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Abstract 

 Recently, a number of pilot and demonstration scale advanced biofuel facilities 

have been established, but commercial scale facilities are yet to become operational. To 

make informed decisions about this emerging industry, potential biorefinery 

entrepreneurs and regional policy makers need analysis of how farmers are willing to 

adopt these feedstocks and how will they switch land into bio-feedstock use to ensure a 

stable feedstock supply. This paper develops an agent-based simulation model to study 

farmers’ switchgrass adoption decisions over time within a specific agricultural region.  

We explicitly examine the effect of various contractual terms across market scenarios and 

consider the potential for contractual hold-ups. Results show that a contract with a 

payment of $175/acre plus $50/ton could make both biorefinery and farmer profitable 

during the simulation period. It is also shown that alfalfa, but not annual crops will be the 

mostly affected crop (replaced) by the introduction of switchgrass in the region of North 

Michigan. 
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Farmers’ Switchgrass Adoption Decision under Single-procurer Market 

-- An Agent Based Simulation Approach 

1. Introduction 

The Energy Independence and Security Act of 2007
1

 (EISA), expansion of the 

Renewable Fuel Standard (RFS), mandates the production of 36 billion gallons of 

biofuels per year by 2022 including 21 billion gallons of cellulosic and advanced biofuels 

(increased from 2 billion gallon per year in the year of 2007), in addition to 15 billion 

gallons of conventional (corn) ethanol (refer to figure 1, panel a). Studies of biomass 

potential by the USDOE indicated that over a billion tons of biomass feedstocks may be 

available in the US (Perlack et al. 2005). Furthermore, Epplin.,et al (2007) estimates that 

a billion tons of cellulosic biomass, which might be converted to 90 gallons of biofuel 

under standard conversion technology, could be used to produce ethanol comprising 

approximately 26% of the BTUs of the 2005 U.S. net crude oil imports, alleviating the 

U.S’s dependence on foreign oil (Demirbas, 2009).  

Recently, a number of pilot and demonstration scale advanced biofuel facilities 

(e.g. API in Michigan, Genera in Tennessee and Buckeye Technologies in Florida) have 

been established, but commercial scale facilities are yet to become operational. To make 

informed decisions about this emerging critical industry, potential biorefinery 

entrepreneurs and regional policy makers need significant analysis and information on 

how farmers are willing to adopt these feedstocks and how will they switch land into 

energy crop production to ensure a stable feedstock supply. The commonly cited reasons 

that impede farmers’ switchgrass adoption includes price uncertainty due to the lack of a 

mature market, high conversion and sunk costs, long-term commitment, and low yields in 

                                                           
1
 See http://www1.eere.energy.gov/femp/regulations/eisa.html 

http://www1.eere.energy.gov/femp/regulations/eisa.html


the establishment years. Researchers computed that for switchgrass, the fraction of 

farmers willing to adopt switchgrass varies between  30~70% in different regions and 

even within regions (Jensen et al., 2007; Wen et al., 2009; Rossi & Hinrichs, 2011). 

Hipple & Duffy (2002) also observed a significant “wait-and-see” behavior among 

farmers that further warrants a detailed investigation of the effect of adaptive behavior on 

swichgrass adoption. 

Many of the impediments mentioned above could be alleviated by establishing 

contracts between farmers and biorefinery (Alexander et al., 2012). However, when only 

a single outlet (a single biorefinery) exists in the market, farmers have also expressed 

their concern about being held-up by the biorefinery (Jensen et al., 2007).  In reality, 

contracts are commonly used in existing biorefineries to procure switchgrass from 

farmers (e.g. Genera biorefinery
2
) and regions are limited to a single biorefinery in the 

market.  

In this paper, we develop an agent-based modeling approach to simulate the decisions of 

farmers to convert land to switchgrass use where a single biorefinery contracts with 

farmers to procure switchgrass.  Agent-based simulation is a bottom-up modeling 

approach that allows the researchers to specify different attributes and behavioral 

decision rules for different agents or actors in the model (i.e. capture agent heterogeneity) 

and then study the interaction of these agents and the consequences of the interactions 

(Heckbert, Baynes & Reeson, 2010). Our model, therefore, captures the effect of 

interactions between farmers (i.e. social learning processes) and the interaction between 

farmers and biorefinery (i.e. contractual issues) on farmer decision-making.  Furthermore, 

                                                           
2
 Genera is a partner of UT Bioenergy Initiative and it currently uses a contract of per acre payment plus 

per ton payment to procure switchgrass (year1: $450/acre; year2: $250/acre + $40/ton; year3: 
$150/acre+$50/ton) 



our approach 1) builds a baseline cropping scenario without switchgrass to validate the 

model using historical crop planting data, 2) calculates a feasible switchgrass contract 

price range that is profitable for both farmers and biorefinery, and 3) attempts to quantify 

the qualitative contract hold-up framework proposed by Klein (1996) and apply it to the 

context of a biorefinery-farmer biofeedstock procurement model. 

The paper is structured as follows: section 2 briefly reviews other current land use 

studies and contracting issues and their findings; section 3 builds the agent based model 

to be implemented under the single-procurer contract scenario; section 4 presents the data, 

model initialization and base-line scenario validation; then section 5 discusses the 

simulation results and finally, section 6 concludes. 

