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Abstract

This article investigates the role of greenhouse gas (GHG) offset payment design
on abatement efficiency in agriculture. We develop a regionally disaggregated positive
mathematical programming model of California agriculture calibrated to economic and
agronomic information. Regional yield and GHG emission responses to production prac-
tices are derived from a biophysical process model. The economic optimization model
allows for simultaneous and continuous changes in water, nitrogen fertilizer, and tillage
intensities, and captures crop substitution effects. Empirical results show that second-
best policies relying on regionally aggregated emission factors lead to small abatement
efficiency losses relative to the first-best policy with finer-scale emission factors. Be-
cause the costs of such second-best policies are substantially lower, this finding suggests
that they could be cost-effective in California. In contrast, second-best policies target-
ing a single GHG or a single input entail significant abatement efficiency losses, which
nonetheless can be reduced by combining policy instruments.

1 Introduction

Policymakers worldwide have recognized climate change as one of the greatest challenges of our time

and agreed that substantial reductions in greenhouse gas (GHG) emissions are required (UNFCC,

2010). This political will has led to the emergence of international agreements such as the Kyoto

Protocol, as well as national and subnational climate policies (Burtraw, 2013).1 In 2006, the state

of California approved the Global Warming Solutions Act, often referred to as AB 32, which aims

at reducing the state’s emissions to 1990 levels by 2020 (Assembly Bill 32, Nuñez, Chapter 488,

Statutes of 2006).

A large body of literature indicates that the agricultural sector could cost-effectively reduce

GHG emissions relative to capped energy-based sectors (McCarl and Schneider, 2001; Pautsch

et al., 2001; Antle et al., 2007). In practice, policymakers have not yet endorsed credits for GHG

offsets from agriculture. The California Air Resources Board (ARB), charged with the rulemaking

process for AB 32, is considering the participation of the agricultural sector in an offset market.2

Quantifying how payment design would affect abatement efficiency is critical for designing cost-

effective climate change mitigation policies (Pautsch et al., 2001; Antle et al., 2003, 2007; Durandeau

1Jurisdictions having initiated efforts to reduce GHG emissions include the European Union’s Emissions Trading
System launched in 2005 with an objective to reduce emissions from targeted sectors by 21% by 2020 relative to 2005,
and the nine northeastern states participating in the Regional Greenhouse Gas Initiative (RGGI), a cap-and-trade
system implemented since 2009 which aims at reducing emissions by 10% by 2018 relative to 2009 levels.

2ARB has already approved the Compliance Offset Protocol U.S. Forest Projects for crediting carbon sequestered
on forest land (protocols/usforestprojects) and the Compliance Offset Protocol Livestock Projects for crediting GHG
emission reductions associated with the installation of biogas control systems for manure management on dairy cattle
and swine farms (protocols/livestock).
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et al., 2010; Antle and Ogle, 2011). The first-best policy, which relies on local emission factors

and controls all major agricultural GHGs, is efficient in the sense that it minimizes abatement

costs (ignoring implementation costs), subject to a given abatement target. However, the costs

of running such a program is likely prohibitive as accurately measuring net GHG emissions from

fields or animals is virtually impossible. Second-best policies that are less ambitious in measuring

emissions may thus be associated with significantly lower implementation costs. As such, a tradeoff

exists between abatement efficiency and program implementation costs. It is this tradeoff that we

propose to address in this article.

To this end, we develop a regionally disaggregated optimization model of California Central

Valley agricultural production calibrated to economic and agronomic information. We generate the

agronomic information at a relatively disaggregated level in order to capture heterogeneity in soil

and climatic conditions. We first use the model to derive the Central Valley’s marginal abatement

cost curve under the first-best policy. We then investigate the abatement efficiency losses that would

arise under four types of second-best policies aimed at mitigating GHG emissions from agriculture:

(i) policies relying on spatially aggregated emission factors, (ii) policies regulating a single GHG,

(iii) policies controlling a single agricultural input, and (iv) policies controlling two agricultural

inputs.

Our estimates show that field crop agriculture in the Central Valley of California would abate

1.4 million metric tonnes of CO2 equivalent (MtCO2e) under the first-best policy at a carbon price

of $20/tCO2e, the price targeted by ARB in 2020 (CARB, 2010).3 Furthermore, our results reveal

that second-best policies that rely on regionally aggregated emission factors lead to small abatement

efficiency losses relative to the first-best policy with finer-scale emission factors, that is, additional

information on spatial heterogeneity achieves only small abatement gains. Because the costs of

second-best policies relying on aggregate emission factors would likely be lower, this finding suggests

that such policies could be preferred to the first-best policy in California. Similarly, second-best

policies targeting single GHGs like nitrous oxide (N2O) or carbon dioxide (CO2) seem to perform

well relative to the first best. Because measuring GHG emissions is difficult, we examine policies

directly controlling inputs. We find that such policies typically entail sizable abatement efficiency

3Burtraw and Szambelan (2012, p. 8) use an allowance price forecast of $15.90 ($2012/MtCO2e) in 2013, $20.92
in 2015, and $36.94 in 2020. These allowance prices are based on the 2011 Market Price Referent, which uses the
allowance prices from a 2009 CO2 price forecast report from Synapse Energy Economics.
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losses. Mixed policies that simultaneously control two adjustment margins partially mitigate these

losses. More specifically, a combination of nitrogen and tillage taxes is predicted to achieve x% of

the abatement potential at a price of $20/tCO2e.

Our paper contributes to a rich and growing literature examining how various policy incentives

might affect the supply of GHG offsets from agriculture. Indeed, the proper incentivization of

GHG offset supply by the agricultural sector is fraught with challenges. Firstly, GHG emissions

from fields or animals are costly or impossible to monitor, making reliance on simulated conditional

emission factors often necessary for implementation. Second, the emission production process

typically involves multiple margins of adjustment such as crop choice, fertilizer intensity, irrigation,

and tillage, contributing to emissions in a nonlinear and sometimes non-monotonic fashion. This

feature renders the derivation of conditional emission factors complex and prone to error. This

process is complicated by emission uncertainties arising from variability in weather. Thirdly, GHG

emissions are produced by many atomized sources having their own emission generation process

and, therefore, heterogenous opportunity costs due to variation in local soil and climatic conditions.

Because of this heterogeneity in opportunity costs, incentive schemes might appear as inequitable

or discriminatory as they reward or penalize farmers differently. Finally, policies involving income

transfers to the agricultural sector remain controversial.

One option to make a GHG incentive program workable is to rely on spatially aggregated

conditional emission factors instead of field level ones. In addition, programs that reward practices

based on spatially aggregated emissions factors may be more politically acceptable since farmers

with similar observable practices would receive identical payoffs. Pautsch et al. (2001) and Antle

et al. (2007) compare how aggregating information on emission factors, e.g., at the county- or state-

level, affects marginal abatement costs relative to the first-best policy with detailed information at

the field level. While Antle et al. (2007) find that little abatement efficiency is gained from relying

on more disaggregated information for no-till adoption in the central U.S., Pautsch et al. (2001) find

as much as a four-fold efficiency gain for conservation tillage adoption in Iowa. Therefore, mixed

evidence exists on the extent to which programs with payments relying on aggregated emission

factors can help realize the economic abatement potential. California is arguably one of the most

complex agricultural states given the diversity of its environmental conditions and attendant crop

mix. This makes it a suitable case study to examine how much environmental and economic

3



heterogeneity affects abatement efficiency when implementing second-best policies that aggregate

emission factors over large regions.

Because carbon sequestration is easier to monitor than N2O or CH4 fluxes, most studies have

focused on regulating CO2 (Pautsch et al., 2001; Antle et al., 2003; Lubowski et al., 2006).4 Yet,

evidence shows that changes in agricultural practices affect emissions of all GHGs, suggesting that

the discrepancies between carbon sequestration and total emissions abated may be large.5 For

instance, Antle and Ogle (2011) find that accounting for the effect of no-till practices on both

carbon sequestration and N2O emissions shifts outward the GHG offset supply curve for wheat-

pasture systems and inward for corn-soy-hay systems in the central U.S. relative to studies that omit

N2O emissions, e.g., Antle et al. (2007). Therefore, reasonably estimating total abatement from

agricultural sources may require monitoring the emissions of all three major agricultural GHGs.

