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Abstract 

 

Recent development in production risk analyses has raised questions on the conventional 

approaches to estimating risk preferences. This study proposes to identify the risk separately 

from input equations with a seminonparametric estimator. The approach circumvents the issue of 

arbitrary risk specifications. Meanwhile, it facilitates analytical derivation of input equations. 

The GMM estimation method is then applied to input equations to estimate risk preferences. The 

procedure is validated by a Monte Carlo experiment. Simulation results show that the proposed 

method provides a consistent estimator and significantly improves estimation efficiency.  
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1. Introduction 

A considerable literature has attempted to measure agents’ risk preferences using information on 

observed production decisions. This literature directly estimates risk preference parameters from 

behavioral equations derived under the expected utility maximization framework (Saha et al. 

1994). To elaborate, consider the following general risk decision problem: 

(1)     ∫ ( ) ( | )     

where x is a vector of choices;  ( ) represents a general utility function of a random outcome   

satisfying standard properties,      and      ;  ( | ) is the probability density function of   

conditional on x. Each function is assumed to depend on unknown parameters requiring 

estimation:    (   ), where   is the parameter vector, e.g., of revenue;    ( |   ), where 

  is the parameter vector of the probability distribution function; and    (   ), where   is the 

vector of risk preference parameters. The first order condition for utility maximization is 

(2) ∫  ( )   ( |   )    , 

which dictates optimal input choice decisions. The behavioral equations are determined by the 

interactions of  ( ),  ( ), and  ( ) functions.
1
 It means that the optimal input equations could 

confound producers’ risk preferences, revenue structure and revenue risk. Since the information 

on individual response to risk is embodied in the behavioral equations, it is typical that these 

behavioral equations are derived and estimated to recover parameters of interest, in particular, 

risk preference parameters.   

Recovering the unobservable risk preferences in (2) using production data has received 

much attention in the applied risk literature. This paper contributes to this body of research by 

proposing an innovative estimation method to generate an efficient estimator of risk preference 

                                                           
1
 Behavioral equations are defined by the first order condition, and both of them are used exchangeably throughout the paper.   
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parameters. This method is based on a separate estimation of parameters   in the risk distribution 

  with a general approximation approach. Our method is validated by a Monte Carlo experiment 

with the risk calibrated to reflect realistic agricultural production. Results show that the estimator 

provides consistent estimates and increase estimation efficiency compared to existing methods.  

 

2. Prior Works 

Initial studies estimating risk preferences from actual production focused on estimating the level 

of risk aversion by imposing a restrictive utility structure while estimating behavioral equations 

alone (e.g. Brink and McCarl 1978). The subsequent development by Love and Buccola (1991) 

emphasized estimation efficiency with a joint estimation of behavioral equations and production 

technology. The joint estimation approach is now widely used in the literature. Starting with 

Saha, Shumway, and Talpaz (1994), more flexible utility functional forms were used to reveal 

not only the level of risk aversion, but also the structure of risk aversion (i.e.,, the changes in risk 

aversion relative to changes in wealth). However, increasing flexibility of utility function created 

a challenge for deriving a tractable system from behavioral equations that is estimable. To 

achieve tractability with a flexible utility specification, applied economists proposed various 

approaches. A standard practice was to place a priori restrictions on the risk distribution. Just 

and Just (2011) commented on several representative studies that used restrictive risk 

specifications.
2
 We include four more recent studies which pose the similar restrictions on risk 

under a general assumption on risk preferences (Table 1). For instance, Kumbhakar (2002) and 

Kumbhakar and Tvetaras (2003) assumed non-stochastic prices and did not use any specific form 

of utility function. Isik and Khanna (2003) and Eggert and Tveterás (2004) accounted for 

different types of absolute and relative risk aversions and did not address price risk. In general, 
                                                           
2
 See table 1 in Just and Just paper (2011).  
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the flexibility in the utility specification always comes at the expense of flexibility in the risk 

specification.  

The flexible utility function could improve model fit and allow the data to finely reveal 

the true relationship between wealth and risk aversion. However, some restrictive assumptions 

on risk imposed by researchers do not seem reasonable. As a result, the empirical findings in the 

literature show widely varying estimates that are theoretically implausible. Along with the erratic 

and contradictory results, many have casted serious doubt on whether flexible functional forms 

are desirable. One criticism concerns identification. Just and Just (2009) argued that since 

behavior equations (eq.2) confound risk preferences and risk through multiplication with 

common variables in each, there is an infinite set of paired specification of risk preferences and 

risk which will fit behavior. In other words, utility function with widely differing risk 

preferences accommodated with different risk specifications can imply the same behavior. 

Therefore, any incorrect or arbitrary risk specification would lead to inconsistent risk preference 

estimates. On the other hand, if both the risk preference and risk functions are general enough to 

admit all possible specifications, parameter identification would be difficult to attain from eq.2. 

To obtain risk preference estimates, one has to impose restrictions on the risk function which 

would indirectly determine risk aversion. Researchers have struggled to balance flexibility and 

identification.  

Lence (2009) also raised the issue of parameter identification in a flexible utility 

functional form. The estimation is based on a system of unconditional moments implied by eq.2:  

(3)  (  ( )  )   . 

No specific distribution was used in the estimation. He conducted a Monte Carlo experiment 

assuming the hyperbolic absolute risk aversion (HARA) utility function and concluded that the 
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structure of risk aversion cannot be estimated with reasonable precision at selected sample sizes. 

