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Abstract

Faster agricultural development requires understanding whether
the inverse land size-yield relationship exists or not. To verify the
presence of this relationship, this study decomposes a yield index into
separate components attributable to (1) efficiency, (2) soil quality, (3)
land size, (4) variable inputs, (5) capital inputs, and (6) outputs. Non-
parametric productivity accounting methods are used to decompose
the inverse land size-yield relationship in a multi-output representa-
tion of the technology without specific assumptions on returns to scale.
A strongly significant inverse (positively convex) land size-yield rela-
tionship is present in the Kenyan data, but vanishes in favor of a linear
inverse relationship when accounting for the effect of outputs’ diver-
sification.
KEYWORDS: inverse land size-yield relationship, productivity de-
composition, efficiency, yield, Kenya.
JEL Codes: D20, C14, C43.

1



1 Introduction

The inverse land size-yield relationship is a long-standing empirical phe-
nomenon since Chayanov observed it for the first time in 1926. Many expla-
nations for the phenomenon have been considered, ranging from incomplete
and imperfect markets, to erroneous measurement of land size, or of effective
soil quality. Recent contributions have focused on verifying the physical mea-
surement of land size and soil quality. On one hand, Carletto et al. (2011)
have observed a strong negative relationship between land size and yield,
when using precise satellite data on land size. On the other hand, Barrett
et al. (2010) have noticed that soil-quality differences, even when measured
through chemical soil-analysis data, only account for one third of the inverse
land size-yield relationship.

Whether there exists a systematic relationship between land size and
yield, potentially has important policy implications for agricultural develop-
ment. If an inverse relationship truly exists, small farmers can be promoted
not only on egalitarian grounds, but also because they are more productive.
On the other hand, if the perceived relationship is an artifact of the methods
used, such policies may have less economic support, and may be tailored to
intensifying agriculture.

This study examines the inverse land size-yield relationship using more
general methods than those used in previous contributions. In particular, the
present study develops a productivity accounting method that does not rely
on specific assumptions on returns to scale, and accommodates variation of
multiple outputs. The method consists in decomposing an index of yield, as a
partial productivity measure, into six components: (1) efficiency differences,
(2) soil-quality component, (3) land-size component, (4) variable-inputs com-
ponent, (5) capital-inputs component, and (6) outputs component.

The empirical application of this study is to a sample of Kenyan household
farmers. The results evidence a strong (positively) convex inverse relation-
ship between different measures of average land product (including yield) and
land size, while excluding the effect of outputs’ diversification. By account-
ing appropriately for the effect in yield terms of outputs’ diversification, the
convex inverse land size-yield relationship disappears in favor of a simple
linear relationship.

The next section discusses the methodology and the following section
presents the data. The fourth section presents the empirical results, and the
last section concludes.
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2 Methodology

The present methodology is grounded on the key observation that yield is a
partial productivity measure. Therefore, once yield is converted into index
form by comparing it to some base-level yield, simple methods rooted in the
theory of index numbers and productivity accounting (Kumar and Russell,
2002) can be used to analyze it exactly as any other partial productivity
measure.

Empirical analyses on the inverse land size-yield relationship frequently
do not recognize that yield is a partial productivity measure. Lacking that
recognition, they cannot accommodate appropriately effects arising from the
contemporaneous variation of multiple outputs and multiple inputs. The
present contribution adapts methods developed by Färe et al. (1994) and
Kumar and Russell (2002) to accommodate variable returns to scale, multiple
outputs1, and a number of production aggregates higher than considered in
previous studies.

2.1 Multi-output technology

Let y ∈ RS
+ denote a vector of outputs and x ∈ RU

+ denote variable inputs,
and let l ∈ R+ denote land area, c ∈ RC

+ denote soil characteristics, and
b ∈ RB

+ denote capital inputs. The multi-output technology set T is defined:

T =
{

(x, l, c,b,y) ∈ RU+1+C+B+S
+ : (x, l, c,b) can be used by households to producey

}
.

T satisfies:
A.1: Convexity: If (x1, l1, c1,b1,y1) ∈ T and (x2, l2, c2,b2,y2) ∈ T , then
∀α ∈ [0, 1] : α(x1, l1, c1,b1,y1) + (1− α)(x2, l2, c2,b2,y2) ∈ T .
A.2: Closeness of the technology set T .
A.3: Boundedness of output set: Z(x, l, c,b) = {y : (x, l, c,b,y) ∈ T},
∀(x, l, c,b) ∈ RU+1+C+B

+ .
A.4: Strong disposability of outputs: if (x, l, c,b,y) ∈ T then 0 5 y′ 5 y⇒
y′ ∈ T .
A.5.A: Strong disposability of inputs (x, l,b): if (x, l, c,b,y) ∈ T then
(x′, l′, c,b′) = (x, l, c,b)⇒ (x′, l′, c,b′,y) ∈ T .
A.5.B: Convexity of the set: V (y;x, l,b) = {c : (x, l, c,b,y) ∈ T},∀(y;x, l,b).

