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Abstract 
In provision point mechanism, the cost threshold for provision introduces incentives for 

individuals to contribute toward the public good and, in general, the Pareto efficient outcome is a 

subset of equilibrium outcomes.  However, the threshold cannot eliminate the pure free-rider 

equilibrium unless refinements are used.  In this paper, we examine a set of assurance payment 

schemes for multi-unit public good provision using individualized price auction (IPA).  We find 

assurance payment significantly eliminates non-provision equilibria, and reduces the multiplicity 

of provision equilibria suffered by most discrete public good provision games, especially in a 

multi-unit setup.  The assurance payments could be useful in establishing markets for a 

previously non-marketable good, and thus improve the efficiency regarding the provision of 

various types of public good currently funded only by government or through traditional non-

profit donations.   

 

1 Introduction 

In discrete public goods provision games (e.g., provision point mechanism), the cost threshold 

for provision introduces incentives for individuals to contribute toward the public good and, in 

general, the Pareto efficient outcome is included in the set of equilibrium outcomes.  However, 

the threshold cannot eliminate the pure free-rider equilibrium unless refinements are used 

(Bagnoli and Lipman, 1989).  Tabarrok (1998) introduces a so-called dominant assurance 

contract which could successfully eliminate the non-provision equilibria and shows that 

contributing to the public good becomes a dominant strategy under the assurance contract with 

complete information.  The key idea is to encourage commitments to pay for public good 

provision by offering compensation (an assurance payment) to would-be contributors if, in the 

end, the group fails to provide the public good.  When an individual commits to pay into the 

public good fund, they become eligible for a compensation payment from the market-maker in 

the event the good is not provided.  Different from public good provision experiments using 

penalties (Masclet et al., 2003), the assurance contract mechanism tries to achieve efficient 

provision by rewarding “good people” rather than penalizing free or cheap riders.  To our best 

knowledge, this potentially powerful, but still theoretical, idea has not been experimentally tested 

for public good provision, which motivates this paper.   
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Based on the assurance-payment idea, we examine a set of assurance payment schemes for 

multi-unit public good provision in a framework proposed by Smith and Swallow (2013) and 

Swallow (2013).  The motivation for multiple units is twofold.  Empirically, with the vision of 

setting up a market for ecosystem services, the public goods are naturally multiple discrete units, 

for example due to multiple parcels of farms or the minimum requirements that a target species 

requires for meaningful units of habitat conservation.  Theoretically, multi-unit public goods 

provision is much more challenging than one unit good provision due to an increased multiplicity 

of equilibria.  Bagnoli and Lipman (1989) use a stronger refinement to eliminate those non-

provision equilibria in a multi-unit provision point mechanism, which is not as well observed in 

the corresponding experiment in Bagnoli et al. (1992) as in the one-unit case in Bagnoli and 

McKee (1991).  If assurance payment can significantly eliminate the inefficient equilibria 

without refinement, it may improve the multi-unit provision.  Therefore, we apply the assurance 

payment idea to this more challenging multi-unit case.   

 

We show that assurance payment does reduce the multiplicity of the non-provision Nash 

equilibria in a multi-unit environment.  Furthermore, from a computerized lab experiment, we 

find that the a positive assurance payment always performs better than no assurance in terms of 

provision rate, group value revelation and realized social surplus.   

 

The rest of the paper is organized as follows.  Section 2 defines the baseline mechanism and 

describes the assurance payment schemes.  Section 3 characterizes the Nash equilibira of one- 

and two-unit cases with and without assurance payments.  Section 4 explains the experimental 

design and procedures.  Section 5 discusses the observed results.  Section 6 concludes.   

 

2 Baseline Mechanism and Assurance Payment Schemes 

Assume there are N individuals who are asked to support a total of J units public good with 

constant marginal cost C through voluntary contributions; each individual is indexed by  

{1, , }∈ ≡i N  , and each unit of the public good is indexed by {1, , }∈ ≡j J  .  Individuals 

are asked to make a contribution or bid toward each unit of a public good simultaneously.  Let 
j

iv  be the individual i's value toward Unit j, and j
ib  be the individual i's bid on Unit j.  Individual 
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i's payoff is denoted as π i .  Thus, we can express the total bids on j as 
∈

= ∑ j
j ii

B b


, where 

∈j  .  Let [ , ]≡ N
j j jv v  denote the individual value support for j=1 and J.  Each individual's 

value j
iv  (individual i on Unit j) is independently and randomly drawn from [ , ]j jv v  for j=1 and 

J, and j
iv  for j=2,…, J – 1 is determined by 1 1( 1) ( ) ( 1)= − − − −j J

i i i iv v j v v J , assuming 1 ≥ Jv v .   

 

2.1 Individualized Price Auction (IPA) Mechanism for Multi-Unit Public Good Provision 

The baseline mechanism we use is called individualized price auction (IPA) mechanism, which 

is a Lindahl-based pricing mechanism.  IPA includes two components: 1) the market clearing 

rule g and 2) the pricing rule t.   

 

The market clearing rule determines the number of public good provided based on individuals’ 

bids.  In IPA, we compare the total bids from a group of individuals with the cost of the public 

good, starting from the first unit.  If individuals' total bids on the first unit are higher or equal to 

the cost of the first unit, we continue to compare the total bids on the second unit with the cost of 

the second unit, and so on.  We will stop at the first time the total bids for a unit is smaller than 

the unit cost.  For example, if the total bids on the first unit, second unit and third unit are all 

higher than the cost, but the total bids on fourth unit are smaller than cost of the fourth unit, we 

will provide three units in total.  Therefore, the market clearing rule in IPA can be expressed as 

(1) 
1

1

1 2

 0                                                                       
( , , )      

max{ {1, , } : min( , , , ) }      

 <
= 
 ∈ ≥



 
J

j

if B C
g B B

j J B B B C otherwise
 

where 
∈

= ∑ j
j ii

B b


.   

 

The pricing rule determines how much each individual has to pay based on his and the others' 

bids.  In IPA, each individual pays the same price for all the units provided, and the price equals 

to one's bid on the last unit that the group can collectively deliver, i.e.,  

(2) 1

 0              ( ) 0
( , , )      

 ( )      

 ⋅ =
= 
 ⋅

i J
g
i

if g
t B B

g b otherwise
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Therefore, in IPA the payoff function for i is1

(3) 

   
( )

1 1
( , , ) ( )π ⋅

=
= − ⋅∑

g j
i J i ij

B B v t  

 

2.2 Assurance Payment Schemes 

Assurance payment is a predetermined compensation fee to whoever bids higher than a pre-

specified minimum offer in the event of provision failure.  For example, let the minimum offer 

be 10 for a compensation fee of 10 on the first unit.  Then if an individual bids 11 on the first 

unit and the total group bids are below the cost of the first unit (nothing will be provided in this 

case), this individual will receive an assurance payment of 10.   

