

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S

Effect of Freezing Temperatures on Different Varieties of Sugarcane and the Millability of Damaged Sugarcane in Louisiana ${ }^{1}$
lis John I. Jadmyquy, senior physiologist, Dilision of Sugar Plant Investigations, Burctu of Ptant Industry, Soils, and igricultwal Enginering; R, T. Liacer, senior chemist, Agricultural Rescarch Division, Bureau of agricultural and Erolustrial Chemistry; Lester G. Davison, associate chemist, and Geoboe Arcesead, scnior agronomist, Division of Sugar Plant Investigalions, Bureut of RLath Industry, Soils, and Agricultarat Bnjineering, Agrioultural Rescarch An禺nistration

In a previous publication (9), ${ }^{2}$ covering a period from 1930 to 1938, attention was given to the relation of the degree of freezing injury of sugarcane to normal, deleterious, physiological, and chemical changes in standing and windrowed cane and cane stored at different temperatures. The investigation was limited primarily to two varieties, Co .281 and Co .290 , butit revealed some of the difficulties involved in a varietal study.

Stuclies reported in this bulletin, covering the period 1939-45, are limited to the freezing injury of leaves, terminal buds, lateral buds (eyes), and stalks of nill came; and to the effect on sugar manufacture of some of the chemical and physiological changes that occur in injured and killed stalks. However, the investigations were primarily a comparative study of varietics. Since it was not possible in most instances to arrange the studies according to the part of the plant affected, these data will be reported by the yenr in which the experiments were con-

[^0]ducted. The study was carried on at the United States Sugar Plant Field Station and atjacent areas, Houma, La.

PROBLEMS IN EXPERIMENTAL PROCEDURE

An accurate evaluation of the relative susceptibilizy of varieties of sugarcane (mill cane) to freczing injury is dificult, if not impossible, to attain. This difficulty arises from the small difference in susceptibility among varietics to freezing injury, the vaciation in susceptibility within a variety because of differences in maturity at the time of freazing, and the many envirommental variables involved. Among the variables are the presence or absence of wind; wind direction and velocity; intensity, daration, and frequency of freezing temperatures; quantity of moisture in cme, air, and soil; clifferences in radiation; nearness of cancfich to streams, bodies of water, and wooded areas; relative position of bodies of water and wooded areas to canefield; and air drainage. Added to these variables is the problem of sampling the cane and the variation in environmental conditions resulting from the taking of samples from the experimental plots.
The chameter of the foliage-whether abundant, sparse, spreading, erect, or whering to stalk-and other factors affect the intersity of freezing injury under the same envirommental conditions. These factors are latgely varietal and should be so considered in makijg a comparison between varieties.
The erectness of stalks, density of stand, and the Feight of relative to the sturrounding cane within a field also influence thie degree of injury under identical enrironmental conditions. These asperts are normal characteristics of a variety, but they may be modified; by storm damage and tactors affecting the growth and developmentof the plant.
In lodged cane of the same variety freezing injury is more variable and severe in spots than in arect canc. Lodging is rarely, if ever, uniform throughont a field; hence, there will be areas in which the cane is down and others in which it is relatively upright and massed together. The cold air settles down into the low areas where it canses mure damage than in the cane massed together. All varieties may lodge under the influence of heavy rain and high winds, bat some vavieties have a propensity to lodge ander normal weather conditions. A uniform canopy of leaves interferes with the setting of cold air in the cancfield and with the eseape of radiated heat from the soil, thus affording considerable protection to the lower part of the cane stalk. An open stand of cane, which is characteristic of certain varieties, is subject to more injury than is a dense stand in which the foliage forms a contimous, thick layer. A thin stand of any variety of cane will be injured more quickly and severely than a thick stand. Cane in the interior of a field is nawally injured less than that along the roadways and adjacent to open fields.
In the absence of wind the minimum termperature varies greatly with the location. Normally the minimum temperatures along the bayou fronts in the Delta area are not so low as those farther back toward the lomlands and swamps. This difference arises largely from the variation in the character of the soil and hence the amount of radiation, atthough air drainage from the higher bayou and river fronts to the lower swamplands may play a part. The soil is lighter.
in color and sandier along the Mississippi River and bayou fronts and becomes heavier and darker toward the lowlands and swamps. A difference in minimum temperature of more than $4^{\circ} \mathrm{F}$. has bean observed (about 4 feet above the ground) between a station hear Bayou Black and one about 200 or 300 yards away in black land. The minimum temperature became gradually lower in passing from the first station toward the second, as indicated by the degree of chamage to the canc. Wooded areas or high vegetation apparently lend to lowe the temperature in the adjacent cane area (10). Freezing injury to cane is greater near the swamps.

During still nights there is often striking stratification of temperature. In an open field $(0,10)$ the lowest temperature is observed near the ground. In a stand of unfiozen cane the coldest temperature is observed near the top of the cane and becomes warmer in passing within tha cane towarl the soil $(7,9,10)$. A strunge effect of this stratification was observed when a large number of varieties were phanted in small plots in a field. In such a planting the tops of some varictics will stand sereral inches above the common level of the field during the fall monthis. Under the influence of a mild freezing temperature (28° to $32^{\circ} \mathrm{F}$.) such foliage was observed to be green while the foliage at the common foliage level was damaged. A more striking effect was observed when cane was planted on amall mome, 4 or 5 fieet high, and also at the side of it in the fiek. The cane on the mound rscaped freezing injury, whereas that in the field showed considerable injury. A difference in natural elevation in Louisiana may be responsible, in some instances, for a difference in temperature. A difference in the degree of injury was observed betreen cune on opposite sides of a bayou. The reason for such diference is not clear.

Because of the obstruction of woods, buildings (\mathcal{S}), and other obstacles, a certain degree of channeling of freezing temperatures will occur, giving rise to differences in temperature at different locations. With the presence of wind and as the velocity of wind increases, the difference in temperature in local areas tends to disappear, although among large areas major differences may exist. The direction of the wind sometimes gives rise to differences in freezing injury. Under the influence of mild freezing temperatures one side of a field of cane-as few as eight rows from which the cane on both sides had been harrested-showed injury while the other side remained normal. Greater injury often has been observed in cane on the windward side of the field than in that on the leeward side.

If and when freezing temperatures occur singly and are followed by a period of nonfreezing temperatare, the problem of studying physical symptoms is relatively simple. Under such circumstances -ufficient time is arailable for the symptoms to develop and for one to examine them leisurely and include in his study larger samples and a greater number of samples. Usually such occurreaces are rare. Commonly, freezing temperatures occur during two or more successive nights. Prolonged periods of more than tour or fire successive nights are rare. The interception of the various stages of successive freezes can be accomplished in part by windrowing cane each morming and examining the cane later. The examination will be limited to mingy to the terminal bucl. the eyes. and the stalk hecause the leares will be further damaged and will dry out in the windrow. The drying effect cannot always be distinguished from the freezing injury. In case there
are severe freazing conditions, the terminal buds, upper eyes, and upper part of the stalk und any exposed lower part of it may be injured in the windrow (0).

Considering the aceumulated degrees of injury that take place within a short time and the enormous quantity of work refuired in examining the necessury samples of cane and the recording of detailed data, the scope of the investigation mast of necessity be limitec, especiatly: if the necessary samples to be chemically anatyzed for physiological and fermentative changes that take phace are to be includel in the investigation.

An intial freezing period may be followed by one or more periods of freaing temperatures of varying intensity. As a result of ancepsive frezang periods, the injurious effect is comulative in standing cane. Thas, keeping abreast of physical and chemical symptoms is a rather laborious task. Repeated sampling for examination of physical symptons and chemical changes is required. Such sampling alters a stand of canc, and the exposure becomes greater with each successive freczing temperature and periohs of treezing traperature. The nonfreeang enviroment is ahso modified by sucessive sampling. It eatmot be assumed that each and ath varietios are similarly affocted by the renoval ot samples, athongh the samples have the same momher of stalks. The stalks vary in size and mumber per mil area. If the investigation is limited to wo or there varibies. extreme thiming can be avoided by taking in new plots that are butiered by stambing cane, but am error due to location enters into the problem.

Replication for a given flegree of freezing does not reduce the thiming out. As the number of ratieties is inerased, the difficulties of location and thinning ate increased. If freeang temperatures were limited to one night or one period. the problem would be greatly simplifed. Then succeoding sampling would not be as mech of a fator. Such ideal conditions are seldom realized. To synchenize (he necessary planting and proper not techaique with the becurrence of such conditions would be aceidental, mhess harge phantings were continuonsly mantathed for no other purpose. The constunt sbift of varioties in commerind caltme and the incrasing nomber of promising theleased varieties would aggravate this phanting problem. It is more pactical to take adrantage of existing plantimgs made for other muposes.
Because of the uncertanty and the infrequeney of the occurmen of freeging temperatures, it is int feasible to mantain the nevesary staff for freezing wow alone. Only the arailable time from other reguied reseitreh work ean be devoled to freezing problens; hence, the scope af the investigation must be limited to and rombitioned by the extront to which the stafl can be shifted to perform the necessary work.