Nonetheless, few studies have evaluated how much abatement efficiency is gained with policies

targeting all three agricultural GHGs relative to policies that regulate a single GHG.

Under perfect information on the emissions generation process by the regulating agency, the

first-best allocation can theoretically be achieved without any actual emissions measurement by

simultaneously incentivizing the choice of activity (extensive margin) and the choice of management

practices (intensive margin). Such incentives could be implemented, for instance, through crop-

specific input taxes. Yet, regulating all inputs simultaneously and differently across uses may be

politically difficult and very costly to implement.6 To the best of our knowledge, no study on GHG

mitigation has estimated how much second-best policies regulating a single input or a combination

of inputs irrespective of their use would perform relative to the first-best policy.7

Mathematical programming, in particular linear programming (LP), has often been used to

estimate the GHG emission abatement costs of agricultural sources (De Cara and Jayet, 2000; Mc-

Carl and Schneider, 2001; Schneider and McCarl, 2003; Schneider et al., 2007; Durandeau et al.,

4Mérel et al. (2014) and Rosas et al. (2011) study N2O emissions, while De Cara and Jayet (2000) and Schneider
et al. (2007) examine all three GHGs.

5More carbon sequestration does not imply a net decrease in total GHG emissions because emissions of GHGs
other than CO2 may predominate. For example, reduced tillage often enhances both carbon sequestration and N2O
emissions (Six et al., 2004), while reduced nitrogen (N) fertilizer application rate reduces them (Snyder et al., 2009).

6Because inputs are often regulated by different agencies, coordination among these agencies to determine the
optimal taxation of all inputs can be problematic (Larson et al., 1996). For example, the state department may
regulate fertilizers, while local irrigation districts control water use.

7Larson et al. (1996) find that in order to reduce nitrate pollution from lettuce production in California, regulating
the water input leads to small welfare losses relative to the first-best policy.
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2010).8 Yet, LP models have been criticized for producing corner solutions and not calibrating

to an observed baseline. One solution is to introduce flexibility constraints that force the model

to replicate the observed allocation, but these may overly constrain the model’s response to pol-

icy shocks. Another option is to use positive mathematical programming (PMP), a non-linear

programming method formalized by Howitt (1995) that has been widely used for agricultural and

agri-environmental policy analysis, including climate change-related policies (Egbendewe-Mondzozo

et al., 2011; Mérel et al., 2014; Yi et al., 2013).9 PMP relies on a positive approach where farm-

ers’ behaviors are rationalized so that their observed crop and input choices maximize profits in a

reference year.

In this study, we develop a state-of-the-art PMP regionalized model of crop supply for Cali-

fornia’s Central Valley. The model is calibrated to an observed input-output allocation and a set

of exogenous supply elasticities (Mérel et al., 2011; Garnache and Mérel, 2014). We specify the

model so that the land, water, and nitrogen fertilizer inputs as well as the crop tillage intensities

are explicit decision variables, allowing for continuous changes along all margins.10 We use the

biogeochemical process-based model Daycent to estimate crop- and region-specific yield and GHG

emission responses to agricultural practices (Parton et al., 1996).11 As such, our model accounts for

the crop- and region-specific emissions associated with a given set of production practices. Several

studies have relied on ecosystem process-based models to represent agricultural production possibil-

ities, for instance EPIC (McCarl and Schneider, 2001; Pautsch et al., 2001), Century (Antle et al.,

2003), DNDC (Neufeldt et al., 2006), and STICS and CERES (Durandeau et al., 2010). To our

knowledge, the only PMP study having used agronomic information to carefully calibrate economic

8Other approaches, which are more data intensive, include econometrics (Stavins, 1999; Pautsch et al., 2001) and
hybrid approaches where the parameters of the simulation model are econometrically estimated (Antle and Capalbo,
2001; Antle et al., 2003).

9PMP allows the exact calibration of agricultural production models against observed economic behavior, without
the use of artificial flexibility constraints, while requiring minimal data. It is often preferred to LP as it avoids
overspecialization and yields smooth responses to policy changes. Existing agricultural supply models that rely
on PMP principles include, among others, the U.S. Regional Environment and Agriculture Programming (REAP,
formerly USMP) model (Johansson et al., 2007), the European Common Agricultural Policy Regionalised Impact
(CAPRI) modeling system (capri-model.org), and the California StateWide Agricultural Production (SWAP) model
(swap.ucdavis.edu).

10McCarl and Schneider (2001) investigate similar adjustment margins across the U.S., however the linear nature
of their model restricts their practices to a discrete set rather than a continuous interval.

11The Daycent model is the daily time step-version of the well-known Century model (Parton et al., 1987). It
was developed to simulate ecosystem carbon and nutrient dynamics and trace gas fluxes. It includes sub-models for
nitrification and denitrification (Parton et al., 1996) and CH4 oxidation (Del Grosso et al., 2000). De Gryze et al.
(2010) calibrated the Daycent model for the main field crops grown under California conditions using data from
several long-term field experiments.

5

http://www.capri-model.org
http://swap.ucdavis.edu


production functions is Mérel et al. (2014). These authors show how to amend the original PMP

procedure to ensure marginal calibration of crop yield responses to water and nitrogen fertilizer at

the baseline. Here we extend their work to further ensure consistency of the economic and agro-

nomic yield responses with respect to tillage intensity. From an empirical standpoint, allowing for

this additional adjustment margin appears critical, as the literature suggests that tillage practices

could go a long way in reducing GHG emissions from crops (Lal et al., 1998, 2003). Our empirical

results are consistent with this finding.

Several studies have focused on changes in one production practice while ignoring how farm-

ers may alter other practices to minimize abatement costs (Schneider et al., 2007). For example,

Pautsch et al. (2001) and Antle and Ogle (2011) only allow changes in tillage, while Mérel et al.

(2014) focus on nitrogen fertilizer and water without explicitly representing the choice of tillage

technology. In addition to minimizing abatement costs, evidence suggests that simultaneous adjust-

ments in tillage, nitrogen fertilizer and water application rates can achieve more abatement than

adoption of a single practice by enhancing carbon sequestration and mitigating N2O emissions (Six

et al., 2004; Smith et al., 2008; Snyder et al., 2009; De Gryze et al., 2011). In this study, we compare

the offset supply curve from the complete model (with adjustments in nitrogen fertilizer, water, and

tillage) with that from restricted models where adjustments in one or more practice(s) are omitted.

The remainder of the paper proceeds as follows. Section 2 describes the disaggregated model of

California Central Valley agriculture and the construction of the tillage index. Section 3 presents

the estimation of the crop and region-specific yield, GHG emission factors, and cost responses that

feed into the economic model. Section 4 describes the key features of the calibration procedure.

Section 5 presents the marginal abatement cost curves for the first best. Section 6 presents the

marginal abatement cost curves for the second-best policies and discusses the role of payment design

on abatement efficiency. Section 7 concludes.

2 A disaggregated model of California Central Valley’s agriculture

2.1 Model specification

The model maximizes regional agricultural profits subject to resource constraints. Mérel et al.

(2014) specify profits with crop and region-specific generalized constant-elasticitiy-of-substitution
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(CES) production functions. We extend their model to include farmers’ choice of tillage technology.

We define the tillage index T , which is continuous in the interval [0, 1], to represent the level of soil

disturbance. The construction of the tillage index is described in greater detail in section 2.2.

