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Abstract 

 This study develops and solves a stochastic, multi-year, discrete space-time model that 

allows the comparative analysis between non-spatial and spatially explicit models. The solution 

to this model implies the Stochastic Space-Time Natural Enemy-adjusted Economic Threshold 

(SST-NEET) to guide the choice of the optimal level of a pest that warrants management 

intervention. Using numerical simulation experiments over a generated synthetic geography, we 

derive three major conclusions. First, a unified framework for optimal control of a biological 

invasion must consider the simultaneous complexities of stochasticity, space, time and spatial 

spillovers. Second, the suggested SST-NEET is the most generalized version of the spatially 

explicit NEET model that can be simply reduced to a spatially homogenous or non-spatial model 

by giving conditions of each model assumed. Finally, accounting for spatial environmental 

heterogeneity and spatial spillovers are important factors to consider when making pest control 

decisions. Considering the fact that the initial distributions of pests and natural enemies are 

determined by the distribution of their habitat, conservation policies that increase spatial 

heterogeneity and spatial spillovers can be an effective way to use pest control ecosystem 

services to manage a biological invasion. An application to biological control of the soybean 

aphid using the natural enemy ladybird beetles is developed using field measurements in Newton 

County, Indiana, USA. After empirical parameterization of the equations of motion in a predator-

prey system, the optimal economic threshold (aphids/plant) for using pesticides to control aphids 

is derived under three different forms of spatial heterogeneity. For a given set of input and output 

prices, the optimal economic threshold is derived numerically for three different forms of spatial 

heterogeneity. 

   
Key words: Economic threshold, Stochastic Space-Time optimization, Natural Enemy, 

Ecosystem Services, Biological Invasion, Conservation Practices, Soybean Aphid 
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I. Introduction 

 

Much of the economic research on biological invasion and its management is devoted to 

developing an optimal control model of pest densities that can be solved for a population level 

that is economically efficient or meets an environmental objective at least cost (Perrings et al., 

2000; Pimentel, 2002). The notable modeling advances in the economics literature are to take 

into account the spatial dimension of this management problem and uncertainty associated with 

the biological invasion process. As Wilen (2007) mentioned, the biophysical process of invasion 

is a spatial-dynamic process that evolves over space and time. Henceforth, the inclusion of the 

spatial process is essential to economic modeling of ecological phenomena (Ando and Baylis, 

2012; Bockstael, 1996). Though earlier spatially explicit models were based upon Partial 

Differential Equations (PDEs) with continuous space and time domains (e.g. Brock and 

Xepapadeas, 2004; Smith et al. 2009), more recent studies have modeled similar problems using 

a discrete space domain (e.g. Zhang et al., 2010; Epanchin-Niell and Wilen, 2012). Uncertainty 

is another ubiquitous feature of management of invasive species (Olson and Roy, 2002; 

Refsgaard et al. 2007). Analysis of expected impacts by quantifying uncertainty with 

probabilistic dispersions is a general way of handling uncertainty (e.g. Helpern et al. 2006; Liu et 

al. 2009).  

The existing economic models make a compelling case for the importance of each 

component (space, time, uncertainty) of biological invasion. By including either space or 

uncertainty together with time in a conventional dynamic optimization model, the results lead to 

spatially and temporarily meaningful conclusions compared to a time-only model. Yet, the 

crucial essence of bio-invasion is the simultaneous complexity of spatial-time dynamics with 
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uncertainty. Given this simultaneity, models without this level of simultaneous complexity do 

not reflect the true stochastic space-time processes, and thus do not allow researchers to compare 

results in a nested modeling framework capable of isolating the individual and cumulative effects 

of increasing levels of spatial complexity. A nested modeling framework that can handle 

multiple forms of complexity is therefore required to be able to execute a simulation-based study 

capable of comparing different levels of spatial complexity and their effect on optimal 

management choices over space and time. 

The pest management necessitated by a biological invasion frames the economic problem 

as one of optimal control of pest densities. Economically sustainable and environmentally sound 

pest control in agro-ecosystems has become an important issue (Millennium Ecosystem 

Assessment Board, 2005). According to Pimentel et al. (2005), $13.5 billion in losses occur from 

crop pests annually and total annual pest control expenses are approximately $120 billion in the 

US. The most prevalent means of pest control in modern agriculture is the use of pesticides. 

However, pesticides remain a source of much debate about environmental pollution and food 

safety issues. An alternative method of pest control relies on natural enemies to control crop 

pests and requires farmers to provide habitat for these beneficial insects on their land. Habitat 

management is a form of conservation biological control that aims to create a suitable ecological 

infrastructure within the agricultural landscape to provide needed habitat resources and functions 

(Landis et al., 2000). Non-crop habits for natural enemies such as hedgerows and woodlots in 

agricultural landscape typically support a higher degree of insect biodiversity that provides 

natural pest control than do crop fields (Bianchi et al., 2006). The Natural Resource 

Conservation Services (NRCS, USDA) adopts two types of conservation practice (CP) adjacent 

to crop fields to provide a more non-crop habitat to take advantages of biodiversity; low diversity 
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filter strips containing cool season grasses (NRCS CP-21) and moderate diversity wildlife 

buffers containing both native warm season grasses and flowering plants (NRCS CP-33). The 

increased grassland patches in agricultural landscapes are expected to provide water quality 

enhancement and to support climate regulation with carbon sequestration. 

Despite of well recognized benefits from providing a non-crop habitat in agricultural 

landscape, modelling an optimal control problem of biological invaders (pests) through 

ecosystem services requires an additional components to the previous three components (space, 

time and uncertainty). In non-crop habitat modelling, spatial influence of ecosystem services are 

important and the influences itself is not homogeneous over spatial domain (crop fields, non-crop 

habitat, and natural areas). Furthermore, control variables (spraying pesticides or installation of 

CPs) are defined in discrete spatial units and this defines the optimal control problem to an 

integer programming model. A few economic modelling studies suggested a discrete space-time 

dynamics models (for example, Ding et al., 2007; Epanchin-Niell and Wilen, 2012; Zhang et al., 

2010). Yet, their spatial domains are assumed as homogenous characteristics and control 

variables are defined as a strip-type patch, which is installed on a side of spatial units rather than 

a spatial unit itself
2
. Even though these models are very useful to fisheries or to animal disease 

control, we need a different type of general optimal control problem to model an ecosystem 

services. 

This study develops and solves a stochastic, multi-year, discrete space-time optimal 

control model that allows the comparative analysis between non-spatial and spatially explicit 

models. The suggested model, named Stochastic Space-Time Natural Enemy-adjusted Economic 

Threshold (SST-NEET), is designed to include a prey-predator system between a biological 

                                                 
2
 In our CP examples, the optimal locations of CP can be a strip-type control variable. The unit of spraying is, 

however, spatial unit itself, i.e., each crop field. 
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invader pest and its natural enemies, and an economic agent’s behavioral optimization of 

spraying decision. Since the model is defined as a generalized form of heterogeneous spatial 

components, we can reduce the suggested model to non-spatial model or to homogeneous spatial 

models by giving additional conditions. This study adopt Soybean Aphid (SBA) (Aphis glycines 

Matsumura), which is an invasive exotic species that originated in Asia, as a numerical example 

of the suggested model. It was first observed in Wisconsin in 2000 and has spread across the 

Midwestern Us, the Great Plains, and southern Canada (Venette and Ragsdale, 2003). SBA is 

reported as one of the key driver of spraying pesticides and a relatively new threat to soybean 

production and its equilibrium with the soybean agro-ecosystem has not yet been established 

(Smith and Pike, 2002). SBA suppression by pesticides and ecosystem services is relatively well 

studied in non-spatial and in spatially explicit models (e.g. Bianchi and van der Werf, 2003; 

Zhang et al. 2010; Zhang and Swinton, 2009 and 2012). By applying simulation studies, we 

derive SST-NEET from non-spatial, homogeneous and heterogeneous domain for SBA. The 

results show supporting evidences that providing non-crop habitats, CPs, can enhance pest 

control (SBA in the example) functionality of ecosystem services by increasing heterogeneity of 

landscape composition in agricultural crop fields.    