Frecaing injury or the killing of sugacame tissue by freezing temberatmes and the resistame or suscepthitity of canc to these condifions may be considered under fier eategories. depending upon the part: of the phant aflected: (1) Foblage. (3) terminal buds. (9) lateral buds. (f) stalks, and (i) the unferground part of the plant. The importance of injury and death or absence of injury and death of these parts depends upon their function.
Injury to and death of leaves result in impaiment or dest ruction of the photosynthetic mechanism amt. hence, the growth ath the syn-
thesis of carbohydrates, including sucrose. Injury to or death of the terminal buds impairs terminal growth and forces the apper uninjured lateral buds to germinate. Injury to or death of mature lateral buds impairs or destroys their reproductive capacity. Injury to or death of part or all of the sugarcme stalk impairs or destroys its use as seed cane as well as its use for the manufacture of sugar, at least if the injury or death extends to the millable part of the stalk. Injury to or death of the undergromed parts impairs or destroys the developmental and reproductive capacity of the plant. Such injury and death affect the immediate and succeeding crops.

experimental data

Temmal Beb hinery Dehnec the Habesting Season of 1939-40

During 1039 minimum temperatures of $31^{\circ}, 29^{\circ}, 32^{\circ}$ and $31^{\circ} \mathrm{F}$. oreured on November 5, 6,24 , and 29, at the United States Sugar Phant Fied Station. These temperatures were severe enough to injure the leaves and femimal buds of the cane growing in light land at the station ($B-\overline{0}-\mathrm{F}$). ${ }^{3}$ Data were taken on teminal bud mjury in platat (ane in 1,28 -foot single-row plots (2 plots left blank) in 16 rows (7 plots in each row). There were 15 control plots of Co . 281 and 14 of C. P. $2 \mathrm{~S} / 10,1$ plot each of 6 other commercial, or formerly commercial, varicties, and 1 plot cach of 75 urclensed varieties. Ten tops, cut off as tw upper millable joints. were faken at random from each plot and examined tor injury and killing of the terminal bud (table 1). The extent of injury was estimated, mad the values given are subject to

[^1]

[^2]Table 1.-minjury to terminal buds of 8 commercial and 75 wnreleased varieties of sugarcate following freezing temperatures of $\$ 1^{\circ}, 99^{\circ}, 92^{\circ}$, and $31^{\circ} F$. on November 5, 6, 28, and 29, 1939, respectively, at the Duited States Sugar Plant Field Station, Mouma, La,-Continued

Yariety	'Tons แแct	Theminal buds injured				
		Slightiy	Mfoderstely	Severely	Total	Terminul buds killed
C. P. 32fot	$\begin{array}{r} \text { Number } \\ 10 \end{array}$	$\begin{aligned} & \text { Perceist } \\ & 30.0 \end{aligned}$	Percent	$\begin{gathered} \text { Perceat } \\ 10.0 \end{gathered}$	$\begin{array}{r} \text { Percent } \\ 00.0 \end{array}$	$\begin{aligned} & \text { Percent } \\ & i 0.0 \end{aligned}$
C. $\mathrm{B}^{2}+3231810$	10	20.0	10.0	0	30.0	70.0
c. P. $327321 .$.	10	0	${ }_{0} 0$	30.0	30.0	70.0
c. ${ }^{2}$ c. ${ }^{3}$	10	10.0	20.0	a	30.0	70.0
C. ${ }^{\text {P }}$. $32 / 332$ 2	10	20.0	20.0	30.0	70.0	30.0
C. P. ${ }^{\text {C }} 32 / 3336$	10 10	${ }_{10.0}^{0 .}$	10.0 10.0	20.0 20.0	30.6 10.0	70.0 0010
C. P. $32 / 121$.	9	$\underline{29.2}$	77.7	0	100.0	${ }_{0}$
C. P. 3/142	10	40.0	40.0	20.0	100.0	0
C. P. 33/165	0	0	55.5	44.4	100.0	0
C. P ${ }^{2}$ 32/173.	10	10.0	30.0	20.0	[00. 0	tu. 0
C. P. ${ }^{\text {P }}$ 3/185	8	0	0	50.0	50.0	50.0
С. P. P. 33/216.	10 10	30.0	30.0 40.0	10.0 10.0	80.0 50.0	20.0 50.0
¢. P. 331234.	10	10.0	0	30.0	40.0	00.0
C. P. $31 / 2 \times 1$	8	± 5.0	0	37.5	62.5	37.5
C. P. $31 / 232$	8	0	77. 5	12.5	50.0	51.0
C. P. $37 / 233$	9	92	0	55. 5	77.7	29.2
C. P. $\mathrm{P} .33 / 23^{2}{ }^{2}$	10	70.0	20.0	10.0	1000	0
C. P. $33 / 255$	10	\$0.0.	30.0	0	21.10	10.11
C. P. 331/257	10	20.0	312.0	50.0	l(k). 0	11
C. P. 33/3n7	10	30.0	20.0	30.0	80.0	20, 0
C. P. $33 / 320$	d	+0.0	0	20.0	\$10.0	40.0
C. P. $33 / 342$	10	20.0	80.0	10.0	90.0	10.0
C. P. $33 / 343$	10	20.0	10.0	20.0	50.0	51.0
C. P. $33 / 368$.	10	10.0	10.0 40.0	20.0	40.0	c0. ${ }^{19}$
C. P. 233370	10	30.0	10.0	30.0	70.0	w. 1
C. $\mathrm{P} .33 / 372$	9	33.3	33.3	33.3	100.0	0
C. P. 33/389	10	0	00.0	$\underline{90.0}$	\$0.0	20.0
C. P. 33/39	10	60.0	20.0	20.0	100.0	0
C. P. $331 / 397$	10	81.0	20.0	0	100.0	0
C. P . 3331303	10	70.0 20.0	30.0	$\stackrel{0}{40.0}$	110.0 80.0	30
C. ${ }^{\text {P }}$. $33 / 400$	10	0	50.0	30.0	70.0	315.0
C. P. 3:3400	10	+0.0	31.0	20.4	00.0	10.0
C. ${ }^{2} \cdot 3 / 414$.	10	54.0	40.6	10.0	1 LO 0	${ }^{11}$
c. P. $33 / 415$.	9	22.2	55.5	11.1	88.8	11.1
C. P. $33 / 45$	10	0	+10.0	60.0	100.0	0
P. $\mathrm{P} \cdot 334459$	10	0	0	40.0	40.0	6
C. P. 331474	10	10.0	$\underline{30} 0$	40.0	70.0	30.0
c. $\mathrm{P} .33 / 4{ }^{\text {a }}$	10	30.0	me.	4	10.0	10.0
C. P. $31 / 885$	10	90.0	50.0	10.0	100.0	0
C. P. $33 / 494$	10	23.0	10.0	50.0	80.0	20,0
C.P. 3/3501	10	10.0	50.0	30.0	99.0	10.9
C. P. $33 / 500$	10	40.0	30.0	20.0	93.0	11.0
C. P. $34 / 14$.	10	60.0)	the. 11	20.0	100.0	0
P. $34 / 9$	10	50.10	40.0	20.0	18.0	10.0
P. ${ }^{\text {P/ }}$ +160.	10 10	50.0	30.4	(30.0.	160.0	"
P.342t.	0	\cdots	16.0	11.1	100.0	0
$1{ }^{1} 34+25$	10	50.0 ¢	30.0	30.0	10 NL .4	0
1.34/27	10	10.0	10.0	20.0	40.0	0
${ }^{1}$	19.	30.0 !	$: 10.0$	40.0	110.0	0
p, 355\%	10	100.0	20.4	10.0	1000	0
P, 31459	16	50.0	10.0	31.0	93.0	10.0
9,31\%3	10	14.0	나. 0	:21.0	90.0	10.0
${ }^{1} \cdot 34 / 8$	10	30.0	70.0	0	100.0	6
${ }^{\text {P }}$ 3 31/30.	10	50.0	40.1	110.0	100.0	0
C, P. $21 / 380 \ldots$	10 !	40.0	30.0	31. 6	90.0	10.0
C. ${ }^{\text {P }}$, 31/31...	10	20. 0 ;	0	30.0	50.0	50.6

[^3]: Commerelai varleties.
uror of judgment, except when the terminal bud was killed, which generally is definitely indicated. No sound buds were found in any lot or variety, and in no case were all the buds killed. There was some
indication that the injury became slightly greater as the distance from the bayou (Little Bayou Black) was increased.

