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Dynamic Factor Analysis for Short Panels:

Estimating Performance Trajectories for Water

Utilities∗

Nikolaos Zirogiannis†and Yorghos Tripodis‡

Abstract

We develop a dynamic factor model for panel data with a short time dimension (i.e.

n≤ 15). Unlike most of the work in the DFM literature where one common factor is es-

timated for a group of cross sectional units, our interest lies in the estimation of a latent

variable for each cross sectional unit at every point in time. This difference increases the

computational challenges of the estimation process. To facilitate estimation we develop

the “Two-Cycle Conditional Expectation-Maximization” (2CCEM) algorithm which is

a variant of the EM algorithm and it’s extensions (Dempster et al. 1977; Meng and

Rubin 1993; Liu and Rubin 1994). Initially, the latent variable is estimated (first cycle)
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and then the dynamic component is incorporated into the estimation process (second

cycle). The estimates of each cycle are updated with information from the estimates of

the previous cycle until convergence is achieved. We provide simulation results demon-

strating consistency of our 2CCEM estimator. One of the advantages of this work is that

the estimation strategy can account for multiple cross sectional units with a short time

dimension, and is flexible enough to be used in different types of applications. We apply

our model to a dataset of 853 water and sanitation utilities from 45 countries and use the

2CCEM algorithm to estimate performance trajectories for each utility.

Keywords: Dynamic Factor Models, EM algorithm, Panel Data, State-Space models,

Water utilities, IBNET

1 Introduction

Methods involving estimation of latent variables have been gaining increasing attention, with factor

analysis being a prominent one. Until the late 1970s, the estimation of factor analytic (FA) models

was limited to cross sectional datasets ignoring any dynamic analysis. Geweke (1977) as well as

Sargent and Sims (1977) were the first to propose a new class of dynamic factor models (DFMs).

Sargent and Sims (1977) introduced applications of both observable and unobservable index models

estimated using their DFM. Stock and Watson (1989) built on those contributions using maximum

likelihood to estimate a DFM for unobserved coincident and leading economic indices of the US

economy.

Those initial DFMs were applied to macroeconomic data and focused on a specific country.

Thus, they did not include a cross-sectional dimension. Forni and Reichlin (1996) as well as Forni

et al. (2000) were the first to develop a DFM that could handle panel data (i.e. multiple observa-
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tions, for multiple time periods, across multiple cross-sectional units). The focus of that work was to

estimate unobserved indices in the form of common factors for groups cross sectional units. The ex-

tension of factor analysis to a longitudinal setting greatly expanded the method’s applicability. Apart

from summarizing a large number of variables into a few coincident indicators, forecasts were also

made possible. Boivin and Ng (2006) suggest that when more data are used to extract factors and

the idiosyncratic errors are correlated the forecasting power of the model can be reduced. In light

of those findings, they question whether using a large set of variables increases the validity of the

model. More recently Doz et al. (2012) addressed the issue of using principle components in DFMs

of large dimensions. They argued that, even though the principle components approach has been used

extensively in the literature, maximum likelihood estimation can lead to greater efficiency gains, even

when the DFM is misspecified. The inferential theory for DFMs with large dimensions (both time

and cross section) has been examined by Bai (2003). He discusses the convergence rates of factors

and factor loadings and finds that stronger results are achieved when the errors of the idiosyncratic

components are serially uncorrelated.

However, prior research in the DFM literature ignores cases where the time dimension is short

as well as cases where the interest lies in estimating one factor for every cross sectional unit as op-

posed to a group of cross sections. In the application we discuss in this paper the time dimension

ranges between 5 and 15 years. Our goal is to estimate a dynamic index that assess the operational

and financial performance of 853 water and sanitation utilities in 45 countries using data from the

International Benchmarking Network (IBNET 2013). The index assumes the role of the latent vari-

able in the DFM and is a trajectory summarizing information from several observable measures of

performance.
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2 Measuring performance of water utilities

The water utility industry is unique in several ways. More often than not, water utilities are gov-

ernment owned or managed by the state and are not subject to the same financial and operational

constraints that firms in competitive markets are. Even when their financial performance is poor they

will often receive some form of financial support by the state in order to avoid bankruptcy. This is

primarily due to the public nature of the services they provide. Those characteristics make it increas-

ingly difficult to externally evaluate the efficiency of a water utility (Van den Berg and Danilenko

2011).

Previous work in the field of performance measurement for water utilities and other non-profit

institutions (i.e. hospitals, universities, etc.) has been conducted mainly through the use of Data

Envelopment Analysis (Abbott and Cohen 2009). Data Envelopment Analysis (DEA) is a linear

programming technique that measures efficiency by calculating the ratio of total inputs to total outputs

for a given cross section (Charnes, Cooper, and Rhodes 1978). The main drawback of DEA is the

lack of a random error term and the resulting omission of potential cross section level characteristics

(Anwandter and Ozuna 2002). Furthermore, the choice of input and output variables in DEA models

that assess the performance of water utilities is not consistent amongst different authors (Anwandter

and Ozuna 2002; Abbott and Cohen 2009; Garcia-Valiñas and Muñiz 2007; Thanassoulis 2000). Our

work considers the efficiency measure as an unobserved dynamic performance index that is estimated

through the model that will be analyzed in section 4.2.

A critical issue in constructing performance indices is the weighting scheme applied to the

aggregated variables. Those weights are often determined based on expert knowledge, which makes

the resulting index rather subjective. In the case of water utilities such a subjective index was created

by the World Bank (Van den Berg and Danilenko 2011). The authors calculate a static index they call

the “APGAR score” whose aim is to assess the health of a water utility based on a weighted sum of
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six indicators, namely 1) water coverage (percentage of the population within the utility’s jurisdiction

that has access to drinking water), 2) sewerage coverage (percentage of population within the utility’s

jurisdiction that has access access to sanitation services), 3) non revenue water (water provided to

the network that is not being paid for), 4) affordability (percentage of the Gross National Income

spent on water and sanitation services), 5) collection period (number of days it takes the water utility

to get paid back by it’s customers) and 6) operating cost coverage (ratio of operating revenues over

operating costs). The “APGAR score” is a static index in that it evaluates water utilities based on

performance at a given time period, without considering any information from the past.

