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Abstract

The paper estimates the countervailing climatic factors driving the timing of US corn
planting decisions. We combine very diverse sources of data, including daily fine-
scale satellite-derived information, to infer the timing of planting decisions over the
past 30 years at the county-level. We match this information with daily data on
temperature and soil moisture conditions to assess their contributions to the
planting decision. Using a panel logit model we find that warmer spring
temperatures increase the probability of planting, while extremely low or high
levels of moisture reduce it. We find that the levels of moisture necessary to fully
offset the season-expanding effect of a temperature rise of 32C would need to be
very extreme, suggesting that the growing season for corn is likely to expand with

climate change.
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1. Introduction

A large literature is focusing on assessing the potential of agricultural adaptation to
climate change using statistical approaches. A common practice in this literature is
to assume that weather is additive and growing seasons remain fixed. This is
reflected in the construction of weather and climate variables aggregated over
several months and climate projections that refer to same time period. If invalid,
these assumptions impose restrictions on farmers' ability to adjust to a different

climate and related studies may overstate projected climate change damages.

A growing body of work suggests that weather has different effects on crop
production throughout the growing season and that sensitive periods are likely to
be confined to relatively short periods of time (Ortiz-Bobea and Just, 2013). This has
interesting implications for the analysis of agricultural adaptation to climate change.
A first-order adaptive response resulting from non-additivity of weather is for
farmers to change planting dates and cultivars to reduce the exposure of sensitive

periods of the growing season to detrimental parts of the year.

Adaptive response in the timing of the growing season may be possible because
a warmer climate results in a longer non-freezing period, which is arguably a
limiting factor in many temperate areas across the country. Ortiz-Bobea and Just
(2013) find that earlier corn planting across large parts of the Midwest could reduce
yield losses from summer heat by 50 to 70 percent under a uniform warming
scenario of 59F. As that study indicates, this could represent an important channel of

adaptation in US crop agriculture. Interestingly, there is suggestive evidence that



recent increases in corn yields in the Midwest may be partly attributed to earlier

planting (Kucharik, 2008).

However, the encouraging adaptation possibilities of shifting growing seasons
depend on farmers' ability to change planting dates, especially to earlier periods of
the spring. It is well known that warmer springs result in earlier planting in the
Midwest. Warm and appropriate moisture field conditions in the springs of 2010
and 2012 resulted in earlier corn planting by 1 to 2 weeks. On the other hand, cool
and excessively wet conditions have the opposite effect. The wet springs of 1993
and 2013 resulted in corn planting delays of 1 to 2 weeks across the Midwest.
Indeed, excessively moist soils reduce the number of available days of fieldwork for
the agricultural machinery involved in planting operations. It remains unclear if
farmers may be able to benefit from a longer growing season because excessive

moisture might offset the effects of warmer spring.

Very few studies have empirically analyzed the driving factors of growing
seasons and planting dates. Waha et al. (2012) use deterministic crop models to
establish optimal planting dates for a number of crops across the world. While
useful for assessments of climate change impacts and adaptation based on crop
process models (e.g. Stehfest et al 2007), these approaches are poorly integrated
with observational data. Sacks et al (2010) is the only study we've found attempting
to assess the drivers of planting decisions empirically. The study assembles a large
dataset of usual planting and harvesting dates for 19 major global crops and

estimate how these are explained by 30-year climate normals for temperature,



precipitation and potential evapotranspiration. The study finds that conditions at
planting are fairly consistent in temperate areas, and that temperature is the major
factor explaining the timing of planting. However, planting dates are found to be less
predictable in tropical regions and the authors suggest that the timing of planting in
these regions might be driven by an attempt to match the growing season to more
beneficial portions of the year, rather than taking advantage of a longer growing
season. However, the study is based on cross-sectional evidence and is therefore not
able to provide evidence of how inter-annual variation in weather might be affecting
planting decisions. Moreover, the study did not attempt to project how farmer might

respond in response to climate change.