 

 

II. Related Literature 

 

The economic models of biological invasion and its management are majorly studied in 

fisheries and animal diseases as main topics in bioeconomics through the tradition of optimal 

control theory. The suggested model in this study is characterized into an optimal control model 
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either, but it develops a unified framework of the three major components: prey-predator (a pest 

and its natural enemies) system, uncertainty and discrete spatial process. Among much literature, 

we majorly review the previous studies on these three components.  

An inclusion of prey-predator system into optimal control model starts from 

understanding of a textbook type of Lotka-Volterra prey-predator system, which can be extended 

more complicated from of prey-predator system in the current literature. One of the earlier 

literature, Goh et al. (1974) studies an optimal usage of pesticides to achieve maximum 

performance index, e.g., health over simple Lotka-Volterra system. After sharing the concept of 

biological invasion, much of literature starts applying prey-predator systems into invasive 

species examples. Fenichel et al. (2010) scrutinize the indirect control of alewives (invasive 

species and prey) through salmon (predator) in Lake Michigan to maximize the discounted social 

net benefits. Their results with steady-state achieving phase diagrams show that ecological 

interaction such as prey-predator system can be an indirect control means for invasive species 

control. In more general sense of ecological system, Horan et al. (2011) describes the role of 

institution on socioeconomic-ecological system trade-off through Lotka-Volterra type prey-

predator system in a lake fishery example. Zhang and Swinton (2009) adopt prey (SBA) –

predator (lady beetles) system to achieve a farmer’s maximum profit from spraying decision. 

An optimal control model with uncertainty can be dealt with a stochastic programming 

model by figuring out a probability distribution. By assigning a probability of an event, the 

objective function is optimized to the expected values rather than deterministic values. In much 

of literature, environmental disturbances can accelerate or slow the spread of invasive species. 

Especially, weather event are an important factor in the dispersal and spread of invasive species 

(Olson and Roy, 2002). And this spatial dispersion can be applied any type of biophysical 
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process. Mahul and Gohin (1999) set up the transition probability of foot and mouth disease 

status for livestock in Brittany region, France. Ding et al. (2007) use a spatial stochastic spread 

of raccoon rabies. Bianchi et al. (2003) and Zhang et al. (2010) apply various kernel distributions 

to simulate spatial dispersion of natural enemies (lady beetles). Epanchin-Neill and Wilen (2012) 

give the uniform dispersion probability to four neighbor cells to describe spatial spread of pests’ 

invasion. Sanchirico and Wilen (1999) figure out many different types of population distribution 

over space in bioeconomics examples. In the literature on renewable resources, stochastic terms 

are used to assign spatial heterogeneity of costs over space (Costello and Polasky, 2008; Liu et 

al., 2009). Because of the characteristic of stochastic disturbances, numerical experiments and 

simulations are generally required to solve an optimal control programming with stochastic terms.      

Since time domain only optimal control models can be easily extended to spatially 

continuous domain problem, the optimal control theories over continuous spatial units have been 

widely studied. By extending Pontryagins’ Maximum Principle and by applying Hamilton-

Jacobi-Bellman (HJB) equations, an optimal control problem with continuous spatial domain is a 

generalized case of a time domain only program with PDEs. In terms of spatial effects, PDEs are 

usually defined as spatial diffusion (or spatial spillover) equations. Brock and Xepapadeas (2004, 

2008) adopts the diffusion equation to optimal control theory and suggest an analytical solutions. 

Wilen (2007) explains the basic concepts of spatial-dynamics process through bio-invasion 

example and he summarizes well about the major application studies. In renewable resource 

research, Sanchirico and Wilen (2005) propose a spatially explicit model of bioeconomic system 

using differentiable spatial policy equations. For the case of Smith et al. (2009), they adopt PDE 

of spatial diffusion equation and then, transform it to difference equation. Even though 

continuous spatial domain programs are useful in many biological invasion analyses, we 
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encounter many discrete spatial domain problems from data collecting units (e.g., grid cell data 

from remote sensing) or control variable defined by areal units (e.g., spray decisions). With these 

discrete spatial domain, we often need a discrete optimal control programs that is solved by the 

IP rather than HJB. Many of studies assume homogeneous grid cell geographies and define 

spatial spillovers of biological invasion or disease spread from one cell to its neighbors (Bianchi 

and van der Werf, 2003; Billionnet, 2013; Ding et al., 2007; Epanchin-Niell and Wilen, 2012, 

Zhang et al. 2010).  

Much of the literature in biological invasion, optimal control theory has been developed 

to include spatially explicit, stochastic and discrete dynamics programs. In spite of the 

remarkable progresses, there has less understanding about how to deal with areal control 

decisions and about how to implement comparison studies between non-spatial and spatially 

explicit models. Besides, recently, a few researches mention an importance of spatial 

heterogeneity explicitly (Costello and Polasky, 2008; Brock and Xepapadeas, 2010). To perform 

comparison studies between non-spatial and spatially explicit models of biological invasion, we 

need a generalized modeling framework including stochastic space-time dynamics. To deal with 

areal control decision variables, an optimal control program with discrete spatial domain needs to 

be set up and thus, we require considering the IP technique to solve it numerically. 

 

 

III. Non-Spatial and Spatially-Explicit Models of Pest Control 

 

 This study proposes and solves a stochastic, multi-year, discrete space-time optimal 

control model over heterogeneous spatial domain named SST-NEET. The model includes a prey-
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predator system between a biological invader pest and its natural enemies, and an economic 

agent’s behavioral optimization of spraying decision. To help the development of a general form 

of model, we use SBA example which is well studied in non-spatial and spatial optimal control 

models by the previous literature. Even though the suggested model highly depends on SBA 

example itself, the general modeling rules in this study has no restriction to apply to the other 

biological invasion problems.    

 

3.1. Economic Threshold and Natural-Enemy adjusted Economic Threshold 

 

There are two important concepts in integrated crop pest management for understanding 

pest and yield loss relationships. The economic injury level (EIL) is the lowest population of 

pests that will cause economic damage, i.e., yield loss that equals the cost of control. The 

concept, Economic Threshold (ET), is the population density at which control action should be 

determined (initiated) to prevent an increasing pest population (injury) from reaching the EIL 

(Stern et al., 1959). ET is a practical or an operational rule rather than theoretical. It differs by 

the different EIL, measurement methods, or economic agent’s experiences. For SBA, the North 

Central Soybean Research Program (NCSRP) recommends to spray pesticides if the average of 

SBA densities passes 250 aphids per plant over 20-30 sample plants covering 80% of the field. 

The ET 250 aphids per plant is the most generally accepted number for SBA. Ragsdale et al. 

