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ABSTRACT  
 

 

 

 

The present study formalizes and quantifies the importance of uncertainty for investment 

in a corn-stover based cellulosic biofuel plant. Using a real options model we recover prices 

of gasoline that would trigger entry into the market and calculate the portion of that entry 

trigger price required to cover cost and the portion that corresponds to risk premium. We 

then discuss the effect of managerial flexibility on the entry risk premium and the prices of 

gasoline that would trigger mothballing, reactivation, and exit. Results show that the risk 

premium required by plants to enter the second-generation biofuel market is likely to be 

substantial. The analysis also reveals that a break-even approach (which ignores the portion 

of entry price composed of risk premium) would significantly underestimate the gasoline 

entry trigger price and the magnitude of that underestimation increases as both volatility 

and mean of gasoline prices increase. Results also uncover a great deal of hysteresis (i.e. a 

range of gasoline prices for which there is neither entry nor exit in the market) in entry/exit 

behavior by plants. Hysteresis increases as gasoline prices become more volatile. 

Hysteresis suggests that, at the industry level, positive (negative) demand shocks will have 

a significant impact on prices (production) and a limited impact on production (prices). In 

combination all of these results suggest that policies supporting second generation biofuels 

may have fallen short of their targets because of their failure to alleviate uncertainty. 



1 INTRODUCTION 
 
 
 

While analyses of the economic viability of cellulosic biofuels suggest a positive 

net present value of such investments, entry into the market has not occurred at the pace 

set by the Renewable Fuel Standard (RFS). The present study quantitatively evaluates the 

hypothesis that, due to the uncertain and irreversible nature of investment in this industry, 

investors require a non-trivial premium on expected profitability to enter the market. We 

also hypothesize that managerial flexibility (the possibility of mothballing and 

reactivation) may reduce such premium. Results from a parameterized real options analysis 

suggest a premium of72% in expected profitability revealing that uncertainty creates a 

significant barrier to entry. Managerial flexibility does not have a significant (negative) 

effect on entry trigger price but, it does have a slightly more important (negative) effect on 

exit trigger price.  Moreover, results also suggest a potential for significant hysteresis once 

investments have been made; i.e. plants will require larger losses before shutting down 

operations. Hysteresis is aggravated by higher levels of uncertainty and irreversibility. We 

argue that renewable fuel standards are not effective in addressing uncertainty and that 

alternative or complementary policy instruments may be required to induce the level of 

investment mandated by RFS2. Alternative policy options are discussed.  

Over the past decade, the United States has increasingly pushed for the 

development of economical forms of renewable fuels. This is due to increased concerns 

over climate change, energy security, and the desire for domestic job creation. Biofuels in 

particular, and lately cellulosic biofuels, have received a large amount of attention due to 

their potential benefits in addressing these problems. The first renewable fuel standard was 

established in 2005, and expanded to the form used today with the passage of the second 

renewable fuel standard in 2007 (RFS2). The RFS2 requires by the year 2022, 36 billion 

gallons of biofuel (ethanol equivalent) to be used annually within the United States, 16 

billion of which must come from cellulosic sources. It also sets a cap on the maximum 

amount of biofuel from corn ethanol at 15 billion gallons. Despite many positive 

projections, cellulosic biofuel production has continually fallen well short of mandates set 

forth by RFS2. In 2013, cellulosic biofuel production totaled six million gallons. This falls 
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994 million gallons below the target goal of 1 billion gallons for the year set by the Second 

Renewable Fuel Standard (Schnepf and Yacobucci, 2010).  

Numerous studies, in both business and academic realms, have used a net present 

value (NPV) and/or break-even analysis to predict the price required to make cellulosic 

biofuel profitable. Using this approach, these studies routinely find that a cellulosic biofuel 

plant built today should have a positive return on the investment (Anex et al., 2010, Brown 

et al., 2013, Gonzalez et al., 2012b, Brown and Brown, 2013b, Tyner and Petter, Cannon, 

2012, Jones et al., 2009). Without accounting for risk it is hard to reconcile the reality of 

biofuel production with predictions of profitability by economic studies. We hypothesize 

that the inconsistency between theoretical predictions and empirical observations is the 

systematic underestimation, by the former, of the role of uncertainty as a barrier to 

investment. It does not appear that cellulosic biofuel production will meet the 16 billion 

gallons required by 2022. 

Biofuels are defined as “transportation fuels like ethanol and diesel that are made 

from biomass materials” (EIA, 2013). Currently there are three main types (generations) 

of biofuels. First generation biofuels are produced from the sugars found in crops such as 

corn or sugar cane. These sugars are processed through various pathways to produce 

ethanol which is then blended with gasoline. Second generation biofuels differ from first 

generation since they are produced from cellulosic plant matter such as corn stover, switch 

grass, or trees rather than sugar (EIA, 2013, Energy). They have also recently advanced to 

the point where the process produces a gasoline or diesel equivalent fuel referred to as a 

“drop in” instead of ethanol, which is subject to blending limits.  Most existing second 

generation plants do produce ethanol, however, since converting biofuels to “drop in” is a 

recent development (EIA, 2013). Third generation biofuels typically use algae or bacteria 

to break down a cellulosic feedstock to produce biodiesel (Carere et al., 2008).  

This paper focuses on second-generation drop-ins.  The advantage of a drop in is 

that existing combustion engines can burn it without any modifications. This chemical 

similarity to petroleum-derived fuels gives second-generation biofuels an advantage over 

ethanol as it eliminates constraints on blending (Tyner et al., 2011). Nine trillion dollars’ 

worth of transportation infrastructure exists in the United States to handle petroleum-based 

products (Halog and Bortsie-Aryee, 2013). Pipelines cannot transport ethanol and most 
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cars cannot burn a mixture that contains more than ten to fifteen percent ethanol without 

damaging the engine (Blanco and Isenhouer, 2010, Tyner and Taheripour, 2014).  

Typically large-scale investment projects such as second generation biofuel 

refineries must pass some kind of cost-benefit analysis to judge the profitability of the 

investment before construction can be started.  Usually, a net present value analysis is used. 

While this can be useful in established stable industries, evaluating investment in a new 

industry that experiences large amounts of uncertainty from both technical and market 

sources requires consideration of the effects of uncertainty on entry and exit behavior 

(Dixit, 1994, Gonzalez et al., 2012a). This uncertainty translates into a value, for having 

the option to wait to make a decision. Waiting allows the decision maker to observe the 

evolution of random variables and re-assess the risk associated with the investment.1 

One way of formalizing and quantifying the value of waiting and, consequently, 

the role of uncertainty in entry trigger prices is using a real options analysis. Factoring 

uncertainty into the cost/benefit analysis for entry into the biofuel supply chain has recently 

gained popularity (Schmit et al., 2009, Brandão et al., 2009, Burke, 2012, Song et al.2010, 

Pederson and Zou, 2009) but this approach has not been applied to the analysis of 

investment in a second generation drop-in biofuel plants. This paper fills this gap by 

developing a real options model of a plant’s decision making for optimal entry, exit, 

mothball, and reactivation trigger prices for a second-generation corn stover fed biofuel 

plant. Moreover, we calculate entry and exit trigger prices with a real options model that 

ignores the managerial flexibility embedded in mothball and reactivation. Solving a real 

options model with and without mothball and reactivation allows identification of the risk 

premium required by investors to enter the market and the offsetting effect of managerial 

flexibility. 

In particular, the difference in trigger prices between the break-even approach and 

real options without considering mothballing and reactivation permits quantification of the 

effect of uncertainty on entry trigger price. In turn this will reveal the magnitude of the 

                                                           
1 It is important to note that it is possible to build uncertainty into an NPV analysis. More specifically one 
can specify a percent chance of economic loss that is acceptable and build that into the trigger price for 
entry. This will yield a positive NPV. This qualification will create a trigger price for entry that is higher 
than the break-even price. In this paper, unless otherwise specified, we compare real options trigger price 
for entry (exit) to break-even and (Marshallian exit prices). We also create a situation with an 80% chance 
of economic gain to be compared to the break even and real option scenarios; this will be discussed later. 
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underestimation of uncertainty, embedded in the break-even approach which may explain 

the puzzling difference between predictions of profitability and absence of entry into the 

industry. On the other hand the difference in trigger prices between real options with 

mothball and reactivation and real options without these intermediate states permits 

quantification of the effect of managerial flexibility, given uncertainty and irreversibility, 

on the risk premium that investors require to enter the market. 
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2 METHODS 
 

 

 As mentioned earlier, this paper compares the entry and exit trigger prices for a real 

options framework to an NPV break-even framework to come up with a price premium for 

uncertainty. The break-even model is centered on standard discounting. Revenue and costs 

are discounted for the future at a pre-specified discount rate. The summation of all of these 

expected discounted values are put together to come up with the value of a project in 

today’s dollars. Under NPV break-even assumptions a firm will enter the market if their 

discounted price is greater than or equal to their discounted operating cost plus capital 

expenditure. This equality is written as 
𝑊ℎ

𝛿−µ
≥

𝑤

𝛿
+ 𝑘. 𝑊ℎ denotes the trigger price per 

gallon for entry, 𝛿 the discount rate, µ the drift rate in price, 𝑤 the operating cost per gallon, 

and 𝑘 the capital cost per gallon of plant capacity. A firm will exit the market if the 

discounted price falls below discounted operating cost plus the net scrap value of selling 

the plant. This exit price is consistent with the Marshallian exit price of a firm exiting an 

industry. In other words a firm will leave in the long run if its average revenue cannot cover 

its average cost. This equality is written as  
𝑊𝑙

𝛿−µ
≦

𝑤

𝛿
+ 𝑙. 𝑊𝑙 denotes the trigger price per 

gallon for exit and 𝑙 the net scrap value of selling the plant.  

2.1 Real Options Defined 

The real options analysis and corresponding intuition used in this paper is taken 

from (Dixit, 1994). The process has already been developed but the rest of this chapter is 

dedicated to explaining and showing how real options affect trigger prices for entry and 

operation. Real options are to project investment, what financial options are to stock or 

commodity investment. Both of these options give the right but not the obligation to make 

a decision in the future. This right without obligation mitigates the downside risk associated 

with an investment project while still allowing to capitalize from the upside. The value of 

this option is captured and quantified in a real options analysis. For the option to invest to 

have value (i.e. for the real options approach to differ from the break-even approach), three 

conditions must hold: 

1. Investment cost is either fully or partially irreversible. 

2. The future evolution of one of the variables in the model is uncertain. 
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3. Timing of the investment can be controlled.                                                                                                    

Biofuel plants are large investments that have little reversibility. Much of the 

equipment is specific to the industry. A tank used for pyrolysis may cost millions of dollars 

by the time it is installed but if the industry becomes unprofitable it does not have many 

other uses. For instance if one plant becomes unprofitable due to a systemic risk in the 

industry, such as low gasoline prices, the only other firms that would be interested in 

purchasing a pyrolysis tank would be firms in the same industry. They however would not 

buy it upon the initial plant’s exit for anywhere near its purchase price since they are also 

experiencing low prices and as a result are in a similar position. 

