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Non-Optimal Behavior and Estimation of Risk Preferences 

 

Abstract 

Non-optimal behavior due to budget constraint or credit availability is commonly 

observed in agricultural production. Not accounting for non-optimal behavior would 

result in biased estimates of risk preferences. A generalized model is developed in this 

article for estimating agents’ risk attitude accommodating both optimal and non-optimal 

behaviors. Results from Monte Carlo simulations suggest that estimation based on the 

proposed model yields consistent and unbiased risk preference estimates, whereas 

estimation based on the conventional modeling procedure produces biased results. 

 

Keywords: Corner Solution, Non-optimal Behavior, Risk Preferences, Budget 

Constraint, Monte Carlo Simulation, GMM Estimation.    
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Introduction  

Farmers’ risk attitudes have been a topic of interest for several decades in the literature. A 

significant amount of effort in this area has been devoted to estimating risk preferences 

from observed production decisions (see, e.g., Brink and McCarl 1978; Love and Buccola 

1991; Saha, Shumway, and Talpaz 1994; Chavas and Holt 1996; Kumbhakar 2001, 

2002a, 2002b). Early works tried to estimate risk preferences by assuming restrictive 

utility functions (e.g., mean-variance framework). Many of the later works relaxed the 

assumption and used more flexible utility functions (e.g., Saha, Shumway, and Talpaz 

1994). In this extensive literature, the underlying logic is that farmers’ production 

decisions (input use) reflect their risk preferences, which could be recovered from the 

observed production data. This literature usually assumes that farmers choose the optimal 

level of input use so as to maximize their expected utility and further assumes that 

farmers are not constrained in their ability to achieve optimality. This unconstrained, 

optimal behavior assumption is commonly made in the literature. In reality, however, 

farmers’ behavior often systematically deviates from optimality due to the presence of 

various constraints, for example, budget constraints or credit availability, which in turn 

would result in corner solutions in the expected utility maximization problem when the 

constraint becomes binding. In such cases, models not accounting for the non-optimal 

behavior will mis-represent agents’ decision process and mis-specify models in empirical 

analysis, thus resulting in biased estimates of risk preferences. Antle (1987) investigated 

the risk attitudes of farmers in south-central India and indicated that assuming optimal 

behavior in the use of both labor and fertilizer would produce conflicting results as 

farmers were actually constrained in the choice of fertilizer. When agents face binding 
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constraints in the utility maximization problem, the marginal utility that has routinely 

been used as the first order conditions in the literature will be positive, instead of zero, 

which means an increase in production will further increase agents’ utility; in other 

words, the current choice of the agent is not optimal.  

In this article, we develop a model that accommodates both optimal and non-

optimal behavior to address model misspecification and correct bias in risk preference 

estimates. We conduct Monte Carlo simulations to demonstrate the bias in risk preference 

estimates caused by corner solutions and further investigate the performance of bias 

correction of the proposed model. Simulation results show that not accounting for 

nonoptimal behavior  results in significant biases, and the proposed model and estimation 

procedure can consistently estimate risk preference parameters and correct the bias 

arising from non-optimal, corner solutions.  

The rest of the article is organized as follows. We first present the expected utility 

maximization framework and the Monte Carlo experiment design. Then we derive 

models to recover agents’ risk preferences under both optimality and non-optimality 

assumptions, which will be followed by discussions of the simulation results. The final 

section summarizes the findings with some concluding remarks.  

 

The Expected Utility Framework and Experiment Design   

In the Monte Carlo experiment we assume producers maximize their expected utility of 

the end-of-period wealth, which is determined by initial wealth as well as profit made 

during the period. Profit is a random variable subject to the choice of production plan 

(levels of input and output), market prices, and risk associated with production and 
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prices. The production plan can be defined with a production function, reflecting 

producers’ choice of input level and the yield response to input choice. The production 

function is specified as:  

(1) ̃ , 

where ,  and  are parameters and are set as 3.8, 0.2, and 0.6, respectively; ̃  is an 

error term representing production risk and follows a log-normal distribution with mean 1 

and stand deviation 0.2, which means ln ̃  has mean -0.0196 and standard deviation 

0.198;. The end-of-period output price is determined by the initial price, production 

shocks as well as a random component in the following process: 

(2) ln 0.07 0.6 ln 0.4 ln ̃ ̃  ,  

where  is the initial price known to the decision maker at the time of decision and is 

drawn from a log-normal distribution with mean 1 and standard deviation 0.254, which 

means ln  has mean -0.03125 and standard deviation 0.25. ̃  follows a normal 

distribution with a zero mean and a standard deviation of 0.2. This specification and 

parameter values are in line with the price risk of many agricultural products in the 

