since 1954. Carryover stocks of wheat on July 1, 1959, were more than twice the normal annual domestic disappearance. Imposition of acreage controls for corn and wheat after 1953 also encouraged greater acreages of barley, onts, and grain sorghums, and a buildup in stocks of these grains. Sorghum carryover stocks, for exmmple, increased from 75 million bushels in 1955 to 510 million bushels in 1959. ${ }^{1}$
Figure 1 illustrates the growing magnitude of stocks of wheat and corn relative to annual production. The canryover of whent will nearly equal annual production in 1959, while the entryover of corn will be about 50 percent of the amund crop. The need for finding alternatives to these crops is apparent. Further ammal increases in stocke can be elimimated only if steps are taken to bring production in line with antum domestic uses and loveign outlets for grain produced in the United States.

Grains are not lhe only surplus crops. The Commodity Credit Corporation holds sizable quantities of cotton, and relatively smaller stocks of dairy products, soybens, rice, tobaceo, and peanuts. But in terms of both value and acenge, wheat and feed grains represent the major part of imen commodity surpluses. Hence, the stady from which this report resulted was concentrated on andysis of the grain problem.

[^0]

Figura 1

The Scope of the Problem

Grain surpluses are a major concorn of farmers, because much of their income is derived from the whent and feed grains they produce. The combined value of these five grains in 1955 was approximately 42 percent of the total value of the 79 principal farm crops $(30,1956) .{ }^{2}$ Hence, if an attempt were made to dispose of grain surpluses on the open market in a normal year, farm income would be reduced drastically.

Grain surpluses also affect consumers. Through Federal pricesupport programs, consumers are paying the cost of storing these surpluses. In fiscal 1959, the estimated realized cost for all government programs that concern whent and feed grains-primarily for stabilizabion of farm prices and income-was about $\$ 1.1$ billion. In addlition, consumers pry, for the commodities they tenernlly consume, prices somewhat higher than "free market" prices would be otherwise.

That the grain economy is out of balauce is an unequivocal statement. How to get it back into some semblance of equilibrium is a problem that has no simple solution. Although production of grain is concentrated in certain regions of the United States (the Corn Belt, Great Phins, and Pacific Northwest), significant quantities of wheat are grown in 40 States, and at least one of the feed grains is grown in 48 States (30,1956). Furthermore, even though production of these gratus is widely dispersed, large quantities are shipped long distances to mect demands of the various areas in continental United States (31, pp. 17-27).

The Speclfic Problem

The general objective of the study reported was the nalyzing of regional production matterns for grain crops in the United States. The framework within which this malysis is made is one of economic efficioncy in graiu production. What would be the most efficient puttern of grain production il annual requirements were met at least cost relative to the comparative advantage of various regions in producing grain? Several exploratory models are userl to determine which regions might shift from grain production if these objestives were attuined.

The more specific major objectives of the study were:
(1) To formulate sevoral programing modols with special characteristics for analyzing particular facets of the grain surplus problem.
(2) To obtain empiricul solutions to the natytical models that will indicate comparative regiound eflicioncies of resource use in production of wheat and feed grains.
(3) To uso the cmpirical solutions to suggest optimum spatin production and land use patterns for whent and feed grans.
(4) To estimate competitive rents for grainhand, and prices of wheat and feed grains.
(5) To analyze weaknesses in the basie assumptions of the analyses and suggest ways of improving similar investigations.
(6) To describe the problems encountered in collecting and processing datit for the study, aud to suggest means of acquiring improved data.

[^1](7) With the experience of this investigation as a basis, to suggest studies that would seem to be more adequate for analyzing regional resource-efficioncy problems.

It is recognized that the grain economy is not independent of other types of farm production, but, that the total farm complex, as well as the rest of the economy, has a definite bearing on what happens to grain production. More of the relerant variables in the economy would have been included in this analysis if time, funds, and the solution to certain technical problerns had permitted.
For purposes of aualysis, 104 major grain-producing regions in the United States were delineated to provide the analytical framework for the models used.

ECONOMIC MODELS

Several linear programing models are used in this analysis. By using the simplex linear programing routine, it is possible to derive in competitive equilibrium solution for two or more products in a spatial or regional economy. This equilibrium solution includes the specification of regional product levels, and factor and product prices. The necessnry assumptions for linear programing analysis are: (1) At least one limited resource; (2) a finite unmber of production processes baving constant input-output coeflicionts; (3) additive processes; nad (4) divisibility of inputs and outputs for any positive level.

Basic Assumptions

In order to reduce the anmlysis of the wheat and feed grain economy to a managenble size, certain simplifying assumptions were necessary. Although these assumptions may not describe exactly the economic structures within regions, they permitted the use of programing models that were sufficiently comprehensive and detailed to be consistent with the general objectives of the study.
dhese formal basic assumptions for the structure of the grain economy were made:
(1) There are N unique, spatially separated but interdependent production regions, with many producers of wheat and feed grains.
(2) All producers ia a specific production region have ondy the choice of producing the same (homogeneous) products or product mixes, and quality is uniform between regions.
(3) All producers in a specific production region have identical input-output coefficients and use the same production techniques.
(4) Input-output coefficionts are constant within the relevant rauge, that is, constant returns to scale exist.
(5) An acre of feed grain (or wheat) land can be substituted for an acre of wheat (or feed grain) land at a constant rate within each region.
(6) Total production in each region is limited only by fixed quantities of land suitable for grain production.
(7) The economic objective of each producer is profit maximization.
(8) The system is static in that consumption must be met from current production; the production period is the crop year.
(9) Total grain-consumption requirments are exogenous, determined by annual par unit requirements of the human and livestock populations at a point in time.

The Specific Moders

Five analytical models were formulated as steps in attaining the objectives outlined. The structural changes made from model to model were attempts to add greater realism to the analysis or to investigate some particular facet of the grain-production problem. Only the structure and objectives of the models are described here. The methods used in obtaining the data needed in each of these models are briefly outlined in the sections that follow.

Model A

For each of the ($\mathrm{N}=104$) homogeneous grain-producing regions, three types of grain-producing activities were considered-food wheat, feerl wheat, and a feed grain rotation. ${ }^{3}$ The quantity of grain produced by these three activities-individually or in combination-is limited by the maximum acreage available within each region for production of grain. The production costs associated with each of these activities include labor, power, machinery, seed, chemicals, and certain miscelianeous items.

A central market was assumed for wheat and feed grain, and the cost of transporting these grains from the producing regions to the market was set at zero. There are two national demand restraints, one for food wheat and one for feed grain.

The objective of model A was to determine the spatial pattern of grain production that would provide the Nation's annual requirements of whert and feed grains at minimum total cost, under the cost conditions cited. A corollary objective of model A was to estimate the annual value, or "shadow" prices, of land used for grain in the various regions.

Model B

Model A assumed that land has no alternative use or that its opportunity cost in the next best enterprise is not significant (for example, gras.' in the western plains). In some areas, however, alternative enterprises provide opportunity costs of some importance. Therefore, model B was formulated to determine how consideration of certain opportunily costs, represented by specified land rents, would affect the optimum grain-production pattern. Otherwise, the structure of model B is the same as that of model A. The sole difference is in the cost coefficients, which, in addition to the costs enumerated, include an estimated land rent.

Model C

The basic assumption, stated earlier, that an acre of land in each region could be used for production of either wheat or a feed-grain rotation was relaxed for model C. In model C, the acreage of grain in each region was divided into two components: A maximurn wheat acreage and a maximum feed-grain acreage. Thus in model C, there are 208 land restraints or restrictions instead of 104 as in models A and B. All other variables (costs, demand requirements, and so on) in model C are the same as those for model A .

[^2]
Model D

Agronomists have posed the possibility of establishing a mondow crop in a rotation without using a nurse erop such as onis. The feed value produced from an acre of onts is less than that producod from corn. Hence, if outs could be elimimated from the customary rotation, a large potential increase in the feed supply would result.
Possibilities for establishing rotations without nurse crops are based on wide seediog of corn rows in the second year with a mendow crop seeded between corn rows, socding meadow in the spring after corn, then controlling weeds by chemicats or clipping, or both.

Model D was designed to investigate the possible impact of this imnovation on the optimum grain-production pattern. This model uses six graia activities: Food whent, feed whoat, corn, onis, barley, and sorghum. ${ }^{4}$ Production costs and production and consumption restraints are the same ns those in model A. Again, the objective is that of minimizing tolal production cost.

Model E

Preceding models nssumed that produclion regions, althourh spatially separated, are interdependent in a ecatral market, bat that trimsportation eosts are zero. A step toward greater renlism in a model is the consideration of both transportation costs and many markets. Thas, we have a mulliple-point economy fer both production and distribution. But a limear programing solution to a combination production and transportation problem with more than 30 production and market regions either would be impossible, or, with present digital computers, the cost would be prohibitive. In addilion, it is difficult to obtain data on transportation costs between points. As the freight-rate components of transportation costs are avaidable for wheat and feed graius that move by currently used routes, this problem may be handled by assuming that trausportation costs other than freight, for exmople, cosis of loadiag and unlonding and commissions, are constant between regions.

The assumption of one market and a transportation cost of zero was wilhdrawn for moded E nnd replaced by these assumptions: (1) Farm priees of wheat and feed graits at all points are equal to the priees at a centrul market minus transportation costs; and (2) the differences between historic priees for different locations are due solely to differences in trmasportation costs. Jf these assumptions are approximated, a net-profit solution for model E is equivatent to a minimum-cost solution of a combimation production-transportation problem, provided the markets absorb the programed guantities at the assumod prices.

The objective of model \mathbb{E} then is to maximizo total net profit, griven the production and consumption restrants. These restraints are the same as those in model A. The iuput-output coellicients, also, are the same for the two models.

[^3]
Limlations of the Models

The models used in the study reported represent some refinement over similar calculations made in previous studies, but they involve limitations of which the writers are aware. A complete model of the general cquilibrium type, which is appropriate for the type of problem under annalysis, would imply knowledge of all relevant production, cost, demand, and supply lizactions for all products with which the commodities considered compete in production or consumption. Dnta for an ambsis within this framework, however, were not availuble, and altertative approaches were used. Some of the major practical limitations of the general model used are outlined:
(1) When a resoure used in the programing model is a small part of the total resource available, the price existing at a point in time probnbly reflects quite accurately the price that would need to be paid for this resource by each productive activity in the model. But when the resoures used by the model netivities are a substankial part (but net all) ol the total resource supplies, observed priees may be an imperfect mensure of the resource prices dictated by the model solution. This is the case when the quantity of a resource used in the programing solution is less than that which gencrated the observed priere.
(2) To some extent, specification of production yegions is arbitrary. Distinct boundaries between producing regions do not exist. Some differneres in soil productivity and climate are evident in oven the smallest regions specified.
(3) Procituers do not have ilentical input-output coefficients. The qualily of mangement varies. The quality of hand used for grnin production varies not only belween, but within farms, even though farm operators may tend to use their better land for grain. Classification of land within regions by productive capacity for grain, and the use of several elasses of hand for regional hand restraints would be more realistie. If seyeral land classes were used, however, the size of the problem (matrix) would be greatly expanded.
(4) Not all farmers within a region use the same production techniqua. As will be seen in the pares that follow, however, this assumption was made only to fineilitate the measurement of production costs. In terms of the models, it is only neeessary that unit costs be similar for farms wilhin a pergion.
(5) Not all grain produced in the United States is of the same quality. Some of the differences in quality are necessary to fulfill specialized demands (examples are durum whont and malting barley). Also, the five grains aro not perfect substitutes for each other over all ranges in livestock feeding. But with the fixed ratios assumed for production of feed grains in ench region for models A, B, C, and E, it is probable that the national grain "mix" specified by the solutions would permit the levol of livestock productiou assumed.
(0) Constinut returas to scale may not exist either within or between farms within each region for the possible production range (from zero production to the output limit prescribed by the land restraint).
(7) Total procuction within each region is not limited by land nlone. Production is limited also by the amount of capital farmers
control. Grain production can be increased by higher proportions of other inputs, such as fertilizer.
(8) The assumption that wheatland can be used for production of feed grains and vice versa without appreciabie changes in yield may not be valid for some regions.
(9) Consumption of grain is not independent (exogenous) of prices. Consumers vary consumption with changes in relative prices. Because of the degree of demand aggregation and the 1 -year time period assumed, constant per capita consumption rates may closely approximate demand restraints.

Although these limitations exist in varying degree for all regional analyses, the magnitude of computational burden, if all identifiable variables were considered, would exceed that manageable with existing computer and research resources. Investigations in the area of aggregative regional analysis cannot achieve complete realism. One objective of the study reported, however, was to provide a steppingstone for the more refined studies that might follow. At best, aggregative analyses can be expected only to provide broad guides for resource adjustments and policy formulation.

BASIC DATA AND COEFFICIENT DERIVATION

The methods used in obtaining basic data and transforming them into programing coeflicients are described here. The descriptions of the models in the previous section indicated the size of the task and the difficulties encountered in assembling the required data. Hence, the methods used can be described only briefly here. Additional details are given in the supplement.

Because of the many data assembled in the 1954 Census of Agriculture and the publications that summarize and supplement the consus, most of the basic data used in the analyses are for 1954. Maximum grain acreages in each region are the only exception; they are from 1953 data.

Grain-Programing Regions

Delineation of meaningful grain-producing regions (in terms of the objectives of the study) was in itself a sizable job. At least one of the five grains under study is produced in all States and in most of the counties within these States. In many locations, however, grain production is only a small part of the total agricultural production and an insignificant part of the total grain economy. In many of these areas of sparse production, grain is either a complementary entorprise or has a special locational advantage. Thus, grain would be produced in certaia areas with a wide range of prices. Also, for these sparse grain areas, data are very scarce. For these reasons, only major grain-producing areas of the United States were used for: avalysis.

Areas in which whent and feed grain were harvested from 25 percent or more of the total cropland in 1954 were defined as major grain-producing areas. To some extent, this demarcatiug percentage is arbitrary. But the major grain-producing areas thus defined rep-
resented 90 percent of the total wheat and feed-grain acreages in 1953. Furthermore, in 1954, the percentages of wheat, corn, oats, barley, and sorghum produced in these major grain areas were estimated to be 93.1, 93.4, 86.9, 72.7, and 91.0, respectiveiy, of total production. Thus, the defined major grain-producing areas are the source of most of the wheat and feed grain produced in the United States and are also the areas that are most significant in the grain-surplus picture.

The geographical outlines of the 104 "homogeneous" grain regions so delineated, together with their assigned numbers, are shown in figure 2. Henceforth, they are referred to as programing regions, or simply regions. In the discussions that follow, the designated numbers are used to identify these regions.

The programing regions are based primarily on State economic areas. ${ }^{5}$ To demarcate programing regions that were relatively homogeneous for grain production and to keep the computational work at a minimum, the following procedure was used: First, four classes of economic areas were defined:
(1) Areas with grain production uniformly distributed, that is, the concentration of grain acreage within each county was approximately the same for all counties in the economic area.
(a) Areas with total harvested acreage of wheat and feed grains combined equal to or greater than 25 percent of total cropland.

[^4]

Figure 2
(b) Areas with total harvested acreage of wheat and feed grains combined less than 25 percent of total cropland.
(2) Areas with grain prodaction not uniformly distributed.
(a) Areas with total harvested acreage of whent and feed grains combined equal to or greater than 25 percent of total cropland.
(b) Areas with total harvested acreage of wheat and feed grains combined less than 25 percent of total crophand.
By using dot maps showing the geographic distributions and concentrations of the harvested acreages of wheat and feed grains in 1954, State economic areas were placed in either group 1 or group 2. Group 1 was divided into classes ia and 10 by computing the required percentages, (a) and (b) above, from State economic area acreages (29, tables 1 and 6). County acreages (29, tables 1 and 9) were used to divide group 2 into classes $2 a$ and $2 b$. Thus classes $1 a$ and Ib are State economic areas and classes $2 a$ and $2 b$ are counties.
Finaliy, classes 1a and $2 a$ were aggregated to form the 104 programing regions. Critecia ased to guide aggregation were as follows: State economic areas and counties within each region were required to be contiguous and to have similar grain yiedds, similar proportions of the five grains shown, and similar numbers of combines, cornpickers, and tractors per 1,000 acres of cropland. On the basis of these criteria, many times two or more State economic areas could not be aggregated. Hence, some programing regions consist of only one State economic area. In other instances, it was possible only to aggregate one economic area and a group of counties. A few regions are made up of counties only.

The 104 programing regions shown in figure 2 provided the basic units for making estimates of acrenge, yield, and cost. But when the necessary data were not available for these regions for estimating imput coefficients, State datia were adjusted by other related data to compensate for within-State differences. In a lew instances, State data were used without adjustant when a logical means of adjustment was not apparent.

