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Distribution-free Methods for Estimation of Willingness to Pay Models 

Using Discrete Response Valuation Data  
 

 

 

Abstract 

The Turnbull method is the standard approach used in contingent valuation 

studies to estimate willingness to pay (WTP) models using discrete responses 

without making assumptions about the distribution of the data. However, this 

approach has several limitations. The purpose of this study is to develop 

alternative distribution-free methods for the estimation of WTP models using 

nonparametric conditional imputation and local regression procedures. The 

proposed approaches encompass the recovery of the individuals’ WTP values 

using an iterated conditional expectation procedure and subsequent estimation of 

the mean WTP using linear and nonparametric additive models. In contrast to the 

Turnbull approach, the proposed estimation methods allow the inclusion of 

covariates in the modeling of WTP estimates, as well as the complete recovery of 

its underlying probability distribution. Monte Carlo simulations are employed to 

compare the performance of the proposed estimators with that of the Turnbull 

estimator. We also illustrate the use of the proposed estimation techniques using a 

real data set.  

 

Key words: Additive models, double-bounded elicitation, kernel functions, iterated 

conditional expectation, non-parametric regression, Turnbull method.  
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1. Introduction 

Contingent valuation (CV) is a survey-based method initially developed to elicit 

the value (i.e., willingness to pay, WTP) that people place on non-market resources such 

as environmental preservation (e.g., Carson et al., 1992; Hanemann, 1994). New 

applications of CV are found in other areas such as health economics and agribusiness 

(Diener et al., 1998; Hudson and Hite, 2003).  

The standard elicitation format used by CV practitioners is the double-bounded 

dichotomous choice (DBDC) approach. One drawback of the DBDC approach, as well as 

of other “closed-ended” elicitation formats, is that it generates interval-censored 

responses; hence, the estimation of measures of central tendency (e.g., mean WTP) as 

well as the marginal effects of covariates on the mean WTP requires the use of 

specialized statistical techniques. The majority of empirical studies using interval-

censored responses from CV studies have utilized parametric methods, in which a 

distribution function for the WTP measure is specified; however, some authors have 

advocated the use of distribution-free methods (e.g., Carson et al., 1992; Carson et al., 

1994).  

With regard to distribution-free methods used to analyze CV interval-censored 

data, most of the literature is based on the nonparametric maximum likelihood (ML) 

estimation approach proposed by Turnbull (1974, 1976). However, the Turnbull approach 

has several important limitations. The purpose of this study is to develop alternative 

distribution-free estimation approaches that can be used to analyze interval-censored 

WTP data. The proposed estimators involve iterated procedures that combine 
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nonparametric kernel density estimation of the errors of the WTP function with 

parametric linear or nonparametric kernel regression of its conditional mean function.  In 

contrast to the Turnbull approach, the proposed estimation approach provides a point 

estimate of the mean WTP, allows the estimation of the marginal effects of covariates on 

the mean WTP, as well as the estimation of the underlying WTP probability distribution 

function at any point. Simulation techniques are employed to compare the performance of 

the proposed estimators with that of the Turnbull approach and the true parametric model.  

We also illustrate the use of the propose estimation techniques using a real data set. 

Although the paper focuses on modeling data obtained from the DBDC elicitation 

method, the procedures proposed in this article can be applied with WTP data obtained 

using other dichotomous choice elicitation mechanisms. 

2. Literature Review 

2.1. WTP Theoretical Framework 

The theoretical foundations of WTP functions are based on the consumer utility 

and producer profit maximization problems. The WTP functions in both contexts are 

derived considering changes in the quality level of goods or services consumed or inputs 

used in the production process, for consumers and producers, respectively. For both 

consumers and producers, WTP can be shown to be a function of several variables 

including relevant prices and quality levels (Hanemann, 1991; Zapata and Carpio, 2014). 

To simplify mathematical notation, for the reminder of the paper we will use    for the 

WTP value of the i
th

 individual (consumer or producer) and    for the vector of 
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arguments. Moreover, we will assume that    is related to a set of explanatory variables 

   via the following model 

(1)                                           (  )                                           , 

where the   ’s are independent and identically distributed (i.i.d.) errors, with marginal 

density   , zero mean and finite variance   . It is also assumed that the   ’s  are 

independent of the d-dimensional predictor vector   . Furthermore,  (  ) is a function 

that represents the conditional mean function of    given   . 

2.2. DBDC Approach and Estimation 

Since its introduction by Hanemann (1985), the DBDC elicitation approach has 

gradually replaced other elicitation methodologies such as the open-ended and single-

bounded dichotomous choice formats (Hanemann and Kanninen, 1999). DBDC 

responses have been mainly analyzed using parametric ML estimation methods (e.g., 

Hanemann et al., 1991; Zapata et al., 2013). One of the main advantages of the 

parametric ML estimation is that this estimation technique allows the inclusion of 

covariates in the modeling process, thus marginal effects are usually easy to estimate. On 

the other hand, the parametric ML method relies on a priori assumptions about the 

underlying distribution function of respondents’ WTP. Hence, if the distribution function 

is misspecified, parameter estimates and any function of them, including welfare 

estimates and marginal effects, might be inconsistent.  

