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Abstract

Recently, a number of pilot and demonstration scale advanced biofuel facilities
have been established, but commercial scale facilities are yet to become operational. To
make informed decisions about this emerging industry, potential biorefinery
entrepreneurs and regional policy makers need analysis of how farmers are willing to
adopt these feedstocks and how will they switch land into bio-feedstock use to ensure a
stable feedstock supply. This paper develops an agent-based simulation model to study
farmers’ switchgrass adoption decisions over time within a specific agricultural region.
We explicitly examine the effect of various contractual terms across market scenarios and
consider the potential for contractual hold-ups. Results show that a contract with a
payment of $175/acre plus $50/ton could make both biorefinery and farmer profitable
during the simulation period. It is also shown that alfalfa, but not annual crops will be the
mostly affected crop (replaced) by the introduction of switchgrass in the region of North

Michigan.
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Farmers’ Switchgrass Adoption Decision under Single-procurer Market
-- An Agent Based Simulation Approach
1. Introduction

The Energy Independence and Security Act of 2007 ! (EISA), expansion of the
Renewable Fuel Standard (RFS), mandates the production of 36 billion gallons of
biofuels per year by 2022 including 21 billion gallons of cellulosic and advanced biofuels
(increased from 2 billion gallon per year in the year of 2007), in addition to 15 billion
gallons of conventional (corn) ethanol (refer to figure 1, panel a). Studies of biomass
potential by the USDOE indicated that over a billion tons of biomass feedstocks may be
available in the US (Perlack et al. 2005). Furthermore, Epplin.,et al (2007) estimates that
a billion tons of cellulosic biomass, which might be converted to 90 gallons of biofuel
under standard conversion technology, could be used to produce ethanol comprising
approximately 26% of the BTUs of the 2005 U.S. net crude oil imports, alleviating the
U.S’s dependence on foreign oil (Demirbas, 2009).

Recently, a number of pilot and demonstration scale advanced biofuel facilities
(e.g. APl in Michigan, Genera in Tennessee and Buckeye Technologies in Florida) have
been established, but commercial scale facilities are yet to become operational. To make
informed decisions about this emerging critical industry, potential biorefinery
entrepreneurs and regional policy makers need significant analysis and information on
how farmers are willing to adopt these feedstocks and how will they switch land into
energy crop production to ensure a stable feedstock supply. The commonly cited reasons
that impede farmers’ switchgrass adoption includes price uncertainty due to the lack of a

mature market, high conversion and sunk costs, long-term commitment, and low yields in

! See http://www1.eere.energy.gov/femp/regulations/eisa.html
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the establishment years. Researchers computed that for switchgrass, the fraction of
farmers willing to adopt switchgrass varies between 30~70% in different regions and
even within regions (Jensen et al., 2007; Wen et al., 2009; Rossi & Hinrichs, 2011).
Hipple & Duffy (2002) also observed a significant “wait-and-see” behavior among
farmers that further warrants a detailed investigation of the effect of adaptive behavior on
swichgrass adoption.

Many of the impediments mentioned above could be alleviated by establishing
contracts between farmers and biorefinery (Alexander et al., 2012). However, when only
a single outlet (a single biorefinery) exists in the market, farmers have also expressed
their concern about being held-up by the biorefinery (Jensen et al., 2007). In reality,
contracts are commonly used in existing biorefineries to procure switchgrass from
farmers (e.g. Genera biorefinery?) and regions are limited to a single biorefinery in the
market.

In this paper, we develop an agent-based modeling approach to simulate the decisions of
farmers to convert land to switchgrass use where a single biorefinery contracts with
farmers to procure switchgrass. Agent-based simulation is a bottom-up modeling
approach that allows the researchers to specify different attributes and behavioral
decision rules for different agents or actors in the model (i.e. capture agent heterogeneity)
and then study the interaction of these agents and the consequences of the interactions
(Heckbert, Baynes & Reeson, 2010). Our model, therefore, captures the effect of
interactions between farmers (i.e. social learning processes) and the interaction between

farmers and biorefinery (i.e. contractual issues) on farmer decision-making. Furthermore,

? Genera is a partner of UT Bioenergy Initiative and it currently uses a contract of per acre payment plus
per ton payment to procure switchgrass (yearl: $450/acre; year2: $250/acre + $40/ton; year3:
$150/acre+550/ton)



our approach 1) builds a baseline cropping scenario without switchgrass to validate the
model using historical crop planting data, 2) calculates a feasible switchgrass contract
price range that is profitable for both farmers and biorefinery, and 3) attempts to quantify
the qualitative contract hold-up framework proposed by Klein (1996) and apply it to the
context of a biorefinery-farmer biofeedstock procurement model.

The paper is structured as follows: section 2 briefly reviews other current land use
studies and contracting issues and their findings; section 3 builds the agent based model
to be implemented under the single-procurer contract scenario; section 4 presents the data,
model initialization and base-line scenario validation; then section 5 discusses the
simulation results and finally, section 6 concludes.