The concept of "nomm" is basic to the methods used in estimating the maximum regional grain acreages and regional yields. The word "normal" is used here to mean expected or average. The objective for yiedds was to obtain estimates that would reflect accurately the average quantity of inputs used per acre for production of wheat and feed grans in 1954. Tho general objective for all estimates was the obtaining of data that would rellect the relative competitive positions of the regions in production of wheat and feed grains.

Regronal Acreages

Grain acreages of 1953 were used as estimates of the maximum regional acreages available for grain production. Nore grain was planted in 1953 than in any other year of the present decade. Acre-age-control programs were not in eflect in 1953, and the latge grain acreages of that year perhaps represent the maximum area adapted to these crops under peacetime economic conditions. Thus, later Ggures on production adjustment suggest the quantity of land that
might not be needed, relative to the 1953 base acreage, if production of feed grains and wheat were balanced with annual use.
Acreages planted to grain and summer fallowed are the components of the regional acreage restraints. Acreages planted to grain were not easily ascertained for many regions as either (1) estimates of planted acreuges were not available, or (2) when estimates of planted acrenges were avaitable, they included plantings for hay, pasture, silage, cover crops, and so on. These dificuities existed mainy for small grains. The total number of acres harvested for the various uses of corn are estimated by Federal-State agencies, but numbers of acres harvested for grain only are not estimated for the small grains. A different method was used in estimating acreages of corn and small grains becuuse of the kinds of data available.

The acrages of corn planted for grain were estimated by the following formula:

The acreages of wheat, oats, barley, and grain sorghums planted for grain were estimated by the following relationship:
$\left.\left(\begin{array}{l}\text { Estimated acres of the g-thi } \\ \text { grain phanted for grain in the } \\ \text { i-th region }\end{array}\right)=\frac{\left(\begin{array}{l}\text { Acres of the g-tin grain har- } \\ \text { vested for grain in the } \\ \text { region }\end{array}\right)}{\left(\begin{array}{l}\text { - }- \text { average abandonment rato }\end{array}\right)} \begin{array}{l}\text { of the g-th grain in the i-th } \\ \text { region }\end{array}\right)$

$$
(g=1,3,4,5)
$$

When availabic, 1953 planted or harvested acreages of wheat, corn, onts, barley, and sorghum were oblamed from unpublished data of the Agricultaral Estimates Division, Agricultural Marketing Service, and from State statistical bulletins (2, 3, 4, 7, 20, 19, 25, 27, 12, 8, 9 , $10,11,18,16,14,15,28,5,6,92$, and 33). When aereages were not available from these sources, regional acreages were estimated from State data (23) and 1954 economic area and county data (29).

The number of cultivated summer-fallow acres was included as a component of the regional acreage restraints because fallowed acreages are a necessary hand input in semiarid wheat arens. Machinery and labor costs associated with fallowed land are a necessary part of the total per acre cost of production. Also, historic yields are based on production resulting from the use of cultivated summer fullow in rotation. Thus, the inclusion of cultivated summer fallow places estimates of acreage, yield, and cost in their proper relationship.

Estimates of cultivated summer-fallow acreages were obtained from the census (29 , table 1) and from unpublished data of the Crop Estimates Division, Agricultural Marketing Service. It was assumed that fallowed acreages did not change significantly from 1953 to 1954.

14 technical bulletin 1241 , u.S. Dept. of agriculture

Only recently have annual data on cultivated summer fallow become available, and these data are far from complete.

The estimated acreages of wheat and feed grains available for planting in each region are shown in table 1.

Table 1.-Estimated acreages of land available for production of wheat and feed grains, by regions, 1953

Region	Wheat	Corn	Oats	Barley	Sorghun
	1,000	1,000	1,000	1,000	1,000
	acres	acres	acres	acres	acres
1	316.4	110.4	101. 8	14.0	
2	\$58. 2	1,018.0	430.1	273.8	
3	89.2	320.3	11.9	23.3	
\pm	103. 2	157.5	15. 7	21.3	
	59.2	118.8	IS. 1	12.3	
6	$\underline{12} 8$	526. 3	18.0	3.8	
7.	77.4	196. 7	44.9	6. 4	
8	136. 7	123. 2	95.7	14.9	
9	91.8	1, 223.0	98.8	7.1	
10	8.0	247.4	34.5	. 2	
11	1.0	241.6	18.0	1	
12	110.5	2, 450. 9	527.9	5. 6	
13	90.2	192. 2	140.4	10.8	
14	12.2	80. 1	13. 4	1. 6	
15		517.3	24.3		
16	0.4	83.8	6.9		0.3
17	0.9	698. 2	2. 9		6.2
18	18.1	1, 120.3	72.5		19.1
19	2. 7	1, 132.9	89.7		2.7
20.	107.9	741.4	96.7	52.5	
21	101. 7	647.9	38. 7	3. 9	. 6
22	184. 4	789.7	40.5	54. 6	. 6
23	25.5	227.0	6. 2	2. 0	
24.	48.6	2.12.	18. 1	20. 2	
25.	189.6	359.5	20.5	4. 4	
26	134. 5	208. I	64.6	4.3	
27	382.2	415.1	262.5	7.4	
28	1, 608. 6	2, 421.1	795.0	20.6	
29	205.8	467.8	71.0	12.8	
30	498.6	1,320.9	68.6	13.8	
31	939.1	2, 909, 0	905.8	5. 6	
32	230.3	510.2	263.9	1. 0	
33	537.7	682. 9	418.5	9. 7	
34	893. 6	691.1	692. 4	39.6	
35	14.9	201.6	760.0	11.3	
36	41.4	817.2	1,370.3	68. 2	
37	185.0	4, 000.9	$2,654.6$	13.3	
38.	677.8	3, 176. 3	986. 4	. 8	
39	305.9	760.	52.5	5. 2	
40.	461. 1	450.6	92.9	8.3	------

See footnote at end of table.

Table 1.-Estimated acreages of land available for production of wheat and feed grains, by regions, $1958{ }^{1}-$ Continued

Region	Wheat	Corn	Oats	Barley	Sorghum
	1,000	1,000	1,000	1,000	1,000
41.	acres	actes	acres	acres	acres
42	442. 6	500.1	+99. 2	7.7	29
43	1, 171. 2	2, 853. 7	759.5	3. 4	2.3 6.9
4.	122.2	${ }^{2}, 834.3$	1, 304.4	2. 1	6.9
45	2 1. 0	6,800. 8	$4,002.5$	54. 9	
46	27.1	2, 455. 0	1, 613.2	11.9	
47	62. 2	1, 120. 2	1, 483.0	45.7	
48	96.1	1, 290.4	1983.8	185. 5	
49	103. 2	339. 4	707.4	93. 7	
50	2,707.0	192. 6	830.2	1,090. 9	
51	6,035. 1	119.6	721.6	1,022. 1	
5	2, 427.6	20.4	161. 1	1,022. 18	
53	4, 033. 3	293. 3	453.5	236.2	
54	481.9	129. 2	271.9	162.8	
55	1, 5 58. 7	237. 8	237.0	67.7	
56	2, 277. 4	747.3	938. 2	192.5	
57	216. 5	449.9	628.9	108.9	
58	246. 8	410.4	303. 2	52. 9	
59	143.6	i, 835.1	1,593.0	52.6	
60	263.2	2,335. 9	1, 258.4	15. 4	1.3
61	253. 5	81.1	62. 6	44.1	1
62	3,647. 4	233. 8	109.9	266.1	24.9
63	491. 1	1, 157. 2	271.0	52.5	18. 2
64	1, 358. 2	939.4	80.7	13.9	117.0
65	1, 596. 1	2, 496.8	647.0	9.8	38.1
66	398.1	584, 6	208. 4	1. 9	26.9
67	292. 9	208. 4	175.4	10. 3	101. 2
68	494.9	96.0	127.4	7. 4	42.9
69	6.5. 5	173. 1	178.7	8.2	143.5
70	1, 075.3	532.2	79.3	4.6	100. 0
71	1,00\%: 1	97. 4	122.8	1.8	96. 2
72	2, 347, 6	36.4	161.7	7. 5	182. S
73	6, 565.	99.7	106. 7	78. 0	814.3
75	$4,473.6$	8. 0	14.1	26. 1	592.4
75	155.0	76.2	154. 1	4.0	31.5
76	2,568. 2	12. 2	94.8	17.4	46. 4
77	2, 485.9	6.7	27.1	8. 4	383. 8
78	277.9	78. 4	102. 3	5. 8	39. 1
79	1, 763. 5	23.7	109.2	11. 9	116. 8
80	1,820.1	5. 0	9. 4	28.7	I, 017.3
81	1,342.4	12. 4	182.7	18.6	398.7
82	75. 4	4. 4	1.7	3. 7	1,090. 5
83	277, 5	14. 9	65.9	5. 4	5. 7
84	48.4	2.8	11.5	. 5	34.5
85.	36.6	296.2			106. I

See footnote at end of table:

Table 1.-Estimated acreages of land available for production of wheat and feed grains, by regions, 1953 -Continued

Region	Whent	Corn	Onts	Barley	Sorghum
	1,000	1,000	1,000	1,000	1,000
	acres		acres		acres
86	22.7	43.3	26.4	2.2	13. 8
87	1. 2	289. 2			3̄̄. 6
88	¢. 2	291.9			31.2. 3
89	6,090. 1	103.6	147.5	140.8	
	3,485. 9	1. 2	75. 4	270.3	
91	505.2	22.9	44.8	38.9	
92	629. 1	1. 2	25.2	36. 5	
93	685.8	30. 2	71.8	42.2	
94	3, 88.1. 4	155.6	40.0	95.7	118.0
95.	492.0	32.9	10.8	21.5	52.1
90	505.2	t. S	2.7	9.3	42. 1
97.	412.6	4. 5	-4	1.7	124. 9
98.	1, 53S. 3	. 5	40.0	171. 1.	
99	480.1	1.2	4.7	23. 8	
100	4, 334. 2	. 8	89.1	260.7	-------
101.	2,750.1	2.7	13.0	13.2	
102	506.0	9.5	16. 4	12. 1	
103	103. 4	12. 0	35.6	388.8	13.9
104	157. 6	28. 5	11.8	779. S	37.6
Total	94, 716. 0	67, 084. 5	34, 163.6	7, 272.0	6,378.7

: Acreages include cultivated summer fallow.

Regional Yields

Normal regional yields, as defined previously, were estimated in two steps. First, the 1945-54 average yields were computed. These yields were then adjusted by a factor representing the average increase in yield between the midpoint of the period 1945-54 and the year 1954. Trends werc computed from data for the period 1937-54.

When annual data were available, 1954 average yields were computed by this method. The sources of the data are those listed for acreages. When annual data were not avaitable for the period 104554, harvested yields per acre were estimated from State data (23)and census economic area and county data (29). These yiclds per harvested acre were then adjusted by a factor representing the average percentage of the total acreage harvested, with total acreage equaling harvested acreage plus abandonment plus fallow.

The estimated yields for each grain by regions are shown in table 2. These are net yiclds-per acre seed requirements were subtracted.

Table 2.-Estimated net yields per acve for wheat and feed grains, by regions, 1954 ${ }^{2}$

Iegion	Wheat	Corn	Oats	Barley	Sorghum
	Busheis	Bushels	Bushels	Bushels	Bushels
1	26. 9	45. 6	39.0	30.0	
2	21. 3	50.0	36.4	37, 3	
3	18. 1	45.9	29.2	26.2	
4	18. 4	49.8	32.2	27.2	
5	21. 2	39.6	3\%. 2	30.7	
6	16. 2	36.6	97. 4	21.9	
7	19.3	29. 4	32.0	29.9	
8.	18.3	31. 2	32.2	30. 6	
9	17.7	29.2	99.9	24.1	
10	17.8	21.3	28. 2	21. 6	
1.	16.5	18. 6	23. 1	17. 0	
12	16.6	16. 2	27.2	23. 6	
13	16. 5	18. 0	27.2	23. 6	
14	16. 1	18. ${ }^{\text {j }}$	24. 0	21.0	------
15.		15.0	2 I. 2		
16.	22.8	20. 1$)$	21.7		19.0
17	20. 4	15.4	22, 1		14.8
18	19.6	21.5	29.5		17. 1
19.	15. 7	19.8	20.9		15. 0
20	14.9	27. 6	25.3	14.9	
21.	18. 0	25.6	24. 4	18. 6	19. 2
22	17.1	36. 4	27.0	19.0	
23	19.6	32. 6	27.7	19.6	
24	15. 8	36.3	28. 6	24. 4	
25	17.4	50.8	27.7	24, 5	
26.	23. 0	51.3	37.1	29.8	
27	26.0	50.4	40.9	32.8	
28	24. 1	56.6	39.5	29.1	
29.	19.0	-1-1. 4	30.0	24. 6	
30	19.1	39.8	28.5	26. 5	
31.	2.t. 3	55.6	38.0	25.5	
32	27.0	56.0	39.8	26.2	
33	26. 6	43. 4	37.1	28. 7	
34	27. 6	43.3	37. 2	32. 0	
35.	20.6	44.6	37.9	33.0	-------
36	27. 3	58.6	53. ${ }^{\text {g }}$	38. 4	
37	25.2	59.9	41.2	30.6	
38.	97.1	57.0	36.6	26.6	
39.	18. 8	36.1	23. 7	25.0	
40	19. 4	35.2	25.2	25. 5	----
41	21.3	36. 0	23.9	25.9	17. 0
42	19.7	28.2	24.5	23.3	16. 1
43	22. 7	42.8	27.1	27.8	22. 3
44	15.5	46.1	28.1	22.4	
45.	14. $\overline{7}$	50.1	31.2	17.8	

See footnete at end of table.

Table 2.-Estimated net yrelds per acre for wheat and feed grains, by regions, 1954^{1}-Continued

Region	Wheat	Corn	Oats	Barley	Sorghum
	Bushels	Bushels	Bushels	Bushels	Bushels
46	17.6	51.4	37.1	27.5	
47.	17.0	47.6	38.2	26. 9	
48	13.6	39.5	32.6	23.6	
40	14.6	40.3	33.2	27.8	
50	9.2	26.4	30.0	25.0	
51.	8.0	20.2	24.6	18.7	
52	7. 0	17.8	24.4	17.6	
53.	7.5	17.8	25.5	18.5	
54.	7.9	22.1	25.8	18.9	
55	8.1	19.0	22.4	16.7	
50	9.0	22.2	25.5	17.0	
57	8.6	29.7	30.0	20.1	
58	8. 5	21.6	24.2	16.4	
59.	9.6	36.5	29.5	18.8	
60.	16.2	38.9	22.8	16.8	21.4
61	12.8	24.4	23.7	19.3	16.7
62	10.0	26.4	24.4	21.8	15. 3
63	10.6	32. 2	17.8	12.7	21.5
64	11.2	25.2	19. 2	14.3	21. 4
65.	17.5	37.0	22.7	16.3	30.5
66	17.8	31.5	17.4	17.6	25.5
67.	17.9	25.5	18.7	19.2	19.8
68.	17.1	22.1	20.9	18.1	17.5
69	17.4	24.0	19.9	18.5	18.4
70.	10.8	22.1	13.7	11. 7	19.8
71	13. 3	22.2	18.8	14. 3	19.9
72	13. 8	21.0	19.7	13.3	18.6
73	9. 4	20.4	16.0	12.8	18.6
74	7.3	16.1	15.6	10.3	17.0
75.	12.0	18.4	13.5	12.7	12.5
76	13.0	16.5	17.3	11. 6	14.8
77.	6. 6	11.2	10.1	7.3	12.9
78	10. 4	19.5	15. 7	9.8	13.1
70	10.3	18.0	15. 4	10. 1	14.7
80.	6.1	27.2	16.6	12.2	27.5
81.	7. 5	13.7	17. 9	12.1	10.0
82	5.0	14.5	15.9	13.2	15.0
83	8.3	13. 7	16.0	12. 4	9. 1
84	4. 5	11.3	14.2	9.1	12.7
85	5.8	17. 7			19.0
86	4.2	14.0	16.6	9.9	16. 1
87	4. 5	17.0			15. 9
88	4. 5	17.1			23.6
89	8.0	14.6	28. 0	29. 6	
90	8.0	16.4	29.4	27.0	-----

See footnote at enu of table.

