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ABSTRACT 
 

Parametric Bootstrap Tests for Futures Price and Implied Volatility Biases  
With Application to Rating Dairy Margin Insurance 

 
We develop a new parametric bootstrap-based statistical test for presence of futures price and 

options-based implied volatility biases. The new test is applicable to data with overlapping 

prediction horizons. Information on anticipated volatility embedded in options prices is explicitly 

used when testing for futures price biases. Our method is well adapted to analysis of fast-

changing commodity markets as it does not rely on asymptotic theory and does not require a time 

series spanning several decades. We apply the new test to investigate if futures and options 

biases can explain very low loss ratios exhibited by USDA’s Livestock Gross Margin for Dairy 

Cattle insurance program.  

 
 

Keywords: parametric bootstrap, futures price bias, volatility bias, revenue insurance, LGM-
Dairy
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Parametric Bootstrap Tests for Futures Price and Implied Volatility Biases  

With Application to the Rating of Dairy Margin Insurance 

 

Traditional crop insurance products supported by USDA have focused on protecting the 

farm operator from production risks. Crop revenue protection programs were first offered in 

1998 and have enjoyed continually increasing adoption rates. More recently, a new generation of 

revenue protection products has been introduced to address the revenue insurance needs of cattle, 

swine and dairy producers. The focus of this article is on the Livestock Gross Margin for Dairy 

Cattle (LGM-Dairy) revenue insurance program. LGM-Dairy is designed to compensate 

participating dairy farm operators  for unexpected declines in their gross margin defined as the 

difference between milk revenue and purchased feed costs (Gould and Cabrera 2011; Gould 

2012).   

A key feature of all insurance products endorsed by the Federal Crop Insurance 

Corporation is the contract design rule that stipulates premiums, before subsidies, must be 

actuarially fair. Table 1 reveals that after five years of pilot-program status, LGM-Dairy has 

generated premium revenue that exceeds indemnity payments by close to fifteen to one. Given 

this historical record the assumption of actuarial fairness has been questioned with the suggestion 

that the LGM-Dairy insurance product may be substantially over-priced (Novakovic 2012).  

[Insert Table 1 about Here] 

What LGM-Dairy ratemaking assumptions could result in biased insurance premiums?  

Under LGM-Dairy expected margins are calculated by multiplying the insured quantity of milk 

marketed and declared livestock feed by futures prices at contract sign-up. The expected variance 

of the insured IOFC margin is based on implied volatilities extracted from at-the-money options 



3 
 

using the Cox, Ross and Rubinstein (1979) option pricing method. The LGM-Dairy rating 

method assumes that futures prices are unbiased predictors of terminal prices and that options 

prices accurately reflect the magnitude of futures price risk. LGM-Dairy premiums are highly 

sensitive to the assumption of zero risk premiums in futures and option prices. If milk (corn or 

soybean meal) futures prices are downward (upward) biased, or if option-implied expected 

variances over-predict the true level of risk in milk or livestock feed markets, then LGM-Dairy 

premiums will be upward biased, potentially resulting in abnormally low loss ratios.   

Should we expect to find price or volatility risk premiums embedded in futures and 

options prices? Futures prices will be unbiased predictors of realized prices only if they are 

efficient and embody zero risk premium. However, the efficient market hypothesis does not 

stipulate zero risk premium. To the contrary, finance theory predicts speculators will have to be 

rewarded for holding a futures position if that exposes them to systemic risk (Dusak, 1973). 

Likewise, variance estimates based on options-implied volatility will equal the second moment 

of the true price distribution only under a set of practically unattainable conditions needed for 

markets to be dynamically complete (Constantinides, Jackwerth and Perrakis, 2008). Transaction 

costs and jumps in futures prices prevent construction of a continuously adjusted risk-free 

portfolio that underpins all risk preference-free option pricing models. If a short option position 

exposes speculators to systemic risk, option prices will reflect the volatility risk premium.  

The empirical evidence regarding biases in commodity futures and options markets is 

mixed. For example, while Kolb (1992), Deaves and Krinsky (1995), and McKenzie and Holt 

(2002) find risk premiums in futures prices for at least some commodities they examined, Frank 

and Garcia (2009) find no evidence of time-varying risk premiums in the markets they analyzed. 

Some researchers have found implied volatilities to be upward biased estimates of realized 
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volatility (McKenzie, Thomsen, and Phelan, 2007; Brittain, Garcia and Irwin, 2011). Others find 

no evidence of volatility bias (Urcola and Irwin, 2011; Egelkraut, Garcia and Sherrick, 2007). 

 The purpose of this analysis is to determine if biases in futures prices or expected 

variances extracted from options can explain extraordinarily low loss ratios of LGM-Dairy 

insurance. The contribution of our research is the development and application of a new 

statistical method for testing futures price and option-based volatility unbiasedness assumptions.  

The new statistical method is warranted for two reasons. First, existing methods for testing biases 

in futures prices use only data from futures and spot prices (e.g. Beck 1994; McKenzie and Holt, 

2002; Frank and Garcia, 2009). Heteroskedasticity and autocorrelation consistent (HAC) 

estimators such as those by Hanson and Hedrick (1980) or Newey and West (1987) utilize only 

realized prediction errors and their covariance. In contrast, our method explicitly uses the 

information on options-implied expected volatility. In our method, higher implied volatilities, 

ceteris paribus, increase the burden of evidence needed to reject the null hypothesis of no futures 

price bias.  

Second, testing for biases at long horizons must address the overlapping data issue. In 

particular, shocks to futures prices at long horizons are likely to be very strongly correlated, as 

prediction horizons of consecutive futures contracts have significant overlap.  Historically this 

problem is addressed by using a variety of heteroskedastic and autocorrelated error covariance 

structures (Hansen and Hodrick, 1980; Newey and West, 1987; Karali and Thurman, 2009). 

When a small sample size does not permit reliance on asymptotic theory, bootstrap methods have 

been used as an alternative to test for presence of futures price bias (e.g. Mark 1995).  To our 

knowledge, bootstrap methods have not yet been applied in parametric tests for biases in 

volatility forecasts. The new method developed here allows for joint tests of futures price and 
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volatility biases in small samples when observed data has strongly overlapping prediction 

horizons.  

The remainder of the paper is organized as follows. We begin the analysis with a brief 

description of the LGM-Dairy insurance program. Focus is on assumptions regarding marginal 

distributions generated from futures and options data. In the third section we propose a new 

parametric bootstrap procedure to test whether or not observed futures and option price data are 

consistent with the LGM-Dairy rating method. Contrary to previous research, we find volatility 

forecasts for distant months extracted from Class III milk options to be downward biased. In the 

fourth section we argue how such a bias could emerge and persist in thin futures markets when 

the underlying commodity is continuously produced as is the case of milk. In the concluding 

section of this analysis we discuss the implications of our findings with respect to the current 

LGM-Dairy premium setting method.   

 

A Brief Overview of the LGM-Dairy Rating Method 

LGM-Dairy contracts can be purchased once a month after the Chicago Mercantile Exchange 

(CME) Group futures markets close on the last business Friday of each month. Only one LGM-

Dairy contract can be purchased each month and a farmer may insure at most 10 months of gross 

margin under any one insurance contract, not including the first month after the sales date.   