(2007) develop EIL and ET under the field condition and derive the 273 ± 38 aphids per plant, 

which supports NCRSP’s ET. McCarville et al. (2011) perform cage condition experiments and 

they have the supporting results to 250 aphids per plant either. 
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The ET is calculated from the data relationship between SBA and yield losses. Zhang and 

Swinton (2009) point out that bioeconomic modeling has the advantages of quantitatively 

describing biological processes, interaction and predicting the response of management decisions. 

By suggesting an intra-seasonal dynamic bioeconomic optimization model that explicitly 

integrates the population dynamics of ambient natural enemies into pest management decision 

making, they suggest the Natural Enemy-adjusted Economic Threshold (NEET) concepts. If we 

assume that a single farmer wants to maximize profit from soybean production for a single 

soybean season. Then, the control variable, timing of spraying (  ) can be determined by the 

following optimization problem. 

 

   
  

[     ∑ (  )

   

   

]                                                                                                                            ( ) 

Subject to: 

              (     )                 and             ,           

              (        )                    

              (        )                 

 

The objective function presents profit from soybean: revenue (soybean price    soybean harvest 

  ) minus total cost of controlling Soybean Aphid (∑  (  )
   
   ). The state variable    denotes 

the yield potential at time   which captures changes in yield potential as a result of plant damage 

due to pest injury,    presents population density of Soybean Aphid at the time period  , and    

indicates population of Natural Enemies at the time period  . Zhang and Swinton (2009) 

originally state that 140 aphids per plants as a break-even NEET. But, they perform additional 
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analysis in Zhang and Swinton (2012) by changing conditions given to Zhang and Swinton 

(2009). They show that NEET can vary with wide range by the different market conditions and 

exogenously determined parameters.  

The ET and the NEET of SBA are relatively studied well by non-spatial and spatially 

explicit models. Table 1 shows the comparison of the ET and NEET models in the previous 

literature.  

 

- Table 1 about here – 

 

The presented models in Table 1 are based on a single growing season without stochastic 

considerations. The ET in Ragsdale et al. (2007) and McCarville et al. (2011) are the EIL-based 

ET for a single growing season. They have no concept of space or stochasticity. Zhang and 

Swinton (2009, 2012) adopt the NEET approach but both do not include space or stochasticity 

either. Zhang et al. (2010) do not mention NEET explicitly. They, however, include the 

equations of natural enemies’ population explicitly. Their purpose of study is to show the 

importance of landscape composition to suppress SBA by natural enemies. They divide the 

synthetic grid cell geography into monoculture soybean fields and non-crop habitats. The initial 

distributions of natural enemies are given as the fixed constants and then, they simulate the 

natural enemies’ spatial spillover through a deterministic dispersion function. Conceptually, they 

assume a geographical heterogeneity, but they suppose deterministic and homogeneous spatial 

dynamics of population density of SBA and natural enemies. In this study, we suggest a 

generalized model that includes all disregarded factors in the models in Table 1. By giving some 

restrictions, the proposed heterogeneous space model can be reduced to a non-spatial or 
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homogeneous space model. This makes the comparison analyses between non-spatial and 

spatially explicit models enable. 

   

3.2. Major Complexity Components of Biological Invasion Model 

 

As stated in the previous section, a biological invasion generally accompanies 

simultaneous complexities (stochastic process and space-time dynamics). Under the complex 

biological invasion process, a deterministic time domain only optimization problem such as ET 

and NEET oversimplify the reality. The much of the previous literature include parts of 

complexity components. It is, however, important to note that all these components happens 

simultaneously in reality. If considering our SBA example, we can derive the following four 

critical modeling components for complexities. We need to note that all components are related 

to the other components and they work simultaneously. 

First, this is a multi-year problem rather than a single year problem. Table 2 shows the 

period of soybean reproductive stages, planted area and production, and SBA arrival date in 

Indiana State for the 10 years (2002 to 2011). 

 

- Table 2 about here – 

 

Soybean producers encounter different SBA status year by year.  Some years are aphid year 

while the other years are non-aphid year. Even though SBA observed at the same data in the year 

2003 and 2004, the year 2003 was an aphid year whereas the year 2004 was not. These yearly 

fluctuation of SBA level and soybean production is mainly caused by environmental disturbance 
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such as weather events, which is the main source of stochastic process either. Henceforth, a 

single year optimization limits an economic agent as a myopic rationality. 

    Second, spatial heterogeneity should be considered. In many cases, the natural habitats 

for biological invaders and their natural enemies are different. In our SBA example, the main 

habitats for SBA is mainly soybean fields where is their main food source. Natural enemies, 

however, are living in natural areas (wooded areas, prairie, and stream corridors) or grass 

plantings before moving into soybean fields to chase prey. Because of this reason, much of SBA 

studies say that landscape composition is an important determinant of distribution of pests and 

their natural enemies (Bianchi et al., 2006; Gardiner et al., 2009; Meehan et al. 2012). In terms of 

modelling, spatial heterogeneity means each spatial unit has different spatial dispersion of 

biological invaders and natural enemies. Unfortunately, this characteristic usually generates the 

high dimensionality issue so called the curse of dimensionality, in optimal control model.   

 Third, stochastic process plays an important role in pests control problem. Environmental 

disturbance and weather fluctuation have a serious impact on biophysical process and on spatial 

dispersion of pests and natural enemies. During a winter, SBA stays at the northern part of the 

US where the natural habits for their hosts, buckthorn (Rhamnus). SBA arrivals in the 

Midwestern US begin when the temperature reaches the optimal breeding level, 20°-30°C, and 

aphids are transported through westerlies. Depending upon when temperature goes up and how 

many SBA are delivered by westerlies, aphid and non-aphid years are determined as shown in 

Table 2. The appearance of natural enemies is another stochastic process. Lady beetles seek their 

foods and change their locations continuously. Since their natural habitats are mainly non-crop 

fields, their initial appearance in the crop fields for beginning of a growing season are randomly 

distributed.  In a deterministic model, these two stochastic components are given as different 
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initial population density levels of SBA and natural enemies (Bianchi et al., 2006; Zhang et al., 

2010; Zhang and Swinton, 2009). For a stochastic optimal control model, these are represented 

by point processes (Cressie and Wikle, 2011). 

Finally, spatial spillover takes account into spatial externalities. One of key characteristic 

of biological invasion is spatial spread or dispersion. At once pests or diseases occurring at a 

certain spatial unit, they spread out to its neighbor spatial units through ecosystem network. Each 

unit is a node of whole ecosystem network. And a biological invasion proceeds along the nodes 

of spatial network following by biophysical process or landscape composition. This dispersion 

can be represented by spatial stochastic processes such as Zhang et al. (2010) or by dispersion 

parameters like Zhang and Swinton (2009).  In the case of SBA, its spatial dispersion is 

determined by the initial arrivals rather than its movement. SBA itself has a short life cycle less 

than 15 days for breeding period and its life boundary is generally limited to a very narrow 

boundary around a soybean plant where it arrives initially. Its natural enemies, however, have 

relatively wide spatial spread. A representative natural enemy, a lady beetle has about 2.5 km life 

boundary (Gardiner et al. 2009; Koh et al. 2013). Thus, all locations in the spatial domain 

surrounding non-crop habitats such as prairie remnants, large tracts of core prairie, and 

restoration grasslands are nodes on a grid where crops or habitat for natural enemies can be 

grown. Individual nodes are part of a network, such that a specific node may act as a bridge 

connecting several patches of habitat for natural enemies. To deal with such spatial externalities, 

we need to consider the public net benefits from making spatially explicit landscape composition 

at the regional scale given economic constraints and predator(natural enemies) - prey(SBA) 

dynamics. Individual producer’s model cannot take account into this spatial spillover effects.   
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3.3. A Stochastic Space-Time NEET Model  

 

Considering the simultaneous complexities stated in the previous section, the suggested 

stochastic, multi-year, discrete space-time optimal control model over heterogeneous spatial 

domain is modelling the dynamics of a social planner’s crop profit maximization problem with 

prey (SBA) – predator (natural enemies) system and spatial spillovers as shown in Figure 1. 