Table 2.-Estimated net yields per acre for wheat and feed grains, by regions, 1954^{1}-Continued

Region	Wheat	Corn	Oats	Barley	Sorghum
91	Bushels	Bushels	Bushels	Bushels	Bushels
02	6.5 10.6	13. 0	23. 9	16.4	
93	8.7	24.2	22.8 8	23. 5	
94	7. 0	16.3	15.8	12.7	8. 8
95.	5. 2	42. 8	17.9	14.8	16. 5
96	2.5	16.7	11.9	10.1	8.6
97	1. 6	10.0	19.7	10. 6	10. 8
98	12.9	45.2	39.4	30. 6	
90	9.9	38.1	49. 4	47.2	
100	16.9	64.5	40. 0	31.0	
101.	12. 6	52.5	37.6	30.7	
102	11. 6	71.7	51.5	33.3	
103	12.5	36.1	18. 2	23.2	33.5
104.	9.8	25.4	17.0	27.1	36. 4

${ }^{1}$ Estimated yield iess seed.

Production Costs

The methods used in estimating per acre costs of grain production are described here. In the section that follows, the methods used in transforming these costs into the programing coefficients are described. It is hoped that this method of presentation will better illustrate the formulation of the programing coefficients.

The basic items that make up the per acre cost are land, labor, machinery and power, seed, chemicals, and miscellaneous inputs. However, a charge for annual land services was considered for model B only. Indirect or overhead costs, such as management, purchasing, selling, housing, and so on, were not estimated because a satisfactory method and data for estimation were lacking. Some detailed unit cost studics have used 10 percent of the direct cost as an estimate of the indirect cost, but use of this method would not change the relative values of the activity costs. Hence, the iaclusion of a proportional indirect cost would not affect the programing solutions to the problems considered in this study.

Composite Acre

Because uniform and complete data on average production costs for wheat and feed grains in each programing region were lacking, these costs had to be synthesized by some consistent method. To get some realistic estimate of per acre cost, a composite acre was devised for each region. This composite acre was made up of 12 possible elements, each of which represents a unique production operation. These 12 acre-elements, or types of production situations, used for production-cost estimates are:
(1) Mechanical, planted and harvested, not irrigated;
(3) Mechanical, planted but not harrested (abandoned);
(4) Mechanical, cultivated summer fallow;
(5) Semimechanical, planted and harvested, not inrigated;
(6) Semimechanical, planted but not harvested, irrigated;
(7) Semimechanical, planted but not harvested (abandoned);
(8) Semimechanical, cultivated summer fallow;
(9) Nonmechanica!, planted and harvested, not irrigated;
(10) Nonmechanical, planted and harvested, irrigated;
(11) Nonmechanical, planted but not haryested (abandoned);
(12) Nonmechnical, cultivated summer fallow.

Except for the mechanical items, these acre-clements are selfexplanatory. They are defined as follows: Mechauical-tractor power is used for all tillage operations and harvesting is done by combine or cornpicker; semimechanical-tractor power is used for all tillage operations and harvesting is done by hand (for corn) or with binder and thre her (for small grain); and nonmechanial-a producLion technique in which animnt power is used for all tillage operations and harvestiag is done by hand (as for corn) or with binder and thresher (as for smail grain). Aiso, acre-elements 2, 6, and 10 imply that no abmondonment is assumed on irrigated acres.

The list of 12 acre-clements is mot exhaustive. On the basis of regional data, however, they seemed to be complete enough to provide reasonable estimates of average production costs, and at the same time to facilitate compulations for planued further investigations.

An example will help to expluin the method used in deriving costs for each crop and cach regrion. Data for corn in region 1 indicated: (1) Al production by mechanical techniques, (2) no irrigation, (3) no harvesting from land in cultivated summer fallow the preceding year, and (4) an average of 1 -percent abandonment of the planted acres. Athached to each com acre in region 1, therefore, were two types of acrestement cosis-mechanical, planted and haryested but not irrigated; and mechanical, phated but not harested. The weights, which are computed elsewhere on an acreage basis, are 0.99 for mechanical, planted and harvested but not irrigated; and 0.01 for mechnoical, phated but nol harvested. Furthermore, given per atce costs of \$ 22.20 lor the mechanica, planted and harvested acre and $\$ 34.50$ for the mechanical, planied but not harvested acre, the estimated average per acre production cost for com in region 1 is $\$ 42.12(42.20 \times 0.99+34.50 \times 0.01)$.
Estimates of costs of labor, machinery, and power provided the greatest conceptunl and empirical difficulties. Aggregate estimates of machinery and habor inputs exist tor Cnited States farms, but they are not broken (lown between individual farm enterprises. Hence, these costs were derived by estimating the average physical inputs per acre by type of operation (plowing, disking, hmrowing, and so on) and then weighting physieal inputs by the estimated per unit eost of the inputs in rolred. Because many of the published data on labor and machmery costs were cither incomplete or out of date, supplementary data on these inputs were obtained from 25 agricultural experiment stations.
Methods used in estimating the basic cost items are now described.

Land

The annual value of land for grain production was used only in model B. The per ccre vulue of land on cash-grain farms (29, economic area table 4) was assumed to be the best available basis for estimating the annual value of land services for grain production. ${ }^{6}$ The sum of the interest rate and tax rate (56) was multiplied by the per acre value to obtain the annual input value of land (24). In region 1, for example, the interest and tax rates were 0.048 and 0.0184 , respectively, per dollar of value, and the land value was $\$ 111$ per acre. Hence, the estimated annual value of land was $\$ 6.37$. The estimated annual per acre cost for land by regions is shown in table 3. No attempt was made to differentiate between values when land was used for the different grains.

Labor

Inputs of plysical labor were estimated for each production operation. The meithod is illustrated in the tabulation below for whent

Table 3.-Dstimated annual regional land costs (rents) per acre for grain production, by regions, 1954

Region	Cost,	Region	Cost	Region	Cost	Region	Cost
1	57. 37	27	89.14	53	\$1. 59	79.	\$4. 43
2	8. 81	28	12. 50	54	2. 12	80	4. 98
3	5. 59	29	4. 60	55	I. 28	81	3. 68
4	7. 03	30	7. 14	56	2. 23	82	4. 68 4.07
	5. 91		11.99		3. 68	83	3. 32
6	4. 58	32	10. 62	58	2. 14	84	5. 00
	6. 08	33	9. 97	59	4. 08	85	8.22
8	4. 84	34	8. 46	60.	7. 05	86	5. 00
9	5. 73	35	3. 33	61	$\underline{2}$ 2. 66	87	5. 36
10	8.29	36	16. 30		3. 71	88	5. 40
	4. 46	37	14. 70	63.	4. 20	89	1. 60
12	4. 73	38	18. 70	(14)	3. 95	90.	2. 76
13	6.12	30	4. 97	G5.	7.41	01.	2. 82
14	2. 17	40	5. 31	(6)	5. 62	92	1. 51
	3.83	41	7.03		3. 84	93	1.90
16	6. 48	45	3. 77	68.	3. 66	94	2. 88
17	3. 40	43	6. 66	69	5. 07	95	2. 40
18	3.92	44	8. 03	70	3. 55	06	2. 40
19	3.88	45	L3. 01	71	5. 22	97	2. 98
20.	3.71	45	9.55	72	7.07	98.	4. 08
21.	5. 31	47	(3. 69	73.	4. 21	99	3. 77
22	3. 27	48	6. 46	74	3. 81	100	6. 14
23	4. 60	49	2.92	55	3. 53	101	4. 26
24	6. 58	50	4. 015	76	5. 10	102	2. 73
25	7. 12 5.35	51	2. 13	77	3. 75	103	11.61
	5.38	52	1. 60	78.	4. 65	104	7.60

[^5]production in region 1, which is based on the mechanical, planted and harvested, not irrigated acre-element.
Hours requiredOperation:per acre
Plowing 1. 46
Disking 1. 15
Harrowing 69
Drilling 82
Hinvesting 1. 34
Ifauling 1.03
Total 6. 69

The data on labor hours required for harvesting and hauling omit the portion of an "average" acre not harvested.

Data on the number of man-hours of labor required for each production operation were obtained from several publications ($17,18,26$) and from the survey data noted previously. When possible, modal cocficients were used. When a modal production operation was not evident in the data, simple averages or single estimates were used. The per acre labor cost for each acre-element was obtained by multiplying the estimnted number of man-hours required per acre by an estimate of the hourly wage rates on cash-grain farms. The per acre labor costs for each grain and each region were computed by weighting each acre-element libor cost by the proper coefficient.

Pouer and Machinery

The method used in estimating the power and machinery cost was similar to that used in estimating labor. The estimating problem was more complex, however, wecause of the multitude of items that compose machinery costs. Instead of one coefficient-hours per acreand one price-wages-coefficients and prices for each implement required to produce each grain in each region were estimated. The tabulation that follows illustrates the procedure used in estimating this cost for an acre of corn in region 28 in Ohio. The example is for the mechanical, planted and harvested but not irrigated acre-element.

Implement	Size	Hours of use required per acre\timesCost, per hourCost ior implement		
Tractor.	19 IIP.	10. 45	\$0. 81	\$8.40
Plow	$2-1.4^{\prime \prime}$	1. 30	. 71	. 92
Disk_	$7^{\prime} \mathrm{T}^{\prime}$	1. 00	. 67	. 67
Harrow		. 50	. 22	. J
1) rag.		. 35	. 26	. 09
Cultipactor	10^{\prime}	. 40	, 10	. 24
Plunter-.-	2-12	. 60	. 05	. 39
Cultivator	2-12	1. 50	. 80	I. 20
Picker.-	1-R.	1. 80	1. 71	3.08
Whigon.	std.	1. 00	. 08	08
Total				1.5. 24

The machinery sizes and number of hours required per acre used in estimating machinery cost were modal velues when these values could be determined. When a modal value was not apparent, simple averages or single observations were used. Machinery sizes and hours of use required per acre were obtained from F.M. 92 (2) and from survey data. Extensive searching and many computations were necessary in order to estimate the per hour cost of each implement. Information was obtained or estimated lor this purpose as to size, price; annual uso; total life; interest, tax, and insurance rates; grease and repair rates; and fuel and oil consumption rates. With these basic data, the items that make up the per hour cost of each imple-ment-depreciation, insurance, interest, taxes, fuel, oil, grease, and repuirs-could be computed.

Seed

The cost of seed was not included as a part of the total per acre production cost. Instead, the estimated quantity of sead required per acre was subtracted from the estimated yield. This method was used because total demand for seed is a function of the acreage grown in each region. But these acreages are variables to be determined within the system (that is, the model). Hence, the simplest way of allowing seod cost and demand for seed to be variables determined by the system is to deduct the seeding rate from the yield. To use this mothod, it is necessary that grain seed be planted in the region in which it is produced; and that planted acreages within each region be coustants between yeurs. Only State seeding rates were available (30,1954). Therefore, adjustments were made in State rates to compensate for varintions within the States.

Chernicals

Regional fertilizor costs for each of the five grains were calculated mninly from the U.S. Census of Agriculture (20), county table 6 and coonomic area tables 4 and 5). Specific data for only the "more important" crops are rocorded in the census. When fertilizer applications were not tabulated for a grain crop in the census, this cost was estimated with the aid of unpublished data of the Farm Economics Research Division, ARS.

The per acre cost of lime for each grain was estimated by dividing the total cost of lime applied in a region in 1954 by the total cropland (29, economic area tables 1 and 2 and county tables 1 and 6).

Data were not available to show expenditures for insecticides, fungicides, and herbicides for wheat and feed grains by regions. Hence, these costs were first estimated for each State. The State estimates were then used io estimate chemical costs for regions within States. The basic data used lor insect, pest, and chemical weedcontrol expenditures were those compiled by Brodell and others (1 , tables 9-12).

Miscellaneous

Misceliancous costs include those involved in the spreading of manure, fertilizer, and lime, and those of water for acreages produced by irrigatiou. No attempt was made to eslimate the value of munure
applied to wheat and feed grains. The spreading cost alone was charged to crop enterprises. Costs of spreading manure were estimated only for the programing regions in the Northerst, Appalachian, Corn Belt, and Lake States regions and the cornproducing areas of the Northern Plains. For some of the fertilizer applied to grains, the cost of application was accounted for in the method used to compute machinery and labor cost. This accounting method was used for fertilizer applied by attachments on planters, drills, and cultivators. For fertilizer spread by otber methods (21), an additional application cost, which included charges for labor, power and marchinery, was computed. Costs of lime spreading by custom operators were assumed to have been included in the lime expenditures reported by farmers (29 , county table 6 and economic area table 2). An additional spreading cost was computed for lime spread by farmers (21). In areas in which less than 0.5 percent of the grains were produced by irrigation methods (29 , county table 1a), irrigation costs were not estimated.

Estimates of the production costs (except land) outlined nbove are summarized in table 4. These costs are based on the composite acre deacribed earlier.

Table 4.-Estimated production costs per aere, excluding land, for specified crops, by regions ${ }^{1}$

Region	Wheat	Corn	Osts	Barley	Sorghum
	Dollars	Dollars	Dollars	Dollars	Dollars
1.	29.23	34. 76	28.34	28. 64	
2	28.08	33.08	26. 40	25. 14	
3	29.86	29. 29	28. 28	30.61	
	28. 14	32.30	27. 58	27. 81	
5	24.36	30.59	24.31	24.31	
	25. 25	32. 12	20.87	24.92	
7	32.35	39. 01	32, 31	32. 38	
8	30. 17	32.57	29.04	30. 16	
9	28. 35	35. 48	38.22	28. 50	
10	22. 79	30.85	23. 62	24. 08	
11	27. 24	31. 93	24. 53	25. 43	
12	23.37	25. 49	23. 39	23. 49	
13	22.79	27.56	21.90	22. 30	
14	26.46	30. 08	24. 57	25.91	
15		26. 53	25. 49		
16	23.30	35. 09	28. 85		27. 42
17	23. 73	29.61	28.66		29. 13
18	23.42	29.17	28. 21		28. 10
19	22.87	28.65	22. 92		26. 29
20	25. 84	28. 61	24. 55	24.40	--------
21	22. 60	24. 12	19.89	19.53	
22	24.25	30.64	23. 62	23. 53	
23.	29.68	28.35	25.84	26. 29	
24	28. 04	30. 33	27.07	27.57	
5.	25. 93	33.07	27.16	21. 65	

Sce footnote at end of table.

Table 4.-Esimated production costs per acre, excluding land, for specified crops, by regions ${ }^{1}$ - Continued

Region	Wheat,	Corn	Oats	Barley	Sorghum
	Dollars	Dollars	Dollars	Dollars	Dollars
26	29.64	34.72	24.03	24.10	
27	30. 28	34.78	26.02	26. 49	
28.	25. 72	32.85	21.15	21. 75	
29	26. 25	30.96	22. 81	20. 95	
30	20.68	20.82	18. 82	17.81	
31.	23. 70	26. 99	20.75	19. 12	
32	20.45	26.45	18. 67	17. 24	
33	28. 11	29.57	23.45	26. 40	
34.	30.45	30. 40	29.62	28. 68	
35	21.85	30.93	24.03	22. 33	
36.	21. 57	30.34	21. 28	22.06	
37	20.37	23.82	18.85	19.78	
38.	18. 52	18.52	14. 17	15. 77	
39	20.65	20. 14	15. 09	16. 10	
40	18. 74	22. 70	14. 40	15. 57	
41	20.06	23. 34	17. 12	19.85	22. 21
42	20.79	23.34	16. 91	18. 32	21. 60
43.	19. 86	21. 78	16. 76	23.29	26. 01
44	16. 59	21. 58	14. 08	17. 20	
45	14. 74	19.43	11. 40	11. 94	
46.	16. 90	21. 67	12.63	12. 45	
47	17.67	25.08	18. 69	18. 39	
48.	14. 71	19.51	9.65	13. 93	
49	13. 40	23.22	14. 66	13. 59	
50	8. 52	18.70	12.57	11. 77	
51.	6. 57	17.83	8.53	8. 70	
52	5. 84	19. 41	8. 50	8.75	
53.	7.23	16. 26	9.16	9.31	
54.	8.25	16. 39	9.92	10. 15	
55.	6. 16	11. 53	7. 75	7. 64	
56.	7.23	11. 62	8.00	8. 05	
57.	10. 23	17.50	12. 88	12. 83	
58	7.01	11.53	8.71	9. 62	
59	10. 12	16. 45	9. 44	12. 20	
60.	11. 74	14. 40	10.24	11. 14	13. 31
61.	7.20	14. 50	11. 72	10. 70	16. 04
62	7. 05	20.12	13. 50	14. 16	15. 53
63.	10.28	18. 68	16. 07	14. 80	20.75
64	6. 44	17. 06	12. 20	10.82	16. 17
	12.68	17.57	11. 80	10. 57	14. 19
66.	17.56	18. 01	14. 20	12. 23	15. 71
67.	18. 91	21. 83	14. 88	12. 84	19. 26
68.	20. 20	22. 47	15. 97	16.70	17. 68
69	16.65	19.77	12. 82	14. 25	18. 83
70.-.-	9.21	16. 23	12.54	10.54	16. 41