Our dataset is comprised of 853 utilities from 45 countries. Even though the full IBNET

database contains information on more than 2,000 water utilities, we keep only those utilities that

have at least 5 years of data available. We consider the same observable indicators that Van den Berg

and Danilenko use in their “APGAR score”. Our goal is to estimate a dynamic performance index

using the model that will be analyzed in section 4.2.

3 Contribution

Our work contributes to the DFM literature as well as the field of assessing performance for water

utilities. Unlike previous work cited in section 1 we are interested in estimating a dynamic perfor-

mance index (i.e. a latent variable) that is unique for each water utility and varies across time. We

are able to assess performance in two ways: 1) first by summarizing information from the six observ-

able indicators analyzed above into a single performance index, and 2) by estimating the trajectory of

this index for each water utility and thus following the changes of performance over time. This sets

our work apart from previous authors whose focus was on the estimation of a single common factor

for a group of cross sections (Doz et al. 2012; Forni et al. 2000). In addition, the application that
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motivates our work has a very short time dimension (n≤ 15). As a result we face the computational

challenge of having to estimate a large number of parameters using a short time dimension per panel.

To address this challenge we develop a novel iterative estimation process, which we call the “Two-

Cycle Conditional Expectation-Maximization” (2CCEM) algorithm and is a variant of the traditional

EM algorithm developed by Dempster et al. (1977) and extended by Meng and Rubin (1993) and

Liu and Rubin (1994). Initially, the unobserved performance index is estimated (first cycle) and then

the dynamic component is incorporated into the estimation process (second cycle). The estimates of

each cycle are updated with information from the estimates of the previous cycle until convergence is

achieved.

To our knowledge this is the first paper that uses a DFM to estimate dynamic performance in-

dices of water utilities thus allowing for comparisons both between utilities and across time. Previous

work in the water utility assessment literature has relied on static DEA analysis (Thanassoulis 2000;

Cubbin and Tzanidakis 1998) and more recently on dynamic versions of DEA models (Coelli and

Walding 2006; Garcia-Valiñas and Muñiz 2007). Nevertheless, even the dynamic models of DEA

suffer from the lack of the error term mentioned previously.

By summarizing information from several time series of observable indicators our estimated

index can succinctly communicate whether the utility has been performing well or not. This feature

makes our work directly relevant to policy makers, since the estimated performance indices can be

used to dynamically rank utilities and provide critical information that can assist in determining policy

interventions. The contributions of this index to the field of performance measurement of water

utilities are the following:

• It is a dynamic measure of performance since at every time period it incorporates information

from the entire sample.

• The use of the EM algorithm in estimation allows for the presence of missing data.
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• It is a more transparent modeling strategy since there is no subjective weighting of the six

observed indicators. As will be discussed in section 4.2 the weights of the indicators are

obtained using the estimated factor loadings.

The paper is organized as follows. In Section 4, we present the theoretical framework, and ex-

amine the various components of the model. We also discuss necessary conditions for identifiability.

Section 5 presents the 2CCEM algorithm and illustrates the estimation process for each of the two

cycles. In order to examine the asymptotic behavior of our 2CCEM estimator we conduct a Monte

Carlo study. The results are presented in section 6. In Section 7, we apply our model to a longitudinal

dataset of water and sanitation utilities from 45 countries. We discuss how we obtain initial values

for the parameters and present estimation results. The final section draws conclusions.

4 A Dynamic Factor Model for Short Panels

The main contribution of our work lies in the development of a DFM for panels with a short time

dimension (i.e. n≤ 15) that can estimate a performance trajectory unique to every water utility unit in

the database. We begin this section by presenting the notation that will be used throughout the paper.

4.1 Notation

Denoting vectors with bold letters, we let yi j,t be the ith indicator of the jth utility at time t with:

• i = 1, ..., p denoting the number of observable performance indicators in the mode. These are

the six indicators analyzed in section 2;

• j = 1, ...,m denoting the number of water utilities where m = 853;

7



• t = 1, ...,n denoting the time point of an observation. Our dataset consists of an unbalanced

pane where n ∈ [5,15] ;

To ease formulation of our model, we collect the observed data in vector form. Let:

• Yi j be an n×1 vector with elements, yi j,t , for i, j fixed and t = 1, ...,n;

• Yt be a mp×1 vector with elements, yi j,t , for t fixed with i = 1, ..., p and j = 1, ...,m;

• Y be a nmp×1 vector of all p indicators for all m water utilities over all n years.

4.2 The theoretical framework of the model

State space models have been used extensively, particularly in the early literature of DFMs, since they

allow for the study of unobserved factors over time through the use of the observed data (Stock and

Watson 2010). We formulate our model using a state space approach, letting Ut denote the vector of

m unobserved factors at time t. As mentioned in section 3, one of the contributions of our work is

that a unique latent variable Ut is estimated for each water utility. This comes in contrast to previous

work in the literature that estimates one latent variable Ut for a group of cross sectional units. In our

application the state variable Ut assumes the role of the dynamic performance index that is estimate

for every water utility. We assume that the dynamic properties of Ut can be captured by a Markov

process. Thus, we form the following linear Gaussian state space model:

Yt = BUt + et , et ∼ N(0,D), (4.1)

Ut+1 = TUt +η t , η t ∼ N(0,Q), (4.2)

where B is the matrix of factor loadings with dimensions mp×m, Ut is the m× 1 unobserved state

vector at time t, Yt is a mp× 1 vector of observed variables at time t. These are the six observable
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indicators of perfromance analyzed in section 2. T is an m×m transition matrix that describes the

Markovian nature of the unobserved state vector, and et and η t are error terms (Koopman 1993).