 

-  Figure 1 about here – 

 

Figure 1 is a conceptual extension of NEET model suggested by Zhang and Swinton (2009, p. 

1317.) which is based on a single farmer’s a single season time domain only model. Figure 1 

describes the optimal timing of spraying at a soybean field   during  -th growing season, where 

the time steps are the reproductive stages, from R1 to R5, of the soybean plants
3
. Thus, the 

sequential decision process undertaken determines the timing of spraying for SBA over the 

course of the growing season. If we aggregate this decision process for all soybean fields 

(       ) and multi-year (       ), then this process describes a social planner’s multi-

year optimization process.  

 Figure 1 includes interaction between spraying and prey (SBA:  ) – predator (natural 

enemies:  ) population dynamics, where natural enemies prey upon SBA which feeds on 

soybean affecting yield ( ). The main habitats for natural enemies are natural areas or non-crop 

fields. Thus, if there is more natural areas within a given boundaries (2.5 km determined by the 

                                                 
3
 Soybean growth stages are mainly classified as two stages: Vegetation and Reproduction stage. Zhang and 

Swinton’s (2009) model, equation (1) assumes that SBA damages are limited to Reproductive stage from R1 to R5. 

Detailed soybean growth stage is described at Purdue Soybean Station (http://www.agry.purdue.edu/ext/soybean/).  

 

http://www.agry.purdue.edu/ext/soybean/
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average life boundary of lady beetles) of  -th soybean field, the soybean field have a more 

chance to take abundance of natural enemies. This reflects the spatial heterogeneity from the 

landscape composition and the spatial spillover of natural enemies. Before the reproductive stage 

(  ), the initial arrivals of SBA to a soybean field are determined by temperature, westerlies and 

other environmental disturbances. Since the length of    affects to the population dynamics of 

SBA either, daily arrivals of SBA and the length of    determines the abundance of SBA at   . 

Thus,    and     are represented by stochastic processes. The initial appearance of natural 

enemies at a soybean field highly depends on their chance to find their food source at there. Thus, 

the initial appearance of natural enemies is represented a random event at   , i.e.,   . After 

taking the initial populations, both of SBA and its natural enemies follow the given prey - 

predator system.       

  Based upon the given optimization process in Figure 1, we suggest a SST-NEET model 

as shown in Equation (2). 

  

      
    

∑[∑    (          ∑ (      )

   

   

)

 

   

]

 

   

                                                                          ( )   

Subject to: 

                  (             )                                          ,T 

                  (                    )                                    
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                (      
                      

       )                         
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As an extension of Equation (1), Equation (2) is represented by a multi-year stochastic space-

time optimization model with heterogamous spatial domain. The state variables, potential yield 

(      ), SBA population density (      ), natural enemies density (      ) and       , have the 

subscript of a year (       ), a reproductive stage (          harvest) for a year   and 

a soybean field (       ). The objective function is now reflecting yearly discounting factor 

( ). In natural enemies equation ( ( )), natural area proportion (    ) 4 is included to reflect 

spatial spillover caused by the landscape composition. The initial distribution of natural enemies’ 

population density (      ) is assumed to follow the Discrete Uniform distribution whereas the 

initial distribution of SBA population density (      ) is supposed to follow the Poisson 

distribution. The distribution is determined by considering characteristic of random events
5
. 

Before getting into prey - predator system, initial arrivals of SBA has an additional complex 

stochastic process for   period. If the first arrival of SBA happens at day 1 for  -th year (   

 ), then it starts breeding the next generation through reproduction function  ( ). The same 

processes are repeating a day before   stage (  ). Thus, the initial distribution of SBA density at 

  is determined by the summation of all daily arrivals and their reproduced populations for 

  period. For the reproductive stages from    to   , both natural enemies’ and SBAs’ 

population density are described by the given prey - predator system not by a daily based process. 

 Equation (2) has two different variable definitions from Equation (1). The first is that 

spraying decision is not a control variable but it is defined as a state variable through a 

behavioral equation  ( ), which is an indicator function. The addition of this behavioral equation 

                                                 
4
 Natural area proportion (    ) does not vary within a growing season. Thus, it does not contain a reproductive 

stage subscript ( ).  
5
 As discussed at the previous section, the initial appearance of natural enemies depends on their food sources and 

thus, it is given as a pure random process for each soybean field. In the case of SBA, their initial arrivals are majorly 

determined by westerlies and temperature. This is an exemplary case of Poisson point process. 
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is given by reflecting the reality of the limited information of SBA population density. Under 

Zhang and Swinton’s (2009) assumption of Equation (1), the producer can observe complete 

dynamics of population density of SBA with/without spraying for a whole growing season and 

can choose the optimal spraying timing. Thus, the producer only cares spraying decisions which 

support the maximum profit. In reality, however, producers can spray out chemical insecticides 

when the scouting density or the expected density without spraying is more than NEET. The 

suggested model in Equation (2) forces the producer spray when population density of SBA at 

the beginning of a reproductive stage (      
 ) reaches to the NEET or when population density of 

SBA without spraying at the end of a reproductive stage (        
 ) passes to the NEET. Thus, 

Equation (2) gives a more realistic restriction of incomplete information of SBA density to a 

producer than Equation (1) does. 

 The other difference in Equation (2) from Equation (1) is that the control variable of 

Equation (2) is defined as NEET rather than spraying decision ( ). By changing the control 

variable, we solve the NEET to maximize the profit that allows implementing comparison of 

NEET from non-spatial and spatially explicit models by conditioning on Equation (2). Table 3 

summarizes conditions and the derived models from Equation (2). 

 

- Table 3 about here – 

 

Spatial heterogeneity in pest control models can be spatially varying population densities of pests 

or natural enemies, land composition, control costs and etc. In this study, the spatially varying 

initial population density of SBA and its natural enemies are adopted to allow the comparisons of 

the parallel studies. Since land composition is reflected into natural area proportion (    ), 
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geographical heterogeneity is considered as the same way in Bianchi and van der Werf (2003) 

and Zhang et al. (2010). If we assume there is no spatially varying initial population density of 

SBA and its natural enemies (     and     ), Equation (2) is reduced to a homogenous spatial 

model. Non-spatial models do not allow any spatial spillovers or spatial heterogeneity over 

optimization process. Under the same homogeneous conditions from the homogeneous space 

model, we can give a restriction as the spatial spillover parameter, which is a parameter of 

natural area proportion (    ) in Equation (3), is equal to zero (   ) to derive non-spatial 

model. Since the comparable study to the spatially explicit models (heterogeneous and 

homogenous space models) maximize the profit/ha (Zhang and Swinton, 2009 and 2012), we set 

up the objective function as per ha profit rather than total profit. For the comparison studies in 

the next section, we calculate the average of total profit over total harvested areas from the two 

spatially explicit models.  By applying the same stochastic processes of the initial distribution of 

SBA and its natural enemies, Equation (2) provides a way to compare the NEETs from non-

spatial and spatially explicit models. 