The objective of this paper is to provide, to our knowledge, the first estimates of
the climatic factors driving the onset of the growing season for a major US crop. The
study relies on a rich combination of data sources for estimating the drivers of
planting decisions. We combine satellite data of various types to temporally and
spatially downscale weekly state-level crop progress data to daily and fine-scale
observations. We match corn planting behavior across the Midwest over the past 30
years with daily high resolution environmental data that includes temperature and
soil moisture levels. We model the decision to plant as binary outcome under a
latent-variable context and we use a panel logit model to estimate the climatic
drivers of planting decisions. The paper is organized as follows. Section 2 provides a
detailed description of the data sources and how the dataset for the regression

analysis was constructed. Section 3 presents how the downscaling of satellite data



was performed to infer fine scale planting behavior. The model and regression

results are presented in sections 4 and 5 and section 6 concludes.

2. Methodology

The objective of the paper is to identify the climatic constraints that drive the
growing seasons in US crop agriculture. The results are important for assessing
climate change impacts of agriculture because shifting growing seasons is a
potentially important and easy adaptive response. As suggested by Sacks et al
(2010), the factors driving the timing of growing seasons are complex. Some of the
factors influencing the decision to plant include the field and weather condition at
planting (contemporaneous conditions) but also the expected conditions later in the
season, especially during key stages of the crop cycle (expected conditions). Given
the complexity of empirically assessing the role contemporaneous and expected
field and environmental conditions in the planting decision, we confined ourselves,
at this stage, to identifying the contemporaneous conditions. Future work might

address the role of expected conditions during key parts of the season.

The approach we undertake is to estimate the decision of planting as explained
by a set of daily environmental covariates. We construct a county-level panel dataset
with a daily time step covering the 60 days surrounding the planting decision over
the 1981 to 2010 period. Because planting date data is only available at the state-
level and on a weekly basis, the use satellite data to “downscale” the planting date to
much finer spatial (5-km) and temporal (daily) resolutions. We present this

approach later in this paper and show a validation based on district level planting



data available for the state of Illinois. We then proceed to aggregate the newly
generated panting data to the county-level given the high degree of spatial
correlation at such a fine scale. We then match the county-level planting data with

temperature and soil moisture data, also available at the county and daily levels.

We model the planting decision as a climate-sensitive input decision that affects
crop yield.* Empirically, we estimate a panel logit model where the dependent
variable takes the value of 0 if planting has not occurred and 1 otherwise. The
independent variables include minimum temperature and moisture conditions of
the superficial soil layers. We consider several specifications allowing for the
relevant conditions to span over time windows of varying lengths around panting

time.

3. Data

3.1 Normalized Difference Vegetation Index data

We used remote sensing data for its spatial and temporal consistency and coverage
as well. Daily, 0.05° resolution Normalized Difference Vegetation Index (NDVI) data
from Long Term Data Record (LTDR) is used as an input data for its strong
correlation with vigor, stress, green biomass and photosynthetic capacity of
vegetation (Becker-Reshef et al, 2010). The LTDR is the data set made by

processing the Advanced Very High Resolution Radiometer (AVHRR) GAC (Global

4 This could happen either through the choice of longer season cultivars or by
avoiding exposure to detrimental conditions later in the growing season, e.g. hot and
dry summer spells during the sensitive flowering stage.



Area Coverage) and Moderate Resolution Imaging Spectroradiometer (MODIS) CMG
(Climate Modeling Grid) time-series with vicarious calibration, Bidirectional
reflectance distribution function (BRDF) correction, improved Quality Assessment,
geo-location algorithms (Pedelty et al., 2007).

NDVI is most popular satellite derived vegetation index and successfully

applied for many previous phenology studies (Tucker & Sellers, 1986).

RED — NIR

NDVI = —————
v RED + NIR

The NDVI is computed from the ratio of red and infrared reflectance. NIR and RED
are the amounts of near-infrared and red light, respectively, reflected by the
vegetation and captured by the sensor of the satellite (Pettorelli et al., 2005).
Median and Standard deviation from the NDVI time series data spanning from
1981 to 2010 are used to identify and filter erroneously high or low NDVI value.
Then, weighted least squares linear fit model is applied to smooth NDVI time series.
Weighted least squares linear fit model is a non-parametric function which
performs a locally weighted linear regression to compute the smoothed value at
each point based on a defined window size (Pouliot et al., 2008). Not like parametric
functions, such as logistic functions, non-parametric method does not assume a
priori shape of time series. This characteristic make the non-parametric function
more appropriate for a range of land cover types (Bradely et al., 2007). In this

research, a span of 0.2 was used with three iterations for a robust fitting.