[^6]Table 4.-Estimated production costs per acre, excluding land, for specified crops, by regions ${ }^{1}$-Continued

Region	Wheat	Corn	Oats	Barley	Sorghum
	Dollars	Dollars	Dollars	Dollars	Dollars
71	11. 21	18. 53	12. 28	10.42	16.82
72	9. 49	19.28	10.62	9. 19	15. 57
73	5. 80	11. 22	8.85	7.52	10. 05
74	3.88	17. 20	6.45	6.03	8. 54
75.	15. 40	19.97	16. 70	15. 29	17. 85
76	9.41	21. 89	9.67	8.79	17. 16
77	6.08	13. 30	7.75	6. 65	9.06
78	10. 93	19.36	12. 03	11. 20	17. 23
79	7.55	16. 89	8.43	7.41	10. 65
80.	4.90	22.62	5. 58	5. 39	13. 78
81	5. 54	11. 35	7. 49	6. 69	8.04
82	5. 13	21. 25	6. 50	6. 06	9. 10
83	7.06	12. 79	8. 54	7.92	8. 68
8.	5. 19	9.52	7.77	7.09	8. 55
85.	7.15	14.07			13. 47
86	4. 77	14. 47	9. 24	8.06	13. 48
87	7.73	16. 30			13. 66
88	6. 30	13. 11			10. 54
80	5.07	32. 38	9.42	9.11	
90	6.83	35.84	18. 46	14. 10	------
01	6. 76	34. 48	13.71	12. 56	
32	8.88	44. 92	24. 44	20. 90	
93.	8.61	23.57	15. 53	16. 59	
94.	5. 50	12. 35	9.60	9.07	10. 92
95.	7.63	22. 71	15.21	15. 94	19.98
96.	3. 61	14. 33	10. 40	9.21	12. 90
97	4.04	16. 46	15. 59	15. 21	16. 28
98.	10.56	3. 40	26.60	20. 56	
99.	10. 36	50.30	31. 19	31.31	
100	10.95	51. 48	17. 28	16.66	
101	6. 76	57.58	13. 18	14. 90	
102	8. 65	73. 17	27. 77	23. 09	
103	10. 11	40.25	13. 28	14. 25	32. 90
104	9.21	31.36	9. 33	14. 17	16. 11

1 These estimates are based on a composite acre; see previous section in text.

Demand Restraints

Separate demand restraints (restrictions) were considered for food wheat and feed grain in aggregate for 1954. Hence, the calculations provided later show regional production patterns designed to meet aggregate demand at the 1954 level. Techniques of production also represent 1954 as a point in time. The year 1954 was used because data for it were available. These demand restraints, which are assumed to be fixed or constant, were based on the normal per unit requirements of the human or livestock populations, or both, and the actual net exports in the base year 1954.

Because it was believed that grain stocks "put an abnormal pressure" on grain disappearance in 1954, an attempt was made to estimate a normal domestic disuppearance for each grain. No attempt was made, however, to estimate normal net exports, because of the many unmeasurable factors in the world market.

The total (domestic and foreign) estimated demand levels were approximately 757 million bushels of wheat and 3,887 million cornequivalent bushels of feed grain. Although these estimates were derived by simple techniques, they seem quite reasonable and do not differ greatly from actual disappearances of wheat and feed grains in 1954 (22). Seed requirements and grain for forage were not included in the estimates, as seed requirements were subtracted from yields and the study reported is concerned with grain production alone.

As shown in figure 2, not all the land area in the United States was included in the progruming regions. Hence, it was necessary to estimate the normal production of wheat and feed grains in these nonprogramed areas in order to determine how much of the estimated total demand or requirements would need to be produced in the programing regions. Production from the nonprogramed areas was subtracted from the total demand requirements mentioned above. This remainder formed the demand restraints that had to be met from production in the programed regions.

The normal production in the nonprogramed areas was estimated by a residual method. First, for each State and each grain, the total planted acreage in the programing regions within a State was subtracted from the 1953 acreage planted for grain in the State. When these residual acreages were multiplied by the estimated 1954 normal yiclds ior the State, the total preduction in the nonprogramed areas was obtained ${ }^{8}$ With corn, oats, barley, and grain sorghums converted to corn-equivalents, these quantities were so and 338 million bushels of wheat and feed grain, respectively. Subtracting these quantities from total requirements gave 677 ntillion and 3,549 million bushels of whent and ieed grain, respectively, as the demand or requirement quantities to be provided from the programed regions.

The estimated acreages and total attainable production in both the programed and the nonprogramed regions are summarized in table 5 . That the attainable production in the programing regions accounts Cor most of the grain produced in the United States is evident. In fact, if the feed grains are converted to corn-equivalent bushels, the perchatage of feed grains in the programed areas accounts for about 91 percent of the total U.S. production. The similar percentage for wheat production in the programed regions is 93.1 .

Grain Prices

As model E is based on the critericn of maximum profit, it was necessary for this model to estimate the regional grain prices received by farmers. Estimating grain prices that were consistent with the

[^7]Tarle 5.- Estimated available acreages and attainable total net production of wheat and feed grains in the Tnited Siates, programed and nonprogramed areas, 1954^{1}

Crop	Programed areas		Nonprogramed areas ${ }^{3}$		United States
	Amount	Percentage	Amount	Percentage	
	1,000		1,000		1,000
Avaijable acrage:	${ }^{\text {acres }}$	Percent	actes	Percent	acres
Corn	94.78	89	${ }^{5} \mathrm{~S} .173$	5. 1	99, 796
Onts	34, 16.4	85.6	5.755	14.4	39, 919
Barley	7, 272	77.8	2, 056	22.2	9,328
Sorghum.	6,370	93.7	431	6. 3	6, 810
	1,000		1,000		1,000
Netproductirn:	bushels		bushels		bushels
Wheat-	1, 070, 35.	93.1	80, 356	6. 9	1, 159, 710
Corn_-	2, 752. 492	93.4	195. 280	6. 6	2,947, 772
Outs.-	1, 092.497	86.9	164, 340	13. 1	I, 256,837
Barley.	1692003	72.7	63, 521	27.3	232,584
Sorghum.	115, 937	91.0	11, 472	9.0	127,409

${ }^{1}$ Seed requiremments were subtracted from per acre yields.
2 A residual, setext.
fundamental concepts underlying model E was not simple. Finst, the differences in regional prices shoudd be a measure of the relevant transportation cost between regions. Second, the regional prices should represent the relative values of each grain in a competitive market.

Briefly, regional grain prices were estimated as follows: The average wheat-com price relative for the period 1932-41 provided the basis for estimating the price of wheat. ${ }^{9}$ First, the 1945-54 United States average price of corn was multiplied by the 1932-41 United States wheat-com price relative. This product was then subtracted from the actual United States average price of wheat for the period 1945-54. Next, this difference was subtracted from each average State wheat price for the period $1945-54(30,1956)$. Finally, regional wheat prices were estimated by adjusting the calculated State average prices by the price gradients indicated on a wheat iso-price map. It was assumed that prices within each State were a linear function of distance. Regional com prices were estimated with the aid of a corn iso-price map, by adjusting $1945-54$ average State corn prices in a way similar to that used in adjusting State wheat prices. Individual prices for oats, barley, and sorghum were not estimated-these grains are converted to corn-equivalents for programing. Thus, in essence,

[^8]the prices used for these three grains were the corn prices weighted by their respective feed values in terms of corn.

The estimated regional wheat and corn prices used for programing are presented in table 6 .

The Programing Coefricients

The previous sections described the methods and problems involved in estimating for each region maximum acreages, normal yields, production costs, demand restraints, and corn and wheat prices. The
Table 6.-Estimated normal prices per bushel for wheat and corn, by regions, 1954

Region	Wheat	Corn	Region	Wheat	Corn	Region	Wheat	Corn
	Dol-	Dol-		Dol-	Dol.		Dol-	Dol-
	lars	lars		lars	lars		lars	lars
1	1. 88	1. 66	36	1.85	1.51	71	1. 88	1. 50
2	I. 86	1. 68	37	1. 85	1. 51	72	1. 85	1. 51
3	1. 91	1. 66	38	1. 87	1. 50	73	1. 85	1. 52
4	1. 80	1. 65	39	I. 87	1.51	74	1. 84	1. 54
5	1. 92	1. 68	40	1. 87	1.31	75	1. 85	1. 50
0	1. 92	1. 60	4	1.86	1. 52	76	1. 85	1. 51
7	1. 96	1. 68	42	1. 85	I. 5 j	77	1.84	1. 55
8	1.96	1. 68	43	1.83	1. 54	78	1. 85	1. 50
9	1. 94	1. 62	44	1.88	1. 52	79	1. 84	1. 53
10	1. 93	1. 62		1.88	I. 50	80	1. 84	1. 54
	I. 94	1. 62	46	1. 90	1. 46	81.	1. 85	1. 48
12	1. 93	1. 62	47	1. 92	1. 40	82	1. 85	I. 48
13	1. 93	J. 67	48	1. 91	1. 38	83	1. 85	1. 48
14	1.92	I. 69	49	1. 95	1. 40	84	1. 85	1. 50
		1. 66	50	1. 95	1.38		I. 86	1. 49
16.	1. 90	1. 66		1. 94	1. 36	86	1. 86	1. 49
17	1. 91	1.66	52	I. 94	1. 48	87	1. 87	1. 50
18	1. 92	1.68	53	1. 94	1. 46	88.	1. 87	1. 50
19	1. 83	1. 63	54	1. 92	1.36	89	1. 79	1. 60
20	1. 92	1. 66		I. 89	1. 45		1. 74	1. 65
21	1. 87	1. 60	56	1. 92	1. 40	91	1. 79	1. 60
22	I. 87	1. 60	57	1. 93	1. 37	92	I. 74	I. 64
23	I. 90	1. 62	58	1. 89	1. 45	93	1. 76	1. 58
24	1. 89	1. 61	59	1. 92	I. 46	94	1. 82	1. 56
25.	1.88	l. 55		1. 87	1. 50	95	1. 83	1. 57
26	1. 88	1. 60	61	1. 76	1. 58		1. 83	1,58
27	1. 88	I. 58	62	1. 79	1. 57	97.	1. 81	1. 54
28	1. 86	1. 51	63	1. 86	1. 47	98.	1. 72	1. 80
29	1.86	1. 55		I. 86	1. 49	99	1.73	1. 88
30.	1. 86	I. 54	65	1. 87	1. 50	100	I. 85	1. 79
31	1. 83	1. 49	66	1. 88	1.51	101	1. 86	1. 83
32	1. 85	1. 51	67	1. 87	1. 51	102	1. 88	1. 85
33	I. 87	1. 52	68	I. 86	1. 51	103	1. 95	1. 89
34	1.88	1. 54	69	1. 86	1.51	104	1. 95	1. 89
35.	1. 86	1. 52	70	1. 86	1. 49			

methods used in converting these data into coefficients used in the five analytical models are described here. The order of presentation used follows: First, the conversion of basic data into the matrix coefficients required for model A is described in some detail. The necessary modification in the coefficients or parameters to meet the conditions of the other four models is then set forth.

Model A

The acreage restraints-the maximum number of acres of land that can be used for all grain production in each region-are the sums of the individual grain acreages given in table 1. The demand restraints for the programed areas, that is, the quantities of food wheat and feed grain that must be produced within the system, are 677.5 million bushels of food wheat and $3,548.9$ million bushels of feed grain. These acreage and production restraints are presented in table 7.

Tasle 7.-Acreage restraints, by regions, and total production restraints (simplex A_{0})

Region	Acreage	Region	Acreage	Region	Acreage	Region	Acreage
	1,000		1,000		1,000		1,000
	acres		acres		acres		acres
			1,025				825
	2, 480	28	4, 935	54	1, 076	80	2, 885
3	445	29	757	55	2, 101	81	1, 955
	298		1,902	56	4.155	82	1, 176
	208		4,760		1, 404	83	369
6	561	32	996	58	1,013	84	98
	325	33	1,649	59	3, 624	85	439
$8 .$	370	34	2,317	60	3, 874	86	108
9	1, 42 L	35	994	61	441	87	326
	290		2, 297		4,282	88	610
11.	261	37.	7, 754	63	I, 980	89	6, 493
12	3, 100	38	4, 8.41	64	2,509	90	3,833
13	434	39	1, 133	65	4,718	91	611
14.	107	40	1, 013	66	1,220	92	692
15.	542		693		788	93	830
16	91	42	1, 535	68.	758	94	4, 293
	727	43	4, 795	69	1, 119	95	609
18	1,230	44	4,263	70	1,792	96	561
19	1,238	45	10,879	71	1,371	97.	544
	969		4, 10?		2,736	88.	1,750
21	853	47	2,711	73	7,604	99.	519
22	1, 069	48	2, 561	74	5, 114	100.	4,685
23	261	49	1,304	75	421	101	2, 785
24	329	50	4,827	76	2, 739	102	544
25	574	51	7, 898	78	2,912	103	554
26	412	52	2, 790		504	10	1,015

As stated ${ }^{\circ}$ previously, three"grain-producing activities-food wheat, fced wheat, and a feed-grain rotation-were considered for each region in model A. The outputs or yields for food wheat are the yields shown in table 2. The outputs of feed wheat and feed grain are obtained by converting the yields to corn-equivalent bushels. The output of each feed-wheat activity was the corn-equivalent yield. But the output of each feed-grain activity, which consisted of corn, oats, barley, and sorghum, is obtained by summing the weighted corm-equivalent yields; the weights are ratios of the acreages of each grain shown in table 1 to the total acreage of the four feed grains in the region. The example below uses the data of region 1. No sorghum is produced in this region.

Grain	$\begin{gathered} \text { Yiedd } \\ \text { per } \\ \text { acre } \end{gathered}$	$\times \underset{\substack{\text { Conversion } \\ \text { factor }}}{\text { Cor }} \times$	notation weight	Weighted yield
Corn.	45.6	1. 000	0.386	17.6
Oats	39.0	. 495	. 565	10.9
Barley.	30.0	. 791	. 049	1. 2

Per acre output, feed-grain activity, region 1 29. 7

The activity cost coefficients used for food wheat and feed wheat were the per acre whent costs shown in table 4 . However, the feed-grain activity cost was a weighted cost derived from the data in tables 1 and 4. Again, region 1 data were used to show the required steps.

Grain	Total per acre cost	Rotation weight	Weighted cost
Corn.	34.76	0.386	13. 42
Oais.	28.34	. 565	16.01
Barley.	28.64	. 049	1. 40

The activity costs and outputs derived for model A are shown in table 8.

Model B

The structure of model B is the sume as that for model A, except for the modilication of cost coeflicients to inciude land rent. The estimated regional land rents shown in table 2 were added to each respective activity cost presented in table 8.

