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1.0 GR-Weed Populations Threaten the Value of GR-Crops.

According to recent studies, glyphosate-resistant (GR) crops (marketed by Monsanto as
“Roundup Ready”) represent more than 80% of the 120 million ha of transgenic crops grown
annually worldwide (Duke and Powles, 2009). GR varieties of crops such as soybeans and
maize (corn) have gained such wide acceptance around the world in large part because
glyphosate delivers superior weed control combined with low toxicity (Duke and Powles, 2009).
However, recent research suggests that the effectiveness of GR crop technology may be
diminishing as the population of GR weeds spreads.

Data collected by Heap (2012) reveal that glyphosate resistance has been identified in 24
weed species worldwide. Further, GR weed populations have been confirmed in 29 states across
the U.S. The spread of these GR weed populations over the past 10 years is illustrated in Figure
1.

Figure 1. Confirmed glyphosate-resistant weed populations in North America, 2002-2012
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If this trend continues, this will not only threaten the economic viability of GR crops, but
may threaten environmental quality as farmers turn to more toxic herbicides as glyphosate

becomes less effective.

2.0 Research Goal: Explaining the Emergence of GR-Weed Populations.

The scientific explanation for why GR-Weed populations have emerged is well understood.
Glyphosate is a broad-spectrum herbicide that is designed to kill a large variety of weeds. However, some
individual weeds possess genetic traits that enable them to survive glyphosate treatment. As a result, these
weeds have a better chance to reproduce than weeds without the trait. This leads to weeds exhibiting
glyphosate resistance becoming an increasingly large fraction of the weed population. In other words, the
appearance of GR weeds this season is positively related to glyphosate application last season.

While the evolutionary mechanisms describing how over-application of glyphosate can lead to
GR-weeds is well understood, it is not so clear why farmers would not moderate their glyphosate
application in the first place. Some agricultural economists have argued that the over-application of
glyphosate is the result of a classic externalities problem. Specifically, Marsh et al. (2006) argue that
some weed species that can become resistant to glyphosate are highly mobile and can travel relatively
long distances. For example, wind alone can disperse the seeds of the Conyza canadensis up to 500
meters or farther (Dauer et al, 2007). Similarly, pollen movement of herbicide resistant genes has been
shown to be at least 2.6 km (Rieger et al., 2004). This means that whether a GR-weed population emerges
in a farmer’s field will not only depend on his weed management practices, but those of his neighbors. As
a result, any individual farmer has less incentive to moderate his use of glyphosate.

Although it seems plausible that externalities could lead to over application of glyphosate, there
are still some open questions. Specifically, why has a Coasean bargain to regulate glyphosate use not been

reached by farmers living in the same community? Five hundred meters is a large distance for a seed to



travel, but not a farmer. Even 2.6 km could be considered a short distance to individuals living in a
relatively rural community. So why are transaction costs so large? If they are not, can we be sure
glyphosate use is being driven by resistance externalities at all?

An alternative explanation for why farmers have not moderated their glyphosate use is that
farmers are typically myopic or misinformed in some way. For example, Doohan et al. (2010) interviewed
44 U.S. farmers and found that they are unlikely to perceive any risks associated with glyphosate use
(including the development of resistance). They argue that this is due to farmers being averse to
complicated weed management practices and focused on maximizing financial returns in the short term.
Based on their results, Doohan et al. claim that education could be used to make farmers appreciate the
risks of over using glyphosate and the practicality of preventing weed resistance. However, since their
research is based on series of qualitative interviews with 44 farmers, one cannot generalize Doohan’s
conclusion to the entire population of U.S. farmers.

The fact that no one can fully explain why farmers do not moderate their glyphosate use makes it
difficult for policy makers to choose a course of action. If farmers are truly myopic or misinformed, this
would suggest that an educational campaign could be used reduce glyphosate application. However, if
over-application is being driven by externalities associated with mobile weed populations, then an
educational campaign would be ineffective and less popular, incentive-based policies (such as a tax on
glyphosate application) would need to be considered.