Wholesale gasoline price per gallon is used as a proxy for the price received for a 

gallon of drop in biofuel. Using, converting, and logging monthly data covering the past 

five years from the EIA, the average annual standard deviation for a percentage change in 

wholesale gasoline selling price was found to be .209. Such deviations would cause drastic 

swings in a biofuel producer’s revenue. An increase or decrease in prices by even a portion 

of the standard deviation could make or break a plant. This standard deviation in price 

satisfies the uncertainty requirement for real options. Finally, the timing of an investment 

in a second-generation corn stover fed bio-gasoline plant is fairly flexible. 

There are no real barriers to entry other than the high capital cost associated with 

commercial scale plants and preliminary pilot plants, which is not timing sensitive. The 

only time sensitive variable in a second generation bio-fuel plant is the potential change in 

tax policy. If subsidies and tax credits continue to change they may shut the window on 

entry. 

There is one additional assumption that must hold within the model. It was not 

mentioned earlier since it has to do with the way the model is set up and not with how the 

variables and parameters exist in the real world. The project must be assumed to have an 

infinite life. This assumption must hold to satisfy the smooth pasting conditions of the 

equalities. This assumption is accounted for by replacing capital as quickly as it 

depreciates. This replacement cost gets built into operating cost. This infinite project life, 

while necessary, has two offsetting effects compared to a traditional break-even analysis. 

Building in capital depreciation costs into operating costs will raise the trigger price since 

it essentially doubles capital cost. A producer must pay capital cost to start the plant and 
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then an annual payment of capital cost for the infinite life of the plant. The infinite life also 

lowers the trigger price in the sense that price has a positive trend, costs do not. Getting 

higher prices for an infinite life compared to say 20 years will decrease the trigger price. 

2.2  Decisions for Entry, Mothball, Reactivation, and Exit 

 There are three different states a plant can be in: idle, active, or mothballed. In an 

idle state, a plant is not paying either fixed or capital costs since it has not been built yet. It 

is also not receiving income but has the option of activating in the future. An active plant 

pays an investment cost 𝑘 to enter the market and then, every period, pays operating costs 

𝑤, and, earns revenue 𝑃. An active plant also has the option of converting to a mothballed 

state. To get to a mothballed state an active plant must pay a fixed cost of 𝐸𝑚 and pays an 

ongoing operating mothball maintenance cost 𝑚 to keep the plant in working order should 

it decide to use its option of reactivating to active in the future for a fixed cost 𝑟. In a 

mothballed state a plant also has the option of exiting the industry. In the event that the 

firm decides to exit the market, it forfeits its mothball maintenance cost, and gets a fraction 

of the initial capital, 𝑙, back. The plant would incur some costs for exiting but after 

combining them with the value it gets for selling the plant we assume 𝑙 to be positive. It 

also loses its option to reactivate.  The ability to switch between these different states is 

represented in table 2.1. X is possible, - is not. 

  Idle Active Mothballed 

Idle 
- X - 

Active - - X 

Mothballed 
X X - 

 

 

There are several assumptions that must hold for this model to function. We assume 

𝑙 < 𝑘. We also assume that  𝑤 < 𝑚,otherwise the firm will never mothball (Schmit et al., 
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2009). Similarly, it is necessary for  𝑟 <  𝑘, otherwise it would never be optimal to mothball 

and reactivate later since it would always be cheaper to exit and then enter again.  

The output prices that trigger entry, mothball, exit, and reactivation when the option 

of waiting to make the investment is factored (real options) in are denoted by 𝑃ℎ, 𝑃𝑚, 𝑃𝑟, 

and 𝑃𝑙 respectively.. The output prices that trigger entry and exit when waiting is not an 

option (break-even) are denoted by 𝑊ℎ and 𝑊𝑙 respectively.   

Price per gallon 𝑃 is the wholesale price of a gallon of bio-gasoline. This price is 

assumed to change over time according to a Geometric Brownian Motion (GBM) process.2 

This process not only changes over time but is also continuous in time. In other words 

decisions can be made at infinitesimally small units of time. GBM is a stochastic process 

that incorporates both a drift parameter and a variance parameter for making predictions in 

future prices. The equation for this is denoted as 𝑑𝑃 = µ𝑃𝑑𝑡 + 𝜎𝑃𝑑𝑧. A change in price 

(𝑑𝑃) is dependent upon its drift rate and its variability. Drift rate grows over a time 

increment (𝑑𝑡). The standard deviation is tied to the increment of a Weiner process denoted 

by 𝑑𝑧, which is a function of time and variability, = 휀𝑡√𝑑𝑡 . The factor 휀𝑡 is a normally 

distributed random variable with a mean of zero and a standard deviation of 1, so the 

expected value of 𝑑𝑧 = 0. 𝑃 follows a normal distribution. Gasoline prices have typically 

been characterized by log-normal distributions (Dixit and Pindyck 1994)). Gasoline prices 

enter our model in log form. Given log-normality of gasoline price, the log of gasoline 

price is characterized by a normal distribution. It is also assumed that the discount rate 𝛿 is 

greater than the drift rate µ. This must hold otherwise it would never be optimal to invest 

since the growth rate would outpace the discount rate. It would always be possible to do 

“better” by waiting longer. 

2.3 The Decision to Enter 

 Let us denote an idle project’s discounted expected value by 𝑉0(𝑃). For an idle 

plant, this value is completely based off of the option for the firm to enter the industry in 

the future. An idle plant has no revenue or expenses, but has the option of earning a profit 

in the future if the option is exercised and the plant is brought to an active state. An investor 

that owns a plant in an idle state could do one of two things, hold onto the option and 

                                                           
2 This assumption is supported by statistical tests conducted with historical gasoline price data. Tests will 
be presented and discussed in detail in Section 3.1. 
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activate the plant if prices are sufficiently high or sell the option to someone else and invest 

the proceeds. The former is represented by the equation 𝐸𝑡[𝑑𝑉0(𝑃)]𝑑𝑡−1, where 휀𝑡 is the 

expected value of the project at time 𝑡. The latter is represented by the function 𝛿𝑉0(𝑃). 

Think of the left hand side as the return generated from selling the project and investing 

the proceeds. The right hand side is the expected capital gain of the project. Arbitrage in 

efficient markets would set these two returns equal: 

 𝛿𝑉0(𝑃) =  𝐸𝑡[𝑑𝑉0(𝑃)]𝑑𝑡−1        (1) 

Equation one is a Bellman equation and it must hold under efficient markets. 

Equation (1) implicitly defines the entry trigger price (i.e. the price at which the investor is 

indifferent between entering the market and staying out). To solve for this price we first 

need to find an expression for 𝑑𝑉0(𝑃). This expression reveals that the value of the project 

is a function of gasoline price which is, in turn, a random variable following a geometric 

Brownian motion process.  To obtain an expression for solve this we make use of Ito’s 

Lemma. Ito’s Lemma is, in essence, a Taylor series expansion 𝑑𝑉 = ∑
1

𝑖!

𝜕𝑖𝑉

𝜕𝑃𝑖 (𝑑𝑃)𝑖∞
𝑖=1 , 

where 𝑑𝑃 = µ𝑃𝑑𝑡 + 𝜎𝑃𝑑𝑧. The second order term is (𝑑𝑃)2 = (µ𝑃)2(𝑑𝑡)2 +

2(µ𝑃)(𝜎𝑃)(𝑑𝑡)
3

2 + (𝜎𝑃)2𝑑𝑡 which simplifies to (𝜎𝑃)2𝑑𝑡 since (𝑑𝑡)2 and (𝑑𝑡)
3

2 go to zero 

faster than 𝑑𝑡 as 𝑑𝑡 approaches zero. Higher order terms vanish as (𝑑𝑃)3 and (𝑑𝑃)4 will 

have all of their associated 𝑑𝑡 terms taken to a power higher than one and as a result will 

simplify to zero. After using Ito’s Lemma we are left with:  

𝑑𝑉 =
𝜕𝑉

𝜕𝑃
𝑑𝑃 −

𝜕2𝑉

2𝜕𝑃2 𝑑𝑃2        (2) 

            Substituting dP into (2) yields: 

 𝑑𝑉 =
𝜕𝑉

𝜕𝑃
(µ𝑃𝑑𝑡) +

𝜕2𝑉

𝜕𝑃2
(

1

2
𝜎2𝑃2𝑑𝑡) +

𝜕𝑉

𝜕𝑃
 (𝜎𝑃𝑑𝑧)     (3) 

We then substitute (3) into (1) and get:           

𝛿𝑉0(𝑃) =  𝐸𝑡 [
𝜕𝑉

𝜕𝑃
(µ𝑃𝑑𝑡) +

𝜕2𝑉

𝜕𝑃2 (
1

2
𝜎2𝑃2𝑑𝑡)] 𝑑𝑡−1 + 𝐸𝑡 [

𝜕𝑉

𝜕𝑃
𝜎𝑑𝑧]             (4) 

Given that 𝐸𝑡[𝑑𝑧] = 0,  equation (4) is simplified to: 
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 𝛿𝑉0(𝑃) =
𝜕𝑉

𝜕𝑃
(µ𝑃) +

𝜕2𝑉

𝜕𝑃2
(

1

2
𝜎2𝑃2)           (5)                                                                                                                        

Equation (5) constitutes a second order homogenous ordinary differential equation. 