Let t represent the month of LGM-Dairy contract purchase and i  the ranking of the 

insurable month, 1,...,10.i   Expected milk revenues under LGM-Dairy are based on the three-

day average of Class III futures settlement prices ,
M

t if  prior to and including the prices on the day 

the LGM-Dairy contract is purchased, multiplied by declared milk marketed ,t iM  in each of up 

to 10 insurable months. At sign-up, expected feed costs are based on the same previous three-day 



6 
 

average of futures prices for corn ,
C

t if  and soybean meal , ,SBM
t if  multiplied by the declared corn

,t iC and soybean meal ,t iSBM  equivalents expected to be purchased and fed over the coverage 

period. For those months for which corn or SBM futures are not traded, the associated prices are 

defined as the weighted average of the CME futures settlement prices obtained from surrounding 

months.1  

In addition to monthly milk marketings and declared feed amounts, a farmer must decide 

on the Gross Margin Deductible, tD , i.e., the threshold decline in expected gross margin for 

insured milk after which LGM-Dairy will begin paying indemnities. Given the decision on the 

quantity for milk marketings declared feed use and deductible level, the gross margin guarantee 

tG  is calculated as: 

(1)    
10

, , , , , ,
1

M C SBM
t t i t i t i t i t i t i

i

G f D M f C f SBM


           

The realized (i.e., actual) gross margin, TR , is calculated as: 

(2)  
10

, , , , , ,
1

M C SBM
T T i t i T i t i T i t i

i

R p M p C p SBM


          

where , , ,, ,M C S
T i T i T ip p p  are terminal milk, corn and soybean meal prices, respectively estimated as 

the average of the last three settlement prices prior to the last trading day of the underlying 

futures contract.  

                                                            
1 For example, when purchasing an LGM-Dairy contract at the end of July, the expected October 
corn price is the weighted average of September and December corn futures prices where the 
weights are 0.667 and 0.333, respectively.  This is not a problem for Class III milk as future 
contracts exist for all months. 
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The LGM-Dairy ratemaking is designed to be actuarially fair. To that end, contract-

specific policy premiums tC  ($/cwt) are set equal to expected indemnities2:  

(3)  max( ,0)t t t TC E G R    

The LGM-Dairy premiums are determined by simulating TR using Monte Carlo simulation 

methods. A joint conditional distribution of terminal prices is constructed based on information 

available at the time of contract purchase. With 10 insurable months and three commodities 

involved, the joint distribution of interest consists of 30 marginal distributions and a linear 

correlation matrix that ties them together. Of the 30 marginal distributions, up to 24 are obtained 

directly from options and futures data, and the rest are interpolated through weighted averaging 

of surrounding marginal distributions. The marginal distributions of milk and feed prices are 

joined together through the Iman-Conover (1982) procedure equivalent to the Gaussian copula 

method (Mindenhall 2006). The LGM-Dairy premium is estimated as the simple average (plus 

3%) of 5,000 simulated indemnities based on the assumed joint log-normal price distribution 

(RMA, 2005).  

The focus of this article is on the assumptions regarding the marginal distributions, which 

we now list and discuss in detail. First, it is assumed that all marginal price distributions are 

lognormal. This assumption is not likely to be valid for annually harvested storable commodities. 

Due to non-negativity constraints on commodity inventories, commodity prices dynamics exhibit 

occasional sharp price spikes. Precipitous drops of the similar magnitude are not as likely. Thus, 

the resulting conditional price distributions are likely to have skewness levels higher than that 

                                                            
2 Full insurance costs include administrative and overhead fees, as well as 3% surcharge paid to 
the Federal Crop Insurance Corporation. 
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which is consistent with assumed lognormality (Deaton and Laroque, 1992; Geman, 2005; 

Pirrong, 2011, Bozic and Fortenbery, 2011).   

A random variable with a lognormal distribution is fully characterized by its first two 

moments. Futures prices determine the first moment. The LGM-Dairy rating method assumes 

futures prices are unbiased predictors of terminal prices. As emphasized in the introduction, this 

assumption is rather restrictive, as it requires futures prices to be not only efficient, but also to 

carry no marginal risk premium.  

The stochastic process for futures prices consistent with terminal price lognormality is the 

geometric Brownian motion (GBM). That process underpins the Black’s option pricing model 

(Black, 1976). When option contracts allow for early exercise, the Cox, Ross and Rubinstein 

(1979) (CRR) binomial option pricing model can be used. When option sellers can offset the risk 

of holding a short option position without transaction costs by assuming a continuously adjusted 

position in the underlying futures contract, the markets are said to be dynamically complete 

(Constantinides, Jackwerth and Perrakis, 2008). Under these conditions, option contract 

premiums are the expected value of the option payoff under a risk-neutral distribution. Inverting 

the process, expected risk-neutral variance can be extracted from the option prices. When 

markets are dynamically complete, and the underlying asset follows a geometric Brownian 

motion, the risk-neutral and true futures price distribution will have the same variance. LGM-

Dairy premium determination utilizes the CRR method to extract implied volatility from at-the-

money option prices.  

Incorporating the above LGM-Dairy rate making assumptions, the conditional marginal 

distribution  t  of the terminal log-price ln Tp is  

(4)   21
ln ; , ~ ln ,

2t T t t t t tp f N f       
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where T is the expiration date, 
252

T t 
 annualized time to expiration, futures price is denoted 

tf and implied volatility is .t   

There are at least two reasons why variance 2
t   built off CRR implied volatility may be 

biased. First, when the GBM assumption is violated, higher moments of the risk-neutral 

distribution may differ from those of the true price distribution. Second, common transaction 

costs such as trading fees and bid-ask spreads suffice to render markets imperfect and dynamic 

completeness unattainable. In such a scenario, option prices will reflect risk preferences of 

option sellers, who may require a risk premium to hold a short option position.  

Finally, LGM-Dairy data collection methods embed some assumptions that also need to 

be discussed. Under the LGM-Dairy rating method, there are three alterations to observed futures 

and options data. First, instead of using a daily settlement futures prices on a particular day, 

expected prices are calculated by taking three-day averages of daily settlement futures prices. 

The same procedure applies for terminal prices.  Implied volatilities used in LGM-Dairy 

premium determination are similarly obtained but this using two-day averaging. Second, missing 

observations for implied volatilities at distant months are imputed using observed implied 

volatilities for contracts with shorter time-to-maturity. Finally, while corn and soybean meal 

options expire several weeks before their underlying futures contracts, for LGM-Dairy premium 

determination purposes, time-to-maturity is based on futures, rather than options expiration date.  

Each of these alterations may be challenged. For example, if futures are efficient and 

unbiased, the last observed futures price is the most accurate forecast of the terminal price. 

Three-day average of futures prices would then introduce a bias whenever prices of the previous 

two days do not correspond to the last used futures price. A similar argument can be made 

concerning the averaging implied volatilities. Finally, imputing missing implied volatilities by 
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adjusting for time-to-maturity is only appropriate when underlying cash price series contains a 

unit root. If the underlying commodity cash prices are mean-reverting then imputed volatilities 

are likely to be upward biased.  

 

Parametric Bootstrap Tests of Unbiasedness in Futures Prices and Implied Volatilities 

The LGM-Dairy marginal price distribution assumptions could be considered to be relatively 

strong. Are observed prices consistent with these assumptions? In this section we develop a 

method for generating simulated terminal prices with the data generating process (DGP) 

consistent with the LGM-Dairy assumptions. We then test how likely the observed prices are 

given the assumed DGP. It is important to emphasize that we are not designing the new 

procedure to test any particular economic theory. In many applied works testing market 

efficiency, it is critical to design a model in such a way to differentiate between futures prices 

biases emerging from risk premium vs. biases that are result of informational inefficiencies 

(McKenzie and Holt, 2002; Frank and Garcia, 2009). In contrast, our objective is to examine if 

LGM-Dairy insurance is likely to be under- or overpriced due to the assumptions of the rating 

method. As such, it is more important to know the direction and magnitude of a price bias than to 

decompose its source.  