Equation (4.1) is known as the observation equation (or measurement equation) and equation (4.2) is

called the state equation (or transition equation) and represents the first order autoregressive nature

of the model. The state space formulation described in (4.1) and (4.2) models the behavior of the

unobserved state vector Ut over time using the observed values Y1, ...,Yn. The state vector Ut is

assumed to be independent of the error terms et and η t for all t = 1, ...,n. In addition, the error terms

et and η t are assumed to be independent, identically distributed (i.i.d.) and mutually uncorrelated

(deJong 1991; Kohn and Ansley 1989; Koopman et al. 1999).

The matrix of factor loadings, is block diagonal and has the form: B
mp×m

= diag(b) where b is

a p× 1 vector of the factor loadings. We assume that all factor loadings are the same across water

utilities. This is a plausible assumption, since our goal is to estimate a dynamic performance index

that can be used as a benchmarking tool among utilities. Having a different set of factor loadings for

each utility would not allow comparisons between utilities. In addition, the zero block off-diagonal

vectors of B imply that the observable indicators of utility A do not load on the performance index of

utility B. This is a reasonable assumption in the context of our application since observable indicators

of utility A are not likely to affect the performance of utility B.

All other matrices that include the parameters of the model, namely D, T and Q are also

diagonal. The variance of the idiosyncratic errors in D is D
mp×mp

= diag(d) where d is a p× p diagonal

matrix representing the variance of the error term for every cross section. The transition matrix T has

the form T
m×m

= diag(φ) where φ is the autoregressive parameter that determines the effect through

time of a utility’s own perfromance index. That is, it conveys information as to how performance

in time period t − 1 affects performance in period t. Finally, Q, is an m×m diagonal matrix with

elements σ2, the variance of the error term of the state equation, along its diagonal.
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4.3 Identifiability

A central issue in the literature of unobserved component models is identifiability. We explore iden-

tifiability directly using the order condition. The latter suggests that the number of parameters in an

equation must be at least as great as the number of explanatory variables (Hamilton 1994, p.244).

Hotta (1989) provides the order conditions for identifiability of a structural time series model. We

follow a similar approach to derive the conditions for theoretical identifiability in the model specified

in equations (4.1) and (4.2). In this section, we show the correlation structure of Y and derive the

autocovariance equation of our model.

Since the state vector Ut is unobserved, all the information in our model is contained in Y. The

covariance matrix of Y, denoted by Ω, has the following structure:

Var(Y) = Ω
nmp×nmp

=



Var(Y1) Cov(Y1Y2) ... Cov(Y1Yn)

Cov(Y2Y1) Var(Y2) ... ...

... ... ... ...

Cov(YnY1) ... ... Var(Yn)


, (4.3)

where Cov(Yt , Y∗t ) is an mp×mp matrix, for t, t∗ = 1, ...,n and t 6= t∗. The off-diagonal elements of

Ω capture the covariance of Yt across time. For ease of presentation, and without loss of generality,

we assume that E(Yt) = E(Ut) = 0. The unconditional covariance matrix of Yt , that is, the covariance

matrix of all indicators for all cross sectional units at a given time period t, is denoted by Σ. It follows

from (4.1) and (4.2) that:

Σ = Var(Yt) = BVar(Ut)B′+D, (4.4)

and

E(Yt+1Y′t) = BTVar(Ut)B′. (4.5)
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In addition, the variance of the state variable Ut is given by:

E(UtU′t) = TVar(Ut−1)T′+Q, (4.6)

while E(YtUt) is:

E(YtU′t) = E
[
(BUt + et)U′t

]
= BVar(Ut). (4.7)

Therefore, the joint multivariate normal vector (YT
t ,UT

t )
T has zero mean and a covariance matrix that

can be calculated recursively, using equations (4.4)-(4.7). In order to obtain the necessary conditions

for indentifiability, we first derive the autocovariance function of Yt in the following lemma.

Lemma 4.1. The autocovariance function of Yt is:

vec[ΓY(0)] = B⊗B{[Im2−T⊗T]−1vec(Q)}+vec(D) (4.8)

vec[ΓY(1)] = B⊗ (BT){[Im2−T⊗T]−1vec(Q)} (4.9)

vec[ΓY(h)] = B⊗ (BT){[Im2−T⊗T]−1, for h > 1 (4.10)

Proof. The proof is provided in Appendix A.

Theorem 4.2 provides the necessary conditions for the model to be identifiable.

Theorem 4.2. The necessary conditions for the model in (4.1) and (4.2) to be identifiable are:

1.

ΓU(0) = C, (4.11)

where C is a known symmetric positive definite matrix, and
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2.

m >
1

3p−2− 2
p

(4.12)

Proof. The proof is provided in Appendix B.

The choice of C is arbitrary as long as the conditions for a symmetric positive definite matrix

are satisfied.

Remark 4.1. For C = I we obtain the dynamic version of the factor analytic model of McLachlan

and Peel (2000, p.243). It follows from the proof of Theorem 4.2 that, when C = I, the necessary

conditions for identifiability imply that Q = I−TT′.

