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Introduction

The purpose of this paper is to present a new model of agricultural supply which combines

Positive Mathematical Programming (PMP) with the rational expectations storage model. PMP

is an approach widely used for calibrating mathematical models to observed multiple agricultural

outputs. The PMP approach is able to generate optimal production plans that replicate observed

plans. Popularized by Howitt (1995), PMP has been developed by researchers both in calibration

using exogenous supply elasticities (Hechkelei and Britz (2005), Mérel and Bucaram (2010), Mérel

et al. (2011)) or estimation using multiple data points (Britz and Heckelei (2000), Jansson and

Heckelei (2011)). Most of these models assume exogenous output prices. Ar�ni et al. (2008) incor-

porates endogenous prices in PMP by modeling `farm level' demand functions and cost functions

while including the demand functions into pro�t maximization problem. Later, Ar�ni and Donati

point out that their old approach is inappropriate because their model assumes that individual

farms are not price takers so it does not �t the competitive market. Their new approach intro-

duces endogenous prices by maximizing the di�erence between the total value of the output and

the total cost of variable inputs subjected to the aggregating constraints and to individual farm

constraints. However, existing PMP models do not consider that the acreage decisions made by

forward-looking farmers are determined by expected crop prices due to the biological lags of the

agricultural production. One way to include this behavior iss with a rational expectations storage

model.

The rational expectations storage model has emerged as a powerful tool in crop price analysis

and policy analysis (Williams and Wright (1991), Miranda and Glauber (1993), Gouel (2013a)).

It endogenizes expected price by assuming futures prices formed by agents are realized expected

prices given all optimal decisions about storage, acreage and consumption. Ca�ero et al. (2011)

validate the model empirically and raise an important issue of the quality of solutions properties

of generated prices. Miranda (1997) compares di�erent numerical methods for solving the storage

model, including collocation methods, least squares, space discretization and linearization when

approximating current price functional form. He �nds that the collocation method with Cheby-
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shev or spline polynomials outperforms the other methods. Gouel (2013b) compares methods for

approximating various functions including the value function, the expected crop price function

and the storage rule. He claims that expected price function approximation leads to the most

accurate result because the expected price function is smooth and close to linear. But expected

price approximation is also the most time consuming method. Gouel (2013b) recommends approx-

imating the expected price functions especially when there are several state variables. Comparing

the results given by the storage model with and without convenience yield, Gouel (2013b) �nds

that convenience yield smooths the approximated functions and generally gives higher accuracy

for all methods.

However, the collocation method has been used to solve the storage model for no more than

two crops because of the curse of dimensionality. To extend the storage model to multiple crops

requires consideration of new methods for solving the storage model.

The perturbation method is widely used in solving dynamic stochastic general equilibrium

(DSGE) models in macroeconomics. The perturbation method linearizes the solution at the steady

state and uses the solution to infer results away from steady states. Because it only requires solving

a system of linear equations, it can be easily applied to models with multiple state variables.

However, the perturbation approximation performs poorly away from the steady state. Because

the economy is usually not around the steady state, this method cannot be applied to the storage

model (Gouel (2013b), Miranda (1997)).

Kollman et.al (2006) compares several methods for solving stochastic neoclassical growth models

with multiple countries. They suggest using the Smolyak method to interpolate functional forms.

Invented by the Russian mathematician Sergey Smolyak (1963), the Smolyak grid is used instead

of a tensor gird to interpolate and represent multi-variate functions. First adopted by Krueger and

Kubler (2004) to solve an over-lapping generation model in economics, the Smolyak collocation

method is also used in many other applications. Malin et. al (2011) apply it to solve a multiple

country international real business cycle model. Judd et. al (2013) extended the method by

improving grid construction and by developing a non-derivative �xed point algorithm.

Besides the Smolyak method, generalized stochastic simulation algorithm (GSSA) (Judd et
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al. (2011)), improves the stochastic simulation algorithm (Haan and Marcet (1990)) by replacing

inaccurate Monte-carlo and unstable standard least square methods to solve high dimensional

dynamic models. GSSA solves the model using a relatively small number of points that are

visited in equilibrium rather than by using the collocation method which requires larger domains

(Judd (1992)). GSSA has been shown to be numerically stable even with a large number of

state variables in multi-country neoclassical growth models (Judd et al. (2011)), an 80-period

overlapping generation model (Hasanhodzic and Kotliko� (2013)) and a search and hiring model

with heterogeneous workers and hiring selectivities (Villena-Roldán (2013)).

In this paper, we present a new way of formulating a three-crop competitive storage model. In

each period, crops can be consumed or stored for future use. A representative farmer maximizes

expected pro�t using expected crop prices and a cost function. It is assumed that the only pro-

duction input is land. The cost function is calibrated to conditions in a base year and the implied

expected land elasticities coincide with exogenous supply elasticities (Mérel and Bucaram (2010)).

The model is calibrated to three crops: corn, soybean and all other crops. The base year is set to

be 2013/14 marketing year. This model is the �rst to combine PMP with endogeneous prices that

is solved using a storage model.

We incorporate convenience yield in our model. The idea of convenience yield is �rst introduced

by Kaldor (1939) to explain backwardation. Backwardation is a phenomenon that positive stocks

exist even when spot price is less than the next to expire futures price. Convenience yield is often

motivated by the option value of storage. For example, producing �rms might need to meet a

sudden increase in demand to keep consumer's satis�ed. Thus they need to keep a certain amount

of storage even in backwardation. Convenience yield is greater when stock on hand is smaller.

Recent work by Joseph et al. (2011) validate the existence of convenience yield for US corn,

soybean and wheat markets using 1990 to 2010 data.

Peterson and Tomek (2005) calibrated a convenience yield function and embedded it in a rational

expectations storage model for U.S. corn and found that the model generates price patterns that

are consistent with actual commodity prices. Roberts and Tran (2012) didn't use convenience yield

and generate too little storage compared to real world storage levels. One explanation could be
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that they do not consider the convenience yield. Later, Roberts and Tran (2013) used a calibrated

negative constant storage cost to represent the existence of convenience yield. In our model we

will calibrate a convenience yield similar to Peterson and Tomek's approach.

To solve the model, the expected revenue functions are approximated to obtain the acreage

decisions of farmers. In addition, either storage, expected price or current price needs to be

approximated as functions of all state variables. If the storage function is approximated, the

expected price can be calculated using the known storage rule. If expected price functions are

approximated as functions of storage levels of all crops, then the storage levels can be solved using

Euler equations.