 

 

IV. Numerical Experiments 

 

 It is rarely feasible to collect reliable size of sample to cover whole population of 

optimization process of pest management or other types of biological invasion. Especially, SST-

NEET model proposed in this study requires a very long term samples which cover all study 

regions to perform data based approaches by considering many different random events. To 

overcome this difficulty, one of generally accepted solution is a simulation based approach. By 
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generating a representative virtual environment through computer, we can repeat the numerical 

experiments with thousands of different simulations to support general conclusions. Based upon 

the similar scenarios adopted in the previous studies, we perform numerical experiments of 

optimization process for the suggested SST-NEET model.   

 

4.1. Synthetic Geography  

 

Regular grid cells are very general setup in biological invasion literature (Bianchi and 

van der Werf (2003); Ding et al., 2007; Epanchin-Niell and Wilen (2012); Zhang et al., 2010). In 

SBA studies, Bianchi and van der Werf (2003) create 16 ha (400m × 400m) with total 1,600 grid 

cells of 10m × 10m cell). Among those, they assign 1%, 4% and 16% of total cells as squares-

shaped non-crop habitat with different fragmentation level of landscape composition. The other 

cells are defined as homogenous soybean fields. Based upon the same geography in Bianchi and 

van der Werf (2003), Zhang et al. (2010) extend the size to 1600 ha (4,000m × 4,000m) with 

total 640,000 grid cells of 5m × 5m cells). By applying 10% natural area proportion, they use 

6,400 cells as non-crop habitats with squares, strips and archipelago type landscape compositions. 

The different shapes are given to each simulation separately. Even though studies are valuable to 

test natural enemies’ role to suppress SBA over heterogeneous landscape composition, their 

landscape composition may be too oversimplified to represent a real landscape. i.e., a combined 

composition of all squares, strips and archipelago type are more realistic. The shape and 

combinations of non-crop habitats can affect to spatial spillover of natural enemies population as 

well. Considering the above disregarding factor, we generate a synthetic geography by using the 

base concept in Zhang et al. (2010) as shown in Figure 2. 
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- Figure 2 about here – 

 

We generate 1,600 ha area (4,000m × 4,000m) and each cell is given as 1 ha (10m × 10m) for 

calculation simplicity. Similar to Zhang et al. (2010), about 10% (159 cells) are given as natural 

areas but different shape of non-crop habitats are assigned over one landscape: one forest 

(squares type: 81 cells), one river (strips type: 56 cells) and four hedgerows (archipelago type:  

36 cells with four 9cells). And the other 1,441 (90%) cells are given as soybean monoculture 

fields. Since each non-crop habitat can be a part of a large natural or semi-natural areas 

connected to the outside of coordinates in Figure 2, we assign the natural area proportion (    ) 

of each soybean field by using a distance decay function. From the 2011 crop data layer (CDL) 

of Newton County
6
 in IN, the soybean fields directly connected to natural areas are given as 48% 

(the 90% of quartile of natural area proportion from the CDL), and the other soybean fields are 

assigned a distance decayed values up to 0% over ten different distance intervals between 0 and 

1,000m. 

 

4.2. Numerical Model Specification  

 

To demonstrate a feasibility of the suggested model of Equation (2), we specify a 

numerical model of SBA example over the synthetic geography in Figure 2. This example is a 

stochastic space-time extension of Zhang and Swinton (2009, 2012) and the results are 

comparable to the parallel studies stated in Table 3. A social planer’s profit maximization from 

soybean production can be given as:  

                                                 
6
 For parameter estimation in the section 4.2., the field data collected from Newton County, IN is used. Data details 

are in the next section. 
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where 

  : proportion of yield lost per unit of pest density 

   : net growth rate of SBA population in the absence of predation 

  : mortality rates of insecticide application  

   : aggregate predation rate per natural enemy unit 

  
 

   
 : discount factor given annual discount rate, r, according to the Producer Price Index 

    : proportion of natural area influencing natural enemies at soybean field s for in year k 

    : natural enemy-adjusted economic threshold 

 

The model is applied to Soybean Aphid control in Newton County, Indiana. For parameter 

estimation, the field data collected by the Holland Landscape Ecology Laboratory 

(http://www.entm.purdue.edu/landscapeecology/) at Purdue University during the 2011 soybean 

season is used. Koh et al. (2013) use the same dataset to analyze connectivity models of 

http://www.entm.purdue.edu/landscapeecology/
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conservation biological control agents. The summary of parameters is shown in Table 4 and 

details explanations follows. 

 

- Table 4 about here – 

 

4.2.1. Prices and Costs 

 

 To get price and cost parameters in the optimization problem (3), we need to specify the 

initial year. This is because all of the price parameters will be discounted to the initial time 

period at the rate  . Considering the fact that the field data was collected in 2011, prices for the 

year 2011 are assumed to apply to the entire time horizon. The discount rate used is from the 

Producer Price Index (PPI) from the Bureau of Labor Statistics
7
. From Table 2, it is clear that the 

soybean reproductive stage ends around the beginning of September for each year. Thus, the 12 

months unadjusted September PPI based on the September 2010-2011 period of 6.9% is used for 

the parameter. Thus, the discrete discounting factor is given as  =1/(1+0.069). The USDA 

National Agricultural Statistic Services (NASS) reported soybean price (  ) in Newton County, 

Indiana in 2011 was $0.4643/kg (=$12.50/bu). 

As Song et al. (2006) mentioned, the spraying costs sensitively varies over region and 

season. To derive constant spraying cost in the study area, we have reviewed several available 

price source and chosen the average level of cost combination. The cost of spraying to control 

SBA is consisted of two parts: a scouting cost (  ) and a spraying cost (  ).  We assume that the 

scouting happens at the beginning of each reproductive stages. Thus, there are total four times 

                                                 
7
 Producer Price Index (PPI) is released as monthly base by the Bureau of Labor Statistics. http://www.bls.gov/ppi/  

http://www.bls.gov/ppi/
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scouting and this is a fixed cost. On the other hand, spraying cost is a variable costs depending 

on how many times spraying is implemented. Spraying cost consists of pesticides costs and 

treatment costs. From the various sources, the total spraying costs are calculated as Table 5. 

 

- Table 5 about here – 

 

The spraying cost in Table 5, $21.89/ha(=$8.87/ac), is similar to the mid-range control cost of 

$22.94 (=$9.29/ac) by Ragsdale et al. (2007) while it is lower than $24.69/ha (=$10/ac) by 

Zhang and Swinton (2009). 

 

4.2.2. Potential Yield 

 

 We follow the same function of potential yield equation (      ) and adopt the estimates of 

the proportion of yield lost per unit of pest density (  ) in Zhang and Swinton (2009). They use 

the rectangular hyperbolic model and get the estimates by the nonlinear least squares. Among 

their estimates,     has the negative value (-0.001) and they replace it as zero from the 

assumption of non-compensation rule. This setup, however, may be unrealistic because it means 

zero pest injury for R2 stage. To give a more realistic assumption, we use the value of    

       for   . Since the R1 stage has only four-day median length in Table 2, we assume that    

of the pest injury level continues to the R2 stage. 