2. Previous Studies
2.1 Agricultural Land Use and Energy Crop Adoption Decisions

Previous studies of agricultural land use have simulated energy cropy adoption
decisions. Egbendewe-Mondzozo et al. (2011) simulated biomass supply in southwestern
Michigan using detailed production data and showed that the minimum biomass:corn
price ratio ranged from 0.15 to 0.18, dependent on the type of energy crops. Larson,
English & Lamber (2007) simulated biomass-crop land use change in Tennessee’s
biomass initiative region over different market scenarios (e.g. spot market tonnage
contract, per acre contract). Their results showed that spot market prices were not high
enough to induce biomass production. Song, Zhao & Swinton (2011) adopted a stochastic
process model showing that uncertainty and sunk costs influence farmers’ option value of
converting land to switchgrass use. Each of the above studies used optimization-based

models rooted in economic theory. A central feature of these types of models is that they



model decision-making in a representative farm. This approach has the drawback that it
underrepresents farm-level heterogeneity and differences in farmer-level behavior. For
example, farms may be quite heterogeneous in terms of their agronomic conditions and
farmer propensity/ability to learn. The simplification of using a “representative” farm
ignores the learning process and is also likely to overestimate or underestimate the real
occurrence if aggregated to the region level.

Agricultural land use studies have also used agent-based modeling methods to
simulated energy crop adoption decisions. In particular, this approach has been used
where there is a high-degree heterogeneity among farmers and the environment, and high
frequency of interaction among farmers and between farmers and environment (Shastri et
al, 2011; Kelly & Evans, 2011). Kelly & Evans (2011) modeled the impact of farmers’
preferences on their land use pattern in Indiana Creek Township. Scheffran, et al. (2007)
modeled the spatial dynamics of biofuel crop growth in Illinois by emphasizing the effect
of the introduction of biomass on the price evolution for both regular crops and
biofeedstocks. Although these studies emphasize things that are representative in the farm
level heterogeneity and farmers’ learning (self-learning and learning from others), the
most common feature of agent-based land use models are rule-based but ignores the
various resource constraints that may limit farmers’ ability to change land use pattern.
On the contrary, mathematical programming based multi-agent system (MP-MAS)
(Schreinemachers, Berger & Aune, 2007) uses optimization methods in agent based
models and thus incorporates farm planning feasibility into the model. However, most
MP-MAS models are quite stylized and the learning process is rigid and ignores the

social learning process (using self-learning instead). It should also be noted that most



agent-based energy crop adoption simulations assume a spot market. For the very few
studies that use contracts (e.g. Alexander, et al., 2013), it is also assumed a mature
market exists and contract hold-up issues is not taken into consideration, which is shown
to be one of the very important considerations by farmers.

2.2. Risk in Farming and Contract Hold-up

Farmers face several different types of risk, including production risk (e.g. yield risk,
input price risk), marketing risk (e.g. output price risk) and financial risk (e.g. high
leverage). Contracts are commonly used to mitigate some of these risks by imposing
different compensation mechanisms (Alexander et al, 2012) and contracting periods
(Jensen et al., 2007; Rossi & Hinrichs, 2011).

When using contracts, farmers also face additional types of risk associated with
contractual holdup by procurers. Here, farmer payments might be delayed or be canceled
due to various reasons (e.g. quality satisfaction, procurer bankruptcy, procurer market
power, high spot market price) (Klein, 1996; Gow, Streeter & Swinnen, 2000). The hold-
up problem is especially eminent for perennial switchgrass when there is only one buyer
(i.e. biorefinery) in the market. In this case, land devoted to perennial switchgrass may
be classified as a relation-specific asset and provides an opportunity for an opportunistic
procurer to extract further rents from the farmer through the threat of contractual holdup
(Gow, Streeter & Swinnen, 2000; Hipple & Duffy, 2002).

3. The Agent Based Model
3.1 Agent Based Model Decision Tree
In agent-based models, the model behavior is guided by a defined decision-making

procedure for each agent. Figure 1 presents a flowchart of the decision-making process



for each category of agent (i.e. farmers and biorefineries). The solid lines in Figure 1

mean that the former action will influence the next action in the current year (e.g. the

switchgrass acres under contract and biorefinery’s expected ethanol price in this year will

influence its hold up decision in the current year), while the dashed lines in the figure

mean that the former action will influence the next action in the next year (e.g. if the

contract is held up this year by biorefinery at the end of this year, farmers will have less

cash available for the next year when he begins to do the farm planning).
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Figure 1 Agent Based Model Decision Tree

At the beginning of each year, farmers will get to know the compensation

mechanism in the contract and form their expectations on crop gross margins (both



traditional crops and switchgrass) and ethanol price. Along with the biorefinery past
hold-up behavior (illustrated in more detail below), the latter will be used to determine
the farmers’ expectations of the probability that the biorefinery will hold-up the contract.
Based on the expectations, farmers will carry out a linear programming optimization that
incorporates risk and decide the land allocation for each year. Then biorefinery will be
informed how many acres have been allocated to switchgrass use. It will utilize this
information and the expectation on the ethanol price to decide whether to hold-up a
contract with the farmer or not. Finally, based on biorefinery’s hold-up decision,
biorefinery’s and farmer’s profit is realized and the available resources are updated for
farmers. The model repeats this behavior for the simulation period (1 year = 1 time step).