The model is solved using three approaches: (1) Generalized stochastic simulation approach with

�xed point iteration, (2) Smolyak collocation with storage rule approximation and (3) Smolyak

collocation with expected price function approximation. Method (1) employs GSSA while method

(2) and (3) use Smolyak method. When using Smolyak method, storage rule approximation might

be the least time-consuming method and the expected price function approximation might be the

most accurate one.

Storage levels for all three crops are state variables in GSSA. Expected crop price are approxi-

mated as functions of storage levels for all crops. We simulate the model with draws generated from

correlated crop yields to get the state space that is visited in equilibrium. The solutions are com-

puted using the simulated points. Regularized least-absolute deviation (LAD) linear-programming

method is used as a numerically stable approximation method. Monomial integration is used

instead of quadrature or Monte Carlo. Monomial rules make the integration possible for many

random variables and it is applied for all three methods.

The other two methods use Smolyak collocation methods. One approximates the storage rule

while the other approximates expected crop prices. The steps for Smolyak collocation method

are: (1) Descretize the continuous state space. Finite points are used to approximate a continuous

function. Those chosen �nite points are called grid points. (2) Find basis functions and the

collocation matrix. The approximated function is constructed by unknown coe�cients and basis

functions. (3) At each grid point, solve the true values of the approximated functions. (4) Solve
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for the unknown coe�cients. Compared to a tensor grid, use of a Smolyak grid requires fewer

supporting points to approximate a multivariate function, thus making it feasible to represent

higher dimensional functions.

For Smolyak collocation with storage rule approximation, total supply for each crop is a state

variable. Storage rule is approximated as a function of total supply. This is a �xed point approach

associated with a sparse grid. The �xed point approach requires only direct calculations and it

should require less computational time (Judd et. al (2013)).

For Smolyak collocation with expected prices being approximated, storage levels are state vari-

ables. Expected prices are represented as functions of storage. This method requires time iteration

which means it approximates future prices and expected revenues and solve the current storage

decisions using a numerical solver at each grid point. Thus it takes more computational time

compared to a �xed point approach, but expected price approximation is shown to be the most

accurate algorithm by Gouel (2013).

To date, rational expectations storage models are usually solved one crop with no resource

constraint. Our model with multiple crops and land constraint is more suitable for policy analysis.

Because of the curse of dimensionality, PMP supply models have never been combined with rational

expectations storage model. With the new methods, we show that it is developed a practical to

analyze agricultural supply model in a realistic way that incorporates forward-looking rational

agents1.

In the rest part of the paper, we �rst introduce the basic model with three crops. The com-

putational approaches are presented and the candidate solution qualities are tested next. At the

end, we show some simulation results from the model.

1 The supply side of the model will be further developed to a regional supply model with ten crops

in US. The whole US is divided into 10 regions while each region has its own supply elasticities.

So the model is calibrated into 10 PMPs. There is a total demand for each crop in the model.

Besides the supply side, demand and storage remains the same as the simple model illustrated

here. We will simulate the model 5000 times with 5000 sequences of 10 years' crop yields, then

we can get crop price distributions for 10 consecutive years. This model will be used for policy

analysis similar to what the FAPRI model is used to do.
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The Model

The model is a three-crops, rational expectations, competitive storage model. Each agent's

optimization problem is described below:

Farmer

A representative farmer maximizes time t expected pro�ts from planting three crops given a land

constraint. Crop prices are realized in t+1. Land is the only input and production technology for

each activity is Leontief . The farmer's maximization problem follows Mérel and Bucaram (2010)

with some modi�cations:

Max
xit+1

3∑
i=1

Pitxit+1 − (λ2i − γixi)xit+1 −
1

2
γix

2
it+1 (1)

s.t.

3∑
i=1

xit+1 ≤ A

For crop i, xit+1 is the planted acreage at time t, x̄i1 is the observed acreage level in the base

year calibration (t = 0). Let yit+1and pit+1 be time t+ 1 yield and price for crop i. The discounted

expected revenue at the time of planting for each crop i is δEt(pit+1yit+1). Assume that δ = 1
1+r

where r is the interest rate. Cit is the per acre observed cost. Pit = δEt(pit+1yit+1) − Cit is the

gross margin. γ = [γ1, γ2, γ3] is the coe�cient vector needed to be calibrated so that the model's

elasticities are equal to the exogenously determined elasticities. λ2i is used for exact calibration

purposes with λ2i = Pi0 − λ̄ where λ̄ is the shadow price for the binding land constraint. The

value of land rent is suggested to be used for λ̄ (Gohin and Chantreuil (1999)). The constraint

says that the total acreage for three crops is not greater than A where A =
3∑
i=1

xi1. In each period,

it is assumed that the representative farmer faces the same land constraint.

Instead of using the land supply elasticity with respect to price (Mérel and Bucaram (2010)),

we calibrate the model to land supply elasticity with respect to per-acre expected revenue. Let η̄i

for i = 1, 2, 3 be the expected revenue elasticities in the base year t = 0, we have
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η̄i =
dxi1

dE0(pi1yi1)

E0(pi1yi1)

xi1
(2)

Using (2), the acreage response to per acre gross margin is

dxi1
dPi0

=
dxi1

d(δE0(pi1yi1)− Cit)
=

1

δ

x̄i1η̄i
E(pi1yi1)

(3)

η̄i and x̄i1 are assumed known. If base year revenue for each crop E(pi1yi1) is known, we can

get the acreage response and calibrate the unknown parameters γ in the cost function.

Solving the farmer's constrained optimization problem2,

dxi1
dPi0

=
1

γi
(1− ∂λ1

∂Pi
) =

1

γi
(1− (

3∑
i=1

1

γi
)−1 1

γi
), i = 1, 2, 3 (4)

Where λ1 is the Lagrange multiplier associated with the land constraint. Let wi = dxi1
dPi0

, if

wi <
∑
j 6=i
wj, then we can get positive values of γi, i = 1, 2, 3 by solving three unknowns from

three equations (4). This condition requires at least three crops in the calibration system and the

response of one crop should not be greater than the sum of responses of the other crops.

Note that another assumption here for getting the γ is that the base year expected revenues are

known. In the later algorithm section, we will approximate the expected revenue for each crop as

a function of state variables in order to solve the farmer's problem in each period. If the base year

E0(pi1yi1) is pre-determined, it may not be the same as what is implied by the model. Thus we

treat it as endogenous and approximate it in each iteration using the approximated value. More

details will be provided in the algorithm section.