United States (Harwood et al. 1999; Lence 2009). Once the production and price are 

determined, producers’ end-of-period wealth could be written as:  

(3) ′ , 

where  is the vector of input prices and  is the vector of inputs.  is the initial wealth, 

which will be drawn from uniform distributions with different upper and lower bounds 

under different scenarios to be elaborated shortly. Like , the input prices (	 , ) are 

also drawn from a log-normal distribution with the same parameters.  
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The utility derived from the wealth takes the power functional form widely used 

in the literature: 

(4)  , 

where  is the risk preference parameter.  is the relative risk aversion coefficient and 

is the parameter of interest in this study. It takes the value of 2. The power utility function 

reflects decreasing absolute risk aversion (DARA) and constant relative risk aversion 

(CRRA).  Producers maximize their expected utility by choosing the optimal amounts of 

inputs (x): 

(5) max , 

where ∙  is the expectation operator; and the end-of-period wealth is a random variable. 

As parameters in the production function Eq. (1) and the utility function Eq. (4) are 

known, optimal choice of input level that would maximize producers’ utility can be 

solved from the optimization model in (5). The optimal input solution and the 

corresponding output amount, together with their prices, provide a typical set of 

production data, which will be used in econometric estimation to recover the risk 

preference parameter . 

 

Scenarios of Initial Wealth  

The level of initial wealth constitutes a budget constraint for producers. When the 

constraint is binding, the producer does not have enough financial resources to purchase 

inputs needed to maximize his expected utility, resulting in corner solutions. We assume 
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four different scenarios for initial wealth distribution to generate samples with different 

levels of corner solutions in order to evaluate estimation performance:  

(6)  = 5+20z, 

(7) 	 = 10+40z, 

(8)  = 20+70z, 

(9)  = 80+100z, 

where  follows the standard uniform distribution [0,1].  In the four scenarios, the initial 

wealth steadily shifts to the right with increasingly wider intervals. Higher levels of initial 

wealth will generate less corner solutions. Once the initial wealth is determined, the 

computation of the maximization problem in (5) is performed using the numerical 

quadrature method (Miranda and Fackler 2002, chap. 4; Lence 2009).  

 We generated two million observations for each scenario; a total of eight million 

observations were generated in the simulation. Examination of generated data shows that 

the percentages of corner solutions under the four scenarios (Eqs. (6) through (9)) are 

45.29%, 20.42%, 7%, and 0.46%, respectively.  

 

Models for Estimation 

Estimation of the risk preference parameter relies on the first order conditions (FOCs) of 

the expected utility maximization problem in Eq. (5). In unconstrained optimization, the 

first order conditions of the problem are:  

(10) 0, 

which means: 
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(11) ̃ , ̃
∗ 0, j=A, B, 

where ,
∗ , ∗  are the amounts of inputs generated from the expected utility maximization 

problem in (5), and is defined in Eq. (3). Because of the highly nonlinear form of Eq. 

(11) and its complex distribution, we will use the Generalized Method of Moments 

(GMM) to estimate the first order conditions. By the law of iterated expectations, Eq. 

(11) can be rewritten in the following form for empirical estimation:  

(12) , , ,
∗

. 	,  

where , | 0 ,  is the information set known at the time of producers’ 

decision; n = 1, …, N indexes observations. In order to exclude the solution of +∞ for , 

we append a scaling factor ,   to Eq. (12) and rewrite it as follows: 

(13) , , / , ,
∗

. 	.   

Note that the scaling treatment is customary in GMM estimations. The treatment helps 

alleviate singularity problems in the computation of the weighting matrix in GMM 

estimations when original moment conditions are badly scaled.  

To increase estimation efficiency, the FOCs in Eq. (13) can be jointly estimated 

with the production technology:  

(14) , log log log ,
∗ log ,

∗ , 

We have derived the equations (13) and (14) for estimation to recover the risk preference 

parameter  based on the assumption that producers face no constraints in the expected 

utility maximization, which is routinely practiced in the literature. The producer’s input 

decisions ,
∗ , ,

∗  should be optimal solutions to the maximization problem. However, 

in the real world, agents’ decisions may not be optimal due to various constraints. In this 
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Monte Carlo experiment, producers’ optimization process was subject to the budget 

constraint: 

(15)  , ,
∗

, ,
∗

, .  