Stumes Made During the Harvesting Season of 1940-41

On November 15 and 16, 1040 , the minimum temperatures at the United States Weather Bureur Station at Southdown Phantation were 23° and $22^{\circ} \mathrm{F}$. (11). The minimum temperatures at the United States Sugar Plant Fick Station were 22° and 22°. The cane at the station had not been previonsiy frozen. The freezing temperatures were followed by rather high (emperatures (table 2).
'Gabse 2.-Watimam, minimun, und mean temperatares and rainfall' during a windrowing experiment with Co. ©St and Co. 290 (table 8), 1940

In anticipation of the pretided treding (emperatures on the night of November it and the moming of November 15 , adiarent chts (the cane between two deaimage ditehes) of Co. 231 and (0.290 in light lath at Southiown Phantation were selected for the purpose of stadying the effects of freving temperatures on injury to the stalk and deterionthon of sucrose. On November $1 \pm$ a block ot each variety of (athe, consisting of 6 rows (3 windrows), 100 deet long, at the back of the first quarter drain and 5 rows trom the dramage ditch, was windrowed (lot 1). Minmm themometers were installed in a shelter, t feet abore the ground, in the windrowed eane area of each variety. A second bloek of the same size of cach varicty (lot 2) was windrowed November 15, and a hied lot, November 16. Dach lot was insulated by standing cane. Samples (30 stalks) of enela variety and lot were takea from the top end and middle points (along the rows) of each windrow of each lot and from standing cane at the time of windrowing and at the end of each successive period (tabse 3) for chemical amalysis. Likewise, lu-statk samples were selected alomer the windrows ot lots 2 and 3 for retailed examination of jajury (table 4) at the time of windrowing.

Fifteen additional staths of hols ${ }^{3}$ end 3 of both varicties werp stomed nt a lemperature of $65^{\circ} \mathrm{l}^{7}$. and at relative humblity of 95 percent for 11 days (mbtil Nov, 3) and then exmmed for the presence of soumd. injured, and dead eyes. Only the somat and injured eyes, however, were counted. One sound aw and two injured eyes were found in lot 2 of Co. 281 ; m sound or injured eye were found in lot 3 . Co. 290
showed two sound eyes ($\operatorname{lot} 2$) and one that may or may not have been alive (lot 3). The sound and injured eyes were found only at or near the gromad level (basal eyes).

Pable 3.- Effect of freaing temperatures of Notember 15 and 16, 19.4, on Bria, opparent sucrose, apparent purith, aeidtity, and pif rulte in windrowed and statitug cane of the variefies Co. 881 and Co. ono yetht cane

CO. $3:$

'Trace
 as indicafrd by the futcont of damuge dome to tetaces, stathes, ferminal buds, that ege's \{laterat hadis) bil frezing tomperatures of Noramber 15 and $16,10.90$

[^4]Aside from the difference in eye injury in lots 2 and 3 of both varieties, the cyes were softer and darker and there was more marked water soaking and more exuded juice on stalks of lot 3 tham on lot 2 . Co. 281 appeared to be more severely injured than Co .290 . In one or two cases (lot 2) the lower internode of ead variety was almost normal ; othewise, the interior of the stalks of both lots and varieties was water-soaked throughout. All the teminal buds and leaves were killed by the freczing temperatures of November $1 \overline{3}$ and 10.

Concomitantly with the windrowing of lots 2 and 3 mongh cane (about 330 stalks) was cut off at the base for selection of 25 ($\operatorname{lot} 2$) to 27 (lot 3) mitopped 1 costalk samples of each lot and variety. The samples were selected by drawing stalls at random from a pile of cane. These samples were stored athigh humidity at temperatares of $65^{\circ}, 75^{\circ}$: and $90^{\circ} \mathrm{F}$. Only one sample of each lot und varicty was stored at 65°, and it was examined for freezing injuy alter 11 days' somage (table 5). The of her samples were divided equally between stomare at 75° and at $90^{\text {a }}$. Two of these samples of each variety and lot were analyzed for changes in Bris, sucrose, phy and excess aedity at the begiming of storage and at ferquent intervals (table 0).

On November 10 the minimum temperatures within the cuts of Co. 281 and Co. 240 were 19.6° and $30 . t^{\circ} \mathrm{F}$., and on Nowember 16, 19.3° and 0° (tablestand 5). The temperature at the station on the night of November 14 had reached 27° by 10:30, and in the euts of Co . 281 and $\mathrm{Co} .290 .23^{\circ}$ by $11: 00$. A themorraph recom, taken in a shelter (4 feet above the groond) situated in sandy soil some distance away from the windrowel eme, showed that the tenperature had been 32° and tower for 18 hours and 30° and lower for 12 hours during the night of Sorember tis and the morning of Norember 10.

[^5]

All the leaves and teminal buds and most of the eyes (tables 4 and 5) and stalk were killed in both variedies and lots (Nos. 3 and 3).

Tame 6.-Changes in Brix, apparent sucrose, apparent purity, acidity, and pH value during storage at 2 temperatures and relative humidities in plant cane injured by freezing temperatures of Nov. 15 and Nov. 16, 1940

CO. 200

${ }^{1}$ Difficulty was experienced in fitering and in obtaining polarization readings in juice of 3 out of 4 samples of cane after in days' storage at a temperature of 00° F. and a rolativo Inmidity of 86 percent.
${ }^{2}$ Difinculty was experfenced in oltering and fo obtahing polarization readings in 1 of 4 samples of cane atter 11 days' storage at 75° F. and 82 percent relative humidity.

On the basis of the sound and injured eyes remaining, the water soaking of the interior of the stalk, and the presence or absence of a slight amount of sound tissue in the lower internode in both varieties (tables 4 and 5), lot 3 showed severer injury than in lot 2 . Co. 281 appeared to be more severely injured than Co .290.

There was no significant change in Brix in windrowed cane of either variety (table 3) in lot 1 (windrowed before the occurrence of freezing temperatures). The drop in purity was greater, as asual, in Co. 290 than in Co. 281. In Co. 281 it was greater in lot 1 than in lots 2 and 3 and also greater than in standing cane. In Co. 290 it was greater in lot 1 than in lot 2 but less than in lot 3 and in standing cane. The change in 13 rix and sucrose in lot 2 ot Co 281 was slight. The change in Beix in lot 3, and particularly in standing cane, was considerably greater that in lot 2 . The slight increase in apparent purity in lot 3 of Co .281 and the relatively small drop in purity in standing come, considered by themselves, would indicate 30 loss or relatively small loss of sucrose. The rather heary loss in Brix, however, particularly in standing cane, indieated rather heavy loss of sucrose. This behavior is chatacteristic of an alcoholic type of termentation in badly frozen cane ($(5, \eta)$. The invert sugars are destroyed as fast, or almost as fast, as they are formed, thas tenting to leave a high purity. The drop in purity in windrowed cane in lot 1 of Co .290 was greater than in lot 2 , but less than in windrowed cane in lot 3 and in standing cane. It was greater in lot 3 than in lot 2 and greater in standing cane than in lot 3.

Taking into consideration the drop in purity and the loss in Brix in lots 2 and 3 and in standing cane, the loss of sucvose was much greater in Co. 290 than in Co. 281. The results clearly indicate that standing cane showed much heavier losses of sucrose than frozen winkrowed cane of both yarieties. This difference is believed to be due to a lower temperature in the windrow than in standing cane. A trace of excess acidity ${ }^{4}$ was indicated in lot 1 of both varieties by the end of the windrowing experiment (December 2). This trace may have deve)oped as a result of injury to cane while in the windrow. Cane has been known to be injured in the windrow by severe treezing conditions (0). In the present case the freezing conditions, including the minimum temperatures and the dumation of these temperatares, were rather severe. It is also possible that the trace may have been due to carbon dioxide that may not have been driven off before the titration was made.

There was a development of excess acidity in lots 2 and 3 and in standing cane of both varieties. This development was rather slow, but was greater in lot 3 than in lot 2 and in standing cane than in lot 3 . This slow development of excess acidity is characleristic of alcoholic fermentation. The change in pH coincided fainly well with the change in acidity.
It is quite obvious on the basis of loss in Brix and drop in purity in lots 2 and 3 of Co . 281 that an increase in temperature from 75° to 90° F. increases the rate of inversion and loss of sugars (table 6). The

[^6]loss in Brix in Co. 290 (table 6) was no greater in lot 2 stored at 90° than in that stored at 75°, but the drop in purity indicates that there was an grenter loss of sumbose through inversion at 90° than at 75°. In lot 3 the loss in Brix and drop in purity were greater at 90° than at 75°. It alse will be noted that the loss of sucrose was greater in lot 3 of both varieties than in lot 2 , especially in cane stored at 90°.

The changes in acidity and pHe clearly show that lot 3 of both sarieties was injured more than lot 2 and that deterioration was more rapich at 90° thm at $75^{\circ} \mathrm{F}$. They also indiente that deteriontion in both lots and varieties was more rapid at 90° and at 75° ian case of Co. 2no than in the windrow. This is further emphasized by the fact that the duration of stornge at 75° and 90° was several days shorter than stompe in the whatrow (tables and 6). The averago maximum air temperathre for the period of windrowing was 70.5° (table 2) and that in the windrow mast have been somewhat less (2). It will be seen from thase resuls that the temperature following severe freaing injury may be an important factor in influencing the rate of deteriomation.

Judging by the loss in Brix in the two rarieties stored at 75° and 90° F., lot 3 of Co . 281 was damared more than lot 3 of Co .290 . The rererso was true in windrowed eane. Standing Co. 290 lost considerably more Beix than Co. 2sis. It is dombtiul whether, on the basis of these results alone, a definite conchusion can be drawn as to which vatrety is more tesistant to l'reezing temperatures. The data indicate that windrowed cme of both maveties kept better than standing cane.