3.2 The Contract

We consider a contract that is composed of a fixed per acre payment (A) and
quantity/yield bonus (@). The contract is assumed to be static over the 10-year simulation
period. While previous studies have solely used per ton or per acre contract
compensation schemes (Larson et al, 2007; Zhou, 2013), we choose a per acre payment
coupled with per ton payment contract. This is done several reasons, including: (1) a
pure acre contract will transfer all the price and yield risk to biorefinery (Larson, English
& Lamber, 2007); (2) a pure tonnage contract exposes farmers to high yield risk and
since farmers typically will have a high level of perceived yield uncertainty during the
first several years and will receive no income in the first year, adoption rates during that
period will be reduced (Jensen et al., 2007; Alexander, 2012).

3.3 The Biorefinery’s Decision Model



Define g(h, t)and q(fz, t) as the expected utility biorefinery could get by holding

up or not holding up the contract at stage 0. The values of q(h,t) and q(h,t) are set

according to:

a(h,t) = Eprofity = (EPe; = €) * youe < 7ate = Y (A+ BVipy0)
L

q(h,t) = Eprofit, — Disy = (EP,; — C) * Ysu * rate — 2 (A + @Yip;) * @ — EDisy
i

Here yq, is the total amount of switchgrass procured, EP,; is the expected price
of ethanol at year t stage 0, which also conforms to Bayesian learning process similar
with that defined in the last section for farmers, rate is the conversion rate from
switchgrass to ethanol and « is the percent payment if contract hold-up occurs. For
simplicity, we just hold @ = 0.8 (a sensitivity analysis is done with this parameter later)
during the simulation. EDisy is the expected potential future profit loss of the currently
contracted land for contract hold up. As this county is defined as only one depot of a
biorefinery that procures from 10 counties, the fixed cost of operating the biorefinery is
not included. Instead, the fixed cost is converted to the per gallon cost included in c taken
from Haque & Epplin (2010).

The utility of holding up a contract for the biorefinery will always be higher than
not holding up contract if the expected future profit loss (EDisy) is 0. However, due to
various reasons such as reputation damage (Klein, 1996), EDisywill most commonly
deviate from O under most circumstances. It is difficult to quantify the whole effect of
future loss because it’s difficult to forecast the potential loss of lands that are currently

not in switchgrass use. As a substitute, it is reasonable to predict a coarse expectation of



the profit loss due to loss of lands that are currently in switchgrass land use. Therefore,
EDisy is quantified as:

EDisy = w, * CAx ((EP, — ¢) * Y xrate — (A + 0Y))
w; is the loss coefficient in the range of [0, 1] and is constant through the simulation, CA
is the current acres of switchgrass under contract and Y is the average yield of
switchgrass of the year.
3.4 The Farmers’ Decision Model
3.4.1 The Optimization Model
Farmers are assumed to be partially rational individuals who maximize their expected
utilities at the beginning of each year based on their current knowledge of crop yield,
price and risk. In addition, the farmers’ decision problem is always inter-temporal and the
analysis should consider for farmers’ time preference.

While the Mean-Variance formation of farm risk programming is prevalent
(Hazell, P. B., & Norton, R. D.,1986; Larson, English & Lamber, 2007), it is impractical
here as the non-convex quadratic programming library in Java®and many other agent-
based modelling toolkits. Thus a multi-period linear programming using MOTAD

(Minimization of Total Absolute Deviation) model is used as defined by Hazell (1971)*:
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* We use Repast Simphony toolkit to build the agent based model, where Java is the language for the
toolkit
* For a detailed description of MOTAD model, please refer to Hazell (1971).
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Here k denotes the number of historical periods we use to calculate historical
gross margin deviations from the mean, s denotes the number of different soil types. In
this application, the period’s numbers are set to 5 (k = 1, 2, 3, 4 and 5). M, is the kth
historical gross margin for crop i on the most commonly seen soil type in the region
(productivity index equal to 10), dy; is the absolute value of negative deviation of the kth
gross margin occurrence from the mean gross margin.

The sum of dj,, together with the second constraint, approximate the variance
component of the utility function described in equation (1). For simplicity and tractability,
it is also assumed here that farmer’s subjective standard deviation of gross margin
distribution calculated by the historical years doesn’t change for traditional crops. The
only thing that changes is the expected gross margin for each crop.

Finally, the realized gross margin for traditional crop i (that is, excluding
switchgrass) in time t could be expressed as:

Mipie = (Pit = Cyyiera) Yirie — Coacre
Pl is the soil productivity index. Here we assume production fixed and variable

costs could be decomposed into yield-related variable cost (C,yie;q) and acre-related



variable cost (C,4.re)- We also assume that crop yield changes linearly with regard to soil

productivity index:

PI — 10

Yirre = Yizoe (1 +a; * 10 )
For traditional crops, we assume that Y;;,, are continuous, but for switchgrass, we
assume that Y;,,; has only two states: high yield and low yield year. Notice that 10 is the

dominant PI in the region. «; is a coefficient representing the crop yield’s sensitivity to PI.