When the budget constraint becomes binding in solving the maximization problem, the 

solutions derived are corner solutions. In this case, ,
∗ , ,

∗  are not truly optimal; it is 

only “optimal” under the constrained optimization. Producers would have used more 

inputs that would further increase their expected utility; the marginal utility in the first 

order conditions in Eq. (10) would be positive instead of zero. The resulting equations 

(11) – (13) will systematically deviate from zero, and the parameter estimates based on 

the unconstrained first order conditions will be biased. The data generated from our 

Monte Carlo experiments under different scenarios of initial wealth have varying degrees 

of corner solutions. To address this nonoptimal behavior, we define a Lagrangian 

function for the maximization problem that incorporates the budget constraint (15): 

(16) ′ , 

Maximizing the expected utility requires that:  

(17) 0, j = A, B. 

(18) ′ 0.  

Eq. (18) is the complementary slackness condition of the Lagrangian; 	is the Lagrange 

multiplier and 0.  Eq. (17) can be rewritten as: 

(19)  . 

	could be interpreted as marginal utility. Substitute (19) into (18), we have: 
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(20) ∗ ′ 0. 

Eq. (20) can be used as moment conditions for estimation to recover the parameters of 

interest. It can be rewritten as: 

(21) ̃ , ̃
∗ ∗ , ′ 	 0. 

Eq. (21) means that, when the marginal utility is positive, the budget constraint must be 

zero ( 0), i.e., the budget constraint is binding, and corner solution occurs. 

When the budget constraint is not binding ( 0), Eq. (21) suggests that the 

marginal utility is zero, in which case interior solution results and optimality is achieved. 

For estimation purpose, Eq. (21) can be rewritten as: 

(22) , , ,
∗

. 	 , ′ 	,  j=A,B. 

,  is the random error with mean zero. Again, we include a scaling factor , 	as in (13) 

to facilitate estimation:  

(23) , , / , ,
∗

. 	 , ′ 	,  j=A,B. 

This equation captures both binding and non-binding budget constraints and provides a 

unified framework for estimation of agents’ risk attitude. It can be estimated jointly with 

the production technology in Eq. (14).   

 For GMM estimation, we define the conditional moment restrictions as follows:  

(24) , | 0, 

where , , 		 , 		 , ′  or , , 		 , 	 , ′ ,  is a 7-

dimensional vector , , , , , , , , ,
∗ , ,

∗ ′, and  is a 4-dimensional parameter 

vector , , , ′ to be estimated. The GMM estimation is implemented based on a 

set of unconditional moment restrictions implied by (24): 
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(25) , ⨂ 0, 

Variables in the information set  known at the time of decision are used as instruments. 

The parameters estimates 	are derived by minimizing a quadratic form with respect to 

the unknown parameters (Hansen, 1982): 

(26) , , ′ , , , 

where , , 1⁄ ∑ , ⨂  and  is a positive definite weighting 

matrix.  

 

Results and Discussions 

We first estimated the conventional first order conditions in Eq. (13) jointly with Eq. (14) 

under four scenarios with varying corner solutions. For each scenario, four sample sizes 

(100, 500, 1,000 and 10,000) are used. The sample size of 10,000 is used to examine how 

well the estimates converge to the true values in the large sample. The estimation results 

are presented in Table 1.  

 

Table 1: Estimation Results Using Conventional Approach 

 

Initial Wealth  

 

 

Sample  

Size 

Parameter Estimates 

Utility Technology 

    

Scenario 1 

Corner:45.29% 

100 5.512 

(3.14,10.21) 

3.592 

(3.12,4.03) 

0.207 

(0.19,0.22) 

0.621 

(0.58,0.67) 

 500 4.583 3.596 0.206 0.619 
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(3.65,5.74) (3.42,3.77) (0.20,0.21) (0.60,0.64) 

 1,000 4.417 

(3.75,5.22) 

3.595 

(3.47,3.72) 

0.206 

(0.20,0.21) 

0.618 

(0.61,0.63) 

 10,000 4.243 

(3.98,4.47) 

3.597 

(3.56,3.64) 

0.206 

(0.20,0.21) 

0.618 

(0.61,0.62) 

Scenario 2 

 

100 4.479 

(1.88,9.46) 

3.626 

(3.20,4.10) 

0.205 

(0.19,0.22) 

0.613 

(0.58,0.66) 

Corner:20.42% 500 3.351 

(2.34,4.59) 