An alternative to parametric ML estimation is the use of distribution-free methods 

which do not place any parametric assumptions on the distribution of the error   . 

Distribution-free estimation procedures initially used in CV studies were adapted from 
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the survival analyses models proposed by Ayer et al. (1955), Kaplan and Meier (1958) 

and Turnbull (1974, 1976) (e.g., Kristom, 1990; Carson et al., 1992). In the case of 

DBDC responses, the preferred distribution-free estimation method used by practitioners 

has been the nonparametric ML estimator proposed by Turnbull (1976) (e.g., Carson et 

al., 1992; Carson et al., 1994). Unlike the parametric ML that seeks particular values of 

the distribution parameters, the Turnbull method directly estimates the underlying 

cumulative density function of respondents’ WTP. 

The Turnbull approach is not without shortcomings. First, the estimated 

cumulative density function is only defined up to a discrete set of observed points given 

by the bid amounts used in the WTP questions (i.e., the estimated CDF function is a step 

function). Second, the Turnbull approach does not allow the inclusion of covariates in the 

modeling of the mean WTP function. Furthermore, the Turnbull approach does not 

provide a point estimate of the mean WTP, but only upper and lower bound estimates.  

More recently, researchers have proposed two types of alternative distribution-

free estimation procedures to analyze DBDC responses. The first type includes 

distribution-free methods that assume a parametric specification for the conditional mean 

WTP function (i.e.,  (  ) in equation  (1)) (Watanabe, 2010). The second type of 

procedures use semiparametric proportional hazard specifications commonly employed in 

duration models (e.g., An, 1996; Burton, 2000). 

In this study we propose two distribution-free methods using kernel based 

procedures: one that assumes a parametric specifications for the mean WTP function 

(semiparametric procedure), and another where the mean WTP function is also estimated 
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nonparametrically (nonparametric procedure). Hence, to the best of our knowledge this is 

the first study that uses fully nonparametric methods that allow the inclusion of 

covariates for the analysis of DBDC data. The semiparametric method can be considered 

an alternative to the distribution-free models proposed by Watanabe (2010), An (1996) 

and Burton (2000). None of the distribution-free estimation methods currently available 

for the estimation of DBDC data use kernel based procedures. A possible limitation to the 

lack of adoption of kernel based procedures is the fact that the weighting functions 

employed by these approaches usually require continuous observations of the dependent 

variable contrary to the interval-censored observations obtained in DBDC CV studies. 

However, recently developed algorithms make possible the adaptation of these 

techniques to interval-censored data (e.g., Kang et al., 2011; Braun et al., 2005).  

3. Methodology 

 We propose to estimate the WTP function described in (1) using two novel 

distribution-free estimation techniques: the Semiparametric Iterated Linear Model 

(SPILM) and the Nonparametric Iterated Additive Model (NIAM). These models do not 

impose any arbitrary parametric assumption on the underlying distribution function of the 

errors      since its marginal density function (  ) is estimated using the nonparametric 

iterated conditional expectation procedure proposed by Braun et al. (2005). The function 

 ( ) is estimated using linear regression techniques in the case of SPILM and 

nonparametric additive regression methods in the case of NIAM.   

The mathematical relation underlying the proposed procedure is given by:  

(2)                           [  |     ]   (  )   [  |   
] ,                
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where  [  |     ] is the conditional expectation of    given      ,    is the observed 

interval of    with boundary values    and    (i.e.,    [     ]), and     
 [   

 (  )     (  )] (Kang et al., 2011)
1
. It is important to note that equation (2) uses 

 [  |     ] instead of     since the   's are interval-censored, i.e., observed as   , 

  ,…,  . If the true value of the   ’s were observed, SPILM and NIAM reduce to the 

standard linear regression and nonparametric additive estimators, respectively.  

The proposed procedures involve four major steps which are iterated until 

convergence: 1) Start with an estimate of  [  |     ] ( ̂[  |     ]); 2) Use the 

estimates of  [  |     ] instead of the unobserved   ’s to estimate  (  ) using 

regression procedures (parametric regression in SPILM or nonparametric regression in 

NIAM); 3) Use the estimates of  (  ) to obtain an estimate  [  |   
] using nonparametric 

kernel density estimation procedures; and 4) Use estimates of  (  ) and 

 [  |   
] obtained in step 2 and 3, respectively, to obtain a new estimate of  [  |     ]   

In the sections below, we describe in detail all the steps of the proposed 

nonparametric iterative estimation procedure. For comparison purposes, we also briefly 

describe the Turnbull’s nonparametric ML estimator and the standard parametric 

approach. The Monte Carlo experiments used to evaluate the proposed procedures are 

explained at the end of the section. 

 

 

 

                                                 
1
 The determination of Li and Ri in the context of DBDC data is explained in detailed in Section 3.3.  
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3.1. Iterated Conditional Expectation Procedure 

The algorithm employed to estimate the conditional expected value of the   ’s,      

( ̂[  |     ]    ̂[  |     ])
 
, and subsequently the SPILM mean estimator 

( ̂( )     ) and NIAM mean estimator ( ̂( )    ), includes eight major steps:  

Estimate starting values to initiate iterations (denoted with zero indices):  

Step 1) For all   ’s compute the interval midpoints:   
  

     

 
. 