5 The 2CCEM algorithm

One of the contributions of our work is the development of the 2CCEM algorithm, which is a novel

approach to the estimation of DFMs. The high dimensionality of the data vector Yt (m = 853),

the short time dimension per panel (t ∈ [5,15]) as well as the fact that our goal is to estimate one

latent variable for each cross section at every point in time, makes estimation of our model rather

problematic. Usual Newton-type gradient methods do not work in this situation creating the need for

a novel estimation approach. The likelihood function of the model described in (4.1) and (4.2) is:

L(B, D, T, Q;Y1, ...,Yn) =
n

∏
t=2

f (Y1) fY(Yt ; [B, D, T, Q] |Yt−1), (5.1)

where Yt−1 represents the set of past observations Y1, ...,Yt−1 and the model parameters to be es-

timated are B, D, T and Q. We showed in Theorem 4.2 that the parameterization of Q depends on

T for identifiability of the model. Therefore, although Q is not estimated by the model, for ease of

presentation we continue to include it in the parameter space.
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We introduce the 2CCEM algorithm that makes estimation of the model specified in (4.1)

and (4.2) feasible through an iterative two-cycle process. The 2CCEM algorithm is an extension

of the Expectation/Conditional Maximization Either (ECME) algorithm introduced by Liu and Ru-

bin (1994) which is itself an extension of the EM algorithm (Dempster et al. 1977) and the ECM

algorithm (Meng and Rubin 1993). The EM algorithm has been widely used in cases where maxi-

mization of the likelihood function cannot occur because of missing or unobserved data. Shumway

and Stoffer (1982) were the first to use the EM algorithm to estimate state space models, similar to the

one specified in (4.1) and (4.2). The algorithm is comprised of an Expectation and a Maximization

step, referred to as E-step and M-step respectively. The former replaces the unobserved quantities

with their expected values while the latter maximizes the likelihood conditional on those expectations

(McLachlan and Krishnan 1996, p.13).

We let the complete-data log likelihood function of Ψ, if Yt and Ut were fully observable, be:

logLc(Ψ) = log fc(Yt , Ut ;Ψ), (5.2)

where the subscript c denotes the complete-data likelihood.

The 2CCEM algorithm starts by partitioning the vector of unknown parameters Ψ into (Ψ1,Ψ2)

where Ψ1 contains the elements of B and D that need to be estimated, while Ψ2 contains the relevant

elements of T and Q. Partitioning the parameter space is a common practice in the EM algorithm

literature (Meng and Van Dyk 1997; McLachlan and Peel 2000, p.245) since it facilitates the max-

imization process. We let Ψ
(k−1)
1 and Ψ

(k−1)
2 denote the initial values of Ψ where k denotes the

number of iterations in the estimation process with k = 1, ..., l. Following the terminology of Meng

and Van Dyk (1997) we use the term “cycle” as an intermediary between a “step” and an “iteration”.

In the case of our 2CCEM algorithm, every iteration is comprised of two cycles. Each cycle includes

two E-steps and 2 M-steps.
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5.1 First cycle of the 2CCEM

During the kth iteration of the first cycle, the E-step of the 2CCEM algorithm requires the following

calculation:

ZΨ1
(Ψ1;Ψ

(k−1)
1 , Ψ

(k−1)
2 ) = EΨ1

{
n

∑
t=1

logLc

(
Ψ1;Ut |Yt , Ψ

(k−1)
1 , Ψ

(k−1)
2

)}
. (5.3)

The first M-step involves differentiating ZΨ1
(Ψ1;Ψ

(k−1)
1 , Ψ

(k−1)
2 ) with respect to Ψ1 in order to obtain

Ψ
(k/2)
1 :

ZΨ1
(Ψ

(k/2)
1 ;Ψ

(k−1)
1 , Ψ

(k−1)
2 )≥ ZΨ1

(Ψ1;Ψ
(k−1)
1 , Ψ

(k−1)
2 ), (5.4)

The second E-step replaces Ut with it’s filtered estimate. Here we calculate:

ZΨ1
(Ψ

(k/2)
1 ;Ψ

(k−1)
1 , Ψ

(k−1)
2 ) = EΨ1

{
n

∑
t=1

logLc

(
Ψ1;Ut |Yt−1, Ψ

(k−1)
1 , Ψ

(k−1)
2

)}
. (5.5)

The second M-step maximizes ZΨ1
with respect to B using Ψ

(k/2)
1 as the initial value of the parame-

ters. Our goal, in this step, is to obtain Ψ
(k)
1 such that:

ZΨ1
(Ψ

(k)
1 ;Ψ

(k−1)
1 , Ψ

(k−1)
2 )≥ ZΨ1

(Ψ
(k/2)
1 ;Ψ

(k−1)
1 , Ψ

(k−1)
2 ) (5.6)

5.1.1 Estimation of the first cycle

As mentioned in section 4.3 since the state variable is unobserved, all the information that is observed

is contained in Y. Following the notation presented in McLachlan and Peel (2000, p.242) the sample

covariance matrix of Y, Σ, is denoted by Cyy. The latter is the main building block in the E-step of the

first cycle of the 2CCEM algorithm described in equation (5.3) and treats the unobserved state vector

Ut as missing data while iteratively maximizing ZΨ1
assuming that Ut is observed (Rubin and Thayer
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1982). This first E-step of the 2CCEM algorithm requires the calculation of the expected value of the

sufficient statistics, namely:

E(YYT |Y) = Cyy,

E(YT U|Y) = Cyyγ,

E(UT U|Y) = γ
T Cyyγ +nω, (5.7)

where:

γ =
(
BBT +D

)−1 B and ω = I− γ
T B. (5.8)

The distribution of the unobserved state vector Ut , conditional on Yt , is given by:

Ut |Yt ∼ N(γT Yt , I− γ
T B). (5.9)

Equations (5.7) and (5.8) constitute the E-step of the first cycle of the 2CCEM algorithm illustrated

in (5.3). The subsequent first M-step, illustrated in equation (5.4), is identical to the M-step of the

traditional EM algorithm which involves replacing the sufficient statistics in (5.7) into ZΨ1
and dif-

ferentiating with respect to Ψ1. The functional form of ZΨ1
is:

logLc(Ψ1) =
n
2

log{|D−1|+ log|Q−1|}− 1
2

n

∑
t=1
{(yt −Bût)

T D−1(yt −Bût)

−(ût+1−Tût)
T Q−1(ût+1−Tût)}. (5.10)
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Equation (5.10) is the complete data log likelihood; complete both in terms of data and parameters.