Consider a regional model with i = 1, . . . , I cropping activities, j = 1, . . . , J inputs and g =

1, . . . , G regions (denoted sets I, J and G, respectively). Let j = 1 be the land input, j = 2 the

water input, and j = 3 the N fertilizer input. The economic optimization model for California

Central Valley is defined as follows:

max
xgij≥0,Tgi≥0

∑
g,i pgiqgi −

∑
j (cgij + λgij)xgij − (cgiT (Tgi) + λgiTTgi)xgi1

subject to
∑

i xgij ≤ vgj j = 1, 2, ∀g ∈ G

qgi = µgi

(∑
j βgijx

ρgi
gij

) δgi
ρgi ∀i ∈ I, g ∈ G∑

gik egik(agij , Tgi)xgi1 ≤ GHG

(1)

where the choice variable xgij represents input j’s quantity allocated to crop i in region g and Tgi

denotes the tillage index associated with the production of crop i in region g. pgi is the regional

price of crop i and cgij is the regional price of input j in activity i.12 The parameters vg1 and vg2

denote the regional land and water availability constraints, respectively. qgi is the regional output of

crop i associated with the generalized CES production function with tillage intensity Tgi and input

employments xgij . µgi, βgij and δgi are the parameters of the CES function and satisfy µgi > 0,

βgij > 0,
∑

j βgij = 1 and δgi ∈ (0, 1). The parameter ρgi is such that ρgi =
σgi−1
σgi

where σgi is the

regional elasticity of substitution between any two inputs.

The calibration parameters λgij are added to the input cost terms to replicate the input al-

location observed in the baseline (Mérel et al., 2014). Furthermore, we introduce a calibration

parameter λgiT to the tillage cost term to allow calibration of the baseline tillage technology.

The biogeochemical model Daycent and the agronomic literature do not report a clear effect of

reduced tillage technology on yield for the crops considered in this study. Therefore, we assume

12We assume that all inputs, except the water and fertilizer inputs and inputs related to the tillage technology
are employed in fixed proportions with the land input, and we include their respective cost in the land cost, cgi1.
Similarly, we assume all fertilizer elements (N, P, K and others) are employed in fixed proportions for a given crop
so that the price of N fertilizer cgi3 includes the non-nitrogen fertilizer costs. Because fertilizer elements are used in
different proportions in different crops, cgi3 is crop-specific.
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that the choice of tillage technology affects cost but does not affect yield. The last term in the

objective function represents the cost associated with tillage technology Tgi. cgiT (Tgi) denotes the

tillage cost per unit of land. It is convex in the tillage index and twice differentiable with c′giT > 0

and c′′giT > 0, and is estimated in section 3.2.

The term egik(agij , Tgi) represents the regional emission rate for crop i and GHG k, for k ∈

K = {CO2, N2O,CH4}, expressed in metric tonnes of CO2 equivalent per hectare (tCO2e/ha).

Emission rates depend on the production practices, namely, the water and N fertilizer application

rates, defined as agij =
xgij
xgi1

for j = 2, 3, and the tillage index Tgi. They are estimated in section 3.3

for each region g. Total GHG emissions,
∑

gik egik(agij , Tgi)xgi1, are constrained by an exogenous

emission cap, denoted GHG.

2.2 Tillage index

The introduction of a continuous tillage index, T , is a novel feature of this modeling strategy. The

index measures the soil disturbance caused by tillage practice, which is captured by the type of

equipment used on the field and the frequency of its use. Table 1 describes the six tillage practices

identified in California and their associated soil disturbance index (Mitchell et al., 2009).

Table 1 Characteristics of the six tillage practices identified in California.

Residue Chisel,
Practice Description cover after rip or Tillage

planting subsoiling index

Conv. tillage (K-CT) high soil disturbance none yes 1
CA conv. tillage (CA-CT) medium soil disturbance none yes 0.91
Reduced tillage (RT) tractor passes reduced by 25% 15 to 30% no 0.64
Mulch tillage (M) tractor passes reduced by 75% over 33% no 0.54
Strip tillage (S) only seed row is tilled over 30% no 0.41
No till (NT) disturbance only at planting over 30% no 0

We construct the tillage variable T ∈ [0, 1] by mapping existing tillage technologies into an index

of soil disturbance where T = 0 describes no-till systems (low soil disturbance) and T = 1 represents

conventional tillage systems (high soil disturbance). The tillage index is continuous because, while

farmers may make discrete tillage choices at the field-level, we aggregate their tillage practices to

the scale of the economic model—the 27 SWAP regions presented in the next section. Consequently,

the resulting tillage index is continuous at the regional level.
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2.3 Data

We use the 2005 input-output crop data from the California StateWide Agricultural Production

(SWAP) model developed by R. Howitt (Jenkins et al., 2001).13 The SWAP model consists of

27 regions in the Central Valley, California’s agricultural heartland. These regions match water

districts boundaries and, therefore, capture meaningful regional water constraints. The Sacramento

Valley covers regions 1 through 9, while the San Joaquin Valley encompasses regions 10 through

21C.

The study includes seven major crop groups covering 1.29 million hectares (3.18 million acres)

in 2005 (among which almost 1 million hectares are located in the San Joaquin Valley). The crop

acreage covered in this study represents 70% of the 2005 non-perennial agricultural acreage in the

Central Valley.14 The acreage distribution among modeled crops is shown in table 2. The grain

group is represented by wheat and the “other field crops” group by sunflower, while the remaining

crop groups are represented by themselves.

Table 2 Crop acreage shares across the Central Valley (%).

Crop Central Valley Sacramento Valley San Joaquin Valley

Alfalfa 21.98 24.22 18.97
Corn 21.02 22.29 21.24
Cotton 20.86 0.82 27.77
Grain 11.46 20.56 8.94
Other field crops 13.64 9.01 15.49
Processing tomatoes 9.50 17.48 7.28
Safflower 1.54 5.61 0.31

Total 100.00 100.00 100.00

Crop acreages and water prices for 2005 come from the California Department of Water Re-

sources (DWR). Crop prices and yields for 2005 come from the Agricultural Commissioner Reports.

Water application rates and prices come from DWR, when available, and from the University of

California Cost and Return Studies (UCCE, 2007). Other input use and costs, including fertilizer,

come from the Cost and Return Studies, which provide information on observed regional production

practices.15

California’s own-price supply elasticities for corn, cotton, safflower, sunflower and wheat come

13See swap.ucdavis.edu.
14We do not include tree crops because the Daycent model is not calibrated for these crops.
15These production practices are conventional.
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from the SWAP model, while supply elasticities for alfalfa and processing tomatoes are updated

based on the more recent study by Russo et al. (2008), see table 7 in appendix C.

In the standard PMP specification, the shadow value of constrained resources is determined by

the least profitable activity. A critique of this approach is that it may lead to underestimating the

value of limiting resources. Kanellopoulos et al. (2010) suggest using the regional average gross

margin observed in the baseline as shadow value for the land input. We propose to use as shadow

values of the constrained resources the values that minimize the sum of squares of the adjustment

cost terms required to rationalize farmers’ observed behavior. The algorithm is defined for the land

or water input as:

min
λ̄gj

∑
i λ

2
gij

where the calibration parameters λgij , for j = 1, 2, can be expressed as a function of the data

and model parameter δgi. We find that the water constraint is binding in all regions but the land

constraint is not. The water shadow values are presented in table 8 in appendix C. Our choice of

shadow values does not seem to influence the results. The marginal abatement cost curves presented

in sections 5 and 6 are robust to alternative choices of shadow values based upon the gross margin

of the two lowest profitable crops whether or not the corn and grain crop groups are removed in the

first stage LP stage of PMP. One reason for removing the corn and grain crop groups to calculate

the shadow values of the constrained resources is that their gross margins are negative or barely

positive in many regions, and we believe they are hardly representative of the marginal value of the

land and water resources.