 

4.2.3.   Population Dynamics of SBA 
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In the SBA equation in (3), three parameters are required to be estimated: net growth rate 

of SBA population in the absence of predation (   ), the mortality rate of insecticide used to 

control aphids ( ), and aggregate predation rate per natural enemy unit (   ). To get realistic    , 

a reliable repeated exclusion experiment, where natural enemies are excluded from soybean 

plants that aphids are allowed to feed on, is required. From abundant field experiment data 

comparing exclusion and treatments where aphid predation is allowed, Costamagna et al. (2007) 

found that a linear decreasing growth model has the best fit for explaining natural growth of the 

SBA population. The discrete daily growth model can be written as: 

 

  
     

      (   (     (        )))               (4) 

 

where   is the number of days since the first day that aphids arrived and      is value of the 

intrinsic rate of increase at the     . The parameter   denotes the decrease of linear decreasing 

rate per unit of time as the host plant advances through the phenological stages. The equation (4) 

describes a symmetrical bell-shaped population curve with the peak at       . The relative 

rate of increase is largest at     , and decreases linearly in time. Its slope becomes zero at 

      , which is the time of the population peak, and becomes more and more negative as 

time passes. The population returns to a value of    at       , at which time the relative rate 

of change is       (Costamagna et al., 2007).  From the Costamagna et al. (2007), natural 

growth of population of SBA can be simulated with            and        . In our 

simulation, however, these values make population growth too fast to explain our data. We adopt 

Zhang and Swinton’s (2009) parameter,           and        and apply them to the 
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median length of soybean growth stages in Indiana.
8
  The simulated growth rates, using equation 

(4), of SBA over each growth stage are shown in Figure 3. 

 

- Figure 3 about here – 

 

Zhang and Swinton’s (2009) net SBA population growth rate per stage in the absence of natural 

suppression is assumed and given by: 

 

    (
 ̂   

 ̂ 
)                      (5) 

 

where  ̂  is the mean of Soybean Aphid population for each growth stage depicted by the dotted 

line in Figure 2. The mortality rate from insecticide ( ) is assumed as 0.99 and aggregate 

predation rate per natural enemy unit (    ) is calculated as the median length time 35 

aphids/day/E in Zhang and Swinton (2009). 

 To simulate random arrival of SBA as a space-time point process, we suppose that 

random arrivals follow a homogeneous Poisson process according to       
           ( )  in 

Equation (3). To simplify the generating process and to avoid explosion of population density at 

an early stage, it is assumed    . The expected number of observations on the first day in the 

field measurement data is also close to one. As described in the previous section, if the first 

arrival of SBA happens at day 1 for  -th year (    ), then it starts breeding the next 

generation through reproduction function  ( )  by a day before   stage (  ). To specify a 

                                                 
8
 The median length of each growth stage is reported in Table 2. The details of this can be found in Casteel’s work   

http://www.agry.purdue.edu/ext/soybean/Arrivals/2011_0707SOYReproDev.pdf  (Accessed at April 4, 2014) 

http://www.agry.purdue.edu/ext/soybean/Arrivals/2011_0707SOYReproDev.pdf
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function  , we use Equation (4) but the equation is now defined as daily SBA population density 

with predation and spraying. Since the field measurement data was collected with predation by 

natural enemies and spraying, we can estimate equation (4) as a population dynamics equation of 

SBA with predation and spraying. Because of inclusion of predation and spraying, we can reduce 

dynamics of natural enemies and spraying in this stage. Nonlinear least squares estimation of 

equation (4) yields the results in Table 6. 

 

- Table 6 about here – 

 

For simulation of the initial distribution of SBA, random Poisson process in Equation (3) is 

implemented first for all soybean fields at each year. The estimated parameters from Table 6 are 

used in growth equation (4) to simulate each day and the cumulative summation over time before 

  stage is calculated. 

 

4.2.4. Population Dynamics of Natural Enemies 

 

 Population dynamics of natural ermines in Equation (3) are modeled using the well-

known Lotka-Volterra prey-predator equation that was adopted previously by Zhang and 

Swinton (2009). To estimate the net decline rate ( ), the reproduction rate ( ) and spatial 

spillover parameter ( ) on abundance of natural enemies, we set up a descriptive relationship of 

Equation (6) similar to Zhang and Swinton (2009). 

 

                                (6) 
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where                . Because of data limitation, we use only    and    stage field 

measurement data and give an assumption that the estimates of (6) is universal for all 

reproductive stages. By using White error correction, the Least Squares estimation results are 

shown in Table 7. 

 

- Table 7 about here – 

 

To simulate the initial appearance of natural enemies (      ), the discrete uniform 

distribution is assumed. We setup     for the simulations of the initial appearance of natural 

enemies. 

 

4.3. Solution Method  

 

 Dynamic optimization generally can be solved by Hamilton-Jacobi-Bellman (HJB) 

equation. The dynamic problem in (3), however, includes discrete variables: the positive integer 

of NEET and the binary decision to spray. Thus, gradient-based approaches are not suitable for 

this type of problem. The discrete representation of spatial domain adds an additional 

computation issues as well. The optimal control models combined with discrete domains and 

variables are called integer programming and the solution paths can be found through dynamic 

programming or discrete numerical boundary value solution techniques. Among those, Zhang 

and Swinton (2009, 2012) used a numerical calculation based on a set of optimal control paths 

which finds the solutions after calculating all of the possible combinations of control variables. 
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We adopt this enumeration approach to solve our optimization problem in (4). Figure 4 shows 

the process used to find solutions. 

 

-  Figure 4 about here – 

 

We are solving infinite time horizon optimal control solution in Equation (4). By applying for the 

methods in Epanchin-Niell and Wilen (2012), we redefine the infinite time horizon as the finite 

time domain. We choose      large enough so that the decision rules and equilibrium values 

are not sensitive to changes of  . Thus, Equation (4) become a finite year optimal control model. 

In the simulation, at first, we generate stochastic daily arrival of SBA at    stages which 

contains 50 years times 1,441 soybean fields’ random number generation. Using the initial 

distribution equation of SBA, we calculate SBA population density at  . From the discrete 

uniform distribution, we generate the initial distribution of natural enemies’ density at   , which 

includes 50 years times 1,441 soybean fields’ random number generation as well. After these two 

stochastic processes, we solve SST-NEET in Equation (4) by increasing the NEET from 1 to 500 

and save the optimal NEET number. To support many different initial distribution scenarios, we 

repeat the same process 1,000 times. By giving the restrictions in Table 3, we find 1,000 scenario 

NEET solutions for homogeneous space and non-spatial models either to perform comparison 

analysis. 

 For the SST-NEET model, there are in total 36,025,000,000 calculations (=1,000 

scenarios × 50 years × 1,441 soybean fields × 500 NEET).  Through HASEN-A cluster of Rosen 

Center for Advanced Computing at Purdue, 96 cores (2.3 GHz) take approximately 33 hours and 

21 minutes. In a general integer programming, researchers often encounter intractable dimension 
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problem so called the curse of dimensionality. If this problem comes out, then the enumeration 

approach is not applicable anymore. For this case, the solver, Solving Constraint Integer 

Programs (SCIP) provides a feasible way (Achterberg, 2009).  

 

 

V. Results 

  

We implement non-spatial, homogeneous space and heterogeneous space optimal control 

model of Equation (3) with the same 1,000 initial arrival scenarios of SBA and natural enemies. 

The derive SST-NEET results are shown in Figure 5. 