The composite hypothesis we seek to test is given in (4). It is a joint test of lognormality, 

unbiasedness of futures prices and unbiasedness of option prices. We split (4) into two testable 

hypotheses: 

H1:  Futures prices are unbiased predictors of terminal prices 

H2:  Squared implied volatilities multiplied by time left to maturity are an unbiased 

predictors of terminal log-price variances.  
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If either H1 or H2 is rejected, the composite hypothesis represented by (4) is rejected. Under 

H1 we have  

(5)  , ,t i t T if E p   

where ,T ip is the terminal price for the ith insurable month.  To standardize, we divide (5) by ,t if , 

and obtain 

(6) , ,

,

0t i T i
t

t i

f p
E

f

 
 

 
  

From (6) the percentage prediction error (PPE) is defined as:  

(7) , ,
,

,

100t i T i
t i

t i

f p
PPE

f


    

Over N contracts with unbiased futures prices, we would expect the average PPE to be close to 

zero. Therefore, an appropriate sample equivalent of equation (7) is 

(8) , ,
,

1 1,

1 1
100 0

N N
l i l i

i l i
l ll i

f p
PPE PPE

N f N 


       

where ,l if is the three-day average futures price for contract 1,...,l N  observed at a time when it 

would have been used in a LGM-Dairy premium calculation as an expected price for ith insurable 

month. Terminal price is denoted ,l ip .  

If H2 is true then 

(9) 
2

2 2
, , , ,

1
ln ln 0

2t t i T i t i t iE p f   
             

  

Dividing (9) by the conditional variance of terminal log-prices 2
,t i   we obtain  

(10) 

2

2
, , ,

,

1
ln ln

2 1
T i t i t i

t

t i

p f
E
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We denote the expression in the brackets as the squared standardized prediction error (SSPE). 

Over N contracts with unbiased futures prices as well as unbiased implied volatilities, we would 

expect SPPEs to average to one. We can calculate root mean square standardized prediction error 

(RMSSPE) as: 

(11) 

2

2
, , ,

1 ,

1
ln ln

1 2l i l i l iN

i
l l i

p f
RMSSPE

N

 

 

        
 
  

   

The testable implication of H2 is:  

(12) 

2
2

, , , ?

,1

1
ln ln

1 2 1
N l i l i l i

l il

p f

N

 

 

        
 
  

   

Since the time of futures price measurement falls before all previous contracts have 

expired prediction percentage errors ,t iPPE as well as ,t iSSPE  will be autocorrelated. For distant 

horizons, these autocorrelations may be rather strong. As an example, consider Class III milk 

prices for the 9th insurable month. The autocorrelation at first lag for ,9tPPE  is 0.906. If our 

bootstrapped distributions of test statistics iPPE  and iRMSSPE  are to truly reflect the 

hypothesized data generating process we need to explicitly account for these autocorrelations.  

In order to test H1 and H2, subject to both correlated prediction errors and relatively 

small sample sizes, we proceed by utilizing our new parametric bootstrap approach to 

approximate the distribution of test statistics shown in equations (8), (12) under the DGP 

summarized by (4).  We then test each hypothesis using bootstrapped p-values. 
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Simulating Terminal Prices 

We will denote bootstrapped variables and statistics with an asterisk  *  to differentiate them 

from observed data and sample-based statistics. For a given insurable month ,i  we simulate 

terminal prices *
,T ip by:  

(13)   * * 2
, , , , ,exp ln 0.5T i T i t i t i t ip z f          

where *
,T iz are autocorrelated draws from a standard normal distribution. Autocorrelations in *

,T iz

must be such that they reflect autocorrelations in ,t iPPE and ,t iSSPE  as well as restrictions 

imposed by the null hypotheses H1 and H2.  

A general expression for an  ,ARMA p q process is: 

(14)  2

1 1

   ~ 0,
p q

t m t m m t m t t
m m

z z N       
 

      

Both H1 and H2 will impose restrictions on ARMA coefficients in (14). Let j  be the 

highest nearby index of futures prices used in calculation of ith insurable month’s expected prices 

under LGM-Dairy rating method. H1 stipulates futures prices are unbiased. If futures prices are 

unbiased, they must be efficient. Under futures markets efficiency, for the jth nearby futures 

prices, autocorrelations in ,t iPPE  at lags higher than 1j   must be zero. If that were not the case, 

then observed past prediction errors could improve the forecasting power of futures prices. In 

order to achieve this condition, the number of autoregressive lags for tz  draws must be set to 

zero, and only up to 1j   moving average lags can be allowed. In other words, from H1 it 

follows that  ,ARMA p q  in equation (14) must be restricted such that 0, .p q j    

H2 stipulates   2
,lnt T t TVar p   . From (13), it follows that 
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(15)    * 2 *
, , ,lnt T i t i t T iVar p Var z     

The conditional variance of *
,T iz  must be equal to one. From (14) and restrictions imposed 

on (14) by H1, it follows that unitary conditional variance will only be achieved when  

(16) 2
1

2

1

1

1
j

m
m











  

The final issue to be resolved regards the estimation of moving average coefficients in 

(14). In order to do that, we use information on realized shocks to construct observed ,T iz  scores 

and fit  1MA j   models. Using the cumulative density function of terminal log-prices, 

conditional on information available at time t,  .t  with parameters 
, ,

2 2
,ln 0.5 ,

t i t it if      , we 

can calculate the quantile ,t iu of the realized terminal log-price ,ln T ip  

(17) 2 2
, , , , ,

1
ln ;ln ,

2t i t T i t i t i t iu p f        
 

  

Under the null hypotheses, the implied quantile ,t iu tells us where realized price falls in 

the time-t conditional distribution that is based on futures price and implied volatility. For 

example, if the implied quantile is 0.9 this implies that realized price is quite higher than 

expected at time t, i.e., the chance of the terminal price settling at that particular level or higher 

were deemed to be only 10%.  

Berkowitz (2001) used the inverse probability integral transform to convert implied 

quantiles to draws from standard normal distribution. We follow a similar approach here and 

construct a series of standard normal z-scores based on quantiles ,t iu . The first step is to use the 

standard normal distribution function and inverse probability integral transform: 

(18)  1
, ,t i t iz u    
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We must also account for the possibility that unbiasedness of futures-implied mean and 

options-implied variance may not actually be valid assumptions for the terminal price conditional 

distribution. Consequently, quantiles ,t iu , which are distributed uniformly under the null, may 

not be distributed uniformly in our sample. In order to capture the autocorrelation structure under 

the null hypotheses H1 and H2, unrestricted z-scores ,t iz are standardized to insure zero mean and 

standard deviation of one. Denote the mean and standard deviation of unrestricted z-scores ,t iz as

andi i   , respectively. Restricted z-scores are then calculated as  

(19) ,
,

t i i
t i

i

z
z









  

We use ,t iz  to fit coefficients of a  1MA j  model. Following equation (14) we then simulate z-

scores via 
1

*
,

1

ˆ .
j

T i t m t m
m

z   





   For each bootstrapped sample of z-scores, we run the *
,T iz  series 

for 500 time periods before recording a sequence of length N. In total, K  samples of 1N 

vectors of z-scores are simulated. Using Error! Reference source not found. we generate K

bootstrapped 1N  vectors of simulated terminal prices, denoted  *
, ,l ip k 1,...,l N  and 

1,..., .k K  

Determining Critical Test Statistic Values 

For each of the K bootstrapped samples of simulated terminal prices we calculate average PPE, 

denoted  *
iPPE k  as  

  * *
,

1

1
,    1,...,

N

i l i
l

PPE k PPE k K
N 

   (20) 

The formal tests of the futures unbiasedness hypotheses consists of constructing bootstrapped 

confidence intervals for the  *
iPPE k  statistics and determining if the sample-data based iPPE   



16 
 

value lies within the critical region. The bootstrapped confidence interval with the probability of 

Type I error of   is found by sorting the bootstrapped  *
iPPE k  statistics and identifying the 

critical values as entries at positions 
2

K


and 1
2

K
  

 
.  