1My thanks go to Professor Dr Robert G. Chambers who suggested this method.
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Under these assumptions, a Farrell output efficiency score can represent
the multi-output technology:

E(x, l, c,b,y) = max {e ∈ R+: (x, l, c,b, ey) ∈ T} (1)

if ∃ e s.t. (x, l, c,b, ey) ∈ T and 0 otherwise, and where E : RU
+×R+×RC

+×
RB

+ × RS
+ → R+. By strong disposability of outputs A.4:

E(x, l, c,b,y) ≥ 1⇔ (x, l, c,b,y) ∈ T (2)

so that E(x, l, c,b,y) is a complete function representation of the technology.
In this multi-output technology, one can isolate a scalar output yM (in this
study, maize), and a sub-vector of outputs yN to be all the other outputs.
As the efficiency measure E is positively homogeneous of degree minus one
in outputs (yN , yM), it satisfies:

E(x, l, c,b, µyN , µyM) = µ−1E(x, l, c,b,yN , yM), µ > 0. (3)

By following definition (3) and taking µ = (yM)−1, one can rewrite the maxi-
mal producible output associated with input and output levels (x, l, c,b,yN , yM)
as:

E(x, l, c,b,
yN

yM
, 1) = yME(x, l, c,b,yN , yM), yM > 0. (4)

2.2 Yield index decomposition

A yield index for farm 1 is defined as the ratio of its yield to a base-level
yield (for example, the yield of farm 0):

y1/l1
y0/l0

. (5)

By using (4), the yield index (5) becomes:

yM1 /l1
yM0 /l0

=
E(x1, l1, c1,b1,

yN
1

yM1
, 1)/l1

E(x0, l0, c0,b0,
yN
0

yM0
, 1)/l0

E(x0, l0, c0,b0,y
N
0 , y

M
0 )

E(x1, l1, c1,b1,yN
1 , y

M
1 )

. (6)

The last ratio on the right-hand side is a usual relative efficiency index. It
measures relative efficiency of farm 1 with respect to farm 0. The first ratio on
the right, instead, is the focus of the attention in this methodological section.
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It is a ratio of maximal average producible outputs, given inputs2. Leaving
out the ratio of land sizes (l0/l1), the remaining of this section concentrates
on the decomposition of the ratio of maximal producible outputs:

E(x1, l1, c1,b1,
yN
1

yM1
, 1)

E(x0, l0, c0,b0,
yN
0

yM0
, 1)

. (7)

It is possible to obtain different decompositions of (7). To illustrate, first

multiply and divide by E(x1, l1, c1,b1,
yN
0

yM0
, 1)E(x1, l1, c1,b0,

yN
0

yM0
, 1)E(x1, l1, c0,b0,

yN
0

yM0
, 1)

E(x1, l0, c0,b0,
yN
0

yM0
, 1) to obtain:

E(x1, l1, c1,b1,
yN
1

yM1
, 1)

E(x0, l0, c0,b0,
yN
0

yM0
, 1)

=
E(x1, l1, c1,b1,

yN
1

yM1
, 1)

E(x1, l1, c1,b1,
yN
0

yM0
, 1)

E(x1, l1, c1,b1,
yN
0

yM0
, 1)

E(x1, l1, c1,b0,
yN
0

yM0
, 1)

E(x1, l1, c1,b0,
yN
0

yM0
, 1)

E(x1, l1, c0,b0,
yN
0

yM0
, 1)

E(x1, l1, c0,b0,
yN
0

yM0
, 1)

E(x1, l0, c0,b0,
yN
0

yM0
, 1)

E(x1, l0, c0,b0,
yN
0

yM0
, 1)

E(x0, l0, c0,b0,
yN
0

yM0
, 1)

. (8)

All of these five ratios on the right-hand side are legitimate index numbers.
That is, only one argument changes in every ratio, and every ratio measures
relative changes in maximal producible output due to the varying argument.
In particular, the first of the right-hand side terms represents the distance
between two maximal producible outputs given by a change in normalized
outputs. The second of the right-hand side terms evaluates instead the dis-
tance between two maximal producible outputs given by a change in capital
inputs. The third of the right-hand side terms measures the distance between
two maximal producible outputs given by a change in soil characteristics.
The fourth of the right-hand side terms is the value of the distance between
two maximal producible outputs given by a change in land size. Finally, the
last of the right-hand side terms quantifies the distance between maximal
producible outputs given by a change in variable inputs, keeping normalized
outputs, capital inputs, soil characteristics, and land size fixed.

2Depending on the issue studied, the analysis is possible at different levels of aggregation
allowing for more or less aggregated groups of inputs and outputs to vary separately.
Depending on how these aggregates are defined, the decomposition results may change.
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The proposed decomposition is not unique. In particular, it is also possi-
ble to decompose (7) by multiplying and dividing by

E(x0, l1, c1,b1,
yN
1

yM1
, 1)E(x0, l0, c1,b1,

yN
1

yM1
, 1)E(x0, l0, c0,b1,

yN
1

yM1
, 1)E(x0, l0, c0,b0,

yN
1

yM1
, 1).