Storer

A representative storer maximizes his/her pro�t from storing crops. At time t, the revenue

from storing is the expected crop price in time t + 1. The cost of storing is storage cost plus the

opportunity cost from not selling the crop in time t. Equilibrium storage satis�es the following

non-arbitrage condition for crop i

2The detailed procedure can be found in Mérel and Bucaram (2010) page 399-402.
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δEt(pit+1)− pit − SCit = 0 i = 1, 2, 3 (5)

where Et(pit+1) is the crop i's expected price, per bushel storage cost of crop i is denoted

by SCit. The marginal storage cost includes marginal convenience yield which goes to negative

in�nity when stock level approaches zero. This speci�cation of marginal storage cost will eliminate

stock-out conditions.

Consumer

A representative consumer maximizes his/her utility by consuming three crops and a numeraire

good mt given a budget constraint. Assume the utility function is separable. The price for crop i

is denoted by pit and total income is denoted by I.

Max
{cit}i=1,2,3

∞∑
t=1

3

(
∑
i=1

Ui(cit) +mt) (6)

3∑
i=1

pitcit +mt = I

The optimization condition gives us the inverse demand function for each crop i,

pit = U
′

i (cit) = D−1
i (cit) (7)

Equilibrium Condition

In each period, total supply is the sum of total production in time t and carryover stocks.

TSit = hixityit + sit, where hi is the harvest rate for crop i. Total supply is then consumed in time

t or stored for future use,

TSit = cit + sit+1, i = 1, 2, 3 (8)
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The algorithms

Monomial integration is used to descretize multi-normal yield distribution in all algorithms.

Formula for the monomial rule used in the paper is described as the second formula in supplemen-

tary material to Judd et. al (2011). We used code provided by Judd (2011) to generate monomial

nodes and weights. If there are three crops, the total number of nodes equal 33 + 1 = 19. Mono-

mial nodes are denoted by a N × 3 matrix [y1, y2, y3], where yi is an N × 1 vector representing the

monomial nodes for crop i. w is the weight vector where the jth element is the probability for

[y1(j), y2(j), y3(j)].

Method 1. GSSA with storage rule approximation

GSSA is an algorithm developed by Judd et al. (2011). Matlab code for implementing the

algorithm can be found online. The model requires solving (1), (5), (7), (8). We approxi-

mate the storage rules and expected revenues for crop i as functions of all state variables sit =

fi(TS1t, TS2t, TS3t) and Et(pit+1yit+1) = gi(TS1t, TS2t, TS3t), respectively. Flexible functional

forms ψi(TS1t, TS2t, TS3t, ai), φi(TS1t, TS2t, TS3t, bi) and vectors of coe�cients ai and bi for i =

1, 2, 3 are chosen such that fi(TS1t, TS2t, TS3t) ≈ ψi(TS1t, TS2t, TS3t, ai) and gi(TS1t, TS2t, TS3t) ≈

φi(TS1t, TS2t, TS3t, bi). The detailed steps are as follows:

Initialization: Choose initial guesses a
(1)
i , b

(1)
i , i = 1, 2, 3. Choose the initial state (TS10, TS20, TS30)

for simulations. Choose a simulation length T , draw a sequence of crops yields {yit}t=1,...,T , i =

1, 2, 3. The steps for generating correlated crop yields are as follows.

(i) Let M be variance and covariance matrix for three crops. Let L be the Cholesky decompo-

sition of M .

(ii) Generate a T × 1 vector of random normal deviates for three yields independently. Each

vector is denoted by z1, z2 and z3.

(iii) Impose correlation by Cholesky decomposition matrix, [z1, z2, z3]× L.

(iv) Impose mean yields. yi is the ith column of [z1, z2, z3]× L plus mean yield of crop i.

Step 1. At iteration p, use
{
a

(p)
i

}
i=1,2,3

,
{
b

(p)
i

}
i=1,2,3

, calibrate for γ and simulate the model T
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periods forward.

(1i) Calibration for γ.

The base year total supplies for corn, soybean and all the others are TS10, TS20, TS30, respec-

tively.

Expected revenue at base year is φi(TS10, TS20, TS30; b
(p)
i ), i = 1, 2, 3.

Acreage response for crop i at base year is: dxi1
dPi0

= 1
δ

x̄i1ηi
E0(pi1yi1)

= 1
δ

x̄i1ηi

φi(TS1
0 ,TS

2
0 ,TS

3
0 ;b

(p)
i )

. Then solve

for γ using systems of equations (4). As b
(p)
i converges, the expected revenue at the point of base

year total supplies converges and so does γ. In this way γ is then calibrated in the whole algorithm.

If expected revenues in the base year are �xed and γ is �xed at the beginning of all iterations,

then expected revenue is not the same as one implied by the model.

(1ii) When expected revenues are known, solve the farmer's constrained optimization problem

(1) to get xit+1,i = 1, 2, 3.

(1iii) Total supplies, stock levels and expected revenues in t+ 1 are:

TSit+1 = ψi(TS1t, TS2t, TS3t; a
(p)
i ) + hixit+1yit+1 (9)

sit+1 = ψi(TS1t+1, TS2t+1, TS3t+1; a
(p)
i ) (10)

E
(p)
t+1(pit+2yit+2) = φi(TS1t+1, TS2t+1, TS3t+1, b

(p)
i ), i = 1, 2, 3 (11)

The model then can be simulated T periods forward using (9), (10), (11).

Step 2. The storage can be approximated as:

zsit = TSit −Di(δEt(Pit+1)− ki) (12)

Expected revenue for crop i in time t can be approximated as (13) using monomial nodes and

weights:
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zepyit =
N∑
j=1

w(j)D−1
i (TSit+1,j − sit+1,j)yi(j) (13)

where the next period total supply vector for all yield nodes for crop i , the next period storage

rule for each crop i at each monomial node j and expected price for crop i in time t are de�ned by

TSit+1,j = sit + hitxit+1yi(j)

sit+1,j = ψi(TS1t+1,j, TS2t+1,j, TS3t+1,j, a
(p)
i )

Et(pit+1) =
N∑
j=1

w(j)D−1
i (TSit+1,j − sit+1,j)

Step 3. Find {âi}i=1,2,3 and {b̂i}i=1,2,3 that minimize the errors εit, ζit in the regression equation

using LAD method as described in Judd et. al (2011).

zsit = ψi(TS1t, TS2t, TS3t, a
(p)
i ) + εit, i = 1, 2, 3 (14)

zepyit = φi(TS1t, TS2t, TS3t, b
(p)
i ) + ζit, i = 1, 2, 3 (15)

Step 4. Check the convergence and end (2) if

1

T

T∑
1

3∑
i=1

(| s
(p)
it − s

(p−1)
it

s
(p−1)
it

| + | E
(p)
t (pityit)− E(p−1)

t (pityit)

E
(p−1)
t (pityit)

|) < ε (16)

where s
(p)
it ,s

(p−1)
it , E

(p)
t (pityit), E

(p−1)
t (pityit) are the storage and expected revenue series obtained

on iteration p and p− 1.