For this analysis we set the number of replications as 20,000K  and 0.05   so the 

critical values of the bootstrapped distribution are found at positions 500 and 19,500. If the 

sample iPPE is lower than 
*

, /2jPPE  or higher than 
*

,1 /2jPPE  we reject the null hypothesis of 

unbiasedness of futures prices for ith insurable month. The advantage of our test over other 

approaches based on heteroskedasticity and autocorrelation consistent (HAC) estimators such as 

those by Hanson and Hedrick (1980) or Newey and West (1987) is that we utilize explicitly the 

information on expected volatility, while HAC estimators only use realized prediction errors and 

their covariance. Higher implied volatility coefficients will result in a more dispersed 

bootstrapped distribution of mean prediction percentage errors. Consequently, critical points 

*
, /2jPPE   and 

*
,1 /2jPPE   will be larger in magnitude.  This larger value implies a higher burden 

of evidence needed to reject the null hypothesis of unbiased futures prices. In the online 

Appendix A we quantify in detail how much extra burden the overlapping nature of our data 

places on the evidence needed to reject the null hypothesis of no volatility bias.  

For the volatility unbiasedness test (H2) we use bootstrapped root mean standardized 

square prediction errors,  * .iRMSSPE k  From (12) and (13), the square root of average 

bootstrapped SSPE can be simplified to:  

    2* *
,

1

1
, 1,...,

N

l k
l

RMSSPE k z k K
N 

   (21) 
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Therefore, the bootstrapped distribution of the variance unbiasedness test statistic in (21) 

depends directly on the autocorrelation structure of standard normal draws ,l kz and sample size, 

but not on futures prices or implied volatilities. 

 

Description of Data Used in the Analysis 

We apply the above bootstrap procedures to a set of Class III milk futures and options contracts 

from January 2000 through August 2013. Class III milk futures and options are traded for all 

twelve calendar months, so our sample period yields 164 observations. For corn and soybean 

meal, sample period encompasses contracts from January 2000 through September 2013. Corn 

futures trade for five calendar months (March, May, July, September and December) and 

soybean meal futures trade for eight calendar months (January, March, May, July, August, 

September, October and December). The total numbers of monthly observations for these 

commodities are 69 and 110, respectively.  

To obtain the data series we use in our tests we construct a sequence of expected and 

terminal prices and two-day average implied volatilities for ith insurable month, where 

1,...,10.i   As the LGM-Dairy contract allows insurance to cover up to ten months, each 

futures/options contract month is used for price discovery purposes at ten consecutive LGM-

Dairy sales events. Therefore, for each futures/options contract month we collect data at ten 

time-to-maturity horizons, corresponding to periods where futures and options data from this 

contract month would be used as LGM-Dairy information sources. Descriptive statistics are 

presented in Table 2.  

[Insert Table 2 about Here] 
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Results of the Parametric Bootstrap Tests 

The results of our parametric bootstrap tests for unbiasedness of futures prices are summarized in 

Table 3. Average PPE’s for Class III milk and corn are rather small, and fall well within the 95% 

bootstrapped confidence interval. For soybean meal futures, mean PPE’s are negative and larger 

for more distant insurable months. Expected soybean meal prices, as defined by the LGM-Dairy 

rating rules, have been on average 10.24% below the terminal price for the 6th insurable month, 

and 15.41% below the terminal price for the 10th insurable month. For this commodity, mean 

prediction errors lie outside the 95% confidence interval for all insurable months, and p-values 

are less than 0.01. We conclude that Class III and corn futures prices are unbiased predictors of 

terminal futures price at all prediction horizons examined. In contrast, soybean meal prices 

exhibit statistically significant and substantial downward bias.  

[Insert Table 3 about Here] 

  Results of our bootstrap tests for implied volatilities are given in Table 4. RMSSPEs for 

corn lie well within the 95% confidence interval. For soybean meal and Class III milk, the null 

hypothesis of no volatility bias is rejected. Given the earlier finding of bias in soybean meal 

futures prices, we must be careful in interpreting the results of either futures price or volatility 

bias tests. If futures prices are indeed biased, but bias is due solely to time-varying risk premium 

and not informational inefficiencies, then the test for volatility biases based on equations 

Error! Reference source not found. and Error! Reference source not found. will be 

misspecified. To check for robustness of our results in the online Appendix B we develop a 

version of the volatility bias test that can accommodate time-varying risk premiums in futures 

prices. We show that under that model specification, the null hypothesis of no volatility bias in 
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soybean meal options is not rejected. The most robust conclusion is not, however, that soybean 

meal futures contain a risk-premium. The proper conclusion is that that the parametric bootstrap 

tests reject the composite null hypothesis (4) of no bias in either soybean meal futures prices or 

implied volatilities.  

Implied volatility unbiasedness is rejected for Class III milk options for all insurable 

months. Before analyzing the potential causes of this bias, another robustness check is in order. 

In particular, we need to examine if this result could be attributed to alterations of futures and 

options data stipulated in the LGM-Dairy rating method as described in the second section of this 

article. The results of this robustness test are discussed in detail in the online appendix C. The 

short conclusion is that the stated alterations do not seem to qualitatively change the parametric 

bootstrap test results.  

Analysis of Class III Milk Implied Volatility Biases 

The direction of the Class III milk implied volatility biases stands in clear contradiction to the 

previous literature (McKenzie, Thomsen and Phelan, 2007; Brittan, Garcia and Irwin, 2011; 

Bodarenko, 2004, Gabaix, 2012). In other commodities, when implied volatilities have been 

determined to be biased, upward bias has been identified, i.e., implied volatilities were higher 

than the realized volatility. In contrast, results of our tests suggest that implied volatilities have 

actually been under-predicting the magnitude of risk in Class III futures markets.  

From the magnitude of RMSSPEs it is not clear as to whether these results are also 

economically important. To examine the issue further we create a long straddle-based trading 

strategy that would generate zero profits if implied volatilities are unbiased, but would yield 

positive profits if implied volatilities are too low relative to realized shocks. Even after 

accounting for typical slippage, returns over the past 13 years average 27%. Therefore, the 
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results from our trading exercise not only corroborate parametric bootstrap results, but suggest 

that returns on strategies exploiting apparent volatility bias in Class III options are considerably 

high.  Online Appendix D discusses the trading program analysis in further detail. 

One explanation often invoked to explain asset returns puzzles is the effect of rare large 

disasters on ex ante returns (Gabaix 2012). As Lewis (2008) explains, because asset prices are 

determined by expectations about the paths of future economic variables, they will reflect 

expectations about infrequent discrete shifts in economic determinants. Consequently, the 

rational forecast errors may have a mean different from zero in finite samples, as observed data 

in any given sample would reflect expectations for a rare event that could have plausibly 

happened, but did not happen in the sample (Bodarenko 2004).  

If a sample does not contain the rare event that is nevertheless factored in the put option 

premiums, then ex post returns to selling puts may seem high. Apparent mispricing is thus a 

small sample issue, and would vanish with a sufficiently large sample containing the rare event 

at its true relative frequency. While the literature is mostly concerned with samples which do not 

include anticipated rare events, the logic may be extended to small samples around the rare event 

that actually did occur. In such a scenario, options may indeed seem underpriced, as positive 

returns to long option positions at event time may dominate the sample. This conjecture points to 

a likely a violation of the lognormality assumption. Lognormal distribution has thin tails. Under 

alternative distributional assumptions, an extreme tail event might have been deemed much more 

likely, and a realization of such an event might not be judged by the parametric bootstrap test as 

radical departure from the model assumptions.  

The most likely candidate for an over-represented rare event is the Great Recession of 

2009, when prices of milk futures nearly halved. History indicates such major recessions occur 
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once in half a century, not once in 13 years, which is the length of our sample. To examine this 

conjecture, we rerun the parametric bootstrap tests and trading programs with the truncated 

sample from which most likely rare events have been excluded. The results indicate presence of 

rare events may have contributed to high observed returns to long straddle positions, but the 

potential overrepresentation of rare events does not fully explain the apparent downward bias in 

Class III milk implied volatilities, especially for prediction horizons from 120 to 220 calendar 

days to maturity. For details consult the online Appendix E. 