3.2 Cropland Data Layer



National Agricultural Statistics Service Cropland Data Layer (NASS-CDL) from 2000
and 2010 are used to count target maize and soybean pixels within each NDVI pixels.
The NASS-CDL classifies specific crop types and is generated using Landsat 5
Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper (ETM+) data.’
The count of CDL pixels of the target crop within a NDVI pixel was used as a
weighting factor representing the portion of the target crop within each NDVI pixels
and as a guide to decide each of NDVI pixels as the pixel of the target crop with a

selected threshold.

3.3 Crop Progress Data

State level crop progress data was obtained from USDA National Agricultural
Statistics Service (NASS). The data is available on a weekly basis for major crops and
producing states since the 1980s. These reports provide information on the share of
state acreage that has undergone particular crop stages or farm operations, such as
planting and harvesting. This state-level weekly data is used as the ‘reference’ for
downscaling the satellite-derived information to infer planting behavior at a finer
spatial (county) and temporal (daily) scale. Crop progress reports for Illinois were
also obtained at the district level (a combination of counties smaller than the state)
to carry out the out-of-sample validation of the downscaling routine described in

the next section.

5> Available for download at:
http://www.nass.usda.gov/research/Cropland/SARS1a.htm



3.4 Climate data

covering 1979 to present.

The climate data used in this study was obtained from the North American Land
Data Assimilation System (NLDAS). NLDAS is a framework developed by NASA,
NOAA, Princeton University and University of Washington, that incorporates
atmospheric forcing and land parameter values along with land surface models to
diagnose and predict the state of the land surface (Mitchell et al 2003). The dataset
provides hourly data based for every 14-km grid over the lower 48 states since
1979. We obtain air temperature and soil moisture for the top soil layer (0-10cm)
from this dataset. It is worth mentioning that the NLDAS data has been validated
and found to closely match observations for both weather and soil moisture
readings (Luo et al 2003 and Xia et al 2012, respectively). For the purpose of our
study we aggregated the hourly information to the day and obtain minimum and
maximum air temperature as well as average soil moisture content. The data was
subsequently aggregated to the county level for each day by weighting each NLDAS
data grid by average amount of cropland planted in corn during the 2008-2012 time

period based on the CDL.

4. Inferring planting behavior from satellite data

4.1 Objective



In order to do our empirical analysis, we first need to identify our dependent
variable (planting behavior of farmers) very precise level. However, the data of
planting behavior is only available in state level in government data. Therefore we
need a method to identify planting behaviors of farmers in a more precise level.

One possibility is to infer planting behavior of farmers from satellite data. First
we could define a resolution level (for example, a pixel is defined as a circle with 15
meters radius) in using the satellite data. Then secondly we could observe the level
of greenness for each pixel across the whole year. Through observations of the level
of greenness in a particular year, we could then infer planting behaviors of farmers.
For example, for a particular pixel, when level of greenness reaches a certain level,
we infer that a particular stage of crops starts in that pixel. We repeat the same
process for every stage of crops, then we could extract the exact day of year when
crops in that particular pixel planted, emerged, etc. Eventually for each stage of the
crops, we could predict the exact day of year when that stage happened for every
pixel in the U.S. i.e, we could study planting decisions of farmers in pixel level
instead of state level.

The main question in this method is how to find an optimal way in matching
satellite data with actual government data. This question could be interpreted as
(for example), for each pixel how should we choose the threshold of level of
greenness that determines when crops are planted? We proposed two approaches
to answer this question. In brief, those two approaches implemented a similar

optimization routine (with different parameters) in minimizing the difference
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between predicted data and actual data collected by the government (in aggregate
level). To be more specific, for every state in the U.S. the government data records
the advancement of crops in a particular stage.