Step 5. Compute a
(p+1)
i and b

(p+1)
i for iteration (p+ 1) for i = 1, 2, 3.

a
(p+1)
i = (1− ξ)a(p)

i + ξâi (17)

b
(p+1)
i = (1− ξ)b(p)

i + ξb̂i (18)

where ξ ∈ (0, 1] is a damping parameter. Go to (2) with new coe�cients a
(p+1)
i , b

(p+1)
i and

stop the iteration when convergence criterion is reached. After convergence is achieved, we have a
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model with approximated expected revenue functions and storage functions for each crop.

Smolyak collocation method

The Smolyak method was introduced by Smolyak (1963) to approximate multivariate functions.

Compared to the use of standard tensor grids, Smolyak grids require fewer support nodes. For

example, if we want to approximate an N dimensional function, the number of tensor nodes is

5N if using 5 points for each dimension. If N = 10, the total number of collocation nodes equals

9,765,625. Smolyak nodes are constructed by the levels of approximation. Higher approximation

level leads to higher accuracy. For 10 dimension with 2nd, 3rd or 4th level approximation, the

Smolyak grid requires 221 points, 1581 points and 8801 points respectively. Thus, the Smolyak

method makes it feasible to solve high dimensional models.

Method 2 Smolyak collocation with storage rule approximation

Step 1: De�ne the interval for state variables. Let the total supply of crop i between [TSimin, TS
i
max],

i = 1, 2, 3. The minimum and maximum total supply values should not be violated in iterations.

For each Smolyak grid point (TS1k, TS2k, TS3k), k = 1, ...K, guess K × 1 coe�cient vec-

tors ai = [ai1, ..., aiK ] and bi = [bi1, ..., biK ], i = 1, 2, 3. Storage levels are approximated as

sik = fd,µ(TS1k, TS2k, TS3k; ai), i = 1, 2, 3, expected revenues are approximated as epyik =

fd,µ(TS1k, TS2k, TS3k; bi), i = 1, 2, 3. fd,µ will be de�ned later by (23). d is the number of di-

mensions and µ is the approximation level.

Equidistant grid points performs worse than Chebyshev-based nodes for interpolation, therefore

the Chebyshev-Gauss-Lobatto grid is used as suggested in Klimke (2006). Chebyshev-Gauss-

Lobatto grid is a kind of sparse grid using extrema of Chebyshev polynomials. The details of

forming uni-dimension Chebyshev-Gauss-Lobatto grid can be found in Judd et al. (2013) appendix

A. We use the sparse grid interpolation toolbox developed by Andreas Klimke (2007) to obtain

the Chebyshev-Gauss-Lobatto points.

To see how the Smolyak grids are constructed. We �rst show the nodes constructed in uni-

dimention. Then we show a special case used in our algorithm, three dimensions with three
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approximation level.

The part of forming grid points and basis functions follows Malin et. al (2007) and Judd et al.

(2013). The set of grid points Xi is de�ned as the set of the extrema of the Chebyshev polynomials

with a number of m(i) points in each set. m(i) = 2i−1 + 1 when i > 2 and m(1) = 1.

The formula for extrema of the Chebychev polynomials is Xi = −cos( π(i−1)
m(i)−1

) i = 1, 2, ...,m(i).

The set for extrema of the Chebyshev polynomials are:

i = 1, X1 = {0};

i = 2, X2 = {−1, 0, 1};

i = 3, X3 = {−1,− 1√
2
, 0, 1√

2
, 1};

when i = 5, there are 17 points in the set, the set of grid points X5 = −cos(π(i−1)
17−1

), i =

1, 2, ..., 17.

From the construction, we can see that Xi is a subset of Xj when j > i.

For higher dimensions, the Chebyshev-Gauss-Lobatto grid is formed as follows:

In the three dimension case, we must select tensor products of points selected from unidimention

according to

d 6 i1 + i2 + i3 6 d+ µ.

For example, in the three dimensional case, d = 3.

If µ = 1, 3 6 i1+i2+i3 6 4. Thus the sets for {(i1, i2, i3)} = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1)}.

Given a value of i1, i2, i3, �nd the set of extrema of the Chebychev polynomials (Xi) in each

dimension with i = i1, i = i2, i = i3.

When i1 = 1, i2 = 1, i3 = 1, then the tensor product of the multidimensional nodes of each

dimension is {(0, 0, 0)}.

When i1 = 1, i2 = 1, i3 = 2, we have X2 for the third dimension and X1 for the other dimensions.

The tensor product of the points are {(0, 0, 0), (0, 0, 1), (0, 0,−1)}.

Doing this for all {i1, i2, i3}, we have seven points in the �rst level approximation are

{(0, 0, 0), (0, 0, 1), (0, 0,−1), (0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0)}.

If µ = 2, 3 6 i1 + i2 + i3 6 5, There are several combinations of i1, i2, i3 that satisfy this

restriction: {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}.
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Thus we have 25 Smolyak grid points,

{(0, 0, 0), (0, 0, 1), (0, 0,−1), (0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0), (0, 0,− 1√
2

), (0, 0,
1√
2

),

(0,− 1√
2
, 0), (0,

1√
2
, 0), (− 1√

2
, 0, 0), (

1√
2
, 0, 0), (0,−1,−1), (0,−1, 1), (0, 1,−1), (0, 1, 1),

(−1, 0,−1), (−1, 0, 0), (1, 0,−1), (1, 0, 1), (−1,−1, 0), (−1, 1, 0), (1,−1, 0), (1, 1, 0)}

If µ = 3, 3 6 i1 + i2 + i3 6 6. The i1, i2, i3 satisfy for the restriction are

{(i1, i2, i3)} = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2),

(2, 1, 2), (2, 2, 1), (1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2)}.

and there are 69 Smolyak grid points.

Step 2: Construct Smolyak Chebyshev basis functions. Here we only provide the details for 3

dimensions (d) with 3rd approximation level (µ) . The Smolyak polynomial function is given by a

general form:

fd,µ(TS1k, ..., TSnk; a) =
∑

max(d,µ+1)≤|i|≤d+µ

(−1)d+µ−|i|(
d− 1

d+ µ− |i|
)p|i|(TS1k, ..., TSnk) (19)

(−1)d+µ−|i|(
d− 1

d+ µ− |i|
) = (−1)d+µ−|i| (d+µ−|i|)!