Model C

For model C, the land restrainis were modified, but the input-output coefficients were the same as in model A. In model C, each region

Table 8.-Activity costs and yields (outputs) per acre, by regions, model A

Region	Cost		Yield		
	Wheat	Feed grain	Food wheat	Feed wheat	Feed grain
	Dollars	Dollars	Bushels	Bushels	Bushels
1	29. 23	30. 83	26.9	30.1	29.7
2	28. 08	30. 45	21.3	23.9	39.3
3.	29.86	29.34	18. 1	20.3	43.2
4	28. 14	31.47	18.4	20.6	43.9
5	24. 36	29.31	21.2	23.8	35.7
6	25. 25	31. 90	16. 2	18.2	35.7
7	32. 35	37.67	19.3	21.6	26.8
8	30.17	30.97	18.3	20.5	24.5
9	28. 35	34. 90	17.7	19.9	28.1
10	22.79	29.96	17. 8	19.9	20.4
11.	27. 24	31. 42	16.5	18. 5	18. 1
12	23. 37	25. 12	16.6	18. 6	15.7
13.	22. 70	25. 01	16.5	18.5	16. 7
14	26. 46	29. 23	16.1	18.1	17. 6
		26. 49			14.8
16	23. 36	34. 50	22.8	25.6	20. 2
17	23. 73	29.57	20.4	22.9	15.2
3	25. 42	29. 09	19.6	21.9	21.0
19	22. 87	28.22	15. 7	17. 6	19.0
20	25.8 .1	28.04	14.9	16.7	25.4
21	22.60	23.84	18.0	20.2	24.8
22	2.4. 25	29.88	17.1	10.2	34.0
23.	26.68	28. 27	16.6	18.6	32.0
24	28. 04	20.93	15.8	17.7	33.7
25	25.93	32.62	17.4	19.5	48.5
20.	29.64	32.07	23.0	25.8	43.2
27.	30. 28	31.32	26.0	29.1	38. 6
28.	25. 72	20. 90	24.1	27.1	47.3
29.	26.25	29.66	19.0	21.3	40.0
30	20.68	20.69	19.1	21.5	38.3
31.	23. 70	25. 51	24.3	27.3	46.8
32.	20.45	23. 79	27.0	30.2	43.6
33	28.11	27.24	26.6	29.9	33.8
34.	30.45	29.97	27.6	30.9	30.7
35.	21.85	25. 43	20.6	23.1	24.2
36.	21.57	24. 58	27.3	30.6	38.3
37.	20.37	22. 08	25.2	28.2	46.0
38	18. 52	17. 49	27. 1	30.3	47.8
39.	20.65	19.80	18.8	21.0	34.4
40	18.74	21, 20	19. 4	21.7	31.1
41.	20.06	21.88	21.3	23.9	30.2
42	20.79	20. 05	19.7	22.0	20.0
43.	19.86	20.73	22.7	25.4	36.6
44	16. 59	19.21	15. 5	17. 4	36.0
45	14. 74	16. 43	14.7	10. 5	37.1

Table 8.-Activity costs and yields (outputs) per acre, by regions, model A-Coutinued

Region	Cost		Yield		
	Wheat	Feed grain	Food wheat	Feed wheat	Feed grain
	Dollars	Dollars	Bushels	Bushels	Bushels
46.	16. 90	18.07	17. 6	19.7	38. 2
t7.	17.67	21. 39	17.0	19.0	31.1
48	14. 71	15. 14	13. 5	16. 2	28.5
49	13. 40	17.00	14.5	16.3	23.6
50.	8. 52	12.71	9.2	10.3	18. 4
51.	6.57	9. 22	8. 0	9.0	14.1
52.	5. 84	9.24	7.0	7. 9	13.3
53	7.23	11. 31	7.5	8. 4	14.6
54	8.25	11. 71	7.9	8.9	15.9
65.	6. 16	3. 40	8.1	9.1	14.8
56.	7.23	9. 44	9.0	10.1	16. $\overline{0}$
57	10.23	14. 63	8. 6	9. 7	20.6
58	7.01	10. 28	8. 5	9. 5	17.2
50.	10.12	13. 18	9. 6	10.7	26.1
60.	11.74	12. 93	16. 2	18. 1	29.2
61.	7.20	12. 67	12. 8	14.4	18.1
02	7. 05	16. 35	10.0	11.2	19.6
63.	10. 28	18. 10	10.6	11.9	27.1
64	6. 44	10. 55	11.2	12.6	23.5
65.	12. 68	16.31	17.5	19.7	31.5
66.	17. 56	16. 96	17.8	20.0	25.5
67.	18. 91	18. 66	17.9	20.0	18.3
68.	20. 20	18. 52	17. 0	19.1	15.6
69.	16.65	16. 05	17. 4	19. 5	17.2
70.	9. 21	15.81	10.8	12. 1	20.0
71.	11. 21	15. 66	13.3	14. 9	16.6
72.	9.19	13. 73	13.8	15.4	14.9
73.	5. 80	9. 86	9.4	10.5	16.9
74	3. 88	8.50	7.3	8.2	16. 2
75.	15. 40	17.75	12.0	13.5	10.8
76.	9.41	12. 49	13.0	14. 5	10.8
77.-	6. 08	9. 00	6.6	7.4	12. 1
78.	10. 93	15. 45	10.4	11. 6	12.7
79	7. 55	10. 13	10.3	11. 6	11.6
$80 .$.	4. 30	13.53	6.1	6.8	26.5
81.	-. 54	7.90	7.4	8. 4	9.7
82	5. 13	9. 13	5. 0	5. 6	14.0
83.	7.06	9.20	8. 3	9.3	9.5
8.4	5. 19	8.41	4.5	5. 0	11. 1
85.	7. 15	13.92	6. 8	6.5	17.9
80.	4.77	12. 54	4.2	4.7	12.8
87.	7.73	16. 00	4.4	5. 0	17. 4
88	6. 30	11. 78	4.4	5.0	20.3
89.	5. 07	15. 27	8.0	9.0	17.6
90.	6. 83	15. 14	8.8	10.0	19.9

Table 8.-Activity costs and yields (outputs) per acre, by regions, model A-Continued

Region	Cost		Yield		
	Wheat	Feed grain	Food whent	Ficed whent	Feed grain
91	Dcllars 6.76	Dollats 17. 75	Bushels	Bushels	Bushels
92	8.88	22.77	10. 2	11. 5	22. 4
93	8.61	17. 52	8.7	9.7	15.9
94	5. 50	10.90	7.0	7. 8	11.8
95	7.63	19. 57	5. 2	5. 8	22.2
96	3.61	12. 22	2. 5	2.8	8.6
97	$4{ }^{4} 4$	16. 28	1. 6	1. 8	10.5
98	10. 56	21.67	12.0	14.5	23. 4
99	10. 36	32. 03	9.9	11.1	35. 3
100	10.95	16.88	16.9	18.9	23.4
101.	6. 70	18. 14	12.6	14.2	24.4
102	8. 65	37.68	11.6	13.0	37. 3
103.	10.11	15. 43	12.4	14.0	18.6
	9. 21	19.83	9.8	11.0	30.2

has two acreage restraints, a wheal and a ceed-grain restraint. Thus, for programing, the size of the matrix was neariy double that of model A, but the demand restraints were those of model A. The wheat restraint of model C is that shown under wheat in table I, while the feed-grain restraint is the sum of the four feed-grain aereages shown in the table.

Model D

For model C , the number of activities per region was lett unchanged, and the number of acreage restraints was doubled. For model D, the number of activities was cloubled and the acreage restraints remained the same as those in model A. Wach feed grain was considered as a separate activity in model D, and thus the possible activities in each region were food whent, feed wheat, corn, onts, barley, and sorghum.

Table 2 provided the basic yield data for deriving the outputs for the six regional activities of model D. Outputa for leed wheat, oats, barley, und sorghum were obtained by weighting the yields presented in table 2 by their respective corn-equivalent conversion factors, that is, whent $=1.121$, onts $=0.495$, barley $=0.791$, and sorghum $=0.985$. Activity outputs for food wheat and corn were the same as the yields given in table 2. Activity costs for model D are those presented in table 4. The same cost was used for the food wheat and leed wheat activities of each region.

Model E

The only difference between models E and A is in the objective lunction. The objective of model E is maximum total not returns
while that of model A is minimum total cost. Hence, the structure and input-output coefficients are the same for the two models.

To obtain the net returns needed for model E, two steps were necessary: Activity gross returns were calculated by multiplying activity yields of table 8 by the relevant wheat and corn prices listed in table 6. The food wheat activities were multiplied by the corresponding regional wheat prices and the other two feed activities by the corresponding regional corn prices. Net returns were then obtained by subtracting the corresponding costs in table 8 from the computed gross returns.

Althourh the price levels for this proft-maximizing model are at 1954 levels, the resulting optimum program would be the same for other absohte price levels, so long as the relative differentials between regions remain the same as those used here.

Limptations of the Data

The objective in basic calculations was to derive normal inputs and outputs to rellect the relabive competitive positions of the programing regions. Whether or not this objective was achieved is the chief limitation of the data. Necessarily, arbitrary metbods were used in making some estimates. But many methods of estimation were eximined before a specific method was decided upon. Also, when possible, the results of estimating methods were checked against available data. This check was mude when particular data were a vailable for some regions but not for others. The magnitude of the study necessitated that frequent compromise be made between using a purticular estimator or spending excessive time searching for a "better" one, Is no specific sampling method was used, it was not possible to choose between estimators by any known statistical criteria. It was necessary, therefore, to rely on judgment conditioned by time and budget.

Wide variation in input-output coefficients between farms within the programing regions are known to exist. The results of the study roported are conditioned accordingly. Certainly, some farmers in each region would produce under competitive market prices, even though the empirical results indicate that production of grains would be eliminated from a particular region. But emphasis in the study was on defining "brond" areas for resource adjustments in grain production, given certain demand requirements. Followap studies will examine the problem of within-region resource adjustments.

EMPIRICAL RESULTS

The solutions for the five economic models outlined earlier are presented in this section. The results are then compared on the basis of production patiterns, acreages, and costs.

Model A

The produring regions, the nereages required for geain production, aud the number of bushols of wheat and feed grain produced in each region specified by the model A solution are shown in table 9. Figure 3 shows the geographic locations of these regions.

Table 9.--Producing regions, acreages utilized and production, model A solution

See footrotes at end of table.

Tables 9.-Producing regions, acreages utilized and production, model A solution-Continued

Region	Acreage	Wheat	Feed grain ${ }^{1}$
	1,000 acres	1,000 bushels	1,000 bushela
74.	5, 714	35, 469	
77	2,912	19,301	
79	2,025	20,898	
80	2, 881		76,304
81	1,955	14,562	
82	1, 176		16, 450
83	369	3, 063	
8.	98		1, 088
88	610		12,359
89.	6, 493	52, 009	---------
90	3, 833	34, 035	
92	692	7, 086	
84	4,293	29, 964	---------
98.	1,750	22, 569	-........-.
100	4,685	79,077	
101	2,785	35, 147	
102	544	6, 316	
103	554	6,895	
104	1,015		30, 643
Total	177, 664	677, 511	3,548,915

[^9]Production of corn is specified primarily in the Corn Belt, and production of wheat is designated mainly in the Great Plains and the Pacific Northwest. ${ }^{20}$ The regions in North Dakota, South Dakota, Kansas, and Texas, which are shown in the solution as producing feed grains, currently produce large quantities of wheat. But the production of feed grains specified by the model solution consists mainly of barley and oats in North Dakota and sorghum in Kansas and Texas. (See table 2, regions 50, 51, 52, 54, 74, and 80.). If wheat prices were to fall below their current levels, feed grains might replace wheat in these regions.
Subtracting the 65 producing regions shown in table 9 from the original total of 104 indicates that 39 regions are not required to fulfill the demand requirements specified for wheat and feed grains $\mathbf{7 5 7}$ million bushels of wheat and 3,877 million corn-equivalent bushels of feed grain) under model A. Figure 3 shows that a majority of these regions are in the South. The remaining regions not required for production are in northwestern New York, northeastern Ohio, southern Michigan, central Wisconsin, central Texas, south-central Montana, eastern Wyoming, southeastern Colorado, eastern New Mexico, northcentral Utah, western Missouri, and eastern Kansas.

[^10]

Ficure 3
The number of acres involved in grain production within the 39 regions plus the unused acreages in region 2 (fig. 3) would be $31,471,000$. Of greater interest than these acreages, perhaps, is their production potential. Given the production patterns of 1953 and the normal yields of 1954 (tables 1 and 2), these regions represent a production potential as follows:

Million bushels

These figures indicate the size of resource adjustments in grain production needed to balauce production and consumption in terms of model A.

High production costs resulting from small farm units and relatively high per acre machinery inventories are the apparent reasons why grain production in northwestern New York, northeastern Ohio, and southern Michigan is not prescribed by the model A solution. In these areas, the high costs more than offset the high wheat yields as compared with the Great Plains. High costs also prevent the areas of the South from having a place in the solution. Even though in many instances, yields in the South are not as high as those in the Northeast, they are higher than yields in the Great Plains. While large per acre investment in farm machinery is a partial explanation for high production costs in the Northeast, the converse seems to be
true for the Southeast, where considerable nonmechanical production methods are still used. In such southwestern areas as southern Colorado and eastern New Mexico, high yield variability and low average yields resulting from frequent crop failures apparently account for the absence of these areas in the solution to model A.

The grain price obtained by the dual solution to the production (minimum-cost) problem is the cost of producing a bushel of grain in the highest cost region in the solution set. If the highest cost region is marginal, the cost is "real." If the highest cost region is not marginal, the cost is an "opportunity cost." Specifically for model A, the price of feed grain, $\$ 0.77$, is due to region 2. Region 2 is a marginal region, in which $\$ 0.77$ is the cost of producing feed grain. But the price of wheat, $\$ 0.97$, is an opportunity cost and is due to wheat production in region 36 . To explain: Given the $\$ 0.77$ price of feed grain and with the price of wheat at $\$ 0.97$, production of wheat and production of grain give the same net return (rent) per acre in region 36. These net returns can be calculated by multiplying the difference between price and cost per bushel by the yield; for example, 27.6 ($\$ 0.97-\$ 0.79$) $=\$ 4.97$ for wheat and 38.3 ($\$ 0.77-\$ 0.64$) $=\$ 4.98$ for com. ${ }^{11}$

A similar computation shows that for marginal region 2 the imputed rent ${ }^{12}$ is zero for feed grains and negative for wheat.

The imputed rents for each activity can be obtained by performing similar computations. The results of these computations show that only the regions in the final program have positive rents within the framework of the rnodel, which includes no crops other than feed grains and wheat. Only imputed rents for the activities in the optimum set of model A are presented in table 10. The rents of the unused activities, which are due to either a wheat or a feed-grain activity in each region except region 36, are not shown. Table 9 indicates the specific activities that produce the rents listed in table 10. Estimated regional rents for grainland, as shown by table 3, are shown also in table 10 to permit comparisons. A region-by-region comparison of these rents shows that approximately three-fourths of the imputed rents are below the estimated rents.

Several reasons may account for these differences: (1) Some indirect costs, such as those of management, buildings, and general farm operation, were not included in the activity costs. If these costs had been included, the equilibrium grain prices would have been bigher, which would cause the imputed rents to be higher. (2) Transportation costs were not included in the activity costs. The inclusion of transportation costs would reduce the imputed rents for regions shipping to distant markets. (3) Equilibrium grain prices are below the recent average prices of wheat and corn (30). Hence, in general, the estimated land rents are expected to be higher than the imputed rents. (4) Other factors, such as residential demand, productive activities other than grain crops, and institutions, are also a part of the total complex that influences land values.

[^11]Table 10.-Estimated and imputed rents per acre of grainland, by regions, model A solution

Region	Estimated rent ${ }^{\text {: }}$	Imputed rent ${ }^{2}$	Region	Estimated rent	Imputed rent ${ }^{3}$
	Dollars	Dollars		Dollars	Dollars
	8.81	0	60..	7. 65	9. 62
3	5.59	3.88		2. 66	5. 30
	7.03	2. 19			
25	7. 12	4.85	62	3.71	2.62
26.	5. 38	1. 29	63	4.20	2. 70
				3.95	4. 40
29	12. 50	6.61	65	7.41	7.88
30	4. 60	1. 20	66	5. 62	2.54
31	1. 99	10.77	69	5.07	
32.	10.62	9.59	70	3.55	1.32
			71	5. 22	1.76
	10.30	4.98	72	7.07	3.88
37	14.70	13.33		4.21	3.32
38.	18.70	19.10			
3	4.97	6. 89	74	3.81	3.88
40.	5. 31	2. 80	76	5.16	3. 14
41			77	3. 75	. 35
43	7.03	1.51		4. 43	2. 50
44	8. 03	8.63		4. 98	6.89
45	13.01	12. 25	81	3. 68	1. 73
46	9.55	11. 47	82	4.07	1.68
			83-----	3. 32	1. 02
47	6. 69	2. 49		5.00	1 I
48	6. 46	6.85	88	5.40	3.85
49	2. 92	1. 18			
50	4.06	1. 47	89.	1. 60	2.74
51.	2. 13	1. 69		2.76	1. 80
52			92	1.51	I. 05
53	1. 59	1.0		2. 88 4.08	1. 1.97
54.	2. 12	. 47			
55	1. 28	2.08	100.	6. 14	5. 44
56.	2.23	3.30	101	4. 26	5. 46
			102	2. 73	2.58
58	3.68	1.23	103	11.61	2. 02
59------	2. 14 4.08	7. 06	104	7.60	3.32

1 Estimates based on land values and interest and tax rates.
2 Given by the dual solntion to the minimum-cost problem.
The r^{2} (the simple coefficient of determination) for the estimated rents and the imputed rents is 0.57 . This fact indicates that, to a significant degree, land values in the programing regions are related to land productivity (yield) and the cost of producing grain.

Model B

The land charges added to other activity costs for model B are those shown in table 3. The level of land prices in the Great Plains and possibly in the Corn Belt is due largely to the demand for grain.

Hence, it is reasonable to consider the price of land as an endogenous variable in these areas. But in regions of the East, the South, and the west coast, such enterprises as cotton, dairy, fruits, and tobacco "compete" for the use of land. Given these two possibilities, however, the results of models A and B together might give a better indication of the grain-resource-adjustment problem than the results of either alone.
The producing regions, the acreages utilized, and the regional grain production specified by the model B solution are presented in table 11. The geographic locations of these regions are shown in figure 4. A comparison of figures 3 and 4 shows that inclusion of a land cost in the activity cost coefficients resulted in the following: Production of feed grains in regions $2,36,82$, and 84 under model \AA is displaced by production of feed grains in regions 53 and 73 under model B. Wheat production in regions 53 and 73 , together with wheat production in regions 77 and 103 , under model A , is replaced by wheat production in regions $35,36,42,91$, and 93 under model B. No simple expianation can be given for these changes except that the changes provide for a minimum total production cost in terms of model 3 and the estimated land cost per bushel is relatively tigher in the excluded regions $2,41,77, \mathrm{~S} 2,84$, and 103.