This obtains:

E(x1, l1, c1,b1,
yN
1

yM1
, 1)

E(x0, l0, c0,b0,
yN
0

yM0
, 1)

=
E(x1, l1, c1,b1,

yN
1

yM1
, 1)

E(x0, l1, c1,b1,
yN
1

yM1
, 1)

E(x0, l1, c1,b1,
yN
1

yM1
, 1)

E(x0, l0, c1,b1,
yN
1

yM1
, 1)

E(x0, l0, c1,b1,
yN
1

yM1
, 1)

E(x0, l0, c0,b1,
yN
1

yM1
, 1)

E(x0, l0, c0,b1,
yN
1

yM1
, 1)

E(x0, l0, c0,b0,
yN
1

yM1
, 1)

E(x0, l0, c0,b0,
yN
1

yM1
, 1)

E(x0, l0, c0,b0,
yN
0

yM0
, 1)

. (9)

Also in this case every right-hand side term represents a proper index. But
terms corresponding to changes in same variables in (8) and (9) are not
necessarily the same. For example, the soil-quality component need not be
the same in the two decompositions:

E(x1, l1, c1,b0,
yN
0

yM0
, 1)

E(x1, l1, c0,b0,
yN
0

yM0
, 1)
6=
E(x0, l0, c1,b1,

yN
1

yM1
, 1)

E(x0, l0, c0,b1,
yN
1

yM1
, 1)

. (10)

This problem is well known in the productivity literature and it is referred
to as path dependency. To illustrate the path dependency issue, one can
consider figure 1 where, for exemplifying purposes, only one input x and
land size l change. Different paths attribute different measures to changes in
x and l. One can determine the paths by changing the variables in different
orders. To illustrate, let the comparison be the change between g(x1, l1) and
g(x0, l0) where g : R2

+ → R+. One can either move from point g(x1, l1) to
point g(x1, l0), and then to point g(x0, l0) (first path). Or one can move from
point g(x1, l1), to point g(x0, l1), and then to point g(x0, l0) (second path).
The problem of the ambiguity of the paths arises because, as in this example
in the picture, the portions of the change from g(x1, l1) to g(x0, l0) attributed
to each component are different depending on the path followed. In figure 1
only two different paths are present, but in the case of ratio (7) one hundred
and twenty different paths are possible when changing five aggregates. The
proposed solution to resolve the ambiguity in the method of decomposition is
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to follow Fisher in creating his ideal index, and generalize the results by Gini
(1937). In other words, one may take the geometric average of the different
decompositions to obtain appropriately calculated components.

The proposed decomposition of the yield index into five different index
components, together with the efficiency index EI = E(x0,l0,c0,b0,y0)

E(x1,l1,c1,b1,y1)
, obtains:

yM1 /l1
yM0 /l0

= I(x1,x0)(l0, c0,b0,
yN
0

yM0
; l1, c1,b1,

yN
1

yM1
)L̄(l1,l0)(x0, c0,b0,

yN
0

yM0
;x1, c1,b1,

yN
1

yM1
)l0/l1

Q(c1,c0)(x0, l0,b0,
yN
0

yM0
;x1, l1,b1,

yN
1

yM1
)K(b1,b0)(x0, l0, c0,

yN
0

yM0
;x1, l1, c1,

yN
1

yM1
)

Y
(
yN1
yM1

,
yN0
yM0

)
(x0, l0, c0,b0;x1, l1, c1,b1)EI, (11)

where I is a variable-inputs component, L̄ is a land-size component, Q is
a soil-quality component, K is a capital-inputs component, and Y is an
outputs component. Each index can be decomposed in different ways by
varying the decomposition paths. Collecting the equal terms and following
de Boer (2009) the index for variable inputs x can be, for instance, restated
as follows:

I(x1,x0)(l0, c0,b0,
yN
0

yM0
; l1, c1,b1,

yN
1

yM1
) = (12)E(x1, l1, c1,b1,

yN
1

yM1
, 1)

E(x0, l1, c1,b1,
yN
1

yM1
, 1)


1/5E(x1, l1, c1,b1,

yN
0

yM0
, 1)

E(x0, l1, c1,b1,
yN
0

yM0
, 1)


1/20E(x1, l1, c1,b0,

yN
1

yM1
, 1)

E(x0, l1, c1,b0,
yN
1

yM1
, 1)


1/20

E(x1, l1, c0,b1,
yN
1

yM1
, 1)

E(x0, l1, c0,b1,
yN
1

yM1
, 1)


1/20E(x1, l0, c1,b1,

yN
1

yM1
, 1)

E(x0, l0, c1,b1,
yN
1

yM1
, 1)


1/20E(x1, l1, c1,b0,

yN
0

yM0
, 1)

E(x0, l1, c1,b0,
yN
0

yM0
, 1)


1/30

E(x1, l1, c0,b1,
yN
0

yM0
, 1)

E(x0, l1, c0,b1,
yN
0

yM0
, 1)


1/30E(x1, l0, c1,b1,

yN
0

yM0
, 1)

E(x0, l0, c1,b1,
yN
0

yM0
, 1)


1/30E(x1, l0, c0,b1,

yN
1

yM1
, 1)

E(x0, l0, c0,b1,
yN
1

yM1
, 1)


1/30

E(x1, l0, c1,b0,
yN
1

yM1
, 1)

E(x0, l0, c1,b0,
yN
1

yM1
, 1)


1/30E(x1, l1, c0,b0,

yN
1

yM1
, 1)