2. Previous Studies 

2.1 Agricultural Land Use and Energy Crop Adoption Decisions 

 Previous studies of agricultural land use have simulated energy cropy adoption 

decisions. Egbendewe-Mondzozo et al. (2011) simulated biomass supply in southwestern 

Michigan using detailed production data and showed that the minimum biomass:corn 

price ratio ranged from 0.15 to 0.18, dependent on the type of energy crops. Larson, 

English & Lamber (2007) simulated biomass-crop land use change in Tennessee’s 

biomass initiative region over different market scenarios (e.g. spot market tonnage 

contract, per acre contract). Their results showed that spot market prices were not high 

enough to induce biomass production. Song, Zhao & Swinton (2011) adopted a stochastic 

process model showing that uncertainty and sunk costs influence farmers’ option value of 

converting land to switchgrass use. Each of the above studies used optimization-based 

models rooted in economic theory.  A central feature of these types of models is that they 



model decision-making in a representative farm.  This approach has the drawback that it 

underrepresents farm-level heterogeneity and differences in farmer-level behavior.  For 

example, farms may be quite heterogeneous in terms of their agronomic conditions and 

farmer propensity/ability to learn.  The simplification of using a “representative” farm 

ignores the learning process and is also likely to overestimate or underestimate the real 

occurrence if aggregated to the region level. 

 Agricultural land use studies have also used agent-based modeling methods to 

simulated energy crop adoption decisions.  In particular, this approach has been used 

where there is a high-degree heterogeneity among farmers and the environment, and high 

frequency of interaction among farmers and between farmers and environment (Shastri et 

al, 2011; Kelly & Evans, 2011). Kelly & Evans (2011) modeled the impact of farmers’ 

preferences on their land use pattern in Indiana Creek Township. Scheffran, et al. (2007) 

modeled the spatial dynamics of biofuel crop growth in Illinois by emphasizing the effect 

of the introduction of biomass on the price evolution for both regular crops and 

biofeedstocks. Although these studies emphasize things that are representative in the farm 

level heterogeneity and farmers’ learning (self-learning and learning from others), the 

most common feature of agent-based land use models are rule-based but ignores the 

various resource constraints that may limit farmers’ ability to change land use pattern.  

On the contrary, mathematical programming based multi-agent system (MP-MAS) 

(Schreinemachers, Berger & Aune, 2007) uses optimization methods in agent based 

models and thus incorporates farm planning feasibility into the model. However, most 

MP-MAS models are quite stylized and the learning process is  rigid and ignores the 

social learning process (using self-learning instead). It should also be noted that most 



agent-based energy crop adoption simulations assume a spot market. For the very few 

studies that use contracts (e.g. Alexander, et al., 2013), it is also assumed a mature 

market exists and contract hold-up issues is not taken into consideration, which is shown 

to be one of the very important considerations by farmers. 

2.2. Risk in Farming and Contract Hold-up 

Farmers face several different types of risk, including production risk (e.g. yield risk, 

input price risk), marketing risk (e.g. output price risk) and financial risk (e.g. high 

leverage). Contracts are commonly used to mitigate some of these risks by imposing 

different compensation mechanisms (Alexander et al, 2012) and contracting periods 

(Jensen et al., 2007; Rossi & Hinrichs, 2011).  

When using contracts, farmers also face additional types of risk associated with 

contractual holdup by procurers.  Here, farmer payments might be delayed or be canceled 

due to various reasons (e.g. quality satisfaction, procurer bankruptcy, procurer market 

power, high spot market price) (Klein, 1996; Gow, Streeter & Swinnen, 2000). The hold-

up problem is especially eminent for perennial switchgrass when there is only one buyer 

(i.e. biorefinery) in the market.  In this case, land devoted to perennial switchgrass may 

be classified as a relation-specific asset and provides an opportunity for an opportunistic 

procurer to extract further rents from the farmer through the threat of contractual holdup 

(Gow, Streeter & Swinnen, 2000; Hipple & Duffy, 2002).  

3. The Agent Based Model 

3.1 Agent Based Model Decision Tree 

In agent-based models, the model behavior is guided by a defined decision-making 

procedure for each agent.  Figure 1 presents a flowchart of the decision-making process 



for each category of agent (i.e. farmers and biorefineries).  The solid lines in Figure 1 

mean that the former action will influence the next action in the current year (e.g. the 

switchgrass acres under contract and biorefinery’s expected ethanol price in this year will 

influence its hold up decision in the current year), while the dashed lines in the figure 

mean that the former action will influence the next action in the next year (e.g. if the 

contract is held up this year by biorefinery at the end of this year, farmers will have less 

cash available for the next year when he begins to do the farm planning). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Agent Based Model Decision Tree 
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traditional crops and switchgrass) and ethanol price.  Along with the biorefinery past 

hold-up behavior (illustrated in more detail below), the latter will be used to determine 

the farmers’ expectations of the probability that the biorefinery will hold-up the contract.  