3 Estimation of the responses to production practices

In this section, we estimate the yield and cost responses to production practices, as well as the

associated GHG emission responses. We estimate the cost responses using the Cost and Return

Studies and other sources when available (UCCE, 2007). We use the Daycent model, calibrated

for crops under California conditions, to generate yield and GHG emission data for a series of

production practices (De Gryze et al., 2009, 2010). The Central Valley is divided into cells of

15km×15km. The Daycent model is run for each cell using the average soil and climate conditions

prevailing on that cell and over the years 1983-2008 for ten commonly observed crop rotations in the

10



Sacramento and San Joaquin Valleys. The use of the 1983-2001 period ensures that soil processes

reach steady-state conditions under reference production practices, while we introduce alternative

production practices in 2002 and maintain them throughout 2008. For each crop, we vary the N

fertilizer and water application from 0 to 125% of the rates observed in the baseline, and for the six

tillage practices described in section 2.3. Although a number of studies consider 20-year contracts

for carbon sequestration (Antle et al., 2003; Antle and Ogle, 2011), West and Six (2007) conduct a

meta-analysis and find that soil carbon sequestration reaches its steady state five to ten years after

a change in agricultural practices in most systems in California. Therefore, we do not expect the

results to dramatically change when extending the study duration beyond the current seven-year

period.16 We then aggregate the Daycent model’s results to the scale of the economic model (each

one of the 27 SWAP regions) and average them over the 2002-2008 period and over the ten crop

rotations.

3.1 Estimation of the yield responses to production practices

We estimate the agronomic yield responses to N fertilizer, water and tillage by fitting the following

models to the Daycent model’s yield data. See appendix A for how we generate the data to

ensure consistency between the yield, N fertilizer and water application rates, and tillage technology

observed in the baseline at the regional level.

Following Godard et al. (2008) and Mérel et al. (2014), we fit for each crop and region an

exponential yield response curve through the obtained simulation data:

y(a3) = β03 + β13

(
1− e−β23a3

)
(2)

where a3 is the N application rate and β03, β13 and β23 are the regression parameters. ya3=0

represents the minimum yield as N fertilizer application goes to zero.

Following Mérel et al. (2014), we estimate a sigmoid yield response curve to the water application

rate for each crop and region:

y(a2) =
β12

1 + e
−a2−β02

β22

(3)

16De Gryze et al. (2011) use a ten-year average after the introduction of new practices to analyze the long-term
mitigation potential of California Central Valley’s agriculture.
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where a2 is the water application rate and β02, β12 and β22 are the regression parameters.

Using expressions (2) and (3), we derive the associated agronomic yield elasticities with respect

to N fertilizer and water application rates and tillage. The expressions for these elasticities are

provided in appendix A. The agronomic yield elasticities, evaluated at the baseline and weighted

by crop acreages, are presented for the Sacramento and San Joaquin Valleys in table 3. As a legume,

alfalfa’s yield does not significantly respond to N fertilizer. Therefore, we do not model changes in

the N input for this crop. The “other field crops” group and cotton show large yield elasticity with

respect to water. The “other field crops” group and grain exhibit very small yield elasticities with

respect to N in the baseline (in the order of 10−4) because the baseline N application rate lies on

the relatively flat portion of the yield response to N fertilizer. Therefore, modest reductions in the

N application rate lead to little yield loss (see figure 11 in appendix C).

Table 3 Average baseline agronomic yield elasticities in the Sacramento and San Joaquin Valleys (weighted
by crop acreages).

Sacramento Valley San Joaquin Valley
Crop ȳiW ȳiN ȳiW ȳiN
Alfalfa 0.20 - 0.24 -
Corn 0.26 0.12 0.27 0.13
Cotton 0.47 0.03 0.58 0.01
Grain 0.13 0.03 0.32 0.00
Other field crops 0.46 0.00 0.70 0.00
Processing tomatoes 0.25 0.02 0.37 0.02
Safflower 0.24 0.11 0.32 0.24

3.2 Estimation of the cost responses to production practices

Following Mérel et al. (2014), we assume that costs are linear in the land, N fertilizer and water

inputs. The regional tillage cost for crop i, cgiT , is defined per unit of land. It consists of the

costs of labor, machinery, fuel, etc, utilized for tillage activities. Reduced tillage is characterized by

fewer pre-planting and/or post-harvest operations, however, no-till systems require one additional

herbicide spraying operation to compensate for the lack of mechanical weed removal. The cost

of California conventional tillage practices (CA-CT), described in table 1, is observed in the Cost

and Return Studies (UCCE, 2007). We use Mitchell et al. (2009) and experts’ opinions to modify

the Cost and Return Studies and assess tillage costs for the five other tillage practices described
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in table 1. In particular, we modify the type of equipment used, the number of tractor passes,

and the increase in cost for no-till systems due to one additional passage of herbicide spraying to

compensate for the absence of mechanical weed removal. These modified practices translate into

new equipment, labor and fuel costs associated with tillage.

We then estimate, for each crop and region, the tillage cost response to changes in the tillage

index using these six data points by fitting a quadratic model. The fitted tillage cost function is

strictly convex for all crops and in all regions, except alfalfa for which we do not model the tillage

response since it is usually planted as a perennial.

3.3 Estimation of the GHG emission responses to production practices

Using the Daycent model, we obtain average CO2, N2O, and CH4 emissions per hectare for each

crop, region, and for a series of practices. We estimate the regional GHG emission responses

egik(agij , Tgi) to N fertilizer, water and tillage. For each GHG, crop and region, we specify a model

that is quadratic in production practices and includes interaction terms.

Total emissions responses to production practices are typically non-linear, as illustrated by

the results in figure 1. In general, total emissions increase with N fertilizer and water intensity.

However, responses are non-monotonic for some crops, e.g., corn. In most regions, processing

tomatoes, cotton and the “other field crops” group have large total emission rates relative to grain

and safflower, while corn’s emission rate is moderate.

In general, changes in any of the three production practices considered in this study significantly

affect both CO2 and N2O emissions. These findings demonstrate the importance of relying on

process-based models and accounting for all three GHGs in order to accurately estimate agriculture’s

abatements. The emission responses for CO2 and N2O are presented in figure 10 in appendix B.17

4 Model calibration

One important feature of this research is the incorporation of the agronomic information from the

biophysical process-based model into the economic model such that the economic and agronomic

marginal yield responses to production practices are consistent at the baseline. We extend the

17Figure 10 illustrates that N fertilizer has a dual effect on GHG emissions. More N fertilizer increases N2O
emissions but reduces CO2 emissions through enhanced crop growth and soil carbon sequestration.
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Figure 1 Emission responses for all GHGs combined to N fertilizer and water application rates and tillage
intensity for the seven crops in region 6 in the Sacramento Valley. Squares indicate baseline practices. The
changes in production practices considered correspond 0 to 125% of the baseline intensity. Also, there is no
N fertilization or tillage responses for alfalfa.

work of Mérel et al. (2014) on N fertilizer and water to also calibrate the economic model to the

agronomic information on tillage technology. This is critical since carbon sequestration and N2O

emissions are sensitive to tillage technology and N fertilizer and water application rates (Smith

et al., 2008; Snyder et al., 2009).

The calibration problem consists of selecting for each activity i and region g the set of parameters

(µgi, βgij , δgi, λgij) so that the optimization model (1), presented in section 2, replicates (i) the

economic information in terms of observed input-output allocation (q̄gi, T̄ig, x̄gij), the shadow prices

of the constrained water resources, λ̄g2, obtained from the first stage of PMP (Howitt, 1995), and

the supply responses η̄ig (Mérel et al., 2011; Garnache and Mérel, 2014); and (ii) the agronomic

information, such that the yield responses calculated at the baseline allocation coincide with the

agronomic yield elasticities (ȳgiW , ȳgiN ).

The first-order condition associated with the economic model (1) specific to tillage for crop i
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is:18

λgiT = −c̄′giT (Tgi) ∀g ∈ G (4)

where the bar denotes that variables are evaluated at the baseline. From condition (4), one can see

that the calibration of crop i’s response to tillage, i.e., the identification of the shadow cost λgiT

that rationalizes farmers’ tillage choice at the regional level, requires that crop i exhibits a strictly

convex tillage cost function (c′′giT > 0).

5 California agriculture’s GHG mitigation potential

5.1 California agriculture’s marginal abatement cost curve

AB 32 implements a cap-and-trade system and the contribution of agriculture would be in terms of

offsets. Therefore, we estimate the supply of offsets from agriculture in response to a GHG emission

cap.19 Although field-level emission factors are necessary to determine exact GHG emissions, in

the present study we use the most disaggregated emission factors available, i.e., for the 27 Central

Valley regions. This scenario represents the “feasible” first-best policy (hereafter referred to as first

best) in the sense that we use the finest GHG emission estimates available to us. Furthermore, we

assume that the Daycent model predicts emissions with certainty. We focus on the abatement costs

incurred by farmers and abstract away from transaction costs and the costs of administering the

program.