Setting the first derivatives of ZΨ1
equal to zero yields the following first order conditions:

B(k/2) = Cyyγ
{

γ
T Cyyγ +nω

}−1, (5.11)

D(k/2) = n−1diag
{

Cyy−CyyγBT} , (5.12)

where B(k/2) and D(k/2) represent the updated values Ψ
(k/2)
1 . The second E-step replaces the latent

variable in (5.10) with it’s filtered estimate. The subsequent second M-step, maximizes (5.10) through

a Newton-Raphson algorithm, with respect to B, using (5.11) and (5.12) as initial values. Upon

convergence of this maximization we obtain the final updated values for Ψ
(k)
1 .

As mentioned in the beginning of section 5 our approach is an extension of the Expectation /

Conditional Maximization Either (ECME) algorithm introduced by Liu and Rubin (1994) which is

itself an extension of the EM algorithm (Dempster et al. 1977) and the ECM algorithm (Meng and

Rubin 1993). The ECME algorithm uses the same first E-step and M-step as we do, but does not

include a second E-step. In the second M-step Liu and Rubin (1994) maximize the log likelihood

with respect to D, holding B fixed at B(k/2) (McLachlan and Peel 2000).

5.2 Second cycle of the 2CCEM

In the first E-step of the second cycle we estimate Ψ
(k)
2 . We proceed by calculating:

ZΨ2
(Ψ2;Ψ

(k)
1 , Ψ

(k−1)
2 ) = EΨ2

{
n

∑
t=1

logLc

(
Ψ2;Ut |Yt , Ψ

(k)
1 , Ψ

(k−1)
2

)}
. (5.13)

The first E-step involves forming the expected complete-data log likelihood by conditioning ZΨ2

on the estimates Ψ
(k)
1 . The subsequent M-step involves differentiating ZΨ2

(Ψ2;Ψ
(k)
1 , Ψ

(k−1)
2 ) with
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respect to Ψ2. We choose Ψ
(k)
2 such that:

ZΨ2
(Ψ

(k/2)
2 ;Ψ

(k)
1 , Ψ

(k−1)
2 )≥ ZΨ2

(Ψ2;Ψ
(k)
1 , Ψ

(k−1)
2 ). (5.14)

The second E-step is the equivalent of that in the first cycle. We replace Ut with it’s filtered estimate

to calculate:

ZΨ2
(Ψ

(k/2)
2 ;Ψ

(k)
1 , Ψ

(k−1)
2 ) = EΨ2

{
n

∑
t=1

logLc

(
Ψ1;Ut |Yt−1, Ψ

(k)
1 , Ψ

(k−1)
2

)}
. (5.15)

Finally the second M-step maximizes ZΨ2
with respect to T using Ψ

(k/2)
2 as the initial value of the

parameters. Here we obtain Ψ2
(k) such that:

ZΨ2
(Ψ

(k)
2 ;Ψ

(k)
1 , Ψ

(k−1)
2 )≥ ZΨ2

(Ψ
(k/2)
1 ;Ψ

(k−1)
1 , Ψ

(k−1)
2 ) (5.16)

Upon maximization of ZΨ2
, the estimate Ψ

(k)
2 is used in the E-step of the first cycle. This iterative

maximization process will continue until convergence of both likelihood functions ZΨ1
and ZΨ2

is

achieved.

5.2.1 Estimation in the second cycle

In the second cycle we utilize the prediction error decomposition form which is the observational

equivalent of the likelihood function in (5.10) (Harvey 1989) :

logLc(Ψ2) = n− n
2

log2π− 1
2

n

∑
t=1

[
log |Ft |+v′tF

−1
t vt

]
, (5.17)

where vt is the one step ahead forecast error and Ft is the variance of the one step ahead forecast error.

Quantities, vt and Ft can be estimated with the use of the Kalman filter, which is a set of recursions that
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allow the information we have about the system to be updated every time an additional observation

Yt is introduced into the model (Kalman 1960; Durbin and Koopman 2001, p.11). Let Yt−1 be the

set of past observations Y1, ...,Yt−1 and assume that Ut |Yt−1 ∼ N(Ût ,Pt), where Ût and Pt are to be

determined. If we assume that Ût and Pt are known, then our goal is to calculate Ût+1 and Pt+1 when

Yt is introduced. Once vt and Ft are calculated, (5.17) is maximized with respect to Ψ2 , as illustrated

in (5.16).

In contrast to the filtering process described above, smoothing considers both prior information

as well as information after time period t. In other words, the smoothed estimate of Ut incorporates

information from the entire sample, Y1, ...,Yn (deJong 1989; Koopman 1993).

6 Monte Carlo study

In order to examine the performance of our 2CCEM estimator we conduct a Monte Carlo study.

The basis for our simulations is the model proposed by Doz et al. (2012). We begin by defining

B = diag(f), where f is a p× 1 vector of factor loadings with f[k] ∼ U (0,1) subject to
p
∑

k=1
f[k] = 1.

Furthermore, we set D = diag(d), where d a p×1 vector of variances for the idiosyncratic elements,

with d[k] = f[k]
βk

1−βk
with βk ∼ U (0.1,0.9). Both f and d are held constant for each cross sectional

unit. Finally we let T = diag(φ) and set φ = 0.9.

Our simulations are based on a series of combinations for the three dimensions of our dataset

(i.e. cross-sectional, time and number of indicators). For each of the three dimensions we use different

specifications. For the number of observable indicators, p, we use 5 and 10, for the number of cross-

sectional units we use 10,50,100,200 and 300 and finally for the number of time periods n we use

3,5,7,10 and 15. Therefore we have a total of 50 sets of combinations of the three dimensions. For

each of the 50 combinations we run 1,000 simulations based on the model described in (4.1) and (4.2)
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using the parameter specifications for B,D and T described above.