Based on the expectations, farmers will carry out a linear programming optimization that 

incorporates risk and decide the land allocation for each year. Then biorefinery will be 

informed how many acres have been allocated to switchgrass use. It will utilize this 

information and the expectation on the ethanol price to decide whether to hold-up a 

contract with the farmer or not. Finally, based on biorefinery’s hold-up decision, 

biorefinery’s and farmer’s profit is realized and the available resources are updated for 

farmers. The model repeats this behavior for the simulation period (1 year = 1 time step). 

3.2 The Contract 

We consider a contract that is composed of a fixed per acre payment (A) and 

quantity/yield bonus ( ). The contract is assumed to be static over the 10-year simulation 

period.  While previous studies have solely used per ton or per acre contract 

compensation schemes (Larson et al, 2007; Zhou, 2013), we choose a per acre payment 

coupled with per ton payment contract.  This is done several reasons, including: (1) a 

pure acre contract will transfer all the price and yield risk to biorefinery (Larson, English 

& Lamber, 2007); (2) a pure tonnage contract exposes farmers to high yield risk and 

since farmers typically will have a high level of perceived yield uncertainty during the 

first several years and will receive no income in the first year, adoption rates during that 

period will be reduced (Jensen et al., 2007; Alexander, 2012). 

3.3 The Biorefinery’s Decision Model 



Define  (   )and  ( ̃  ) as the expected utility biorefinery could get by holding 

up or not holding up the contract at stage 0. The values of  ( ̃  ) and  (   ) are set 

according to: 

 ( ̃  )          ̃  (      )            ∑ (        )
 

 

 (   )                (      )            ∑ (        )
 

         

Here      is the total amount of switchgrass procured,      is the expected price 

of ethanol at year   stage 0, which also conforms to Bayesian learning process similar 

with that defined in the last section for farmers, rate is the conversion rate from 

switchgrass to ethanol and   is the percent payment if contract hold-up occurs. For 

simplicity, we just hold       (a sensitivity analysis is done with this parameter later) 

during the simulation.       is the expected potential future profit loss of the currently 

contracted land for contract hold up. As this county is defined as only one depot of a 

biorefinery that procures from 10 counties, the fixed cost of operating the biorefinery is 

not included. Instead, the fixed cost is converted to the per gallon cost included in c taken 

from Haque & Epplin (2010). 

The utility of holding up a contract for the biorefinery will always be higher than 

not holding up contract if the expected future profit loss (     ) is 0. However, due to 

various reasons such as reputation damage (Klein, 1996),      will most commonly 

deviate from 0 under most circumstances. It is difficult to quantify the whole effect of 

future loss because it’s difficult to forecast the potential loss of lands that are currently 

not in switchgrass use. As a substitute, it is reasonable to predict a coarse expectation of 



the profit loss due to loss of lands that are currently in switchgrass land use. Therefore, 

      is quantified as: 

            ((     )   ̅       (    ̅)) 

   is the loss coefficient in the range of [0, 1] and is constant through the simulation, CA 

is the current acres of switchgrass under contract and  ̅  is the average yield of 

switchgrass of the year. 

3.4 The Farmers’ Decision Model 

3.4.1 The Optimization Model 

Farmers are assumed to be partially rational individuals who maximize their expected 

utilities at the beginning of each year based on their current knowledge of crop yield, 

price and risk. In addition, the farmers’ decision problem is always inter-temporal and the 

analysis should consider for farmers’ time preference. 

While the Mean-Variance formation of farm risk programming is prevalent 

(Hazell, P. B., & Norton, R. D.,1986; Larson, English & Lamber, 2007), it is impractical 

here as the non-convex quadratic programming library in Java
3
and many other agent-

based modelling toolkits.  Thus a multi-period linear programming using MOTAD 

(Minimization of Total Absolute Deviation) model is used as defined by Hazell (1971)
4
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3
 We use Repast Simphony toolkit to build the agent based model, where Java is the language for the 

toolkit 
4
 For a detailed description of MOTAD model, please refer to Hazell (1971). 
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 Here k denotes the number of historical periods we use to calculate historical 

gross margin deviations from the mean, s denotes the number of different soil types. In 

this application, the period’s numbers are set to 5 (k = 1, 2, 3, 4 and 5).      is the kth 

historical gross margin for crop i on the most commonly seen soil type in the region 

(productivity index equal to 10),    
  is the absolute value of negative deviation of the kth 

gross margin occurrence from the mean gross margin. 

The sum of    
   together with the second constraint, approximate the variance 

component of the utility function described in equation (1). For simplicity and tractability, 

it is also assumed here that farmer’s subjective standard deviation of gross margin 

distribution calculated by the historical years doesn’t change for traditional crops. The 

only thing that changes is the expected gross margin for each crop. 

Finally, the realized gross margin for traditional crop i (that is, excluding 

switchgrass) in time t could be expressed as: 

      (           )              

 PI is the soil productivity index. Here we assume production fixed and variable 

costs could be decomposed into yield-related variable cost (       ) and acre-related 



variable cost (      ). We also assume that crop yield changes linearly with regard to soil 

productivity index: 

           (     
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 For traditional crops, we assume that       are continuous, but for switchgrass, we 

assume that       has only two states: high yield and low yield year. Notice that 10 is the 

dominant PI in the region.    is a coefficient representing the crop yield’s sensitivity to PI. 