 

Different assurance payment schemes can vary in terms of the minimum offer and the 

compensation fee on different units.  The original assurance contract in Tabarrok (1998) 

specifies the number of people to accept the contract for providing the good.  In this paper, we 

deviate one step away from the mechanism without assurance and only consider the case where 

the minimum offer equals the compensation.  We focus on the effects of various patterns of the 

assurance payment over multiple units; particularly, we compare the following four payment 

schemes: 1) no assurance payment, as a baseline; 2) the same assurance payment for the first 

several units, i.e., partial assurance; 3) decreasing assurance payments for the first several units, 

i.e., the fist unit has a higher assurance payment than the second unit, and so on; 4) the same 

assurance payment for the first unit that cannot be provided, with the assurance payment 

applicable to all units, i.e., conditional assurance.   

 

Let jAP  denote the assurance payment, which is also the minimum offer, for Unit j, then the 

payoff function for i in IPA with assurance payment is   

(4) 

( ) 1
11

1 1
( ) 1

1 11

 ( )                  or   

( , , ; , , )      

 ( )       

π

⋅ +
+=

⋅ +
+ +=

 − ⋅ = < <
= 


− ⋅ + ≥ <

∑

∑
 

g j g
i i i gj

i J J
g j g

i i g i gj

v t if g J b AP for g J

B B AP AP

v t AP if b AP for g J

 

                                                           
1 The initial endowment is omitted here for simplicity.  And ∑ 𝑣𝑖

𝑗0
𝑗=1 = 0. 
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Note that the assurance payment is applicable only if one’s bid is at or above the minimum offer 

on the first unit that the group fails to provide.   

 

3 Nash Equilibria of IPA with Assurance Payment 

In this section, we characterize the Nash equilibria of IPA with assurance payment under 

complete information.2

 

  First, we show the Nash equilibria of IPA with assurance payment for 

one-unit public good provision; then we extend the argument to a 2-unit case.  To simplify the 

discussion, we assume the assurance payment is greater than or equal to C/N and is much less 

than C.    

3.1 One-Unit IPA with Assurance Payment 

One-unit IPA without assurance payment is equivalent to the provision point mechanism (PPM) 

characterized by Bagnoli and Lipman (1989), who show that the provision point is exactly met in 

the undominated perfect equilibria.  However, in PPM without the refinement, any strategy 

profile that leads to a group contribution less than the difference between the provision point and 

the highest induced value in the group is a Nash equilibrium, in which the good is not provided.  

We show below a simple assurance payment can eliminate most and in some cases all of the 

non-provision equilibria without refinement in the one-unit case.   

 

3.1.1 vi > AP for all i 

If the induced values in a group are all greater than the assurance payment, denoted by vi > AP 

for all i, the Nash equilibria of one-unit PPM with assurance payment can be characterized as 

follows.   

 

E3.1.1.1 Any strategy profile { }∈i ib  s.t. 
∈

≠∑ ii
b C


 is not a Nash equilibrium; 

E3.1.1.2 Any strategy profile { }∈i ib  s.t. 
∈

=∑ ii
b C


 but > −k kb v AP  and >kb AP  for some k 

is not a Nash equilibrium; 

                                                           
2 Complete information here means that the following information is common knowledge: the provision cost for 
each unit, the group size, and the induced value of each unit for each individual.   
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E3.1.1.3 Any strategy profile { }∈i ib  s.t. 
∈

=∑ ii
b C


 with either ≤ −k kb v AP  or ≤kb AP  for 

any k is a Nash equilibrium.   

 

E3.1.1.1 consists of two cases.  1) 
∈

<∑ ii
b C


 is not an equilibrium outcome.  

∈
<∑ ii

b C


 

implies the existence of at least one individual m bidding < ≤mb C N AP , but m would be better 

off to bid AP , earning a positive payoff of either AP  or −mv AP , instead of 0.  2) Obviously, 

∈
>∑ ii

b C


 is not an equilibrium outcome, either.  In E3.1.1.2, some individual k with 

> −k kb v AP  and >kb AP  would be better off to reduce the bid to AP  since > −k kAP v b , i.e., 

the assurance from failure is greater than the payoff from provision.  In E3.1.1.3, individual k 

bidding below or at AP  will not reduce the bid since 0 < −k kv b ; individuals bidding below or 

at −kv AP  will not deviate since max( ,0) ≤ −k kAP v b .  Note that the strategy profile 

,= ∀ib C N i , is an equilibrium.   

 

These results show when all induced values in a group are higher than the minimum payment 

and hence on aggregate are higher than the provision cost, all Nash equilibria lead to the 

provision of the public good, and no assurance payment will be paid in equilibrium.   

 

3.1.2 vi ≤ AP for some i 

When some individual has an induced value less than the assurance payment, it is easy to verify 

that the statements in E3.1.1.2 and E3.1.1.3 still hold.  However, there may exist some equilibria 

supporting the non-provision outcome, which are characterized as follows.   

 

E3.1.2.1 Given vi ≤ AP for some ∈i , any strategy profile { }∈i ib  s.t. 
∈

<∑ ii
b C


 is a Nash 

equilibrium if  

1) max( , )
≠

≥ −∑k ii k
AP v C b  for all { : }∈ ∈ <ik i b AP ; and  

2) ( )
∈

≥ − − −∑k k ii
AP v b C b


 for all { : }∈ ∈ ≥ik i b AP .   

These two conditions eliminate the incentive to deviate for individuals bidding below the 

assurance payment and those bidding above, respectively.  If 1) does not hold, individual k 
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would be better off to bid either AP if 
≠

< −∑ ii k
AP C b  or 

≠
−∑ ii k

C b  if < kAP v  to earn a 

positive payoff, instead of 0; if 2) does not hold, individual k would be better off to increase the 

bid to provide the good.   

 

Further, these two conditions significantly reduce the non-provision equilibrium set compared to 

that in PPM without assurance payment.  In PPM, the condition for a non-provision equilibrium 

is 
≠

+ ≤∑ i ki k
b v C  for all ∈k .  While in PPM with assurance payment, we need both 

≠
+ ≤ +∑ i ki k

b v C AP  for all { : }∈ ∈ ≥ik i b AP  (condition 2) and 
≠

≥ −∑ ii k
b C AP  for all 

{ : }∈ ∈ <ik i b AP  (condition 1).  Note that, although the former allows higher total 

contributions, the constraint 
∈

<∑ ii
b C


 makes the increased upper bound have little effect on 

the equilibrium set.  However, the latter constraint on the lower bound eliminates a substantial 

subset of the equilibria supporting non-provision outcomes, especially when AP is much less 

than C, meaning that even in a non-provision equilibrium outcome, the group contribution is still 

close to the provision cost.   