As such, it has the solution (Dixit and Pindyck 1994 p. 213-235): 

𝑉0 = 𝐴0𝑃−𝛼 + 𝐵0𝑃𝛽                     (6)                                                                                                       

Where α and β are parameters that capture and incorporate the uncertainty 

modeled by GBM into the model:     

−𝛼 = 0.5[(1 − 2𝜇𝜎−2) − ((1 − 2𝜇𝜎−2)2 + 8𝛿𝜎−2).5] < 0   

 𝛽 = 0.5[(1 − 2𝜇𝜎−2) + ((1 − 2𝜇𝜎−2)2 + 8𝛿𝜎−2).5] > 1 

Where 𝐴0 and 𝐵0 are unknown constants. The term 𝐴0𝑃−𝛼 represents the option 

value of changing states if output price decreases, and 𝐵0𝑃𝛽 represents the option value of 

switching to another state if prices increase. For an idle plant we drop 𝐴0𝑃−𝛼 since an idle 

project has no value if price approaches zero. If 𝐴0𝑃−𝛼 approaches zero the first term 

vanishes rendering the following solution to the differential equation: 

 𝑉0 = 𝐵0𝑃𝛽                (7)  

 We now turn our attention to the decision to mothball the plant after entry has 

occurred. 

2.4 The Decision to Mothball 

 Now that we have solved for the value of a plant in an idle state 𝑉0, we look at a 

plant in an active state 𝑉1. A plant in an active state is producing biofuel and earning an 

ongoing net revenue stream equal to (𝑃 − 𝑤). Equilibrium in the market requires: 

𝛿𝑉1 = (𝑃 − 𝑤) + 𝐸𝑡[𝑑𝑉1(𝑃)]𝑑𝑡−1                (8) 

 Notice the similarities of the Bellman equation for an active plant equation (8) to 

the Bellman equation for an idle plant equation (1). Like equation (1), equation (8) has an 

option value of being able to change states but it also contains a term for both price and 

operating cost to denote operating revenue. The value function 𝑉1 is derived following the 

same procedure by which we derived 𝑉0. Such procedure results in: 
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𝑉1(𝑃) = 𝑃(𝛿 − µ)−1 − 𝑤𝛿−1 + 𝐴1𝑃−𝛼 + 𝐵1𝑃𝛽    (9) 

Where 𝐴1 and 𝐵1 are unknown constants, 𝐴1𝑃−𝛼 and and 𝐵1𝑃𝛽which capture the 

option value of mothballing the plant if output price decreases and the option value of 

mothballing if the output price increases respectively. If the output price is sufficiently high 

to induce the firm to keep the plant active, further increases in output price will make the 

value of mothball vanish; i.e. 𝐵1𝑃𝛽=0. Therefore equation (9) simplifies to:   

𝑉1(𝑃) = 𝑃(𝛿 − µ)−1 − 𝑤𝛿−1 + 𝐴1𝑃−𝛼     (10) 

We now look at a situation where a firm that has a mothballed, the plant has the 

option to reactivate or exit the market altogether.  

2.5 The Decision to Reactivate or Exit 

 Now think of a plant that is currently in a mothball state. It is experiencing an 

ongoing maintenance cost of 𝑚. The bellman equation for a plant in a mothballed state is: 

𝛿𝑉𝑚 = 𝐸𝑡[𝑑𝑉𝑚(𝑃)]𝑑𝑡−1 − 𝑚       (11) 

 Once again, the left hand side represents the return from selling the plant and 

investing the proceeds. The right hand side represents the expected value of keeping the 

project. By using the same process that was used for equations (1) and (8) this equation 

converts to: 

 𝑉𝑚(𝑃) = 𝐴𝑚𝑃−𝛼 + 𝐵𝑚𝑃𝛽 − 𝑚𝛿−1      (12) 

 Where 𝐴𝑚 and 𝐵𝑚 are unknown constants, 𝐴𝑚𝑃−𝛼 represents the option value of 

being able to exit, 𝐵𝑚𝑃𝛽 represents the option value of being able to reactivate, 𝑚𝛿−1 

represents the present value of maintenance cost if the plant never changes states. The 

option value to exit is positive only if the price decreases, and the option value to reactivate 

is positive only if the price increases. This is why each option only has one term associated 

with it. 

2.6 Deriving the trigger prices 

 Our representative plant has the option to switch from idle to active, active to 

mothballed, mothball to exit, and mothballed to active at any given point in time. Each of 

these options will be exercised at a specific price which we denote by 𝑃ℎ, 𝑃𝑚, 𝑃𝑟, and 𝑃𝑙, 
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respectively. These prices are referred to as trigger prices. Trigger prices are characterized 

by two conditions known as the value matching condition and the smooth pasting condition 

at each switching point. The value matching condition states that switching from one state 

to another occurs when the value of the current state becomes lower than the value of the 

project under the state to which the firm would like to switch minus the fixed exercise price 

(or switching cost) which we denote by 𝑘, 𝐸𝑚, 𝑟, and 𝑙 when the firm switches to active, 

mothball, reactivation, and exit respectively. The smooth pasting condition requires these 

value functions to be tangent to one another at the trigger price. 

 We start by looking at the trigger price for switching a biofuel plant from an idle 

state to an active state. The value matching condition occurs between these two states at a 

value of 𝑃ℎ that sets the value of the option to enter equal to the value of an active project 

minus the fixed cost of switching states 𝑘:     

𝑉0(𝑃ℎ) = 𝑉1(𝑃ℎ) − 𝑘        (13) 

The corresponding smooth pasting condition between these two states is:            

𝑉′0(𝑃ℎ) = 𝑉′1(𝑃ℎ)        (14) 

 The value matching condition corresponding to the transition from active to 

mothball can be denoted by:           

 𝑉1(𝑃𝑚) = 𝑉𝑚(𝑃𝑚) − 𝐸𝑚       (15) 

Where 𝑃𝑚 represents the trigger price that will take a plant from an active state to a 

mothballed state and 𝐸𝑚 denotes the fixed cost of mothballing. The corresponding smooth 

pasting condition between active and mothballed states is:         

 𝑉′1(𝑃𝑚) = 𝑉′𝑚(𝑃𝑚)        (16) 

A mothball state has two options for switching states. It can change back to an 

active state for a fixed reactivation cost of 𝑟. It could also change back to an idle state and 

receive a net scrap value 𝑙. Since there are two options for this state there needs to be both 

two value matching conditions and two smooth pasting conditions satisfied. The decision 

to move from a mothballed state to an active state occurs at 𝑃𝑟. The value matching 

condition for this is:    

           𝑉𝑚(𝑃𝑟) = 𝑉1(𝑃𝑟) − 𝑟        (17) 

The corresponding smooth pasting condition is:               

𝑉′𝑚(𝑃𝑟) = 𝑉′1(𝑃𝑟)        (18) 
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The value matching condition between a mothballed state and an idle state is:           

𝑉𝑚(𝑃𝑙) = 𝑉0(𝑃𝑙) − 𝑙        (19) 

The corresponding smooth pasting condition is:     

 𝑉′𝑚(𝑃𝑙) = 𝑉′0(𝑃𝑙)        (20) 

 We now substitute value functions (7), (10), and (12) into their corresponding value 

matching equations (13), (15), (17), and (19) at their designated trigger prices and the 

derivative of the value functions with respect to 𝑃 into the smooth-pasting equations (14), 

(16), (18), and (20). These substitutions result in a nonlinear system of eight equations in 

eight unknowns. Four of these unknowns are trigger prices (𝑃ℎ, 𝑃𝑚, 𝑃𝑟, 𝑃𝑙) and four 

unknown constants associated with the option value of switching states (𝐴1, 𝐴𝑚, 𝐵0, and 

𝐵𝑚): 

𝐵0𝑃ℎ
𝛽 = 𝑃ℎ(𝛿 − 𝜇)−1 − 𝑤𝛿−1 + 𝐴1𝑃ℎ

𝛼 − 𝑘     (21) 

𝑃𝑚(𝛿 − 𝜇)−1 − 𝑤𝛿−1 + 𝐴1𝑃𝑚
𝛼 = 𝐴𝑚𝑃𝑚

𝛼 + 𝐵𝑚𝑃𝛽 − 𝑚𝛿−1 − 𝐸𝑚   (22) 

𝐴𝑚𝑃𝑟
𝛼 + 𝐵𝑚𝑃𝑟

𝛽 − 𝑚𝛿−1 = 𝑃𝑟(𝛿 − 𝜇)−1 − 𝑤𝛿−1 + 𝐴1𝑃𝑟
𝛼 − 𝑟   (23) 

𝐴𝑚𝑃𝑙
𝛼 + 𝐵𝑚𝑃𝑙

𝛽 − 𝑚𝛿−1 = 𝐵0𝑃𝑙
𝛽 − 𝑙      (24) 

𝛽𝐵0𝑃ℎ
𝛽−1 = −𝑃ℎ(𝛿 − 𝜇)−2 + 𝛼𝐴1𝑃ℎ

𝛼−1     (25) 

−𝑃𝑚(𝛿 − 𝜇)−2 + 𝑤𝛿−2 + 𝛼𝐴1𝑃𝑚
𝛼−1 = 𝛼𝐴𝑚𝑃𝑚

𝛼−1 + 𝛽𝐵𝑚𝑃𝛽−1  (26) 

𝛼𝐴𝑚𝑃𝑟
𝛼−1 + 𝛽𝐵𝑚𝑃𝑟

𝛽−1 + 𝑚𝛿−2 = −𝑃𝑟(𝛿 − 𝜇)−2 + 𝛼𝐴1𝑃𝑟
𝛼−1  (27) 

𝛼𝐴𝑚𝑃𝑙
𝛼−1 + 𝛽𝐵𝑚𝑃𝑙

𝛽−1 = 𝛽𝐵0𝑃𝑙
𝛽−1      (28) 

The first four equations constitute direct corollaries of the value matching 

conditions and the next four equations are derived from the smooth pasting conditions. 

This system is solved numerically in Matlab using the code presented in Appendix 1. 

Solution of the system without managerial flexibility (i.e. without the option to mothball 

and re-entry) is, in turn, presented in Appendix 2. 
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3 PARAMETERS AND ESTIMATION 
 
 
 

3.1 Variable of Interest 

In order to identify the stochastic process followed by gasoline price and whether 

that stochastic process warrants the use of a real options approach we looked at average 

monthly wholesale gasoline prices in the Midwest for the past twenty years. This data is 

shown in Figure 3.1. 

Figure 3.1: History of the average real wholesale gasoline price in the Midwest (PADD 

area 2) (EIA, 2013)  

 

Gasoline prices seem to have followed an upward trend in this period. In other 

words there is a positive drift rate which we denote by µ. The average monthly percent 

change in price in these series results in a drift rate of 0.48%. Converted to annual this term 

becomes 5.7%. Despite our calculations this drift rate seems overly ambitious. It is unlikely 

that this growth in wholesale gasoline prices will continue at this rate into the future. We 

chose a more modest rate based off of the EIA’s (U.S. Energy Information Administration) 

30 year projections for wholesale gasoline prices. This gives us a drift rate of 1.85%. 