(d−1)!(µ−|i|+1)!
is a counting coe�cient to insure that there

are no repeated basis functions. n is the number of state variables. A tensor product operator

p|i|(TS1k, ..., TSnk) is de�ned as

p|i|(TS1k, ..., TSnk) =
∑

i1+...+id=|i|

pi1,...,id(TS1k, ..., TSnk) ,

where pi1,...,id is de�ned as

pi1,...,id(TS1k, ..., TSnk) =

m(i1)∑
l1=1

...

m(id)∑
ld=1

al1...ldψl1(TS1k)...ψld(TSnk) ,

where m(ij) = 2ij−1 + 1, ij ≥ 2, m(1) = 1. In our example we have d = 3, µ = 3, n = 3.
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Counting factor is (−1)3+3−|i|(
3− 1

3 + 3− |i|
), |i| = 4, 5, 6, al1...ld are the coe�cients. We have

p4 = p1,1,2 + p1,2,1 + p2,1,1 (20)

p5 = p1,1,3 + p1,3,1 + p3,1,1 + p1,2,2 + p2,2,1 + p2,1,2 (21)

p6 = p1,1,4 + p1,4,1 + p4,1,1 + p2,1,3 + p2,2,2 + p3,1,2 (22)

let cj1j2j3 represents al1l2l3ψl1(TS1k)ψl2(TS2k)ψl3(TS3k). ψl1(TS1k)ψl2(TS2k)ψl3(TS3k) is a basis

function where ψ(·) is Chebyshev polynomial basis function.

The Smolyak polynomial function is:

f 3,3(TS1k, TS2k, TS3k; a) = c111 + c112 + c113 + c114 + c115 + c116 + c117 + b118 + c119 + c121

+c131 + c141 + c151 + c161 + c171 + c181 + c191 + c211 + c311 + b411

+c511 + c611 + c711 + c811 + c911 + c122 + c123 + c124 + c125 + b132

+c133 + c134 + c135 + c142 + c143 + c152 + c153 + c212 + c213 + b214 (23)

+c215 + c312 + c313 + c314 + c315 + c412 + c413 + c521 + c531 + b221

+c231 + c241 + c251 + c321 + c331 + c341 + c351 + b421 + c431 + b521

+c531 + c222 + c223 + c232 + c322 + c333 + c332 + c333 + c323 + c323 + c233 (24)

The set of Chebyshev polynomial basis functions are de�ned recursively as follows: ψ1(x) = 1,

ψ2(x) = x, ψn(x) = 2xψn−1(x)− ψn−2(x). The Chebyshev matrix is denoted by Φ. In this case Φ

is a 69× 69 matrix.

Approximate storage and expected revenues for each crop i as follows:

si = fd,µ(TS1k, ..., TSnk; ai).

epyi = fd,µ(TS1k, ..., TSnk; bi), where f
d,µ is de�ned as equation (19).

Step 3. At iteration p, use
{
a

(p)
i

}
i=1,2,3

,
{
b

(p)
i

}
i=1,2,3

. Calibrate for γ.
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(3i) The base year total supplies for corn, soybean and all the others are TS10, TS20, TS30.

All Chebyshev-Gauss-Lobatto grid points are normalized to [−1, 1], so we need to normalize total

supplies in the base year before constructing the base year expected revenues.

TS1
0 =

2(TS10−TS1
min)

(TS1
max−TS1

min)
− 1, TS2

0 =
2(TS20−TS2

min)

(TS2
max−TS2

min)
− 1, TS3

0 =
2(TS30−TS3

min)

(TS3
max−TS3

min)
− 1.

(3ii) Expected revenues at base year are f 3,3(TS1
0 , TS

2
0 , TS

3
0 ; b

(0)
i ), i = 1, 2, 3.

Acreage responses at base year are: dxi1
dPi0

= 1
δ

x̄i1ηi
E0(pi1yi1)

= 1
δ

x̄i1ηi

f3,3(TS1
0 ,TS

2
0 ,TS

3
0 ;b

(0)
i )

, i = 1, 2, 3. Then

solve γ using (4).

Step 4. At each grid point k, solve the optimal acreage decisions xik, i = 1, 2, 3, solve storage

and expected revenue at each grid point using monomial integration of expectations. The expected

revenues are

zepyik =
N∑
j=1

w(j)D−1
i (TSikj − f 3,µ(TS1kj, TS2kj, TS3kj; a

(p)
i ))yi(j), i = 1, 2, 3, k = 1, 2, ...K. (25)

The storage levels are

zsik = TSik −Di(δepik − SCik, i = 1, 2, 3, k = 1, 2, ..., K. (26)

where the expected prices are

epik =
N∑
j=1

w(j)D−1
i (TSikj − f 3,µ(TS1kj, TS2kj, TS3kj; a

(p)
i )), l = 1, 2, 3, i = 1, 2, 3. (27)

The next period total supply for crop i with yield yi(j) is TS
n
ikj = f 3,µ(TS1k, TS2k, TS3k; a

(p)
i ) +

hixikyi(j). Because we need to transform our nodes which normalized in the interval [−1, 1] to the

interval [TSimin, TS
i
max], each crop i will be TSikj =

(TSn
ikj+1)

2
(TSimax − TSimin) + TSimin

Step 5. See if the approximated storage and expected revenue functions converge,

1

K

K∑
1

3∑
i=1

(| s
(p)
ik − s

(p−1)
ik

s
(p)
ik

| + | epy
(p)
ik − epy

(p−1)
ik

epy
(p−1)
ik

|) < ε (28)

Step 6. Update the coe�cients if the convergence criterion is not satis�ed.

zsi is a K × 1 vector with kth element equals to zsik. z
epy
i is a K × 1 vector with kth element
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equals to zepyik .

a
(p+1)
i = (1− ξ)a(p)

i + ξΦ−1zsi , i = 1, 2, 3. (29)

b
(p+1)
i = (1− ξ)b(p)

i + ξΦ−1zepyi , i = 1, 2, 3. (30)

Step 7. go to step 3 until the condition in step 5 is satis�ed.

Method 3. Smolyak collocation with expected price approximated

Initialization: storage levels of three crops are state variables. Pick grid points and construct

basis functions as described in method 2. The Chebyshev matrix is denoted by Φ.

Step 1. De�ne the intervals for state variables. The storage levels of three crops is contained in

[0, simax] for i = 1, 2, 3.

At each collocation node (s1k, s2k, s3k), expected prices are approximated as epik = f 3,µ(s1k, s2k, s3k; a
(0)
i ),

expected revenues are approximated as epyik = f 3,µ(s1k, s2k, s3k; b
(0)
i ) where

{
a

(0)
i

}
i=1,2,3

,
{
b

(0)
i

}
i=1,2,3

are coe�cient vectors with initial guesses.