 

Thus, the non-provision equilibrium set is much tighter than that in PPM without assurance, and 

in some cases the set could be empty.  Let n+ denote the number of individuals with induced 

values greater than the assurance payment.  Then E3.1.2.1 implies that all these n+ individuals 

will bid at or above the assurance payment.  Therefore, if n+ ≥ C/AP, non-provision will not be 

supported in Nash equilibrium, which explains the results in Section 3.1.1.  Note that if AP < 

C/N, then C/AP>N, and non-provision outcomes cannot be eliminated in equilibrium, which is 

why we assume AP≥ C/N.  Moreover, if AP> C/N, C/AP <N, and hence if AP is not too high, it 

may become easier to have n+ > C/AP, and all non-provision equilibria can be eliminated.  But if 

AP is too high, we may not have enough number of individuals with induced values higher than 

AP.  So, given a value distribution and a provision point level, there could exist an optimal 

assurance payment level at which the non-provision equilibrium set can be reduced the most.  

Let n(v)= |i: vi>v|.  If there exists a v such that C/v<n(v), then there always exists an AP such that 

no equilibrium supports a non-provision outcome, for example AP=C/n(v).   
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3.2 Two-Unit IPA with Assurance Payment 

For more than one unit, the Nash equilibrium set of IPA is slightly different from that of PPM 

which is easy to obtain by generalizing the argument for one-unit PPM.  We first characterize the 

Nash equilibria of two-unit IPA without assurance payment by modifying the equilibria set of 

two-unit PPM, and then show the Nash equilibria of two-unit IPA with assurance payment.   

 

3.2.1 Two-Unit IPA without Assurance Payment 

Since we are essentially considering a one-shot game with simultaneous moves, the Nash 

equilibria of two-unit PPM are simply a generalization of those of one-unit PPM in Bagnoli and 

Lipman (1989) and are characterized as follows.   

 

In PPM with J=2, any strategy profile ,{ }∈ ∈
j

i i jb   is a Nash equilibrium if it satisfies one of the 

following three conditions:  

E3.2.1.1 1
∈

<∑ ii
b C


, 1 1

≠
+ ≤∑ k ik i

b v C  and [ ( )] 0
∈ ≠

− − ≤∑ ∑j j
i kj k i

v C b


 for all ∈i  ; 

E3.2.1.2 1
∈

=∑ ii
b C


, 1 1≤i ib v , 2

∈
<∑ ii

b C


, and 2 2
≠

+ ≤∑ k ik i
b v C  for all ∈i  ; 

E3.2.1.3 
∈

=∑ j
ii

b C


, 2 2≤i ib v , and ( ) 0
∈

− ≥∑ j j
i ij

v b


 for all ∈i  .   

 

The argument for each case is straightforward and hence is omitted here.3

 

  Note, the three types 

of equilibria respectively result in the provision of 0, 1, and 2 units of the good.   

The key difference between IPA and PPM is the pricing rule: In PPM, each individual’s payment 

per unit provided is their bid on each unit; in IPA, however, the payment or price for each unit 

provided is equal to their bid on the last unit provided.  In other words, the payoffs across the 

units are independent in PPM, while correlated in IPA.  The correlation of payoffs across units 

introduces two new incentives in IPA.  First, if an individual increases her bid on the first unit 

that is not currently provided such that her payment to provide this unit is sufficiently low, the 

individual may be overall better off by providing the additional unit.  Second, if an individual 

decreases her bid on the last unit currently provided such that her payment to the second-to-last 
                                                           
3 The idea is to eliminate the incentive to deviate to each possible case.  For example, in E3.2.1.1, for providing 0 
units to be an equilibrium, the payoff to provide 1 or 2 units should not be greater than zero.   
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unit is sufficiently low, the individual may be overall better off by not providing the last unit.  

With these two new incentives, the Nash equilibria of two-unit IPA are characterized as follows.   

 

In IPA with J=2, any strategy profile ,{ }∈ ∈
j

i i jb   is a Nash equilibrium if it satisfies one of the 

following four conditions:  

E3.2.1.4 1
∈

<∑ ii
b C


, 1 1

≠
+ ≤∑ k ik i

b v C , [ ( )] 0
∈ ≠

− − ≤∑ ∑j j
i kj k i

v C b


for all ∈i  , and there 

is no individual ∈i   s.t. 1 1
≠

+ =∑ k ik i
b v C , 2

∈
=∑ kk

b C


, and 2 2
1

2 0
=

− >∑ j
i ij

v b ;   

 

E3.2.1.5 1
∈

=∑ ii
b C


, 1 1≤i ib v , 2

∈
<∑ ii

b C


, and 2 2
≠

+ ≤∑ k ik i
b v C  for all ∈i  , and there is 

no individual ∈i   s.t. 2 2
≠

+ =∑ k ik i
b v C , and 2 2 1 1

1
2[ ]

= ≠
− − > −∑ ∑j

i k i ij k i
v C b v b ;   

 

E3.2.1.6 
∈

=∑ j
ii

b C


 for {1, 2}∈j , 2 2≤i ib v , ( ) 0
∈

− ≥∑ j j
i ij

v b


, for all ∈i  , and there is no 

individual ∈i   s.t. 2 2 1 1
1

2
=

− < −∑ j
i i i ij

v b v b ;   

 

E3.2.1.7 1
∈

=∑ ii
b C


, 1 1≤i ib v  for all ∈i  , 2

∈
<∑ ii

b C


, 2 2
≠

+ >∑ k ik i
b v C  for some ∈i  , 

and there is no individual ∈i   s.t. 2 2 1 1
1

2[ ]
= ≠

− − > −∑ ∑j
i k i ij k i

v C b v b .   

 

The first three conditions in IPA are obtained by just adding some additional constraints on the 

corresponding conditions in PPM, and hence are reduced equilibrium sets of PPM.  Specifically, 

E3.2.1.4 shrinks the PPM equilibrium set in which no public good is provided at all; E3.2.1.5 

eliminates some equilibria in PPM that provide only one unit and collapses them to the equilibria 

of providing two units; and E3.2.1.6 eliminates some of the most efficient equilibria where two 

units are provided in PPM, and collapses them to the equilibria of providing one unit, among 

which some are captured by E3.2.1.5, and the others form a new type of equilibria characterized 

by E3.2.1.7.  Note that all the additional constraints added in the four conditions can be 

summarized as follows: In IPA, individuals have incentive to lower per-unit price by either 

increasing or decreasing the number of units provided.   
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3.2.2 Two-Unit IPA with Assurance Payment 

To characterize the equilibrium set of two-unit IPA with assurance payment, we need to add the 

equilibrium condition of one-unit IPA with assurance payment as additional constraints to the 

equilibrium conditions of two-unit IPA without assurance payment.  The interaction between the 

two sets of equilibrium conditions results in the equilibrium set of two-unit IPA with assurance 

payment.   