E(x0, l1, c0,b0,
yN
1

yM1
, 1)


1/30E(x1, l0, c0,b0,

yN
1

yM1
, 1)

E(x0, l0, c0,b0,
yN
1

yM1
, 1)


1/20
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E(x1, l0, c0,b1,
yN
0

yM0
, 1)

E(x0, l0, c0,b1,
yN
0

yM0
, 1)


1/20E(x1, l0, c1,b0,

yN
0

yM0
, 1)

E(x0, l0, c1,b0,
yN
0

yM0
, 1)


1/20E(x1, l1, c0,b0,

yN
0

yM0
, 1)

E(x0, l1, c0,b0,
yN
0

yM0
, 1)


1/20

E(x1, l0, c0,b0,
yN
0

yM0
, 1)

E(x0, l0, c0,b0,
yN
0

yM0
, 1)


1/5

.

This index shows the change in the maximal producible outputs due to the
change in agricultural inputs x, while keeping the other inputs and outputs

(l., c.,b.,
yN
.

yM.
) constant. The other four indexes are similar to this, and need

not be repeated here.
One can obtain empirical estimates of the six components by applying

nonparametric linear programming methods without specific assumptions
on returns to scale. In the estimation the choice of the reference farmer
(x0, l0, c0,b0,y0) imposes just a different normalization on the productivity
estimates. Depending on the normalization, the estimates might appear
infeasible in some cases. To minimize this issue, the reference unit in this
study is a farmer with very high production potential (highest input levels
and average soil characteristics) and lowest realized output:

(x0, l0, c0,b0,y0) = (max{x}u,max{l},mean{c}c,max{b}b,min{y}s),

∀u ∈ 1, . . . , U, c ∈ 1, . . . , C, b ∈ 1, . . . , B, s ∈ 1, . . . , S. (13)

2.3 Testing for the inverse land size-yield relationship

The land-size component to production important for testing the inverse
land size-yield relationship is an average land-size component, which one can
obtain by multiplying the index L̄ by the land ratio l0/l1:

L(l1,l0)(x0, c0,b0,
yN
0

yM0
;x1, c1,b1,

yN
1

yM1
) = l0/l1 L̄

(l1,l0)(x0, c0,b0,
yN
0

yM0
;x1, c1,b1,

yN
1

yM1
).

L can be considered as the average product of land normalized on the refer-
ence level chosen. The inverse land size-yield relationship suggests that an in-

crease in land size causes a decrease in average product of land: L(li,l0)(x0, c0,b0,
yN
0

yM0
;xi, ci,bi,

yN
i

yMi
).

In terms of the decomposition, testing for the inverse land size-yield relation-
ship is equivalent to testing:

∂

∂li

(
L(li,l0)(x0, c0,b0,

yN
0

yM0
;xi, ci,bi,

yN
i

yMi
)

)
< 0. (14)

8



One may test this hypothesis through robust weighted least squares re-

gression of the average product L(li,l0)(x0, c0,b0,
yN
0

yM0
;xi, ci,bi,

yN
i

yMi
) on land

size li and on a quadratic term of land size l2i :

L(li,l0) = ζL + αLli + βLl
2
i + ηLi. (15)

If a negative relationship is present, this is evidence of an inverse land size-
yield relationship.
Even if an inverse relationship exists in (15), it is possible that different land
average products of interest to the present study are not inversely related to
land size. For example, one can test the hypothesis that a long-term soil-
quality adjusted average land product is negatively correlated to land size
through the following robust regression:

L(li,l0)Q(ci,c0) = ζLQ + αLQli + βLQl
2
i + ηLQi.

It is of interest to test also whether the average land product, adjusted for
short-term productivity-increasing practices (such as the usage of fertilizers,
or of hand hoes), is negatively correlated to land size through the following
robust regression:

L(li,l0)I(xi,x0) = ζLI + αLI li + βLI l
2
i + ηLIi.

In addition, one may test if an average land product, adjusted both for short-
term productivity-increasing practices and long-term soil-quality, is nega-
tively correlated to land size through the following robust regression:

L(li,l0)Q(ci,c0)I(xi,x0) = ζLQI + αLQI li + βLQI l
2
i + ηLQIi.

On the other hand one may consider whether the average product of land,
adjusted for capital inputs, is negatively correlated with land size through
the following robust regression:

L(li,l0)K(bi,b0) = ζLK + αLK li + βLK l
2
i + ηLKi.

Consequently, a further robust regression may relate an average land product,
adjusted for long-term soil-quality and capital inputs, with land size:

L(li,l0)Q(ci,c0)K(bi,b0) = ζLQK + αLQK li + βLQK l
2
i + ηLQKi.
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Whether a maximal average producible output index that excludes changes
in other outputs is correlated with land size is testable through the following
robust regression:

L(li,l0)Q(ci,c0)K(bi,b0)I(xi,x0) = ζLQKI + αLQKI li + βLQKI l
2
i + ηLQKIi.

Finally, one may test whether a yield index measure—that includes appro-
priately the effect of outputs’ diversification, but excludes inefficiency—is
correlated with land size by performing the following robust regression:

L(li,l0)Q(ci,c0)K(bi,b0)I(xi,x0)Y
(
yNi
yM
i

,
yN0
yM0

)
= ζLQKIY +αLQKIY li+βLQKIY l

2
i +ηLQKIY i.