 The monthly and yearly standard deviation in for a one percent change in gasoline 

price over the past 20 years are .1 and .35 respectively. The standard deviation over the last 
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five years was .06 and .21 for monthly and yearly calculations respectively. For our base 

case analysis we use the more conservative estimate of yearly standard deviation equal to 

.21. The dramatic spikes in prices experienced in years 2004-2007, and the subsequent 

crash in 2008 may overestimate the variance for future gasoline prices.  

 The equation used to calculate drift and standard deviation is  𝑑𝑡 = ln (
𝑃𝑡

𝑃𝑡−1
). The 

data is logged since wholesale gasoline prices are assumed to be log normally distributed 

(Schmit et al., 2009, Dixit, 1994). Taking logarithm of prices converts this log normal 

distribution into a normal distribution, which is consistent with GBM assumptions. The 

interpretation of this logging in respect to the drift and standard deviation are the drift is 

considered the average percentage change in gasoline price in a year. The standard 

deviation can be interpreted as the standard deviation of a one percent change in price. We 

chose to use prices in the Midwest since a stover fed plant would most likely locate and 

sell there, due to the relatively high corn yields and low transportation cost to local markets. 

There is significant variation in 𝑃 from year to year. This variation in 𝑃, with 

respect to time, can either evolve following a stationary or a non-stationary process. These 

processes are most simply and commonly modeled using a mean reversion or Brownian 

motion process respectively (Dixit and Pindyck 1994). Brownian motion behaves 

randomly and the price at time t depends only on the price in 𝑡 − 1, the drift rate, and the 

stochastic term. Mean reversion behaves similarly except that it has an additional term that 

drags future values back to a given mean or trend. This can be thought of as prices reverting 

to the cost of production in the long run (Dixit and Pindyck 1994). Brownian motion is 

modeled as 𝑑𝑃 = µ𝑑𝑡 + 𝜎𝑑𝑧.  Where µ is the drift rate of P, σ is the standard deviation of 

a percentage change in 𝑃, 𝑑𝑡 is the change in time, and dz is the increment of a Weiner 

process. On the other hand, a mean reversion process is modeled as 𝑑𝑃 = ɳ(�̅� − 𝑃)𝑑𝑡 +

𝜎𝑑𝑧, where  𝑃 represents the mean value which 𝑃 tends to revert to and ɳ  is the speed at 

which this reversion occurs. 

 For Brownian motion, the price in the current period 𝑃𝑡 is a function of the price 

in the preceding period 𝑃𝑡−1, the variability of price σ, and the drift rate µ. The validity of 

assuming a Brownian motion as the data generating process (DGP) of gasoline prices is 

evaluated by conducting a unit root test for non-stationarity/autocorrelation of the price 
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series. If the price in any given period depends on the price in the previous period, then a 

Dickey Fuller unit root test will fail to reject the null hypothesis of non-stationarity 

(Wooldridge, 2012). Mathematically this explanation is modeled as  𝑃𝑡 − 𝑃𝑡−1 = 𝑎 +

𝑏(𝑃𝑡−1) + 𝑒, 𝑃_𝑡=𝑎+𝑏(𝑃_(𝑡−1) )+𝑐µ+𝑒 where 𝑃𝑡 is the price in this period, 𝑃𝑡−1 is the 

price lagged by one period, 𝑎 is the intercept, 𝑒 is the residual, and 𝑏 = 𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1.  If 

𝑏 = 1 non-stationarity exists within our data set. If b=0 the data is stationary.  

Non-stationarity would mean that correlation between the two periods cannot be 

statistically rejected and it would legitimize the use of Brownian motion over a mean 

reverting process. If correlation between prices in last period and this period can be 

rejected, the unit root test will reject the null. In this case the mean reverting process is the 

preferred assumption.  

We conducted two unit root tests.3 We first conducted a Dickey Fuller test based 

on a specification where only lagged wholesale gasoline real price was included as an 

explanatory variable of gasoline wholesale real price at time 𝑡. We then conducted another 

Dickey Fuller test on a specification where wholesale gasoline price at time 𝑡 is regressed 

on lagged real prices at time 𝑡 − 1 and drift. The null hypothesis was that the data followed 

a non-stationary process and that the price in this period was perfectly correlated with the 

price last period.  The test fails to reject nonstationarity with the first specification (test 

statistic of -1.48) but the test rejects nonstationarity under the second specification (test 

statistic of -3.50). These answers give conflicting results. Failing to reject nonstationarity 

would suggest that Brownian motion would be an appropriate approximation to the DGP 

butrejecting nonstationarity would favor approximation with a mean reversion process. 

Dixit and Pindyck argue that prices of commodities such as oil follow a mean 

reverting process. Under this assumption, prices below the projected level have a tendency 

to increase and prices above the projected level have a tendency to decrease.                                                                                                                               

They assert that testing for autocorrelation should be done over the largest time period 

possible (Dixit, 1994). While this adds robustness to a unit root test, and data for the past 

hundred years is available, the market structure for gasoline has drastically changed in the 

                                                           
3 Dickey Fuller tests were run with STATA based on historical gasoline prices displayed in Figure 3.1 
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past decade and incorporating too many years detracts from the legitimacy of modeling the 

current market.  

 Despite these conflicting results, a strong case for using the Brownian motion form 

can be made. There has been a large amount of debate in the literature over the similarity 

in results given by models using Brownian motion assumptions and those resulting from 

use of mean reversion assumptions (Pindyck, 1999, Sarkar, 2003, Metcalf and Hassett, 

1995). Specifically the debate has been on whether Brownian motion can be used as an 

approximation for a mean reversion process without compromising the reliability of 

results. Mean reversion has the advantage of being a more reasonable assumption in many 

markets due to economic factors working to bring the price of a product back to its marginal 

cost of production.  An example of this would be additional plants entering the industry 

under high prices or plants leaving the industry under low prices. The problems are that 

these marginal costs sometimes shift confounding predictions made by mean reversion, 

and calculations for trigger prices under mean reversion assumptions can be cumbersome 

(Metcalf and Hassett, 1995). Brownian motion has the advantage of analytical tractability 

(Dixit, 1994). In other words, problems modeled using Brownian motion can be solved by 

solving formulas and give actual answers rather than forcing data through a program that 

gives approximations. 

 A mean reverting process converges asymptotically to a Brownian motion process 

as the rate of mean reversion tends to zero. If the speed of reversion, ɳ, equals zero then a 

mean reversion process and a Brownian motion process will give the exact same answer 

(Sarkar, 2003, Pindyck, 1999, Metcalf and Hassett, 1995). Therefore Pindyck and Metcalf 

argue that a Brownian motion is a good approximation even if the true DGP is a mean-

reverting one as long as the speed of reversion is low (Pindyck, 1999, Metcalf and Hassett, 

1995). Moreover, volatility also affects the appropriateness of using GBM to approximate 

the DGP (Pindyck, 1999, Metcalf and Hassett, 1995). Results from a GBM approximation 

to the DGP are less reliable, the higher the volatility 𝜎 of the random variable. Metcalf and 

Hassett (1995) conducted sensitivity analysis and found that under a volatility similar to 

this paper yearly (𝜎 = .25) and a mean-reversion coefficient of ɳ=.09, a GBM 

approximation results in trigger prices that deviate from those of mean reversion by only 

2% (Metcalf and Hassett, 1995). 
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 Since we have calculated volatility in our DGP, we now proceed to calculate the 

rate (if any) of mean reversion to determine the appropriateness of a GBM as an 

approximation to the DGP. To determine the reversion speed of 𝑃 we regressed gasoline 

wholesale prices over the past twenty years on its lagged price and drift rate; i.e. 𝑃𝑡+1 −

𝑃𝑡 = 𝛽0 + ɳ((𝑃µ𝑡)̅̅ ̅̅ ̅̅ ̅ − 𝑃𝑡).  Where 𝑃𝑡+1 − 𝑃𝑡 is the annual change in price, 𝛽0 is the 

intercept of the equation, ((𝑃µ𝑡)̅̅ ̅̅ ̅̅ ̅̅  − 𝑃𝑡) is the difference in mean price and actual price, and 

ɳ is the reversion speed. Estimation results in yearly ɳ = .66  

3.2 Technology and Pathways 

Before getting into cost estimation it is important to note that there are multiple 

pathways to producing second generation biofuel and that different pathways can have very 

different costs and yields. This section explains the different pathways that exist and why 

we pick the pathways that we do. There are three main types of second-generation 

technology that converts cellulosic biomass into biofuels. These technologies are 

gasification, hydrolysis, and fast pyrolysis (Hughes et al., 2013, Brown and Brown, 2013a). 

There have been numerous variations of these three base technologies in small scale pilot 

plants but they still are primarily based off one of these three technologies. Gasification 

uses high heat and low oxygen to turn the feedstock into syngas, it then adds catalysts to 

this syngas to convert it to liquid fuels (Brown and Brown, 2013b). Hydrolysis converts 

plant cellulosic material to sugars after the material is broken down through either 

enzymes, chemicals, or pressure. These sugars are then turned into fuel through a 

fermentation process that is typically driven by E. coli and S. cerevisiae bacteria (Hughes 

et al., 2013).   

The final technology, and the one used in this paper, is fast pyrolysis. This process 

can be roughly simplified into five steps.  

1. Biomass pre-treatment    

2. Fast Pyrolysis 

3. Solids Removal 

4. Oil Collection 

5. Oil Upgrading 
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Figure 3.2: Steps of Converting Corn Stover to Bio gasoline using Fast Pyrolysis, taken 

and modified from Wright et al. (2010). 

 The first step of fast pyrolysis is the pretreatment process. Stover is collected and 

ground to pieces that are 10 mm in diameter which makes them easier to dry. The stover is 

then dried to a moisture content of 7%. It is then ground again to pieces that are only 3mm 

in diameter. This small diameter assures that the stover will be efficiently used by the 

equipment. 

 The second step is the pyrolysis itself, more specifically fast pyrolysis. In this 

process the pre-treated biomass is sent to a pyrolysis reactor. This reactor rapidly heats 

stover to approximately 480𝑜 𝐶. This rapid heating converts the biomass to a gaseous state. 

This gas contains char, bio-oil, and non-condensable gases (NCG’s) such as carbon 

monoxide and methane. 

 During the third step these gases evaporate from the pyrolysis reactor and are sent 

through cleaning equipment (either a turbine or filter) to separate the char from the gas. 