3.657 

(3.48,3.85) 

0.203 

(0.20,0.21) 

0.608 

(0.59,0.63) 

 1,000 3.201 

(2.50,3.97) 

3.663 

(3.53,3.80) 

0.20 

(0.20,0.21) 

0.608 

(0.60,0.62) 

 10,000 3.047 

(2.84,3.29) 

3.667 

(3.62,3.71) 

0.202 

(0.20,0.20) 

0.607 

(0.60,0.61) 

Scenario 3 100 4.233 

(0.92,10.52) 

3.642 

(3.22,4.09) 

0.204 

(0.19,0.22) 

0.610 

(0.58,0.65) 

Corner: 7% 500 2.811 

(1.56,4.39) 

3.691 

(3.51,3.89) 

0.201 

(0.20,0.21) 

0.604 

(0.59,0.62) 

 1,000 2.615 

(1.75,3.61) 

3.699 

(3.57, 

0.201 

(0.20,0.20) 

0.603 

(0.59,0.61) 

 10,000 2.407 

(2.14,2.69) 

3.710 

(3.67,3.76) 

0.201 

(0.20,0.20) 

0.602 

(0.60,0.61) 

Scenario 4 100 5.091 3.637 0.203 0.610 
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(-0.77,15.73) (3.23,4.07) (0.19,0.22) (0.58,0.64) 

0.46% 500 2.701 

(0.61,5.40) 

3.701 

(3.52,3.88) 

0.201 

(0.20,0.21) 

0.603 

(0.59,0.62) 

 1,000 2.372 

(0.92,4.10) 

3.714 

(3.59,3.84) 

0.201 

(0.20,0.20) 

0.601 

(0.59,0.61) 

 10,000 2.099 

(1.68,2.47) 

3.721 

(3.69,3.76) 

0.200 

(0.20,0.20) 

0.600 

(0.60,0.60) 

Note: The table reports the median and the 2.5% and 97.5% quantiles (within 
parentheses) for sample sizes of 100, 500, 1,000, and 10,000, respectively. True values of 
the parameters are 2 , 3.8, 0.2, 0.6.  
 

The results suggest that production function parameters, especially the slope parameters, 

can be relatively well recovered even in small samples, and in scenario 1 that has the 

most corner solutions. This is because the moment conditions for the technology 

parameters are linear, and the parameters do not directly depend on behavioral 

assumptions. However, comparisons across scenarios do show that estimates in scenarios 

that have more corner solutions are less precise because of the spillover effects from the 

estimation of the first order conditions which include  and .   

 The risk preference parameter estimates for  are clearly biased in the first two 

scenarios where the values of the 2.5% and 97.5% quantiles of the simulation results in 

parentheses show that the 95% confidence intervals do not cover the true value of 2.  In 

scenario 3 that has 7% corner solutions, the 95% confidence interval in the large sample 

does not contain the true value, either. But in scenario 4 which has only 0.5% corner 

solutions, the 95% confidence intervals contain the true value under each sample size. In 



14 
 
 

this scenario, the spread narrows down substantially from (-0.77, 15.73) in the sample 

size of 100 to (0.61, 5.40) in the sample size of 500. The median value approaches the 

true value of 2 in the large sample, which suggests that consistent and unbiased 

estimation could be achieved when there are no corner solutions.  

 

Table 2: Estimation Results Using the New Model 

 

Initial Wealth  

 

 

Sample  

Size 

Parameter Estimates 

Utility Technology 

    

Scenario 1 100 6.406 

(0.87,32.53) 

3.486 

(2.34,4.13) 

0.211 

(0.19,0.27) 

0.631 

(0.56,0.80) 

 500 2.813 

(1.11,5.51) 

3.68 

(3.46,3.91) 

0.202 

(0.19,0.21) 

0.606 

(0.58,0.63) 

 1,000 2.350 

(1.27,3.69) 

3.707 

(3.56,3.86) 

0.201 

(0.20,0.21) 

0.603 

(0.59,0.62) 

 10,000 2.001 

(1.71,2.36) 

3.725 

(3.68,3.78) 

0.200 

(0.20,0.20) 

0.600 

(0.60,0.61) 

Scenario 2 100 5.546 

(0.55,26.53) 

3.535 

(2.45,4.11) 

0.207 

(0.19,0.25) 

0.621 

(0.57,0.75) 

 500 2.642 

(0.97,4.74) 

3.688 

(3.48,3.90) 

0.202 

(0.20,0.21) 