 

- Figure 5 about here – 

 

Two spatially explicit models (Heterogeneous space and Homogeneous space) are maximizing 

the total profit while non-spatial model are maximizing total profit / ha. To make them 

comparable, we calculate the average total profit over total harvest areas for 50 years in the 

spatially explicit model. In Figure 5, the maximum values of profits for each initial distribution 

scenario are drawn as a line by increasing SST-NEET from 0 to 500. The median values of profit 

following by increased NEET are the blue line and 95% confidence intervals of the median are 

the two black lines. The optimum SST-NEET is represented by the red vertical line. Form the 

simulations, the optimum of spatially heterogeneous SST-NEET shows the highest value (40 

aphids/plant). The optima from spatially explicit models are higher than the optimum of non-

spatial SST-NEET. 
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 The SST-NEET in this study and NEET in Zhang and Swinton (2009, 2012) are based on 

the reproductive stage whereas the ET in Ragsdale at al. (2007) is based on the daily growth 

stage. Thus, these are not directly comparable to each other. From Table 2, we use the median 

length of each reproductive stage in Equation (3).  Thus, if we apply the results of Table 6 into 

Equation (4) backwardly, we can derive the daily based SST-NEET that is possibly comparable 

to the ET. Since spraying decisions are available on    to    and the behavioral equation of 

spraying in Equation (3) is decided by       
                      

       , the maximum lead 

times are five days. For example of   stage with 10 days the median length, the agent waits to 

spray until        will exceed the NEET value if        
  is less than the NEET. Besides, the agent 

will spray if she expects that       of one of any day in    will pass the NEET without spraying. 

Thus, the maximum lead times are the median length of the longest mid-time among    to   , 

i.e., five days. Table 8 shows the daily based expected SST-NEET for each models. 

 

- Table 8 about here – 

 

The five-day lead times SST-NEET in Table 8 from non-spatial model can be compared to 

Ragsdale et al. (2008). We apply the higher soybean price, $0.4643/kg (=$12.50/bu) than 

$5.50/bu, $6.00/bu, or $6.50/bu in Ragsdale et al. (2008) while the the cost of control ($21.89/ha) 

in this study is lower than the middle level of costs of control ($24.51/ha) in Ragsdale et al. 

(2008). In the concept of EIL and ET, the higher soybean price leads the lower ET while the 

lower cost of control derives the higher ET. Considering this trend, the calculated daily expected 

SST-NEET for non-spatial model in Table 8 can be seen as a congruent value from the Ragsdale 
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et al. (2008). From the almost doubled soybean price, 336 aphids/plant is higher than 273±38 

aphids/plant but it is still less than two times standard deviation ranges in Ragsdale et al. (2008). 

 From Table 8, we can see that spatially explicit models deter spraying decision because 

of the higher SST-NEET of two models than the SST-NEET of non-spatial model. Even more 

interestingly, the heterogeneous SST-NEET has 537 aphids/plant that is much higher than 376 

aphids/plant in the homogeneous SST-NEET. Up to five days lead time, the homogeneous SST-

NEET shows the similar level to the non-spatial SST-NEET. If we consider the expected initial 

distributions of SBA and natural enemies are the same in heterogeneous and homogeneous 

models in enough size of different scenarios, this means that increasing heterogeneity over space 

bring the more effective suppression of pests by ecosystem services. Since the initial 

distributions of SBA and natural enemies are determined by the environmental disturbance, a 

feasible way of taking the more advantage of ecosystem services is increasing spatial spillover 

effects. In terms of policy means, this conclusion supports the fact that CP policies can be an 

effective way by using the ecosystem services on pest control. 

 

 

VI. Conclusion and Future Steps 

 

 This study develops and solves a stochastic, multi-year, discrete space-time optimal 

control model that allows the comparative analysis between non-spatial and spatially explicit 

models. The suggested model, named Stochastic Space-Time Natural Enemy-adjusted Economic 

Threshold (SST-NEET), is designed to include a prey-predator system between a biological 

invader pest and its natural enemies, and an economic agent’s behavioral optimization of 
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spraying decision. By suggesting a unified framework for handling simultaneous complexities in 

optimal control models of biological invasion, this study finds the following three conclusions 

through numerical simulation experiments with the field collected data. 

First, the optimal control model of biological invasion needs to be considered 

simultaneous complexities in the unified framework. There have been much of the previous 

studies including some parts of stochastic, space and time dynamics. Even though their 

approaches are successful to show one or more of components are important in the biological 

invasion process, the crucial aspect of biological invasion is that multi-year stochastic space time 

dynamics happens simultaneously. To avoid oversimplifying bias, this study suggests the model 

that is possible to include major four complexity components in a unified model. 

Second, the suggested SST-NEET is the most generalized version of the spatially explicit 

NEET model. The SST-NEET can be simply reduced to spatially homogenous or non-spatial 

model by giving conditions of each model assumed. Through the numerical simulation 

experiments, we show that this unified framework is working well to implement comparison 

analysis.  

Finally, accounting for spatial heterogeneity and spatial spillovers are important factors to 

consider when making pest control decisions. The numerical experiments show that the spatially 

heterogeneity deters the SST-NEET notably from the spatially homogenous or non-spatial SST-

NEET. Considering the fact that the initial distribution of pests and natural enemies are 

determined by the environmental disturbance, the increasing spatial spillovers can be an effective 

way to use ecosystem services to manage biological invasion. This means that installation CP 

makes agroecosystem services more effective and net benefit from CP installation can be higher 
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than spray. Thus, installation of CPs can be an economically better way to control Soybean 

Aphid instead of spraying.  

Since this study is still ongoing process, a general process to rigorously test validity of 

the suggested model is still underway. The following future steps for analysis are planned: 

including CP installation scenarios on the SST-NEET simulation; and implementing an extensive 

sensitivity analysis of simulation parameters; and performing economically meaningful scenario 

analysis. 
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Table 1. Comparison of Economic Thresholds 

Study Type
a
 

ET/NEET 
(aphids/plant) 

Time Space
b
 Stochasticity 

Ragsdale et al. (2007) ET 273 ± 38 Single Season Non-Spatial No 

McCarville et al. (2011) ET 250 Single Season Non-Spatial No 

Zhang and Swinton (2009) NEET 140 Single Season Non-Spatial No 

Zhang and Swinton (2012) NEET varies Single Season Non-Spatial No 

Zhang et al. (2010) NEET Not stated Single Season Homogeneous No 

a
 If the study includes natural enemies’ equation explicitly, then it is classified to NEET. 

b
 Non-Spatial models do not include spatial analysis. The homogeneous space means that all 

crop fields have the same initial distribution of SBA population density, and the non-crop 

habitats are given as the fixed initial distribution of natural enemies’ population density. 
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Table 2. Observed Duration of Soybean Reproductive Stage in Indiana for 10 years, 2002 - 2011 

Stagea R1 R2 R3 R4 R5 R6 First 

Observed 
Soybean 

Aphidb 

Aphid (O) 

/ Non-
Aphid (X) 

Yearb 

Planted 

Area  

(1,000ac)a 

Soybean 

Production 

(1,000 bu)a 
Median 

Duration 

4 10 10 10 15 20 

begins ends begins ends begins ends begins ends begins ends begins ends 

2011 6/27/2011 6/30/2011 7/1/2011 7/10/2011 7/11/2011 7/20/2011 7/21/2011 7/30/2011 7/31/2011 8/14/2011 8/15/2011 9/3/2011 7/29/2011 X 61.6 3004 