For example, figure 1 explains in state “47” the advancement of Corn in stage
silking in year 2005. Then with the help of two different approaches, we could
obtain when silking starts for every pixel in state “47”. Afterwards we use the
information of when silking starts for each pixel to derive the predicted aggregate-
level advancement of Corn in state “47”. At last we change the value of parameters
in the two approaches mentioned above to minimize the difference between actual
aggregate-level data (USDA data) and our predicted aggregate-level data (NDVI

data).
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Figure 1 State-level progress for the corn “silking” stage in Tennessee in 2005

Figure 2 below illustrates how we compare actual and predicted data. In each
approach a parameter is used to determine the threshold of levelof greenness for
each stage of the crops. The parameter is contemporarily homogeneous for a certain
crop in a particular state and stage. It varies across time, type of crops, state and

stages of a particular crop. In the subsection below we will discuss how we could

obtain an optimal value of parameters in each approach.
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Figure 2 Comparison of state-level US crop progress and state-level NDVI variable for Illinois in 2005

4.2 Approach
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In a certain state, for a particular pixel we need to define the threshold of level of
greenness to determine when each stage of a crop starts. Two approaches are
proposed to determine the threshold.

The first approach (approach alpha) uses the cumulative level of greenness to
determine when each stage of a crop starts. As shown in figure 3, when the
cumulative level of greenness exceeds certain threshold (parameter a), we define
the corresponding day of year as the start of that stage. For example in figure 3, for
pixel #33 in Illinois, corn emerged at the 100th day of year in 2005. The parameter a
varies across time, type of crops, state and stages of a particular crop. i.e. In
determining when corn emerged in Illinois in year 2005, the value of parameter a is
unique and holds the same for all pixels inside Illinois in year 2005. The value of a
changes in all other cases. Given the value of parameter a, we could derive when
each stage of a crop starts for every pixel inside a state. Afterwards we could use
this information to derive the predicted planting behaviors in aggregate-level. The
last step is to use an optimization algorithm to obtain the optimal value of
parameter a which minimizes the difference between predicted aggregate-level data

and actual aggregate-level data (figure 4).
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Figure 3 The alpha method

Year 2005 - Corn - emerged - State 46
optimal a = 0.2486

a=05
o Q]
~ 7| OActual Data b O Actual Data
O Predicted Data ° O Predicted Data
@ | o o |
o § o (] g
= e -
& © o o 5 © §
g ° o o % (= §
o]
g e @ 0> g
@ X o O §
3 o 7 b 8 5 o 7] 8
< o g <
o & o
o o
o | a
=l : T T S e T | T
0 100 200 300 0 100 200 300

Day of the year (DQY) Day of the year (DOY)

Figure 4 The alpha method at work

The second approach (approach beta) uses the magnitude of level of
greenness to determine when each stage of a crop starts. In approach beta, for each
pixel we first normalize its level of greenness to make the level of greenness always

start from level 0 and ends at level 1. Then for each pixel we rescale its level of
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greenness to assure monotonicity of its level of greenness (figure 5). (No rescaling
or normalization is implemented in approach alpha). In approach beta, when the
absolute magnitude of level of greenness exceeds certain threshold (parameter b),
we define the corresponding day of year as the start of that stage. Then similar to
approach alpha, we use an optimization algorithm to find the optimal value of

parameter b.
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Figure 5 The beta method

4.3 Results

In average, approach alpha results in a difference of 21 days between predicted
aggregate-level data and actual aggregate-level data. i.e,, if in Illinois corn emerged
at 121th day of the year in 2005, in average our predicted day of year (obtained

from approach alpha) is 21 days away from the actual number. In average approach
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beta results in a difference of 16 days. Table 1 below shows the average difference

of day of the year in more details (in terms of crops and stages of crops).