Step 2) Compute the initial mean function estimate:  ̂ ( ) ,    SPILM, NIAM, using 

   (  
      

 )   

Step 3) The error marginal density at the initial step  ̂   ( ) is taken as a uniform density
2
 

on the range [   (    ̂ (  ) )    (    ̂ (  ) )].  

Conduct iterative steps (denoted with   indices): 

Step 4) Estimate the marginal density of the errors    using the iterated conditional 

expectation procedure developed by Braun et al. (2005): 

a) Estimate the interval-censored errors as    
 [    ̂   (  )     

 ̂   (  ) ]. 

b) Compute the error marginal density function using the fixed point estimator
3
: 

  ̂   ( )  
 

 
∑

∫   (   ) ̂     ( )     

∫  ̂     ( )     

 
   , 

                                                 
2
 Braun et al. (2005) show that the final estimate of    does not depend on the density function used on the 

initial iteration step. 

3
 Computation of all integrals was carried out using the trapezoid rule.  
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where   ( )      (  ⁄ ),  ( ) is a kernel density function with scale 

parameter  , and   is any real number.  

Step 5) Compute the conditional expectation of the   ’s:  ̂[  |   
]  

∫   ̂ ( )     

∫  ̂ ( )     

. 

Step 6) Estimate the conditional expectation of the   ’s,     . At the j
th 

iteration step the  

i
th

 element of      is given by:  ̂[  |     ]   ̂   (  )   ̂[  |   
].  

Step 7) Compute  ̂ ( )  using the estimate      from the previous step using regression 

procedures (parametric regression in SPILM or nonparametric regression in NIAM: see 

section below) 

Step 8) Set  ̂   ( )   ̂ ( )  and return to step (4) or stop if the convergence criterion 

is satisfied
4
. 

3.2. Conditional Mean Function Estimation  

3.2.1. Linear regression 

In the SPILM the conditional mean function of   given  ,  ( ), is estimated 

using the standard linear regression model 

(3)                                            (  )     ∑      
 
    , 

where the estimates of the parameters            are obtained by least squares using  

     as the dependent variable. The SPILM mean estimator  ̂( )      is calculated by 

averaging the estimate of (3),  ̂(  )     , for all individuals 

(4)                                    ̂( )         ∑  ̂(  )     
 
   . 

                                                 
4
 An absolute difference of less than 10

-5
 in successive objective function estimates (e.g., | ̂ ( )  

 ̂   ( ) |) was used to declare convergence on every iteration procedure employed in this study. 



11 

 

3.2.2. Nonparametric Additive Regression  

There are several options for the nonparametric estimation of the  ( ) function. 

In this study, we use a nonparametric additive model instead of a multivariate kernel 

regression for several reasons. First, additive models are less affected by the curse of 

dimensionality and multicollinearity. Second, their marginal effects are easier to 

interpret. Third, additive model estimates possess a faster convergence rate than 

multivariate kernel estimates (Buja et al., 1989; Cameron and Trivedi, 2005, p. 319). 

Finally, the majority of WTP studies use an additive mean parametric function. The 

additive model assumes that 

(5)                                        (  )     ∑   (   )
 
    , 

where the   ( )’s are standardized smooth functions so that  [  ( )]    for every  . 

These functions are estimated one at a time using a backfitting algorithm as suggested by 

Hastie and Tibshirani (1986) and Kauermann and Opsomer (2004).  

As shown in Kauermann and Opsomer (2004), the   ( )’s can be jointly 

estimated. First, consider the k
th

 additive function estimator  

(6)                                          ̂     
 {(      ̂ )   ̂  } 

where  ̂  { ̂ (   )    ̂ (   )}
 ,   ̂   ∑  ̂     is an estimator of the sum of the 

remaining     additive functions,  ̂     ∑   
 
    and   

  (       ⁄ )   is a 

centered smooth matrix to ensure identifiability of the estimators,    denotes an identity 

matrix, and   is a     smoothing matrix whose    element is given by  

(7)                                    (          ) ∑   (          )
 
   ⁄ , 
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where   ( ) is a kernel density function with scale parameter    (i.e., a bandwidth). Joint 

estimation of the additive functions  ̂     ̂  entails finding the solution to the normal 

equations 

(8)                                                ̂    (      ̂ ), 

with  ̂  ( ̂ 
     ̂ 

  ) ,    (  
       

  
 )

 
 and 

                                                        (

    
    

 

  
      

 

   
  

   
    

) . 

  As the SPILM estimator, the NIAM mean estimator  ̂( )     also averages the 

estimated of expression (5),  ̂(  )    , for all individuals 

(9)                                ̂( )        ∑  ̂(  )    
 
   . 

