The Dynamic Implication of Agricultural Research and Development Investment for Economic Development

Didier Y. Alia

Graduate Student, Department of Agricultural Economics, University of Kentucky

and

Michael R. Reed

Professor, Department of Agricultural Economics, University of Kentucky

Copyright 2014 by Didier Y. Alia and Michael R. Reed. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
The Dynamic Implication of Agricultural Research and Development Investment for Economic Development

Didier Y Alia, PhD Student
Dept. of Agricultural Economics, University of Kentucky, d.alia@uky.edu

and

Michael R Reed, Professor
Dept. of Agricultural Economics, University of Kentucky, mreed@uky.edu

Introduction

- FAO (2009) projects that by 2050, food production needs to increase by 70% to meet the world need.
- Demographic expansion and climate change put increasing pressure on land. Thus, the future increase in production is expected from productivity increase.
- Productivity increase requires increase in investment in research and development accompanied by a widespread adoption of new technologies, farming techniques and crop varieties in most countries.
- But beyond productivity increase, investment in R&D need to be translated into growth to be sustainable and to contribute to global poverty reduction.

Objective

We reexamine the role of agricultural investment in R&D in developing countries with focus on the dynamic impact on economic growth.

Model Specification

- We consider the following ARDL panel equation

\[y_{it} = A_{it} + \mu_i + \sum_{j=1}^{p} a_j y_{i(t-j)} + \sum_{j=0}^{p} \beta_j R_{it-j} + \epsilon_{it} \]

\[y_{it} \] is the log of per capita output; \(R_{it} \) is the agriculture R&D; \(\mu_i \) is country-specific fixed effects in output

\[A_{it} \] measures productivity is models as function R&D as follows \(\Delta A_{it} = y_{it} + \gamma_{it} R_{it} + \delta_{it} \) (2)

- Differentiating (1) and combining with (2) gives

\[\Delta y_{it} = \gamma_{it} + \gamma_{it} R_{it} + \sum_{j=1}^{p} a_j \Delta y_{i(t-j)} + \sum_{j=0}^{p} \beta_j \Delta R_{it-j} + \eta_{it} + \Delta \epsilon_{it} \]

Estimation

- Taking the difference of equation (1) avoid relying on cointegration for the identification of equation (3)

- Use unit roots test to verify that he series are I(0)

- Use GMM-System estimation to address the potential endogeneity of current agriculture R&D investment and the presence of lags of growth in equation (3)

- Estimates and test the significance of the level and growth effect of R&D

Data and Descriptive Statistics

- Data on Agriculture R&D investment are from the Agricultural Science and Technology Indicators (ASTI).
- GDP data are from the World Development Indicators.
- Sample size is 57 countries over 1981-2010

<table>
<thead>
<tr>
<th>Table 1: Descriptive Statistics</th>
<th>Mean Std.Dev.</th>
<th>Min Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP growth</td>
<td>1.7</td>
<td>4.5-19.1</td>
</tr>
<tr>
<td>Ag public R&D Investment ($ Million)</td>
<td>61.6</td>
<td>157.5</td>
</tr>
<tr>
<td>Ag public R&D Investment per ag worker ($)</td>
<td>35.2</td>
<td>62.7</td>
</tr>
</tbody>
</table>

Results

- Log total Ag R&D Investment Log R&D Investment per Ag Worker

<table>
<thead>
<tr>
<th>OLS</th>
<th>GMM-SYS</th>
<th>OLS</th>
<th>GMM-SYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta y_{it-1})</td>
<td>0.209*** 0.211***</td>
<td>0.205*** 0.187***</td>
<td></td>
</tr>
<tr>
<td>(\Delta y_{it-2})</td>
<td>0.049 (0.052) 0.103***</td>
<td>0.049 (0.051) 0.071***</td>
<td></td>
</tr>
<tr>
<td>(\Delta y_{it-3})</td>
<td>0.034 (0.033) 0.143***</td>
<td>0.033 (0.033) 0.113***</td>
<td></td>
</tr>
<tr>
<td>(R_{it})</td>
<td>0.207*** 0.343***</td>
<td>0.050 (0.114) 0.179</td>
<td></td>
</tr>
<tr>
<td>(\Delta R_{it-1})</td>
<td>0.834 1.422</td>
<td>0.048 (0.991) 1.081* 1.218</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.205*** 0.856</td>
<td>(0.967) 0.356 (0.580)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \epsilon_{it})</td>
<td>-0.445 -0.390</td>
<td>-0.173 -0.071</td>
<td></td>
</tr>
<tr>
<td>(\Delta \epsilon_{it-1})</td>
<td>-0.512 -0.552</td>
<td>-0.477 (0.447) -0.118</td>
<td></td>
</tr>
<tr>
<td>(\Delta \epsilon_{it-2})</td>
<td>-0.333 -0.328</td>
<td>-0.172 (0.463) -0.526</td>
<td></td>
</tr>
<tr>
<td>(\Delta \epsilon_{it-3})</td>
<td>-0.473 (0.541) 0.463 (0.526) 5.122*** 4.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \epsilon_{it})</td>
<td>-2.763 -1.117</td>
<td>5.122*** 4.320</td>
<td></td>
</tr>
<tr>
<td>Sargan</td>
<td>0.395*** 0.564***</td>
<td>0.013 (0.243) 0.283</td>
<td></td>
</tr>
</tbody>
</table>

In all regression the dependent variable is the annual growth rate of GDP per capita, \(y_{it} \). \(R_{it} \) stands for the variable in the columns uses as proxy for investment in R&D. Standard errors in parentheses; for OLS they are robust while for GMM-SYS they small sample bias corrected. The number of lags to include is chosen by the minimization of the Akaike Information Criteria. *** p<0.01, ** p<0.05, * p<0.1

Summary and Implications

- Using a simple dynamic model, we find that both the growth and the level effect of agriculture investment in R&D in developing countries are positive.

- Depending on the proxy used either one of these two effect is significant

- The result suggests that intensification of agriculture R&D investment could be an effective approach to increase income and growth in developing countries

Acknowledgments: Didier Alia acknowledges the graduate Scholl and the Department of Agricultural Economics at the University of Kentucky for financial support in his doctoral studies.