Step 2. At iteration p, use a
(p)
i , b

(p)
i . Calibrate γ. The base year observed storage levels for

corn, soybean and all the others are s10, s20, s30. Normalize storage levels to [−1, 1].

s1
0 = 2s10

s1max
− 1, s2

0 = 2s20
s2max
− 1, s3

0 = 2s30
s3max
− 1.

Expected revenues at base year are f 3,3(s1
0, s

2
0, s

3
0; b

(0)
i ), i = 1, 2, 3.

Acreage responses at base year are: dxi1
dPi0

= 1
δ

x̄i1ηi
E0(pi1yi1)

= 1
δ

x̄i1ηi

f3,3(s10,s
2
0,s

3
0;b

(0)
i )

, i = 1, 2, 3. Then solve

γ using systems of equations (4).

Step 3. For each collocation node, solve the optimal acreage decision xik, i = 1, 2, 3.

Solve the storage decision at each grid point and each monomial node, where sikj is the storage

decision solved from the non-arbitrage condition:

δf 3,µ(s1kj, s2kj, s3kj; ai)−D−1
i (TSikj − sikj)− SCikj = 0, i = 1, 2, 3 (31)

where total supply for crop i is TSikj = sik + hixikyi(j).
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Thus the expected revenues are

zepyik =
N∑
j=1

w(j)D−1
i (TSikj − sikj)yi(j), i = 1, 2, 3, k = 1, 2, ..., K (32)

The expected prices are

zepik =
N∑
j=1

w(j)D−1
i (TSikj − sikj), i = 1, 2, 3, k = 1, 2, ..., K (33)

Step 5. See if the approximated expected prices and expected revenues converges

1

K

K∑
1

3∑
i=1

(| ep
(p)
ik − ep

(p−1)
ik

ep
(p)
ik

| + | epy
(p)
ik − epy

(p−1)
ik

epy
(p−1)
ik

|) < ε (34)

Step 6. If not, update the coe�cients:

a
(p+1)
i = (1− ξ)a(p)

i + ξΦ−1zepyi , i = 1, 2, 3. (35)

b
(p+1)
i = (1− ξ)b(p)

i + ξΦ−1zepik , i = 1, 2, 3. (36)

zepyi is a K × 1 vector with zepyi (k) = zepyik , zepi is a K × 1 vector with zepi (k) = zepik .

step 6. go to step 2 until the condition in step 5 is satis�ed.

Calibration for the Model

The model is calibrated to corn, soybeans and �other� which includes wheat and cotton

for simplicity in this example.
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Land Allocation:

We calibrate the land allocation problem to exogenous elasticities and endogenous expected

revenue so that the optimal allocation is the same as what was projected to happen in 2013/14

according to WASDE 2013/14 January report. The acreages allocated to corn, soybean and other

in the base year are 95.4 million acres, 74.5 million acres and 66.61 million acres, respectively.

Thus, total acreage is 238.51 million acres for all time periods. The exogenous supply elasticities

for corn, soybean and all others are assumed to be 0.25, 0.2, 0.2 as illustration purposes. Land

rent is assumed to be $200 per acre, so λ̄ = 200.

Yield Distributions

National acreage crop yields from 1970 to 2013 given by USDA NASS are employed to get the

yield distributions. All crop yield distributions are assumed to be normal for illustration of the

approach. Detrended data for each crop is used separately to �t a normal distribution with mean

µ and standard deviation σ, N(µ, σ2), we have corn yield in bushel per acre, y1 ∼ N(157, 15.42),

soybean yield in bushel per acre, y2 ∼ N(43.6, 3.182). The yield data for other in each year is

the average yield of wheat and cotton weighted by output. Thus yield distribution for others

is y3 ∼ N(1.1801, 0.08182) with tons per acre as the unit. The correlation between crop yield

variables are also calculated using the same detrended crop yield data. The covariance between

crop i and crop j is estimated as

COVij =
1

N

N∑
t=1

(yit − yi)(yjt − yj) (37)

where N is the total number of observations, yit is the detrended yield for crop i at year t and ȳi

is the average yield for crop i for all observations. The covariance between crops are COV12 = 21.34,

COV13 = 0.20704, COV23 = −0.02897. With the above information, we can construct the variance

covariance matrix for the multivariate normal distribution for all three crops. Using Cholesky

decomposition, the variance covariance structure is imposed on the simulated yields.
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Demand Functions

Demand functions are assumed to be constant elasticity:

D−1(·) = α1ic
−α2i
i , i = 1, 2, 3 (38)

The demand parameters are calibrated to the total use and average prices received by farmers

for 2013/14. Total use of corn including food, feed, export and ethanol is 13.150 billion bushels.

Total use of soybean is 3.3040 billion bushels. Average prices received by farmers for corn and

soybean are $4.40 per bushel and $12.50 per bu. Total use and price of wheat and cotton, de�ned

as average of wheat and cotton weighted by output, are 68.36 million ton and $312.40 per ton.

In our program, we set the units for quantities of corn and soybean to be 10 billion bushels.

The units for all the other to be 100 million tonnes. The price units are dollar per bushel for

corn and soybean and dollar per ton for all the others. Demand elasticities for corn and soybean

are -0.44 (Adjemian and Smith. (2012)) and -0.236 (Roberts and Schlenker (2013)), respectively.

The other crop demand elasticity is assumed to be -0.1 as an illustration purpose. Thus we have

α11 = 8.192456, α21 = 2.27, α12 = 0.114537, α22 = 4.237288, α13 = 0.069614, α23 = 10.

Storage Cost and Marginal Convenience Yield

The storage cost per unit includes per unit observed cost and per unit unobserved cost. The

observed part of the storage cost (OSC) is a constant physical storage cost paid by the storer.

We assume the observed per bushel storage cost is 3 cents per bushel per month (Peterson and

Tomek (2010)). The yearly observed storage cost is thus $0.36 per bushel, OSC = 0.36. One

component of unobserved storage cost is the opportunity cost that increases with stock level when

stock levels are large. This is because holding more stock of one crop decreases the opportunity

of holding other more pro�table crops (Paul (1970)). The other unobserved storage cost is the

marginal convenience yield. We can get unobserved storage cost from the storage non-arbitrage

condition: USCit = δEt(pit+1) − pit − OSCit. We collect our data including current price pt,

expected price pt+1 from 2001/2002 to 2011/2012. Use average price received by the farmer in
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each marketing year from USDA NASS for the current year price. For corn, the December corn

futures price from September 1st to August 31st is used as the average of yearly expected price.