Although it is critical for policymakers to understand these issues, no previous study has
attempted to empirically test whether externalities are a driving factor in glyphosate application decisions.
In this proposal, I will explore how such a test could be performed. First, | will develop a conceptual
model that allows me to formalize the hypotheses I intend to test. Second, I will outline an empirical

strategy to test these hypotheses. Lastly, | test this hypothesis using state-level data.

3.0 Conceptual Model



The amount of glyphosate a farmer applies to his field depends on the amount of glyphosate other
farmers apply to their fields. This opens the opportunity for each farmer to exhibit strategic behavior that
can best be captured through a game theoretic model. Specifically, I model this as a simultaneous (static)
game between n players. My choice to model this as a s game rests on my assumption that farmer is only
maximizing profit over 2 periods. In the second and final period, the farmer has no strategic concerns
because he is not considering the payoff of glyphosate over subsequent periods. Therefore, he will simply
apply glyphosate until the marginal benefit in the second period is equal to the marginal cost in the second

period. All functional forms are chosen for computational simplicity.

3.1 Define Payoff Function for Farmer i

Consider a representative farmer (i) that produces a single agricultural commodity (such as GR-
corn). | assume for analytical convenience that the farmer seeks to maximize profits over two cropping
cycles, where profit in each season is defined as the difference between total revenue and total costs (the

cost of glyphosate and all other inputs). More formally | can express the expected profits of farmer I

M= {pQi — wxi —qgi} + B{pQs — wX} — qg5} (Eq.1)

where p is the price of the output, Q is actual crop yield, g is the pounds of glyphosate applied by
the individual farmer (i), q is the price of each pound of glyphosate, X is all production inputs not related
to weed management (e.g. labor, fertilizer, etc), w is the price of these inputs, and Bis the discount rate.
Note, for the rest of Step 1, we drop the “i” superscript for expositional convenience. Everything written

in this section refers to the representative farmer (i).

At the beginning of each cropping cycle, we assume the farmer’s crop can yield a maximum

harvest of Y; units. However, by the end of this cycle, only a fraction of this maximum yield is harvested



and sold on the open market at price p. This is because some percentage of the crop is destroyed by weeds
present in the field. This percentage is determined by D(W:), which is a function of the number of weeds
present in the field at the end of cropping cycle.! Therefore, we can rewrite the total output produced by

the farmer as follows:

Q¢ = Yt(l - D(Wt)) (Eq.2)

Substituting this expression into the original profit function yields:

= [PY1(1 - D(W1)) —wX; — qg1] + ﬁ[PYZ (1 - D(Wz)) —wX, — qu] (Eq.3)

To carry this analysis further, I must make some assumptions about the relationship between the
percentage of crops damaged and number of weeds present at the end of the cropping cycle. Specifically,
I assume that the damages done to potential crop yield are proportional to the number of weeds present in

the field at the time of harvest:

D(W;) = oW, (Eq.4)

where ¢ is a parameter.

The number of weeds present in the field at the end of the cropping cycle will depend on the
fraction of weeds that are eliminated by the farmer through the use of glyphosate (g:). However, as
previously discussed, not all weeds are equally vulnerable to glyphosate. Some portion of the weed
population present in the field can be more resistant to glyphosate than others. In this simplified
conceptual model, | divide weeds into two categories—those that are completely vulnerable to glyphosate
(W,) and those that are entirely resistant to glyphosate (W,). Therefore, the number of weeds present in

the field at the end of a harvest period will be determined by the following:

1 To introduce the damage that weeds cause to GR-corn yield, | use an approach similar to the damage control
model presented by Lichtenberg & Zilberman (1986).



max

W =W, (1-n (ggf e))+ W =< g, < g"> (Eq.5)

max

where g™ is the amount of glyphosate that will eradicate all vulnerable weeds in the farmer’s

max

field. Note that | multiply g: by gL and restrict its values to fall between gT < gr < g™ to ensure

that the product of ln( 9¢ e) falls between 0 and 1. I chose this functional form to obtain a weed control

max
g

function that exhibits decreasing returns to scale (a decreasing percentage of weeds is destroyed as more
glyphosate is applied to the field).