2010 6/21/2010 6/24/2010 6/25/2010 7/4/2010 7/5/2010 7/14/2010 7/15/2010 7/24/2010 7/25/2010 8/8/2010 8/9/2010 8/28/2010 7/23/2010 X 64.5 3254 

2009 6/30/2009 7/3/2009 7/4/2009 7/13/2009 7/14/2009 7/23/2009 7/24/2009 8/2/2009 8/3/2009 8/17/2009 8/18/2009 9/6/2009 6/12/2009 X 67.3 3266.6 

2008 6/22/2008 6/25/2008 6/26/2008 7/5/2008 7/6/2008 7/15/2008 7/16/2008 7/25/2008 7/26/2008 8/9/2008 8/10/2008 8/29/2008 6/13/2008 X 66.4 3397.3 

2007 6/25/2007 6/28/2007 6/29/2007 7/8/2007 7/9/2007 7/18/2007 7/19/2007 7/28/2007 7/29/2007 8/12/2007 8/13/2007 9/1/2007 5/23/2007 O 56.8 2857.5 

2006 7/3/2006 7/6/2006 7/7/2006 7/16/2006 7/17/2006 7/26/2006 7/27/2006 8/5/2006 8/6/2006 8/20/2006 8/21/2006 9/9/2006 6/6/2006 X 76.2 3748.2 

2005 6/20/2005 6/23/2005 6/24/2005 7/3/2005 7/4/2005 7/13/2005 7/14/2005 7/23/2005 7/24/2005 8/7/2005 8/8/2005 8/27/2005 5/26/2005 O 72.5 3564.7 

2004 6/21/2004 6/24/2004 6/25/2004 7/4/2004 7/5/2004 7/14/2004 7/15/2004 7/24/2004 7/25/2004 8/8/2004 8/9/2004 8/28/2004 6/11/2004 X 73.4 3783.4 

2003 7/1/2003 7/4/2003 7/5/2003 7/14/2003 7/15/2003 7/24/2003 7/25/2003 8/3/2003 8/4/2003 8/18/2003 8/19/2003 9/7/2003 6/11/2003 O 76.8 2447.4 

2002 6/24/2002 6/27/2002 6/28/2002 7/7/2002 7/8/2002 7/17/2002 7/18/2002 7/27/2002 7/28/2002 8/11/2002 8/12/2002 8/31/2002 6/18/2002 X 77.8 3875.6 

a
 USDA NASS, 2002-2011 

b
 Purdue Entomology Extension weekly online newsletter, http://extension.entm.purdue.edu/pestcrop/ 

 

http://extension.entm.purdue.edu/pestcrop/


 

- 42 - 

 

Table 3. Conditions and Various Models from the SST-NEET 

 
Heterogeneous Space 

Equation (2) 
Homogenous Space Non-Spatial Model 

SBA            ̅       ̅   

Natural Enemies            ̅       ̅   

Natural Area  
Spatial Spillover 

Parameter
a
 ( ) ≠ 0 

Spatial Spillover 

Parameter ( ) ≠ 0 

Spatial Spillover 

Parameter ( ) = 0 

Maximization Total Profit Total Profit Profit/ha 

Parallel ET
b 

Studies 
. 

Bianchi and van der 

Werf (2003) / 

Zhang et al. (2010) 

Ragsdale et al. (2007) / 

Zhang and Swinton 

(2009, 2012) 
a
 Spatial Spillover Parameter ( ) is in Equation (3). 

b
 ET: Economic Threshold 
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Table 4. Summary of Parameters 

Parameter Value Meaning Source 

r 0.069 Producer Price Index (PPI) Bureau of Labor Statistics 

   $0.4643/kg Initial soybean price USDA NASS 

   $19.76/ha Scouting cost Table 5 in this study 

   $21.89/ha Spray cost Table 5 in this study 

   

          

Proportion of yield lost per unit 

of pest density for each stage 
Zhang and Swinton (2009) 

          

          

          

          

    

           
Net growth rate of SBA 

population in the absence of 

predation 

Calculated using  

Costamagna et al. (2007) and 

Zhang and Swinton (2009) 

           

           

           

    

         

Aggregate predation rate per 

natural enemy unit 

Zhang and Swinton (2009): 

35 SBAs/day/E 
          

          

          

  0.99 mortality rate of insecticide Zhang and Swinton (2009) 

  1.9644 Spatial spillover of E Table 6 in this study 

  -0.7049 Net decline rate of E  Table 6 in this study 

  -0.0005 Reproduction rate of E Table 6 in this study 

  1 Intensity of SBA arrival Newton County data 

  1 Maximum appearance of E Honěk (1989) 
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Table 5. Total Treatment Costs of SBA Management 

Inputs Source Price 
Application 

 Rate 

Costs for 

the acre 

Pesticides 

(Lambda-

Cyhalothrin) 

Makhteshim Agan 

of North America
a
 

$38.80/gallon $8.00oz/ac $5.99/ha 

Treatment Purdue Extension
b
   $15.90/ha 

Spraying    $21.89/ha 

Scouting Song et al. (2006) $4.94/scout Four times $19.76/ha 

a
 The price can be referred to http://www.cdms.net/LDat/ld0HL020.pdf 

b
 Purdue Extension: Chemical Application 2013 Indiana Farm Custom Rates, 

  https://www.ces.purdue.edu/extmedia/EC/EC-130-W.pdf 

 

http://www.cdms.net/LDat/ld0HL020.pdf
https://www.ces.purdue.edu/extmedia/EC/EC-130-W.pdf
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Table 6. Estimation Result of Daily Soybean Population Dynamics Equation (4) with Predation 

and Spraying 

Variable Coefficient Approx. S.E. 95% Confidence Intervals 

     0.1906 0.0675 0.0568 0.3245 

  0.0498 0.0136 0.0228 0.0769 

     

N. 118    

F 4.26*    
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Table 7. Estimation Results of Natural Enemies’ Equation 

       # Obs.    F 

Estimates     -0.7049***    -0.0005** 1.9644*** 56 0.3209 8.35*** 

     (0.2348) (0.0002) (0.4930)    

Standardized     -0.6011      -0.1458 0.6400    

p-value: *** < 0.01, ** < 0.05, * < 0.1 

White robust errors are in parenthesis.  
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Table 8. The expected daily based SST-NEE for Non-spatial and Spatially Explicit Models  

 Spatially Explicit Models 
Non-spatial 

Model 
 

Heterogeneous Homogenous 

Days/NEET 40 aphids/plant 28 aphids/plant 25 aphids/plant 

1 48.17 33.72 30.11 

2 69.20 48.44 43.25 

3 117.45 82.22 73.41 

4 233.34 163.34 145.84 

5 537.46 376.22 335.91 

6 1421.69 995.18 888.55 

7 4278.03 2994.62 2673.77 
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Figure 1. Dynamics of the Suggested Stochastic Space-Time Optimization Model 

Note: This figure is a conceptual extension of Fig. 1 in Zhang and Swinton (2009, p. 1317.). 
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Figure 2. Synthetic Geography 
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Figure 3. Natural Growth of Soybean Aphid Population with           and         
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Figure 4. Solution Method: Enumeration Approach 
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Figure 5. Results of SST-NEET: Non-spatial, Homogeneous Space and Heterogeneous Space  

 

 

 