3 Data

The empirical data in this study are a random sample of households from 99
sub-locations in Kenya. Data are from early 2007 and refer to preceding short
and long growing seasons. The survey is named “Research on Poverty, Envi-
ronment and Agricultural Technologies (REPEAT): Panel studies in Africa”.
Survey data are obtained from the National Graduate Institute for Policy
Studies (21st century Center of Excellence Program) in Japan. The present
cross-section sample is composed of 590 household farmers of which only 452
have data on soil quality.3 The decomposition proposed in this study requires
strictly positive maize yield: only 443 households satisfy this condition, and
these are in the final sample.

Variables used in this analysis are on 9 inputs and 3 outputs. Table 2
shows input and output summary statistics for the households. Main agricul-
tural output is harvested maize which is totally rain-fed. All present farmers
produce maize. Other representative outputs are milk and off-farm income.
Apart from land area, the measured variable inputs are seeds, fertilizers, cost
of temporary hired workers, and hand hoes. The label ‘capital inputs’ is used
somehow arbitrarily to design the human labor capital, and animal capital of
the households: household members, adjusted for age and educational level,

3More households are included in the original sampling scheme but are left out of the
analysis because have incomplete entries. No soil-quality chemical quantitative character-
istics in household farmers panel surveys are available in developing countries until the
present moment.
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and number of dairy cows.4

Data on physical characteristics of land in the largest maize plot of each
household are available for mid-2003. The present analysis focuses on critical
measures of soil structure and soil texture. The critical soil characteristic for
soil structure is soil carbon, while the soil characteristic that represents soil
texture is soil clay content. These variables indicate the long-term soil quality
available to the households. Soil carbon is modifiable only in the long-run,
while soil clay is hardly changeable.

Agriculture is mainly manual. Hand hoes are common: the median is 4
hand hoes per household. Median household annual off-farm earnings from all
sources are 41100 Kenyan Shillings ($587 in February 2007 dollars). House-
holds at the 25th percentile of the off-farm income distribution earned the
equivalent of about $163. The median household head education level is pri-
mary. Median application of fertilizers on maize fields is 375 Kgs per family.
Median household maize harvest is 765 Kgs per family. Median household
size is 4.5 people, who live at home, plus another family member who works
off-farm. Half of the households have at most 1 dairy cow, which may also
be used as draft power.

4 Results

Figure 2 depicts visually one of the main results of this study:5 the relation-
ship between land area, and the productivity components of land size L(li,l0)

4Faithful to the human capital approach pioneered by Jorgenson and Griliches (1967),
on-farm labor input is adjusted for differences in quality, both due to education and age.
To adjust labor for education, estimates of the impact of education on agricultural pro-
ductivity in Kenya from the analysis by Husbands et al. (1996) are used. Given an 85%
probability that a primary school-completer household head increases household profitabil-
ity by 40%, an expected return equal among years of primary education (8 years) obtains
a 4.25% average increase in productivity per additional year of any level of education. It
is possible that different methods of partitioning the increase in productivity would have
achieved a different result. But this topic is not the focus of the present contribution. The
same is done for households with a primary school completer, who is not the household
head (increase by 29.75%). All of the family members living at the household that are
above three years old are included. Most kids start completing tasks in the family at this
age. To adjust labor for age, number of children who, by United Nations Children Fund
classification, are considered those less than 15 years old, are divided in half.

5Due to infeasibilities in the linear programs under convexity of the soil-characteristics
requirement set, only 401 units have complete results.
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and soil quality Q(ci,c0). The average product of land is negatively correlated
to land acreage, signaling a decreasing average product of land when increas-
ing area. This negative correlation is evidence in favor of an inverse land
size-yield relationship.

Figure 2 also pictures the relationship between the soil-quality component
and land area. The quality component is more variable among families with
plots of middle size than among families with either very small or very large
plots, which are of better quality. While farmers with very small plots (less
than 0.4 acres) seem to be constrained to produce the staple maize in plots
with very good quality to obtain a subsistence level of production, farmers
with plots larger than 0.4 acres plant maize also in plots of lower quality. A
potential explanation is that these farmers with medium extensions need not
plant a staple, such as maize, in their best-quality plots to obtain a subsis-
tence level of production. If farmers plant more than 2 acres, it is interesting
to notice that the variability in soil-quality component decreases. Farmers
with extensions larger than 2 acres apparently seek obtaining (possibly be-
cause of specialization) plentiful maize harvests by planting on good-quality
soil.

Figure 3 presents a matrix of all six yield components. The graphs outside
the diagonal represent each component against the others. The graphs on
the diagonal are histograms that show the distributions of each component:
efficiency, land size, quality, capital inputs, variable inputs, and outputs.

The first element on the diagonal from the upper-left corner evidences
how the efficiency scores have a mass around 1. The non-efficient households
have a modal peak around 0.4 in the range between 0 and 1. The second
element on the diagonal is the histogram of the average product of land.
Most estimates of land average product are concentrated in the lower half of
the range, with only very few in the higher half. As can be seen in figure 2,
low average land product estimates correspond to farmers with large plots,
while very large average land product estimates correspond to households
with small plots. Thus, the negative land size-yield relationship seems to be
especially due to the few farmers with small plots and with very high average
land product.