In order to incorporate increasing resistance with glyphosate use, | must specify the resistance
function. 1 do this by assuming that a fixed number of weeds appear in the farmer’s field each period
(Wo) and that some percentage of these weeds will be resistant to glyphosate and some will be vulnerable.
As a described above, we assume the percentage of GR-weeds appearing in a field is increasing in total
amount of glyphosate applied by all farmers in the community in the previous period (Gt1) but that it is

increasing at a decreasing rate. Specifically, | assume:

W, =W, (ln ( Gto1 e)); Gn;ax < Gioq S GM (Eq.6)

gmax

where G™* is the amount of glyphosate that will eradicate all vulnerable weeds in the farmer’s

field. Note that | multiply g: by ﬁ and restrict its values to fall between GT < Gy—q < G™** to ensure

Gt—1
Gmax

that the product of ln( e) falls between 0 and 1.

Since, by definition, the sum of W, and W, must equal W, this implied the number of weeds that

are vulnerable to glyphosate each period will (Wo-W;) or more specifically:



W, =W (1~ In (Ge)) (Eq.7)

Substituting these expressions for Wv and Wr into Eq.5 yields

W, =[Wo (1-n(s2ze)) (1-1n (gfiix e))] + [wo (In (=) (Eq.8)

Substituting this expression for Wt into the damage function and substituting the damage function

back into the two period profit function yields the following payoff function for farmer 1.

M= +

o 10 (11 8) ) -
P [pyz (1 — o ([0 (1= 1n (57e)) (1~ 1n (222))] + [wo (i (2 e))])> - qu] (Eq.9)

3.2 Derive Best Response Function for Farmer i

Using this modified profit equation, we can find the best response function for farmer i by taking

the first derivative with respect to g and g, and setting these derivatives equal to zero (l;a?n =0, ;3?11 = 0).
1 2
These first order conditions are:
g2
am PY; W, BrY, Wy ln(me)
5_,91=0: ;1 eo_q_ ) g =0 (Eq10)
gmax
G
Il BpY,pW,  BOWoIn|=maxe
20 =07 e —g,azf,fe Lpa=o (a1

Solving Eq.11 for g, yields



g oW, (PYZ —In (% e))
qe

92 =

Substituting this back into Eq.10 yields the following profit maximization condition for applying

glyphosate in period.

G1
w Yo-1
— BpY29Wy 1n<¢ o(pr2 q“(amaxe))>
1 0
——=q+ (Eq.12)
g1 e Gy
gmax
3.3 Equilibrium
At this point we assume the equilibrium glyphosate application rate across all farmers is
symmetric and that each of the other n farmers in the community will apply the same amount of
glyphosate to his field.
—In LK e
- BpY2 W ln<¢w°(’”y2 ; (grtdx »)
1 0 __
e 1T no: (Fa-13)
Taking the limit of this expression as n goes to infinity yields the following result
—Iin —ngl e
VoW, BpY2bW, 1n<ﬁ¢w°(’”y2 q‘ (grtdx ))>
: pry [V I ;
lim < e ) = lim (q) + lim e (Eq.14)
This yields the following result:
Y, oW,
Pt =g (Eq.15)

1
e
gmax
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As n approaches infinity, the marginal cost of applying glyphosate decreases. In fact, as n
becomes very large, the marginal cost of applying glyphosate today tends to the level we would observe if

the farmer did not consider the future damages from applying glyphosate (i.e. where =0).