When ligures 3 and 4 are compared, it becomes obvious that the optimum regional pattern of grain production for model B differs only slightly from that for model A. The regions that go out of production -2, 41, 77, 82, 84, and 103 -lie, respectively, in eastern Pennsylvania, northern New Jersey, southenstern Missouri, the panhandle of Okhahoma, western Texas, west-central Texas, and north-

Fiodre 4

Table 11.-Producing regions, acreages utilized and production, model B solution

	Region	Acreage	Wheat	Feed grain ${ }^{\text {I }}$
3		1,060 scres	1,000 bushels	1,000 bushels
4		4.45		19, 189
25		298		13,075 27 83
26		412		17, 770
28		4, 035		233, 287
29		757		30,303
30		1,902		72, 903
31		4,760		222, 916
35		999	20,494	43, $44 \pm$
36		2, 297	62,610	
37		7,754		356,616
38		4, 841		231, 170
39		1,133		30, 025
		1, 013		31, 522
42		${ }^{2} 390$	7,673	
43		4,795		175, 339
		4, 263		153, 258
46		10,819 4,107		403, 933
47		2,711		84, 314
48		2, 561		73, 085
49		1, 4,804		30,795
51		7, ${ }^{4}, 898$		89, 054
52		2,790		37, 225
53.		5, 016		73,438
54.		1, 076		17, 072
${ }^{\text {S5 }}$		2,101		3i, 183
		4,155		68, 643
57		1, 404		28, 884
58		1, 013		17, 430
60		3,624		94, 739
		3,874 441	5,667	1.13, 009
62.		4,282	42,692	
63		1,990		53, 852
64		2,509	28, 104	
65		4,718		148,799
		1,220		31, 070
69		1,119	19,470	
70		1, 792	19, 394	
71		1,371	18,212	
72		2,736	37,617	
73		7,664	64, 187	14,277

Seq footnotea at end of table.

Table 11.-Producing regions, aereages utilized and production, model B solution-Continued

Region	Acreage	Wheat	Feed grain ${ }^{1}$
	1,000 acres	1,000 bushels	1,000 bushels
$\begin{aligned} & 74 \\ & 76 \end{aligned}$	5, 114	- 35.469	
70	2, 025	20, 808	
80	2, 881		76, 305
81.	1,955	14, 56 I	
83	369	3, 063	
88	6610		12,359
90	6,493	34, 035	
91	611	3,979	----------
92.	692	7,086	
93.	830	7, 204	
94	4, 293	29, 969	
98	1,750	22, 569	
100	4, 685	79, 077	
101	2,785	35, 147	
102	54.4	6,316	
104	1,015		30, 643
Total	17:4, 965	677, 510	3,548,912

1 Expressed in corn-equivalent bushels.
${ }^{2}$ Part of maximum grain acreage; see table 7.
central California. The regions that come into production-36, 42, 91, and 93--lic, respeciively, in central Wisconsin, southwestern Missouri, southeastern Montana, and eastern Wyoming.

The total graiuland in 41 entire regions and part of the grainland in region 42 are not needed to fulfill the requirements for food wheat and 「eed grains in the model 13 solution. In terms of 1954 yields and 1953 production patiens (tables 1 and 2), these regions represent a production potential as follows:

Million bushels

13arley

In these 42 regions, $34,651,000$ acres would be unneeded. Thus, the grain production required would he concentrated on fewer acres than for model A. The use in the solution of regions of relatively ligher wheat yields, especinlly regions 35 , 36 , and 42 , expiains this fact.

The model B dual (price) solution shows that the equilibriun prices for wheat and feed grain are $\$ 1.25$ and $\$ 0.93$, respectively. Compared with model A, the inclusion of land rent in the activity costs, therefore, has incrensed the prices of wheat and feed grain by $\$ 0.28$ and $\$ 0.16$ a bushel, respectively.

Imputed rents obtained by the clual solution are presented in table 12. No exact interpretation of these values can be given as estimated land rents were included in the activity costs. But the values might be interpreted as residuals or royalties aceruing to the limited factor, land. 'The variance of the imputed rents, however, was reduced with' the inclusion of a land charge. The respective variances of the inputed rents are 14.0 and 6.2 for models A and B. The reduction in variance would be expected, as in regions with yields high relative to cost, the higher net returns tend to be capitalized into higher land values. Hence, adding land costs to other production costs tends to make per bushol costs more nearly equal between regions.

Model C

For model C, the total acreage of grain in each region was divided into two parts or restraints. Separate restraints were used for wheat and feed grains. Because of the structure of the model, the acreage of land ased to produce food what cannot exceed the 1953 wheat acreage in a region. However, land used to produce feed grains can equal the total grainhad in a region, if feed wheat is designated for the whentind and feed grain is specified for the feed-grain acreage.

The producing regions, the acreages utilized, and the production of food whent, feed wheat, and feed grain specified by the model C solution are presented in table 13. The geographic locations of the producing regions are shown in figure 5. A comparison of tables 9 and 13 shows that more regions are specified for grain production for

Table 12.-Impuled rents per acre of grainland, by regions, model B solution

${ }^{1}$ Given by the dual solution to the minimum-cost probiem.

Figure 5
model C thar for model A . These additional regions are 1,5,6,16, $21,22,23,24,33,34,35,42,78,85,87,91$, and 97 . But utilizing the additional regions does not mean that the total acreage needed to meet demand requirements is increased by the acreages available in these regions. The increase in acreage is less than this total becnuse: (1) Only acreage of whent or acreage of feed grain is used in 16 of the 17 regions listed above. (2) In 16 of the regions that were specified also by model A, either the wheat acreage or the feed-grain acreage is left idle; whereas for model Δ, total acceage was used in all except one region. Model C requires 9 milhion more acres than model A.

That additional acres are necessary to produce the wheat and feed grains uceded is an expected result. In most regions, the wheat activity produces fewer bushels than the feed-grain activity. Fewer bushels of all grains can be produced in any one region when part of the graininad is restricted to wheat and part to feed grains. Consequently, a larger acreage is needed to meet the total demand or requirements restraints.

Under model C, $22,967,000$ acres are not needed for grain production. In terms of 1953 production patterns and 1954 normal yields, this acrenge represents a production potential of:

Million bushels

Wheat	109
Corn	1244 117
Barley	${ }^{9}$

Tanle 13.-Producing regions, acreages utilized, and regional wheat and feed grain production, model C solution

Region	Acreage	Food wheat	Feed wheat ${ }^{1}$	Feed grain 1
	1,000 actes 316	$\begin{aligned} & 1,000 \\ & \text { bushels } \\ & 8,505 \end{aligned}$	$\begin{aligned} & \text { 1,000 } \\ & \text { bushele } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { bushels } \end{aligned}$
	1. 622			63,807
4	355			15, 340
5	149			8. 5 5
6.	548			19,572
21	${ }^{(2)} 691$	8		
22	885			17, 309
23.	235			7, 726
2.1	281			9, 455
26.	384 277			18,640
27.	685			11,962
28.	4,935	41,004		153, 000
20--	552			
30	1,002	9, 543		53,792
32	4, 760	22, 839		178, 938
33.	1,649	14, 324		$\begin{aligned} & 33,837 \\ & 37_{1}^{\prime} \\ & 542 \end{aligned}$
34-	${ }^{3} 504$			15, 469
35	15	307		
37.	2, 297	1,12S		86, 326
38.	7, 4.841	48, 4 4, 317		$\begin{aligned} & 348,088 \\ & 198,805 \end{aligned}$
39.	827			
$40-$	1, 013	8, 936		17, 174
$\begin{aligned} & 41 \\ & 42 \end{aligned}$	693 4.4 4	5, 869		13, 341
43	4,795	26, 562		132, 509
44.	4,263	1,807		148, 863
15	10,879	1309		403, 164
$\begin{aligned} & 46-1 \\ & \hline \end{aligned}$	4, 107	477		156, 025
48.	2,711	1, 055		82, 381
	2,501	1,301.	-------	70, 343
19.	1, 30.4	1, 501		
50	4, 827	21, 770		30, 109
51	7, 898		54, 075	26, 291
53.	2,790 5,016	17, 041		4, 841
				14.391
54.	1,076		4, 275	9, 425
$\begin{aligned} & 55 \\ & 56 \end{aligned}$	2, 101	12, 625		8,052
$\begin{aligned} & 56 \\ & 57 \end{aligned}$	1,158		23, 070	31, 024
58	1,013	1.610	544	13, 185

See footnotes at end of table.

Table 13.-Producing regions, acreages utilized, and regional wheat and feed grain production, model C solution-Continued

Region	Acreage	Food wheat	Feed wheat:	Feed grain :
	1,000	$1,000$	$1,000$	1,000
59.	3, 624	1.375		bushels 90, 987
60	3, 574	4, 259		105, 335
61	441	3,255		3,392
62	4, 282	36, 364		12, 472
63.	1,990	5, 104		40,563
64.	2, 509		17,059	27, 038
65	4, 718		31, 378	95, 460
66	1, 220	7,086		20,930
69.	616	10, ${ }^{2} \mathbf{7 1 1}$		
70.	1.792	11, 6.45		
71	1,371	14, 118		5, 112
72	2,736	32, 279		5, 771
73.	7, 66.4	61,781		18, 602
7	5,14		36, 728	10,351
76	2, 568	33,259		
78.	2,911		18,495	5,134
79	$\bigcirc 2025$	18,200		3,086
80	2,881		12, 413	28, 091
81.	1,955	10,001		5, 929
82	1,176	, 376		15, 394
83.	369	2,300		877
8.	49			549
80.	402			7,215
87	325			
88	605			12, 254
$\begin{aligned} & 80 \\ & 00 \end{aligned}$	6,193 3,833	48,822		6, 990
91.	3, 803	30,055	3,688	6,890
02	620	6,4.12		
3	686	5, 952		
$9 \cdot 1$ -	4,293		30, 415	4, 830
95	117			2,596
98	1,750	10,843		4,937
99.	519		5, 120	
100	4, 685		83,0.16	8, 216
101.	2,785	34, 782		705
102	506		G, 580	
103	50.1	1, 287		8, 35.7
104.	1,015		1,732	25,888
Total	150, 615	677, 508	327, 927	3,220,984

[^12]These figures may well undorstate the grain potential that exists in United States agriculture.
The model O clual solution shows that the "equilibrium" prices of wheat and feed grains are $\$ 1.10$ and $\$ 0.9 \mathrm{~S}$, respectively. Compared with model A, the equilibrimm price of whent was increased by $\$ 0.13$ and that of feed grains by $\$ 0.21$, when whent and feed grains were restricted to their respective 1953 base acreage. The imputed rents for land are presented in table 14. But instead of one rent for each region as was the case for model A, two rents for some regions are derived by the model C dual solution, one for land used to produce whent and one for feed-grain land. Two rents for one region means that all nereages of wheat and feed grain are utilized. Underutilized land restraints have no reat under the empirical method used.

The data in table 14 show that in many regions the imputed rent from production of feed graius is higher than the estimated rent. But the imputed reuts for wheat production are usually less than the estimated rents in the Corn Belt and other regions east of the Mississippi River. Csually, imputed rents are bigher than estimated rents even when the former are weighted by their respective acreages. The average imputed rent, when weighted, is $\$ 0.42$; the average estimated rent is $\$ 5.57$. The r^{2} for weighted imputed rents and estimated rents is 0.49 , a smaller value than that for model A.

More specifie analysis of lamd-use patterns and soil-productivity classes is needed in deciding whether model A or model C provides more meaningful results. But an inventory of regional land resources would probably reveal that the land-use pattern specified by model a is at least Teasible in terns of individual farms. Furthermore, if the price of whent were lowered relutive to the price of feed grains, wheat. production east of the Mississippi might decline greatly and badey might replace whent in some parts of the Northern lanins.

Model D

The producing cecrions, the acrenges utilized, and the regional grain prodaction obtained as a model D solution are presented in table 15. Figure 6 shows the georaphir boations of these regions and the grains produced in ouch. This moded supposes a iectinical development that may prove possible but which is not yet in widespread use. As all grains are "independent" in this problem, it is not surprising that, in generel, the solution indientes that corn should be concentrated in the westery part of the Corn Belt and wheat in the Grent Plains and the Pacific Aorthyest. Also, production of sorghum is specified in the panhandle of Texns, southeastem Texas, and southcentral Californin. But it is surprising that no grain production is designated for the Red River Yalley or for southern and southwestern North Dakota. No grain production in the pambande of Oklahoma was sperified in the model 13 solution also. Apparent high yield variability and relatively low arerage yeded resulting from trequent crop fuilures explain the latter phenomenon. Production of corn in Ohio, the eastern part of Penosylvania and the progroming arens of New Jerser, Delaware, and Mrierland is not specified in this model Lecause of the relatircly high cost of production in these areas.

Table 14.-Estimated and imputed rents per acre of wheat and feedgrain land, by regions, model C solution

See footnotes at end of table.

Table 14.-Estimated and imputed rents per acre of wheat and feedgrain land, by regions, model O solution-Continued

Region	$\underset{\text { Eent }{ }^{1}}{\text { Estimated }}$	Imputed rent for-2	
		Wheatland	Feed-grain land
	Dollars	Dollars	Dollars
59	4.08	0.43	12. 55
60	7. 65	5. 97	15. 75
62	3. 71	3. 88	2. 95
63	420	1. 37	8.39
64.	3. 95	5. 90	6. 58
65.	7. 41	6.68	14. 51
66	5. 62	1. 84	7. 90
67	3. 84	. 70	
69	5. 07	2. 42	
70	3. 55	2. 70	3. 80
71	5. 22	3. 44	. 66
72	7.07	5. 63	. 89
73	4.21	4.53	6. 77
74	3. 81	4.19	7. 27
76.	5. 16	4. 78	
77	3. 75	1.19	2. 77
78.	4. 65	. 41	
79	4.43	3. 82	1. 28
80	4.98	1. 77	12. 45
81.	3. 68	2. 68	1. 55
82	4. 07	. 34	4.62
84.	3.32	2. 07	. 10
85	8. 22		2. 55
87	5. 36		1. 05
88	5. 40		8.11
89	1. 60	3. 76	1. 93
00	2. 76	2. 92	4.37
01	. 82	.37	
92	1. 51	2. 35	
93	1. 96	. 95	
94	288	2. 19	. 71
95	2. 40		2. 22
08.	4. 08	3. 60	1. 17
98	3. 77	. 44	2. 47
100.	6. 14	7. 57	6. 09
101	4. 26	7. 06	5. 86
102	2.73	4. 17	
103.	I1. 61	5. 60	2. 78
104	7. 60	1. 54	9.66

[^13]

Fievre 6
Table 15.-Producing regions, acreages utilized and production, model D solution

Region	Acreage	Wheat	Corn	Barley :	Sorghum ${ }^{\text { }}$
	$\begin{aligned} & 1,000 \\ & \text { acres } \end{aligned}$	$\begin{gathered} 1,000 \\ \text { bushels } \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { bushels } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { bushels } \end{aligned}$	$1,000$ bushels
30	1,902		75,600		
31	4,760		264, 362		
32	990		55, 826		
36.	2, 297	21,472	88,528		
37.	7,754		464, 324		
38.	4, 8. ${ }^{\text {d }}$		275, 705		
39	1,133		40, 005	-----	
43	-1,795		200, 113		
4.4	4,263		196,652		
45	10, 870		545,036		
46	4, 107		210,991		
47.	2, 711		129, 180		
48	2,561		101, 049		
51	7, 808	63, 108			
52	2,790	19, 580			
55.	2,101	17,020			
56	$4,1.55$		92, 416		
58	1,013		21, 897		
60	3, 32.1		132, ${ }^{152}$		

See footnotes at end of table.