Whereas in SPILM the marginal effects are given by the coefficients  ̂     ̂ , in 

NIAM the relationships between covariates and mean WTP are given by the smooth 

functions   ( )’s (Buja et al.,1989). Therefore, the marginal effect of a covariate on the 

mean WTP changes from point to point. Consequently, the relationships between 

explanatory variables and smooth functions in additive models are presented in the form 

of plots (e.g., Opsomer and Ruppert, 1998; Kauermann and Opsomer, 2004). 

3.2.3. Kernel functions and bandwidth selection 

The computation of both the NIAM mean estimator  ̂(  )     and the error 

density function estimator  ̂ ( ) involve kernel functions:   ( )’s in equation (7) and 

  ( ) in step 4b). The kernel functions were selected based on asymptotic properties and 

on their ability to model both continuous and categorical data. Specifically, three 
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different kernel functions were used to estimate  ̂(  )    : for continuous explanatory 

variables we consider a 2
th

-order Epanechnikov kernel
5
, and for discrete variables with or 

without natural order we consider the kernel functions proposed by Racine and Li (2004).  

In the case of the estimation of the error density function  ̂ ( ), the kernel function   ( ) 

is set to be equal to the 2
th

-order Epanechnikov kernel (see Appendix A).  

 All kernel functions considered in this study depend on the bandwidth or 

smoothing parameters which are more crucial for the quality of the estimates than the 

kernel choice itself (Cameron and Trivedi, 2005, p. 303). The bandwidth parameters for 

the kernels used to estimate  ̂(  )     were selected by the generalized cross-validation 

procedure described in Kauermann and Opsomer (2004) (see Appendix A). The 

bandwidth parameter   needed for the estimation of the error density function (step 4b) 

was estimated using a modified version of the likelihood cross-validation method 

proposed by Braun et al. (2005) (see Appendix A).   

3.3. Parametric and Nonparametric Maximum Likelihood Estimators 

In this section we describe the parametric and nonparametric maximum likelihood 

methods traditionally used in CV studies which will be subsequently compared with the 

proposed distribution estimation procedures. In the DBDC elicitation format every 

respondent i is presented with an initial bid    and asked if he is willing to pay that 

amount. If the respondent answers “yes” to the first bid, a second WTP question is asked 

using a higher bid amount   
 . If the respondent answers “no” to the first bid, the second 

                                                 
5
 The 2

th
-order Epanechnikov kernel function is referred as the “optimal kernel” because it possesses the 

minimum mean integrated squared error (MISE) among available kernel functions (Cameron and Trivedi, 

2005, p. 303). 
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WTP question uses a lower bid   
 . Consequently, every    (i.e., WTP) is observed to fall 

into one of the four intervals: (     
 ), [  

    ), [     
 ) and [  

    ),        .  

Denoting the lower bound of the observed i
th

 interval (  ) as    and the upper 

bound as   , the probability that    is in the    interval is given by  

(10)                      (        )   (  )   (  )           , 

where  ( ) is the cumulative density function (CDF) of  . Since the number of different 

bids used in the DBDC questions is usually less than the number of observations in the 

sample, some of the observed intervals are the same across individuals; resulting in 

    unique observed intervals   ,  =1, …, M, with boundary values of    and   . 

Therefore, the log-likelihood function for the interval-censored   ’s can be written as 

(11)                                            ∑   [ (  )   (  )]
 
    

                                                           ∑     [ (  )   (  )] 
   , 

where   ,       , is the number of observations for whom both       and 

     . Parametric models (PM) assume that    follow a certain distribution (see e.g., 

Zapata, 2012).  

To specify the log-likelihood function of Turnbull’s nonparametric ML procedure 

each unique observed interval   ,  =1,…,  , needs to be expressed as an union of   

disjoint closed intervals of the form [       ),        , called innermost intervals
6
, 

such that     ⋃    [       )
 
   , where     is a dummy variable that indicates 

                                                 
6
 Assuming that   is non-negative, the complete set of   innermost intervals is 

[     ) [     ) [       ), where             . In the case of DBDC data, the boundaries of 

the innermost intervals (  ’s) are given by the bid amounts used in the WTP questions.  
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whether the q
th 

innermost interval (  ) is used to express the m
th

 unique interval. 

Specifically, 

(12)              {
                          

                                               
,                . 

The log likelihood function in (11) can then be expressed in terms of the 

innermost intervals  

(13)                             ∑     ∑    [ (  )   (    )
 
   

 
   ]. 

 The Turnbull procedure considers each Fq = F(  ) in (13) as a parameter to be 

estimated and imposes the restriction that              . Estimation is then 

carried out using Turnbull’s self-consistent algorithm (Day 2007; Gomez et al., 2004; 

Turnbull 1976). The mean value of   can thus be written as  ( )  ∫  
  

 
  ( )  

∑ ∫    ( )  

 
    (Haab and McConnell, 1997).   

As mentioned earlier, the Turnbull approach does not provide a point estimate of 

the mean WTP, but only upper and lower bounds of its value. Therefore, to facilitate 

comparison across models, we used the Turnbull midpoint approximation of the expected 

value of Y ( ̂ ):  ̂   ̂( )  ∑
       

 
( 

    ̂   ̂   ), where the  ̂ ’s are the solution 

to the log likelihood function in (13). 