3.4 Testable Implications of the Conceptual Model

Based on the discussion above, we can see that if a farmer’s glyphosate application rates vary
with the level of agricultural activity surrounding them, this can be evidence that externalities are
significant contributors to glyphosate application decisions. Therefore the hypothesis | wish to test can be

stated as follows:

a .
Huun: —aglt =0
n
a .
Har: =2 > 0
on

If the null hypothesis is rejected, | would take this as evidence that resistance externalities are
significant contributors to glyphosate application decisions. However, if we do not reject the null
hypothesis, we cannot distinguish between the two hypotheses that 1) farmers are myopic and only focus
on short-term provided or 2) the resistance externalities associated with glyphosate have been internalized
through private negotiations. In the next section, | outline two empirical strategies that could be used to

test this hypothesis.

4.0 Empirical Strategy

To estimate the impact that the level of farming activity surrounding a farmer will have on the
amount of glyphosate that he applies to his fields, one could simply estimate the unconditional factor

demand equation--g = f(n, P, q, Z). A log-linear approximation of this factor demand can be expressed as:
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In(gie) = Bo + B1In(nje) + B2In(P;) + B3In(qe) + Paln(Zie) + &ie (Eq.16)

where g is glyphosate application per acre for farmer i at time t, n is the number of corn growing
operations surrounding farmer i at time t, P is the world price of farmer i’s output at time t, g is the world
price of glyphosate at time t, Z is a vector of geographic characteristics that may influence the amount of

glyphosate a farmer applies (soil quality, access to irrigation, etc.), and is ¢ the error term.

In Eq.16, the parameter of interest is 3. If glyphosate application is increasing with the level of
agricultural activity surrounding a farmer, this would be evidence that externalities are a driving factor in
glyphosate application decisions. Therefore we would seek to test the following hypotheses:

Howi: 1 =0

Halt: Bl > 0

5.0 Data

Data on the mean glyphosate application rates of corn growers in 18 states from 1997 to
2007 using NASS QuickStat database. Specifically, state-level averages were obtained for
farmers in Colorado, Georgia, Illinois, Indiana, lowa, Kansas, Kentucky, Michigan, Minnesota,
Missouri, Nebraska, New York, North Carolina, North Dakota, Ohio, Pennsylvania, South
Dakota, Texas, Wisconsin. This data was collected as part of the Agricultural Resource
Management Survey. As discussed in the theoretical model above, glyphosate application rates are
determined by the number of operations surrounding a farmer, the price of corn, the price of
glyphosate, and geographic characteristics. Data for the number of operations and the price of
corn were obtained for each state listed above from 1997 to 2007. Unfortunately, data on
glyphosate prices could not be obtained for years prior to 2001. Therefore, fluctuations in

glyphosate prices overtime are captured using annual dummies. Similarly, to account for time-
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invariant geographic characteristics, we also included dummies for the USDA production region

each state was located in.

6.0 Results

Results for estimating the unconditional factor demand for glyphosate represented by Eq.16 using OLS
are reported in columns four and five of Table 2. The partial effect of increasing the number of corn
growing operations in the state of glyphosate applications rates is positive and statistically significant.
This is true even after controlling for time-invariant differences across USDA production regions.
Specifically, a 1% increase the number of operations in each state increases glyphosate application rates

by 0.1%.

Table 1. OLS Regressions of In(Glyphosate Application Rates) on Number of Operations (n=114)

Parameter Standard Error Parameter Standard Error
Estimate Estimate
Exclude Regional and Year Dummies Include Regional and Year Dummies
Constant
-1.27** 0.28 -2.66** 0.51
In(Operations)
0.06** 0.03 0.10** 0.04
In(Corn Price)
0.37** 0.09 0.96** 0.33

Note: ** denotes p-value < 0.05, *p-value < 0.10.

7.0 Conclusions

In this paper, | have investigated the impact of spatial externalities on gylphoate use among corn farmers
across the United States. | found that the impact that an increase in the number of operations surrounding

a corn farmer will lead him to increase his glyphosate application rates. Based on the conceptual model




described above, this suggests that spatial externalities may have led farmers to use more glyphosate on
their fields than they would if such externalities had not existed, hastening the emergence of glyphosate

resistant weeds.
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