Table 1: Average difference of day of the year

Approach | Approach | Diff (alpha
Crops Stage

Alpha Beta - beta)
Corn planted 10.361786 | 11.058032 | -0.6962463
Comn emerged 8.751211 | 9.255086 | -0.5038755
Corn silking 9.634099 | 18.594513 | -8.9604135
Comn doughing 23.822883 | 18.404417 | 5.4184656
Corn dented 24.414729 | 19.02832 | 5.3864084
Comn mature 23.669914 | 14.751909 | 8.9180045
Corn harvested 36.146523 | 18.600104 | 17.5464188
Cotton planted 15.156962 | 18.738771 | -3.5818087
Cotton squaring 20.120397 | 19.742949 0.377448
Cotton setting.bolls 25.417201 | 22.134843 3.282358
Cotton bolls.opening 32.23684 | 22.62056 | 9.6162801
Cotton harvested 44.14488 | 28.763233 | 15.3816461
Soybeans | planted 16.850976 | 12.534787 | 4.3161895
Soybeans | emerged 15.672941 | 10.082173 | 5.5907679
Soybeans | blooming 19.555364 | 10.820406 | 8.7349584
Soybeans | setting.pods 23.35373 | 14.342997 | 9.0107332
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Soybeans | dropping.leaves | 23.442652 | 16.277868 | 7.1647847

Soybeans | harvested 24.110464 | 15.33762 | 8.7728437

4.4 Validation
In order to check the robustness of our approaches, we implement out-of-sample
tests for both approach alpha and approach beta. In our sample, actual data is
collected in state level. For example, from actual data we know the advancement of
corn that silks in state “47” (figure 1). As a comparison, in our out-of-sample test,
our out-of-sample data describes the advancement of crops in a certain stage in sub-
state regions. To be more specific, our out-of-sample data includes aggregate-level
data for sub-state regions of Illinois (details of sub-state regions is described in
figure 6). With the help of approach alpha and beta, we could first obtain an optimal
value of a and b from our sample data. Given values of a and b and location of sub-
state regions of Illinois, we could then derive the predicted aggregate-level
advancement of crops in a certain stage in sub-state level of Illinois. Lastly we could
compare predicted data with actual data in sub-state level in Illinois.
In our out-of-sample test, in average approach alpha results in a difference of
15 days between predicted data and actual data. Approach beta results in a
difference of 11 days in average. Table 2 below shows the average difference of day

of the year in more details (in terms of crops and stages of crops).

Table 2: Average difference of day of the year (out-of-sample validation)
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Diff
Approach | Approach
Crops Stage (alpha -
Alpha Beta
beta)
Corn planted 14.58964 | 12.13902 | 2.4506207
Corn emerged 13.26934 | 10.60611 | 2.6632315
Corn silking 8.599782 | 13.45941 | -4.859625
Corn doughing 23.24686 | 11.62795 | 11.618903
Corn dented 21.30699 | 20.48219 | 0.8248028
Corn mature 13.82438 | 9.554442 | 4.2699383
Corn harvested 18.43608 | 10.12703 | 8.3090497
Soybeans | planted 12.21762 | 10.21513 2.00249
Soybeans | emerged 10.65763 | 9.333995 | 1.3236399
Soybeans | blooming 15.31001 | 12.05194 | 3.2580694
Soybeans | setting.pods 23.63743 15.4635 | 8.1739366
Soybeans | dropping.leaves | 8.877612 | 9.583597
0.7059846
Soybeans | harvested 11.11709 | 8.966265 | 2.1508226

The validation results reveal that both approach alpha and approach beta is
robust, because predicted value in both approaches didn’t deviate much from the
actual data. In average out-of-sample result even performs better than results in in-

sample optimization. In average approach alpha results in a deviation of 21 days in
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in-sample optimization, but the deviation is reduced to be 15 days in out-of-sample

test. Similar pattern could also be observed in the results of approach beta.

In this paper we use approach beta to identify planting behaviors of farmers.
This is because in both in-sample optimization (a difference of 21 days versus 16
days) and out-of-sample validation (a difference of 15 days versus 11 days),
approach beta always results in smaller difference between predicted data and
actual data. Moreover, from both table 1 and table 2 we could observe that in most
cases approach beta generates less difference in a comparison between predicted

data and actual data.