The third element on the diagonal from the left depicts the distribution of
the estimated soil-quality components. Even though soil-quality component
estimates are more concentrated around and below 1, there are estimates also
higher than 1. Numbers higher than 1 reflect the possibility that the average
values of soil characteristics are not the values that allow highest producible
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output under convexity of the soil-characteristics requirement set.
As can be seen in figure 4, soil-quality component estimates are non-

monotonic with respect to increases in the soil characteristics. Both soil
characteristics show first an increasing, and then a decreasing portion. In
particular, estimated soil-quality components plotted against soil carbon
present a steep increase up to around 3% of soil weight, and a smooth de-
crease thereafter. A decreasing soil-quality component implies congestion of
soil carbon after 3%. On the other hand, along the soil-clay distribution,
increases and decreases of the soil-quality component are less dramatic and
smoother. Nonetheless, percentages of soil clay above 26% appear generally
detrimental to soil quality.

Estimated capital-inputs components are depicted as the fourth plot on
the diagonal. Because of the assumption of strong disposability on these
inputs, estimates of the capital-inputs component distribute with increasing
probability up to the maximum value of 1.

Non-monotonic distributions, instead, are shown both for the variable-
inputs component, the fifth element on the diagonal, and for the outputs
component, the last element on the diagonal. The estimates of the variable-
inputs component appear bi-modal, signaling the presence of two distinct
groups of households: one group with estimated variable-inputs components
less than half the component of the reference farm (mode around 0.2), and
one group with estimated components more similar to the reference farm
(mode around 0.75). The group with low levels of variable-inputs component
hires less labor, and uses lower amount of seeds than the group with higher
variable-inputs components.

The estimates of the outputs component show also a bi-modal distribu-
tion: some component estimates are concentrated around 1, while others have
lower mode around 0.45. Farmers whose estimated output components are
at 1 attain a potential level of production at least as high as the level attain-
able by the reference farm. Farmers who have an outputs component lower
than 1 may have decided to diversify more their production. Because the
index decomposition is in terms of yield, the farmers who obtain an outputs
component around 1 are more specialized in farming than in milk production
or in working off-farm. Farmers with an outputs component lower than 1 are
instead substituting more maize harvests with other products, at different
degrees.

In this setting, it is expected that farmers diversify production. Figure 5
represents the output mixes of the farmers with maize harvest less than 5000
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Kgs, with less than 10000 litres of milk produced, and less than 600000 KSh of
earned off-farm income. As visible in figure 5, the farmers with low harvests
show diversification in output production, especially in milk production. It
is sensible to expect synergies in the production of milk and maize. However,
as expected, there is less synergy between production of maize and off-farm
employment.

In the scatter plots outside the diagonal in figure 3 a negative relationship
between average product of land component and variable inputs component
is present: high estimates of average land product are related to low levels of
variable-inputs component. This negative relationship signals that farmers
with small plots (who have high average land product) employ less variable
inputs than farmers with large plots. The same farmers with low usage levels
of variable inputs are also somewhat more efficient, compared to farmers who
have high usage levels of variable inputs.

The estimates of the variable-inputs component do not appear correlated
significantly in any direction to the estimates of the soil-quality components.
Different levels of variable-inputs components are roughly possible at any
quality component level. However, high values of the quality component ap-
pear correlated to high capital-inputs components, to low levels of efficiency,
and to low or medium levels of the average land product. In other words,
high soil quality is in highly capitalized farmers with relatively large plots.
As also shown in figure 2, this is evidence once more of a somewhat unequal
distribution of soil quality along the land-size distribution.

4.1 Test results on the inverse land size-yield relation-
ship

In figure 6, ten graphs show different aggregates of productivity components
and the results of the fitted robust regressions against land size. If there is an
inverse land size-yield relationship (as it is suggested in figures 2 and 3), it is
critical to understand whether it is statistically significant and how farmers’
present input and output choices, and long-term soil quality interact with
the inverse land size-yield relationship. The numerical results of the robust
regressions are in table 2.

The plot on the top-left corner of figure 6 represents the average product
of land L(li,l0) against land size. There is a strong negative relationship be-
tween the average product of land L(li,l0) and land area. The results support
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hypothesis (14) of a negative relationship between yield and land area. This
key result for the present study is corroborated by very strongly negatively
significant coefficients in table 2. The results support a convex decay of the
average product of land at increases in land area. The convexity also rein-
forces the finding that such an inverse land size-yield relationship may be
due to few small farmers with very high average products of land.

The top-right graph of figure 6 pictures a quality-adjusted average prod-
uct of land, derived as the multiplication of the quality component Q(ci,c0)

and the average product of land L(li,l0), against land area. The graph shows
that even a quality-adjusted average product of land is negatively correlated
to land area. Indeed, the higher variability in the long-term soil-quality com-
ponents in figure 2 comes mostly from the farmers in the middle of the size
distribution. Even though the precision and the strength of the negative
coefficients of the first panel of table 2 are weakened, the results still support
a convex decay of the quality-adjusted average product of land, when land
area increases.