Therefore, if we know M;;,., we could also know:

PI —10
Mipie = (Mjy0t + Coacre) (1 + a; * T) — Cacre
3.4.2 The Learning Model
We assume that the gross margin of traditional crops (corn, soybean, wheat and alfalfa)
for farmer i follows a normal distribution:
M;i10~N(u,0%) or Myyo = pt + €
2

E(g) =0, V

Eit =0

a? is assumed known to farmers based on the historical data used to calculate the
historical deviations in the second constraint of the optimization problem, while u is
unknown and conform to a normal prior distribution u~N(m, s?) (Feder & O’Mara,
1982). At the end of the year, crops realize their true gross margin and farmers will form
a posterior distribution of u, utilizing the observed gross margin realizations. More
realistically, if we assume that the observed gross margin from other farmers may subject
to some error, ¢, which comes from some farm-specific attributes or communication

information distortion and that ¢ ~N(0, 02 ), which is known to all farmers (Ma & Shi,

2011), then the posterior could be expressed as follows (y, is the realized own gross



margin, while y, is the mean of observed others’, and n is the number of observations

from other farmers):

L
Vs o2 Yo o2 + Gq% 52 , 1
m' = Y=
T e, = T We,
s2 g2 o2+ a(f, s2 0% 0%+ aqz,

Here Me = 1 if the farmer grew the crop in the last year and equals to O if not.

As no official record of historical switchgrass yield and gross margin exists, this
paper considers two switchgrass yield scenarios according to Kells & Swinton (2014),
one high yield (4.7 tons/acre) and one low vyield (4.1 tons/acre) which are randomly
assigned to different simulation years. In addition, a farmers’ expected gross margin is
also determined by their expectation of whether the biorefinery will hold up the contract.
Farmers® learning on switchgrass yield and contract hold up follows a Bayesian
procedure for binomial variables. Let’s denote the probability of the occurrence of high
yield by t. Set the prior of Bayesian method to t~beta(a, ). The posterior becomes:

a*=a+s;, B'=F+n—s;

Here n; denotes the number of observations and s; the number of realizations of the

defined occurrence. Then the new mean and variance of t are updated as:

*

D) =
-

Var®) = T @ + p A D

Define farmers expected biorefinery’s contract hold-up probability is Epro. It could be
expressed as:

Epro = AiproHis + A,proCal



proHis is calculated from biorefinery hold-up history using Bayesian updating on
binomial variables defined above. proCal is the expected hold-up possibility in this year
calculated by farmers following rational expectations. A; and A, are the weights assigned
to each part (A; + A,= 1), representing farmers’ perceived reliability of past experience
and current calculation. proCal could be calculated using q(fz, t) and q(h, t) function

defined in biorefinery’s learning section as:

proCal = Pr (Eq(ii, t) < Eq(h, t))

= Pr (w1 x CA * ((Pe —co)Y xrate — (4; + theta117)) <CA(1—a)(4; + theta17))

1—a+w,)(4, + theta,Y
=Pro<Pe<( 1) (44 1 )+c)

wy * Y = rate
Given that the ethanol price follows a normal distribution and farmers will update their
beliefs on the mean and variance of ethanol price, the value of proCal is straightforward
to calculate.
3.4.3 Additional Farmer Decision Constraints
In order to prevent the occurrence of unrealistic land allocation results, additional crop
rational constraints (e.g. maximum proportion of a crop to total crop acres) are imposed
on the farm optimization problem following Hazell & Norton (2006) and Anderson
(2010). In their model, Kelley & Evans (2011) also include farmers’ preference for trees
and agricultural crops, which plays a similar role in the objective function with crop
rational constraints.

The rational constraints imposed here include the maximum proportion of
perennial grasses/annual crops that could be grown on the unused land and the proportion

of each annual crop acres (corn, soybean and wheat) to the total annual crop acres. These



constraints are chosen based on historical data and/or the calibration process. That is, the

set of proportions are chosen so that the simulated crop acre patterns best fit for the

observed historical pattern®. As perennial alfalfa grass is the major crop in this region

historically, it is reasonable to argue that people have different preference for perennial

crops and annual crops thus a method of setting limits conditional on the proportion of

perennial grass acres is proposed. Table 1 below shows the calibrated crop rational

constraint parameters combination.