Stumas Mabr Dame the Harsestine Season of 1943-44

FREEZANG TEAMPERATURES
During Kovember 19ti3 there were two periods of freening temperulures (lible 6). The minimum temperatures from November 9 to 13 ranged frem 30° to $322^{\circ} \mathrm{F}$. and from November 17 to $90,28^{\circ}$ to 32°. In December the minimum temperature on the 12 th was 32°; it ratuged From e3 3° to 31° from Demember 16 to 40 ; and was 30° on December 31 . On December 16 the temperature was below 30° for abont 8 hours, and on Derember 17 tand 18 , for 11 to 12 hours. In Junary 1944 the minimm temperature fell to 31° on the 9 th, 27° on the 10 th , and 29° on the 16 th .

As a result of the frexing temperature of Nomber, jate of the lenves, most of the termimat buds, and a fow of the upper cyes were injured or killed. Late in November some of the upper eyes begun to germinate. It was dee ided to study the effere of suct gemination and of growth of spronts on sumese content of such cate while standing unharested in the tiedd.

The erne usel for observing the derres of injury and for ehemieal amatysis was phanted for the purpose ot stalying the mate of maturation (formation of surese) but was not used for that purpose. The planting whatanged in replicated threr-row plots, so feet hag, in

Mable $7 .-$ Haximum and minimum temperatures and ranfall for period November 1,1948 , to ưanuary 17, 1944, at the United States Sugar Plant Field Station, Mouma, La.

Date	Temperatures		$\begin{aligned} & \text { Rain- } \\ & \text { faill } \end{aligned}$	Date	Temperstures		$\begin{gathered} \text { Raln- } \\ \text { fall } \end{gathered}$
	Maximuta	Minlแum			Maximuma	Minlmum	
1935	- ${ }^{\text {F }}$	- ${ }^{\text {a }}$	Inches	10.75	${ }^{\circ} \mathrm{F}$	${ }^{\circ}{ }^{\circ}{ }_{8}$	Inches
3...-	85	64	0.0	12....	72	32	
3	71	55		13.	72	47	0.83
4.	76	45	--....-	14..-	64	148	1.48
$5 .$.	85	47	15.	40	39	+10
8 --	80	64		10.....-	44		
7.	76	${ }^{68}$. 85	17.	49	23	--.---
0	${ }_{67} 6$	31			63	23	
10.	63	32		23.	68	31	
11.	6.	30	-......	21.	48	
12.	73	31		22.	75	49	
13.	73	32		23	55		. 03
$1+$	74	40		24	53		. 92
15.	77	51		5.	47		
18.	70	48		93	58		
17.	63	32		27.	70		. 03
18.	07	38	-....--	${ }^{28}$	59		
15.	7	29	29	$\stackrel{43}{5}$		
	78	30	-	30.	${ }_{67}$	30	
22	78	38	--.				
23	73	42	.	134			
24.	嵒	42	.-	Jav. 1...........	60		+02
25.	${ }_{71}$	36	2	${ }^{68}$		1.02
${ }_{27}^{26}$	71		---***		${ }_{83}$		
23	73	52	\cdots	5.	${ }_{70} 8$		
20.	59	55		6	fif	39	
30	67	49	.		57	42	1. 82
Dee. 1.	is	34	----...-		48	40	
2	78	50	--.......		51	31	-...-
3.	75	61	.-.	10	60		-...-.--
4.	78	62 56	---	11.	64	43 53	3. 18
8.	77	62	. 03	13	51	60	
7.	80	63	.	14	45	42	. 69
3.	81	01		15.	52	38	
	82 82	68 6	.	10.	${ }_{69}^{65}$	29 38	--------
	82	60	----.--		69	38	

1 Readings on December 14 were obtained from records at the Southdown plantation, which is adjacent to United States Sugar Plant Figld Station.
five tiers with a plot of each variety in each tier (fig. 1). Two tiers of plots 1 and 2 were selected on which to make observations on extent of injury to cane and to obtain samples for chemical analysis. The plots were divided into four sections of equal length along the row (fig. 2).
In order to obtain a detailed picture of the degree of injury, three sets of samples were selected for examination: (1) On November 27, 10 stalks were selected at random from each of plots A, Cc. 281; B, Co. 290; O, C. P. 28/19; and D, C. P. 34/120 (fig. 1) ; (2) on December 6, t stalks were taken at random from each of the sections of rows labeled No. 1 in tier 1 (fig. 2); and (3) on December 9 this same procedure was followed for tier 2 .

Initially the plan called for chemical analysis of 325 -stalk samples taken from each plot in tiers 1 and 2 at the beginning of the experiment (December 1) and at 3 successive periods of time. The first set of samples (6 samples of each variety) was to be taken from section 1 , and the second, third, and fourth sets from sections 2,3 , and 4 (fig. 2). This plan was followed for the first 3 analyses, the last of which was made December 22.

biguse 1.-Diagram of glots planted October $19: 2$ from which che cane used for observing injury and making chemical analyses was taken. Each plot consisted of 3 rows 80 icet long ; 4 foot pathways between plots. A, B, C, and D : plota from which cane was taken for initial examination of degree of injury. Thers 1 und 2 include the plots of cane used for stadyity injury and making chemical analyses.

 Sumples fot first, second, and fhiri analyses endoe from sections 1 , 2 , and 3 , respectively, of each plot. The samples for the fourdi, fith, and sixth amalyses cathe from sevtion -i of each jutut.

Becanse of the severe freezing temperatures of December 16 to 20 (table $\overline{7}$), which practically killed the above-ground part of the cane, the plan was modified so as to follow the course of deterionation in badly frozen eane. Section tot each tier and variety was divided into 3 subsections. The size of the sample was reduced from 25 to 15 stalks for the fourth analysis (December 30), and to 10 stalks for the fifth atalysis (Junury 10). These stumples were obtained from subsections L and 2 . Only $1 \geq 0$-stalk sample (composited from cane in subsection 3) of each rariety was used for the sixth mond hast amalysis (Famaty 1i). An extra 18 -stalk sample of each variety was selected by taking stalks at raudom from the vatious sections and subsections on each of the thates on which analyses were made following the severe temperatares of December 16 to 20 (December 22 and 30, January $1(1$ and 17). The stalks of these smmples were sectioned into 3 equal lengths, and the top, middle, and bottom thirds (tops, middles, and bottons) analyzed separately.

EXPERIMEATATAL DATA

The deare of injury that resulted from the freaing temperatures that occurred thang Sovember is shown in table 8 . The leat injury was est inated; therefore, the values given involve considerable error.
'Lable 8.-Injury to whating come of font raticties of sugarane exposed to frefing temperalures ranging from 90° to 32° F. (Notember 9 to 18 , inclusive)

[^7]To reduce such evrer to a mimman, howerer, the degre of leaf injury of ench variety was compared directy with each other on each of the dates on which the cenc was exmined (November 20 and December 97. The entinated injuy of all varieties was greater on Novenber 23 than on Decenber 9 . The greater exposure of plots (A, B, C, and D, fig. 1) trom which the cane was examined November $2 \frac{7}{6}$ probably accoments for this difference. Leat injury on both dates was greater in
 leat injury and death are mot so definite or so acemate as those on terminal bud injury and death. As moted betere (9), leat injury is not necessarily an aceurate index to the degree of ieminal bud and ere injury.
If one were to julge by the nember of terminal buds that escaped injury, Co. ©o wat more severely injured than the other varieties. On the basis of the number of terminal bads bady mjured and killed, however, (o. 290 ranks clesely with Co. 2st and C. P. $3+/$ Lito. The C. T^{2}. $3 \mathrm{t} / 120 \mathrm{variet}$ shownt more temmal buds killed than Co. 281 and Co. 290 , and C. P. $28 / 19$ showed the greatest number of terminal buds killed.
C. P. 28 . 19 showed a greater number of badly injured and dead eyes and a tar greater number of killed eyes than the other vardies. Co. 290 showet the smathest number of exes killed, but a ereater sum of eyes injured and killed ihan matieties (o. $2 s 1$ and C. P. $34 / 120$.

The data relative to teminal buds and eyes indicate that C. P. $28 / 19$ was injured more than the other varieties. The cane of C. P. 2 : 19 was not so tall as that of the other varieties. It is possible that this fact may arroun for the greater damage to this variety, because the location of the coldest air in a canefield sems to be govemed by the height of the cane.

Nthough at the outset of the experiment one or two eyes were observed to show the beginning of germination, sprouting was not observed in any of the samples examined for injury.

During the period from December 1 to 15 , all varieties showell an increase ${ }^{3}$ in Brix, sucrose, and purity (table 9 and fig. 3).

The rreatest increase in Brix, survose ind parity oceurred in Co. 281. The increase in Brix was slighty greater in Co. 281 than in C. P. $3 \pm / 120$. If these values are signifeanty diflerent, they indicate that sucrose was formed more rapidy in Co. 28 than in C. P . 2.t Lo (The increase in Brix wat thout the same in C. P. $28 / 19$ and in Co .290 , but the increase ia sucrose was slightly greater in Co . 290 , reating in tomewhat higher increase in purity in Co. 200 than in C. 12. 24 19. These differenes are wot sorelated with the degree of injury ats mentured by the varioss shmpoms. On the basis of the enant of leif injury. Co. Shl and C. P. .2s 19 shond have shown the ghentere manufacture of sugars, whieh probably are responsible for the incrate in Brix. - Anong the rapietio. Co. S_{1} showed the greatest

[^8]

Fiove 3-Changes in brix (A), apparent suerose (B), and apparent purity (C) during the period from December 1 , $10+3$, to January 17. TGA. in sinnding cane of four varjeties infured by freezing temperatures.