The marginal abatement cost curve for California’s Central Valley is presented in figure 2. All

results, except otherwise mentioned, are presented for a substitution elasticity of 0.2. The sensitivity

of the results to this parameter value is discussed in section 5.2. ARB predicts an offset price of

$20/tCO2e in 2020 under AB 32 (CARB, 2010).20 At this price, California’s agriculture supplies

1.18 million metric tonnes of offsets (MtCO2e). This value is in the range of those estimated

for other U.S. regions, suggesting California’s agriculture could competitively supply GHG offsets

relative to capped sectors and other U.S. agricultural sectors. At a price of $50/tCO2e, McCarl

and Schneider (2001) estimate U.S. agriculture offsets of 3 MtCO2e from N2O emission reduction

18The complete system of first-order conditions is provided in appendix C.
19Equivalently, we could model a tax or subsidy on emissions abated.
20The U.S. EPA estimates that, under a congressional cap-and-trade proposal, allowance prices would be of $12-

41/tCO2e in 2013 and $13-59/tCO2e in 2020 (Horowitz and Gottlieb, 2012).
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and 70 MtCO2e from enhanced soil carbon sequestration. At $20/tCO2e, Antle and Ogle (2011)

predict for the central U.S. (21 states) offsets of 5.5 MtCO2e from carbon sequestration and N2O

emission mitigation in response to no-till technology adoption. At $20/tCO2e, Pautsch et al. (2001)

estimate offset less than 0.5 MtCO2e from conservation tillage adoption in Iowa.

Figure 2 California agriculture’s offset supply curve under the first-best policy. The different curves show
total emissions abated as well as the contribution of each GHG to total abatement. The dashed line indicates
the ARB predicted offset price of $20/tCO2e in 2020 (CARB, 2010).

Furthermore, both N2O and CO2 contribute substantially to total abatement as can be seen in

figure 2. Although carbon sequestration often plays a predominant role in GHG emission mitigation

from agricultural land (Lal et al., 1998; McCarl and Schneider, 2001), the present findings suggest

that N2O constitutes the majority of abatement in California (60%). This result is consistent with

agronomic studies for California (De Gryze et al., 2011). Carbon sequestration contributes 40% to

total abatement, while CH4’s contribution is negligible (less than 1%).21

The aggregated offset supply curve for California’s Central Valley hides important regional

heterogeneity, which stems partly from large variations in baseline N2O and CO2 emissions across

the 27 Central Valley regions, as illustrated in figure 13 in appendix D. Large variations in the

crop-specific baseline emission rates and net changes in total emissions at a price of $20/tCO2e

21CH4’s contribution to total abatement would substantially increase if rice were included. Yet, the Daycent model
is not calibrated to simulate flooded system. As a result, this study somewhat underestimates total abatement from
California agriculture.
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are observed across the two valleys, as shown in table 4. For example, alfalfa is a net sequester in

the San Joaquin Valley but a net emitter in the Sacramento Valley, while corn and safflower are

both greater emitters in the Sacramento Valley. These regional differences are largely driven by

variation in climate and soils, and to some extent by baseline production practices, across the two

valleys (De Gryze et al., 2011). Consistent with the results of De Gryze et al. (2011), we observe

large abatements for processing tomatoes.22

Table 4 Crop average total emission rates in tCO2e/ha in the Sacramento and San Joaquin Valleys,
weighted by crop acreages, for the baseline (GHG0) and for a marginal price of $20/tCO2e (GHG$20).

Sacramento Valley San Joaquin Valley
Crop GHG0 GHG$20 GHG0 GHG$20

Alfalfa 1.4 1.3 -0.3 0.9
Corn 2.9 2.4 1.4 0.8
Cotton 3.8 3.7 5.0 0.7
Grain -0.2 -0.3 -0.3 0.9
Other field crops 5.7 3.9 4.3 0.7
Processing tomatoes 6.2 3.8 6.2 0.7
Safflower 1.0 0.2 0.0 0.8

The crop average inputs and tillage intensities as well as the average yields for the Sacra-

mento and San Joaquin Valleys in the baseline and their percentage changes at a marginal price

of $20/tCO2e are presented in table 5. At this $20 price, the tillage index falls for all crops, with

the most dramatic changes observed for processing tomatoes, the “other field crops” group, and

safflower in the Sacramento Valley. In the baseline, crops generally use more water in the San

Joaquin Valley (drier climate) than in the Sacramento Valley. This is particularly true for crops

such as grain and safflower which are only partially irrigated in the Sacramento Valley. The water

application rates increase substantially for cotton, safflower, and the “other field crops” group in

the Sacramento Valley, while they substantially decrease for grain in the San Joaquin Valley at

$20/tCO2e. The N application rates show large variations across the two valleys and fall for all

crops but safflower, and cotton in the Sacramento Valley, at a price of $20/tCO2e. The largest

reduction occurs for the “other field crops” group with N fertilizer reduction close over 60% on

average. This is driven by the low yield elasticity with respect to N fertilizer presented in table 3.

22Despite of large spatial variation, De Gryze et al. (2011) find larger average abatement potentials, in absolute
value, in the Sacramento Valley than in the San Joaquin Valley. Yet, their study does not consider abatement costs.
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Changes in yields depend on the changes in production practices and changes in crop acreages.23

At a $20/tCO2e price, average yield decreases for grain throughout the Central Valley.

Table 5 Crop average production practices and yield for the Sacramento and San Joaquin Valleys in the
baseline and percentage changes for a marginal price of $20/tCO2e (weighted by crop acreages).

Tillage index Water intensity (cm) N intensity (kg/ha) Yield (t/ha)
Crop T̄ % ā2 % ā3 % ȳ %

S
a
cr

am
en

to
V

.

Alfalfa 0.91 - 119 6 12 - 14.8 1
Corn 0.91 -14 116 3 189 -3 66.8 2
Cotton 0.91 -17 81 19 154 14 1.4 22
Grain 0.91 -19 16 -3 141 -10 5.3 -7
Oth.field cr. 0.91 -26 81 21 105 -64 1.0 27
Pr.tomato 0.91 -33 114 0 217 -7 81.0 3
Safflower 0.91 -29 8 25 111 13 2.4 26

S
an

J
oa

q
u
in

V
.

Alfalfa 0.91 - 127 -1 10 - 17.6 -6
Corn 0.91 -8 123 3 228 -3 57.7 0
Cotton 0.91 -21 79 8 202 -11 1.3 11
Grain 0.91 -4 52 -19 247 -24 5.8 -25
Oth.field cr. 0.91 -18 83 13 105 -70 1.0 17
Pr.tomato 0.91 -22 111 5 218 -5 84.0 6
Safflower 0.91 -16 65 22 123 16 4.2 12

Adjustments at both the intensive and extensive margins substantially contribute to abatement

in California. We approximate the contribution of each margin by decomposing total abatement

into the abatement that arises when fixing the land input (intensive margin) and that when fixing

the production practices to their baseline levels (extensive margin). Thus, we define

∑
gik

∆ (egikxgi1)︸ ︷︷ ︸
Total abatement

≈
∑
gik

∆egikx̄gi1︸ ︷︷ ︸
Intensive margin

+
∑
gik

ēgik∆xgi1︸ ︷︷ ︸
Extensive margin

where the bar denotes baseline levels. Figure 3 suggests adjustments along both the intensive and

extensive margins contribute equally to abatement at $20/tCO2e, although the contribution along

the intensive margin predominates. This result highlights the importance of calibrating the model

at the (i) intensive and (ii) extensive margins, i.e., by ensuring that (i) the model’s yield elasticities

with respect to input use and tillage technology are consistent with the agronomic information, and

23Although input intensities are reduced for some crops, their yield may not necessarily decrease because a reduction
in acreage is associated with a higher yield on the remaining land. Therefore, the decreasing-returns-to-scale effect
may predominate over the reduction in input intensities.
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that (ii) the model’s own-price supply elasticities replicate exogenous supply elasticities.