 

As in the one-unit IPA, we will show how the assurance payment eliminates some of the 

equilibria of two-unit IPA in two cases depending on whether or not all the induced values for 

each unit are greater than the assurance payment.  In each case, we will discuss two types of 

assurance payment schemes: 1) only the first unit has an assurance payment; 2) both units each 

have an assurance payment.  These two schemes represent partial and conditional assurance.   

 

3.2.2.1 𝑣𝑖
𝑗 > APj for all i, and j =1, 2 

If for each unit the induced values in a group are all greater than the assurance payment, denoted 

by vi > APj for all i, and j =1, 2, the Nash equilibria of two-unit IPA with assurance payment can 

be characterized as follows.   

 

Two-unit IPA with an assurance payment AP only for the first unit 

First, any strategy profile resulting in the non-provision of the first unit is not an equilibrium due 

to the condition E3.1.1.1.  Second, any equilibrium belonging to E3.2.1.5 to E3.2.1.7 is 

eliminated if the bidding strategy profile for the first unit satisfies E3.1.1.2.  Thus, we have the 

following equilibrium conditions.   

 

In IPA with assurance payment on the first unit and J=2, any strategy profile ,{ }∈ ∈
j

i i jb   is a 

Nash equilibrium if it satisfies one of the following three conditions:  

E3.2.2.1.1 1
∈

=∑ ii
b C


 with either 1 1≤ −i ib v AP  or 1 ≤ib AP , 2

∈
<∑ ii

b C


, and 

2 2
≠

+ ≤∑ k ik i
b v C  for all ∈i  , and there is no individual ∈i   s.t. 2 2

≠
+ =∑ k ik i

b v C , and 

2 2 1 1
1

2[ ]
= ≠

− − > −∑ ∑j
i k i ij k i

v C b v b  or equivalently 1 2>i ib v ; 
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E3.2.2.1.2 
∈

=∑ j
ii

b C


 for {1, 2}∈j , 2 2≤i ib v , ( ) 0
∈

− ≥∑ j j
i ij

v b


, for all ∈i  , and there is 

no individual ∈i   s.t. 2 2 1 1
1

2
=

− < −∑ j
i i i ij

v b v b ; and no individual with 1 >ib AP  s.t. 

2 2
1

2
=

− <∑ j
i ij

v b AP ; 

 

E3.2.2.1.3 1
∈

=∑ ii
b C


 with either 1 1≤ −i ib v AP  or 1 ≤ib AP  for all ∈i  , 2

∈
<∑ ii

b C


, 

2 2
≠

+ >∑ k ik i
b v C  for some ∈i  , and there is no individual ∈i   s.t. 

2 2 1 1
1

2[ ]
= ≠

− − > −∑ ∑j
i k i ij k i

v C b v b .   

 

In E3.2.2.1.1 and E3.2.2.1.3, the constraint from E3.1.1.3 eliminates the incentive to reduce the 

bid on unit 1, and the constraint from E3.2.1.5 eliminates the incentive to increase the bid on unit 

2.  In E3.2.2.1.2, the constraints from E3.1.1.3 and E3.2.1.6 eliminate the incentive to reduce the 

bid on unit 1 and unit 2, respectively.  Under the three conditions, a great amount of equilibria in 

the two-unit IPA without assurance payment are eliminated, and the remaining ones always 

provide 1 or 2 units of the good.   

 

Two-unit IPA with assurance payment for each unit 

With an assurance payment on each unit, APj for j =1, 2, E3.1.1.1 and E3.1.1.2 can be applied to 

all the equilibrium cases in IPA without assurance, where 0, 1, and 2 units are all supported.   

 

It is easy to see that any strategy profile resulting in 0 units is not a Nash equilibrium due to the 

same reason for E3.1.1.1, and hence the whole equilibrium set specified by E3.2.1.4 is 

eliminated.  Also, it is impossible that 2
∈

<∑ ii
b C


 and 2 2

≠
+ ≤∑ k ik i

b v C  for all ∈i   with 

assurance on unit 2, since if 2
∈

<∑ ii
b C


, there must exist some i such that 2

2<ib AP  and 

2
2≠

+ ≥∑ kk i
b AP C  (otherwise i will bid AP2), and then we have 2 2

≠
+ >∑ k ik i

b v C  given 

2
2>iv AP .  Therefore, the whole equilibrium set specified by E3.2.1.5 is eliminated as well, and 

we only need to check how E3.1.1.1 and E3.1.1.2 affect the equilibria in E3.2.1.6 and E3.2.1.7, 

where 2 units and 1 unit are provided.  The equilibrium conditions are as follows.   
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In IPA with assurance payment on each unit and J=2, any strategy profile ,{ }∈ ∈
j

i i jb   is a Nash 

equilibrium if it satisfies one of the following two conditions:  

 

E3.2.2.1.4 
∈

=∑ j
ii

b C


 for {1, 2}∈j , 2 2≤i ib v , ( ) 0
∈

− ≥∑ j j
i ij

v b


, for all ∈i  , and there are 

no strategies by individual ∈i   belonging to any of the following three cases:  

1)  2
2>ib AP  and 2 2 1 1

21
2

=
− < − +∑ j

i i i ij
v b v b AP ;  

2) 2
2≤ib AP  and 2 2 1 1

1
2

=
− < −∑ j

i i i ij
v b v b ; 

3)  1
1>ib AP  and 2 2

11
2

=
− <∑ j

i ij
v b AP .   

 

E3.2.2.1.5 1
∈

=∑ ii
b C


 and 2 2≤i ib v  for all ∈i  , 2

∈
<∑ ii

b C


, 2
2≠

+ ≥∑ kk i
b AP C  for any 

∈i   with 2
2<ib AP , and there are no strategies by individual ∈i   belonging to any of the 

following four cases:  

1)  2
2≥ib AP  and 2 2 1 1

21
2[ ]

= ≠
− − > − +∑ ∑j

i k i ij k i
v C b v b AP ;  

2) 2
2≥ib AP , 1

1>ib AP , and 1 1
1 2> − +i iAP v b AP ; 

3) 2
2<ib AP  and 2 2 1 1

1
2[ ]

= ≠
− − > −∑ ∑j

i k i ij k i
v C b v b ; 

4) 2
2<ib AP , 1

1>ib AP , and 1 1
1 > −i iAP v b .   