The char must be collected due to its high carbon and ash content which would harm the 

process to further refine the bio-oil. This collected char is then either sold as a marketable 

co product or can be combusted and its heat is used to assist both steps one and two for 

drying and pyrolysis respectively. Some plants also use this char to also produce electricity 

which is then used to run the plant and/or sold to the grid. 
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 The forth step of this process is oil collection. During this step, the remaining gas 

net of the char is sent through an indirect heat exchanger. This rapidly cools that gas to 

1500 𝐶. Bio-oil becomes liquid at these lower temperatures and is collected. Like their 

name would imply NCG’s stay in their vapor form, this vapor is collected and combusted 

along with the char to provide heat for pyrolysis and drying. 

 During the fifth step the bio oil then can go through one of two processes to further 

reduce the oxygen content and refine it to a usable fuel, bio-gasoline or bio-diesel. The first 

option is fluid catalytic cracking (FCC). In FCC the bio-oil gets depolymerized and further 

deoxygenated. This creates hydrocarbons which can then be blended with existing 

hydrocarbon-based biofuels (Brown and Brown, 2013a). The second option is 

hydrotreatment. Hydrotreatment further reduces the oxygen content, and stimulates the 

depolymerization of bio-oil by adding hydrogen and refines it into a useable fuel such as 

bio-gasoline or bio-diesel.  This paper assumes a hydrotreatment process for the refining 

of bio oil. Hydrotreatment is chosen as the process of converting bio-oil to bio-gasoline 

since has higher yields and more favorable economics than FCC (Brown and Brown, 

2013b). 

 Hydroprocessing is a general term that includes two separate processes, 

hydrotreatment and hydrocracking. During hydrotreatment bio-oil is subjected to high 

pressure (1000-1500psi), and temperatures (3000 − 4000𝐶). There is also large amounts 

of hydrogen added to the bio-oil during this step. This combination of temperature, 

pressure, and hydrogen removes impurities such as nitrogen and sulfur from the bio-oil. 

The second step of hydroprocessing is hydrocracking. During this step even higher 

pressures and temperatures, 4000 − 4500 𝐶   and 1500 − 2000 𝑝𝑠𝑖, are used to 

depolymerize the molecules found in bio-oil into shorter chains which are chemically 

similar to fossil fuel based gasoline. Both of these processes further reduce the oxygen 

content found in the bio-oil until it is at a point low enough where the upgraded product 

can be used as a drop in fuel, in our case bio-gasoline. Once hydroprocessing is complete 

we are left with our drop in biofuel, which is ready to be blended or directly sold. 

Choosing a pathway for biofuel production is challenging. The estimates for yield 

and cost of different technologies change every few months. This paper attempted to use 

the timeliest numbers possible for the existing technologies but even these are subject to 
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change at a moment’s notice. The technology evolves very rapidly. Potentially hydrolysis 

is just one new bacteria strain away from becoming the least attractive to the most attractive 

second-generation technology. Having said this, there are several arguments for assuming 

a fast pyrolysis with hydrotreatment as the pathway of choice. The only existing large scale 

plant has adopted a variation of this technology so there is a precedent for it. A 

corporation’s job is to maximize its profits, this can only be done with the most cost 

effective technology. Another argument is that currently hydrolysis is a fairly outdated 

technology that is better suited for ethanol production. Hydrolysis makes sugars which 

work well for refining into ethanol but are harder to refine into a drop in. Currently, there 

are no planned drop-in plants that use hydrolysis as a pathway (Brown and Brown, 2013a). 

The economics and chemistry do not line up. Gasification also experiences the unfavorable 

economics compared to fast pyrolysis. In a Techno Economic Analysis (TEA) study, 

conducted by Tristan Brown and Robert Brown at Iowa State University, fast pyrolysis 

was found to be considerably more cost effective than both hydrolysis and gasification. 

The lowest minimum fuel selling price (MFSP) for Fast Pyrolysis was found to be under 

half that of both hydrolysis and gasification pathways. The MFSP for a gallon of biofuel 

on these processes were $2.00, $5.00, and $4.50 respectively (Brown and Brown, 2013a). 

3.3 Fixed and Operating Costs 

Now that the pathway is known it is possible to parameterize our costs. This paper, 

unless otherwise noted takes its assumptions for fixed and operating costs from (Brown et 

al., 2013). These costs are summarized at the end of the section in table 3.3. Brown’s paper 

does an NPV analysis for a second generation drop-in biofuel plant over different regions; 

Brown models a plant that processes 2000 dry tons of stover a day. This paper takes 

Brown’s numbers for cost and converts them into a per gallon basis. The operating cost 𝑤, 

is calculated by taking Brown’s estimation of yearly operating cost plus our calculations 

for capital replacement and federal tax. Capital replacement is added into w to replace 

capital at the rate it is used up to ensure an infinite life of the plant; this infinite life 

assumption is required for real options analysis. Federal tax is added to keep the project 

more realistic for our analysis. This yearly operating cost is then divided by the number of 

gallons of biofuel the plant produces a year. This paper breaks operating cost into four 

categories, stover cost, hydrogen cost, cost of replacing capital, and miscellaneous.  
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This paper calculates the cost of replacing capital by annualizing capital cost and 

converting it to a per gallon basis. This model also attempts to incorporate corporate 

income tax into its operating cost expense. For this to work with a real options model, a 

conversion is necessary to keep the tax constant and in per gallon terms. Traditional income 

taxes overcomplicate the real options model and cause it to break down (Niemann and 

Sureth, 2004). We assume an effective tax rate on net income to be 20%, that 20% will be 

levied on the predicted taxable net revenue over the twenty year period, and converted to 

a per gallon basis. We then take the NPV of these and annualize it to come up with a 

constant tax that is paid every year. This paper also assumes that a company can pay 

negative tax. We assume the plant is part of a larger company and that a negative tax owed 

within the biofuel plant can be sent to another part of the company to cancel out that tax; 

this is relevant for early years when the plants costs are higher than its revenue. 

There are several subsidies and tax breaks currently in the industry. However, due 

to their uncertain future this paper omits all of them and looks at trigger prices free of 

policy.                                      

As previously mentioned most of this paper’s operating costs come from the 

predictions in Brown’s paper “Regional Differences in the Economic Feasibility of 

Advanced Biorefineries: Fast Pyrolysis and Hydroprocessing,”  (Brown et al., 2013). One 

exception to this is the cost of corn stover. The literature gives a wide range of predictions 

on the cost of corn stover. The predicted cost for one dry metric ton of stover delivered to 

plant ranges from approximately $16 to $112. (Gallagher et al., 2003, Fiegel et al.).  Other 

predictions fall into a range between $40 to $101 (Brechbill et al., 2011, Perrin et al., 2012, 

Brown et al., 2013, Gonzalez et al., 2012b).  

These discrepancies in predicted cost exist since the corn stover market remains 

largely undeveloped and on a very small scale. Due to this infancy in the industry, 

assumptions for the impact of stover harvest on next year’s crop yield, the amount of 

fertilizer  required to replace the nutrients lost from stover harvest, and the price required 

to induce enough farmers to collect stover to supply a biofuel plant are challenging. The 

fact that these impacts are experienced differently across areas with disparate corn yields, 

weather, tillage, and soil type compounds the prediction problem (Wilhelm et al., 2004).  
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These things can be asymmetrical in different parts of the same field, let alone across an 

entire region.  

The assumption made in Brown’s previously mentioned paper is $101 per dry ton 

of stover. This seems to be on the high end of most of the predictions. The assumption 

made in this study is that a refinery can buy a ton of stover at $83 a dry ton. This assumption 

is used since it falls towards the middle of the other predictions. It is also the assumption 

used in another of Brown’s papers “Techno-Economic Analysis of Biomass to 

Transportation Fuels and Electricity via Fast Pyrolysis and Hydroprocessing,” (Brown and 

Brown, 2013b) as well as a (Wright et al., 2010). While $83 a ton may seem conservative 

compared with other $100 plus predictions, this paper contests that any second-generation 

biofuel plants that come online in the near future will likely pick a location that has 

favorable conditions for collecting stover, conditions that keep both the opportunity and 

monetary cost of stover harvest low. 

There was also disagreement on the yield of bio-gasoline per dry ton of feedstock. 

The predictions were, 72 gallons of bio-gasoline per dry ton and 85 gallons of bio-gasoline 

per dry metric ton, made by Kior and Brown, respectively (Biofuels Digest, 2013; Brown 

et al., 2013). Kior’s assumption is used in this paper. As of right now, they are the only 

commercial scale cellulosic biofuel drop-in plant. They would know what their own yields 

are. It is important to note that some studies suggest up to a ten percent yield reduction 

converting from yellow pine to corn stover for a feedstock (Demirbas, 2011, Brown et al., 

2013).  Kior’s primary feedstock is yellow pine but they claim they can use stover just as 

easily without mentioning a yield loss so this is the number that will be used.  With these 

assumptions in mind the cost of corn stover per gallon of biofuel is projected to be $1.15 

per gallon in real terms. 

Table 3. illustrates the calculated components that make up this models operating 

cost. All these components, with the exception of capital replacement cost, were calculated 

from Brown’s paper. In Brown they were listed as yearly costs but this paper converted 

them to a per gallon basis for the model. These individual values only have a direct 

importance to our analysis in how they affect w. It is however interesting to include them 

to illustrate what 𝑤 is actually composed of. Almost half of 𝑤 comes from stover cost, 

approximately one third comes from capital replacement, and about a fifth comes from 
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hydrogen. These three expenses drive the operating cost for cellulosic bio gasoline 

production. A plants operating cost is very sensitive to these two inputs. 

It should be noted that part of the costs in the miscellaneous category are negative. 

This model assumes that the char left over from pyrolysis is burnt and converted to 

electricity. This electricity runs the plant and the excess is sold to the grid. Building 

electricity into the operating cost is required for our model, but it does understate 

miscellaneous cost by about $.20 a gallon.  

Table 3.1: Operating costs per gallon for project. 

 

 Stover   $                    1.15  

 Hydrogen   $                    0.51  

 Depreciation upkeep   $                    0.79  

 Misc   $                    0.11  

 

 Total investment cost is calculated to be $429,000,000 and total yearly operating 

cost is $121,491,887.  After calculating and converting the cost variables found in the 

literature, operating cost (including stover cost) is equal to 𝑤 = $2.56 per gallon and 

capital cost is equal to 𝑘 = $9.91  per gallon of plant capacity. Typically a plant pays its 

capital costs fully or partially with financing which would be spread out over a number of 

years. Real options does not allow for this, and 𝑘 must be paid all at once. Our model 

assumes 100% loan financing for only the three years of construction. We then took the 

principal of this loan after three years, paid it all at once, and divided by output per year to 

get 𝑘. Notice that the financing assumption was only used to calculate the principal, it was 

not assumed to be paid back over twenty years. 