Wu and Guan (2013) replicated his experiment and found that consistent and unbiased 

estimation is possible but efficiency needs improvement for  empirical application. As argued by 

Carrasco and Florens (2000), efficiency loss may be a result of employing a finite number of 

unconditional restrictions, since the conditional moment restrictions imply an infinite number of 

unconditional restrictions (Dominguez and Lobta, 2004). In the context of flexible specifications 

for risk preferences, restrictive risk specifications could result in inconsistent and biased 

estimates, while no restrictions on risk specification could generate consistent but inefficient 

estimates.  

The purpose of this study is to propose a multistep estimation method to resolve the 

dilemma. The confounding effect in the first order conditions requires a method to identify the 

risk preferences and the risk separately. We will estimate risk with a seminonparametric (SNP) 

density estimator. The SNP approach approximates the conditional distribution of risk based on a 

series of expansion rather than attempting to establish a parametric model. Such a nonparametric 

approach can obtain very general approximations by increasing the number of terms in 

expansion. Good approximation can circumvent the influence of the arbitrary choice of risk 

specifications on risk preference estimates. Importantly, this approximation facilitates derivation 

of analytical expressions of the first order condition through advanced numerical integration 

methods. An estimable system of equations based on conditional moment restrictions instead of 

unconditional restrictions can be constructed, which will avoid potential efficiency loss. The 

generalized method of moments (GMM) is applied to the model consisting of the production 

function and the system of the first order conditions. A Monte Carlo experiment is conducted to 
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examine the performance of the method. The results suggest that the proposed method can 

achieve consistent and efficient estimation of risk preferences. 

Current empirical practices in estimating risk preferences face various challenges,
3
 which 

calls the entire scientific endeavor into question. The study contributes to the literature by 

addressing a major challenge — the failure of identification. We identify the risk distribution by 

estimating additional relationships that do not depend on the first order condition. Meanwhile, 

the SNP method does not impose any a priori restrictions on risk distributions. Improved 

efficiency ensures practical use of the approach for empirical production analysis. The proposed 

approach will hopefully help revalidate and revive production risk analysis.  

 

3. A Multistep Estimator  

Agricultural producers face risk from uncertain market prices and production fluctuation 

reflected in revenue:  

(4)      , 

where   is output prices, unknown when factor input choices are made, and   is production, 

affected by random production shocks such as weather, disease, or other events. The two risk 

components affect revenue risk independently or interactively. Revenue risk causes randomness 

in utility. Producers form expectations about the utility distribution and choose the optimal inputs 

accordingly. Rather than separately dealing with each risk source, we focus on the aggregate 

revenue risk. Since all probability information about any random process is completely 

characterized by its density, it is natural to estimate the density  ( | ), conditional on the 

information set   at the time of input choices. We consider a nonparametric method to 

                                                           
3
 Just et al. (2010) provides an overview of the production risk literature and discussed the recently discovered challenges, which include the 

failure of separately identifying risk and risk preferences through joint estimation, measuring the impact of wealth on risk behavior, unobservable 
producers’ subjective perceptions, and so on.    
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approximate the risk distribution. Compared to the parametric approach, the SNP density 

estimator employs a Hermite series expansion to approximate the conditional density. The 

method is first proposed by Gallant and Tauchen (1989) in connection with an asset pricing 

application. The idea is that any smooth density function can be approximated arbitrarily close 

by a Hermite polynomial expansion. To describe the SNP, consider a scalar case of  . The SNP 

estimator is based on the class of densities: 

(5)    {     ( |   )  [∑    
  

   ]
 
 ( |    )     }, 

   {    (          ) ∫   ( |   )    }, 

where  ( ) is a normal density with conditional mean   and variance   , and the formula in the 

parentheses is a Hermite polynomial with degree   in  , which is defined as   (   )  ⁄ .   is 

the parameter vector to be estimated with    set at 1 for identification. In the approximation, the 

power function is to ensure that the density function is positive everywhere. In the homogeneous 

case, the distribution of z does not depend on the known information such as any variables in  .
4
 

This density will generate a Gaussian if   takes zero. When   is greater than zero, the shape of 

the Gaussian density will be modified by a polynomial in  . The shape characteristics of the 

standardized residual   will determine the distribution of   given  . Higher order terms in   

accommodate deviations from Gaussianity such as skewness and kurtosis. The shape 

modifications thus achieved are rich enough to approximate densities from a large class that 

includes densities with fat, t-like tails, densities with tails that are thinner than Gaussian, and 

skewed densities (Gallant and Nychka 1987). By increasing  , an SNP model can achieve 

arbitrarily accurate approximation of any conditional density.  

                                                           
4In time series applications, data are always markedly conditionally heteroskedastic. The distribution z will depend on the past realizations 
(Gallant and Tauchen 1989; Gallant, Hsieh, and Tauchen 1997). 
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The model derived from nonparametric series expansions can be estimated by applying 

classical parametric estimation and inference procedures. Specifically, the parameters are 

estimated by a standard maximum likelihood procedure. We minimize the log-likelihood 

function: 

(6)   ( )  (   )⁄ ∑    [  ( |   )] 
   , 

s. t. ∫  ( |   )    . 