Using the 2CCEM algorithm we estimate the latent variable Û = (Û1, Û2, . . . , ÛT )
′ for each

combination of the three dimensions analyzed above. In order to evaluate the performance of the

algorithm we calculate the following trace statistic which is a goodness of fit measure used by Doz

et al. (2012) in their simulations. This statistic measures the accuracy of the estimation of the factors

for each cross-section, versus the true simulated factors, as sample size increases.

tr(U′Û(Û′Û)−1Û′U)

tr(U′U)

We report the results of our Monte Carlo study in Table 1. The reported trace statistics are the

averages across all 1000 simulations per combination. It is interesting to note that as the sample size

increases in all dimensions, the accuracy of the estimated factors improves. For example, holding the

number of cross sectional units constant, the trace statistic increases both along the time dimension

and as the number of observable indicators increases. However, the increase in the accuracy of the

estimators as the cross sectional dimension increases, diminishes after m reaches 100. This find-

ing suggests that there are no significant consistency gains by greatly increasing the cross sectional

dimension.

7 Application

We apply our model to a dataset of 853 water and sanitation utilities in 45 countries. Our goal is to

estimate a dynamic performance index for every water utility that will summarize information from

the six observables indicators outlined in section 2. Table 2 lists all 45 countries along with their

respective number of utilities in our dataset. Table 3 presents descriptive statistics for each of the

six observable indicators by continent. The data are obtained from the International Benchmarking
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Network (IBNET) for Water and Sanitation Utilities (IBNET 2013). IBNET was launched in 1996

with the goal of facilitating a standardized comparison amongst water utilities with respect to their

financial and operational performance.

7.1 Initial values

In this section we discuss the selection of initial values for each of the parameters. The initial value

of B is denoted by B0. Every block diagonal vector b is denoted by b0 where b0 =
(

1
p

)
ip. The

formulation of D discussed in section 4.2 assumes that the idiosyncratic errors of the indicators are

the same for each utility. The initial value of D denoted by D0 is calculated as follows:

D0 = diag
{

Cyy−
(

B0×
(
B0)T

)}
. (7.1)

Following the recommendations of Little (2009), we begin by transforming the indicators so

that they are positively correlated to the dynamic performance index. We accomplish this by multi-

plying non-revenue water, affordability and collection period by -1, since those three indicators were

negatively correlated to the index. Furthermore, to enable comparisons between the factor loadings,

all indicators are standardized.

Given the specification of B0 and D0, the first cycle of the 2CCEM algorithm outlined in equa-

tion (5.3)-(5.6) will yield ML estimates of B and D. During the first iteration of the first cycle of

the 2CCEM algorithm we set T = I and Q = 0. The ML estimates of B and D from the first cycle

of the 2CCEM algorithm are used to obtain the initial value of T by running the following Vector

Autoregression (VAR): Ut+1 = TUt +η t . In order to initialize the Kalman filter we need to make

some assumption about the distribution of U1, the value of the state vector during the first period.

deJong (1991) proposes the use of a diffuse prior density whereby U1 ∼ N(Ŭ1, P1) with Ŭ1 fixed at
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an arbitrary value and P1→∞. We retain the assumption that P1→∞ but substitute Ŭ1 with the mean

of U1|Y1 which, from (5.9), is equal to γT Y1. Finally to ensure that the model is identifiable we make

use of Remark 2.1 and set ΓU(0) = I.

7.2 Results

We initially run a model that estimates performance trajectories for each of the 853 utilities in our

sample. The resulting factor loadings and error variances are illustrated in table 4. These results

suggest that the two most important indicators of performance are water and sewerage coverage,

followed by the remaining four indicators. This is plausible given the high number of low and middle

income countries in our dataset. For those countries the primary driver of performance is provision

of water and sanitation services with less of a focus on financial indicators like collection period or

operating cost coverage.

We then run separate models for each of the 45 countries. For ease of presentation we illustrate

the results from countries that have at least 10 utilities in tables 5 and 6. It is not surprising that the

importance of the factor loadings (based on the rankings of their magnitude) change from country to

country. This result is plausible and relies on the different conditions under which utilities operate

in different countries. Croatian utilities for example demonstrate high factor loadings for water and

sewerage coverage. The median values for those indicators in the country are 82% and 48% respec-

tively, far below the median values for Europe (92% and 68%). It is therefore intuitive that greater

importance is placed on those indicators. On the other hand, Bosnia and Herzegovina has a high

factor loading for affordabililty. Looking more closely at this indicator we realize that the country

lags it’s European counter parts given that 50% more of Bosnia’s GNI is spent paying for water and

sewerage services compared to the relevant number in Europe (i.e. median affordability is 1.8% in

Bosnia and Herzegovina compared to a European median of 1.2%).
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In figure 1 we plot the estimated dynamic index in relation to the standardized observable

indicators of performance as well as the static APGAR score. Similar graphs can be produced for each

of the 853 water utilities in our sample. The top panel of figure 1 shows the performance trajectory

of a utility in Moldova. A higher value of the dynamic index implies improved performance. As a

result the Moldovan utility has been consistently improving it’s operation with the exception of year

2010. The utility depicted in the bottom panel of figure 1 on the other hand demonstrates deteriorating

performance until 2004.

At every point in time the dynamic index is estimated using information from both before and

after a particular time period. It is therefore able to more accurately capture the performance trajectory

of a utility, given that it is less sensitive to big jumps in the value of the observable indicators. This

property of the dynamic index can be best exemplified when compared with the trajectory of the static

APGAR score that is also depicted in figure 1. The latter demonstrates significant variation precisely

because it is heavily affected by coincident changes in the observable indicators.

8 Conclusion

Our paper contributes to the literature of DFMs by introducing a dynamic factor model for panels

with a short time dimension. Most of the DFM literature has so far not considered panels with this

attribute (Stock and Watson 1989; Doz et al. 2012; Forni et al. 2000). To address the computational

complexities that such an estimation process entails, we introduce the 2CCEM algorithm.