In this paper, capital cost 𝑘, is calculated as the present value of investment cost. 

The construction period is three years. The plant pays back the investment cost with interest 

in full after three years of construction. This cost is then divided by the total number of 

gallons produced in a year to get 𝑘. Think of 𝑘 as the capital cost per gallon of plant 

capacity. Investment cost parameters are summarized in the following table 

Table 3.2 assumptions for financing 

 Parameter  Value Source 
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 investment cost   $429,000,000  Brown et al. 2013 

 construction time  3 years Wright et al. 2010 

 % of investment in 
year one  

8% Wright et al. 2010 

 % of investment in 
year two  

60% Wright et al. 2010 

 % of investment in 
year three  

32% Wright et al. 2010 

 interest rate  7.5% Wright et al. 2010 

 PV of investment 
cost (after interest)  

$470,350,236  author's calculation 

 Gallons of bio-
gasoline produced 

per year  
4744800 gallons author's calculation 

 

The parameters 𝐸𝑚, 𝑟, 𝑙, and 𝑚 are all calculated as percentages of 𝑘. Due to the 

infancy of this industry, there is little literature on the costs associated with mothballing 

and reactivation for second generation drop in biofuel plants. Our assumptions reflect those 

of Schmitt’s paper which models a real options analysis for a first generation corn ethanol 

plant. Using these assumptions 𝑚 was calculated as .025𝑘 and 𝑙 was calculated as 0.25𝑘 

(Schmit et al., 2009). This paper made slight modifications for Schmitt’s assumptions for 

𝐸𝑚 and 𝑟. Schmitt assumes that 𝐸𝑚=.05𝑘 and that 𝑟=0.1𝑘. These numbers are taken from 

the calculated 𝐸𝑚 equaling .03k for a methanol facility. They increase 𝐸𝑚 to .05𝑘 due to 

their smaller plant sizes. 𝑟 is equal to 2𝐸𝑚 (Schmit et al. 2009). These numbers seem 

overstated since our paper looks at plants that are both larger and have a higher proportion 

of total spending sunk into capital. Our plant is approximately four times larger than even 

the largest ethanol plants in Schmitt’s study. A first generation plant has a discounted 

operating to capital cost ratio of just over five and a half to one. In other words, over a 

plant’s life they will pay five and a half times as much for operating expenses as they do 

for capital in present value terms. The assumptions made in this paper put this ratio of 

discounted operating costs to capital at just over two and a half to one. These plants have 

so much more capital than first generation plants that it makes sense that there would be 

economies of scale in both reactivation and in mothballing fixed cost. With this in mind 

we set 𝐸𝑚=0.025𝑘 and 𝑟=0.05𝑘. 
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Table 3.1: Assumptions of all parameters used in this study. 

 

 

Parameter Definition Value Scale Source 

µ Drift rate  1.85% per year EIA 2014 

σ 
Standard 

deviation  
20.92% per year EIA 2014 

δ Discount rate  10.00% per year 
Brown et al. 

2013 

i Interest rate  7.50% per year 
Brown et al. 

2013 

w Operating cost  
                     

$2.56  
per gallon produced 

Brown et al. 

2013 

m 

Mothball 

maintenance 

cost  

                     

$0.25  
per gallon produced 

Schmit et al. 

2009 

k Capital cost  
                     

$9.91  

per gallon of total 

capacity 

Brown et al. 

2013 
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l Scrap value  
                     

$2.48  

per gallon of total 

capacity 

Schmit et al. 

2009 

Em 
Mothball fixed 

cost  

                     

$0.25  

per gallon of total 

capacity 

Schmit et al. 

2009 

r 
Reactivation 

cost  

                     

$0.50  

per gallon of total 

capacity 

Schmit et al. 

2009 
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4 RESULTS 
 
 

Trigger prices resulting from numerical solution of the system (22)-(29) are 

reported in Table 4.1. Trigger prices of entry, mothball, reactivation, and exit are denoted 

by 𝑃ℎ, 𝑃𝑚, 𝑃𝑟, and 𝑃𝑙 respectively. Entry and exit trigger prices calculated without 

managerial flexibility (without mothballing and reactivation) were obtained from value 

matching and smooth pasting conditions depicted in Appendix 2 are also reported in Table 

4.1 and denoted as �̂�ℎ 𝑎𝑛𝑑 �̂�𝑙. Entry and exit trigger prices under break-even and 

Marshallian exit assumptions are also calculated and reported in Table 4.1 for comparison 

with real options. The break-even price for entry, 𝑊ℎ occurs when  
𝑊ℎ

𝛿−µ
 ≥  

𝑤

𝜕
+ 𝑘. The 

trigger price for Marshallian exit 𝑊𝑙 occurs when 
𝑊𝑙

𝛿−µ
 ≤   

𝑤

𝜕
+ 𝑙. 𝑊𝑙 stands for price per 

gallon, 𝛿 the discount rate, µ the drift rate, and w the operating cost per gallon. We also 

calculate an NPV entry price that demands an 80% chance of economic profit when our 

risk level is considered 𝑁𝑃𝑉ℎ. This illustrates the difference in an NPV break-even analysis 

and what is the case for real life investment. Investors would want better than a fifty percent 

chance of making money. 

Table 4.1: Trigger prices in dollars per gallon for our Break-even, Marshallian exit, NPV, 

real options with managerial flexibility, and real options without managerial flexibility 

analysis. 

Trigger price Price trigger occurs  Definition 

𝑊ℎ  $                    2.89 Break-even price 

𝑊𝑙  $                    1.88  Marshallian exit price 

𝑃ℎ  $                    4.97  RO entry price with managerial flexibility 

𝑃𝑙  $                    1.91  RO exit price with managerial flexibility 

𝑃𝑚  $                    1.91  RO mothball price with managerial flexibility 

𝑃𝑟  $                    2.89  RO reactivation price with managerial flexibility 

�̂�ℎ  $                    4.98 RO entry without managerial flexibility 

�̂�𝑙  $                    1.90  RO exit without managerial flexibility 

𝑁𝑃𝑉ℎ  $                    3.51 NPV entry price with 80% chance of econ. profit 
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It can be concluded from the table that uncertainty plays a major role in both the 

decision to enter and the decision to exit. The real options entry trigger price 𝑃ℎ was 72% 

above the break-even price 𝑊ℎ. Real option exit trigger price 𝑃𝑙 was about the same as  the 

Marshallian exit price 𝑊𝑙 for our level of uncertainty, a gap did form however for higher 

levels of uncertainty. The uncertainty combined with irreversibility within our real options 

analysis caused plants to demand a higher price to invest and accept a lower price before 

exiting compared to traditional approaches.  For our given level of uncertainty and drift 

rate it appears that break even greatly underestimates the price at which a firm will enter 

for a second generation drop in biofuel plant. It however does not cause firms to accept 

lower prices for exit until higher levels of uncertainty. Managerial flexibility has very little 

impact. Having the decision to mothball and reactivate later affects entry price by $.01 per 

gallon. The effects on exit trigger prices are more pronounced for higher levels of 

uncertainty. At our base levels however 𝑃𝑙 is actually $.01 more than �̂�𝑙. A plant with the 

ability to reduce economic losses while waiting for conditions to improve will have no 

effect until standard deviation reaches .25 which will be discussed later. For levels higher 

than this it   will allow plants to stay in business longer than one that cannot.4 

Figure 4.1 shows how uncertainty affects the trigger price for entry at different 

levels. This graph uses �̂�ℎ (which ignores the options of mothball and reactivation) so that 

the effect of uncertainty is not confounded with managerial flexibility. The difference 

between 𝑃ℎ and �̂�ℎ is minimal. This is due to the fact that the value of the option to mothball 

is very low at entry trigger prices. 𝑃ℎ was omitted to keep the graph cleaner and not be 

redundant. The gap between 𝑊ℎ and �̂�ℎ is very low when 𝜎 = 0. (The difference at 0% is 

caused by the drift rate, which will be discussed further in graph 4.3.) Increasing the 

uncertainty has no effect on break even 𝑊ℎ since break even only considers the expected 

value. �̂�ℎ  however, continually increases with uncertainty. Higher uncertainties increase 

the option value of waiting to invest, which in turn cause the firm to demand a higher 

                                                           
4 Our results comparing 𝑃𝑙  to 𝑊𝑙 and 𝑃ℎ  to �̂�ℎ initially appears at odds with what the literature would 
suggest. There is however nothing intuitively incorrect with our assumptions. Both of these comparisons 
yield expected results with higher levels of uncertainty. For low levels of uncertainty they give conflicting 
results because of the drift rate more strongly affecting 𝑊𝑙 than 𝑃𝑙 . For low levels of uncertainty, the 
mandatory mothball state costs more than it is worth. This makes the firm want to exit before it 
mothballs. Both of these situations will be discussed in more detail. 
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premium for entry. When 𝜎 reaches 60% the firm requires, to enter the market, a price 

more than 2.5 times higher than the break-even price under NPV. 

 

Figure 4.1: Entry trigger prices over different levels of uncertainty 

Uncertainty and irreversibility in investment may result in hysteresis in firm 

behavior. Hysteresis may be thought of as inaction. Firms are less responsive to 

profitability signals because they are anticipating potential changes in these signals in the 

future. We now explore hysteresis in the case of biofuel firms that have the option to 

mothball and reactivate. In particular Figure 4.2 illustrates the link between uncertainty 

and hysteresis. The gap between 𝑃ℎ and 𝑃𝑙 in Figure 4.2 can be thought of as a firm’s 

limited response zone. An idle firm will not enter the market until gasoline price becomes 

greater than or equal to 𝑃ℎ. If a firm is already active, it will not exit the market until 

gasoline price falls below 𝑃𝑙. Therefore if the price of gasoline is between 𝑃ℎ and  𝑃𝑙 no 

entry or exit will occur in this market. The main insight provided by Figure 4.2 is that an 

increase in gasoline price volatility, which has been the case over the past decade (EIA 

2014) makes firm entry into the market more unlikely and it makes exit of firms already in 

operation also more unlikely. This result suggests that, if policies designed to support 

biofuels remain unadjusted, recent increases in gasoline price volatility, may have greatly 

diminished their effectiveness, and their likelihood of success.  