The integration in the constraint can be computed with a numerical method. The truncation point 

  is chosen with a model selection strategy such as the Bayesian information criterion (BIC). 

Under reasonable regularity conditions, the estimator is consistent and efficient (Gallant and 

Tauchen 1989). Note that the random process can be transformed to improve the stability of 

computations or approximation degree. It has been found that proper scaling is essential in 

computations to avoid cases where extremely large values of the polynomial part of the 

conditional density are required to accommodate deviations from Gaussianity. The consistency 

results are not affected by transformation (Gallant and Tauchen 1990). In applications, raw data 

are often centered and scaled or logarithmized. The location parameter   can also depend on the 

known variables in  .  

 Let  ̃ ( |   ̃)  denote the SNP estimator of the conditional density where  ̃   are 

estimators of all parameters in eq. (5). Replacing the conditional density with the estimator, the 

first order condition (2) becomes: 

(7) ∫  ( )   ̃ ( |   ̃)    , 
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It is relatively easy to compute the expectation of a nonlinear function given the density function 

and density parameter values. We calculate the integral with the numerical integration method.
5
  

In the case of one dimension random process, the integral is a prescribed weighted sum of 

function values at the prescribed nodes. The choice of quadrature nodes and weights varies 

across different classes of numerical integration.
6
 We adopt Gaussian quadrature method to 

choose the nodes and weights since this method is efficient when objective functions possess 

continuous derivatives. When the weight function is the probability function, Gaussian 

quadrature essentially “discretize” the random variable   by replacing it with a discrete random 

variable with mass points    and probability    that approximate   in the sense that both random 

variables have the same moments of order less than 2q: 

(8) ∫     ∑   
   

 
    , for              

where    and    are quadrature nodes and the respective quadrature weights, and   is the given 

order of approximation. As for our case,    is the probability associated with the normal 

distribution  . Efficient and specialized numerical routines for computing these Gaussian 

quadrature nodes and weights are available in the CompEcon Toolbox developed by Miranda 

and Frackler (2002). Given the mass points and probabilities of the discrete approximant, the 

expectation of any function of   may be approximated using the expectation of the function of 

the discrete approximant, which requires only the computation of a weighted sum (Miranda and 

Fackler, 2002). Therefore, eq.7 can be approximated as: 

(9) ∫  ( )   ̃ ( |   ̃)   ∑   (  )  
 {[∑  ̃ (  )

  
   ]

 

  }   
 
   , 

                                                           
5 In other applications, the SNP estimation requires high dimensional integration that cannot be computed accurately with analytical numerical 

methods. In those applications, we replace the analytical integration by simulated integration.  
6 There are three classes of numerical integration: Newton-Cotes methods, Gaussian quadrature methods, and Monte Carlo and quasi-Monte 
Carlo integration methods (Miranda and Fackler, 2002). 
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where    (    )  ⁄ . The approximation also analytically expresses the condition moment 

restrictions, which will facilitate to construct an estimable system of equations. The unknown 

parameters such as   can be estimated by using the GMM estimator. Assume that production 

function is presented by  

(10)    (      ),  

where   is output,   is the input amounts used,   are a vector of technology parameters, and    

is a random error term representing production risk. In order to improve estimation efficiency, 

we adopt a joint estimation approach to estimate the production function (10) and the first order 

condition (9). Under fairly general conditions, the estimator [ ̂  ̂] is consistent and improves 

efficiency.  

 

4. Monte Carlo Study 

Given the methodology described in the previous section, we will investigate whether the 

method can identify risk preferences and achieve a reasonable performance compared to the 

Lence method in terms of estimation efficiency. The hypothesis is evaluated in Monte Carlo 

simulation. Data is generated according to the postulated decision-making model and is then 

used to estimate risk density and the underlying utility and technology parameters. We report 

Monte Carlo evidence on the finite-sample performance of our method based on the estimation 

procedure outlined above.  

 

4.1 Data Generating Process 

The data generating process is constructed to be consistent with a representative producer’s 

production decision-making model. The experimental design largely follows Lence (2009) 
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unless otherwise stated. The producer is assumed to maximize his expected utility conditional on 

random, end-of-period wealth: 

(11)   ( )                    , 

where r is the vector of variable input prices, known at the time of decision making; and   is the 

agent’s initial wealth. The production function (10) are explicitly specified as  

(12)       
    

    , 

where       and   are parameters with values of 3, 0.2, and 0.6, respectively. Unlike Lence 

(2009),    is assumed to follow a gamma distribution: 

(13)     (   ), 

where   and   are shape and scale parameters. Lence (2009) uses an empirical distribution 

derived from a set of Iowa corn yield data. The general gamma specification facilitates 

replication of results without relying on a specific dataset. It is also a reasonable choice for 

modeling random output (Saha 1993). Parameter values are set at          and           

ensuring that output shocks have a mean of one and standard deviation of 0.310.  