5. Empirical estimation and results

We model the planting decision as a binary outcome y and we estimate the model

using both pooled and fixed-effect logit models. The fixed-effect specification is:

Vie = a; + f(Tie) + g(My) + €

where y;, takes the value of 0 if planting has not occurred in time period t in
county i and ¢; is a county fixed effect that reduces to an single parameter in the
pooled model. Flexible representations of minimum temperature and soil moisture
are presented by f(T) and g(M), respectively, and €;; is an error term that is
contemporaneously correlated. Our preferred specification is based on step

functions for f(T) and g(M) which allow for non-linear effects of these variables.
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Regression results are represented in figure 6. The first row presents the marginal
effects of temperature and moisture on the probability of the planting decision in
the pooled model. The second row presents results for the fixed-effect model. The
last row presents the distribution of the climatic factors in the sample. As expected
warmer temperatures increase the probability of planting. The relationship is
almost linear with a slope of 0.102 and 0.132 per °C in the pooled and fixed-effect
models, respectively. This seems to indicate there isn’t a specific threshold over

which planting has a greater chance of occurring.

On the other hand, the response function for soil moisture is nonlinear and the
fixed-effect specification reveals that excessively wet (>360 g/L) or dry (<150 g/L)
conditions reduce the probability of planting. These conditions are fairly rare in the
sample and occur 1.2 and 2.2% percent of the time, respectively. Moisture
conditions over a wide range of condition (150 to 360 g/L) seem suitable for
planting. The decision to plant seems to be delayed by fairly extreme moisture

conditions.

21



Pooled

Praobability of planting

Fixed-effect
Probability of planting

-1

Density

000 002 004 006 008 010 012 014

1

1

1

1

1

1

Minimum temperature (C)

100-110

120-130

140-150

160-170

180-180

=400

200-210
220-230
240-250
260-270
280-290
300-310
320-330
340-350
360-370
380-390

Soil moistur

@©

{glL)

0.0 05 1.0 15 20

-05

05 1.0 15 20 10

00

-05

0.02 0.04 0068 008 010 014.0

0.00

Figure 6 Influence of climatic factors on corn planting probability

A useful way to interpret the relative magnitude regression coefficients is to
compute the necessary moisture changes necessary to fully offset the effects of
warmer conditions. For the median moisture condition (270-280g/L), a 3°C
warming would be offset by either a decrease of 40% or an increase of 22% in soil

moisture. These offsetting moisture levels correspond to 2" and 98t percentiles of
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the current moisture distribution. In other words, farmers would not be able to
plant earlier with a 3°C warmer spring only if moisture levels exhibit dramatic
changes that are rarely observed in the sample. However, regions that already
experience fairly wet conditions would require lower increases in moisture to offset

the season-expanding potential of warmer springs.

6. Conclusion

To our knowledge, this is the first study seeking to estimate the influence of
climatic factors on the timing of crop planting date using large-scale observational
data. We combine a rich set of data sources to infer planting dates at the county level
over a 30-year period. We model the planting decision as a binary outcome using a
panel logit model in which we allow nonlinearities in the response function of key

climatic factors.

As expected, we find that warmer temperature increase the probability of
planting. We find no evidence of a threshold over which planting is more likely to
occur. On the other hand, we find that extremely dry or wet conditions decrease the
probability of planting, which is consistent with the conventional wisdom that
appropriate soil moisture conditions are necessary for carrying out planting
operations. However, these extreme moisture conditions are fairly rare in the
sample. We find that spring would need to be 40% drier or 22% wetter in a place
with median moisture conditions, in order to offset the effect of a 3°C warming.
Although more thorough explicit analysis is needed to understand the regional

implications of the projected changes of climatic factors on planting behavior, these
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preliminary results suggest that the growing season is likely to expand through

earlier planting.

Future work will incorporate climate change projection under various
scenarios and climate models, as well the analysis of additional crops. The goal is to
infer how much may the growing seasons of various important crops expand under
a different climate using the current sensitivity of planting behavior to climatic
factors as a guide. Other climatic factors, such as the length off the day could be
incorporated and a more detailed treatment of standard errors is needed to account

for contemporaneous correlation of the data.