The inactivity zone under breakeven and Marshallian analysis is constant for all 

levels of uncertainty. Using break-even a firm will enter if 
𝑃

𝛿−µ
 ≥  

𝑤

𝛿
+ 𝑘. Once entered 
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that same firm would only leave if 
𝑃

𝛿−µ
 ≤   

𝑤

𝜕
+ 𝑙. This exit trigger price is calculated as a 

Marshallian exit price. If a firm cannot cover their average cost in the long run they will 

exit. A firm will enter the industry if their discounted price covers their discounted 

operating costs and lump sum capital cost. They will leave once their discounted price falls 

below their discounted operating costs plus the lump sum value the firm receives for selling 

their plant upon leaving the industry. For NPV analysis the zone of inaction is the 

difference between 𝑘 and 𝑙 which, under our assumptions, is equal to $0.1.01 per gallon. 

Real options analysis, on the other hand, has more flexibility. Its inaction zone is between 

mothballing and reactivation trigger prices. In real options the wedge between entry and 

exit is known as the firm’s limited response zone, this zone increases with uncertainty and 

is considerably larger than its break-even/Marshallian exit counterpart. Under our 

assumptions of σ=.209 and µ=1.85% the inaction zone between 𝑃ℎ and 𝑃𝑙 is $3.06. 

In this paper our break-even is slightly modified from a traditional break-even.  A 

standard break-even analysis would not include a yearly cost to replace capital. It would 

instead have a finite project life and only calculate depreciation for tax purposes. This 

modification was made to make our comparison consistent with real options, even if it does 

diverge from a traditional NPV break-even analysis. The same is true for the Marshallian 

exit price. 

 

Figure 4.2: The effect of uncertainty on the wedge between Ph and Pl. 
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Figure 4.3 additionally incorporates the trigger prices for mothball and reactivation over 

different levels of uncertainty. These interactions between entry, mothballing, reactivation, 

and exit, show us how a plant will respond to different bio gasoline prices at different levels 

of uncertainty. There is a hysteresis between the mothball and reactivation price that grows 

with uncertainty. An active firm will wait longer to mothball under higher levels of 

uncertainty and a mothball firm will wait longer under higher levels of uncertainty to 

reactivate. Figure 4.3 shows some interactions between trigger prices that may seem 

counter intuitive for low levels of variability (levels below .30). The first of these is 𝑃𝑚 

converging to 𝑃𝑙. This is a function of how the equations are forced to interact in Matlab. 

A firm must mothball before it exits. For low levels of uncertainty, there is little value to 

the options that arise from being in a mothballed state, since prices are unlikely to change 

enough to induce a state change. There is however a maintenance cost 𝑚 that must be paid 

to stay in this state and a fixed cost 𝐸𝑚 to get to this state. This additional cost paired with 

a low option value means that it would never be optimal for a firm to mothball. It would 

always exit before it considered mothballing. For a similar reason 𝑃𝑟 converges to 𝑃𝑙 for 

low levels of uncertainty. A firm would not spend any time in the mothballed state and 

would exit immediately. It would never have a chance to reactivate. 𝑃𝑚and 𝑃𝑟 are trivial 

under low levels of variability. For these low levels there is a mandatory fixed cost to 

change states, and for a mothballed state an operating cost; this is paired with these options 

having little value. In reality a firm would never consider mothballing for uncertainty 

below .30 and as a result never would consider mothballing. Because of the previously 

stated argument, we set 𝑃𝑟 and 𝑃𝑚 equal to 𝑊ℎ for levels of uncertainty that would have 

yielded a result of a lower trigger price for them than the Marshallian exit price. 
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Figure 4.3: The impact of uncertainty on hysteresis 

The positive drift rate calculated for wholesale gasoline price reveals an expected 

improvement in profitability. We explore whether such expected improvement in future 

profitability affects entry trigger price and to what extent that effect is magnified or 

softened by uncertainty and irreversibility. As expected, increases in the drift rate reduce 

entry trigger prices. As the prospects of the investment improve, plants require a lower 

price to invest without delay. Figure 4.4 also reveals that uncertainty and irreversibility 

soften the effect of an increase in the drift rate on entry trigger price; i.e. on Figure 4.4the 

slope for �̂�ℎ is less steep than 𝑊ℎ. The effect of an increased drift has conflicting effects 

on �̂�ℎ. Like break-even, a project that trends towards increasingly favorable situations 

makes investment now more attractive since it lowers the likelihood of negative outcomes, 

but it also increases the value of waiting. Waiting with a positive drift rate becomes more 

valuable, because future prices are now discounted by (𝛿 − µ) instead of just 𝛿. This 

explains why 𝑃𝑙 and  are higher than   for low levels of uncertainty. In these instances 

the impact of drift is stronger than the impact of uncertainty for real option exit prices. In 

other words the positive drift rate decreases more than the combination of uncertainty 

and drift rate decreases real option exit, due to drifts reduced affect on real options 

compared to break-even/Marshallian assumptions. 
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Figure 4.4: The comparison of Wh and �̂�𝒉  over different drift rates 

We explore the sensitivity of hysteresis (the range of inaction) to the drift rate. 

Results are displayed in Figure 4.5. Increases in drift rate have a close to proportional effect 

on entry and exit trigger prices. Specifically, they decrease at a modest rate as the drift rate 

increases. This furthers the argument that uncertainty and irreversibility are the important 

drivers of hysteresis within the biofuel industry.  

 

Figure 4.5: The effect that yearly drift rate has on the hysteresis between �̂�𝒉 and �̂�𝒍   

Figures 4.6 and 4.7 show how much of the gap between 𝑊ℎ (𝑊𝑙) and real 𝑃ℎ (𝑃𝑙) 

is explained by uncertainty, and how much comes from the additional flexibility in decision 

making our model adds that break-even and Marshallian theory do not account for. In other 
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words, the option to mothball and reactivate make the plant more realistic but it makes the 

trigger price for exit lower than it would be if we were to compare NPV entry and exit to a 

real options analysis that only had options for entry and exit. This is due to being able to 

mothball to reduce losses in the event that conditions become unfavorable and reactivate it 

if conditions improve later for a reactivation price less than k. In other words it gives an 

additional value to waiting that doesn’t have a counterpart inbreak-even. When doing a real 

options analysis that modeled just idle and active states the �̂�ℎ and �̂�𝑙 under the same 

parameters as our previous analysis, yielded prices of $4.98 and $1.90 respectively. 𝑃ℎ and 

�̂�ℎ hardly differ since 𝑃ℎ is much higher than 𝑃𝑚; with our given level of variability and 

positive drift it is unlikely that a price would fall far enough to mothball. Since this is 

unlikely the option value to mothball when a firm is experiencing 𝑃ℎ is very low, it would 

not outweigh the fixed and operating cost of mothballing.  

The impact that managerial flexibility has on 𝑃𝑙 is clear. A firm will wait longer to 

exit if it has the option to reduce its losses and reactivate in the future. This lowering of the 

exit trigger price will increase the hysteresis between entry and exit. In our analysis this 

holds true for any standard deviation greater than .22. The reason this is not the case for all 

levels of uncertainty is that for low levels of uncertainty the cost of mothballing does not 

outweigh the option value of being able to reactivate in the future. The impact that 

managerial flexibility has on 𝑃ℎ is less clear. It has very little effect on it which makes 

sense given how unlikely it is at high prices, that mothballing would be used.𝑃ℎ𝑃ℎ�̂�ℎ𝑃𝑙�̂�𝑙 

Overall the effect that managerial flexibility has on 𝑃ℎ is trivial but it is important to explain 

why it changes. 

Figure 4.6 shows how small of an effect that managerial flexibility actually has on 

the decision to enter for different levels of uncertainty. The lines for 𝑃ℎ 𝑎𝑛𝑑 �̂�ℎ fall right 

on top of one another. Uncertainty affects the decision to enter for a plant with, and a plant 

without managerial flexibility the same. This furthers the argument that at the high prices 

required for entry 𝑃ℎ 𝑎𝑛𝑑 �̂�ℎ are so far away from 𝑃𝑚 that the option has no value at this 

point. 
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Figure 4.6: Effect of managerial flexibility on the decision to enter. 

𝑃𝑙𝑃𝑚𝑃𝑙𝑃ℎFigure 4.7 shows how managerial flexibility effects exit. In figure 4.6 we 

saw that flexibilities affect on entry is negligible. For our given level of uncertainty 

Managerial flexibility has no meaningful effect on 𝑃𝑙  either. Managerial flexibility does 

however have an impact on 𝑃𝑙 for higher levels of uncertainty. For a standard deviation of 

.6 a firm will leave the industry $.36 sooner if they do not have the option to reduce their 

variable costs until market conditions improve to a point where they can reactivate. This 

makes sense since 𝑃𝑚 is much closer to 𝑃𝑙 than it is to 𝑃ℎ. The value option to mothball has 

an inverse relationship with price. 

𝑃𝑙�̂�𝑙 Plants are willing to stay in the market and bear higher losses if they have the 

option to mothball which reduces these losses to only m per gallon instead of P-w per 

gallon, and reactivate in the future if prices improve. This explanation is apparent anywhere 

between .22 to .6 standard deviation. From 0% to .22 however there is another affect that 

outweighs the option value of mothballing which causes 𝑃𝑙 to actually be greater than �̂�𝑙. 

Option values increase with higher amounts of uncertainty. Under relatively low levels of 

uncertainty the option does not hold much value. In addition to this our Bellman equations 

are set up in a way that requires a firm to mothball before it exits. In the situation with 

managerial flexibility, if a plant decides to exit it must pay fixed cost 𝐸𝑚 before it can leave 
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even if it goes directly from active to idle. This low option value paired with what is 

essentially an additional cost to exit causes the firm to leave earlier in the situation where 

it has flexibility than one where it does not. 