The end-of-period price is assumed to be generated from the following process: 

(14)   ( )               (  )       (  )     ,  

where    is the initial price at the time of decision and known to the decision maker;    follows a 

zero-mean normal distribution with a standard deviation of 0.3. The level of price risk is 

associated with many agricultural products in the United States, such as edible beans, lettuce, 

and rice (Harwood et al. 1999). Since output shocks tend to have a negative impact on output 

prices, the   (  ) term is added into the equation. Moreover, output shocks    are independent of 
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  . The coefficients in eq. 14 are generated from regressions for historical corn price and yield 

data.
7
  

The utility function  ( ) takes the HARA form: 

(15)  ( )  
(     )    

    
 , 

where    and   are risk preference parameters to be recovered in this study. This functional form 

is flexible enough to depict decreasing, constant, or increasing relative risk aversion (DRRA, 

CRRA, and IRRA) if parameter    is negative, zero, or positive, respectively. Producers are 

assumed to be maximizing their expected utility by choosing the optimal amounts of inputs (x): 

(16)      { [  ( )]}. 

 { } is the expectation operator. With certain values for parameters in eq. (15), optimal input 

amounts can be derived by solving models (16), which in turn are used to generate yield from eq. 

(12). The computation of the maximization problem in (16) is performed using numerical 

integration methods. Writing the optimization problem (16) with respect to     and     as: 

(17)       
[ (                           )] 

 ∬ (           )  (  )  (  )      , 

=
∑ ∑  (               )    

  
   

 
   

 
, 

where   ( ) and   ( ) are the marginal probability density functions of output and price shocks. 

Since the price shock follows a lognormal distribution, we use Gaussian quadrature method to 

calculate the nodes      and weights      (Miranda and Fackler 2002). Nodes and weights are 

determined by a ten-point Gaussian quadrature, which suggests the first 19 moment matching 

                                                           
7 Two regressions were run by Lence (2009). The dependent variable in the regressions is the national farm gate corn price deflated by CPI 

(1982-84=100). Variable   (  ) is the residual of the regression of   (      )on a constant and the time, where       is the U.S. yield in the first 

regression, while it is the farm-level yield in the second regression.  Details can be found in the appendix of Lence.  
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conditions are satisfied. Further, we use Monte Carlo integration method to calculate the integral 

with respect to   , for the routine for computing the Gaussian mass points and probabilities is not 

readily available for two-dimensional gamma distribution.10,000 random samples (Q=10,000) 

for     will be generated from the gamma distribution (13) and used in eq. 17 to calculate the 

expected utility. Finally, numerical optimization of the objective function (17) is solved to 

generate the optimal inputs    and   . 

For each group of observed variables [           ], there will be a corresponding input 

set [  ,   ]. The initial wealth is simulated with              , where the random variable 

  follows the standard      (0.87, 1.27) distribution. All prices are scaled by setting their 

unconditional means equal to one. The prices known at the time of decision (i.e.,          ) are 

drawn from a log-normal distribution with unconditional mean of one; and the logarithms of 

prices have mean -0.03125 and variance 0.0625. For each group of simulated observed variables, 

we will calculate optimal inputs for three scenarios which correspond to three structures of risk 

aversion. Three sets of values ([-5, 2]; [0, 3]; and [43, 6]) are assigned to (     ) to represent 

DRRA, CRRA, and IRRA, respectively.
8
 The parameterizations are chosen so that they all yield 

an average value of relative risk aversion close to 3. In each scenario, the output, the end-of-

period wealth, end-of-period price, and revenue are calculated from eqs. (4), (11), (12) and (14) 

with the randomly drawn values of    and   . The input and output quantities, together with their 

prices, provide a typical set of production data [                         ], which are then 

used to recover risk preference parameters for each scenario.
9
 The number of Monte Carlo 

                                                           
8Different from Lence (2009) setup, for the DRRA case, we assume [     ]take [-5, 2] rather than [-18.4, 1]. We found that setting [     ]as [-

18.4, 1] would result in a large amount of corner solutions due to the binding constraint(        
          

         ), which would bias the 

estimates of risk preferences.  
9There is more detailed discussion on the experimental design in Lence (2009). 
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replications is 1000 for each scenario. Two sizes-500 and 2000 observations- are used for 

evaluating the finite sample performance and the asymptotic behavior of the estimator.   

 

4.2 Estimation 

To estimate the conditional density of revenue  , we use the nonparametric estimator with a 

Hermite series expansion. As discussed above, we take logarithms of the revenue to better 

approximate its distribution. Various descriptive statistics computed from   and     ( ) samples 

randomly drawn are displayed in Table 2. Statistics show that unconditional revenue distribution 

has a heavy tail and significant departures from a Gaussian specification as indicated by the 

Kolmogorov-Smirnov (KS) test. The logarithmic transformation substantially changes the 

original distribution and makes it more like a normal disribtuion, although KS test still rejects the 

null hypothesis of a normal distribution. To approximate the conditional revenue density, we 

assume location parameter   is dependent on known variables. Specifically, we model the mean 

of    ( )  by taking a linear function of the price and inputs:
10

 

(18)    ( )         (  )      (  )      (  )   . 

In the first step, we will estimate the parameters in eq. (18) by an ordinal least square estimator, 

and estimates will be used to calculate the sample mean  ̂ of    ( ) and the residual  ̂. In the 

second step, the conditional density function of    ( ) is approximated by a Hermite expansion 

series as 

(19)    {     (   ( )|   )  [∑     ̂
  

   ]
 
 (   ( )| ̂   )     }, 

   {    (          ) ∫   (   ( )|   ) (   )   }, 

                                                           
10 A more flexible model can be specified, such as the quadratic model, but the correct one can be discerned with nested test statistics.    
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Other parameters   and   can be estimated by the maximum likelihood estimation as shown in 

eq. 6. One advantage of two-step estimation for revenue density function is that the correct 

model for the conditional mean of    ( )  can be discerned. Eqs.(18) and (19) can also be 

simultaneously estimated to improve efficiency.  