If the mispricing is not a result of discrepancy between ex ante and ex post returns 

induced by rare events, then an explanation must be offered why this trading opportunity has not 

yet been exploited by speculators. We presented the results of our straddle trading strategy 

discussed above to seven commodity traders at the CME Group. Those employed at large trading 

companies that regularly speculate or hedge in many commodity markets found dairy option 

markets to be too small and illiquid to justify their engagement. Dairy option markets for 

horizons longer than four months are particularly thin, and in their opinion even a very modest 

speculative activity would suffice to significantly raise distant month options premiums, thus 

closing this trading opportunity. In addition, this investment opportunity is not only small in 

absolute sense, but based on historical record, it would also necessitate dedicated trading 

program spanning at least 36 trades/months before meaningful profits can be expected with 

reasonably high probability. For that reason, and given the uncertainty regarding future dairy 

policy, traders in companies specializing in dairy risk management found the necessary 

commitment horizon too long to spur investment interest.  

Barely existent trading activity may be able to explain the persistence of biased option 

prices. But we must still explain why option prices emerged to be too low, rather than too high. 
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The rare events hypothesis is a plausible partial explanation, but it is our conjecture that price-

forming heuristics, structure of trades and distribution of liquidity across trading months all 

contribute to the direction of the volatility bias. A significant percentage of Class III trading 

activity occurs in the front three months. At contract expiry, Class III futures market cash settles 

against USDA announced Class III milk price based on four/five-week average cheese, dry whey 

and butter prices. As such, volatility of futures prices in the last thirty trading days dramatically 

decreases. Consequently, daily settlement option prices for the first three nearby contracts 

typically have distinct implied volatilities increasing with time-to-maturity, indicating an active 

option price discovery process. In contrast, the implied volatility term structure is typically flat 

for 4th and higher nearby contracts. In our conversations with dairy option market makers, it was 

their opinion that implied volatilities for 3rd or 4th nearby month are used as a natural starting 

point in forming prices for options for more distant months, with premiums adjusted for longer 

time-to-maturity. Therefore, trader’s heuristics regarding the thin segment of the market (distant 

contract months) may contribute to the apparent volatility biases.  

Given the continuous nature of milk production, it is very common for a producer to buy 

option ‘packs’ traded as bundles covering a minimum of three, and often more months. A “pack” 

of options is defined by a common strike, and quoted with a single price. When prices are 

recorded for official purposes, they are split for individual months by assuming an average 

implied volatility for the entire period covered by the pack. The practice of buying options as 

‘packs’ with overlapping periods, rather than individual contracts, is more prevalent for distant 

months, and may further mute the option price discovery process beyond the 3rd nearby contract.  

In conclusion, high trading activity in front months encourages an active price discovery 

process, and implied volatilities that emerge for the 3rd nearby contract are likely used by option 
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sellers as a starting point in pricing options for more distant months. If the variance of prices 

grows faster with time-to-maturity than is implied by flat volatility term structure with volatility 

coefficient based on 3rd nearby contract, then flat volatility curve would indeed induce downward 

biased option prices. Finally, low speculative and hedging demand, and the common practice of 

hedging via use of option ‘packs’ jointly mute option price discovery at more distant months, 

allowing downward bias in implied volatilities to persist.  

Conclusions 

In this analysis we have developed a novel method for testing for presence of futures price and 

implied volatility biases. Our method is suitable for short sample periods and data with 

overlapping forecast horizons. Existing methods, such as Hansen-Hodrick and Newey-West 

estimators, rely on residuals standard error to form autocorrelation-consistent confidence 

intervals of futures prediction errors. As such, these methods use only information on realized 

variance of futures prices. Our parametric bootstrap test improves upon existing methods by 

utilizing available information on anticipated volatility, which we infer from option prices. 

Furthermore, to our knowledge, ours is the first empirical analysis to properly account for 

residual autocorrelated errors when testing for presence of bias in implied volatility coefficients.  

We applied our method to evaluate actuarial assumptions used in premium determination 

of the Livestock Gross Margin Insurance for Dairy Cattle. We find Class III milk and corn 

futures prices to be unbiased. The composite hypothesis of no futures price and implied volatility 

biases is rejected for soybean meal. Without additional assumptions regarding risk premiums in 

soybean meal futures it is not possible to determine if the hypothesis is rejected due to futures 

prices or implied volatility biases.  
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Tests for the presence of bias in implied volatility coefficients suggest that milk options 

exhibit downward bias. This result stands in stark contrast to financial literature that regularly 

finds options prices to be over- rather than underpriced (McKenzie, Thomsen and Phelan 2007; 

Brittan, Garcia and Irwin 2011; Bodarenko 2004; Gabaix 2012). After accounting for possibly 

over-represented rare events that induced major milk price shocks, we still find Class III options 

underestimating the futures price volatility for contracts with 5 to 10 months to maturity.  

Possible reasons for emergence of downward bias in Class III options include (i) heuristics used 

by market makers to form prices for thin and illiquid distant Class III options, (ii) the prevalent 

practice of purchasing of Class III options in ‘packs’ rather than individual contract months 

which mutes option price discovery process. Market thinness, policy uncertainty, and the length 

of commitment necessary to guarantee high profits with reasonably high probability jointly 

explain why these biases can persist despite possibly highly lucrative trading programs that can 

be devised to exploit options mispricing.  

Although LGM-Dairy is a government-sponsored margin insurance product with a 

transparent rating method and explicitly designated to be actuarially fair, large underwriter gains 

over the past 4 years have led some to question the soundness and robustness of the official 

rating method. Based on our parametric bootstrap tests and simulation experiments, our 

conclusion is that assumptions regarding marginal distributions of milk and feed prices do not 

produce insurance premiums that could be considered excessive. On the contrary, correcting for 

identified downward biases in soybean meal futures and/or option prices and Class III milk 

options prices would increase, rather than decrease LGM-Dairy premiums. For detailed analysis 

consult the online Appendix F. Given that the previous work (e.g. McKenzie and Holt 2002; 

Frank and Garcia 2009; Gorton, Hayashi and Rouwenhorst 2012) does not find biases in soybean 
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meal futures prices, it would be our recommendation that further research be done to understand 

the origin and persistence of bias in soybean meal prices that emerged in the last decade. If 

further work corroborates our results, our recommendation to the LGM-Dairy contract designers 

would be to use a conservative approach whereby expected prices are adjusted for bias when 

calculating gross margin guarantees. Such an approach would reduce the gross margin guarantee 

without substantially altering the premiums compared to the current method.  

Based on this work, our recommendation is that in pricing LGM-Dairy insurance, Class 

III milk option biases be corrected using a conservative method that excludes possibly 

overrepresented rare events when calibrating implied volatility to account for the uncovered 

volatility biases. If option markets continue to exhibit strong downward volatility bias over the 

forthcoming decade, the rare-events explanation would further lose credibility, and premiums 

should then be adjusted using the calibration based on full data sample.  

If the futures and options biases cannot explain the low LGM-Dairy loss ratios, an 

explanation for a possible insurance premium bias must be sought elsewhere. XXX et al. (2013) 

[REFERENCE WITHHELD FOR REVIEW PURPOSES] examined if accounting for non-lognormal 

skewness and kurtosis may provide an answer and found the LGM-Dairy premiums robust to 

violations of lognormality assumption. XXX et al. (2013b) [REFERENCE WITHHELD FOR REVIEW 

PURPOSES] find the LGM-Dairy premiums highly sensitive to assumptions regarding the strength 

and nature of dependence between milk and feed prices. XXX et al. (2013b) demonstrate that 

correcting the LGM-Dairy rating method to account for expected co-movements between milk 

and feed prices results in long-run LGM-Dairy loss ratios close to one.  