Previous DFMs have used similar estimation algorithms that relied on two separate cycles. In

the first cycle of those models, the parameters are estimated using the EM algorithm. Then, con-

ditional on those results, dynamic estimates of the parameters are obtained using the Kalman filter

(Stock and Watson, 2010). However, those models achieve, at best, a conditional local maximum.
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The algorithm that we propose has the advantage of iteratively searching for an unconditional global

maximum. Within every iteration each cycle is conditioned on the results of the previous cycle. Each

iteration updates the estimated parameters until convergence is achieved. Therefore, the convergence

point of previous estimation processes in the dynamic factor literature is, in principle, equivalent to

the convergence point of only the first iteration of the 2CCEM algorithm.

In this paper we have illustrated the conditions that are required for the model to be identifiable

as well as provided the results of a Monte Carlo study that demonstrates consistency of the estimator.

Future work will focus on estimating different specifications of the model with a larger number of

parameters.

Our application utilizes a dataset of 853 utilities from 45 countries and estimates a unique per-

formance trajectory for every water utility. The estimation algorithm can account for the short time

dimension, the missing observations as well as the unbalanced nature of the panel. The performance

index that we estimate is a superior benchmarking tool compared to previous work in the literature

since it incorporates information from the entire sample at very point in time, thus estimating a per-

formance measure that is less susceptible to variability caused by external shocks.

Appendix A: Proof of Lemma 4.1

Assuming stationarity of the state variable we have:

Var(Ut) = Var(Ut−1) = ΓU(0), (A.1)
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Under assumption (A.1), we can rewrite (4.4)-(4.6) as follows:

ΓY(0) = BΓU(0)B′+D, (A.2)

ΓY(1) = BTΓU(0)B′. (A.3)

ΓU(0) = TΓU(0)T′+Q, (A.4)

A closed form solution for (A.4) can be obtained with the use of the vec operator as shown by Hamil-

ton (1994, p.265):

vec[ΓU(0)] = vec[TΓU(0)T′+Q]

= (T⊗T)vec[ΓU(0)]+vec(Q)

= [Im2−T⊗T]−1vec(Q). (A.5)

Using assumption (A.1) and applying the vec operator to (A.2) we have:

vec[ΓY(0)] = vec[BΓU(0)B′+D]

= vec[BΓU(0)B′]+vec[D]

= B⊗Bvec[ΓU(0)]+vec(D) (A.6)

Replacing (A.5) into (A.6) we have:

vec[ΓY(0)] = B⊗B{[Im2−T⊗T]−1vec(Q)}+vec(D) (A.7)
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Similarly for (A.4) we have:

vec[ΓY(1)] = vec[BTΓU(0)B′]

= B⊗ (BT)vec[ΓU(0)]

= B⊗ (BT){[Im2−T⊗T]−1vec(Q)} (A.8)

Finally the general form of the autocovariance function of Y is:

ΓY(h) = BTΓU(h−1)B′ for h > 1, (A.9)

where:

ΓU(h−1) = TΓU(h−1)T′⇒ (A.10)

vec[ΓU(h−1)] = [Im2−T⊗T]−1 (A.11)

Replacing (A.11) into (A.9) and applying the vec operator we have:

ΓY(h) = B⊗ (BT){[Im2−T⊗T]−1 (A.12)

Appendix B: Proof of Theorem 4.2

Identifiability of the model requires that in the system defined by (A.7) and (A.8) we have more equa-

tions than unknowns and that those equations are linear in their parameters. The latter is accomplished

by setting the following restriction:

ΓU(0) = C (B.1)
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Applying the vec operator to (B.1) we have:

vecΓU(0) = vec(C) (B.2)

Replacing (A.5) into (B.2) we have:

vec(C) = [Im2−T⊗T]−1vec(Q)⇒

vec(Q) = [Im2−T⊗T]vec(C)

= Im2vec(C)−T⊗Tvec(C)⇒

Q = C−TCT′ (B.3)

In the most general case of the model we have the following number of parameters: mp×m

parameters in B, mp parameters in D and m2 parameters in T.

There are as many equations as there are elements of ΓY(0) and ΓY(1). ΓY(0) is symmetric

with mp(mp+1)
2 unique elements, while ΓY(1) is non-symmetric with m2 p2 unique elements. There-

fore, identifiability of the model requires that:

mp(mp+1)
2

+m2 p2 > m2 p+mp+m2

m >
1

3p−2− 2
p

(B.4)

The denominator of (B.4) has two real roots, namely -0.15 and 1.48. Therefore, the necessary

condition for theoretical identifiability of the model requires that m, p > 1.
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Table 1: Performance of factor estimators from 1000 simulations
T=3 T=5 T=7 T=10 T=15

p=5 0.586 0.615 0.645 0.652 0.674
n=10 p=10 0.673 0.679 0.693 0.705 0.720

p=5 0.617 0.672 0.681 0.696 0.708
n=50 p=10 0.744 0.750 0.745 0.752 0.764

p=5 0.657 0.676 0.690 0.708 0.718
n=100 p=10 0.759 0.752 0.754 0.755 0.774

p=5 0.656 0.686 0.697 0.708 0.720
n=200 p=10 0.757 0.762 0.764 0.766 0.776

p=5 0.661 0.691 0.700 0.704 0.719
n=300 p=10 0.758 0.760 0.761 0.764 0.777
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Table 2: Countries and number of utilities by continent

Continent Country # of utilities Continent Country # of utilities
Benin ( 1 ) Albania ( 55 )

Congo. Dem. Rep. ( 1 ) Belarus ( 21 )
Cote d’Ivoire ( 1 ) Bosnia and Herzegovina ( 19 )

Ghana ( 1 ) Bulgaria ( 9 )
Africa Namibia ( 1 ) Croatia ( 12 )

South Africa ( 12 ) Czech Republic ( 20 )
Sudan ( 3 ) Hungary ( 21 )

Tanzania ( 9 ) Europe Macedonia. FYR ( 2 )
Togo ( 1 ) Moldova ( 39 )

Uganda ( 1 ) Poland ( 35 )
Zambia ( 5 ) Romania ( 26 )
Armenia ( 3 ) Russia ( 81 )

Azerbaijan ( 1 ) Slovakia ( 2 )
Georgia ( 24 ) Turkey ( 19 )