Table 15.-Producing regions, acreages utilized and production, model D solution-Continued

Region	Acreage	Wheat	Corn	Barley ${ }^{1}$	Sorghum ${ }^{1}$
	$1,000$ acres	$1,000$ bushels.	$\begin{aligned} & 1,000 \\ & \text { bushels } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { bushels } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { bushels } \end{aligned}$
62	4.81 4,282	5,667 42,692			
64	2, 509	28, 104			
95	4,718		174, 700		
06.	2923		29,115		
70.	1,792	19,394			
71.	1, 371	18, 212			
72	2,735	37, 617			
73.	7, 664	72, 120			
74	5,114	37, 436			
76	2, 739	35, 469			
79.	2, 025	20, 898	---------		
81	2, 1,985				78,148
83.	- 369	3,063	-		
88	610				14, 176
89	6, 493			151, 806	14,176
90	3,833	34, 035		15, 80	
92	692	7,086			
94	4,293	29,964	---		
98.	1,750	22, 569			
100	4,685	79, 077			
101	2, 785	35, 147			
102	544	6, 316			
103	554	6,896	-----		
104	1,015				49, 954
Total	147, 226	677, 512	3, 254, 745	151,800	142,278

2. Expressed in coro-equivalent bushels.
${ }^{2}$ Part of maximum grain aercage; see table 7.
Fifty-eight entire regions and part of region 66 are not needed for grain production under model D. These 59 regions would "release" $62,392,000$ acres of grainland. Furthermore, these 59 regions represent a possible grain production as follows:
Million. bushels
Whent 308
Corn 780

These figures are based on acreages and yields given in tables 1 and 2.
The significance of model D is that the quantity of resources used for production of wheat and feed grains could be reduced considerably if techniques could be devised to reduce the need for including lowyielding small grains in corn rotations.

The price solution for model D shows that the equilibrium prices for feed grain and wheat are $\$ 0.53$ and $\$ 0.90$, respectively. The regional imputed rents are shown in table 16. The estimated land vents shown in table 3 are presented also in table 16 to permit comparisons. For only five regions-59, 60, 61, 89, and 101-are the imputed rents higher than the estimated rents. The fundamental cause of the low imputed rents is the small difference in the production costs of activities in the model D solution. The r^{2} for these estimated rents and the imputed rents is 0.59 .

Model E

Only the results that show the relative competitive positions of the programing regions in terms of production cost, given various technical assumptions, have been presented so far. Nothing was incorporated in the other four models to show how the production location relative to the market affects the competitive positions of the regions. Therefore, model E, for which estimated regional prices for grains and the objective of maximum profit were used, was formulated to determine how regional price differentials affect production location when demands are fixed. If prices of wheat and those of feed grains differ only in transportation costs, it can be shown that the model E solution will be identical with a total production and transportation cost model.

Table 10.-Estimated and imputed rents per acre of grainland by regions, model D solution

Region	$\underset{\text { rent } 1}{\text { Estimated }}$	Imputed rent 2	Region	$\begin{gathered} \text { Estimated } \\ \text { rent } \end{gathered}$	Imputed rent ${ }^{2}$
	Dollars	Dollars		Dollars	Dollars
30.	7. 14	1. 99	65.	7.41	3. 70
31	11. 99	4.45	66.	5. 62	
32	10. 62	5. 60	70.	3. 55	55
36	10.30	3. 02	71	5. 22	81
37	14.70	10.18	72	7.07	2. 90
38	18. 70	13. 67	73	4.21	2. 64
39	4. 97	. 30	74	3. 81	2. 72
43	6.66	2. 57	76	5. 16	2. 22
44	8.03	4.61	79	4.43	1. 77
45	13. 01	9.02	80	4. 98	1. 63
46	9.55	7.71	81	3. 68	1. 20
47	6. 69	1. 91	83	3. 32	- 42
48	6. 46	3. 16	88	5. 40	2. 79
51	2. 13	. 65		1. 60	4. 1.16
52	1. 1.69	1. 50 14	${ }_{92}^{90}$	2.70 1.51	1.16 .32
56	2, 23	1. 11	94	2. 88	. 78
58	2.14	. 86	98	2. 40	1. 04
59	4.08	438	100	6. 14	4.24
60	7.65	7. 79	101	4. 26	4. 56
61	2. 66	4.38	102	2. 73	1. 75
62	3. 71	1. 90	103	11.61	1. 13
	3. 95	3. 60		7. 60	6. 40

[^14]The producing regions, the acreages used, and the regional production of wheat and feed grains specified by the model E solution are shown in table 17. The geographic locations of these producing regions are shown in figure 7.
Comparison of tables 9 and 17, or fgures 3 and 7 , reveals that the maximum-profit solution differs significantly from the minimum-cost solution in terms of regional production patterns. ${ }^{13}$. The major differences are: (1) Feed grains are specified in regions 5,23 , and 99 in the model E solution. No feed grains are specified in these regions by the model A solution. (2) Wheat replaces feed grains in regions $36,47,49,50,51,52,54,55$, and 56 . (3) Wheat is replaced by feed grains in regions 77 and 90 . (4) Wheat produced is earmarked for feed rather than for food in regions 61, 62, 89, 92, 98, 100, 101, 102, and 103. (5) Feed wheat is specified for parts of Nebraska, Montana, Idaho, Washington, Oregon, and California.
High wheat prices relative to corn prices in regions $36,47,49,50$, $51,52,54$, and 55 account for the shifts to wheat in these regions. Apparently, the high wheat prices in these regions, which are in Wisconsin, Minnesota, North Dakota, and South Dakota, are due to the nearness of the regions to the points of effective demand-the milling centers and the Great Lakes. Also, these prices reflect the

[^15]

Figure 7

Table 17.-Producing regions, acreages utilized and production, model E solution

See footnotes at end of table.

Table 17．－Producing regions，acreages utilized and production，model E solution－Continued

Region	Acreage	Food wheat	Feed wheat ${ }^{1}$	Feed grains ${ }^{\text {1 }}$
	1，000 acres	1，000 bushels	1，000 bushels	1，000 bushels
71.	1，371	18， 212		
72	2，736	37，617		
73	7， 60.4	72， 121		
74.	5， 114			82， 649
	2，739	35，470		
77.	2， 912			35， 114
79	2， 025	20，898		
80	2， 881			76，302
82	1， 1,176	14， 561		16， 4.49
83.	369	3,063		
84	9 S			1，088
88	610			12， 359
89	6， 493		58，307	
90.	3，S33			76，116
92.	692		7，944	
94	4，293	29，967		
99	1，750		25，300	5
100	4， 655		$\stackrel{8}{8}, 681$	18， 3
101.	2，785		39， 405	
102	544		7， 083	
103	วゝゴ		7，732	
104	1，015			30， 6.43
Total	180， 76.4	677，515	26．1， 725	3，284， 179

：Expressed in com－eguivatent bushels．
2 Part of maximum grain aereage；sec table 7 ．
premiums paid for hard red spring and durum wheats，which are produced in several of these States．The specified wheat for feed in the western regions－ $61,62,89,92,98,100,101,102$ ，and $103-$ can be explained by the relatively high corn prices in these regions． The estimated normal price of corn is highest in Idaho，where it is higher than the price of wheat．

Although the locational pattern of wheat and feed grain production specified by the model E solution differs from that of model A ，com－ parison of figures 2 and 7 shows that most of the same regions are specified in both solutions．Only five regions specified by the model E solution are not designated mader model A．Conversely，only one region in the model \mathbf{E} solution is not in the model A solution． Hence，four more regions are required to fulfil the requirements for wheat and feed grams．Aside from the degree of similarity of the models A and E solutions，the number of regions specified by the solutions is incidental to the study．The important thing is the lo－ eation of the regions in relation to the adjustment problem．

Because of the similarity between the model A and the model E solutions, only the "new" producing regions are pointed out. The five "additional" regions recquired for production by the model \mathbf{E} solution are in eastern Virginia, northeastern Ohio, western Kentucky, southern Arbama, and north-central Utah. The one region in the model A solution that is not specilied by the model \mathbf{E} solution is in northeastern South Dakota.

Thirty-five entire regions and part of region 23 are not required to fulfill the wheat and fed-grain requirements in terms of model E . Figure 7 shows the greographic locations of these regions, which represent about 29 million grain acres. Moreover, in terms of 1953 acrenges and 1954 normal yickls (see tables 1 and 2), these acres represent grain potentials as follows:

Million

 bushels

The equilibrium or shadow prices also were obtained by the dual solution to the maximum-proftt problem; however, the interpretation of these prices diffors from that for the minimum-cost problem. Specifically, the model \mathbf{E} dual solution shows that the prices for whent and feed grain are $\$ 0.86$ and $\$ 0.74$ per bushel, respectively. If from the estimated regional prices, $\$ 0.56$ is subtracted from |those for wheat and $\$ 0.74$ from those for com (table 6), the per acre net returns computed for each activity in the model E solution (in which net return equals the price minus the cost per bushel multiplied by the yield) are equal to the imputed rents derived by the dual solution.

Within the structure of model E , these shadow prices for wheat and feed grains can be interpreted as per bushel royalties. Specificnlly, if the price levels for whent and feed grain were reduced by $\$ 0.86$ nad $\$ 0.74$, respectively, we would expect the specified outputs to be produced in a competitive situation. Why is this so? It is because the marginal cost would not exeed the price in any producing region.

The feed-grain priee of $\$ 0.74$ is enual to the per bushel net return for feed grain in region 23. Thus, if $\$ 0.74$ is subtracted from $\$ 1.62$ (the price of corn in region 23), the difference is equal to the production cost per bushel, which in this region is $\$ 0.85$. Hence, in region 23, the imputed rent is zero. This zero rent is malogous to the zero imputed rent for region 2 in the model A solution. But the price of $\$ 0.86$ for wheat is an opportunity-cost price. This price results because both food whent and feed wheat are specified for region 62. If $\$ 0.86$ is subtracted from the estimated wheat price, $\$ 1.79$, for region 62 , and $\$ 0.74$ is subtracted from the estimated corn price, $\$ 1.57$, for this region, and if these net prices are used to compute net returns, these net returns-imputed rents-per acre for the activities are equal. This equal rent for two activities in region 62 is analogous to the situation for region 36 in the model A solution.

A regional comparison of the two types of rents given in table 18 shows that the imputed rents are higher than the estimated rents for more than a fouth of the regions. The coefficient of determination

Table 18.-Estimated and imputed rents per acre of grainland, by regions, model E solution

Region	$\underset{\text { Eent: }}{\text { Estimated }}$	$\underset{\text { rent } 2}{\text { Imputed }}$	Region	$\begin{aligned} & \text { Estimated } \\ & \text { rent: } \end{aligned}$	Imputed rent
	Dollars	Dollars		Dollara	Dollars
2	8.81	6. 69	59.	4.08	5. 75
3	5. 50	10.36	60	7. 65	9. 33
4	7. 03	8.35	61	2. 66	4. 89
5	5. 91	4. 28	62	3. 71	2. 23
16	6. 48	. 55	63	4. 20	. 36
23.	4.60	0	6.4	3. 95	4. 75
25	7. 12	6. 79	65.	7. 41	7. 57
26	5. 38	5. 18	63.	5. 62	2. 54
27	9. 11	1. 16	69	5. 07	. 77
28	12. 50	6. 62	70	3. 55	1. 67
29.	4. 60	2. 80	71	5. 22	2. 45
30	7. 14	9.97	72	7.07	4. 18
31	11. 99	0.83	73	4.21	3. 52
32	10.62	9.59	74.	3.81	4. 36
36	10.30	5. 57		5. 16	3. 42
37.	14.70	13. 34	77.	3. 75	43
38	18.70	18.62		4. 43	2.62
30	4. 97	6. 89	80	4. 98	7. 68
40	5. 31	2.80	81	3. 68	1. 89
	7.03	1. 81	82	4.07	1. 26
43.	6. 60	8. 41	83	3.32	1. 20
	8. 33	8.99	8.	5.00	. 10
45.	13.01	11.88	88	5. 40	3. 65
46	0.55	9.56	80	1. 60	2. 69
47	6. 60	. 41	90	2.76	2.98
48.	6. 46	3. 14	92.	1. 51	1. 49
	2.92	2. 53	9	2. 88	1. 22
50	4. 06	1. 50	98.	4.08	4. 77
51	2. 13	2. 11	99	3. 77	8. 12
	1.63	1. 78	100.	6.14	8. 90
53.	1. 58	. 93	101.	4. 20	8.63
54	2.12	. 19	102	2. 73	5. 86
55	1. 28	2.22	103.	11.61	6. 00
56	2. 23	2. 39	104.-...	7. 60	14.70
58.	2. 14	1.73			

1 Estimates based on land values and interest and tax rates.
2 Given by the dual solution to the minimum-cost problem.
(r^{2}) between these rents is 0.49 . Aside from errors of measurement and transportation costs, the possible reasons why the relationship is closer to one (1.0) outlined in the discussion of model A apply here also.

As noted above, model E represents an attempt to specify the minimum-cost location of whent and feed-grain production when transportation costs are added to the activity production costs. It was assumed that regional price difierentials wore adequate to cover
the transportation costs existing in the market, and that the programed quantitics would be absorbed in the regional markets at the estimated prices. Futher analysis is needed to determine whether these assumptions are realistic.

Some Comparisons of Model Results

That there is a high degree of similarity between the results of the live models is evident when figures 3 through 7 are compared. Moreover, the evident differences are less when comparisons are made for the regions than when comparisons are made to denote differences in particular grains speciffed for each region. This former comparison indicates that the similarity is even greater for models A, B, and E than for all five models. These three models can be taken as the more realistic of the five. It is reasonable, therefore, to look more closely at their results.

Production Regions

There is unnimous agreement in the solutions of the three models that grain production of 58 specified regions would be needed. The solutions also agree that grain production of 33 specified regions wouid not be needed. There is disngrement for only 10 regions. Two solutions agree in showing that gram production of 7 of the 16 is needed, and wo that production of the remaining 9 regions is not needed. The geographic locations of the regions for which there is agreement or disagreement, together with the nature of the agreement, are shown in figure S.

Given the assumptions of this study, it can be said with some certainty that the 33 regions as shown in figure 8 are at a comparative disadvantage in grain production. It might be possible, however, to improve the competitive position of a number of these regions if farms were reorganized and new terhnigues followed. Further study is needed to ascertain the potenkialities of farm reorganization at: ${ }^{2}$ improved techniques in these higher cost regions.

Acreage and Cost Comparisons

Estimates of total cost, average cost per bushel, total unused acreage, and total actenge needed to produce the specified wheat and feed grain demand requirements for the five model solutions are presented in table 19. The similatity of the solutions for models A, B, and E noted above, in specifiention of production location, is also evident in the acreage and cost data presented in table 19.

Spreffication of the number of acres required for production of grain crops was incidental to the stady. The main quantitative objective was to determine the relative efficiency of selected regions in producing grain. Hence, only a brief attempt is made to explain the differences in acreage (table 19) for the model solutions. The simplest explanation for these differences is this. Average grain yields for the set of activities used in a model solution are either higher or lower becnuse of the definition of crop activities than the set used in another model. To be more specific, the model B solu-

Figdre 8
tion requires fewer wheat acres, 58,357 million, than $A, 63,661$ million, to produce 677.5 million bushels of food wheat because regions (those with wheat activilies) with higher average yields were "selected" by model B.

In total, these higher average yields are due mainly to regions 35 and 36 in Wisconsin, which replace low-yielding acres in region 79, the panhaudle of Okiahoma, and region 53, North Dakota. The general reason for the subslitution of these producing regions is: Given the addition of estimated nanual land rents to the activily costs for model B, the activities and their cost levels solected for production of wheat and feed grain are the minimum total cost sel for production of both whent and feed grinias, not for wheat or feed grains individually.

Of all possible activities, n set of activities with their maximum levels that would produce the required quantities of wheat ouly at lower totid cost than the set specified in the solution for either model A or model B coutd be determined without programing. This could be done, first by arraying the per bushel production costs for the whert activities Trom lowest to highest, then "filling" the wheat requirements from the lowest cost set. But if this procedure were used, the graiuland in certnin regions specified for production of feed grains in a particular programing solution would be used to produce wheat instead. Consequently, feed grains would need to be produced in regions other than those allocated to wheat. If this shift were made, however, the total cost of producing the required quantities of wheat and feed grain would be higher than the total cost obtained by programing. For model \mathbb{E}, for instance, the objective of maximum profit

Table 19.-Summary of specified data for model solutions

Model	Wheat and feed grain acrage			Direct costs			
				Total $=$		Average per bushel	
	Food whent	Feed grain	Unused ${ }^{\text {2 }}$	Food wheat	Feed grain	Food wheats	Feed grain
	$\begin{array}{r} 1,000 \text { acres } \\ 03,661 \\ 5,357 \\ 57,562 \\ 85,712 \\ 67,121 \end{array}$	$\begin{array}{r} 1,000 \text { acrs } \\ 11,000 \\ 116,007 \\ \cdot 129,089 \\ 8,511 \\ 3113,039 \end{array}$	1,000 acres31,95134,65122,96462,30228,855	$\begin{array}{r} 1,000 \text { dollars } \\ 491,239 \\ 510,991 \\ 547,839 \\ 470,704 \\ 541,775 \end{array}$	$\begin{gathered} 1,000 \text { dollars } \\ 1,921,483 \\ 1,900,406 \\ 2,037,1064 \\ 1,001,975 \\ 1,935,1072 \end{gathered}$	Dollars 0.73 .75 .81 .81 .80	Dollars$\begin{array}{r} 0.54 \\ .54 \\ .57 \\ .45 \end{array}$
B							
C.							