Table 0.-Changes in Brix, apparent sucrose. apparent puriiy, and acidity in ntanding eqne of four tariefics exposed to freezing temperathres of November and December 19.43, and Janviry 194.

Variety bmildate of analysis	Duration of experiment	Tris	$\stackrel{\text { Sucrose }}{ }$	Purity	$\frac{\text { Cralı }{ }_{\text {c }}+}{\text { Erix }}$) or loss Sucross	${ }_{\text {Purity }}$	Tasal ichilitis NaOH ${ }^{10} 5$ Jttice.	$\begin{array}{\|c} \text { Juice } \\ \text { extrag- } \\ \text { sion } \end{array}$
Co. $281=$	\%	Detries							
Dee i, 1413	0	17.43	14.75;					Cc.	Percent 143
Dec. 15, 1943	14	18.3	15. 80	Stit	+0. 25	+1, 0	71.7	270	62
Dee. 2n, $1043, \ldots \ldots . . .$.	21	17.181	\| 15.12	86.0	+ 03	+.35	+1.0	2.88	5
Dre. 30, 1943.21.........	20	10.10	14.2		-. 77	- +	+1.1i	3.87	${ }_{5}$
	40	13. 15.01	12.95		-1.51	-1. ${ }_{\text {- }}$	-3.4	3.91	5
Co.290:		,						+. 00	S0
Dec. $1,1048$.	1		13.32	N1. 2					65
Dege 15.1043.	1.1	18.15	14.64			+, is	+1.4	2 tin	62
	21	16.98 16.91	13.984	8.3 8.3 8.3	+.38	+.56	+2.1	297	61
Jan. 10.19H.	4	15.38	11.97		-1.20	--.35	-2.4		${ }^{613}$
$\mathrm{c}^{\text {Jan. } 17.1043}$	4	I5, 6.4	11.68	75.6	-1.16	-1.84	-4.6	4.15	57
Det. S, 1003.	0	10.75	17.96	8.3					
Dec. 15.1913	14	90, 3	17.89	8	+.64	+	+6-9	\cdots	5
Dece 73. 1933	21	19.10	17.07	87.7	- 31	-19	1.4	3.12	18
1)ere the 1843	23	18.31	15.8. 8	88.6	-1.77	-1,41	-.7	3.34	53
Jati. 10, ${ }_{\text {dan. }} 1984$	411	17. 1.10	14.47	83.2 ;	-2:3	-2.i9	-1.1	4.27	40
	4	1.1 .09	10.10		4.78	-7.16	$-10,9$	7.30	3
Dece 1, ilis.	0 !	15.44	14.6s	83.0					50
Dec. 15, 1018.	14	18.24	15.13	St. 6		+	4	2.50	55
Dece. 25.19043	911	17.15	14.47	3.4	$\rightarrow \cdot 14$	-21	-. 3	3.18	5
Dec. 30, 1913	99	16.10, ${ }_{\text {IS. }}^{10}$	${ }_{12}^{13.11} 1$	9.1.	${ }_{-1.33}^{-1.57}$	-1.57,	-2.8	3.14 4.13 1	5
Jani 17, 194	15	15. ${ }^{\text {a }}$	11.	75.2	-1.05	${ }_{-3.160}^{-2.16}$!	-5.3	4.13 4.45	51 52

amount of sucrose formation and C. P. 28/19 the least. It is true that C. P. 28/19 showed more terminal bud and eye injury than Co. 281. It is believed that if these differences are significant, they result from varietul differences rather than from differences in freezing injury.
These data (along wilh those cited in footnote $\overline{5}$, p. 18) show that. cane subjected to a rather high percentage of injury and killing of leaves and terminal buds and limited eye injury and killing by freezing tenperatures may. under favorable conditions, manufacture sucrose. It would be interesting to know if there was an increase in the quantity of sucrose in cane during the 2 weeks preceding December 1. There is some evidence (1) that temperatures at or slightly above or below $32^{\circ} \mathrm{F}$. may cause a temporary cessation of sucrose formation, but this may be resumed later under favorable conditions.

Following the period of freazing temperatures of December 1 f to 00 which killed most of the above-ground part of the stalk, a decline in Brix and sucrose oceured in all varieties. In Co. 290 the loss of sucrose between December 1 a and 22 was not significtut and the loss of Brix was small (table 9 ; fig. B). The loss of Brix and sucrose in Co. $2 s 1$ and C. P. $28 / 19$ continued at about the initial rate between December 22 and , amary 10 . when there was a marked increase in rate particularly in C. P. DS/99. A loss in Brix and suctose wats noticenble in Co. 290 after December 22 and continued at about the same rate until January 10, when the rate was slightly yetarded. The loss of Brix and sucrose in C. P. 34/120 was rapid, beginning Decem-
ber 10, although there was a slight retartation in rate following December 30. Beginning December 15 and continuing until December 30 the rate of loss of Brix and even the loss of sucrose was greater in C. $1^{3} .3 \pm / 120$ and C.P. $2 S, 19$ than in the two other varicties.

Between December 15 and 2.2 the purity of the juice increased slightly in Co. 290 , remaned practically eonstant in Co. 281 , and declined slightly in C. P. 28/19 and to a greater denree in C. P. $34 / 120$. The purity remained practically constant between December 15 and 30 in Co. 281 and showed a slight decrease in Co. 290 , but the drop in
 Following December 30 the rate in drop in parity became rreater in all varieties except C.P. $3.4-1 \geq 0$. Between Janumry 10 and 10 the tate in drop in purity increased in all varieties. It was very pronomed in C. 1. 28.14 and much greater in Co. Ss than Co. 290 .

Up until January 10 the behaviot relative to change in Brix, sucose, and purity was similar in Co. 2 st and Co. 290 and similar in (\therefore P. 2s. 10 and C. $\mathrm{P}^{3} .3+120$. The rate of incrense in acidity was madual from December 15 until Jamary 15 in Co. 251 . Co. 290, and
 10, when it inereased rapidly. No diffienty wat experieneed in fitesing the juice matil January 10.

The lapid loss of Brin and suctose, the matntenance of a relatively high purity, the slow inerease in acidity, and the absence of filtering diflealties of juice are eharacteristies of alcoholic fermentation (b. 0), a condition associated with cane that closely approthes 100 perent killing of the tissues of the stalks. This type of fermentation appeared to be domimat antil December 30 . following the damaging temperathres of Derember 16 to 30 . Following Derember 30 , fermenlation cansed by Le hewontor mesenteroides (Cienk.) V. 'Tiegh., ot Irmm formation ($4,6,9$), was evident by Jamany it by tie more rapid deteriomation amel the difiendy experienced with filtering of the juice.

On the basis of the deleterions changes that ovemred up until Jumay 10 as a result of the frecaing temperatures of December 16 to 0 ,

 imilar (lig. 3). Between Janary 10 and 10 the diflemenes in behasior of the various varieties easily may have arisen from unequal
 phinger also may late been a factor: beatase only one sample of each variey was used fanume 17 . In any ease these changes in rate were much larger in Co. 2 s 1 and $\mathrm{C} . \mathrm{P}^{3} .2 \mathrm{~S} / \mathrm{tg}$ than in the of her two varieties.

The course of deturiomtion in the tops, midelle amd botom that of the stalk was similar to that in the whate stalk during the period between Derembur $2: 2$ and :00. The Brix and sumese declined, but the droy in purity was slight table 10). The top part of the stabe of all foms ratedies showed an inurease in acidity. 'The midelle

 ma increase matil alime Derember ;0, All these changes tend to berome more promoned in the sureerding periods. previous results hate also shown that the ehatores were weatom in the tops. les it

TAbLE 10.-Changes th Brix, apparent sucrose, apparont purity, and acidity in the differcnl parts of sugarcane stalk of 4 varieties while standing in the ficld exposed to freczing temperatures of November and December 1948 and January 1944

the the middles, and least in the bottoms in badly frozen cane (9). The degree of injury may be such in the upper part of the sugarcane stalk as to permit alcoholic fermentation and gum formation, although the lower part of the stalk may be only slightly injured or perfectly sound ($($). The organisms responsible for either type of fermentation cannot penetrate sound tissue. The alcoholic fermentiag organism or organisms can penetrate only badly injured cane, whereas the gum-forming organism penetrates only dead tissue.

Studes Made During the Hafyesting Season of 1944-45

FREEZING TEMPERATURES

Minimum temperatures were taken in a shelter (3.5 to 4 feet above the ground) in the wrea in which the cane studied was located (fig. 4). The minimun temperatures on November 30 and December 11, 12 , 13,14 , and 15 were $30.2^{\circ}, 30.2^{\circ}, \geq 6.2^{\circ}, 27.5^{\circ}, 25.5^{\circ}$, and $24.0^{\circ} \mathrm{F}$., respectively (table 11). On December 19 and 20 the temperatures went down to 30.4° and 27.5°.