Therefore, if we know      , we could also know: 

      (            ) (     
     

  
)         

3.4.2 The Learning Model 

We assume that the gross margin of traditional crops (corn, soybean, wheat and alfalfa) 

for farmer i follows a normal distribution: 

      (    )                

 (   )               
    

    is assumed known to farmers based on the historical data used to calculate the 

historical deviations in the second constraint of the optimization problem, while   is 

unknown and conform to a normal prior distribution    (    ) (Feder & O’Mara, 

1982). At the end of the year, crops realize their true gross margin and farmers will form 

a posterior distribution of  , utilizing the observed gross margin realizations. More 

realistically, if we assume that the observed gross margin from other farmers may subject 

to some error,  , which comes from some farm-specific attributes or communication 

information distortion and that    (    
 )  which is known to all farmers (Ma & Shi, 

2011), then the posterior could be expressed as follows (   is the realized own gross 



margin, while  ̅  is the mean of observed others’, and n is the number of observations 

from other farmers): 
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 Here Me = 1 if the farmer grew the crop in the last year and equals to 0 if not. 

 As no official record of historical switchgrass yield and gross margin exists, this 

paper considers two switchgrass yield scenarios according to Kells & Swinton (2014), 

one high yield (4.7 tons/acre) and one low yield (4.1 tons/acre) which are randomly 

assigned to different simulation years. In addition, a farmers’ expected gross margin is 

also determined by their expectation of whether the biorefinery will hold up the contract. 

Farmers’ learning on switchgrass yield and contract hold up follows a Bayesian 

procedure for binomial variables. Let’s denote the probability of the occurrence of high 

yield by  . Set the prior of Bayesian method to       (   ). The posterior becomes: 

              
          

Here    denotes the number of observations and    the number of realizations of the 

defined occurrence. Then the new mean and variance of   are updated as: 

 ( )  
  

     
 

   ( )  
     

(     ) (       )
 

Define farmers expected biorefinery’s contract hold-up probability is Epro. It could be 

expressed as: 

                         



       is calculated from biorefinery hold-up history using Bayesian updating on 

binomial variables defined above.        is the expected hold-up possibility in this year 

calculated by farmers following rational expectations.    and    are the weights assigned 

to each part (       ), representing farmers’ perceived reliability of past experience 

and current calculation.        could be calculated using  ( ̃  ) and  (   ) function 

defined in biorefinery’s learning section as: 

         (  ( ̃  )     (   )) 

   (      ((    ) ̅       (          ̅))    (   )(          ̅))

    (   
(      )(          ̅)

    ̅      
  ) 

Given that the ethanol price follows a normal distribution and farmers will update their 

beliefs on the mean and variance of ethanol price, the value of        is straightforward 

to calculate. 

3.4.3 Additional Farmer Decision Constraints 

In order to prevent the occurrence of unrealistic land allocation results, additional crop 

rational constraints (e.g. maximum proportion of a crop to total crop acres) are imposed 

on the farm optimization problem following Hazell & Norton (2006) and Anderson 

(2010). In their model, Kelley & Evans (2011) also include farmers’ preference for trees 

and agricultural crops, which plays a similar role in the objective function with crop 

rational constraints. 

 The rational constraints imposed here include the maximum proportion of 

perennial grasses/annual crops that could be grown on the unused land and the proportion 

of each annual crop acres (corn, soybean and wheat) to the total annual crop acres. These 



constraints are chosen based on historical data and/or the calibration process. That is, the 

set of proportions are chosen so that the simulated crop acre patterns best fit for the 

observed historical pattern
5
. As perennial alfalfa grass is the major crop in this region 

historically, it is reasonable to argue that people have different preference for perennial 

crops and annual crops thus a method of setting limits conditional on the proportion of 

perennial grass acres is proposed. Table 1 below shows the calibrated crop rational 

constraint parameters combination. 

Table 1 Crop Maximum Limit Imposed for Farmers 

Crop Type Parameters Conditions Value Value Source Limit  

Perennial Alfalfa/AL** 
AtT*>=0.2 0.2 Calibration Max 

AtT*<0.2 0.4 Calibration Max 

Annual Corn/TAC*** N/A 0.44 Historical Data Max 

Annual Soybean/TAC*** N/A 0.4 Historical Data Max 

Annual Wheat/TAC*** N/A 0.3 Historical Data Max 

Total Annual Annual/AL** 
AtT*>=0.2 0.9 Calibration Max 

AtT*<0.2 0.7 Calibration Max 

* AtT: proportion of alfalfa to total farmland 

** TAC: Total Annual Cropland 

*** AL: Available Cropland (Excluding those freed by perennial grass) 

 

Furthermore, once the production period for perennial grass ends, these lands can be 

allocated to either annual and perennial crops. That is, the maximum proportion values 

for row 1 and row 5 become: 

           (      )     

           
     

           (      )     

           
 

3.4.4 Treatment of Switchgrass Adoption as Technology Diffusion 

As a relatively new crop to be introduced in the area, switchgrass is analogous to a new 

technology, whose diffusion will empirically follow an “S” shape path such that the 

                                                           
5
 As switchgrass is historically not presented, it is not included in the calibration process. As a result, no 

switchgrass maximum proportion is included in the first several years. Switchgrass proportion is set 
manually based on current  literatures after the tick when switchgrass is included in the model. 



diffusion rate is slow at the beginning as only bold farmers will be willing to try, but then 

accelerates due to social learning and finally becomes stable (Berger, 2001; Alexander et 

al., 2013).  