Figure 3 Contribution of the intensive and extensive margins of adjustments to California agriculture’s
offset supply curve under the first-best policy.

In general, farmers respond to higher offset prices by substituting away from crops with small

abatement potentials and/or large abatement costs such as cotton and the “other field crops” group,

and towards crops with large abatement potentials and/or small abatement costs such as grain and

alfalfa, as indicated in figure 4.

5.2 Sensitivity analysis on the substitution elasticity

We model uncertainty on the value of the substitution elasticity through a Monte Carlo simulation.

Mérel et al. (2014) use substitution elasticity values of 0.1, 0.2, and 0.3, while Graveline and Mérel

(2014) assumes a central value of 0.15. We assume the substitution elasticity σig follows a lognormal

distribution with central value 0.25 and with 95% of the values being below one. 100 sets of σig

are independently drawn from this distribution for each crop i and region g. Figure 5 presents the

mean offset supply curve plus or minus one standard deviation.

19



Figure 4 Changes in the California agriculture’s crop mix under the first-best policy.

Figure 5 California agriculture’s offset supply curve under the first-best policy resulting from the Monte
Carlo simulation on the elasticity of substitution (100 independent draws of set σgi). The solid line shows
the mean and the edges of the shaded area show the mean plus or minus one standard deviation.
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5.3 Abatement cost overestimation under restricted models

In the unrestricted model farmers optimize crop choices and all production practices, here, the

water, N fertilizer and tillage intensities.24 Previous studies often focus on a single production

practice, e.g., adoption of conservation tillage or no-till (Pautsch et al., 2001; Antle et al., 2007;

Antle and Ogle, 2011). Restricting the set of variables farmers optimize over leads to overestimating

abatement costs. Therefore, it is useful to quantify by how much analysts may underestimate the

supply of agricultural offsets when simplifying the realm of possible choices available to farmers.

Results reveal that model restrictions can lead to large underestimation of total abatement, as

shown in figure 6. Recall that figure 3 indicates that omitting the adjustments at the intensive

or extensive margins leads to underestimating abatement by half at $20/tCO2e. We consider five

additional restricted models. In model (1), the regional water application rate is restricted to its

baseline level, while in model (2) it is the regional N fertilizer application rate that is restricted to

its baseline level. In model (3), the regional N fertilizer and water application rates are restricted

to their baseline levels, as specified in Antle et al. (2007) and Antle and Ogle (2011), leading to

underestimating total abatement by 40% at $20/tCO2e in California.25 In model (4), the regional

tillage choices are restricted while farmers optimize N fertilizer and water application rates along

with their crop mix, as modeled in Mérel et al. (2014), capturing only 59% of total abatement

in California. Lastly, in model (5), only the tillage choice is optimized, while the crop mix and

all other inputs are restricted to their baseline levels, as in Pautsch et al. (2001), resulting in

underestimating total abatement by 45%.These findings illustrate large underestimation of the

total abatement when omitting adjustment over some practices. Yet, if the analyst had to restrict

the set of choice variables, first, leaving crop choice out, then, second, restricting crop, N fertilizer

and water choices would best approximate the supply of offsets from California’s agriculture.

24Note that the model restricts choice variables to crop mix, N fertilizer, water and tillage. Future work could
account for other practices affecting GHG emissions, e.g., cover crops.

25Antle et al. (2007) and Antle and Ogle (2011) allow for adoption of fallow but do not consider crop substitution
effect. This is because two production systems dominate the central U.S. region, therefore, adjustments at the
extensive margin are limited.
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Figure 6 California agriculture’s offset supply curve under the first-best policy for the unrestricted model
and the five restricted models, where (1) N fertilizer, (2) water, (3) N fertilizer and water application rates,
(4) tillage practices, or (5) crop mix, N fertilizer and water application rates are fixed at their baseline levels.

6 Policy design for agricultural offset payments

Although the first-best policy achieves abatement efficiency, it may be very costly and politically

difficult to implement. In this section, we investigate how payment design for agricultural GHG

offsets affects abatement efficiency. We examine three types of second-best payment designs: (1)

payments using aggregated emission factors, (2) payments targeting a single GHG, and (3) payments

regulating production practices. For each second-best policy, we estimate the abatement efficiency

loss that arises relative to the first best.

6.1 Policies using aggregated emission factors

Under the feasible first-best policy, “actual” emissions are inferred using the most disaggregated

data available, i.e., the 27 sets of emission factors. Here, we consider two levels of aggregation: (1)

with two sets of emission factors at the Sacramento Valley and San Joaquin Valley levels, and (2)

with a single set of emission factors at the California level. We aggregate the Daycent model’s GHG

emission data to the valley or California level using crop acreages as weights. We then fit new GHG
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emission functions to the data and obtain the aggregate emission factors ẽik for crop i and GHG k

for the two valleys and for California. The constraint on total GHG emissions in program (1) is now

expressed as
∑

gik ẽgikxgi1 ≤ GHG. Ex-post we estimate the “actual” abatement that corresponds

to the new regional input, crop mix, and tillage choices using the disaggregated emission factors

egik.

Perhaps surprisingly, although similarly to Antle et al. (2007) for the central U.S., the abatement

efficiency losses from using payments with aggregated emission factors are small, with offsets within

8% of those obtained under the first-best policy at a price of $20/tCO2e, see figure 7. This suggests

that the distortions that arise from farmers facing incorrect incentives, with aggregated emission

factors instead of the finer regional factors, may be acceptable, provided these second-best policies

are significantly less costly to implement than the first-best.

Figure 7 California agriculture’s offset supply curve under the first best and two second-best policies with
valley and state-level aggregated emission factors.

Yet, the small discrepancy in total abatement for California hides more pronounced regional

variations because of spatial heterogeneity. Figure 14 shows that while in most regions the dif-

ferences in total regional abatement at $20/tCO2e under the first-best and the two second-best

policies are small, the second-best policies achieve less than 20% of total abatement relative to the

first-best policy in some regions, e.g., in region 9 in the Sacramento Valley.
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6.2 Policies targeting a single GHG

Programs focusing on all three GHGs are likely more costly to administer, therefore, it is relevant

to question how much abatement efficiency is lost by targeting a single GHG. Most studies focus on

carbon sequestration (Pautsch et al., 2001; Antle et al., 2003; Lubowski et al., 2006).26 Yet, because

California agriculture presents a substantial N2O emission abatement potential, policy-makers may

be interested in targeting this GHG. Thus, we examine two second-best policies where payments

are made for: (1) enhanced carbon sequestration or (2) N2O emission mitigation. As a result, the

constraint on total GHG emissions in program (1) is now expressed as
∑

gi egiCO2xgi1 ≤ CO2 or∑
gi egiN2Oxgi1 ≤ N2O. Ex-post we estimate the abatement of the other GHGs that corresponds to

the new regional production practices and crop mix to calculate total GHG emissions abated.

The abatement efficiency losses that arise from targeting a single GHG are substantial: 16%

under payments for N2O and 20% for CO2 at $20/tCO2e, as illustrated in figure 8.27 However,

efficiency losses are only slightly smaller under policies targeting N2O emissions rather than carbon

sequestration.

6.3 Regulation of production practices

Monitoring all inputs contributing to GHG emissions simultaneously, such as N, water and tillage,

is likely costly and may be politically difficult. Here, we investigate the abatement efficiency losses

that arise from second-best policies focusing on a single input instead of all inputs under the first-

best policy. We examine payments for reductions in tillage intensity (in $/tillage index/ha) and

N fertilizer (in cent/kg of N).28 A tax on N fertilizer or irrigation water could be easily levied,

however, we do not report results for a policy targeting water because the supply of offsets is very

inelastic given that water is binding in all regions. The regulator may use satellite imagery at some

cost to observe crop residue cover and infer the tillage index.