The discount factor, δ, is de�ned as 1
1+r

where r is the interest rate. We use the return for 1-year

treasury constant maturities as risk free interest rate. The unobserved storage cost should be

increasing with stock level and it is negative when stock level st is small and positive when stock

level is high. Rui and Miranda (1995) uses a logarithmic function to achieve it. In Tomek and

Peterson (2005), they incorporate expected total supply in marginal convenience yield function

and successfully avoid stock-out condition using that speci�cation. Because current price indicates

relative shortage of the crop (Na Jin(2013)), we assume the unobserved cost is also increasing in

price when it is positive, UOCit = pit(ai + bilog(sit+1)) where ai and bi are parameters needed to

be calibrated. For each crop i, when stock level is low, ai + bilog(sit+1) is negative, current price

is positive, unobserved storage cost is negative. When stock level is large, the unobserved storage

cost is positive.

For soybean and the other crops, the soybean expected price is the average of November Soybean

futures from September 1st to August 31st. We use wheat unobserved cost to represent the

expected price of other crops. Wheat expected price is the average of July wheat futures from

June 1st to May 31st.

We use two points to calibrate the parameters ai and bi in the unobserved marginal cost function.

One point is the unobserved cost/current price and end year stock in 2012/13. The other point

is the (average unobserved cost)/price and average ending stock from 2001/02 to 2012/13. Thus

we �nd that ai = 0.5229, bi = 0.2772. for soybean ai = 0.5488, bi = 0.1593, for all others

ai = 0.1799, bi = 0.1286.

Beginning stock:

The base year is set to be 2013/14, beginning stocks for corn and soybean are 0.0821 10 billion

bushels and 0.0141 10 billion bushels. The other stock is the sum of wheat stock and cotton stock.

Wheat stock is 718 million bushels and cotton stock is 3.9× 480 pounds. Then the total stock is

0.203897 100 million tonnes. The total supply for corn, soybean and all the others are 1.4781 10
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billion bushels, 0.3454 10 billion bushels and 0.8550 100 million ton.

Harvest rate:

Harvested acres are less than acres planted. The harvest rate is de�ned as the ratio of harvested

acreage to the planted acreage. The harvest rates for corn, soybean and all other crops are assumed

to be 92%, 99% and 85% respectively.

Accuracy Test for Algorithms 1, 2 &3

The purpose of this section is to subject the candidate solutions to an independent and stringent

test to compare the quality of the solutions among the three algorithms. GSSA and Smolyak

collocation method both approximate the functions using a �nite set of points. In the accuracy

check, we want to see how the candidate solutions perform for other points in the state space.

Euler equation (EE) error developed in Judd (1992) is used to evaluate the accuracy. The

accuracy tests check how far the Euler equations for both storage and acreage decisions deviate

zero when using the approximated solution functions.

How to conduct an accuracy test for GSSA. Using simulation to generate points in the state

space for the test. Total supplies for three crops in 2013/14 are used as the starting point. Con-

struct another set of crop yields {yiτ}τ=1,...,T test , i = 1, 2, 3 from the joint distribution of three crop

yields, with the length of period T test = 10, 000. Using the solved rules for storage and expected

prices to simulate a time series of total supply of all crops for 10,000 periods.

EE error is developed from the Euler equation for storage

TSiτ − siτ (TS1τ , TS2τ , TS3τ ) = Di(δEt(piτ+1)− SCiτ ) (39)

The left hand side of (39) is today's consumption given today's storage decision. The right

hand side is what today's consumption would be if the representative storer using storage rule in

the next period which determines Et(piτ+1). The EE error shows how much the storer deviates

from the optimization rule. The Euler Equation error is then de�ned in a unit free way as shown
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in (40).

EEsiτ = 1− Di(δEt(piτ+1)− SCiτ )
TSiτ − siτ (TS1τ , TS2τ , TS3τ )

(40)

The subscript s means EE for storage Euler equation, i denotes a speci�c crop. log10 of EE is

used to show the error. To interpret the error, EE = −1 means the consumer makes a 1 dollar

mistake in consumption when spending 10 dollars. EE = −4 means the consumer makes a 1 dollar

mistake when spending 10000 dollars.

We can get EE errors for acreage decision Euler equations in the same way. From the �rst order

condition of the farmer's maximization problem, we have

xiτ =
1

γi
(δEt(piτ+1yiτ+1)− E0(pi1yi1) + λ) + x̄i −

1

γi
λτ (41)

Where λτ is the Lagrangian multiplier with land constraint in time τ . Because the expected

revenues are approximated, for any given total supply, the Euler equation holds. De�ne the unit

free Euler equation error for acreage planted as:

EExiτ = 1− 1

xiτ
(

1

γ1

(δEt(piτ+1yiτ+1)− E0(pi1yi1) + λ) + x̄i −
1

γi
λτ ) (42)

The subscript x means EE for acreage Euler equation. The log10|EEH | shows the mistake made

by making the acreage decision. -1 means the farmer makes 1 acre mistake by planting 10 acres.

-4 means the representative pro�t optimizing farmer makes 1 acre mistake when planting 10,000

acres.

Results

For each period τ , compute EEsiτ , EExiτ , i = 1, 2, 3. We evaluate the quality of a candidate

solution by computing the maximum and mean of the EEsiτ and EExiτ for τ ∈ [1, T test]. The

computational time reported below is for an AMD 2.2 GHz server PC running Windows 2008R2

server and Matlab R2014a. Parallel computing with 12 workers are used.

The GSSA with 700 time series and 3rd order polynomial basis functions takes 944 seconds,

however the accuracy is the worst among the three for all EE errors. The maximum EE errors for
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for corn and soybean are above -2. Because of the low approximation quality, we don't show the EE

errors for each of the other Euler equation in details. By changing the basis functions to Chebyshev

polynomials or by increasing the basis functions to 4th order polynomials, the maximum Euler

equation error across all equations doesn't fall below -2. Thus GSSA is not suitable for solving

multi-crop storage model.

Table 1-2 below show both the maximum errors and mean errors across 10,000 periods for sparse

grid with storage approximation and sparse grid with expected price approximation. To read the

data from the tables below, −2 means the maximum or mean error is 10−2.

Sparse grid with storage rule approximation and Smolyak grid to 3rd order takes 236 seconds.

Except for soybean storage, all maximum Euler equation error lies below -3 which mean a maximum

1 dollar error for a 1000 dollars consumption. The maximum error in soybean is 10−2.95 ≈ 0.0011

which means a maximum 1.1 dollars mistake in 1000 dollars consumption. The worst approxima-

tion in soybean rule is because the storage rule is more nonlinear around low soybean supplies.

This can be seen from Figure 1.1, Figure 2.1 and Figure 2.2.

The same approach with 4th level approximation takes 912 seconds and the absolute maximum

EE across drops by 0.5 from the 3rd level approximation. The maximum mean value of EE errors

across all Euler equations is −4.57.