Table 1 Crop Maximum Limit Imposed for Farmers

Crop Type Parameters Conditions | Value | Value Source Limit
. AtT*>=0.2 0.2 Calibration Max
**

Perennial | Alfalfa/AL AtT*<0.2 0.4 Calibration Max
Annual Corn/TAC*** N/A 0.44 | Historical Data Max
Annual Soybean/TAC*** N/A 0.4 Historical Data Max
Annual Wheat/TAC*** N/A 0.3 Historical Data Max

AtT*>=0.2 0.9 Calibration Max
**
Total Annual | Annual/AL AtT*<0.2 0.7 Calibration Max

* AtT: proportion of alfalfa to total farmland
** TAC: Total Annual Cropland
*** AL: Available Cropland (Excluding those freed by perennial grass)

Furthermore, once the production period for perennial grass ends, these lands can be

allocated to either annual and perennial crops. That is, the maximum proportion values

for row 1 and row 5 become:

alfaOut + 0.2(or 0.4) * TAC
alfaOut + TAC

alfaOut + 0.7(or 0.9) * TAC
alfaOut + TAC

3.4.4 Treatment of Switchgrass Adoption as Technology Diffusion
As a relatively new crop to be introduced in the area, switchgrass is analogous to a new

technology, whose diffusion will empirically follow an “S” shape path such that the

> As switchgrass is historically not presented, it is not included in the calibration process. As a result, no
switchgrass maximum proportion is included in the first several years. Switchgrass proportion is set
manually based on current literatures after the tick when switchgrass is included in the model.



diffusion rate is slow at the beginning as only bold farmers will be willing to try, but then
accelerates due to social learning and finally becomes stable (Berger, 2001; Alexander et
al., 2013).

Therefore, following the method used in Alexander et al. (2013), we first define
each farmers’ “willingness to consider” planting switchgrass. Farms who are willing to
consider the adoption will include switchgrass in the optimization model and
subsequently update their beliefs proposed above. Farmers who are not willing to
consider switchgrass at the initialization phase will look at their neighbor’s adoption
decision. If the percentage of neighbors who have already adopted switchgrass exceeds
the farmers’ threshold, then the farmer becomes willing to consider planting switchgrass.
This approach is also consistent with the use of “social” and “factual” farmers in Shastri
et al. (2011). Farmers’ thresholds are assigned randomly following a normal distribution.
4. Data, Initialization and Baseline validation
4.1 Study Area

The study area for this study is Alpena County, located at North Michigan Lower
Peninsula (also the north tier of Michigan). The region was chosen as a biorefinery has
recently located to this area. The major crops in this county are Alfalfa, Corn, Winter
Wheat and Soybeans. According to NASS Census Statistics 2007°, there are 573 farms
with an average size of 150 acres/farm, covering 85,947 acres of land in total (with
46,450 acres harvested cropland, an approximate of 59577 acres planted cropland). The
harvested area for Hay, Corn, Winter Wheat and Soybeans are 25,265 acres (with Alfalfa

Hay for 17,858 acres, taking a share of 71%), 7810 acres, 3695 acres and 2802 acres,

® See http://www.nass.usda.gov/Data and Statistics/ for detailed information and census statistics
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respectively’. The major crops mentioned account for up to 85% (it ranges from 87% ~
92% during 2008~2012) of the total harvested cropland.
4.2 Farm endowment data and land ownership data

We use source data sources in this model. The first data source is USDA NASS
agricultural census data 2007, which contains the average farm characteristics across
Alpena County (e.g. farm size, crop composition, net farm income and the mapping from
farm size to many other variables). We also utilized NASS survey data for the historical
average crop price and yield of the county.

The second data source is 2008 farmland ownership data recorded in spatial
explicit Common Land Units (CLU)? provided by the Farm Market Id Company.. There
are a total of 4808 CLUs in Alpena County recorded by the company, among which 3481
CLUs have a farmer name (property right) in record, and the percentage of acres covered
by CLUs with farmers’ name reaches 62% of all the farmlands. This data source also
includes 178 farmers’ records (30% of the total farms in the county) on farmstead
location and gross farm income for the previous year.

4.3 Simulation of Future Traditional Crop Price and Yields

Crop price is adopted from the USDA prediction for the next decade. The method
to simulate future crop yield is adopted from Richardson, Klose & Gray (2000), which
uses a method of simulating multivariate Empirical (MVE) probability distribution. The

multivariate empirical probability distribution is drawn from historical years (1998~2012)

’ This data only exist for census years, available every fifth year (e.g. 2002, 2007), the CDL data is quite
inaccurate in Alfalfa Acres after comparing it with the census data 2007.

8 According to USDA FSA, A Common Land Unit (CLU) is the smallest unit of land that has a permanent,
contiguous boundary, a common land cover and land management, a common owner and a common
producer in agricultural land associated with USDA farm programs. The CLUs in Alpena County cover
almost all the farm lands in the area.



for the four traditional crops. During the simulation, the inter-temporal and intra-temporal
relationships among the four crop yields are captured by inter and intra temporal matrix
derived from historical data. Figure 2, Figure 3 and Figure 4 show the final real and

simulated yields and prices.
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4.4 Model Initialization

The model is firstly initialized with 273 farmers with attributes for total farm acres,

cropland acres (spatial explicit) and net cash income of the last year (used as cash to buy

inputs) according to the CLU data. Census data is used later for those farmers who are

not in the CLU dataset (additiona 300 farmers)®. According to the census data, the total

farmland in the region is 59,577 acres. Table 1 summarizes some of the census and

generated total farm characters.