3.4.Probability Distribution Estimation 

The iteration process used in the SPILM and NIAM approaches can also be used to 

recover the CDF and probability density function (PDF) of WTP at any point. Estimation 

of the probability distribution of   is possible since 

(14)                                            ( )    (   ( )), 
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where    is the PDF of  . 

 Equation (14) suggests the following estimators for the PDF and CDF of  : 

(15)                                          ̂ ( )   ̂ (   ̂( ) ) 

and  

(16)                                      ̂ ( )  ∫  ̂ (   ̂( ) )  
 

 
, 

respectively, where   ( ) and  ( ) in (14) are replaced by estimates and   = SPILM, 

NIAM.  

3.5. Data and Study Design 

The relative performance of the SPILM, NIAM and Turnbull estimation 

procedures was evaluated using Monte Carlo simulation procedures. Estimated mean 

values and marginal effects were compared to those obtained from the true underlying 

parametric model. The three models were also employed to estimate producers’ WTP for 

the services provided by an Electronic Trade Platform in the data set described and 

analyzed in Zapata et al. (2013). 

3.5.1. Monte Carlo Simulation 

A total of 100 data sets (simulations) containing   observations each,{     }   
 , 

  {           }, were generating using the following regression model containing 

both continuous and categorical predictor variables 

(17)                                 
       

      , 

where the    ’s are i.i.d. observations from an Uniform distribution in the range [-10, 10], 

    {   } with   (     )    (     )     ,  
  

   {   },      , indicate the 
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occurrence of the j
th

 category of    ,     {     } with   (     )      for        , 

and    is an i.i.d. observation from a Normal distribution with mean zero and variance 

equal to one.  

The resulting   ’s from (17) can be seen as the individuals’ true valuation (e.g., 

individuals’ WTP value) given a set of observable characteristics,      . The data 

generating process considered in this study mimics the one employed in CV using a 

DBDC elicitation format. Four initial bid amounts were randomly assigned to each 

observation in the generated data: $24, $36, $48 and $60. The initial bids, respectively, 

are the 20
th

, 40
th

, 60
th 

and 80
th

 percentiles of an empirical distribution in a 50 observation 

sample simulated with the regression model in (17) with no error term
7
. The 

corresponding follow-up bid amounts were $18 (10
th

 percentile), $24, $36 and $48 if the 

initial bid assigned to the observation was higher than the true WTP value. On the other 

hand, if the initial bid assigned to the observation was lower than the true WTP value, 

corresponding higher follow-up bids of $36, $48, $60 and $66 (90
th

 percentile) were 

assigned.  Based on the sample distribution used to generate the bids, the lower bound for 

those observations answering “no/no” was set to $0 and the upper bound for those 

answering “yes/yes” was set to $80 in the SPILM, NIAM and Turnbull approaches.
8
 

 Using the DBDC WTP data generated from (17) we estimate both the mean WTP 

using SPILM, NIAM, the Turnbull procedure and the true normal parametric model (PM) 

( ̂( )     ,  ̂( )    ,  ̂  and  ̂( )  ), and the marginal effects from the true PM and 

SPILM.  

                                                 
7
 The initial bids were chosen following the methods employed in Calia and Strazzera (2012). 

8
 Results were not sensitive to the choice of the maximum value.  
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The performance of all four mean estimators and marginal effect estimators from 

the SPILM and PM were analyzed using the squared-root of the mean squared error 

(RMSE), 

(18)                              ( ̂)  √
 

   
∑ [ ̂( )   ( )]

    
   , 

bias 

(19)                                    ( ̂)  
 

   
∑ [ ̂( )   ( )]   

    

and standard error (SE) 

(20)                                   ( ̂)  √  

   
∑ [ ̂( )   ̅̂]

 
   
   , 

where  ̂( ) and   ( ) are the estimated and true parameter function of interest (e.g., mean 

or marginal effect) of the  th
 data set, and  ̅̂  

 

   
∑  ̂( )   

   .  Since in the case of NIAM 

there are not unique marginal effects estimates, we only estimated the functions (  ( )’s) 

for one randomly generated datasets of each sample size  (   100, 200, 500); hence, we 

did not calculate RMSE, bias and SE for the estimated marginal effects using NIAM.  

3.5.2. Empirical application: producers’ WTP study 

SPILM, NIAM, Turnbull and PM estimators were also evaluated using a real 

DBDC data set. The data was described and analyzed in Zapata et al. (2013) using 

parametric techniques, where the WTP measure was found to follow a log-logistic 

distribution. The main objective of the study was to estimate the monetary value that 

registered producers placed on the services provided by an Electronic Trade Platform 

(i.e., MarketMaker). A reduced set of available explanatory variables was used as an 
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illustration of the attributes of the proposed estimation techniques. Covariates employed 

in the estimation of the WTP models are type of user based on intensity of use 

(USER_TYPE), marketing contacts gained due to participation in MarketMaker 

(CONTACTS), and firm total annual sales (SALES). Kernel selection for NIAM was 

based on the fact that SALES is a continuous variable and USER_TYPE and 

CONTACTS are ordered categorical variables.   