Parametric bootstrap methods for examining biases in futures and options prices can be 

further improved by relaxing the assumptions regarding stochastic process for underlying futures 
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prices. In particular, Bozic and Fortenbery (2011) confirm that futures prices in storable 

agricultural commodities exhibit skewness and kurtosis that are higher than consistent with 

lognormality. As such, parametric methods that utilize information from option prices across all 

traded strikes would be an improvement over our method employed in this article that follows 

LGM-Dairy rating method in using only at-the-money options. While our parametric bootstrap 

method was developed with a concrete purpose of testing actuarial assumptions of LGM-Dairy, 

its relevance is by no means restricted to our particular application. With commodity markets 

rapidly changing over the past decade, the parametric bootstrap methods for testing for presence 

of futures price biases should be preferred to methods that rely on asymptotic theory, require 

samples spanning several decades and ignore information on anticipated volatility embedded in 

the options prices. 
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Table 1. LGM-Dairy Insurance Statistics Crop Insurance years 2009-2012 

Insurance 
Year 

Policies 
Sold 

Milk 
Marketings 

Insured 

Gross 
Margin 

Guarantee
Premium Indemnities 

Paid 
Loss 
Ratio 

  (No.) (cwt) ($) ($) ($)   
08-09      40      401,680     4,715,858      287,201    718,035   2.50 
09-10    134   1,872,499   24,914,997      781,589    280,566   0.36 
10-11 1,224 46,172,815 769,644,504 25,012,757      64,738 <0.01 
11-12    898 40,504,408 704,520,655 19,153,150 1,317,954   0.07 
12-13    687 34,188,752 664,253,548 16,878,326 1,737,692   0.10 
13-14   150   4,470,452 81,639,835   1,572,438               0   0.00 

Source: Risk Management Agency, http://www3.rma.usda.gov/apps/sob/  . Accessed Sept. 30, 
2013. 

Note: The contracts issued during 2012-13 and 2013-14 reinsurance years may not have matured 
as of Sept. 30, 2013.
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Table 2. Descriptive Statistics for Data Used in Parametric Bootstrap 

Commodity/ 
LGM-Dairy 

Insurable 
Month 

      
Time to Maturity 
(Calendar Days) 

 Futures ($)  Implied Volatility 

  Avg Min Max  Avg S.D. Min Max  Mean S.D. Min Max 
Class III Milk               

1 164 64 59 75  14.13 3.01 9.39 20.80  0.19 0.05 0.08 0.37
2 164 95 87 103  14.14 2.80 9.78 20.71  0.21 0.04 0.10 0.37
3 164 125 116 137  14.12 2.65 9.80 20.72  0.21 0.04 0.11 0.35
4 164 156 150 166  14.10 2.51 9.82 20.33  0.20 0.04 0.11 0.30
5 164 186 178 194  14.09 2.41 9.84 20.15  0.20 0.03 0.11 0.30
6 164 216 213 229  14.04 2.33 9.90 20.10  0.20 0.03 0.11 0.29
7 164 247 241 257  13.99 2.27 9.97 19.68  0.20 0.03 0.11 0.30
8 164 277 270 285  13.94 2.20 10.51 19.42  0.19 0.03 0.10 0.32
9 164 308 304 320  13.88 2.18 10.61 19.47  0.19 0.03 0.10 0.30

10 156 338 332 348  13.92 2.17 10.71 19.61  0.19 0.03 0.08 0.31
Corn               

1 69 45 32 48  3.75 1.82 1.80 7.91  0.30 0.08 0.16 0.56
2 69 77 67 87  3.76 1.79 1.96 7.60  0.30 0.08 0.16 0.47
3 69 107 95 116  3.76 1.80 1.88 8.07  0.29 0.08 0.16 0.47
4 69 137 123 146  3.74 1.75 1.92 7.86  0.29 0.08 0.16 0.47
5 69 168 151 175  3.73 1.72 2.07 7.80  0.28 0.08 0.16 0.47
6 69 198 186 209  3.74 1.70 2.00 8.08  0.29 0.08 0.16 0.47
7 69 229 214 237  3.68 1.66 2.04 7.81  0.27 0.07 0.16 0.44
8 69 259 242 271  3.72 1.69 2.08 8.01  0.28 0.07 0.17 0.46
9 69 290 277 300  3.67 1.59 2.12 7.75  0.27 0.06 0.18 0.42

10 69 319 305 322  3.70 1.64 2.15 8.05  0.27 0.06 0.19 0.42
Soybean Meal               

1 110 46 32 55  257.7 96.8 145.0 536.3  0.27 0.08 0.15 0.48
2 110 77 67 87  254.2 93.2 143.6 482.5  0.27 0.07 0.16 0.45
3 110 107 95 116  250.6 91.4 143.7 532.9  0.26 0.07 0.15 0.43
4 110 137 123 146  247.7 90.3 143.3 525.6  0.26 0.06 0.15 0.43
5 110 168 151 175  243.2 86.2 135.6 463.9  0.25 0.06 0.15 0.41
6 110 198 186 209  242.1 85.2 137.7 495.8  0.25 0.06 0.14 0.41
7 110 229 214 238  236.4 80.8 136.6 436.9  0.24 0.06 0.16 0.41
8 110 260 242 271  234.8 80.6 140.4 454.8  0.24 0.06 0.14 0.39
9 110 290 277 300  231.0 76.9 139.0 427.5  0.23 0.05 0.14 0.39

10 110 320 305 329  230.0 77.9 136.3 442.0  0.23 0.06 0.14 0.39
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Table 3. Parametric Bootstrap Tests for Unbiasedness of Futures Prices  

(1) (2) (3) (4) 

Commodity / 
LGM-Dairy 

Insurable Month 

Mean Prediction 
Error 

Bootstrapped  
Prediction Error  

Confidence Interval 

Bootstrap test for 
Unbiasedness of 
Futures Prices 

 (%) (%) (p-values) 
Class III Milk    

1 -0.57 (-1.95, 1.88)   0.562 
2 -0.61 (-2.77, 2.76)   0.655 
3 -0.91 (-3.68, 3.53)   0.627 
4 -1.26 (-4.48, 4.44)   0.564 
5 -1.54 (-5.11, 4.97)   0.536 
6 -2.11 (-5.88, 5.61)   0.464 
7 -2.53 (-6.46, 6.14)   0.431 
8 -2.93 (-7.11, 6.69)   0.400 
9 -3.48 (-8.04, 7.75)   0.387 

10 -4.95 (-8.55, 8.29)   0.248 
Corn    

1 -0.34 (-2.65,     2.55)   0.794 
2 -0.29 (-4.04,    -4.04)   0.873 
3 -0.36 (-4.60,     4.44)   0.854 
4 -0.59 (-5.40,     5.15)   0.819 
5 -1.41 (-7.26,     6.71)   0.686 
6 -0.60 (-6.86,     6.41)   0.851 
7 -2.41 (-8.87,     8.28)   0.573 
8 -1.86 (-7.37,     6.85)   0.600 
9 -2.46 (-10.63,   9.67)   0.608 

10 -2.35 (-11.50, 10.55)   0.650 
Soybean Meal    

1 -3.07 (-1.92, 1.87)   0.002 
2 -4.64 (-2.66, 2.58)   0.001 
3 -6.28 (-4.06, 3.90)   0.004 
4 -7.86 (-5.19, 4.88)   0.004 
5 -9.86 (-5.92, 5.67)   0.001 
6 -10.24 (-7.39, 6.81)   0.007 
7 -12.61 (-8.35, 7.62)   0.003 
8 -13.43 (-8.77, 7.98)   0.003 
9 -14.97 (-9.51, 8.80)   0.003 

10 -15.41 (-8.70, 8.05) <0.001 
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Table 4. Parametric Bootstrap Tests for Unbiasedness of Implied Volatilities 

Commodity / 
LGM-Dairy 

Insurable 
Month 

Root Mean 
Square 

Standardized 
Prediction 

Error 
 

Bootstrapped Root 
Mean Square 
Standardized 

Prediction Error 
Confidence Interval 

Bootstrap test 
for 

Unbiasedness 
of Implied 
Volatilities 

   (p-values) 