Table 2 Total Farm Acres and Farm Cropland Acres

Farm Category by Size

Total Farm Acres

Farm Cropland Acres

Farm Size Farm Census Generated Census Generated
(Acres) Number (Acres) (Acres) (Acres) (Acres)
1~9 16 82 86 21 21
10 ~ 49 195 5593 5648 2044 2041
50 ~ 69 43 2515 2511 1240 1244
70 ~99 96 7663 7667 3132 3130
100 ~ 139 63 7418 7415 3739 3736
140 ~ 179 44 6946 6931 2977 2980
180 ~ 219 28 5454 5453 2951 2952
220 ~ 259 10 2339 2328 1933 1935
260 ~ 499 41 14314 14301 10628 10629
500 ~ 999 29 20982 20968 18870 18870
1000 ~ 1999 8 12641 12639 12042 12039
Sum 573 85947 85947 59577 59577

Farm size is also chosen as the reference for farm income for those farmers not

recorded by CLU data under the assumption that the larger the farm is, the higher income

the income it generates. Generated net income distribution for 2007 is shown in Table 3.

° Farmers not in CLU dataset occupy less than 40% of the total cropland.




Table 3 2007 Farm Income Distribution

Farm Size Generated Data Distribution
(Acres) Min () Mean (3) Max (3)
1~9 3549 5532 7266
10 ~ 49 7611 9803 12109
50 ~ 69 12390 14593 16615
70 ~99 16711 19066 21221
100 ~ 139 21522 23399 25658
140 ~ 179 25807 28158 30279
180 ~ 219 30692 32797 34769
220 ~ 259 35142 37387 38936
260 ~ 499 39480 41580 43954
500 ~ 999 44346 46239 48142
1000 ~ 1999 44092 45776 47835
NASS census
(No stratification) 3020 48550

4.5 Baseline Validation

As historical data from 2007 to 2012 regarding the total corn, soybeans and wheat
planted acres™ is available, the simulation is set to start from 2007 using the calibrated
parameters and the simulation results are compared to the real data to see whether the
simulation produces a similar crop acres pattern to the real world empirical data. Note
that during this period, switchgrass is not included in the model as there is historically no

switchgrass grown in this region.
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19 Alfalfa acres are not reported in the yearly statistic book, and CDL data that comes from satellite map
has a low reliability of distinguishing between grass crops and non-crop pasture. Therefore, historical
alfalfa acre is not included in the validation process, but the simulated amount will be included in the later
ABM simulation experiment. Another reason for not including alfalfa acres into the validation is that
alfalfa is a perennial grass thus we do not know how many acres have been already allocated to alfalfa
and how many acres is about to turn out of alfalfa use in one year.
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Figure 5 Annual Crops Real Data and Simulated Data 2007 to 2012

As Figure 5 illustrates, simulated land use results are similar historical data.
Although the simulated acres during the first several years are somewhat lower or higher
than the historical data for different crops, they start to converge to each other during the
last few years. It is reasonable because at the beginning of the simulation, the crop acres
for each crop are zero. For a perennial crop like alfalfa this is not true. However, after
several years’ of learning and planting in the simulation, the starting point effect
gradually disappears. Since the overall trends and the last few years’ simulated acres are
similar with the historical data, the calibrated model is validated.

5. Simulation Results

The simulation is run such that during the simulation period 2007 to 2012, only
traditional crops exist to give the model a time period to evolve. Then after the year of
2013, switchgrass is introduced and the simulation runs for a 10-year period.

5.1 Model Parameters



Before running the simulation, the parameters shown in the above sections are
parameterized (see Table 4 below). From previous literature (Jensen et al., 2007,
Alexander et al, 2012), one of the most serious problems for setting up a biorefinery is
that farmers are afraid that the refinery will not pay them on a timely basis due to
monopsony power. We, therefore, set farmers’ perceived probability of contractual hold-
up by biorefineries (E,(p)) according to a uniform distribution from 0.5 to 0.7. At the
same time, as a new crop, the perceived yield by farmers at first is low, and therefore, a
low range (0.3 to 0.5) is randomly assigned to each farmer on the possibility of high
switchgrass yield in the following year. In addition, as the switchgrass upper limit is set
arbitrarily, a sensitivity analysis regarding this parameter will be conducted at the end of
this section. In addition, as farmers are often assumed to be not as rational as the
biorefinery when calculate the biorefinery’s hold-up possibility, farmers give more
weight on past biorefinery hold-up fractions rather than their own calculation.

Table 4 Key Model Parameters

Whose | Paramete Meaning Value
r
SwW Switchgrass upper limit 0.3
Ey(p) Initial hold-up perceived probability U(0.5, 0.7)
Ey(pyn) Initial perceived probability of high yield U(0.3, 0.5)
Farmer Yy High yield of switchgrass 4.7
Y, Low yield of switchgrass 4.1
Aq Weight on past experience 0.7
A, Weight on calculated probability 0.3
. 100,
A Fixed payment per acre 125 150,175,200
Refinery ) Payment per ton 50
a Percent paid if hold up contract 0.8
wl Expected future loss coefficient is holding up 0.2

As illustrated by Zhou (2013), the contract price for switchgrass in Tennessee

needs to go up to $475/acre under acreage contract or $77/ton under tonnage contract. In




contrast, we choose a fixed payment per acre plus payment per ton contract, which is the
most preferable contract by Michigan Farmers™. It is also the current contract form
provided by the University of Tennessee Biofuel Initiative. However, when choosing the
value for per acre fixed payment and per ton payment, we do take the payment suggested
by Zhou (2013) into consideration given the average yield of around 4.5 tons/acre. By
choosing a different per acre payment, it is possible to get a feasible estimation of the
payment schedule under which both the biorefinery and farmers would be profitable
facing biorefinery’s possible hold up potential. For the expected future loss coefficient if
the biorefinery holds up the contract, the value is set to be low as it is the only outlet for
farmers to sell their switchgrass.