The mean WTP was estimated for SPILM, NIAM, Turnbull and log-logistic PM
9
 

methods. Marginal effects were estimated for SPILM and the log-logistic PM, and 

covariate-mean relationships were estimated for NIAM. The standard errors of the 

estimated means and marginal effects in SPILM and log-logistic PM were calculated 

using the bootstrapping procedure outlined by Cameron and Trivedi (2005, p.362) using a 

total of 100 replications. The point wise standard error bands suggested by Buja et al. 

(1989) were used as a measure of dispersion of the estimated smooth functions in NIAM. 

The standard error bands represent the fitted curve ± 2 estimated standard error. The 

standard error of each smooth function was estimated as the mean standard error across 

the 100 replications at each unique covariate value. Finally, the underlying PDF and CDF 

of the producers’ WTP for MarketMaker were calculated using expressions (15) and (16), 

respectively. 

The different bandwidths parameters of the SPILM and NIAM estimators were 

calculated using the 227 observations in the original data, then the smooth parameter ( ) 

                                                 
9
 The log-logisticPM assumes that producers’ WTP follows a log-logistic distribution  rather than a normal 

distribution, 
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of the error density function in iteration step 4b (Section 3.1) was fixed at these values in 

each replication of the bootstrapping procedure.
10

  

4.  Results 

4.1. Monte Carlo Simulation  

The RMSE, bias and standard error of the different mean estimators are presented in 

Table 1. Simulation results show that the conditional mean estimators of SPILM and 

NIAM dominate the unconditional Turnbull mean estimator in terms of RMSE, bias and 

SE. Furthermore, the SPILM mean estimator performed as well as the benchmark 

correctly specified parametric model even for the small sample size (100 observations). 

Hence, the SPILM mean estimator seems to provide a more robust alternative to PM 

without sacrificing efficiency.  Moreover, and as expected, the robustness gains to 

misspecification of the mean and distribution function when using the NIAM and 

Turnbull approaches result in efficiency losses.   

 The RMSE, bias and standard error of the marginal effects estimated using NIAM 

and the PM are shown in Table 2. None of the models is clearly superior for any of the 

sample sizes considered. The RMSE and SE values of the marginal effects estimated 

using SPILM were generally lower than those of the PM. On the other hand, the biases of 

the marginal effects on SPILM were generally higher than their counterparts estimated 

using the parametric model. However, in both cases the differences are very small.  

Therefore, and consistent with the mean estimators comparison, the simulation results 

                                                 
10

 The bandwidth parameter   in the SPILM and NIAM were estimated to be equal to 5.30 and 7.01, 

respectively. Fixing the bandwidth at predetermined values reduces the time needed for estimation of the 

standard errors.  
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indicate that relative to PM, the gains in robustness when using SPILM do not result in 

significant efficiency losses.  

The fitted smooth functions   ( )
   using NIAM are displayed on Figure1. The 

true effect of    on   implied by equation (17) is given by a straight line with slope of 3. 

In the case of the discrete variables, the true “marginal effects” are 3 for   , and 3 and -2 

for   
   and   

  , respectively. Overall, these plots of the marginal effects estimated using 

NIAM suggest that the true effects implied by (17) seem to be adequately captured by the 

estimated relationships between  ,    and   . For illustration purposes consider the 

random sample of size 500, where the estimated difference in   between an observation 

with      and one with       is estimated to be 2.29 units (compared to a difference 

of 3 units in the true model). Similarly,     value of an observation with      is 

estimated to be 2.68 units less and 2.31 units more than an observation with      and 

    , respectively (compared to the corresponding true differences of 3 and 2 units).  

The same data sets employed to estimate NIAM’s   ( )
   functions were also 

utilized to estimate the CDF and PDF of   using the PM, the Turnbull approach and the 

two proposed distribution free approaches (Figure 2). The CDF and PDF functions 

estimated using SPILM and NIAM are very similar. Furthermore, both approaches seem 

to provide reasonable approximations of the true underlying distribution functions. The 

marked difference between SPILM, NIAM and the true CDF estimates and those from the 

Turnbull approach are attributed to the fact that the formers are conditional estimates 

while the Turnbull CDF is estimated without considering the effect of covariates. 
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4.2. MarketMaker Data WTP Results  

The SPILM, NIAM, Turnbull and log-logistic PM mean estimates are reported in Table 3. 

The SPILM estimates that registered producers, on average, are willing to pay $36.82 

annually for the services provided by MarketMaker, and the NIAM estimates that, on 

average, producers are willing to pay $36.58 for such services. The SPILM and NIAM 

mean estimates were higher than the Turnbull estimate and lower than the parametric 

estimate. Moreover, both SPILM and NIAM estimates are within Turnbull’s mean 

interval estimate. On the other hand, the PM mean estimate of $41.20 lies outside 

Turnbull’s mean interval estimate [18.40; 38.47]. However, all mean estimates have 

overlapping 95% confidence intervals.  

In contrast to the Turnbull procedure, the SPILM and NIAM approaches allows the 

estimation of the effect of producers’ characteristics on their valuation of MarketMaker. 