THE CANE LSED

The cane (plant cane) examined for injury and analysis came from black land ($C-3-F$) at the station. The planting consisted of tworow plots 150 feet long, buffered on one side by one row of Co. 290 and on the other side by two rows, one of Co. 290 and the other of Co. ≥ 90 and two unreleased varieties. One humdred feet of each pair of rows were windrowed November 24 , and the remaining 50 feet left standing (fig. 4). The buffer rows also were left standing throughout the period of experimentation. The cane examined for injury was taken along the rows of standing cane; that used for analysis, from standing cane at the juncture of standing and windrowed cane and at a point midway along the row of standing cane.

EXPEHMENTAL DATA

Although the cane was not examined critically for injury between November 30 and December 11, there was no indication that it was injured by the $30.2^{\circ} \mathrm{F}$. temperature of November 30 .
In canc collected December 14 (table 11) there was considerable variation in the extent of terminal bad imjury. All the buds in C.P. 30, 1 were sound, but none remained sound in the varieties C. P. $36 / 85$ and C. P. 38/23. The total number of dead eyes indicates a similar relation among these varicties. C. P. $34 / 139$ with two sound terminal buds showed next to the highest number ($3 . S$) of dead eyes per stalk. C. P. 38.26 with only one sound terminal hud showed 1.0 dead eye per stalk. C. P. $29 / 120$, C. P. $34 / 120$, C. P. $36 / 94$, and C. P. $37 / 9$ with four to five sound terminal buds showed $0.2,0,0.6$, and 0.2 dead eyes per stalk. These data on differences between varieties are not regarded as significant except perhaps betreen C. P. $36 / 1$ and the of her varieties, particularly C. P. $38 / 23$ and C. P. $36 / 85$.

The temperature of December 15 was severe enough to kill all the terminal buds and most of the eyes. In cane collected December 15 and examined December 16, ('. P. 36 a agan showed the least injury
 injurcd, Nilted, or remaining somad in cane collected from feld plots following
 30 and December $11-15_{1} 1955^{5}$

CANE COLAECTED DRCEMBEH HAND EXAMMNED DECEMEBERAANO 16

	12	${ }_{0}$	(3)	12.	14.5	1.6 :	1.3	143
Co. ${ }^{\text {dx }}$,	11	4	0.	11	13.2	2.2	1.6	15.11
	12	${ }^{*}$	a	13	9.1	4.1	1.5	13.4
	$!$	${ }^{1}$	0	191	17.9	2.9!	99	14.7
亿,	$\frac{11}{11}$	-	\%	11:	15.5	8.4	1.2	12.
W.ant ..	11	a	0	11.	14.5	3.3 3	1.0 !	14.6

 honts.

- One stalk bored a short distame below terntant bud.
of any of the varieties, but in came collectur Decomber en C. P. Btip showed more injury than a number of varicties. C. P. Bf , 5 , in which wh the terminal buds were injured or killed and a mamber of eyes were killed as a result of freezing temperatures occurcher before December 15 , showed: fairly hage mmber of somed eyes in cane colleded December © C. P. 29, $1=0$ showed a moleate degre of impy in all lots. These data inhastate how dificult it is to find shary ditferences in asceptibility of different varieties.
The chembal analytical data obtained in combetion with varieins
 that there were no serions changes in Brix, sucrose, purity, pH , and wedity in standing eane during weeks following the treezing femperatures of December 11 to 1 . . These results are in harmony with

 data recorded in table 12.
those previously obtained (9) in showing that as long as a sinall mombee of eyes remain sound. serious deterioration does not begin for a considerable period.

Stlopes Made Dirang fife Habvestixc Season of 1945-46

FREERINC TEMPERATURES

The freezing temperatures oceuring at the station from November
 at three separate locations on most of the days. One of the locations was situtited on sandy land not far from Bayou Black (Weather Station. fig. b) and the other two on black land about 1,000 feet away ($\mathrm{C}-6-\mathrm{F}$ and $\mathrm{C}-\mathrm{S}-\mathrm{F}$, fig. $\mathbf{5}$). The minimam temperatures in the black land were trom 2° io $4.2^{\circ} \mathrm{F}$. lower than in light land, and there was some variation between the two stations on the black land. The dura-
tion of freezing temperature is given for most of the dates. The temperatures were at 32° and lower for longer periods than is normal for southern Louisiana.

Table 22.-Freesing temperatures and their duration at the United States Sugar Plant Field Station at Houma, La., during the fall of 1945

Date	Mlatincm temperatures at-			Length of time tam. peraturn whs at 32° F. and bolow
	Warther Burean station : (sandy hind)	$\underset{\text { (black land) }}{\text { C-C- } z^{2}}$	$\underset{\text { C-8-F }}{\text { (black land) }}$	
Nov. 23........... 1945	${ }^{1} \boldsymbol{F}$. 30	- F.	${ }^{\circ} \mathrm{F}$	Hours
Dec. ${ }^{2+}$	27	27.0	24.0	12.25
	34	31.0	31.0	
5.	31	28.5	37.7	
${ }^{6}$	3	20.5	20.7	13,26
10...	-32	30.0	29.0	8.00
$177 \ldots$	29	26.0	-26.5	13.00
	24 28			18.09
	28	-		16.00

1 The thermameter was loented in a standard westher shelter on sandy land near Bayou Black (fig, 8).
${ }^{1}$ C-6-F and C-8-Findeate different plots in biack land (fg, 5).

VARIETIES

Twelve commercial, or formerly commercial, and three unreleased varieties of cane (standing plant cane) were studied. They are listed in tables 13 to 16.

SOUREZ Of CANE

The cane studied came from three locations on the station: (1) Sandy land (light land) (B-3-F, fig. 5) ; (2) black land ($\mathrm{C}-6-\mathrm{F}$, fig. 5) ; and (3) a second location in black land (C-8-F, fig. 5). The cane in sandy land consisted of four to five replicated plots of each variety. The planting was designed to study the rate of maturing of cane. The cane in the black land consisted of two-row plots of ench variety 150 feet long. The plots were located side by side in two cuts, each of which had buffer rows of standing cane on each side of the cut. About 85 feet of each pair of rows were windrowed November 21. The remaining cane was left standing. The samples used for chemical analysis and the study of freezing injury were derived from standing cane.

simpling

In the sandy land experiment, 10 tops, including growiug points (terminal buds), were taken at random from the tops cut off from stalks used in the maturity samples from each replication following the freezing temperatures of November 23 and 24 and examined for terminal bud injury (table 13). After the maturity sumples were selected, 5 whole stalks were taken from one of the replications and examined for eye and terminal bud injury ($\mathrm{B}-3-\mathrm{F}$, table 14).

The samples from cane in the black land that were examined for freezing injury were taken along the rows in standing cane (tables 14 and 15). Samples for chemical analysis were taken of 6 varieties (table 16). Two 20-stalk samples for making the initial and successive

Fioure 5.-Lncntions at the Ualted States Sugar Plant Field Station at which temperatures were taken and at which cane studied during 1845 was grown. analyses were taken from standing cane at the juncture of windrowed and stunding cane, and 2 from midway the length of the standing cane.

freezing injury following freezing temperatures of november 23 AND 24

As a result of the freezing temperatures of November 23 and 24 (table 12) most of the terminal buts in cane grown in light land were killed (tables 13 and 14). No sound terminal buds were found
in connection with whole stalks that were examined, except the two with tissue that were injured by a borer just below the growing point. (terminal bud). The number of terminal buds examined in this case

Tambe 13.-Terminal bud injury in standing cane ${ }^{2}$ of cortain commercial variethes as a result of freezing temperatures of Vovember 28 and 94,1945

varets	'remismil heds				
	Pxotal	Somal	Fuhared	Deam	Fifled by borer
C. P. $2 / 19$.	Number 50	Percrat 10.0	ITersent	Percent	Percent 10.0
C. P. P\%/103	50	310.0	20.0	66.0	4.0
C. 3 , 34/62.	50	32.1	3.0	89.8 70.0	4.1
C. P. 31/22	50	2.0	26.0	78.0	4.0
C. 31.3013	to	12.5	12.5	67.5	5.5
	年 3	0	6. 1	80.8	4.1
Total amd nverutes.					
	36		12.2	78.5	4.2

: From plor of sundy fand, B-3-F, shown in Gure 6 .
2 See finble 12.
32 stalks were infured by borers just below the terminal but,
II staik was lajured by boter fusk bolow terminal bud.

- i staks were mared by borers fust belosy cerrulnal bud.