0.604 

(0.59,0.62) 

 1,000 2.294 3.709 0.201 0.602 
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(1.18,3.54) (3.57,3.86) (0.20,0.21) (0.59,0.62) 

 10,000 2.024 

(1.17,2.42) 

3.724 

(3.68,3.77) 

0.200 

(0.20,0.20) 

0.600 

(0.60,0.60) 

Scenario 3 100 5.347 

(0.02,21.70) 

3.575 

(2.81,4.10) 

0.205 

(0.19,0.23) 

0.616 

(0.57,0.69) 

 500 2.601 

(10.69,4.78) 

3.694 

(3.51,3.90) 

0.201 

(0.20,0.21) 

0.604 

(0.59,0.62) 

 1,000 2.286 

(1.08,3.71) 

3.707 

(3.57,3.85) 

0.201 

(0.20,0.20) 

0.602 

(0.59,0.61) 

 10,000 2.032 

(1.61,2.46) 

3.723 

(3.68,3.72) 

0.200 

(0.20,0.20) 

0.600 

(0.60,0.60) 

Scenario 4 100 5.900 

(-1.34,23.59) 

3.601 

(3.03,4.09) 

0.204 

(0.19,0.22) 

0.613 

(0.58,0.66) 

 500 2.733 

(0.23,5.66) 

3.699 

(3.52,3.88) 

0.501 

(0.20,0.21) 

0.603 

(0.59,0.62) 

 1,000 2.331 

(0.62,4.29) 

3.715 

(3.59,3.84) 

0.200 

(0.20,0.20) 

0.601 

(0.59,0.61) 

 10,000 2.037 

(1.58,2.55) 

3.723 

(3.69,3.77) 

0.200 

(0.20,0.20) 

0.600 

(0.60,0.60) 

Note: The table reports the median and the 2.5% and 97.5% quantiles (within 
parentheses) for sample sizes of 100, 500, 1,000, and 10,000, respectively. True values of 
the parameters are 2 , 3.8, 0.2, 0.6.  
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Table 2 presents the results from estimations using the unified model proposed in this 

article. The results show that, in all scenarios and sample sizes, the 95% confidence 

intervals for the risk preference parameter cover the true value, and the parameter could 

be accurately estimated in large samples. The estimation performances are significantly 

improved, especially in the first two scenarios where numbers of corner solutions are 

large. In scenario 1 where corner solutions account for 45% of the total observations, the 

new model fully corrects the bias due to nonoptimal behaviors and achieves a narrow 

95% confidence interval (1.71, 2.36) in the large sample. Compared to the accurate 

estimate, the uncorrected model produces an estimate of 4.243 in the large sample (table 

1), two times higher than the true value. Notice that other scenarios in table 2 have 

slightly lower performances in terms of convergence speed and 95% confidence intervals. 

This is likely due to the increasing values of the budget constraint multiplier ,

. The increasing initial wealth in these scenarios increases the variances of the 

moment conditions estimated. However, the impact is minimal and the estimators are 

consistent and unbiased. Estimation efficiency could be further improved by first 

estimating risk separately using a seminonparametric approach (Wu and Guan, 2014).  

 The technology parameters can be estimated with very high performances. The 

slope parameters converge quickly to the true value with no exceptions in all scenarios. 

The estimations are highly efficient. The intercept  is slightly biased downward, which 

was actually expected. The bias results from the logarithmic transformation of the error 

term ̃  of the Cobb-Douglas function. The bias due to the logarithmic transformation 

could be analytically calculated using moment generating functions. The corrected  

converges to the true value 3.8.   
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Conclusions 

Agents often face constraints when making economic decisions. As a result, non-optimal 

economic behavior may result. Non-optimal behavior could exist for various reasons, and 

is commonly observed in real farm production. Not accounting for the presence of non-

optimal behavior in economic analysis could produce biased results. In this article, we 

relaxed the assumption of optimal behavior in economic decisions and developed a 

general, unified model for estimating agents’ risk preferences, accommodating both 

optimal and non-optimal behaviors due to budget constraints. We conducted Monte Carlo 

simulations to evaluate the performance of the proposed approach and compared the 

results with those using the conventional approach that does not account for the 

systematic deviation from optimality. The new approach yielded consistent and unbiased 

risk preference estimates under both binding and nonbinding scenarios, whereas the 

conventional approach produced biased results when binding constraints cause non-

optimal behavior. The biases were successfully corrected using the unified modeling 

framework proposed in this study.  
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