Therefore, following the method used in Alexander et al. (2013), we first define 

each farmers’ “willingness to consider” planting switchgrass. Farms who are willing to 

consider the adoption will include switchgrass in the optimization model and 

subsequently update their beliefs proposed above. Farmers who are not willing to 

consider switchgrass at the initialization phase will look at their neighbor’s adoption 

decision. If the percentage of neighbors who have already adopted switchgrass exceeds 

the farmers’ threshold, then the farmer becomes willing to consider planting switchgrass. 

This approach is also consistent with the use of “social” and “factual” farmers in Shastri 

et al. (2011). Farmers’ thresholds are assigned randomly following a normal distribution. 

4. Data, Initialization and Baseline validation 

4.1 Study Area 

The study area for this study is Alpena County, located at North Michigan Lower 

Peninsula (also the north tier of Michigan).  The region was chosen as a biorefinery has 

recently located to this area. The major crops in this county are Alfalfa, Corn, Winter 

Wheat and Soybeans. According to NASS Census Statistics 2007
6
, there are 573 farms 

with an average size of 150 acres/farm, covering 85,947 acres of land in total (with 

46,450 acres harvested cropland, an approximate of 59577 acres planted cropland). The 

harvested area for Hay, Corn, Winter Wheat and Soybeans are 25,265 acres (with Alfalfa 

Hay for 17,858 acres, taking a share of 71%), 7810 acres, 3695 acres and 2802 acres, 

                                                           
6
 See http://www.nass.usda.gov/Data_and_Statistics/ for detailed information and census statistics 

http://www.nass.usda.gov/Data_and_Statistics/


respectively
7
. The major crops mentioned account for up to 85% (it ranges from 87% ~ 

92% during 2008~2012) of the total harvested cropland. 

4.2 Farm endowment data and land ownership data 

We use source data sources in this model.  The first data source is USDA NASS 

agricultural census data 2007, which contains the average farm characteristics across 

Alpena County (e.g. farm size, crop composition, net farm income and the mapping from 

farm size to many other variables). We also utilized NASS survey data for the historical 

average crop price and yield of the county. 

The second data source is 2008 farmland ownership data recorded in spatial 

explicit Common Land Units (CLU)
8
 provided by the Farm Market Id Company.. There 

are a total of 4808 CLUs in Alpena County recorded by the company, among which 3481 

CLUs have a farmer name (property right) in record, and the percentage of acres covered 

by CLUs with farmers’ name reaches 62% of all the farmlands. This data source also 

includes 178 farmers’ records (30% of the total farms in the county) on farmstead 

location and gross farm income for the previous year. 

4.3 Simulation of Future Traditional Crop Price and Yields 

Crop price is adopted from the USDA prediction for the next decade. The method 

to simulate future crop yield is adopted from Richardson, Klose & Gray (2000), which 

uses a method of simulating multivariate Empirical (MVE) probability distribution. The 

multivariate empirical probability distribution is drawn from historical years (1998~2012) 

                                                           
7
 This data only exist for census years, available every fifth year (e.g. 2002, 2007), the CDL data is quite 

inaccurate in Alfalfa Acres after comparing it with the census data 2007. 
8
 According to USDA FSA, A Common Land Unit (CLU) is the smallest unit of land that has a permanent, 

contiguous boundary, a common land cover and land management, a common owner and a common 
producer in agricultural land associated with USDA farm programs. The CLUs in Alpena County cover 
almost all the farm lands in the area. 



for the four traditional crops. During the simulation, the inter-temporal and intra-temporal 

relationships among the four crop yields are captured by inter and intra temporal matrix 

derived from historical data. Figure 2, Figure 3 and Figure 4 show the final real and 

simulated yields and prices. 

 

Figure 2 Real (2002~2012) and Simulated (2013~2022) Crop Yield (Bushel/Acre) 

 

Figure 3 Real (2002~2012) and Simulated (2013~2022) Crop Price ($/Bushel) 

 

Figure 4 EIA Predicted Ethanol Price during Simulation Period 
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4.4 Model Initialization 

The model is firstly initialized with 273 farmers with attributes for total farm acres, 

cropland acres (spatial explicit) and net cash income of the last year (used as cash to buy 

inputs) according to the CLU data. Census data is used later for those farmers who are 

not in the CLU dataset (additiona 300 farmers)
9
. According to the census data, the total 

farmland in the region is 59,577 acres. Table 1 summarizes some of the census and 

generated total farm characters. 