Now, we proceed to estimate parameters in the utility function by the GMM procedure. 

First, we discuss the model based on unconditional moments as our basis of comparison. The 

first order condition for optimization of (16) is: 

(20)   [(                 )    (    
      )| ]   , l=A and B, 

Unconditional restrictions implied from eq. 20 are used to construct an estimable system of 

equations. In addition, a scaling factor in moment conditions is needed to address the 

degeneration problem, and the estimation is based on a system of regression equations 

corresponding to the production function and  the first order condition: 

(21) {
    (  )     (  )       (  )       (  )   

(  
           

     
)
   

 (    
      )                    

  

The first equation is the logarithmic transformation of the production function (12).  

 In contrast, eq. 20 will be derived by numerical integration after the conditional density 

function of    ( ) is estimated. Therefore, our model is based on conditional moment restrictions. 

Likewise, we construct a model to jointly estimate production function and risk preference:  

(22) 

{
 
 

 
 

    (  )     (  )       (  )       (  )   

∑

{
 

 (  
  ̃   

 ̃   
 ̃   

 ̃  
            

     
)

   

 (    
    ̃   

 ̃   
 ̃   

 ̃       ) [∑  ̃ (  )
  

   ]
 

  }
 

 
  
                    

 

where    and    are nodes and weights for the variate z with mean zero and variance  ̃ . We use 

10-degree Gaussian quadrature scheme to approximate it.    
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 The risk preference parameters   and the technology parameters   can be estimated by 

using a sample of N observations on [                 ] . We adopt the two-step GMM 

estimator. The set of instruments used for each of the equations above consists of the vector 

  [                   ]. In the first step the weighting matrix is derived directly from Z, 

while in the second step we set the weighting matrix as the estimate of covariance of the moment 

conditions.  

 

5. Monte Carlo Results 

5.1 Estimation of revenue risk density  

The SNP procedure calculates the frequencies of all kinds of model choices based on BIC 

among 1000 replications. The frequency results show that, not surprisingly, the Gaussian 

specification dominates other choices. Figure 1 plots the mode of  ( | ); over plotted for 

comparison is SNP fits when K is set at 0 or 6. Figure 1 indicates that SNP(0) specification (K=0 

in eq. (19)) can fit the risk distribution very well. The SNP(6) specification has a smaller location 

parameter in the sample size 500, while has a slightly greater location parameter in the sample 

size 2000. To choose the optimal dimension in the SNP, one can either let BIC automatically 

decide the SNP dimension in each replication, or, one can use a "posterior" fixed SNP 

specification. In views of the dominance of the Gaussian specification, we use the fixed SNP for 

all replications. That is,   is fixed at 0 to estimate other parameters using the maximum 

likelihood method.  

Parameter estimation results are summarized in table 3. The table contains the median 

and the 2.5% and 97.5% quantiles (within parentheses) for parameter estimates in eqs. 18 and 19. 

In the following discussion, the 2.5-97.5% quantile intervals are referred to as the 95% 
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confidence intervals (CIs). To save space, outcomes for DRRA and CRRA are not reported, as 

they are similar to IRRA results. Table 3 shows that parameters in revenue mean and density 

functions can be accurately estimated, even with samples of 500 observations. Median estimates 

of   ,   ,   , and   are nearly at the true values and the 95% CIs are narrow and very close to the 

true value. The estimate of    is a little less precise and is slightly underestimated, but the gap 

between the true values and the bound of the 95% CI is very small. As expected, the precision of 

parameter estimates, as measures by the width of 95% CIs, increases with the sample size.  

 

5.2 GMM Estimation  

Tables 4 and 5 report summaries of measures of central tendency of the estimators of technology 

and risk preference parameters along with 2.5% and 97.5% quantiles using the GMM estimation 

method based on the unconditional moment model (eq.21)  and our conditional moment model 

(eq.22). Comparing the two tables, we can see that technology parameter estimates are similar 

and accurate, because there is no identification issue for production function. Lence (2009) 

reported substantial bias for    estimates, and the 95% CIs often failed to contain its true value. 

Our simulation results show it is not the case and    and    can be estimated precisely even with 

samples size of 500. The results are consistent with Wu and Guan (2013). In addition,    

estimate shows downward bias because the mean of the logarithmic error is negative. Overall, 

technology parameters can be accurately estimated even under a flexible-utility specification and 

not affected by estimation models. 

In regard to risk preferences, the GMM estimates based on unconditional moments 

perform poorly. The estimates for the DRRA and CRRA are upward biased, while those for the 

IRRA exhibit a downward bias. All biases are substantial reflected by the medians. In particular, 
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when the sample size is smaller , the results are disastrous. Although the bias declines along with 

the sample size, the width of 95% CIs is too large. The convergence speed is very slow, and an 

extremely large sample size is required to converge to true values.  Wu and Guan (2013) found 

that most of the bias is gone at the sample size of 10,000. However, sample sizes typically used 

in the literature is far below that. Obviously, this method is not practical for empirical studies.  