The computational time for sparse grid with expected price approximation is 3747 seconds. The

EE errors for storage Euler equation are smaller than those using method 2. However, the EE

errors for acreage decisions are greater than that using method 2. Maximum absolute EE error

across all Euler equations is -3.28.

Among all three approaches, Smolyak method with storage rule approximation is the most

e�cient way to solve multi-crop storage model with convenience yield. Expected price function

approximation takes more time but performs better than storage rule approximation with the same

number of grid points. This �ndings are the same as Gouel (2013).

24



Table 1: Euler equation errors for sparse grid with storage rule approximation
EE EEsc EEss EEso EExc EExs EExo

3rd max -2.95 -2.88 -3.21 -3.77 -3.70 -3.01
Level mean -4.26 -3.82 -4.20 -4.99 -4.72 -4.57
4th max -3.70 -3.46 -3.64 -4.66 -4.54 -4.07
Level mean -4.99 -4.85 -4.95 -5.60 -5.69 -5.01

Table 2: Euler equation errors for sparse grid with expected price approximation
EE EEsc EEss EEss EExc EExs EExo
max -4.02 -4.04 -3.93 -3.84 -3.82 -3.28
mean -5.21 -5.22 -4.81 -5.21 -5.20 -4.43

Simulation Results

We use the solution functions obtained from algorithm 2 with 4th level approximation to simulate

the model. Various functions of total supply of corn are shown by Figure 1.1-1.4. In each graph, the

dotted lines, solid lines and dashed lines represent functions given low supplies, medium supplies

and high supplies of soybean and other crops respectively. Low supplies are de�ned as TSs = 2.7

billion bushels, TSo = 70 million tons. Medium supplies are de�ned as TSs = 3.454 billion bushels,

TSo = 85.59 million tons. High supplies are de�ned as TSs = 4 billion bushels, TSo = 110 million

tons. The medium supplies for all three crops are set to be the real total supplies in 2013/14

marketing year.

Figure 1.1 shows that stock level rises with higher supply level. For higher supplies of both

soybean and other crops, the whole storage curve shifts to the right. To see why, when total

supplies for soybean and other crops rise in this period, the acreage decisions for other two crops

except corn decrease. As land constraint binds, corn acreage must increase and the corn storage

decreases at each total supply level because there is less incentive to store as much when expected

supply increases.

Both the expected price and the acreage level of corn fall with higher corn supply given �xed

soybean and other crops levels as described by Figure 1.2 and 1.3 respectively. The reason is that

for a certain total corn supply, higher supplies of soybean and other crops result in lower acreage

level for these two. Corn acreage rises in the binding constraint in Figure 1.3 and thus expected

corn price decreases as shown by �gure 1.2.
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The current corn price decreases with an increasing rate as corn supply rises for �xed values of

soybean and other crop total supplies as shown in Figure 1.4. Di�erent total supplies of the other

two crops shift little of the current prices.

We only show the storage curve for soybean and all the others as their own total supply rises

given low medium and high corn and other supplies in Figures 2.1 and Figure 2.2 using dotted

lines, solid lines and dashed lines. Low corn supply is de�ned as TSc = 10 billion bushels, medium

corn supply is de�ned as TSc = 14.781 billion bushels, high corn supply is de�ned as TSo = 18

billion bushels. Soybean storage curve looks similar to corn's. Considering the scales of stock

levels for soybean and corn in Figure 2.1 and 1.1, the soybean storage function is more nonlinear.

The storage curve for all other crops is almost linear in the graph, and the curve does not respond

much to di�erent supply levels of the other two crops. The more linearity in the other stock curve

leads to higher accuracy in storage rule approximation.

Shocks of corn yield.

In this part, we show how decisions and prices respond to a high yield, mean yield and low yield

in the second period. High corn yield, medium corn yield and low corn yield are de�ned as 170

bu/acre, 157 bu/acre and 120 bu/acre. As shown in Table 3, the yield shock only happens in the

second period in all three scenarios. Corn yield stays at 157 bu/acre for the other two periods.

Yields of soybean and all others are at the mean levels for all periods. Mean yield values of soybean

all other crops are 43.8 bushels per acre and 1.18 tons per acre.

Figures 3.1-3.4 describe how storage decisions, expected prices, harvested acres and current

prices of corn change with yield shock respectively. Total supply in 2nd period rises with an

increase in crop yield. Thus the stock level is highest among the three cases as shown in Figure

3.1. Figure 3.2 says that the expected prices rise and fall in the opposite direction with total

supply. With bumper crop, expected corn prices fall. As shown by Figure 3.3 and 3.4, the acreage

decisions and current prices perform in the same pattern as expected prices. Changes of corn

acreage are driven by expected revenue. When corn yield is low, the expected corn price will be
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*bbu: billion bushel, mt: million ton.
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Table 3: Corn Yield Shock in 2nd Period
Period 1 2 3
mean 157 157 157
low 157 120 157
high 157 170 157

higher, and the acreage harvested will be higher.

To see the impacts of yield shock for decisions and prices of crops other than corn, we use

soybean as an example and the results are shown by Figure 4.1-4.4. Figure 4.1 depicts that all else

being equal, if the corn supply is relatively higher, soybean stock levels will be lower. To explain

it, considering an increase in corn supply due to the yield shock, the expected revenue decreases

and hence the corn acreage for next year decreases. The decrease in the corn acreage will lead to

an increase in soybean acreage (Figure 4.3), implying a fall in expected prices of soybean (Figure

4.2) and the level of stocks for both coen and soybean (Figure 4.1). The total supplies of soybean

are the same in 2nd period with the same soybean yields and acreage levels. Thus current prices

of soybean are only determined by the storage decisions. As we can see from Figure 4.4, higher

carryover stock leads to higher current soybean prices while lower carryover stock result in lower

current soybean price.

Conclusions

Smolyak collocation methods perform better than GSSA considering computational time and ac-

curacy in solving multi-crop storage model.

The most promising approach for solving an extended model with more than three crops is

Smolyak method with storage rule approximation. At the same time, there are also several ap-

proaches to improve the current method as described by Judd et. al (2013). For example, using

more grid points to those dimensions that are most important for overall quality of approximation.

In our case, this means we may put more grid points to descretize soybean total supply space in

method 2.
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Another condition for making the second method more favorable is the assumption of conve-

nience yield without which there will be stock out conditions and a kink in the storage function.

The di�culties of approximating a function with a kink will bring the accuracy for all the second

algorithm down to an unacceptable level. In this case, the 3rd algorithm that approximates the

smoother expected price functions could be used instead.
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