Table 2 Total Farm Acres and Farm Cropland Acres 

Farm Category by Size Total Farm Acres Farm Cropland Acres 

Farm Size 

(Acres) 

Farm 

Number 

Census 

(Acres) 

Generated 

(Acres) 

Census 

(Acres) 

Generated 

(Acres) 

1 ~ 9 16 82 86 21 21 

10 ~ 49 195 5593 5648 2044 2041 

50 ~ 69 43 2515 2511 1240 1244 

70 ~ 99 96 7663 7667 3132 3130 

100 ~ 139 63 7418 7415 3739 3736 

140 ~ 179 44 6946 6931 2977 2980 

180 ~ 219 28 5454 5453 2951 2952 

220 ~ 259 10 2339 2328 1933 1935 

260 ~ 499 41 14314 14301 10628 10629 

500 ~ 999 29 20982 20968 18870 18870 

1000 ~ 1999 8 12641 12639 12042 12039 

Sum 573 85947 85947 59577 59577 

Farm size is also chosen as the reference for farm income for those farmers not 

recorded by CLU data under the assumption that the larger the farm is, the higher income 

the income it generates.  Generated net income distribution for 2007 is shown in Table 3. 
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 Farmers not in CLU dataset occupy less than 40% of the total cropland. 



Table 3 2007 Farm Income Distribution 

Farm Size 

(Acres) 

Generated Data Distribution 

Min ($) Mean ($) Max ($) 

1 ~ 9 3549 5532 7266 

10 ~ 49 7611 9803 12109 

50 ~ 69 12390 14593 16615 

70 ~ 99 16711 19066 21221 

100 ~ 139 21522 23399 25658 

140 ~ 179 25807 28158 30279 

180 ~ 219 30692 32797 34769 

220 ~ 259 35142 37387 38936 

260 ~ 499 39480 41580 43954 

500 ~ 999 44346 46239 48142 

1000 ~ 1999 44092 45776 47835 

NASS census  

(No stratification) 
3020  48550 

4.5 Baseline Validation 

 As historical data from 2007 to 2012 regarding the total corn, soybeans and wheat 

planted acres
10

 is available, the simulation is set to start from 2007 using the calibrated 

parameters and the simulation results are compared to the real data to see whether the 

simulation produces a similar crop acres pattern to the real world empirical data. Note 

that during this period, switchgrass is not included in the model as there is historically no 

switchgrass grown in this region.   
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 Alfalfa acres are not reported in the yearly statistic book, and CDL data that comes from satellite map 
has a low reliability of distinguishing between grass crops and non-crop pasture. Therefore, historical 
alfalfa acre is not included in the validation process, but the simulated amount will be included in the later 
ABM simulation experiment. Another reason for not including alfalfa acres into the validation is that 
alfalfa is a perennial grass thus we do not know how many acres have been already allocated to alfalfa 
and how many acres is about to turn out of alfalfa use in one year. 
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Figure 5 Annual Crops Real Data and Simulated Data 2007 to 2012 

As Figure 5 illustrates, simulated land use results are similar historical data. 

Although the simulated acres during the first several years are somewhat lower or higher 

than the historical data for different crops, they start to converge to each other during the 

last few years. It is reasonable because at the beginning of the simulation, the crop acres 

for each crop are zero. For a perennial crop like alfalfa this is not true.  However, after 

several years’ of learning and planting in the simulation, the starting point effect 

gradually disappears. Since the overall trends and the last few years’ simulated acres are 

similar with the historical data, the calibrated model is validated. 

5. Simulation Results 

The simulation is run such that during the simulation period 2007 to 2012, only 

traditional crops exist to give the model a time period to evolve. Then after the year of 

2013, switchgrass is introduced and the simulation runs for a 10-year period. 

5.1 Model Parameters 
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Before running the simulation, the parameters shown in the above sections are 

parameterized (see Table 4 below).  From previous literature (Jensen et al., 2007, 

Alexander et al, 2012), one of the most serious problems for setting up a biorefinery is 

that farmers are afraid that the refinery will not pay them on a timely basis due to 

monopsony power.  We, therefore, set farmers’ perceived probability of contractual hold-

up by biorefineries (  ( )) according to a uniform distribution from 0.5 to 0.7. At the 

same time, as a new crop, the perceived yield by farmers at first is low, and therefore, a 

low range (0.3 to 0.5) is randomly assigned to each farmer on the possibility of high 

switchgrass yield in the following year. In addition, as the switchgrass upper limit is set 

arbitrarily, a sensitivity analysis regarding this parameter will be conducted at the end of 

this section. In addition, as farmers are often assumed to be not as rational as the 

biorefinery when calculate the biorefinery’s hold-up possibility, farmers give more 

weight on past biorefinery hold-up fractions rather than their own calculation. 

Table 4 Key Model Parameters 

Whose Paramete

r 

Meaning Value 

Farmer 

sw Switchgrass upper limit 0.3 

  ( ) Initial hold-up perceived probability U(0.5, 0.7) 

  (   ) Initial perceived probability of high yield  U(0.3, 0.5) 

   High yield of switchgrass 4.7 

   Low yield of switchgrass 4.1 

   Weight on past experience 0.7 

   Weight on calculated probability 0.3 

Refinery 

A Fixed payment per acre 
100, 

125,150,175,200 

  Payment per ton 50 

  Percent paid if hold up contract 0.8 

w1 Expected future loss coefficient is holding up 0.2 

As illustrated by Zhou (2013), the contract price for switchgrass in Tennessee 

needs to go up to $475/acre under acreage contract or $77/ton under tonnage contract. In 



contrast, we choose a fixed payment per acre plus payment per ton contract, which is the 

most preferable contract by Michigan Farmers
11

. It is also the current contract form 

provided by the University of Tennessee Biofuel Initiative. However, when choosing the 

value for per acre fixed payment and per ton payment, we do take the payment suggested 

by Zhou (2013) into consideration given the average yield of around 4.5 tons/acre. By 

choosing a different per acre payment, it is possible to get a feasible estimation of the 

payment schedule under which both the biorefinery and farmers would be profitable 

facing biorefinery’s possible hold up potential. For the expected future loss coefficient if 

the biorefinery holds up the contract, the value is set to be low as it is the only outlet for 

farmers to sell their switchgrass. 