Table 4 presents the marginal effects of the different covariates employed in the SPILM, 

as well as those estimated using the parametric model. SPILM estimation results indicate 

that active users of MarketMaker are willing to pay $17.08 more per year than their 

passive counterparts. The SPILM also predict that each additional marketing contact 

received due to participation with MarketMaker increases the annual WTP by $1.58. 

Lastly, SPILM results indicate that a $1,000 increase in total annual sales is expected to 

increase the annual WTP by only $0.03. Regarding the marginal effects estimated using 

the PM, two of the estimated effects are very similar to those estimated using SPILM and 

one of the effects is almost double (the effect of total sales). However, as in the case of 
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the mean estimates, the marginal effects estimated using both models have overlapping 

95% confidence intervals.  

In the case of NIAM, the relationships between each covariate – USER_TYPE, 

CONTACTS and SALES – and annual producers’ WTP for the serviced provided by 

MarketMaker are presented in Figure 3. In term of USER_TYPE, NIAM estimation 

results indicate that active users are willing to pay $16.13 more per year than passive 

users. NIAM results also indicate that producers’ WTP is positively related to CONTACT 

and SALES. Figure 3 also highlights the flexibility of NIAM to identify nonlinearities in 

the relationship between the dependent and explanatory variables.  

Finally, as an illustration, both SPILM and NIAM approaches were used to recover 

the conditional underlying probability function of producers’ WTP for the services 

provided by MarketMaker. The PDF and CDF estimates of producers’ WTP for the 

different models are displayed in Figure 4.  

5.  Summary and Conclusions 

The purpose of this study was to develop alternative distribution-free estimation 

approaches that can be used to analyze interval-censored WTP data obtained using the 

DBDC elicitation method. The proposed estimators involve iterated procedures that 

combine nonparametric kernel density estimation of the errors of the WTP function with 

parametric or nonparametric estimation of its conditional mean function. Although 

estimation of the mean WTP can be extended in principle to other modeling techniques, 

this study focused on parametric linear and nonparametric additive models. 
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 Monte Carlo simulation techniques were employed to compare the performance 

of the proposed estimators with those of the true parametric model and the Turnbull 

approach (the standard distribution-free approach used to analyze WTP data obtained 

with the DBDC elicitation method). A real data set was also used to illustrate the 

usefulness of the proposed estimation techniques in practice. 

Overall, the simulation results show that the proposed semiparametric (SPILM) 

and nonparametric (NIAM) estimators are valid alternatives to the Turnbull approach. 

Relative to the correctly specified parametric model, the robustness gains of using SPILM 

to estimate the mean and marginal effects do not seem to result in significant efficiency 

losses. SPILM was also shown to be significatively more efficient than the Turnbull 

method but it requires that the mean function is correctly specified. The relatively mild 

assumption used in NIAM, that the mean distribution function is of the additive form, 

results in significant efficiency gains and bias reduction relative to the Turnbull approach 

which does not require the specification of the mean function.   The proposed estimation 

techniques were also shown to have three additional advantages relative to the Turnbull 

approach: 1) they provide point estimates of the mean WTP; 2) allow the estimation of 

the marginal effects of covariates on the mean WTP; and 3) allow the estimation of the 

underlying WTP probability distribution functions at any point. Finally, results of the 

empirical analysis demonstrate the advantages of the proposed methods.  
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Table 1. Mean Estimators Comparison using Monte Carlo Simulation  

N Estimator RMSE Bias SE 

100 SPILM 0.456 0.003 1.752 

 

NIAM 0.686 0.022 1.774 

 

Turnbull 1.205 -0.096 2.145 

 

PM 0.456 0.008 1.775 

200 SPILM 0.327 -0.004 1.323 

 

NIAM 0.406 0.010 1.310 

 

Turnbull 0.772 -0.213 1.548 

 

PM 0.323 0.002 1.328 

500 SPILM 0.206 0.018 0.830 

 NIAM 0.273 0.026 0.840 

 Turnbull 0.518 -0.135 0.963 

  PM 0.198 0.013 0.830 
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Table 2. Marginal Effect Estimators Comparison using Monte Carlo Simulation 

N Estimator Marginal Effect RMSE Bias SE 

100 SPILM    0.124 0.038 0.119 

  

   1.096 0.098 1.097 

  

  
   1.186 -0.162 1.181 

  

  
   1.111 -0.096 1.112 

 

PM    0.132 0.025 0.130 

  

   1.122 0.105 1.123 

  

  
   1.199 -0.140 1.197 

  

  
   1.111 -0.108 1.111 

200 SPILM    0.075 0.017 0.073 

  

   0.807 0.077 0.807 

  

  
   0.858 0.042 0.862 

  

  
   0.852 -0.080 0.853 

 

PM    0.077 0.007 0.077 

  

   0.815 0.068 0.816 

  

  
   0.870 0.034 0.874 

      
   0.822 -0.068 0.823 

500 SPILM    0.039 0.003 0.039 

     0.482 0.031 0.483 

    
   0.552 0.076 0.550 

    
   0.499 -0.020 0.501 

 PM    0.038 -0.002 0.039 

     0.478 0.053 0.477 

    
   0.534 0.093 0.529 

    
   0.494 -0.029 0.496 
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Table 3. Mean Producers’ WTP by Estimator, MarketMaker Valuation Data. 