[^16]would be substiluted for that of minimum cost. This procedure could be followed also by starting with feed grain, but again the total cost would be higher because wheat would need to be produced in higher cost regions.

To summarize the implication of the foregoing paragraph, whent and feed grains are interdependent in the models. Hence, each category of crops is selected by the models to minimize costs, or maximize profits, for all erops considered together, not for a singie calegory.

As expected when the model was formulated, the total direct cost (table 19) of producing the requirements for food whoat nad feed grain is lowest for model D. ${ }^{14}$ For this model, the total direct cost of producing 677.5 million bushels of food wheat is', $\$ 480$ million. The average per bushel cost, therefore, is $\$ 0.71$. Also, the total direct cost for producing 3,548.9 million bushels of feed grain is $\$ 1,602$ million for model D, and the arerage cosi per bushel is $\$ 0.45$. These lower costs are due to the structure of the model. To explain: Each reed grain is an independent activity, that is, it is not part of a rotation. With this independeace, corn makes up the greater part of the feed grain specified in the model solution, as it is produced at lower cost per unit than cither onls, barley, or grain sorghums in most regions. Also, as corn is a higher yield feed-grain crop in most regions, fewer acres are needed to fulfull the feed-grain requirement. As table 19 shows, more acres of food wheat are required under model D than under models A, B, or C. But the wheat aeres denoted by model D have lower per unit costs.

The aext lowest total direct cost of producing 677.5 million bushels of wheat is indicated for model A. The total cost is $\$ 491$ million, and the average per bushel cost is $\$ 0.73$. But the next lowest direct eost for producing $3,548.9$ million bushels of feed gratins is that for model B. The totni direct cost of producing recturenents for both whent and feed grains is higher for model B^{B} than for model $A-\$ 2,4$ hs million compared with $\$ 2,413$ million. The higher total direct cosi for model B results beenuse the fand rent included in the activity costs for this model changed the "relative cost rehtionships" between activities as compred with model A. The model A solution represents an "acrerage mix" with lower average direct costs but higher avenge indirect cosis (iand rent) as compated with the model 13 solution, "Rence, if hand costs were added to the total direct costs given in table 19 on the busis of the nereages represented by the solutions, the resulting total cost would be greater for model A than for model B.

Although the total acreage required to produce the whent and feed grain needed is greater for model C than for may of the other four models, the acreage needed for food wheat is the smmest. Ifence, the acrenge of feed grains is grentest lor model O . Also, the average per bustige costs- $\$ 0.81$ for whent and 80.57 for feed grain-are Lighest for model C .
Model Et, using the criterion of maximum profit, produees n solution with cosis nenrly us high as those for model C. The total direct cost

[^17]for model E was made up of $\$ 1,936$ million for producing $3,548.9$ million bushels of feed grain and $\$ 545$ million for producing 677.5 million bushels of food whent (table 19). ${ }^{\text {is }}$ The per bushel cost of production was $\$ 0.50$ for wheat and $\$ 0.55$ for feed grain.

These higher costs can be explained as follows: Given the activity prices assumed for model E , some relatively high-cost activities are profitable in regions in which the price of wheat or feed grain is relatively high. For example, certain regional wheat activities in North Dakola, South Dakota, and Minnesota bave relatively high production costs, but the price of whent in these States is also relalively high. Hence, under model \mathbf{E}, these activities are relatively profitable. Similarly, procluction of feed grain is specifed for the West because pries are high relative to costs.

FURTHER RESEARCH PROBLEMS

The study reported whs made from data that were assembled with the equivalent of aboul 4 man-ycars of professional time. Considerable detail went into the construction of basic data. Aftor the data were assembled, the programing computations recuired onfy a few weeks. Dven with this input of resenrch resources, the stady is considered as a first step in improving empirieal models used, data employed, and range of problens unalyed. Some additional quantitative steps to be considered in future phases of the research are (liscussed below. Attainment of some of these steps may require improved data, greater researeh resources, or greater aggregation than was used in the study reported.
A step now underway is the use of regional demand restraints and associated transportation costs in establishing the objective functions and restraints of the prograning models. Freight tariffs are available for many origins and destimations, but other tansportation costs, such as handing and commissions, cannot be ascertained easily. Aiso, total transportation costs apply to a product that takes many forms-whent, flour, beend, corn, middlings, cormmeal, breakfast ceral, and so on-between producer and consumer. But the differalties encountered in ascertaining trasportation costs should not be more formidable than those of establishing production conflicirnts.
Further studies are needed in which known differences in inputoutput coeffremts within grain regions can be considered. Additional artivitios atad restrints for lands of different productivities might be used in future andyses. But these refinements are not fonsible with current digital computers and research budgets.

Futare linear programing needs to be based on models with variable-demand restraints. Esing such a method, optimam solutions conld be derived for an infinite number of demand levels. ${ }^{16}$ The variable-demand method has two advantages. It provides a

[^18]"tailored" solution to fit most demand projections-as demand projections are changed from time to time, a production solution is available for each. ${ }^{17}$. Also, it reserves the problem of estimation of demand for consumption economists or others who are better qualified to make these estimates.

Aralyses planned will consider technical improvements in agriculture and growth in population. These projections are to be used in estimating needed spatial patterns of crop production for future points in time. Terhoological change is more difficult to estimate than is increased demmd resulting from growth in population and income. Techological adrancement is contingent upon many variables, some of which are not quantifiable.

Eventually, it may be possible to derelop a model that will take into account all possible or important crop and livestock activities in early rerrion. This step is to be considered after colton, soybeans, and other erops are ineorporated into the current model.

Quality is a variable that should be considered in later research. Soft whert canoot be substituted for the hard rapieties in the manufacture of what products of a given guality. It was assumed in the study reported that the regions in the model solutions would proride a rariety mix of what that would meet the special demands for each variety: Apparently, this assumption was not contradicted by the results.

Many other nggregative problens might be considered in linearprogrming amalyses of the grain economy. These include the determination of optimum-producing regions when crop failures are assumed in certain areas, the determination of the optimum level and location of crain stocks over time (dynamic programing), and a combination of the two. A model developed for the two later steps could easily execed computational farilities if a large number of production regions and years were considered.

Models that use contintous supply and demand functions might be used to describe the competitive position of various agricultural regions in the whent and feed gram economy. Spatial equilibrium models using continuous supply and demand fanctions would seem, however, to be too romplex for a detailed analysis of as many as 100 regions. Without the detail of many regions, amalysis is general and is of little use in specifying needed adjustments.

Analyses of the agritaltural industry of the type and detail used in the study reported are desirable from the viewpoint of reatism and eomplete analysis. Experiene with the study, however, revenled the true magnitude of such an analysis. But if the regional interdependence of the agricultural industry is to be known or approximated, a programiay type of analysis seems to be the most feasible of the serema empirical methods presenty arainble. Inclusion of the steps mentioned is neressury before realism and completeness can be arhieved. For such analyses, however, sizable researeh funds and much time wond be rectured.

[^19]
LITERATURE CITED

(1) Brooell, A. P., Sthickler, P. E., aid Phinlips, H. C.
1955. EXPENT AND COST OF GPRAYING AND DUSTHNG ON FARMS, 1052. U.S. Dept. Agr. Statis. Bul. 156, 25 pp .
(2) Golorado Cooperative Livestock and Crop Reporting Servioe. 1951-56. Golorado agricoleturat spamistics, 1048-48 To i85t. V. i and v. 2, No. 1. Denver, Colo.
(3) Ilanots Coolefative Crof Repolting Service.
1953. mbinots agmodmernal statistics. 53 pp . Springfield, IIl. (In cooperation with U.S. Dept. Agr.)
(4) Kansas State Board of Aghoulfure.

ANSAS SEATE BOARD OF AGMICuDfore. Kans.
(5) Kentucky Grop and Livestocis Reporting Service.

(6) Kentugey Crop and Livestock Reporthng Service. 1054. Kentuckt crop spatistics, 1952-1033.
(7) Mremgan Depabthent of Agmoulture, Beread of Agricultural Industry. 1047-54. MCHIfAN Aghicultural STATISTics, 1945-46, 1950 To 1053. Lansing, Mich.
(3) Minnesota State-Federal Crop and Livestock Reporting Service. 1047-56. mininesota acmbeultural statistics, 1060 to tos5. Lansing, Mich.
(9) Mississippi Chop and Livestook Repoherag Service.
 tilis.
(10) Missourt State Depaichenef of Agricdeture.

1946-65. missouri farm census, ay countres, tot to 1054. Jefferson City, Mo.
(1i) Montana Depamment of Agricultgre, Labor and Industry. 1948-54. montava agmocleqrad sparisfics, vols. 2-5. Eelena, Mont. (In cooperation with U.S. Dept. Agr.)
(12) Nebraska Departhent of Mgriculepure and inspection.

1947-56. NEbRASKA agricultural statistics, nNNUAL REPORT, 1045-54. Lincoln.
(13) Nibaraska Deparqment of Agrtedleure and Instection. 1954. NEARASKA IRagGrion sTatistics, 199-1953. 96 pp . Lincoln.
(14) North Camolna Chop Reporting Sebvice.
 R:deigh, N.C.
(15) Norti Dakora Cbor and Livestock Reporting Service.
1957. Normi dakota cror and lyespock smatstics, by counties, $10 s 0$. 28 pp., illus. Margo, N. Dak.
(16) Oho Agbiculfural Experment Stamos.
 Expt. Sta. Buls. 601, 692, 722, 735, 767.
(17) Ranney, W, P.
 grans, sotbeans and macellaneous sbed cmops. Tem. Agr. Expt. Stit. Furrn Econ. Gir. 5, 28 pp. (Mimeographed.)
(18) Robmins, P. R., Stallings, J. L., Asd Ohbrogee, A.J. 1957. Ctor costs and reaurns on major soht associations in southwestern indiana, to5t. Ind. Agr. Bixpt. Sta. Bul. 0.17, 19 pp.
(19) Soura Dakóra dembelorgral Expematext Stamon.
1954. mase putces of long-run parm addemes in soutil dakota. S. Dak. Agr. Expt. Sta. Agr. Leon. Pamphiet 5l, 39 pp . (Mimeographed.)
(20) Sourfy Dakota Chor and Livestock Reporting Service.
 1953. Pierre, S. Dak.
(21) Smriceter, P. E., and Margan, I. F.
1957. fehthizer and hme applonpron on farms, togi. U.S. Agr. Res. Serv., AftS 43-49, 16 pp., illus.
(22) U.S. Agricultural Marketing. Service, Agrloultural Economics Division.
1957. Grain and feed etatistics theoven 1956. U.S. Dept. Agr.
(23) U.S. Agricuurural Miarkeviciva, Seryice, Crof Repormina Board.
 value, by states, 1054-55. U.S. Agr, Mkt. Serv., AMS-39 (1954-
55), 39 pp.
(24) U.S. Agricglyural Research Service, Farm Economics Research Drviston.
1957. Taxes livied on farm real estate in 105b. U.S. Agt. Res.
(25) U.S. Bureav of Aonicolvoral. Econontcs.

1945-49. Grop re: ont for michoan, annual orop and dyestock Sumahy, 1945 ro 1940 . Lansirg, Mich. (In cooperation with Mich. Dept. Agr., Bur. Agr. Indus.)
(26) U.S. Bureav of Aghicultrimal Eiconomics.
1962. CROF PRODUCTION PRACTICES, LABOR POWER AND MAYPRIALS, HY operation. U.S. Bur. Agr. Ecol. F.M. 92, Sec. 1-5. (Mimeo-
graphod.)
(27) U.S. Bureatu of Agricutipural Economics.

2046-55. INDIANA CROPS AND LIVESTOCK, ANNUAL CROP SUMAMRY, 196 Fo 105s. Purdue Univ. Dept. Agr. Statis., West Lafayette,
(28) U.S. Bureau of the Census.
1052. UNited States census of agriculubre, 1050. Special Reports, v. 5 , pt. 7.
(29) U.S. Bureau of the Census.
1956. United STates CENSOS of agriculture, 1054. 3 v., illus. Wash-
(30) U.S. Department of Agriculiture.

1935-57. AGrLGULURAL STANSTHES, 103H To 1956. Washington, U.S. Govt. Print. Off.
(31) U.S. Intrerserte Commerce Commasion, Buread of Transportt Economics and Stamisteg.
1955. Carlond wayblis stamitics, 105H. Statement SS-2, 87 pp.
(32) Wroming Wraphington, D.C.

1948-55. WYoming agriculicure, 1947 ro 1054. Wyo. Dept. Agr. Buls. 35 to . 18. (In cooperation with U.S. Dept. Agr., Div. Agr.
Statis.)
(33) Wyomino Depaminent of Agriculture, Division of Statistics.
1949. Wroming agrioultural ghatistics, 1017 and 1938.21 pp . Cheyenne, Wyo. (Mimeographed.)

[^0]: "Hereafter, the term "sorghum" refers to grain varieties only.

[^1]: ${ }^{2}$ Italic munbers in parentheses refer to Literature Cited, page 65.

[^2]: ${ }^{3}$ See the following section for an explauntion of the method used in delineatiag these regions.

[^3]: 4mpheit in the models dreseribed so far is that wheuthand will be cither contitnously eropped or grown in rotation wilh ealtivated summer fallow or ofher erops, such ns peat, ilan, or grasses, if other crops are nomanty grown in rotation with wheat in specific areas. Other crops in rotation with wheat are posible, as other erop aereages are not part of the mereage restraints in ench region. For the sane reason, oller crops can be a part of the feed-gratit rolation acre.

[^4]: - State economic areas were used because: (1) Types of farming and land productivities are similar within these areas; and (2) many of the data required for the study are summarized in the census by State economic areas.

[^5]: - This value also includes an estimate of the value of farm buildings on a per acre basis. Thus, an upward bins is introduced into the estimated values; however, the resulting bias is probably negligible for censt-graiu farms.

[^6]: See footnote at end of table.

[^7]: ${ }^{7}$ A residual method was used because 1953 county data were not available for many States.
 a The yields were estimated by the same method used in estimating normal yields for programing regions.

[^8]: - Data indicate that for more recent periods the market wheat price has been maintained above the competitive level; for example, the price of wheat relative to corn has increased from 122 for the period 1931- $22(30,1944)$ to 131 for the period 10.45-5t (90, 1956).

[^9]: ${ }^{1}$ Expressed in corn-equivalent bushels.
 ${ }^{2}$ Part of maximum acreage; see table 7.

[^10]: "In the discussions that follow, the term "wheat" is used to refer to food wheat. When production of feed wheat is discussed, it is so noted.

[^11]: ${ }^{11}$ These small differences are due to rounding.
 ${ }^{12}$ Hereafter, rents obtained by the dual solution are referred to as imputed rents to avoid confusion with the computed laud rents given in table 3.

[^12]: ${ }^{1}$ Expressed in corn-equivateat bushels.
 2 Less than 500 acres.
 ${ }^{2}$ Part of maximum feed grain acreage; sec table 1.

[^13]: ${ }^{1}$ Estimates based on land values and interest and tax rates.
 ${ }^{1}$ Given by the clual solution to the minimum-cost problem.

[^14]: 1 Estimates based on land values and interest and tax rates.
 ${ }^{2}$ Given by the dual solution to the minimum-cost problem.

[^15]: ${ }^{43}$ The sole diference between models A and E is in the objective criteria of the nodiels. The objective for model A is minimum total cost, white the objective for model t is maximum total profit, given regional prices. This is the reason for making the comparisons that follow.

[^16]: ${ }^{1}$ The estimated total main aereage of all repions is 209,615,000 acres (table 2).
 ${ }^{2}$ These costs include labor, power and mathinery, chemicals, and miseellancous items; see text for definitions.
 ${ }^{3}$ Total wheat production is 077.5 million bushels.

 - Total feed-grain prodnction is 35.58 .9 million corn-equivalent bushels.
 - Feed wheat acreage is included in this number.

[^17]: " As uned here, the term "(lirect cost" inchodes libor, power and machinery, cheminale, and misceldaneous items. (Beo text for deffilions.) The dismasions that follow tre for this direct cost. It dows not include such items as seed, taxes, or interest on land and reni estate inverstament.

[^18]: ts The ferd-grain ategregate includes fed wheat, as well as corn, oats, barley, and sorgham.
 ${ }^{15}$ Figh-speed romputer routines have been writion to handle problems of this, type at the Sitatistical Laboratory, Iowa State Ciniversity.

[^19]: "This statement applies to a rolatively short periodi in which production
 technigues are nrehaneel.