 

Figure 4.7: The effect of managerial flexibility on the decision to exit. 
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5 CONCLUSIONS 
 
 

 

The large amount of existing literature puts the break-even entry price of a second 

generation drop in biofuel plant anywhere between $2.00 to $2.70 a gallon for a 

commercial scale plant (Anex et al., 2010, Wright et al., 2010, Brown et al., 2013, Tyner 

and Petter, Cannon, 2012, Jones et al., 2009). If we assume a biofuel selling price equal to 

that of wholesale gasoline price, which is currently $2.79 a gallon, one would expect that, 

even under the least promising break-even analysis, NPV for a second generation biofuel 

plant would be greater than zero (EIA, 2014). It is important to note that a positive NPV 

does not guarantee investment in the real world, if these NPV’s required an economic gain 

with greater than 50% probability then this would not be the case. By definition though 

this would require accounting for and building risk into the model. Despite this positive 

NPV,  the United States is in a situation where it is well short of its Renewable Fuels 

Mandate for cellulosic biofuels every year. This shortfall has been considerable. In 2013, 

cellulosic biofuel production totaled six million gallons. This falls 994 million gallons 

below the target goal of 1 billion gallons set by the Renewable Fuel Standard (Schnepf and 

Yacobucci, 2010). This gap between the break even and actual price is caused by 

uncertainty.  

This chronic shortfall in investment in cellulosic biofuel plants is easily rationalized 

when uncertainty and irreversibility, two distinctive features of this industry, are 

considered. The market for gasoline has been known to be volatile. Using wholesale 

monthly data over the last twenty years we calculated a yearly standard deviation of 

gasoline price of just under .21. This volatility has a large effect on the option value of 

waiting and gives us an entry trigger price of $4.98 per gallon as opposed to $2.89 per 

gallon, which emerges under conventional microeconomic theory (i.e. when uncertainty 

and irreversibility are ignored). In other words gasoline prices have been high enough to 

induce investment under a break-even model that ignores uncertainty. Once uncertainty 
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and irreversibility are added into the calculation, prices fall well short of the trigger price 

for entry. It then follows that uncertainty constitutes a significance barrier to meeting the 

Renewable Fuel Standard for cellulosic biofuel. 

Another conclusion to be drawn from the data is that once firms are in the industry 

they will stay in longer before exiting under a real options analysis than they would under 

an break-even/Marshallian analysis for moderate to high levels of uncertainty. Hysteresis 

between entry and exit increases with higher levels of uncertainty. Drift rates also cause 

effect real options differently than beak-even/Marshallian assumptions. They have a more 

modest effect on real options due to the conflicting effect on the expected value and option 

value. 

Using the insights from this study, this paper makes several recommendations that 

could allow for meeting the Renewable Fuel Standard in a more cost effective way. Since 

the RFS was started for cellulosic biofuels policies primarily have been designed to address 

expected value, lowering costs, or offering attractive financing that improves NPV. All of 

these policies will lower trigger price but none of them address uncertainty. Results in this 

paper suggest that using government subsidies to reduce uncertainty may be more effective 

than policies aimed at affecting mean return on investment. Some ideas for reducing 

uncertainty have been developed in the literature. They include government subsidized 

insurance that guarantees a minimum price and forward contracts that lock the producer 

into a specific price in the future regardless of what the market does (Tyner et al., 2010, 

Song et al.). In theory these policies could dramatically reduce uncertainty inherent within 

the cellulosic biofuel industry. It would be possible to adapt this RO analysis to these 

policies by adding in parameters associated with a given policy and then resolving the 

equations in Matlab. This is a topic of future research. 

Following the same logic, the government could reduce the perceived risk in the 

industry if they enforced existing mandates. The EPA waives the RIN mandate every year. 

Every year congress debates what subsidies for biofuels they will cut. This uncertainty 

involved within these already inefficient price subsidies makes them even less efficient to 

address uncertainty. If the goal is to induce investment into cellulosic biofuel production, 

the government could  reduce the uncertainty involved in policy. While these previously 

mentioned policies for reducing uncertainty are important, and finding a most cost effective 
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one would require looking at them in a vacuum as I have discussed, this is not the whole 

story. The reality is that for any producer to get financing, they need to be locked into a 

long term offtake contract. This reality does not detract from the legitimacy of this paper 

or looking at other policy options but it is something that should be considered when 

thinking about second generation biofuel plant investment. 

All of the assumptions for costs, prices, and technology where the most sensible 

under current information; these can however change as technology and markets evolve 

and could significantly affect trigger prices. Stover accounts for about half of a biofuel 

plants operating cost. Yet there is considerable uncertainty surrounding this coefficient as 

well. Moreover the hydrogen being used in these plants comes from natural gas. Natural 

gas prices have historically been even more volatile than gasoline. Prices for natural gas 

could, and probably will change in the future. This would affect trigger prices. Currently 

Pyrolysis is the most promising technology but a single innovation in an existing or new 

technology could completely turn the tables, and alter the cost projections.  

This paper modeled how changes in price can effect entry and exit into an industry. 

While literature suggests that price is the largest determinant for entry. It is not however 

the only determinant. Costs, yields, and government policy all carry with them a degree of 

uncertainty for this new industry. An analysis done that incorporates the uncertainty 

experienced by all of these variables would go a long ways in furthering the literature on 

second generation drop in biofuel plants. 

 This study is not without limitations. While the study does account for uncertainty 

in price, it does not account for the uncertainty inherent within production. The cost of 

stover, hydrogen, even equipment can all vary over time. A model that accounts for 

uncertainties full effect on entry trigger price would also incorporate the uncertainty on the 

production side of cellulosic biofuels. This additional uncertainty would likely compound 

the already large amount of hysteresis within the industry. This limitation could be 

overcome by modeling a real options analysis for cellulosic biofuels using two stochastic 

variables, one for price and one for cost. The purpose of this study, however, was to 

determine the effect of uncertainty on output, arguably the main source of uncertainty, on 

firm behavior. 
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 Another limitation of this study is that numbers for plant cost, capacity, and output 

are speculative. Our study gathered numbers from the most reliable sources possible but 

the fact of the matter is that, at the moment, only one large scale plant with this technology 

exists (KIOR) and even it is running well under capacity. All of our information was taken 

from pilot plants, TEA’s, and modifications from cellulosic ethanol plants.  These numbers 

are the best estimations possible but they may change once data from actual large scale 

plants becomes available. This could be remedied by re-doing this analysis in several years 

when the technology is more proven and more reliable numbers exist. 

 The next logical step for this research would be to model government policy into 

it. The study has already quantified the impact that uncertainty has on entry and exit from 

the industry, it would be interesting to see the impact that each government policy, both in 

place and proposed, would have on entry into the industry. More specifically the different 

magnitudes that a fixed subsidy, variable subsidy, financing, futures contract, and the RFS 

would have on trigger prices. (Tyner et al., 2010, Song et al. 2010) This would be done by 

modifying the Bellman equations, specifically adding additional terms and parameters to 

model the incentive being considered. Furthermore, these policies could be compared on a 

cost effectiveness basis i.e. for every million dollars spent through a specific policy how 

much does the trigger price decrease? Judging by our results for this study, a policy that 

addresses uncertainty may be more cost effective than one that simply tries to increase the 

expected price.  

 Another option for future research would be to model the externalities of cellulosic 

biofuel production into the cost. More specifically if one could retrieve a value for the 

amount of carbon reduced, domestic job creation, etc. from a gallon of biofuel it would be 

possible to come up with a social trigger price for entry and exit that would reflect its social 

value. The hypothesis would be that a gallon of drop in biofuel would have a different 

value to society than a gallon of petroleum based fuel. This value could then be used to 

justify the economically efficient level of government incentives to be used in the cellulosic 

biofuel market. 
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7 APPENDIX 
 
 

 

Appendix 1: Numerical analytical approach in MatLab 

Code 

function F = ROA(x) 
alpha=-2.0628; 
beta=2.2155; 
delta=0.1; 
mu=.01854; 
w=2.56; 
k=9.91; 
m=0.25; 
em=0.25; 
r=0.50; 
l=-2.48; 

 
F = [x(7)*(x(1)^beta)-x(1)*((delta-mu)^-1)+w*(delta^-1)-

x(5)*(x(1)^alpha)+k; 
      x(3)*((delta-mu)^-1)-w*((delta)^-1)+x(5)*(x(3)^alpha)-

x(6)*(x(3)^alpha)-x(8)*(x(3)^beta)+m*(delta^-1)+em; 
      x(6)*(x(4)^alpha)+x(8)*(x(4)^beta)-m*(delta^-1)-x(4)*((delta-

mu)^-1)+w*(delta^-1)-x(5)*(x(4)^alpha)+r; 
      x(6)*(x(2)^alpha)+x(8)*(x(2)^beta)-m*(delta^-1)-

x(7)*(x(2)^beta)+l; 
      beta*x(7)*(x(1)^(beta-1))-((delta-mu)^-1)-

alpha*x(5)*(x(1)^(alpha-1)); 
      ((delta-mu)^-1)+alpha*x(5)*(x(3)^(alpha-1))-

alpha*x(6)*(x(3)^(alpha-1))-beta*x(8)*(x(3)^(beta-1)); 
      alpha*x(6)*(x(4)^(alpha-1))+beta*x(8)*(x(4)^(beta-1))-((delta-

mu)^-1)-alpha*x(5)*(x(4)^(alpha-1)); 
      alpha*x(6)*(x(2)^(alpha-1))+beta*x(8)*(x(2)^(beta-1))-

beta*x(7)*(x(2)^(beta-1))]; 

 

Steps for solving 

options = optimset ('MaxFunEvals',10000,'MaxIter',10000) 

 

x0 = [5;1;1;2;1;1;1;1];  % Make a starting guess at the solution 

[x,fval] = fsolve(@ROA6,x0,options) 
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Appendix 2: Equations defining value matching and smooth pasting conditions without the 

managerial flexibility to mothball or reactivate 

Code 

function F = ROA5(x) 
alpha=-2.0628; 
beta=2.2155; 
delta=0.1; 
mu=.01854; 
w=2.2.56; 
k=9.91; 
l=-2.48; 

  
F = [x(4)*(x(1)^beta)-x(3)*(x(1)^alpha)-x(1)*((delta-mu)^-1)+w*(delta^-

1)+k; 
    beta*x(4)*(x(1)^(beta-1))-alpha*x(3)*(x(1)^(alpha-1))-((delta-mu)^-

1); 
    x(3)*(x(2)^alpha)+x(2)*((delta-mu)^-1)-w*((delta)^-1)-

x(4)*(x(2)^(beta))+l; 
    alpha*x(3)*(x(2)^(alpha-1))+((delta-mu)^-1)-beta*x(4)*(x(2)^(beta-

1))]; 

 

Steps for solving 

options = optimset ('MaxFunEvals',10000,'MaxIter',10000) 
 
x0 = [4;1;1;1];  % Make a starting guess at the solution 

[x,fval] = fsolve(@ROA5,x0,options) 

 
 

 

                                                                                                      

 

  

 

 

 