24



References

Becker-Reshef, 1., et al. "A generalized regression-based model for forecasting
winter wheat yields in Kansas and Ukraine using MODIS data." Remote Sensing of

Environment 114.6 (2010): 1312-1323.

Bradley, Bethany A. et al. "A curve fitting procedure to derive inter-annual
phenologies from time series of noisy satellite NDVI data." Remote Sensing of

Environment 106.2 (2007): 137-145.

Cosgrove, Brian A., Dag Lohmann, Kenneth E. Mitchell, Paul R. Houser, Eric F. Wood,
John C. Schaake, Alan Robock et al. "Real-time and retrospective forcing in the North
American Land Data Assimilation System (NLDAS) project." Journal of Geophysical

Research: Atmospheres (1984-2012) 108, no. D22 (2003).

Kucharik, Christopher J. "Contribution of planting date trends to increased maize

yields in the central United States." Agronomy journal 100, no. 2 (2008): 328-336.

Luo, Lifeng, Alan Robock, Kenneth E. Mitchell, Paul R. Houser, Eric F. Wood, John C.
Schaake, Dag Lohmann et al. "Validation of the North American Land Data

Assimilation System (NLDAS) retrospective forcing over the southern Great Plains.'

Journal of Geophysical Research: Atmospheres (1984-2012) 108, no. D22 (2003).

Mitchell, Kenneth E., Dag Lohmann, Paul R. Houser, Eric F. Wood, John C. Schaake,

Alan Robock, Brian A. Cosgrove et al. "The multi-institution North American Land

25



Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in
a continental distributed hydrological modeling system." Journal of Geophysical

Research: Atmospheres (1984-2012) 109, no. D7 (2004).

Ortiz-Bobea, Ariel, and Richard E. Just. "Modeling the structure of adaptation in
climate change impact assessment.”" American Journal of Agricultural Economics

95.2 (2013): 244-251.

Pedelty, Jeffrey, et al. "Generating a long-term land data record from the AVHRR and
MODIS instruments." Geoscience and Remote Sensing Symposium, 2007. IGARSS

2007. IEEE International. IEEE, 2007.

Pettorelli, Nathalie, et al. "Using the satellite-derived NDVI to assess ecological
responses to environmental change." Trends in ecology & evolution 20.9 (2005):

503-510.

Pouliot, Darren, et al. "Comparison of temporal filtering methods to improve
radiometric consistency of satellite time series." 10th International Circumpolar
Remote Sensing Symposium and 29th Canadian Symposium on Remote Sensing June.

2008.

Sacks, William ]., Delphine Deryng, Jonathan A. Foley, and Navin Ramankutty. "Crop
planting dates: an analysis of global patterns.” Global Ecology and Biogeography 19,

no. 5 (2010): 607-620.

26



Schlenker, Wolfram, and Michael J. Roberts. "Nonlinear temperature effects indicate

severe damages to US crop yields under climate change." Proceedings of the

National Academy of Sciences 106, no. 37 (2009): 15594-15598.

Stehfest, Elke, Maik Heistermann, Joerg A. Priess, Dennis S. Ojima, and Joseph
Alcamo. "Simulation of global crop production with the ecosystem model DayCent."

Ecological Modelling 209, no. 2 (2007): 203-219.

Tucker, C.]., and P. ]. Sellers. "Satellite remote sensing of primary

production.”" International journal of remote sensing 7.11 (1986): 1395-1416.

Waha, K,, L. G.]. Van Bussel, C. Miiller, and A. Bondeau. "Climate-driven simulation of
global crop sowing dates." Global Ecology and Biogeography 21, no. 2 (2012): 247-

259.

Xia, Youlong, Kenneth Mitchell, Michael EKk, Justin Sheffield, Brian Cosgrove, Eric
Wood, Lifeng Luo et al. "Continental-scale water and energy flux analysis and
validation for the North American Land Data Assimilation System project phase 2
(NLDAS-2): 1. Intercomparison and application of model products." Journal of

Geophysical Research: Atmospheres (1984-2012) 117, no. D3 (2012).

27