We turn to compare the convergence speeds of    and   .    is clearly more difficult to 

pin down than     Although all the true values of    for the three scenarios lie inside the 

respective 95% CIs, the 95% CI are so large that estimates seem implausible. Even if there is an 

improvement as the sample size increases from 500 to 2000, the 95% CIs are still too wide. For 

instance, distribution of  ̂  under DRRA and CRRA preferences are clearly skewed to the right. 

For the DRRA preferences,  ̂ is widely dispersed and the majority of estimates for    fall in the 

positive range in the 2000-observation-sample case. The pitfall stemming from a positive  ̂  is 

that the econometrician would erroneously conclude that preferences are IRRA instead of DRRA. 

In contrast, the 95% CIs for    is narrower and the medians are closer to the respective true 

values. Its median estimates converge quickly toward the true values when increasing the sample 

size. Overall, the GMM estimation based on the unconditional moments cannot identify the 

structure of risk preferences with a reasonable sample size.  

Table 5 exhibit substantial differences regarding the estimates of risk preference 

parameters when applying the proposed estimation method. The biases in risk preference 

parameters are sharply reduced. The potential gains that may be obtained are much more 

pronounced for the CRRA and IRRA. Their median estimates for    and    are typically close to 

the true values even in the small samples (N=500).  Although the upward bias for    in the 

DRRA case for the small sample is still a little large, the bias has been almost eliminated for the 
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larger sample. Estimators for both parameters have distributions that are much more 

concentrated around the true parameter values than the prior estimator as evidenced by the 95% 

CIs.  It is also clear from the comparison of tables 4 and 5 that the 95% CIs are closer to the true 

values of risk preference parameters and have no unreasonable large estimates. Moreover, the 

intervals can rapidly shrink with the number of observations in the sample. In sum, these results 

show that risk preference parameters can be accurately estimated with our method.  

Among the three scenarios, DRRA case underperforms relative to other two cases in 

terms of the estimates of whether    or   , because the constraint         limits the 

movement of    to the direction of   . A low    would result in the non-convergence problem. 

Our estimation shows that the DRRA case has the lowest frequency of convergences over all 

simulations. Those simulations that do not convergence are discarded. It is equivalent to 

eliminating samples that might produce low estimates of   , and hence a significant upward bias 

in the median estimate may result. Similar biases will materialize for    estimates because they 

are correlated with the estimates of   . In other two cases, the effect of this constraint is small. 

 In terms of relative efficiency, our estimates for the two risk preference parameters 

perform clearly better than the prior estimates. The latter one results in incredibly large root-

mean-squared-errors (RMSEs) because of outlier estimates. In a sharp contrast, our method 

substantially declines the RMSE and improves the efficiency of GMM estimators as shown in 

table 6. The RMSE for parameters in all cases excluding    in the DRRA case declines roughly 

in line with √   when the sample size goes from 500 to 2,000. For estimates of    in the DRRA 

case, the RMSE shrinks faster, which in part is due to rapidly shrinking biases in the parameter 

estimates. It implies that the bias can be corrected by increasing number of observations. The 
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results in this study suggest that our method can generate a great efficiency improvement that 

makes empirical studies practical.  

 

5.3 Robustness Analysis 

The efficiency and consistency of the estimator in our method hinge on the idea of 

approximating the risk distribution by using a nonparametric method. Different risk distributions 

will incur distinct magnitudes of approximation errors and in turn affect the first order condition 

and the estimates of risk preference. In order to investigate the robustness of our method to risk 

distributions, we perform extra simulations and estimations with a different assumption on 

output price shocks. In the baseline simulation, output price shocks are assumed to follow a 

lognormal distribution. Although the distribution is often employed in the agricultural economics 

literature, it may not reflect the random characteristics of actual prices (e.g., Chavas and Holt 

1996). For instance, the specified logarithmic price shocks are symmetry rather than skewness. 

To gauge how much our estimates are affected by the price distribution, we re-estimate risk 

preference parameters assuming that prices are generated from a probability distribution whose 

shape mimics the empirical distribution of actual commodity prices. Specifically, we assume that 

end-of-period crop prices are still generated by the data generating process (14), but the price 

error    has a distribution shape similar to the US real seasonal–average corn price received by 

farmers. The deflated national corn price (logarithmic) is used in a regression on a constant, the 

marketing year t, the lagged price, and output shocks. The summary statistics of corn price 

(logarithmic) residuals over 1970-2012 show that their standard deviation is 0.18 and skewness 

is 0.8534. Figure 2 plots their histogram bars, the probability density estimated by kernel 

smoothing function, and a normal distribution density. Different from the normal distribution, 
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the empirical price distribution has a longer right tail. In the simulation, price shocks    will be 

randomly generated from the empirical distribution, and other simulated data are generated in a 

similar way to the baseline simulation.   

 SNP density estimation results show that the Gaussian specification still dominate other 

specifications for the revenue risk. Although more terms in polynomial can accommodate 

departures from Gaussian tails, the model is complicated by the number of parameters. When the 

minimal specification is used, the risk preference estimates are presented in table 7. In contrast 

with table 6, risk preference estimates in terms of both median and the 95% CIs are all largely 

unaffected. Overall the results clearly confirm the robustness of our previous findings with 

respect to price risk.     