5.2 Results and Discussion 

5.2.1 Comparison of Contracts with Different Per Acre Payment 

For biorefineries, there is a trade-off. On the one hand, they want more land dedicated 

into switchgrass such that they could procure more switchgrass every year; on the other 

hand, if they want more switchgrass, they have to pay more to farmers, which might 

result in unprofitable results even though the amount of land devoted to switchgrass is 

high. Therefore, the biorefinery should balance these two factors to determine the price 

level. Here we hold the per-ton payment constant ($50/ton) and test different per acre 

payments to compare potential different contract configuration results. In Table 5 below, 

we provide the end of simulation period crop acres and biorefinery net present values to 

compare the results of different contract configurations. 
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 We Conducted a focus group talking during May 2013 and got this results, which is not published yet 



Table 5 Comparison of Different Contract Configurations’ Results 

Per 

Acre 

Payment 

($) 

End 

Simulation 

Bio-NPV 

(million $) 

End of Simulation Crop Acres 

Switchgrass 

(Acres) 

Corn 

(Acres) 

Soybeans 

(Acres) 

Wheat 

(Acres) 

Alfalfa 

(Acres) 

100 -0.024 1941 8202 9185 5971 25682 

125 0.725 11341 8760 10489 6905 19981 

150 1.605 22992 8728 10214 6484 9638 

175 2.062 32577 7600 8961 5674 3307 

200 0.563 38343 7018 7855 4615 314 

 

 The results are the average values for each variable at each tick for 10 simulation 

runs. We do this mainly to mitigate the random effect induced by the random assignment 

of risk aversion coefficient to farmers and random assignment of switchgrass yield to 

different simulation years. 

According to the table above, the biorefinery’s net present value (NPV) reaches 

the highest point ($2.062 million) when the per-acre payment is $175/acre plus the per 

ton payment of $50/ton. At this payment level, 32,577 acres of switchgrass are also 

grown at the end of the simulation.  When payment is below this amount, although the 

profit is high for each purchased ton of switchgrass from biorefinery’s point of view, 

there will be fewer farmers growing switchgrass as they might think it not profitable. 

Therefore, we will use this contract ($175/acre + $50/ton) in the latter analysis. 

Compared to the $472/acre payment calculated by Zhou (2013) and $250/acre + $40/ton 

that is currently used in the University of Tennessee Biofuel Initiative, the amount we got 

is lower assuming an average yield of 4.5 tons/acre ($375/acre). That could be attributed 

to the lower yield level of traditional crops and in Michigan compared with that in 

Tennessee, which overweigh the effect of perceived hold-up probability. 



 

Figure 6 Percentage of Contract Hold-up Occurrence to Total Simulated Years 

The percentage of contract hold-up occurrence to the total simulated years 

increases as the per acre payment increases while holding the per ton payment constant. 

Especially for per acre payments of $175/ton and $200/ton, the refinery will hold up the 

contract at each simulation year. This is because $175/acre and $200/acre payment is so 

high such that even though farmers are aware that the biorefinery will hold up contract 

for sure, they will still be profitable to grow switchgrass. In this case, the “real” contract 

price becomes the hold-up contract price, given the assumption that the percent payment 

if the contract is held up stays constant. The difference between the “nominal” and “real” 

contract price could be regarded as farmers’ risk premium of being held up. But as shown 

above, the $175/acre plus $50/ton contract is most profitable for biorefinery seeing from 

the net present value, we choose this contract to conduct additional analysis below. 

5.2.2 Contract with $175 Per-Acre Plus $50 Per-Ton Payment 

The two figures below show (1) the traditional crops and switchgrass grown, (2) 

switchgrass grower number and (3) biorefinery’s realized capacity at each simulation 

year for under the contract with $175 per acre plus $50 per ton payment. 
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Figure 7 Corn, Soybeans and Wheat Acre Changes during Simulation Run 

 

Figure 8 Alfalfa and Switchgrass Acre Changes during Simulation Run 

 

Figure 9 Switchgrass Adopters in the Simulation 
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Figure 10 Realized Switchgrass Capacity in each Simulation Year 

The results show that the total adopter number and switchgrass acres follow S-

shape curves, which is consistent with many diffusion studies. The traditional crop that is 

mostly affected by switchgrass production is alfalfa. This is because after 2012, the gross 

margin for alfalfa follows a decreasing trend
12

 while that for annual crops is increasing 

due to the increasing yield and mildly increasing crop price. The results show that if 

switchgrass is to be introduced in this county, the competition between land use in 

switchgrass and food crops may not be high. As the agronomic condition here is similar 

to those in other North Michigan Counties, the results here might also be generalized to 

the range of North Michigan. 