The regulator may also combine multiple instruments, such as a tax on tillage and a tax on N

fertilizer, to reduce the distortions created when using a single instrument. Minimizing efficiency

26A few recent studies look at N2O emission abatement (Mérel et al., 2014; Rosas et al., 2011).
27Whether the distortions that arise from farmers facing incorrect incentives are less than the costs saved from

operating a program targeting a single GHG is relevant for policy-makers. However, answering this question requires
estimating program implementation costs and is beyond the scope of the present study.

28The marginal abatement cost curve is equivalent under a tax on input use or tillage intensity, although the
income transfer goes from the farmers to society, rather than the other way around with the subsidy.
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Figure 8 California agriculture’s offset supply curve under the first-best and two second-best policies
targeting carbon sequestration and N2O emission reduction.

losses requires that, conditional on the level of one instrument, the other instrument be optimized.

For the joint regulation of tillage and N fertilizer, with optimal taxes tN and tT , respectively,

program (1) becomes:

max
xgij≥0,Tgi≥0,tN≥0,tT≥0

∑
gi pgiqgi −

∑
j 6=3 (cgij + λgij)xgij

− (cgi3 + λgi3 + tN )xgi3 − (cgiT (Tgi) + (λgiT + tT )Tgi)xgi1

subject to
∑

i xgij ≤ vgj j = 1, 2, ∀g ∈ G

qgi = µgi

(∑
j βgijx

ρgi
gij

) δgi
ρgi ∀i ∈ I, g ∈ G∑

gik egik(agij , Tgi)xgi1 ≤ GHG

The program solves for the optimal tax level when a single input is taxed, tN or tT , or for jointly

optimal tax levels, tN and tT , i.e., that minimize abatement cost while satisfying the total emissions

constraint. Ex-post we estimate the marginal cost of supplying GHG offsets (in $/tCO2e) under

the different taxes. This offset price p∗ corresponds to the marginal change in total surplus, which

consists of the agricultural profit and the tax revenue, over the marginal change in total abatement,
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that is

p∗ =
d (Profit+ TaxRevenue)

dGHG
.

At the marginal price of $20/tCO2e, the equivalent tax on N fertilizer is of 13 cents/kg of N, while

on tillage it is $45/tillage index/ha.

Not surprisingly, regulating a single production practice rather than all of them leads to sub-

stantial abatement efficiency losses, with only 20% of the abatement achieved under the first-best

policy at $20/tCO2e when targeting N fertilizer as shown in figure 9. Abatement efficiency losses

are slightly less pronounced when targeting tillage technology with 60% losses at $20/tCO2e rel-

ative to the first-best policy. Discontinuities in the offset supply curve may arise when a choice

variable hits a bound in a given region. For instance, when taxing tillage two discontinuities occur

when the tillage index hits the 0-lower bound, i.e., no till, for grain in the Sacramento Valley at

a price of $29/tCO2e and in the San Joaquin Valley at a price of $48/tCO2e. The social cost

of abatement then drops as another margin of adjustment, which leads to fewer distortion, is ex-

ploited. For the N input, the findings suggest farmers can curtail N fertilizer use to some extent

without incurring much yield loss. Therefore, the offset supply is relatively elastic at low offset

prices (below $3/tCO2e). However, when regulating the N input, the offset supply rapidly becomes

very inelastic with an upper bound of 0.4 MtCO2e for the price range considered here. Intuitively,

the less correlated the production practice is with total GHG emissions, the greater the distortion

relative to the first-best policy. This is why regulating tillage, which is positively correlated with

emissions, entails smaller deadweight loss than regulating the N input (see figure 1).

6.4 Effect of the substitution elasticity

Total abatement at a price of $20/tCO2e are presented in table 6 for the first-best and for the

second-best policies previously examined for three levels of the elasticity of substitution σgi: 0.1,

0.2, and 0.3. The results are sensitive to the elasticity of substitution in absolute value but not

relatively, i.e., the policy results are robust to the value of σig.
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Figure 9 California agriculture’s offset supply curve under the first-best and second-best policies regulating
tillage or N fertilizer and under a mixed policy regulating both tillage and N fertilizer.

Table 6 Total GHG emission abated in MtCO2e at a price of $20/tCO2e under the first-best and second-
best policies for three levels of the elasticity of substitution σgi.

Second-best policies
Aggregated emission Regulation of Regulation of inputs

σ First-best factors a single GHG Single input Multiple inputs
Valley CA CO2 N2O Tillage N Tillage & N

0.1 1.05 1.01 0.97 0.82 0.86 0.46 0.17 0.59
0.2 1.18 1.12 1.10 0.86 0.95 0.48 0.26 0.70
0.5 1.49 1.40 1.34 0.98 1.22 0.50 0.46 0.97

27



7 Conclusion

The paper makes several important contributions to the literature on the GHG abatement costs

from agriculture and environmental regulatory design for agricultural GHG offsets. First, we es-

timate California Central Valley agriculture’s marginal abatement cost curve under the first-best

policy using a disaggregated model of crop production that is calibrated to both economic and agro-

nomic information. This is the first disaggregated large-scale study for California. It is important

because California’s agriculture is highly valuable with a diverse crop mix and rich set of resource

constraints. Furthermore, California is a leader in designing climate policy and ARB is examining

the development of protocols for crediting GHG offsets from cropland management.

Second, the paper systematically quantifies the abatement efficiency losses that arise from

second-best policies. Such policies are simpler and less costly to implement than the first-best

policy. This is important because there exist tradeoffs when designing payments for GHG offsets

between efficiency and the costs of implementing the program. The results show that second-best

policies that rely on regionally aggregated emission factors yield offset supply curves close to that

obtained under the first-best policy with fine-scale emission factors. That is, additional informa-

tion has a small impact on the supply of offsets. The findings are important because the costs

of such second-best policies are substantially lower than that of the first-best policy, suggesting

these policies would be efficient in California. In contrast, all other second-best policies examined

lead to substantial efficiency losses. Yet, depending on the costs of implementing such programs

relative to the first-best policy, regulating tillage, N2O emissions or carbon sequestration may be

more cost-effective. Results reveal that a tax on N fertilizer is a poor instrument to abate GHG

emissions and entails large deadweight loss. However, policies simultaneously taxing tillage and N

fertilizer substantially improve abatement efficiency relative to the single tax policy.

Lastly, the paper develops new methodology to integrate information on tillage technology into

economic models. The model reproduces available economic information on input-output observed

allocation and exogenous supply elasticities, as well as, agronomic information in terms of yield

elasticities with respect to input use (N fertilizer and water). Therefore, the model is calibrated at

both the intensive and extensive margins. This is critical because the results reveal both margins

contribute substantially to total abatement.
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Appendix

A Derivation of the yield elasticities with respect to input use and

tillage

Mérel et al. (2014) propose a methodology to ensure that the observed input-ouput allocation, i.e.,

observed N fertilizer and water application rates and yield described in section 2.3, are consistent

with the information from the agronomic model. We extend their methodology to the tillage

technology. The regional yield response curves are generated as follows.

First, we generate the yield response to N fertilizer application, holding the tillage index and

water application rate at their observed levels. We then estimate the yield response to N fertilizer

as presented in (2). If the N fertilizer application rate a3 that replicates the observed regional yield,

given the fitted yield response (2), is not too far from the observed N fertilizer application rate, we

retain that value for the reference N application.29 For the crops and regions for which this is not

true, we verify that the yield that would be replicated by the observed N fertilizer application rate,

based on the fitted yield response (2), is not too far from the observed yield and we retain that

value for the reference yield and the reference N fertilizer application rate remains the observed

rate.

Second, we generate the yield response to water application, holding the tillage index at its

observed level and reference N fertilizer application rate. We then estimate the yield response to

water as described in (3). We verify that the water application rate a2 that replicates the reference

yield is similar to the observed water application rate, and retain that value for the reference water

application.

Therefore, for each crop and region we have reference water and N fertilizer application rates

and yield, ā2, ā3 and ȳ, respectively. By construction, the reference yield is consistent with the

“reference” water and N fertilizer application rates, in the sense that this yield lies on each yield

response curve.