Kazakhstan ( 15 ) Ukraine ( 81 )
Kyrgyz Republic ( 4 ) Mexico ( 12 )

Asia Mongolia ( 1 ) Panama ( 1 )
Pakistan ( 4 ) Argentina ( 4 )

Philippines ( 1 ) South America Bolivia ( 1 )
Tajikistan ( 9 ) Brazil ( 230 )

Uzbekistan ( 8 ) Chile ( 1 )
Vietnam ( 8 ) Peru ( 47 )

Uruguay ( 1 )



Table 3: Descriptive statistics by continent
Africa
First quantile Median Third quantile

water coverage 60% 85% 98%
sewerage coverage 4% 24% 71%

non revenue water (m3/km/day) 9.2 20.2 41
affordability 1.60% 2.40% 4%

collection period (days) 62 105 226
operating cost coverage ratio 0.86 1.05 1.31

Europe
First quantile Median Third quantile

water coverage 71% 92% 100%
sewerage coverage 39% 68% 88%

non revenue water (m3/km/day) 6.4 18 47.8
affordability 0.90% 1.20% 2%

collection period (days) 69 126 245
operating cost coverage ratio 0.87 1.05 1.26

Asia
First quantile Median Third quantile

water coverage 50% 74% 100%
sewerage coverage 20% 43% 66%

non revenue water (m3/km/day) 10.7 23.6 79.2
affordability 0.50% 0.90% 1%

collection period (days) 119 316 823
operating cost coverage ratio 0.79 1 1.34

South America
First quantile Median Third quantile

water coverage 80% 92% 99%
sewerage coverage 23% 65% 87%

non revenue water (m3/km/day) 13.7 29.8 51.3
affordability 0.60% 0.80% 1%

collection period (days) 52 97 176
operating cost coverage ratio 0.93 1.08 1.32



Table 4: Factor loadings, idiosyncratic variance and AR(1) coefficient estimates for all 853
utilities

Indicators B D
Water Coverage 0.850 0.826

Sewerage Coverage 0.860 0.849
Non Revenue Water 0.731 0.840

Affordability 0.712 0.818
Collection period 0.715 0.812

Operating Cost Coverage 0.650 1.017



Table 5: Factor loadings, idiosyncratic variance and AR(1) coefficient estimates by country
Country

Albania Belarus Bosnia Herzegovina
Indicators B D B D B D

Water Coverage 0.183 0.586 0.202 0.275 0.162 0.492
Sewerage Coverage 0.224 0.379 0.233 0.315 0.162 0.422
Non Revenue Water 0.177 0.532 0.239 0.237 0.110 0.356

Affordability 0.080 0.666 0.120 0.362 0.331 0.405
Collection period 0.024 0.557 0.000 0.346 0.169 0.711

Operating Cost Coverage 0.313 0.474 0.205 0.409 0.065 0.493
φ 0.955 0.617 0.765

Country
Brazil Croatia Czech Republic

Indicators B D B D B D
Water Coverage 0.1458 0.4497 0.2922 0.5700 0.2262 0.6335

Sewerage Coverage 0.1780 0.4117 0.3081 0.5430 0.3538 0.4185
Non Revenue Water 0.2174 0.3899 0.0765 0.9293 0.1622 0.5347

Affordability 0.2040 0.4368 0.0903 0.6698 0.1866 0.6036
Collection period 0.1300 0.4155 0.0000 0.6549 0.0712 0.6875

Operating Cost Coverage 0.1248 0.4794 0.2329 0.6421 0.0000 0.5592
φ 0.8637 0.8998 0.9168

Country
Georgia Hungary Kazakhstan

Indicators B D B D B D
Water Coverage 0.341 0.481 0.065 0.635 0.279 0.392

Sewerage Coverage 0.195 0.449 0.221 0.542 0.329 0.385
Non Revenue Water 0.255 0.302 0.239 0.507 0.209 0.509

Affordability 0.187 0.503 0.142 0.581 0.043 0.576
Collection period 0.018 0.450 0.141 0.494 0.114 0.507

Operating Cost Coverage 0.005 0.766 0.193 0.548 0.027 0.639
φ 0.940 0.648 0.899



Table 6: Factor loadings, idiosyncratic variance and AR(1) coefficient estimates by country
Country

Mexico Moldova Peru
Indicators B D B D B D

Water Coverage 0.251 0.212 0.342 0.563 0.216 0.678
Sewerage Coverage 0.251 0.213 0.313 0.524 0.228 0.663
Non Revenue Water 0.255 0.234 0.194 0.450 0.069 0.649

Affordability 0.052 0.925 0.103 0.740 0.155 0.749
Collection period 0.000 0.873 0.034 0.836 0.134 0.695

Operating Cost Coverage 0.190 0.488 0.014 0.898 0.197 0.752
φ 0.491 0.940 0.709

Country
Poland Romania Russia

Indicators B D B D B D
Water Coverage 0.110 0.323 0.158 0.622 0.259 0.629

Sewerage Coverage 0.277 0.526 0.122 0.538 0.283 0.577
Non Revenue Water 0.202 0.639 0.262 0.545 0.163 0.798

Affordability 0.134 0.665 0.126 0.670 0.129 0.681
Collection period 0.114 0.717 0.113 0.388 0.026 0.731

Operating Cost Coverage 0.164 0.599 0.218 0.655 0.139 0.855
φ 0.928 0.869 0.700

Country
Turkey Ukraine

Indicators B D B D
Water Coverage 0.333 0.580 0.245 0.230

Sewerage Coverage 0.267 0.718 0.241 0.257
Non Revenue Water 0.273 0.301 0.220 0.240

Affordability 0.127 0.663 0.117 0.343
Collection period 0.000 0.181 0.072 0.357

Operating Cost Coverage 0.000 0.712 0.104 0.290
φ 0.836 0.730
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Figure 1: The estimated dynamic index with relation to the observable indicators and the
static APGAR index