Class III Milk    

1 1.23 (0.87, 1.13)   0.002 
2 1.34 (0.85, 1.15) <0.001 
3 1.38 (0.83, 1.18) <0.001 
4 1.41 (0.81, 1.20) <0.001 
5 1.42 (0.80, 1.20) <0.001 
6 1.40 (0.79, 1.22)   0.001 
7 1.38 (0.78, 1.23)   0.003 
8 1.35 (0.78, 1.24)   0.005 
9 1.34 (0.75, 1.26)   0.013 

10 1.34 (0.75, 1.26)   0.015 
Corn    

1 0.84 (0.83, 1.16) 0.075 
2 1.02 (0.83, 1.17) 0.789 
3 1.05 (0.83, 1.18) 0.532 
4 0.99 (0.82, 1.18) 0.991 
5 1.05 (0.80, 1.21) 0.519 
6 0.98 (0.80, 1.20) 0.925 
7 1.03 (0.78, 1.23) 0.690 
8 1.00 (0.77, 1.23) 0.849 
9 0.99 (0.76, 1.25) 0.935 

10 1.00 (0.75, 1.26) 0.915 
Soybean Meal    

1 1.16 (0.87, 1.13) 0.022 
2 1.15 (0.87, 1.14) 0.025 
3 1.19 (0.84, 1.17) 0.027 
4 1.27 (0.83, 1.18) 0.006 
5 1.32 (0.81, 1.20) 0.002 
6 1.23 (0.79, 1.22) 0.033 
7 1.31 (0.77, 1.24) 0.015 
8 1.28 (0.77, 1.24) 0.026 
9 1.32 (0.77, 1.25) 0.013 

10 1.26 (0.78, 1.23) 0.031 
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Parametric Bootstrap Tests for Futures Price and Implied Volatility Biases  
With Application to Rating Dairy Margin Insurance 

 
ONLINE APPENDIX A. – Overlapping Prediction Horizons and Test Critical Values 

Futures price prediction horizons for distant months are strongly overlapping. It is interesting to 

examine how much extra burden this places on the evidence needed to reject the null hypothesis 

of no volatility bias, compared to what would be required in a sample with the same number of 

observations, but with non-overlapping data. In our test for volatility bias, the only two data 

features that influence the critical values are (i) the number of observations and (ii) the z-score 

correlations. Thus, any differences between critical values in our test with the1st nearby and our 

test with contracts with higher nearby index are due solely to prediction horizon overlap.  

In (21), if horizons were non-overlapping, then standard normal draws *
,l kz would be 

uncorrelated. The sum of N square i.i.d. standard normal deviates is distributed  2 N  

implying that   * 2~ .NSSPE N  Absent prediction horizon overlap we would not need a 

bootstrap to test for volatility bias. Instead, we would obtain critical RMSSPE values by 

calculating directly 2.5th and 97.5th percentiles of the  2 N distribution, dividing both values 

by the sample size N, then taking square roots. For example, given that we have 164 Class III 

milk contracts in our sample the required percentiles of the  2 164  are 130.43 and 201.35. 

Dividing by 164, and taking square roots we obtain 0.892 and 1.108. Bootstrapped critical values 

for the 1st nearby contracts should match these numbers, as those data do not have overlapping 

horizons. Indeed, critical RMSSPE values for 1st nearby Class III Milk contracts in Table C.3 are 

0.89 and 1.11, extremely close to the above values.  
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 We compare our bootstrapped critical values for more distant contracts with these 

numbers to gain insight on the burden overlapping prediction horizons impose on evidence 

needed to reject the null hypothesis of implied volatility unbiasedness. For example, for the 10th 

insurable month, critical Class III values are 0.75 and 1.26 – a considerably wider confidence 

interval than under no-overlap situation. It would take 30 non-overlapping observations to obtain 

the same confidence interval. For a 10th insurable month prices, that would be equivalent to 27 

years of data, or twice as long estimation period than in our sample. Alternatively, non-

overlapping 10th nearby series available to us only has 15 observations and critical values would 

be 1.35 and 0.64, creating much wider confidence interval than used in our test. Therefore, using 

all available futures and options data can considerably increase utilized information content of 

small samples, even when prediction horizons are strongly overlapping. 
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Parametric Bootstrap Tests for Futures Price and Implied Volatility Biases  
With Application to Rating Dairy Margin Insurance 

 
ONLINE APPENDIX B. – Robustness Checks I: Risk-Premium in Futures Prices 

 

In the main body of the text we find that volatility bias tests indicate soybean meal implied 

volatilities are downward biased. However, this test is conducted under the assumption that 

futures prices are unbiased. If soybean meal futures prices exhibit time varying premiums then 

tests for volatility biases based on (12) will be misspecified. In this appendix we test for presence 

of biases in implied volatilities under the assumption that futures prices are efficient and exhibit 

time-varying risk premium r, estimated using the sample average PPE as follows:  

(B.1) / 100jr PPE    

The above implies that  t T t tE p f rf  . If 0r  then our model specification implies that risk 

premiums are increasing in the level of futures prices. McKenzie and Holt (2002) and Frank and 

Garcia (2009) develop models with time-varying risk premiums, and assert that testing for a 

constant risk premium may yield misleading results. In their analyses the risk premium is 

modeled as increasing in market volatility. Previous research has shown that in agricultural 

markets, higher prices are associated with higher volatility (Williams and Wright, 1991). As 

such, the version of our model that allows time-varying risk premiums estimated by (B.1) is 

consistent with earlier literature and able to easily accommodate basic characteristics of 

agricultural commodity markets. 

Under (B.1) expected terminal log-prices are  

(B.2)   2
, , ,

1
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100 2
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Under the null hypothesis of unbiased implied volatilities, (B.2) is consistent with 

   , ,1t T j t jE P r f  . The testable expression in a price-bias-adjusted test for unbiasedness of 

implied volatilities is a modification of (12):  

(B.3) 
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The bootstrapped distribution of the variance unbiasedness test statistic in (15) depends 

directly on the autocorrelation structure of standard normal draws ,l kz and the sample size, but 

not on futures prices or implied volatilities. It follows that the test statistic will be the same 

whether the variance unbiasedness test imposes the assumption of unbiasedness in futures prices 

or a time-varying risk premium as in (B.2).  

 Results of our futures-bias adjusted bootstrap tests for implied volatilities unbiasedness 

are shown in Table B.1. In the main body of the text, the null hypothesis of no IV bias in 

soybean meal is rejected under the assumption of unbiased futures prices. Relaxing the price bias 

assumption reverses the results of the volatility bias tests. Futures bias adjusted RMSSPEs for 

soybean meal are not large enough for hypothesis of no IV biases to be rejected. The results for 

corn and Class III milk are not qualitatively changed.  
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Table B.1. Parametric Bootstrap Tests for Unbiasedness of Implied 
Volatilities using LGM-Dairy Data 

Commodity / 
LGM-Dairy 

Insurable 
Month 

Root Mean 
Square 

Standardized 
Prediction Error 

(Futures Bias 
Adjusted) 

Bootstrapped Root 
Mean Square 
Standardized 

Prediction Error 
Confidence Interval 

Bootstrap test for 
Unbiasedness of 

Implied 
Volatilities 

(Futures Bias 
Adjusted) 

   (p-values) 

Class III Milk    
1 1.23 (0.87, 1.13)   0.003 
2 1.34 (0.85, 1.15) <0.001 
3 1.38 (0.83, 1.18) <0.001 
4 1.41 (0.81, 1.20) <0.001 
5 1.42 (0.80, 1.20) <0.001 
6 1.40 (0.79, 1.22) <0.001 
7 1.38 (0.78, 1.23)   0.003 
8 1.35 (0.78, 1.24)   0.007 
9 1.34 (0.75, 1.26)   0.019 