Given expressions (2) and (3), the crop and region-specific agronomic yield elasticities with

respect to N fertilizer and water application rates and tillage, evaluated at the reference allocation,

29We consider “not too far” as within 30% of the observed value.
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are, respectively:

ȳ3 =
dy

da3

ā3

ȳ

=
β13β23ā3e

−β23ā3

ȳ
,

ȳ2 =
dy

da2

ā2

ȳ

=
ā2e
− ā2−β02

β22

β22

(
1 + e

− ā2−β02
β22

) , and

B GHG emission responses

Figure 10 CO2 (top panels) and N2O (bottom panels) responses to N fertilizer and water application
rates and tillage intensity for the seven crops in region 6. Squares indicate the baseline. The changes in
production practices considered correspond 0 to 125% of the intensity observed at the baseline. Also, there
is no N fertilization or tillage responses for alfalfa.
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C Model calibration

The first-order conditions associated with the economic model (1) presented in section 2 for crop

i ∈ I, evaluated at the reference allocation, are:



δipiq̄iβi1x̄
ρi
i1∑

j βij x̄
ρi
ij

=
(
ci1 + λi1 + ciT (T̄i) + λiT T̄i

)
x̄i1

δipiq̄iβi2x̄
ρi
i2∑

j βij x̄
ρi
ij

=
(
c2 + λi2 + λ̄2

)
x̄i2

δipiq̄iβi3x̄
ρi
i3∑

j βij x̄
ρi
ij

= (c3 + λi3) x̄i3

c̄′iT = −λiT

βij > 0 ∀j

µi > 0.

(5)

To calibrate the economic model to the agronomic yield responses, we set the elasticities derived

using the generalized CES economic production functions equal to the agronomic elasticities derived

in section A: 
ȳi2 = δi

βi2x̄
ρi
i2∑

j βij x̄
ρi
ij

ȳi3 = δi
βi3x̄

ρi
i3∑

j βij x̄
ρi
ij

which can be expressed, using (5), as

 ȳi2 =
(c2+λi2+λ̄2)x̄i2

piq̄i

ȳi3 = (c3+λi3)x̄i3
piq̄i

.

The system for calibrating model (1)’s implied supply elasticities to available priors, when the

land and/or water constraints are binding, is available upon request. Note that not all elasticity

priors can be replicated, i.e., such that a solution 0 < δ < 1 exists (Mérel et al., 2011; Garnache

and Mérel, 2014).30

Table 7 shows California’s own-price supply elasticity priors and the crop acreage weighted

average “feasible” elasticities in the Sacramento and San Joaquin Valley. The feasible elasticities

minimize the departure from the priors, while ensuring the calibration system has a (unique)

30The derivation of the calibration conditions for an acceptable solution δ to exist when the land or water constraint
is binding is available upon request.
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Table 7 California’s own-price supply elasticity priors and average “feasible” elasticities (weighted by crop
acreages).

Modeled regional elasticities
Crop State-wide prior Sacramento Valley San Joaquin Valley

Alfalfa 0.44 0.44 0.44
Corn 0.55 0.66 0.71
Cotton 0.50 1.01 1.53
Grain 0.36 0.36 0.59
Other field crops 0.63 0.86 3.96
Processing tomatoes 0.55 0.56 0.72
Safflower 0.45 0.54 1.40

solution 0 < δ < 1.

After solving the elasticity calibration system for the return-to-scale parameter δ, we recover

the inputs λij and tillage shadow costs λiT for crop i by solving system:



piq̄i (δi − ȳiW − ȳiN ) =
(
ci1 + λi1 + ciT (T̄i) + λiT T̄i

)
x̄i1

piq̄iȳiW =
(
c2 + λi2 + λ̄2

)
x̄i2

piq̄iȳiN = (c3 + λi3) x̄i3

c̄′iT = −λiT

The average cost data with the shadow prices of the water input, λ̄2, and the inputs and tillage

shadow costs, are presented for the Sacramento and San Joaquin Valleys in table 8 in appendix

C. These shadow costs represent the cost adjustments needed to rationalize observed economic

behavior, given prices and technology. A positive shadow cost indicates a hidden cost, while a

negative value indicates a hidden benefit. For most crops, there are shadow benefits associated

with the land, N fertilizer, and tillage technology, justifying why farmers cultivate more land, apply

more N or till more intensely in the baseline than would first appear optimal. These shadow benefits

may capture fixed costs, contracts, subsidies for the land input, insurance against weather risk for

N fertilizer, and increased weed resistance to herbicide in reduced tillage systems. Hidden benefits

are particularly large for crops such as corn and processing tomato for tillage, and for corn, grain,

the “other field crops” group, and processing tomatoes for N fertilizer. In contrast, farmers obtain

a hidden cost from the water input, justifying that they apply less water than would be thought

optimal based on the yield effect.
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Table 8 Average cost data and shadow costs in the Sacramento and San Joaquin Valleys (weighted by
crop acreages).

Land ($/ha) Water ($/cm) N ($/kg of N) Tillage ($/index/ha)
Crop c1 λi1 c2 λ̄2 λi2 c3 λi3 cT λiT

S
a
cr

am
en

to
V

al
le

y Alfalfa 876 -482 0.5 4.1 -1.6 3.1 - - -
Corn 830 -398 0.5 4.1 -0.6 2.1 -1.0 238 -426
Cotton 1347 -1229 0.7 5.8 12.6 0.6 0.1 107 -225
Grain 411 -333 0.5 4.3 1.1 1.4 -1.2 77 -80
Oth.field cr. 392 -236 0.5 4.5 4.4 1.2 -1.2 128 -263
Pr. tomato 2770 -2153 0.5 4.6 4.2 1.4 -1.0 340 -462
Safflower 187 -150 0.4 4.6 13.0 0.7 -0.1 41 -85

S
an

J
oa

q
u
in

V
al

le
y Alfalfa 1013 -716 1.1 7.4 -3.9 6.7 - - -

Corn 830 -464 0.9 6.4 -3.8 2.1 -1.2 238 -426
Cotton 1347 -1094 1.5 11.6 9.4 0.6 -0.4 107 -225
Grain 448 -366 1.4 9.4 -5.2 1.5 -1.5 61 -84
Oth.field cr. 392 -216 0.9 7.4 4.4 1.2 -1.2 128 -263
Pr. tomato 3095 -2623 1.7 13.3 0.2 1.3 -0.8 232 -497
Safflower 216 -172 1.4 10.4 -6.1 0.6 1.7 36 -86

It is then straightforward to solve for the technology parameters µi and βij , using (5) and the

equalities
∑

j βij = 1 and q̄i = µi

(∑
j βij x̄

ρ
ij

) δi
ρ

. This last step concludes the calibration phase.
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Figure 11 Yield response to N fertilizer application rate for region 10. Squares indicate the baseline.
Alfalfa’s yield is not depicted because it is not sensitive to N fertilizer.

Figure 12 Yield response to water application rate for region 10. Squares indicate the baseline.
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D Marginal abatement costs

Baseline emissions for N2O and CO2 show large variations across the 27 Central Valley regions, as

illustrated in figure 13 in appendix D.31 Differences in the regional per hectare average N2O and

CO2 emissions come from variation in crop mix, production practices and region-specific emission

factors.

Figure 13 Average regional CO2 and N2O emissions in tCO2e in the baseline (weighted by crop acreages).

The small discrepancy in total abatement under second-best policies relying on aggregated

emission factors, presented in figure 7, hides more pronounced regional variations because of spatial

heterogeneity. Figure 14 shows total regional abatement at $20/tCO2e under the first-best and the

two second-best policies. Although in most regions discrepancies are small, the second-best policies

achieve only 76% of total abatement relative to the first-best policy in region 9 and 92% in region

15A.

31Because CH4 emissions are small in all 27 regions relative to the two other GHGs, they are not depicted.
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Figure 14 Total regional abatement in 100,000 tCO2e at a marginal price of $20/tCO2e under the first-best
and two second-best policies using aggregated emission factors at the valley or state-level.
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