 

With an assurance payment on each unit, there are more types of incentives to deviate and hence 

both equilibrium sets of providing 1 and 2 units without assurance are significantly reduced.  

However, the equilibrium set of providing only 1 unit is still not empty even with assurance 

payment on each unit.  Specifically, there exists a type of strategy profiles providing only the 

first unit that are Nash equilibria but involve strategies on unit 1 violating E3.1.1.2 and those on 

unit 2 violating E3.1.1.1.  The reason is that a relatively high price on unit 2 could make the 

payoff from providing one unit more attractive.  For example, some individual k with 
1 1

1> −k kb v AP , 1
1>kb AP , and 2

2≥kb AP  would earn both a positive payoff from unit 1 and the 

assurance payment from unit 2 by providing only one unit, and hence could be better off 
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compared to both of earning only the assurance payment by providing 0 units and earning some 

small payoffs from providing two units, which justifies the violation of E3.1.1.2 on unit 1.  

Similarly, individual l with 2
2<lb AP  could earn a sufficiently high payoff from unit 1, but would 

be worse off to provide both units by bidding 2AP  due to an overall higher unit price.  This type 

of equilibria can be either totally new or from the equilibrium set of IPA without assurance, but 

does not belong to the equilibrium set of two-unit IPA with assurance only for unit 1.   

 

Comparing two-unit IPA with partial and full assurance (3 types vs. 2 types of equilibria), 

although generally full assurance could eliminate more non-provision or non-efficient provision 

equilibria and potentially make the efficient provision easier to implement by reducing the 

equilibrium selection problem, it may also increase the probability of paying more assurance 

payments.   

 

3.2.2.2 𝑣i
j ≤ APj for some i, and j =1, 2 

When some individual has an induced value less than the assurance payment, there may exist 

some equlibria providing 0 units.  Since E3.1.2.1 for the non-provision equilibria is just another 

constraint, we can adjust the conditions in Section 3.2.1 in a way similar to that in Section 

3.2.2.1.  However, as discussed in Section 3.1.2, the non-provision equilibrium set is really tight 

if not empty, and there is an equilibrium selection problem regarding who will be the one or the 

few individuals earning nothing.  So the existence of non-provision equilibria would not change 

either the significant positive effect of assurance payment on inducing provision or the 

comparison between partial and full assurance.  For simplicity, we will rely on the discussion in 

Section 3.2.2.1 for this case, only keeping in mind that non-provision is supported by a very tight 

set of equilibria.   

 

3.3 Summary 

The main message from the above equilibrium analysis is that with assurance payment, the 

multiplicity of equilibrium s is greatly reduced, and in some cases non-provision is not an 

equilibrium outcome.  The assurance payment may improve public good provision, especially for 

multi-unit public goods where only strong refinements could lead to efficient outcomes.   
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Specifically, we have shown that in general the non-provision Nash equilibrium set if not empty 

is much tighter in one-unit IPA with assurance than that without assurance.  If the assurance 

payment is greater than or equal to C/N, there may exist an assurance payment level higher than 

but not too far away from C/N such that the non-provision Nash equilibrium set is empty.  When 

all individual values are greater than C/N, an assurance payment equal to C/N can eliminate all 

non-provision equilibria.  In two-unit IPA, both partial and conditional assurance payment 

schemes make the equilibrium set (either provision or non-provision) tighter than that without 

assurance payment, and can eliminate 0-unit provision equilibria when all individual values are 

greater than C/N.  Conditional assurance scheme has fewer categories of less efficient 

equilibrium set than partial assurance scheme and could potentially provide more units, although 

it also increases the probability of paying more assurance payments.   

 

4 Experimental Parameters, Conjectures and Implementation 

4.1 Experimental Parameters 

We use the following parameters in our lab experiments.  A maximum of 6 (=J) units of a 

discrete public good are available.  Individuals’ induced values for the public good follow a 

linearly decreasing marginal benefit curve.  The induced values for Units 1 and 6 for each 

individual are randomly drawn from the uniform distributions over [15, 25] and [5, 15], 

respectively.  The induced values for Units 2 to 5 are interpolated linearly based on those for 

Units 1 and 6.  The average individual cost for each unit is 10, and hence the provision point for 

each unit in a group of size N is 10*N.  The value distribution, group size, and the provision 

point for each unit are common knowledge.   

 

To test the effects of various assurance payment schemes over multiple units, we have the 

following six treatments:   

 A0) No assurance;  

 A1) The same assurance payment 10 for the first three units;  

 A2) The same assurance payment 14 for the first three units;  

 A3) Decreasing assurance payments 18, 14, and 10 for the first three units, respectively;  

 A4) The same assurance payment 10 for the first unit that cannot be provided;  

 A5) The same assurance payment 14 for the first unit that cannot be provided.   
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Treatment A0 is the baseline.  A1 to A3 are partial assurance, while A4 and A5 conditional 

assurance.  We use 10, 14, and 18 to represent low, medium, and high assurance payments.   

 

4.2 Experimental Conjectures 

Based on the previous equilibrium analysis, we have the following conjectures, where we use 

provision (success) rate to measure the performance of the schemes.   

 

Conjecture 1 (A0 vs. A1-A5): Assurance payment improves provision rates on all assured units; 

Conjecture 2 (Partial Assurance): A1 to A3 improve provision rates for the first three units, and 

there is no different between any pair of A1 to A3; 

Conjecture 3 (Conditional Assurance): A4 to A5 improve provision rates for all the six units, 

and A5 is better than A4.   

Conjecture 4 (A1-A3 vs. A4-A5): A4 to A5 result in higher provision rates for the last three 

units than A1 to A3.   

 

In Conjecture 2, we expect no difference among A1 to A3 since all induced values in the first 

three units are higher than 10.  In Conjecture 3, the reason that A5 is expected to be better than 

A4 is in the last three units, it is possible that induced values of some individuals are lower than 

10, and hence it may be easier for a subset of the group members with induced values above 14 

biding 14 to provide Units 4 to 6 than for all group members bidding 10 to provide the last three 

units.  The other conjectures are straightforward.   

 

4.3 Experiment Implementation 

We conducted 6 sessions of lab experiments on networked computer terminals, each with 3 

treatments in different orders (Table 1).  Each session has 10 to 14 subjects in total, split into two 

groups of 5 to 7.  At the start of each treatment, the experimenter read the instructions aloud as 

subjects read along.  In the end of the instruction and before actual decisions were made, some 

quiz questions were given to control subjects’ understanding.  Each treatment has 15 decision 

periods.  In each period, subjects were randomly matched into one of the two groups and were 

assigned induced values for each unit as described in Section 4.1.  Then they submitted their bids 

to each unit simultaneously.  At the end of each period, subjects were informed how many units 
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are provided, and their per-unit payment, earnings, and assurance payment if any.  At the end of 

a session, earnings were totaled across all periods.   