The left graph on the second row of figure 6 shows how land area is related
to an input-adjusted average product of land, derived as the multiplication of
the average product of land L(li,l0) and the variable-inputs component I(xi,x0).
This input-adjusted land component looks at the possibility that short-term
productivity increasing agricultural practices (such as usage of fertilizers,
or of hand hoes) might reduce the intensity of the negative land size-yield
relationship. Indeed, the intensity and the precision of the coefficients in
the quadratic regression are lower than when considering only the average
product of land. Nonetheless, the quantitative results in table 2 maintain
a (positively) convex decreasing relationship between an average product
of land, adjusted for short-term productivity increasing practices, and land
area. Short-term productivity increasing practices have a stronger impact in
diluting the inverse land size-yield relationship than long-term soil quality
has.

The graph on the right in the second row of figure 6 looks at the inter-
action of short-term productivity-increasing practices I(xi,x0) and long-term
soil-quality Q(ci,c0) with average product of land L(li,l0) against land size.
From the graphical results it is possible to see that the inverse land size-yield
relationship is further diluted by interacting soil quality and variable inputs.
The statistical results confirm this intuition in table 2. The coefficients that
characterize a (positively) convex decreasing relationship remain significant
even if they are weaker than when each productivity component (I(xi,x0) or
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Q(ci,c0)) is considered alone in interaction with L(li,l0).
The graph on the left in the third row of figure 6 portrays an average

product of land adjusted for capital inputs K(bi,b0). The (positively) convex
decreasing relationship between land size and yield remains strongly signifi-
cant. Including, additionally to capital inputs K(bi,b0), long-term soil quality
Q(ci,c0) in the graph on the right of the third row of figure 6 leaves the inverse
land size-yield relationship significant and convex. It is worth noting that the
long-term soil-quality component mitigates the inverse relationship further
when interacted with capital inputs.

The left graph on the fourth row of figure 6 displays an index of maximal
average producible output (L(li,l0) Q(ci,c0) K(bi,b0) I(xi,x0)), which excludes
the effects of outputs’ diversification, against land size. Despite the relation-
ship is weaker than in previous regression coefficients of table 2, there is still
a significantly (positively) convex decreasing relationship of L(li,l0) Q(ci,c0)

K(bi,b0) I(xi,x0) with land size. In particular, from the comparison with pre-
vious regression coefficients, it is clear that the impact of the variable-inputs
component is strong in diminishing the precision of the quadratic term es-
timate. As expected, the farmers with small plots use low levels of variable
inputs.

Finally, the right graph of the fourth row of figure 6 presents a maximal
average producible output measure that accounts for outputs’ diversifica-

tion (L(li,l0)Q(ci,c0) K(bi,b0) I(xi,x0) Y
(
yNi
yM
i

,
yN0
yM0

)
) against land size. The high-

est values of maximal average producible output L(li,l0)Q(ci,c0)K(bi,b0)I(xi,x0),
which excludes the outputs component in the left graph of the same row,
are decreased further when including the outputs component. The numeri-
cal results in table 2 show a totally insignificant quadratic term, and a non
strongly significant linear effect. The low significance of the linear effect is
jeopardized by the insignificance of the quadratic term. Theory wants that
the marginal effect of the lower-order term in this quadratic regression can-
not be interpreted if the higher-order term is insignificant. Nonetheless, if
one looks at a simple linear relationship, there is still a negatively significant
linear correlation. The numerical coefficients are presented in table 2.

The (positively) convex inverse land size-yield relationship disappears
when including the productivity effect of outputs’ diversification in terms
of yield. Among farmers with small plots, the estimated outputs compo-
nents are lower than among farmers with large plots. As can be seen from
figure 7, farmers with small plots, who have high average product of land
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(last plot from figure 7) but low estimated outputs components, are more
diversified into non-maize production than farmers with large plots. The rel-
ative productivity, in yield terms, of higher outputs’ diversification is lower
for these farmers compared to other farmers who dedicate more of their pro-
duction efforts to the production of maize. Accounting appropriately for
the contribution in yield terms of farmers’ diversification into other outputs,
while controlling for inefficiency, dissipates the convexity of the inverse land
size-yield relationship.

In the last row of figure 6 the efficiency estimates (left graph) and the
maize yields (right graph) are plotted against land area. A U-shaped rela-
tionship of efficiency with land size is apparent. Many farmers with plots
less than 1 acre (most with plots below 0.4 acres) and many farmers with
plots above 4 acres are completely efficient while an increasing variability of
efficiency estimates is visible among farmers with plots between 0.4 and 4
acres. The coefficients in table 2 support this conclusion. As expected, the
results in the right graph and the numerical coefficients in table 2 support a
(positively) convex decay of yield when increasing land size.

5 Conclusions

The methods presented in this study help understanding the long-debated
inverse land size-yield relationship, and some of its possible explanations.
The inverse relationship is analyzed by accounting for productivity differences
of inputs and outputs with methods that drop assumptions on returns to
scale, production efficiency, and parametric assumptions on the technology.
Not assuming production efficiency allows decomposing a ratio of maximal
producible outputs and not of observed yields, which may include inefficiency.
Absence of specific technological functional form assumptions (apart from
piecewise linearity) allows not imposing unrealistic properties among inputs
and outputs, and specific returns to scale a priori.