Estimator Mean Estimate SE 

SPILM 36.815 3.675 

NIAM 36.584 3.849 

Turnbull  28.435
 a

  3.166 

Log-logistic PM 41.197 6.772 
a
Turnbull’s lower and upper bounds mean estimates were 18.40 and 38.47, respectively. Turnbull’s mean estimate 

shown in the Table was calculated as  ̂( )  ∑
       

 
( 

    ̂   ̂   ).  

 

 

 

Table 4. SPILM and log-logistic PM Marginal Effect Estimates using the MarketMaker 

Valuation Data. 

Variable 
SPLIM 

 
Log-logistic PM 

Marginal Effect SE 
 

Marginal Effect SE 

USER_TYPE (Active user =1, 

Passive user=0) 
17.078 **

a
 9.493 

 
31.363 *** 12.290 

CONTACTS 1.584 * 1.061 
 

1.371 * 0.889 

SALES ($1,000) 0.026 ** 0.013   0.032 *** 0.014 
a 

Significance levels of 0.01, 0.05 and 0.10 are indicated by ***, ** and * respectively. 
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Figure 1. NIAM Fitted Smooth Functions Using Three Random Monte Carlo Finite Samples. 
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Figure 2. Distribution Function Estimates Using Three Random Monte Carlo Finite Samples. 
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Figure 3. NIAM Fitted Smooth Functions and Standard Error Bands, MarketMaker Valuation 

Data. 
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Figure 4. Distribution Function Estimates, MarketMaker Valuation Data. 
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7. Appendix 

Appendix A. Kernel Functions and Bandwidth Selection 

 

Three different kernel functions were used to compute the NIAM mean estimator 

 ̂(  )     depending on the type of variable under consideration. The 2
th

-order Epanechnikov 

kernel function for the k
th

 continuous variable   
 ( ) is given by 

(A.1)                 
 (          

 )   

   
 {  (

       

  
 )

 

}    (|
       

  
 |   ), 

where   ( ) is an indicator function and   
   . For the k

th
 unordered discrete variable the 

kernel function   
   ( ) is given by (Racine and Li, 2004) 

(A.2)                                   
   (          

   )  {
                      

  
                

, 

where     
     . Finally, the kernel function for the k

th
 ordered discrete variable   

  ( ) is 

given by (Racine and Li, 2004)  

(A.3)                                   
  (          

  )    
  |       |

, 

where     
    . 

 The bandwidth parameters   
  ,   

    and   
   were selected by the generalized cross-

validation (GCV) procedure described in Kauermann and Opsomer (2004). The objective of the 

this procedure is to find the vector   (  
       

    
       

    
      

      
   
  ) that minimizes 

the adjusted mean squared error 

(A.4)                    ( )  
(      ̂( )    )

 
(      ̂( )    )

 {  ∑   (  
 )  ⁄ }

 , 

where  ̂( )     ( ̂(  )        ̂(  )    ) , and for illustration purposes it is assumed that 

there are    continuous variables,      unordered categorical variables and     ordered 
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categorical variables such that              . Note that  ̂( )     and the   
 ’s depend 

on bandwidth vector  , even though this is suppressed in the notation. 

The kernel function   ( ) needed for estimation of the error density function  ̂ ( ) is set 

to be equal to the 2
th

-order Epanechnikov kernel  

(A.5)                      ( 

 
)   

 
{  (

 

 
)
 

}    (|
 

 
|   ), 

where   ( ) is an indicator function.  

The bandwidth parameter   was selected by adapting the the likelihood cross-validation 

(LCV) method developed by Braun et al. (2005) who proposed to redefine the observed intervals 

in terms of a series of disjoint intervals and then drop specific intervals form the original data 

based on their contribution to the presence of the created disjoint intervals. Instead of creating a 

series of disjoint intervals as in Braun et al. (2005), we propose to evaluate the estimator of the 

error density,  ̂ , n times using the observed error intervals and leaving out one error interval 

from the estimation at a time.  Braun et al. (2005) This original approach was modified because 

the error intervals in DBDC data present a high level of overlapping, resulting in very small 

disjoint intervals which makes difficult or even impossible to observe error intervals in the 

original data that are not composed by the disjoint interval of interest. Specifically, the cross-

validation method proposed aims to prevent possible overfitting problems by maximizing the 

(leave-one-out) log likelihood function given by  

(A.6)                                  ( )  ∑   [∫  ̂ 
(  )( )     

] 
   , 

with respect to  , where ∫  ̂ 
(  )( )     

 is obtained by dropping the interval-censored error    
 

when estimating  ̂ . Dropping an error interval is achieved by removing that particular error 

interval in addition to all estimated error intervals on iteration step (0.a) that are completely 
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enclosed by the error interval of interest. Once again, the bandwidth   is suppressed in the 

notation, even though  ̂ 
(  )( ) depends on it. 

 