Table It.-Ynjury to cane of diffcrent rarieties in black and sandy land as a reanle of freening tenperatures s ivocember 89 and 24, 19.45

BLACK LAND (E-GN, U.S. SUGAR PLANT FIELD STATKON)

Variety	Stulks used	Eyes					'Terminal bud		
		Total	Sound	Sound	Lndured	Dead	Sound	Injured	Dead
	Numbe	Number	Number	Perceat	Number	Namier	Number		
Co. 231.	$\stackrel{5}{5}$	76	35		12	$\underset{2}{ }$	NuT	0	
C. ${ }^{2} .2519$	$\frac{7}{5}$	89	40	43	3	25	0	0	
C. P. 2ef103	5	93	${ }_{6} 6$	68	${ }_{4}^{4}$	26	0	0	5
C. P. $29 / 116$	5	93	27	27	11	61	0	0	
C. ${ }^{\text {P }}$ 20120	5	100	70	70	7	23	0	0	
c. P. 201320	5	88	15	15	14	65	0	0	
C. P. $33 / 243$	5	103	49	48	22	33	0	0	5
C. P. $33 / 310$	5.	88	65	66	10	23	0	0	s
C. P. $34 / 120$	5	95	66	69	10.	19	0	0	5

BLACK LAND (C-8-F, U. S. SUGAR PLANT FIELD STATION)

SANDY LAND (B-3-F, U. S. SUOAR PLANT FIBLD STATION)

C. P. $29 / 19$	5								
c. P. 221103	5	\% ${ }^{9}$	67	${ }_{68}^{58}$	11	$\stackrel{35}{24}$	71	0	4
C. P. 201120	3	104	72	68	11	21	0	0	5
C. P. 3132..	5	87	35	40	14	38	0	0	5
C. P. 347224.	5	0101	4	家	13	4	$s{ }^{\text {d }}$	0	${ }_{4}^{5}$
C. P. 381105	5	98	3 S	30	16	4	0	1	+
C. P. 30/183.	5	95	74	78	5	16	0	0	5

[^9]Table $1 \overline{0}$-Freezing injury to eane of different tarictles following freezing tenperatures of Decmmber 5 and 6, 1945; all terminal buds acere killed

BLACK LAND (C-8-F)

'Lable 10.-Chenges in Bria, apparent sucrose, apparent purity, pH, and acidity in standing cane of certain tarieties in cuts $C-6-F$ and $0-8-F$ at the Dnited States Sugur Plant Field Stution, Mouma, La., 19.forfo

and the fact that the stalks came from only one replication may account for the discrepancy in the tro lots. The discussion that follows relative to terminal bud iniury in light land will be limited to the data recorded in table 13, because they are more representative than those in table 14.

The varieties in which the largest percentage of terminal buds escaped injury in light land, as indicated by the results in table 13 , were C. P. $28 / 19$, C. P. $29 / 103$, and C. P. 36/13. All of the terminal buds were injured or killed in C. P. 36/105 and C. P. 36/183. The feminal bud injury is not of an order to clearly prove a varietal difference in susceptibility to freezing injury. All varieties showed a percentage of killing and none were free from injury. It will be noted that part of the termima buds that remained sound had been attacked by the borer just a short distance below the growing point. Lhis relation of borer injury to freezing injury of terminal buds had been observed in earlier years. It is believed that the escape from injury is due to drying out of the temminal tissue as a result of borer attack. The extent of injury to eyes in the diflerent varielies is not entirely parallel to that of terminal bul injury. Table 13, for instance, shows that C. P. $36 / 183$, which had the highest percentage of dead temminal buds and no somd ones, had the greatest number tud percentare of sound eyes (table 14). C. P. 36/13, having the hishest percentage of sound teminal buds (table 13), showed a high atumber and percentage of sound eyes (table 14). This variety also showed a high number and percentage of sound eyes in black hand.

On the whole, more eyes remained sound in cane in the light than black land, although there were exceptions. In sandy land, C. P. 34/120 showed $4 t$ somed eyes; in black land, it showed 44 in one instance and 66 in another (table 14). It is possible that the small number of stalks used may account for part of this discrepancy, but it is believed that they do not atecount for ali the ditierence.

All the terminal buds examined in cane from black land were dead (table 14). Although these data may not justify the conclusion that there were no sound teminal buds in the black land cane, it would stem probable there were none from the fact that most of the terminal buds were killed in cane from the light land. In the three varieties (Co. 281, Co. 290 , and C. P. 34/120) common to both locations in black land, the eye injury in both places was similar in Co. 281 and ('o. 290 and dissimilar in C. P. $34 / 120$ (table 14). As measured by the nomber and percentage of eyes that remained sound in cane from black land, C. P. $29 / 103$, C. P. 29/120, C. P. 33/310, C. P. 34/120 (in C-6-F but not C-S-F), C. P. 36/13, and C. P. $36 / 183$ showed the least injury. (. P. $29 / 116$ and C. P. $29 / 320$ showed the least number of sound eses and the greatest number of dead eyes.

FlEEZING INJURY AS A RESULT OF FREEZiNG TEMPERATURES TO AND INCLUDING DECEMBER 6
Only sound and injured eyes were comed; the remaining eyes were dead. On the basis of the number of sound and injured eyes, one might draw a distinction between varieties, but the distinction is not large nor is it always correlated with the degree of water soaking (table 15). The greatest distinction in injury was between C. \mathbf{P}.

20/103, showing the least, and C. P. $35 / 243$, showing the most. The behavior of C. P. $29 / 320$, C. P. $28 / 19$, Co. 290 , and C. P. $37 / 5 \mathrm{ap}-$ proached that of C. P. 33/243. There was an element of judgment in estimating the extent of internal injury. In order to have made a more eflective comparison, more stalhs would have had to be used. The task of examining a large number of stalks is enormous and would have requited much more time and labor than was available.

chemical changes in cane fhom black land

The loss in Brix between December 4, 1945, and Jamury 9, 1946, indicated that all varieties of cane in black land were badly injured (table 16) as a result of the freezing temperatures of Decenber 5 and (6 and those that followed (table 12). This loss of Brix and the maintenance of a relatively high purity, particularly during the first 2 weeks, indicated that an alcoholic type of fermentation was dominant. Ihe later rapid changes in these values show that the freezing temperatures of December 16, 17, 20, and -1 (table 12) imposed additional injury to that present as a result of the freezing of December $\overline{5}$ and 6.
Gum formation ($4,6,0$) had get in, as shown by the difficulty experienced in filtering the juice Jamatry 2. The results relative to C. P. $33 / 243$ did not cover a long enough period from which to draw any conclusion relative to gum formation. Among the remaining varieties, the juice of C. P. $29 / 120$ clarified with the greatest ease and that of C. P. $34 / 120$ with the greatest dificulty. Davidson found the same relation among other lots of these two varieties from other sources. Reports from sugar factories in the eastern part of the Sugar Belt were to the effect that more difliculty was experienced with the juice of C. P. $34 / 120$ than with other commercial varieties. The total increase in acidity from the least to the greatest was in the order in which the varieties are listed: C. P. $29 / 103$, C. P. 29/120, C. P. 36/13. С. P. 36/183, and C. P. 34/120. The increase in C. P. 3 ± 120 and C. P. $36 / 183$ was almost identical. This increase in acidity was not always associated with a similar degree of difficulty in clarification in the laboratory.

DISCUSSION AND CONCLUSIONS

Yarious criteria for measuring the degree of injury have been used with warying degrees of success: Injury to the spindle, foliage, termimal buds, and eyes; internal discoloration of stalk; the falling over of the tops; signs of fermentation; changes in Brix, sucrose, purity, acidity, and pH ; the filtembility and clarification of the juice; and other symptoms.
Under mild freezing temperatures, one of the first tissues of came to show injury is that of the folded leaves (spindle) just above the growing point. Such injury may be the ouly symptom, and many plants may show no injury. Hence, statistically significant data on this symptom are difficult to obtain. It has not been used in these experiments.
Estimated foliage damage is not precise and involves large errors. To obtain precise and definite data on folage injury, leaf measurements would have to be made. Such measurements are impracticable
because of the time consumed. Commonly. freezing temperatures occur on two or more successive nights; sometimes on one, two, three. four, and even five or more nights, but marely for longer periods. These periods of freezing may be followed by short or long periods of nontreczing weather. To obtain measurements of sound mid dead Jeaf tissue following such successive freezes in a number of varieties would present an almost impossible problem.

The effects of mild freezing temperatures on temminal bude athond a simple and satisfinctory standard of measurement of injury, if such freezing temperatures ane followed by a period of honfreging temperatures of sufficient length to permit the examination of a number of varieties.

Tujucy to eyes is a fairly accurate indication of irjury to stalks (0) and a mensure of the millability of cane. Nomally the upper eyes are the first to be injured. ts more and more eyes are killed farther and farther toward the base of the stalk, the injury of the stalk becomes progressively grater. As the number of sound exes appromehes zero, alcoholic fermentation sets in (5,9). Such fermentation is characterized by heavy loss of Brix. the mantenance of a fairly high level of purity and a slow increase in acidity. Beyoud this stage of injury the cells of the stalk are completely killed and gum fomation (9) is initiated and is followed by rapid destruction of surate a heavy drop in purity, rapid fucrease in acidity, and unworkability of the juice.

Both types of fermentation take phace much more zapidly in the upper part of the stalk. With lesser degrees of injury, alcoholic fermentation may be initiated in the upper part of the stalk and may be followed by gmo formation, depending on the degree of injury. In such chates and in badly frozen cone of at leser degree, topping at at lower lerel for a limited period of time increases he milability of the rane. The aremmbated evidene (9) indieates that sound stalk tisene Lelow the injured tissue is not subject to fermentation for seyeral weeks although the upper part of the stall is bady danaged and -hows varying degreus of fermentation.
Intermal discoloration is an indefinite symptom of injury and may dunge or temd to elear up at ertain stages of injurs. Only when che statk is completely killed dows it hare a quantitative valuse and then one camat always tell (g) whether it is damagel enough for gum formation to statimmediately of for aboledie fementation to dominate tor a conside mble periol.