 

Subjects were recruited through university-wide daily digest email server (mainly for 

undergraduates) and from an email list of students who expressed interests in participating in 

experiments at University of Connecticut.  A total of 74 subjects participated in the six complete 

sessions, generating 3330 (=74*15*3) independent individual decisions with 19,980 (3330*6) 

individual level observations.  The software z-Tree (Fischbacher, 2007) is used for the program.   

 

Table 1 Treatment Arrangement of Experimental Sessions 

Session Treatment 1 Treatment 2 Treatment 3 Number of Subjects 
1 A0 A1 A2 5*2 
2 A1 A0 A3 6*2 
3 A2 A3 A1 6*2 
4 A3 A2 A0 7*2 
5 A0 A4 A5 7*2 
6 A0 A5 A4 6*2 

 

5 Results 

We compare the assurance payment schemes in terms of provision rate, group value revelation, 

and realized social surplus.  In our setup, it is always socially optimal to provide the first three 

units, so the provision rate of each unit reflects the probability of an efficient decision being 

made.  Group value revelation is important for non-market valuation studies.  Realized social 

surplus measures the social efficiency by combining surpluses (or deficits) from both consumers 

and the producer.   

 
Figure 1 gives an overview of group contributions (total bids) scaled (i.e., divided) by group size 

for each unit in each period by session.  In Figure 1, two vertical dash lines separate the three 

treatments in each session.  Different colors represent contributions on different units.  A unit is 

provided if a scaled group contribution is greater than or equal to 10 which is highlighted by a 

black horizontal line in each panel of the figure.  In Sessions 1 to 4 where the no assurance 

scheme A0 is paired with the partial assurance ones A1 to A3 with assurance on the first three 

units, their main differences in contributions are on the first three units, since the contributions 

for the last three units are almost all below the provision point.  In Sessions 5 to 6 where A0 is 
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paired with the conditional assurance schemes A4 and A5, their differences show up on all units.  

In addition, the contributions are generally stabilized after 5 periods, so we focus on the last 10 

periods in the following analysis.   

 
Figure 1. Group Contribution/N for Each Unit by Session 

 

4.1 Provision (Success) Rate for Each Unit 

Figure 2 shows the ex post provision rate for each unit by assurance scheme.4

                                                           
4 Ex post here means that if it is not efficient to provide a unit given the realized total induced value, we will exclude 
that observation when calculating the provision rate.  In our data, this happens only for Units 5 (15 out of 720 
observations) and 6 (340 out of 720 observations).   

  Provision rate 

decreases over units.  Without assurance, provision rate drops quickly from 0.80 at Unit 1 to 0.13 

at Unit 3 and close to zero thereafter.  With assurance, provision rate decreases slower for higher 

assurance payment (A2 and A3 at Units 2 and 3) and stays positive longer for conditional (full) 

assurance payment (A4 and A5 at Units 4 and 5).  Since the expected total induced values are 
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equal to the provision point at Unit 6, Unit 6 is never provided in any schemes.  Corresponding 

to our conjectures, we have the following observations.   

 
Figure 2. Provision Rate for Each Unit by Assurance Scheme 

 

Observation 1 Provision rates are improved at all units with assurance payment, especially at 

units greater than 2.   

The no assurance scheme A0 has the lowest provision rates at all units but Unit 4, from 0.80, 

0.53, 0.13, to 0.01 for Units 1 to 4, and 0 for the last two units.  The partial assurance scheme A2 

with an assurance payment 14 on the first three units has the highest provision rates 0.95, 0.77, 

and 0.45 for the first three units.  The conditional assurance scheme A5 with an assurance 

payment 14 for the first unit not provided has the highest provision rates for Units 4 and 5, which 

are 0.13 and 0.05 respectively.   
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To test Conjecture 1, we use the test of proportions to compare A1-A5 with A0 for each unit.  

Assurance works the best at the unit where the provision rate without assurance drops 

dramatically: At Unit 3 where the provision rate of A0 drops from 0.53 to 0.13, A1 to A5 are all 

significantly higher than A0 all with p<0.01.  Partial assurance scheme with medium and high 

payments induces higher provision rates even for the first two units assured: At Units 1 and 2, 

A2 and A3 have significantly higher provision rates than A0 (p=.0088 and .0969 at Unit 1; 

p=.0028 and .0057 at Unit 2).  Conditional assurance scheme generates higher provision rates at 

units beyond partially assured: At Unit 4, A4 and A5 are significantly higher than A0 both with 

p=.0024; at Unit 5, A5 is significantly higher with p=.0265.   

 

Observation 2 In the partial assurance schemes, the level of assurance payment matters in some 

cases; in our setup, the medium assurance payment results in the highest provision rate.  In the 

conditional assurance schemes, medium and low assurance payments result in similar provision 

rates.   

In Conjecture 2, we expect that there is no significant difference between any pair of A1 to A3.  

However, the medium assurance payment results in the highest provision rate in the partial 

assurance schemes: A2 has significantly higher provision rates than A1 at Units 1 to 3 (p=.0568 

one-tailed, .0320 and .0897 two-tailed); A3 with an assurance payment 14 on Unit 2 is 

significantly higher than A0 at Unit 2 as well (p=.0528); A2 is also higher than A3 at Unit 3 

where the assurance payment in A3 is 10, although the difference is not significant (p=.1905).  

The reason may be that a relatively higher assurance payment is more robust to deviations below 

the minimum payment: With an assurance payment of 10, one deviation below 10 may result in 

non-provision if the others bid just 10; while with a medium assurance 14, fewer bids at or above 

14 are needed to provide a unit.  A much higher assurance may not perform better than a medium 

one at a provision rate level that is already quite high (such as 0.9 at Unit 1), which may explain 

why A2 and A3 are not significantly different at Unit 1.   

 

Different from the partial assurance scheme, medium and low assurance payments result in 

similar provision rates at all units in the conditional assurance scheme.  The difference between 

partial and conditional schemes may be due to different equilibrium selections.  The partial 

assurance on a fixed number of units may be closer to the case of two-unit IPA with assurance 
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only on the first unit, while the conditional assurance may be closer to that on each unit.  And 

hence the former has the advantage of providing the first three units, while the latter in some 

sense spreads out the equilibria over all units.  Additionally, for Units 4 and 5, since the realized 

induced values were almost all greater than 10, it is expected that A4 and A5 have similar 

provision rates, which does not contradict Conjecture 3.   

 

Observation 3 Provision rate is sensitive to the existence of assurance payment.   