 

5.4. Approach to Inference   

While our method can generate a consistent and efficiency estimator for utility parameters, we 

may have an inference problem due to the multistep nature of the estimation. In the density 

estimation, parameters in risk ( )  are consistently estimated and estimates (  ̃ ) are used to 

construct variables contained in moment conditions. Therefore, the noise induced by  ̃  is 

introduced into the moment conditions. In the GMM procedure, we apply an efficient GMM 

estimator which weighs the moment conditions by a consistent estimate of their covariance 

matrix which is constructed using  ̃ . Since these initial estimates contain estimation errors, the 

usual asymptotic variance formulae for the GMM estimators are not correct. Newey and 

McFadden (1994) determined the correct asymptotic covariance matrix of the two-step GMM 

estimators, and their correction to the estimate of the covariance formulae account for the 

variations in  ̂ and  ̂. But when additional estimation errors ( ̃) are introduced, it is hard to 
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derive the correct formula for the covariance matrix. In this case, we can employ a bootstrap 

method, which is a method for estimating standard errors of an estimator or test statistic through 

repetitions using the same data. The method does not require theoretical calculation.  

 

6. Conclusion  

It is recognized in the literature that there is a fundamental trade-off in identification and 

flexibility of the functional forms of utility. To obtain parameter identification with a more 

flexible risk preference function, more restrictions have to be placed on the flexibility of risk. 

However, an arbitrary or inappropriately narrow specification of risk will bias risk preference 

estimates. In this paper we propose a new estimation method which estimates the risk 

independently from behavioral equations. The density function of the risk is estimated by a 

seminonparametric estimator, which circumvents the issue of arbitrary choice of inflexible 

specifications. Another appealing feature of this approach is that conditional moments can be 

analytically expressed, which facilitate GMM estimation. We conduct a Monte Carlo study to 

examine the properties of the proposed estimation procedure for estimating risk preference 

parameters. We found that  our method can estimate risk preference parameters with reasonable 

precision. When the sample size increases, the estimates can quickly converge to their true 

values. In addition, our method significantly improves estimation efficiency. The efficiency 

improvement makes empirical risk analysis practical.   
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Table 1. Assumptions used for estimating risk preferences with flexible utility functions 

Study
 a 

Expected utility
  

Risk specifications 

Saha et al. (1994) 
 (    (    

 
  )) 

Non-stochastic price; Weibull distributed 

production 

Chavas and Holt (1996) 
 [∫   (      

    
 )   ] 

Truncated normal price; normally 

distributed production 

Kumbhakar (2002) No specific utility functional 

form 

Non-stochastic price 

Kumbhakar and Tveteras 

(2003) 

No specific utility functional 

form 

Non-stochastic price 

Isik and Khanna (2003) T-M model
 b
 Non-stochastic price 

Eggert and Tveteras (2004) T-M model
 b
 Non-stochastic price 

a 
the first two studies have been commented in Just and Just (2011); 

b
 M-V denotes the two-moment approach;
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Table 2. Descriptive Statistics for Random Revenue and Logarithmic Revenue Samples of 2000 

Observations  

       ( ) 

 DRRA CRRA IRRA  DRRA CRRA IRRA 

Skewness 2.962 2.557 2.369  -0.249 -0.191 -0.235 

Kurtosis 18.477 12.576 12.120  3.018 3.091 2.989 

KS statistic 0.888 0.872 0.878  0.678 0.691 0.670 
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Table 3. Estimates of Parameters in the Risk Structure and Density 

 Parameter Estimates 

Sample Size           =0.5   =0.2   =0.6        

500 0.998 

(0.89,1.11) 

0.498 

(0.34,0.66) 

0.200 

(0.09,0.31) 

0.599 

(0.50,0.70) 

0.371 

(0.35,0.39) 

2,000 0.998 

(0.94,1.05) 

0.502 

(0.42,0.58) 

0.199 

(0.14,0.26) 

0.600 

(0.55,0.65) 

0.373 

(0.36,0.38) 

Note: For each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within 

parentheses) from 1000 estimates for sample sizes of 500 and 2000. Here only present estimation 

results in the IRRA case. Results in the DRRA and CRRA cases are similar and available upon 

request.   
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Table 4. GMM Parameter Estimation Based on the Unconditional Moments  

 

Risk 

Structure 

 

Sample 

Size 

Parameter Estimates 

Utility Technology 

 ̂   ̂   ̂   ̂   ̂  

DRRA 500 -0.012 

(-16.70,138.33) 

2.900 

(0.85,14.06) 

2.852 

(2.72,2.98) 

0.202 

(0.19,0.21) 

0.605 

(0.58,0.63) 

DRRA 2,000 -3.525 

(-14.20,36.54) 

2.230 

(1.08,5.04) 

2.861 

(2.80,2.92) 

0.201 

(0.20,0.20) 

0.601 

(0.59,0.61) 

CRRA 500 4.106 

(-15.47,141.55) 

4.063 

(1.26,16.97) 

2.853 

(2.73,2.98) 

0.201 

(0.19,0.21) 

0.604 

(0.58,0.63) 

CRRA 2,000 1.478 

(-11.73,39.94) 

3.294 

(1.78,6.89) 

2.856 

(2.79,2.92) 

0.200 

(0.20,0.20) 

0.601 

(0.59,0.61) 

IRRA 500 27.211 

(-11.26,311.86) 

5.907 

(1.48,28.72) 

2.857 

(2.73,2.98) 

0.201 

(0.19,0.21) 

0.603 

(0.58,0.63) 