Though under this configuration, the payment is high if not holding up the 

contract and thus biorefinery is expected to have a high probability of contract hold up, 

farmers could still be profitable under the assumption that the percent payment if contract 

is held up is held constant at 0.8 during the simulation. With a lower payment that is 

equivalent to the payment if contract is not held up, biorefinery has a lower propensity to 

hold up contract, but since it is shown in literatures (Hipple & Duffy, 2002; Jensen et al, 

2017) that farmers’ initial perceived contract hold-up possibility is high, farmers will 
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 The data is simulated data, the trend of which follows the historical alfalfa yield trend – a decreasing 
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need to have some time to adjust their perceived contract hold-up probability downward. 

Therefore, less land will be converted to switchgrass during at the early stage. 

5.2.3 Sensitivity Analysis 

Switchgrass Upper Limit 

The sensitivity analysis is conducted for switchgrass upper limit (the max percent that 

switchgrass could occupy the unused land) as it is imposed arbitrarily in this model and 

are not subject to any calibration process as no switchgrass is grown in the county 

historically. The sensitivity analysis results for the limit that take the value of 0.1, 0.3, 0.5 

and 1.0 when holding the $175/acre + $50/ton contract are presented in Table 6: 

Table 6 Sensitivity Analysis for Switchgrass Limit under the Specified Contract 

Switchgrass 

Limit 

(Percent) 

End 

Simulation 

Bio-NPV 

(million $) 

End of Simulation Crop Acres 

Switchgrass 

(Acres) 

Corn 

(Acres) 

Soybeans 

(Acres) 

Wheat 

(Acres) 

Alfalfa 

(Acres) 

0.1 0.856 25265 8374 9851 6274 8007 

0.3 2.062 32577 7600 8961 5674 3307 

0.5 1.900 30512 8283 9728 6129 3520 

1 1.900 29766 8441 9965 6299 3694 

 From Table 6, it is shown that when switchgrass upper limit equals to 0.3, 0.5 and 

0.9, the results (net present value and switchgrass acres) are similar. But for an upper 

limit of 0.1, the end of simulation switchgrass acres and biorefinery’s end of simulation 

net present value are much smaller. This is because under the current payment scheme, 

switchgrass gross margin and annual crop gross margin stays with a relative stable ratio 

(remember that annual crop is more sensitive to soil productivity index. Therefore, they 

are more profitable in good soils). This makes farmers implicitly limit their switchgrass 

to around 0.3 percent of the new cropland, even though we explicitly loosen the 

constraint to higher than 0.3. 



Percent Payment if Holding Up the Contract 

 In this part, we hold the contract price ($175/acre + $50/ton) and switchgrass upper limit 

(0.3), varying the level of percent payment is contract is held up from 0.6 to 0.9 and study 

the sensitivity of model result to this parameter. Table 7 shows the result 

Table 7 Sensitivity Analysis for Percent Payment if Contract is Held Up 

Percent 

Payment 

End 

Simulation 

Bio-NPV 

(million $) 

End of Simulation Crop Acres 

Switchgrass 

(Acres) 

Corn 

(Acres) 

Soybeans 

(Acres) 

Wheat 

(Acres) 

Alfalfa 

(Acres) 

0.6 0.642 5117 8992 9786 6415 25006 

0.8 2.062 32577 7600 8961 5674 3307 

0.9 -3.376 39967 6230 7211 4431 232 

The sensitivity analysis shows that the result is quite sensitive to the assumption 

of percent payment is contract is held up. It is reasonable as the less paid by biorefinery, 

the less expected gross margin is for farmers to grow switchgrass. Thus, a future work 

should try to make the biorefinery choose percent payment at each time period, without 

setting is manually. But we believe the current approach does shed light upon the 

interaction effects between biorefinery and farmers. 

6. Conclusions 

In this paper, we studied farmers’ switchgrass adoption decisions over time within the 

context of a single biorefinery using a contract to procure switchgrass from farmers and 

with the potential for contractual hold up by the refinery. The results show that the 

introduction of switchgrass has the potential to alter the county’s crop patterns to a large 

extent. Under proper contract compensation mechanisms, both farmers and biorefinery 

could be profitable. We found that a proper contract payment could be $175/acre plus 

$50/ton payment.  



 It is also shown that alfalfa, but not annual crops will be the mostly affected crop 

(replaced) by the introduction of switchgrass in the region of North Michigan. This shows 

that the introduction of switchgrass might have more obvious influence on livestock 

enterprise but not on annual crop enterprise. As we don’t include livestock in the model 

because it is a minor business in this county region, we couldn’t generalize the results to 

southern part of Michigan where livestock rising is a considerable part of the economy 

there.  

One of the drawbacks of the paper is that we hold the percent payment if contract 

is held up constant. In reality, biorefinery may adjust this number up and down based on 

their expected profit. But Modelling the optimal choice of payment percentage will future 

complicate the model and the lower the payment percent is, the higher future loss might 

be, though they might not change in a proportional way. So we believe that the current 

framework does could capture a great portion of contract hold-up essence. The 

consideration of that issue is left for future researches. Another interesting future research 

point is, when there are multiple outlets for switchgrass, will the procures tend to hold-up 

contract as frequently as under the single procure case and will the switchgrass acres 

increases compared to the current scenario. 
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