Partial assurance schemes A1-A3 do not cover Units 4 and 5 where they all have provision rates 

as close to zero as does A0, while conditional assurance schemes A4 and A5 potentially cover 

every unit and hence they both have a significantly higher provision rate than A0-A3 at Unit 4 

with both p<0.05, and A5 is also significantly higher than A0 (p=.0265) and A1-A3 all with 

p<0.09.   

 

4.2 Group Value Revelation for Each Unit 

To further understand the patterns of provision rate across assurance payment schemes, we 

investigate the group value revelation for each unit.  Figure 3 shows the ex post group value 

revelation (group contributions divided by realized group induced values) for each unit by 

assurance scheme.  Without assurance, group value revelation decreases linearly from 0.59 (Unit 

1) to 0.52 (Unit 3), and stays around 0.46 for Units 4 to 6.  With assurance, group value 

revelation varies with the level of assurance payment.  With constant assurance, group value 

revelations are stable at units with the same assurance payment, for example, at Units 1 to 3 

under A1 and A2, and at all units under A4 and A5.  This group value revelation pattern is useful 

to explain the observed patterns of provision rates.  Since the total induced values decrease with 

the unit number and the unit cost is constant, a constant group value revelation results in a 

decreasing provision rate over unit as in A4 and A5, and a decreasing group value revelation 

results in the provision rate decreasing even faster over unit in A0 than in A1 to A5.   

 

With decreasing assurance, group revelation decreases significantly: Under A3 with high (18), 

medium (14), and low (10) assurance payments respectively at Units 1 to 3, group revelations 

decrease from 0.72 at Unit 1 to 0.63 at Unit 2, and 0.58 at Unit 3.  At the same unit, the previous 

argument holds across assurance schemes: At Unit 1, group revelation is higher under A3 with a 
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high assurance 18 than A2 and A5 with 14 which both are slightly higher than A1 with 10.  At 

the extreme, since A1 to A3 have no assurance payment at Units 4 to 6, group revelations drop 

from around 0.6 at Unit 3 to around 0.4 at Units 4 to 6.   

 
Figure 3. Group Revelation for Each Unit by Assurance Scheme 

To test statistically how group value revelations vary with assurance payment and assurance 

schemes, we run a 2-factor (group- and period-specific) random effects regression for each unit, 

focusing on the observations from the last 10 periods as shown in Table 2. 5

                                                           
5 We exclude the observations from the first five periods to isolate potential mechanism-learning or order effects in 
the early periods.   

  At each unit, A0 is 

the baseline scheme, then dummies for assurance payments 10, 14, and 18 if any are added, 

where the conditional assurance schemes are the default and the dummies for the partial 

assurance schemes are interacted with the assurance payment dummies to identify the difference 
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between conditional and partial assurance schemes.  We have the following observations which 

are generally consistent with the observations of provision rate.   

 

Table 2 Two-factor Random Effects Models of Group Value Revelation for Each Unit 
Group Value Revelation Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 
AP10 (A4) 0.0373* 0.0332** 0.0696*** 0.167*** 0.179*** 0.189*** 

 
(0.0197) (0.0169) (0.0159) (0.0213) (0.0205) (0.0242) 

AP10*A1 -0.0244 0.000917 -0.00725 
   

 
(0.0251) (0.0214) (0.0204) 

   AP14 (A5) 0.0638*** 0.0673*** 0.0925*** 0.141*** 0.123*** 0.147*** 

 
(0.0197) (0.0169) (0.0159) (0.0213) (0.0205) (0.0242) 

AP14*A2 -0.0331 0.0103 0.0220 
   

 
(0.0251) (0.0214) (0.0204) 

   AP18 (A3) 0.137*** 
     

 
(0.0171) 

            AP14*A3 
 

0.0214 
    

  
(0.0214) 

    AP10*A3 
  

0.00828 
   

   
(0.0204) 

   A1 
   

-0.0321* -0.0616*** -0.0826*** 

    
(0.0185) (0.0178) (0.0210) 

A2 
   

-0.0144 -0.0205 -0.0426** 

    
(0.0185) (0.0178) (0.0210) 

A3 
   

-0.00104 -0.0115 -0.0189 

    
(0.0185) (0.0178) (0.0210) 

Constant (A0) 0.587*** 0.550*** 0.512*** 0.452*** 0.444*** 0.444*** 

 
(0.0178) (0.0143) (0.0151) (0.0260) (0.0274) (0.0283) 

Log-likelihood 228.1 255.0 268.2 216.7 224.1 194.3 
Chi-square 84.98 57.90 101.8 76.46 95.48 88.19 
R2 overall 0.251 0.183 0.230 0.405 0.453 0.431 
Number of Observations 180 180 180 180 180 180 
Number of Periods 10 10 10 10 10 10 
Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1;  
AP10, AP14 and AP18 denote dummies for assurance payments of 10, 14 and 18, respectively; A0 to A5 are assurance scheme 
dummies; the variables in the parentheses are the baseline schemes.   
 

Observation 4 Assurance payment significantly increases group value revelations at all units.   

At Units 1 to 3, all assurance payment schemes results in higher group value revelation than A0 

with a significance level of at least 0.1, except for A1 at Unit 1.  At Units 4 to 5, A4 and A5 are 

not only statistically but also economically higher than A0 both with p<0.01.   

 

Observation 5 At Units 1 to 3, a higher assurance payment results in a higher group value 

revelation; at Units 4 to 6, the relationship switches.   

At Unit 1, an assurance payment 18 generates significantly (p<0.01) higher group value 

revelation than 14 and 10; at Units 2 and 3, an assurance payment 14 generates significantly 
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higher group value revelation than 10 with p=0.054 (two-tailed) and 0.082 (one-tailed).  At Units 

4 to 6, however, an assurance payment 10 has higher group value revelations than 14 with 

p=.241, .008, and .089 for Units 4 to 6 respectively.  This group value revelation pattern is 

consistent with Observation 2 for provision rate.   

 

Observation 6 At each unit, group value revelations are similar across assurance schemes with 

the same assurance payment.   

This observation is supported by the fact that all the interaction terms between assurance 

payment level and assurance scheme are not significant.  Only a few exceptions exist at Units 4 

to 6 when there is no assurance payment.  At Units 4 to 6, although A1 to A3 all have zero 

assurance payment, they generally induce lower group revelation than A0, and the differences 

are significant for A1 at Units 4 to 6 and A2 at Unit 6.  The reason may be that the assurance 

payments on the first three units discourage the value revelation on the last three units that are 

not assured.  Observations 5 and 6 together highlight the key role of assurance payment in value 

revelation.   