IRRA 2,000 39.432 

(1.09,178.79) 

6.097 

(2.83,16.82) 

2.856 

(2.79,2.92) 

0.201 

(0.20,0.20) 

0.601 

(0.59,0.61) 

 

Note: [     ] for DRRR, CRRA, and IRRA risk structures correspond to [-5 2], [0, 3], and [43, 

6], respectively. 
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Table 5. GMM Parameter Estimation Based on the Conditional Moments 

 

Risk 

Structure 

 

Sample 

Size 

Parameter Estimates 

Utility Technology 

 ̂   ̂   ̂   ̂   ̂  

DRRA 500 -3.062 

(-8.80,3.48) 

2.282 

(1.44,3.61) 

2.852 

(2.68,3.01) 

0.201 

(0.19,0.21) 

0.602 

(0.58,0.63) 

DRRA 2,000 -4.357 

(-8.26,0.35) 

2.129 

(1.57,2.88) 

2.848 

(2.78,2.94) 

0.201 

(0.20,0.20) 

0.602 

(0.59,0.61) 

CRRA 500 0.686 

(-8.60,10.10) 

3.136 

(1.71,5.04) 

2.858 

(2.69,3.01) 

0.201 

(0.19,0.21) 

0.601 

(0.58,0.63) 

CRRA 2,000 0.217 

(-5.65,5.92) 

3.021 

(2.19,4.08) 

2.857 

(2.78,2.92) 

0.200 

(0.20,0.20) 

0.600 

(0.59,0.61) 

IRRA 500 43.570 

(23.99,62.09) 

5.931 

(3.22,10.06) 

2.855 

(2.70,3.02) 

0.201 

(0.19,0.21) 

0.601 

(0.58,0.63) 

IRRA 2,000 42.970 

(33.49,53.69) 

5.980 

(4.38,7.76) 

2.856 

(2.76,2.95) 

0.200 

(0.20,0.21) 

0.600 

(0.59,0.62) 

 

Note: [     ] for DRRR, CRRA, and IRRA risk structures correspond to [-5 2], [0, 3], and [43, 

6], respectively. 
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Table 6. Finite Sample Bias and Efficiency Comparison 

  Mean Bias Median Bias RMSE 

 True 

Value 

T=500 T=2000 T=500 T=2000 T=500 T=2000 

GMM based on the conditional moments 

DRRA       2.033 0.829 1.938 0.643 8.747 2.622 

      0.364 0.147 0.282 0.129 0.694 0.388 

CRRA      0.733 0.188 0.686 0.217 5.273 3.232 

      0.206 0.055 0.136 0.021 0.955 0.533 

IRRA       0.435 0.110 0.570 -0.030 10.111 4.814 

      0.141 0.014 0.069 -0.020 1.763 0.890 

GMM based on the unconditional moment 

DRRA       15.001 5.384 4.988 1.475 50.799 16.900 

      1.961 0.445 0.900 0.230 4.353 1.164 

CRRA      19.939 5.211 4.106 1.063 54.984 16.483 

      2.012 0.559 1.478 0.294 6.361 1.497 

IRRA       10.366 9.536 -15.789 -3.568 79.230 48.154 

      1.957 0.981 -0.093 0.097 7.252 3.738 
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Table 7. GMM Parameter Estimation Based on the Conditional Moments under the Assumption 

of Empirical Price Risk Distribution 

 

Risk 

Structure 

 

Sample 

Size 

Parameter Estimates 

Utility Technology 

 ̂   ̂   ̂   ̂   ̂  

DRRA 500 -3.139 

(-10.05,3.04) 

2.353 

(1.35,3.89) 

2.848 

(2.69,3.01) 

0.201 

(0.19,0.21) 

0.603 

(0.58,0.63) 

DRRA 2,000 -4.140 

(-9.39,2.70) 

2.199 

(1.41,3.33) 

2.850 

(2.73,2.94) 

0.201 

(0.20,0.21) 

0.602 

(0.58,0.62) 

CRRA 500 0.975 

(-8.39,8.99) 

3.201 

(1.71,5.38) 

2.853 

(2.69,3.01) 

0.201 

(0.19,0.21) 

0.602 

(0.58,0.63) 

CRRA 2,000 0.350 

(-6.53,8.94) 

3.085 

(1.99,4.67) 

2.853 

(2.74,2.95) 

0.200 

(0.19,0.21) 

0.601 

(0.58,0.62) 

IRRA 500 42.514 

(15.51,71.83) 

5.936 

(2.08,12.25) 

2.854 

(2.69,3.02) 

0.200 

(0.19,0.21) 

0.601 

(0.58,0.63) 

IRRA 2,000 42.855 

(32.47,52.14) 

6.031 

(4.01,8.02) 

2.853 

(2.75,2.93) 

0.200 

(0.19,0.21) 

0.601 

(0.58,0.62) 

 

Note: [     ] for DRRR, CRRA, and IRRA risk structures correspond to [-5 2], [0, 3], and [43, 

6], respectively. 
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Figure 1.The Risk Distribution and Simulation from SNP fits 

 

 

Note: The upper panel contains plots for the distribution of z and simulations from SNP fits with 

K=0 and K=6 when the sample size is 500 in the IRRA case. The lower panel contains the same 

plots when the sample size is 2000.  
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Figure 2. Empirical Distribution of Corn Price Shocks over 1970-2012 
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