Aleoholic fermentation is defintety indiated by a rapid loss of polids. the maintenance of relatively high porities and a show increas in acidity. Such juier is handed readily by the mills.

Gum formation is fiss indicated by low filterability of the juice and poor clatideation. rapid drop in purily and mpind inerease in acidity. Suth juices are diflientt and soon berome inmpesible to hande in the fiutory.

Comparative data relative to terminal bud ingury and killing be frewing temperatures, on the whole, show litile it any difterence in susceptibility to injury among the diflerent vareties. Th one experiment in light band, ifter a mights of freezing temperatures ranging
from 30.2^{\prime} to $27.5^{\circ} \mathrm{F} ., \mathrm{C} . \mathrm{P} .36 / 1$ showed no temmal bud injury or killing as compared with varying degrees of injury or killing in the wher ravieties examined (table 11). It likewise showed the least eye injury. Atter another might of freezing temperature ($24^{\circ} \mathrm{F}$.), (wo lots of samples of (. P. 36/1 and other varicties were selected and examined for injus. All the terminal buds in both lots were killed. In one lot C. P. $36 / 1$ showed the least eye imjury, but in the second ho it showed greater eye injury than a number of other variethes table 11). The preponderance of eridence in case of C. P. 36/1 pohably indicates it hat shighty greater resishace to freczing injury within the limits of the freezing conditions indicated. More severcomelitions might have wiped ond the difference foumd. Further evithene is requred for condusive proof that this variety is more resistan than the other varieties tested.

In 194 , miler the inthence of modetate freeaing temperatures (30° and 24^{3} F.). ('. P. $36 / 13$ in hight land showed the largest percentare of umingured lemmat buds as compared with other rarieties (table (13). This esape from injury was assochated with a low extent of eyo injury in both light and black land (tabies 13 and 1.2). As a fonith of the severe freming femperature of December (6 (ables 1 : ath 15). which killed neariy all the eyes in all ravieties in black land t able 1.), the juice of C. P. 30.13 was more diflieute to filter than that of ('. P'. 2 ' 120. wheh had shown more terminal bud injury previous to December 6. The juice of C. T. 34 t 120 was more dificuit to filter than that of the other rarieties.

Less difinully was experienced in filtering the juice of badly frozen tane in the sase of C. P. $29 / 120$ than in other raricties (table 16). Ls a result of the mild frexing temperatures previous to Deember 6 . (. 1'. 29) 1.20 showed a moderate extent of terminal bud injury as compared with the other varieties (ested (tables 13 and 14).

On the whote, the dillerence in eye injury and teminal bud ingury het wera varieties is not of such magnitule and consistency as to differentiate ederly bet wen varieties Co. $2 S 1$ and Co. 290 , which appar to be similar in suserptibility to freaing temperatures. In bady fromen athe the hehavior of (6.2 an and Co . 200 relative to deleterions rhange was buter than that of ratieties C. P. $2 \mathrm{~S} / 19$ and C. P. $34 / 120$ (fig. 3).
findrowed cane of varieties C 0.251 and Co 200 in which prac: watly atl the exes were killed, kept better during 16 days than did -taming ane (table 3). It is believed that the difference was clue to at lower tomperature in the windrow than that in standing canc. The avarge maximum an temperatur for the prod was 70.0 F . Cane of the same variety and the same degree of injury from the same cuts at the windrows? ane showed more rapid deterioration when stored at 70^{3} and $0{ }^{\circ}$ F than did standing and windrowed cane. The deterionation was greater at 90° than at $3^{\circ} 3^{\circ}$ (table 6).

The results elearly indicate the dificulty involved in masuring the mative suscepibility of rarieties of mgareane to freceing injury. The differenes in susceptibility are too small in all rarieties stadied to obtain com-istently measurable distinctions regardless of the degree of injury the many yariables involved and the criteria used in measuring the derece of injury. No one rariety has been found with outstanding revistane as empared with other ratieties studied. Considering that sugareane is a tropical phant and that nomally the
weather conditions under which it is grown are not conducive to hardening, it is amazing what extreme conditions of freezing it will withstand and still function with varying degrees of success.

SUMMARY

Extensive observations were made of freezing injury of sugarcane in commercial fields and experimental plots. A comparative study was made of symptoms of freezing injury in a large number of varieties under similar freezing conditions.

Varieties subjected to diferent levels of freezing conditions were compared with respect to the normal and deleterious chemical and physiological changes occurring in standing and windrowed cane and in cane stored at different temperatures.

Sharp differences in varieties with respect to symptoms and deleterious changes were not found. Minor differences were found, but they were not always consistent at different levels of freezing conditions. Badly frozen cane kept better in the windrow than when standing and at lower than at higher temperatures.

The results show that cane in which a rather high percentage of leaves and terminal buds are injured or killed, and in which a limited percentage of eyes are injured or killed by freezing temperatures, may minder favorable conditions syuthesize sturose (table 9; fig. 3).

LITERATCRE CITED

(1) Abceneaux, Ce, Stokes, I. E., anel Krumbhame, C. C.

 Agr. Clr. 30 , 31 pr , Mhus.
(2) Batch, R. Ti., and Laentraes, J. 1 .
 case under loumbasa combrrons. U. S. Depl. Mgr. Cir. 304, 15 pp., thus.
(:s) Fort, C. A., and Labrertzen, J. I.
 Engin, Chena, Anal. Ett, 10: 251-973.
(-4) ——and Laumitzen, J. I.
 17 (1) : 17-20, Hlus.
(5) ——— and Launtreen, J. I.
 ny faceze. Sugar Ral, 17 (14): 4.
(6) ——and Laubitzens, I. I.
1039. acid and gem fobmation in cane frozen dehing tie ibas ifarefot. Sugar Bul. 17 (22): 4-6, ilus.
(万) Kivg. N. J.
103. Fbost dimage in cine. Quensland Agr. Tour. 4: : 793-736, ilhus.
(S) Carmitzen, J. I., ant Balen, R. T.
1034. storage of mbl. cane. U. S. Dept. Agr, 'Yect. Bul. 440, 20 pp., thlus.
(9) ——— Fort, C. A., and Balchi, R. T.
1900. Windiowtsg and stoming of steareane in foeistana following fajory by fbeezeng tempermtubes. U. S. Dept. Agr. Tech. Bul. 736, 44 pp. 1lius.
(10) McDonald, W. F.
1840. NIGHT BADLATION AND ONUEUAL MINIMUM TEMPERATUAEA NEAM NEW ombans, La. U. S. Dept. Commerce, Weather Bur. Monthly Weather Rev. 68: 181-185, illus.
(11) United Stateg Wrathep Bumeau.
1940. GLimatological data, louiglana section. U. S. Weather Bur. Climatol. Data [Lh. Sect.] 45 (11): 41-44.

END

[^0]: ${ }^{1}$ Submitted for publieation March 21, 1949.
 = Italie numbers in parentheses refer to Literature Cited, p. 34.

[^1]: Tamp 1.-Thinty to terminat buds of 8 commerciat and 75 unreleased warieties of sugarcone fothouing freczing temperutares of $3 t^{\circ}, 29^{\circ}$, 32°, and $3 t^{\circ}$ F on Nocember 5,6 , 2S, and 26, 1939 , respecticeht, at the United States Sugar Plant Fichl strtion, Howma. Lat.

[^2]: ${ }^{2}$ Station will bertafter he asial in thas thiletin instend of United Slates Sugar
 used for observations. Other symbons of locttion at the stathon will be used in this bulletin.

[^3]: 3 Whan deas than in tons ary shown, iltu buds remaining were finfared or killed hy the sugareane borer (Diatraea saccharadis (F.)).

[^4]: ${ }^{3}$ Eyt miss indurcd, hat there is some gatestion as to whether it was alle.

[^5]: intiraled by cotrnt of athmace dome to rycs (tateral buds) bufrcezing lempera-

[^6]: - Excess acidity was determined by the distilatom method (9).

[^7]:

 factory distitretion can kne (irawn.

[^8]:

 at the station. There was an increase in parity in all hese waribise exeent
 initiation ur defeterious changes as a resutt of the frecoing temperatures of

[^9]: ${ }^{1}$ Temperatares on November 23 thad $2 t$ in tho shelter were 30° and $27^{\circ} \mathrm{F}$., respectively. The temperature in $\mathrm{C}-\mathrm{B}-\mathrm{F}$ weat down to $2 t^{\circ}$ on Novenber 24 and in $\mathrm{C}-\mathrm{E}-\mathrm{F}$ to $24.5^{\circ} \mathrm{F}$.
 ${ }^{2} \mathrm{C}-6-\mathrm{F}, \mathrm{C}-\mathrm{s}-\mathrm{F}$, and $\mathrm{B}-3-\mathrm{F}$ represent the location from which the choc came (fig. 5).
 3 Stalic Injared by borer fust below terminal bud.