 

4.3 Social Efficiency and Surplus Allocation 

So far, the results from assurance payment in terms of provision rate and group value revelation 

are quite promising, which supports our expectation of the advantage of assurance payment.  It 

seems that a sufficiently high assurance payment may improve both provision rate and value 

revelation significantly.  However, if the provision rate is not 100%, the assurance payment 

indeed has to be paid by the producer for the first unit assured but not provided.  Although the 

actually assurance paid is simply a surplus transfer from the producer to consumers from a 

societal perspective, this transfer could be costly and inconvenient in reality and hence 

disadvantages the assurance payment scheme.  In this section, we summarize the experimental 

results from the social planner’s perspective; particularly we are interested in the realized social 

surplus, as well as its allocation between consumers and the producer, which will give us an 

aggregate comparison of the assurance payment schemes, including the effect of assurance 

transfer.   
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Table 3 Realized Average Social Surplus and Its Allocation* 
Treatment Potential Maximum  

Social Surplus 
Realized  

Consumer Surplus 
Realized  

Producer Surplus 
Realized  

Social Surplus 
A0 100 39 5 44 
A1 100 61 -11 50 
A2 100 62 1 63 
A3 100 64 -6 58 
A4 100 70 -17 53 
A5 100 60 -8 52 

*: The numbers are essentially in percentage, which is based on a maximum social surplus assumed to be 100. 

 

Table 3 shows the realized social surplus and its allocation between consumers and the producer.  

The potential maximum social surplus equals the sum of the realized induced values of all units 

minus the total provision cost; the realized social surplus equals the sum of values on each unit 

provided minus the total cost for providing these units; the consumers' surplus equals the sum of 

values on each unit provided minus their contributions, and plus assurance payment if any; the 

producer’s surplus equals consumer’ contributions minus the provision cost and the assurance 

payment if any, or equivalently the realized social surplus minus consumers' surplus.  Since the 

realized maximum social surplus varies across treatments and the group size varies across 

sessions, we scaled the individual-averaged realized maximum surplus to 100, and proportionally 

adjusted the surpluses in the other categories.  By rank-sum tests, we have the following 

observations.   

 

Observation 7 All assurance schemes improve the realized consumer surplus significantly.   

In Table 3, A1 to A5 all have higher realized consumer surpluses than A0, which are all 

significant with p<.001 by rank sum test.  A4, the conditional scheme with an assurance payment 

of 10 results in the highest consumer surplus 70 compared to 39 of A0, which is consistent with 

that A4 has a higher provision rate at Unit 4.   

 

Observation 8 All assurance schemes result in a significantly lower realized producer surplus 

than A0; all but A2 have a negative producer surplus.   

A0 has the highest realized producer surplus 5, which is significantly higher than those from A1 

to A5 all with p<.001.  This makes sense since all the assurance schemes involve the assurance 

payment, which can be considered as the cost to improve the realized consumer and hence 
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societal surplus.  It is worth noting that in A2, the producer still sustains a positive surplus, 

indicating that A2 is the least costly assurance scheme on average.   

 

Observation 9 All assurance schemes improve realized social surplus; A2 with an assurance 

payment 14 on the first three units has the highest realized social surplus, which is significantly 

higher than that in A0.   

 

In Table 3, A1 to A5 all have higher realized social surpluses than A0, in which A2, A3, and A4 

are significantly higher with p<.0001, p=.0069 and .092, respectively.  Although A2 does not 

have a consumer surplus as high as A3 or A4, A2 involves a relatively smaller assurance 

payment and hence a much higher producer surplus than A3 and A4.  Therefore, on aggregate, 

A2 stands out as the best assurance scheme in our tested schemes, which has the highest social 

surplus level.  This result may imply the existence of an optimal assurance scheme resulting in 

the highest efficiency gain with the lowest assurance payment. 

 

6 Conclusions  

This paper builds on the assurance contract idea introduced by Tabarrok (1998) and develops an 

assurance payment hopefully to improve the public good provision compared to the traditional 

threshold public good game.  Both theoretically and experimentally, we examine a set of 

assurance payment schemes for multiple-unit public good provision using the individualized 

price auction (IPA) mechanism, and seek to establish whether an assurance payment generally 

makes a significant improvement on public good provision, and if so, which scheme is better.  

We first characterize the Nash equilibira of one- and two-unit IPA with and without assurance 

payment.  Then we design 6 treatments of assurance payment schemes and run lab experiments 

to test the effects of the existence, the level, and the completeness of assurance payment on 

provision rate, group value revelation, and the social efficiency.  The key message is that 

assurance payment works in the expected directions in our setup.   

 

Assurance payment significantly eliminates non-provision equilibria, and reduces the 

multiplicity of provision equilibria suffered by most discrete public good provision games, 

especially in a multi-unit setup.  This theoretical advantage is supported by our lab experiment 
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results: A positive assurance payment always performs better than no assurance in all the 

measures of provision rate, group value revelation, and realized social surplus.  Nonetheless, it is 

possible for the producer to incur a deficit if the assurance scheme is not chosen properly, though 

the total social surplus can still be higher using assurance payment. 

 

Furthermore, the level and the completeness of the assurance payment do matter.  In our setup of 

a maximum of 6 units of discrete public good available and the last unit with a zero net gain 

from provision, a higher assurance payment generally generates higher provision rates and group 

value revelations at the first three units under the partial assurance schemes with assurance on 

the first three units, but this cannot be generalized to the conditional schemes for the last three 

units.  Partial and conditional schemes seem to work differently: A sufficiently high assurance 

payment on the first three units generally performs better at those three units than a conditional 

scheme with the same assurance payment, although the conditional scheme induces higher 

provision rates and group revelations in the last three units.  The tradeoff between the number of 

units covered and the provision rate at each unit implies that we may choose different schemes 

based on different goals.   

 

The inconsistent results between partial and conditional assurance schemes indicate some future 

research directions.  Recall that in out setup, a partial scheme with a medium assurance payment 

results in the highest social surplus.  Then the questions would be how to choose the most 

efficient assurance payment level and the number of units covered, and whether these parameters 

can be determined in theory.  Experiments designed specifically to answer these questions would 

be helpful as well.   

 

Lastly, our results have two important policy implications.  First, the provision-point based 

mechanism with assurance payment provides a powerful tool for non-marker valuation, since the 

assurance payment could significantly reduce the free-riding incentive and induce a more 

accurate preference measure.  Second, it may provide a feasible framework to establish a 

decentralized ecosystem service market, backed by a relatively high provision rate, which can be 

further optimized by flexible payment schemes.  This is especially true if we are in a market lack 
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of valuation information, in which multiple rounds of assurance payment contract would reveal 

much of the information and improve the contract design with the development of the market.   
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