5.2 Results and Discussion

5.2.1 Comparison of Contracts with Different Per Acre Payment

For biorefineries, there is a trade-off. On the one hand, they want more land dedicated
into switchgrass such that they could procure more switchgrass every year; on the other
hand, if they want more switchgrass, they have to pay more to farmers, which might
result in unprofitable results even though the amount of land devoted to switchgrass is
high. Therefore, the biorefinery should balance these two factors to determine the price
level. Here we hold the per-ton payment constant ($50/ton) and test different per acre
payments to compare potential different contract configuration results. In Table 5 below,
we provide the end of simulation period crop acres and biorefinery net present values to

compare the results of different contract configurations.

" We Conducted a focus group talking during May 2013 and got this results, which is not published yet



Table 5 Comparison of Different Contract Configurations’ Results

Per End End of Simulation Crop Acres
Acre Slr_nulatlon Switchgrass | Corn Soybeans | Wheat Alfalfa
Payment | Bio-NPV (Acres) (Acres) (Acres) (Acres) (Acres)

$ (million $)

100 -0.024 1941 8202 9185 5971 25682
125 0.725 11341 8760 10489 6905 19981
150 1.605 22992 8728 10214 6484 9638
175 2.062 32577 7600 8961 5674 3307
200 0.563 38343 7018 7855 4615 314

The results are the average values for each variable at each tick for 10 simulation
runs. We do this mainly to mitigate the random effect induced by the random assignment
of risk aversion coefficient to farmers and random assignment of switchgrass yield to
different simulation years.

According to the table above, the biorefinery’s net present value (NPV) reaches
the highest point ($2.062 million) when the per-acre payment is $175/acre plus the per
ton payment of $50/ton. At this payment level, 32,577 acres of switchgrass are also
grown at the end of the simulation. When payment is below this amount, although the
profit is high for each purchased ton of switchgrass from biorefinery’s point of view,
there will be fewer farmers growing switchgrass as they might think it not profitable.
Therefore, we will use this contract ($175/acre + $50/ton) in the latter analysis.
Compared to the $472/acre payment calculated by Zhou (2013) and $250/acre + $40/ton
that is currently used in the University of Tennessee Biofuel Initiative, the amount we got
is lower assuming an average yield of 4.5 tons/acre ($375/acre). That could be attributed
to the lower yield level of traditional crops and in Michigan compared with that in

Tennessee, which overweigh the effect of perceived hold-up probability.
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Figure 6 Percentage of Contract Hold-up Occurrence to Total Simulated Years
The percentage of contract hold-up occurrence to the total simulated years
increases as the per acre payment increases while holding the per ton payment constant.
Especially for per acre payments of $175/ton and $200/ton, the refinery will hold up the
contract at each simulation year. This is because $175/acre and $200/acre payment is so
high such that even though farmers are aware that the biorefinery will hold up contract
for sure, they will still be profitable to grow switchgrass. In this case, the “real” contract
price becomes the hold-up contract price, given the assumption that the percent payment
if the contract is held up stays constant. The difference between the “nominal” and “real”
contract price could be regarded as farmers’ risk premium of being held up. But as shown
above, the $175/acre plus $50/ton contract is most profitable for biorefinery seeing from
the net present value, we choose this contract to conduct additional analysis below.
5.2.2 Contract with $175 Per-Acre Plus $50 Per-Ton Payment
The two figures below show (1) the traditional crops and switchgrass grown, (2)
switchgrass grower number and (3) biorefinery’s realized capacity at each simulation

year for under the contract with $175 per acre plus $50 per ton payment.
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Figure 7 Corn, Soybeans and Wheat Acre Changes during Simulation Run
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Figure 8 Alfalfa and Switchgrass Acre Changes during Simulation Run
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Figure 9 Switchgrass Adopters in the Simulation
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Figure 10 Realized Switchgrass Capacity in each Simulation Year

The results show that the total adopter number and switchgrass acres follow S-
shape curves, which is consistent with many diffusion studies. The traditional crop that is
mostly affected by switchgrass production is alfalfa. This is because after 2012, the gross
margin for alfalfa follows a decreasing trend? while that for annual crops is increasing
due to the increasing yield and mildly increasing crop price. The results show that if
switchgrass is to be introduced in this county, the competition between land use in
switchgrass and food crops may not be high. As the agronomic condition here is similar
to those in other North Michigan Counties, the results here might also be generalized to
the range of North Michigan.