The methodology purges out the inefficiency from a yield index, and di-
rectly decomposes, under variable returns to scale, the distance among max-
imal producible outputs into five components: land size, soil-quality char-
acteristics, variable inputs, capital inputs, and outputs. The present study
proposes to calculate the six components with nonparametric productivity
accounting methods.

The results show, visually and quantitatively, a strongly significant (pos-

17



itively) convex inverse relationship between yield and land size. The yield
components estimated show a strongly significant (positively) convex inverse
relationship of average product of land with land area, which is evidence in
support of an inverse land size-yield relationship. Only by accounting appro-
priately for the productivity in yield terms of diversification into products
different from maize, the convexity of the inverse land size-yield relationship
disappears in favor of a linear inverse relationship.

The results imply that in this sample of Kenyan households the long-
standing empirical phenomenon of an inverse land size-yield relationship is
confirmed. In particular, if the implications of this analysis were to be pushed
further, faster agricultural development would come from farmers with pro-
duction patterns similar to the farmers with smallest extensions of maize.
These farmers with very small plots use little levels of agricultural inputs
in an efficient manner on good-quality soil to produce not only maize but a
portfolio of differentiated products. These conclusions are nonetheless only
valid for this sample and for these technology assumptions.

Considering the importance of dynamics in soil fertility, this study is
moreover only an approximation of the results obtainable if soil-quality house-
hold panel data were available. Once these data were to become available,
a generalized version of this study would be possible. A generalized study
would allow disentangling completely the dynamic interplay of long-term soil
quality, household choices, and the land size-yield relationship.
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Figure 1: Graphical representation of the problem of path dependency in a
two-dimensional case
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Figure 2: Land size against productivity components of land size and soil
quality
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Figure 3: Matrix of plots of yield components under variable returns to scale
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Figure 4: Soil-quality component against soil carbon and soil clay
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Figure 5: Milk production and off-farm income against maize harvest
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Figure 6: Robust quadratic regressions of different aggregates of yield com-
ponents under variable returns to scale for a multi-output technology
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Figure 7: Output quantities and land-size average product against outputs
component
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Table 1: Summary statistics of inputs, outputs, and soil-quality physical
characteristics

Variable Mean Std.Dev. Min Max
Inputs
fertilizers (kgs) 800.1 1233.5 0 9000
quantity of seeds (kgs) 13.4 10.9 1 78
number of hand hoes 3.9 2.1 0 15
hired labor (cost in KSh) 2975.3 4940.4 0 48160
land area (acres) 1.6 1.4 0.1 14
members of the family 5.7 2.8 1 17.5
milking cows 1 0.9 0 5
Outputs
total harvest maize (kg of dry maize equivalent) 1114.8 1337.9 56.2 9790
milk (liters) 1714.2 2449.1 0 18600
off-farm income (in KSh) 85941 147022.5 0 1572400
Soil-quality physical characteristics
soil-carbon content (% of soil weight) 2.6 1.5 0.8 15.2
soil-clay content (% of soil weight) 28.3 3.9 15.5 44.9
Observations 443
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Table 2: Robust regression coefficient estimates of different yield components
under variable returns to scale for a multi-output technology

Coefficient SE T statistic P Value
Dependent variable: L

Constant 17.359 0.080 218.092 0.000
l -7.067 0.056 -126.498 0.000

l2 0.889 0.006 139.311 0.000

Dependent variable: L*Q
Constant 14.187 0.240 59.045 0.000

l -5.036 0.169 -29.864 0.000
l2 0.497 0.019 25.788 0.000

Dependent variable: L*I
Constant 6.580 0.234 28.111 0.000

l -1.311 0.164 -7.979 0.000
l2 0.070 0.019 3.739 0.000

Dependent variable: L*Q*I
Constant 5.032 0.209 24.076 0.000

l -0.882 0.147 -6.010 0.000
l2 0.044 0.017 2.632 0.009

Dependent variable: L*K
Constant 14.664 0.190 77.129 0.000

l -5.745 0.133 -43.050 0.000
l2 0.631 0.015 41.370 0.000

Dependent variable: L*Q*K
Constant 11.085 0.260 42.674 0.000

l -3.897 0.182 -21.373 0.000
l2 0.386 0.021 18.515 0.000

Dependent variable: L*Q*K*I
Constant 3.944 0.175 22.526 0.000

l -0.680 0.123 -5.535 0.000
l2 0.035 0.014 2.489 0.013

Dependent variable: L*Q*K*I*Y
Constant 2.010 0.117 17.247 0.000

l -0.165 0.082 -2.020 0.044
l2 0.006 0.009 0.613 0.540

Dependent variable: L*Q*K*I*Y
Constant 1.955 0.089 21.883 0.000

l -0.119 0.041 -2.887 0.004

Dependent variable: Efficiency
Constant 0.914 0.028 32.099 0.000

l -0.153 0.020 -7.488 0.000
l2 0.021 0.002 9.033 0.000

Dependent variable: Yield
Constant 1014.582 38.206 26.556 0.000

l -314.561 27.450 -11.460 0.000
l2 40.939 3.058 13.386 0.000
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