Though under this configuration, the payment is high if not holding up the
contract and thus biorefinery is expected to have a high probability of contract hold up,
farmers could still be profitable under the assumption that the percent payment if contract
is held up is held constant at 0.8 during the simulation. With a lower payment that is
equivalent to the payment if contract is not held up, biorefinery has a lower propensity to
hold up contract, but since it is shown in literatures (Hipple & Duffy, 2002; Jensen et al,

2017) that farmers’ initial perceived contract hold-up possibility is high, farmers will

2 The data is simulated data, the trend of which follows the historical alfalfa yield trend — a decreasing
tread



need to have some time to adjust their perceived contract hold-up probability downward.
Therefore, less land will be converted to switchgrass during at the early stage.

5.2.3 Sensitivity Analysis

Switchgrass Upper Limit

The sensitivity analysis is conducted for switchgrass upper limit (the max percent that
switchgrass could occupy the unused land) as it is imposed arbitrarily in this model and
are not subject to any calibration process as no switchgrass is grown in the county
historically. The sensitivity analysis results for the limit that take the value of 0.1, 0.3, 0.5
and 1.0 when holding the $175/acre + $50/ton contract are presented in Table 6:

Table 6 Sensitivity Analysis for Switchgrass Limit under the Specified Contract

. End End of Simulation Crop Acres
Switchgrass Simulation

Limit Bio-NPV Switchgrass | Corn | Soybeans | Wheat | Alfalfa
(Percent) (million $) (Acres) (Acres) | (Acres) | (Acres) | (Acres)

0.1 0.856 25265 8374 9851 6274 8007

0.3 2.062 32577 7600 8961 5674 3307

0.5 1.900 30512 8283 9728 6129 3520

1 1.900 29766 8441 9965 6299 3694

From Table 6, it is shown that when switchgrass upper limit equals to 0.3, 0.5 and
0.9, the results (net present value and switchgrass acres) are similar. But for an upper
limit of 0.1, the end of simulation switchgrass acres and biorefinery’s end of simulation
net present value are much smaller. This is because under the current payment scheme,
switchgrass gross margin and annual crop gross margin stays with a relative stable ratio
(remember that annual crop is more sensitive to soil productivity index. Therefore, they
are more profitable in good soils). This makes farmers implicitly limit their switchgrass
to around 0.3 percent of the new cropland, even though we explicitly loosen the

constraint to higher than 0.3.




Percent Payment if Holding Up the Contract
In this part, we hold the contract price ($175/acre + $50/ton) and switchgrass upper limit

(0.3), varying the level of percent payment is contract is held up from 0.6 to 0.9 and study

the sensitivity of model result to this parameter. Table 7 shows the result

Table 7 Sensitivity Analysis for Percent Payment if Contract is Held Up

End End of Simulation Crop Acres
Percent Slr_nulatlon Switchgrass | Corn | Soybeans | Wheat | Alfalfa
Payment Bio-NPV (Acres) (Acres) | (Acres) | (Acres) | (Acres)
(million $)
0.6 0.642 5117 8992 9786 6415 25006
0.8 2.062 32577 7600 8961 5674 3307
0.9 -3.376 39967 6230 7211 4431 232

The sensitivity analysis shows that the result is quite sensitive to the assumption
of percent payment is contract is held up. It is reasonable as the less paid by biorefinery,
the less expected gross margin is for farmers to grow switchgrass. Thus, a future work
should try to make the biorefinery choose percent payment at each time period, without
setting is manually. But we believe the current approach does shed light upon the
interaction effects between biorefinery and farmers.

6. Conclusions

In this paper, we studied farmers’ switchgrass adoption decisions over time within the
context of a single biorefinery using a contract to procure switchgrass from farmers and
with the potential for contractual hold up by the refinery. The results show that the
introduction of switchgrass has the potential to alter the county’s crop patterns to a large
extent. Under proper contract compensation mechanisms, both farmers and biorefinery
could be profitable. We found that a proper contract payment could be $175/acre plus

$50/ton payment.




It is also shown that alfalfa, but not annual crops will be the mostly affected crop
(replaced) by the introduction of switchgrass in the region of North Michigan. This shows
that the introduction of switchgrass might have more obvious influence on livestock
enterprise but not on annual crop enterprise. As we don’t include livestock in the model
because it is a minor business in this county region, we couldn’t generalize the results to
southern part of Michigan where livestock rising is a considerable part of the economy
there.

One of the drawbacks of the paper is that we hold the percent payment if contract
is held up constant. In reality, biorefinery may adjust this number up and down based on
their expected profit. But Modelling the optimal choice of payment percentage will future
complicate the model and the lower the payment percent is, the higher future loss might
be, though they might not change in a proportional way. So we believe that the current
framework does could capture a great portion of contract hold-up essence. The
consideration of that issue is left for future researches. Another interesting future research
point is, when there are multiple outlets for switchgrass, will the procures tend to hold-up
contract as frequently as under the single procure case and will the switchgrass acres

increases compared to the current scenario.
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