10 1.34 (0.75, 1.26)   0.029 
Corn    

1 0.84 (0.83, 1.16) 0.069 
2 1.02 (0.83, 1.17) 0.806 
3 1.05 (0.83, 1.18) 0.540 
4 0.99 (0.82, 1.18) 0.977 
5 1.05 (0.80, 1.21) 0.562 
6 0.98 (0.80, 1.20) 0.916 
7 1.03 (0.78, 1.23) 0.764 
8 1.00 (0.77, 1.23) 0.880 
9 0.99 (0.76, 1.25) 0.966 

10 1.00 (0.75, 1.26) 0.931 
Soybean Meal    

1 1.16 (0.87, 1.13) 0.170 
2 1.15 (0.87, 1.14) 0.390 
3 1.19 (0.84, 1.17) 0.435 
4 1.27 (0.83, 1.18) 0.181 
5 1.32 (0.81, 1.20) 0.254 
6 1.23 (0.79, 1.22) 0.680 
7 1.31 (0.77, 1.24) 0.634 
8 1.28 (0.77, 1.24) 0.924 
9 1.32 (0.77, 1.25) 0.822 

10 1.26 (0.78, 1.23) 0.741 
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Parametric Bootstrap Tests for Futures Price and Implied Volatility Biases  
With Application to Rating Dairy Margin Insurance 

 
ONLINE APPENDIX C. – Robustness Checks II: Analysis using Nearby Data 

 

In the main body of this article we follow data collection methods as specified in the 

LGM-Dairy rating method. We will refer to data obtained using LGM-Dairy rating method rules 

as LGM-Dairy data. As described in the text, such approach involves three alterations to 

observed futures and options data. Alterations that are applied before tests are conducted: 

1) Instead of using a daily settlement futures price on a particular day, expected price is 

calculated by taking three-day averages of daily settlement futures prices. The same 

procedure applies for terminal prices, and implied volatilities used in LGM-Dairy 

premium determination are similarly obtained through two-day averaging.  

2) Missing observations for implied volatilities at distant months are imputed using 

observed implied volatilities for contracts with shorter time-to-maturity.  

3) While corn and soybean meal options expire several weeks before their underlying 

futures contracts, for LGM-Dairy premium determination purposes, time-to-maturity 

is based on futures, rather than options expiration date. 

Our tests reveal the presence of bias in soybean meal futures prices and/or implied volatilities, 

and Class III Milk implied volatilities. A question may be raised if such results are due to the 

biases in futures and options markets, or the procedure LGM-Dairy rating method uses to modify 

futures and options data, impute missing values and adjust time-to-maturity length. To check for 

robustness of our results, and to separately identify any potential effect of LGM-Dairy data rules, 

we conduct separate parametric bootstrap tests using unaltered futures and options data.   
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In particular, for each contract, we collect data on the first day when that contract obtained j

nearby status, with 1,...,12j   for milk, 1,...,5j  for corn and 1,...,8j  for soybean meal. We 

than proceed with running parametric bootstrap tests for each commodity and nearby index 

separately. We refer to data obtained in such a fashion as Nearby data. Descriptive statistics for 

Nearby data are presented in Table C.1.  

Results of the parametric bootstrap tests using Nearby data 

The results of our parametric bootstrap tests for unbiasedness of futures prices using Nearby data 

are summarized in Table C.2. Tests for biases in implied volatilities are given in Table C.3. 

Missing data prevents testing for 6th through 8th nearby soybean meal, as well as for 11th and 12th 

nearby Class III milk. We find that results are not qualitatively different than those obtained 

using the LGM-Dairy data and presented in Tables 3, 4 and B.1. We conclude that biases 

uncovered by the parametric bootstrap tests are not due to modifications to futures and options 

data required by the LGM-Dairy rating method, but originate in futures and option markets 

instead. 
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Table C.1. Descriptive Statistics for Data Used in Parametric Bootstrap – Nearby Data 

 

 

 

 

 

 

 

 

               
Commodity/
Nearby 

Num 
Obs 

Time To Maturity 
(Calendar Days) 

 Futures ($)  Implied Volatility 

 Avg Min Max  Avg S.D. Min Max  Mean S.D. Min Max 
Class III Milk               

1 164 31 27 36  14.10 3.32 8.50 21.50  0.10 0.05 0.02 0.26
2 164 61 55 65  14.04 3.07 8.93 21.34  0.19 0.05 0.07 0.32
3 164 91 84 98  14.04 2.81 9.45 20.55  0.21 0.04 0.10 0.34
4 164 122 118 127  14.04 2.63 9.60 20.56  0.21 0.04 0.10 0.34
5 164 152 147 156  14.01 2.46 9.65 20.16  0.20 0.04 0.10 0.31
6 164 183 175 190  14.00 2.34 9.80 20.00  0.20 0.03 0.11 0.29
7 164 213 208 219  13.93 2.25 9.85 19.95  0.20 0.03 0.11 0.30
8 163 244 237 250  13.89 2.17 9.85 19.65  0.20 0.03 0.11 0.30
9 161 274 271 280  13.83 2.08 10.50 19.46  0.19 0.03 0.11 0.31

10 157 305 299 336  13.76 2.05 10.65 19.50  0.19 0.03 0.11 0.29
11 146 335 328 343  13.77 2.04 10.71 19.58  0.19 0.03 0.08 0.31
12 127 365 362 372  14.01 1.99 11.00 19.70  0.19 0.03 0.11 0.29

Corn               
1 69 73 56 94  3.68 1.81 1.90 8.09  0.30 0.08 0.16 0.46
2 69 146 119 182  3.67 1.74 2.02 8.09  0.29 0.08 0.16 0.47
3 69 219 182 245  3.63 1.63 2.09 8.01  0.28 0.07 0.17 0.44
4 69 292 266 309  3.58 1.50 2.17 7.84  0.27 0.06 0.18 0.41
5 67 365 357 371  3.56 1.45 2.23 7.79  0.27 0.06 0.19 0.39

Soybean Meal               
1 110 46 21 64  250.2 93.4 143.9 526.9  0.27 0.07 0.16 0.46
2 110 92 56 126  245.6 90.8 143.1 522.8  0.26 0.07 0.16 0.45
3 110 137 91 189  240.9 87.6 142.7 514.7  0.25 0.06 0.16 0.45
4 109 183 147 224  236.4 83.7 142.7 480.7  0.24 0.06 0.16 0.44
5 109 228 175 273  231.6 78.9 136.0 441.7  0.24 0.06 0.15 0.42
6 99 273 238 308  227.2 74.5 143.8 398.2  0.23 0.06 0.14 0.41
7 79 320 300 337  223.7 72.0 136.5 385.7  0.23 0.05 0.15 0.37
8 58 365 361 371  220.8 70.2 138.5 393.0  0.22 0.05 0.14 0.36
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Table C.2. Parametric Bootstrap Tests for Unbiasedness of Futures Prices Using Nearby Data 

(1) (2) (3) (4) 

Commodity / LGM-
Dairy Insurable Month 

Mean Prediction Error Bootstrapped  
Prediction Error  

Confidence Interval 

Bootstrap test for 
Unbiasedness of 
Futures Prices 

 (%) (%) (p-values) 
Class III Milk    

1 -0.38 (-0.51, 0.49) 0.134 
2 -0.52 (-1.54, 1.53) 0.499 
3 -0.56 (-2.51, 2.42) 0.656 
4 -0.79 (-3.31, 3.32) 0.626 
5 -1.10 (-4.14, 4.04) 0.584 
6 -1.42 (-4.85, 4.65) 0.550 
7 -1.99 (-5.55, 5.31) 0.471 
8 -2.40 (-6.34, 5.99) 0.439 
9 -2.85 (-6.89, 6.57) 0.410 

10 -3.43 (-7.98, 7.35) 0.383 
11 N/A N/A N/A 
12 N/A N/A N/A 

Corn    

1 -0.02 ( -3.28,    3.10) 0.967 
2 -0.70 ( -6.44,    5.99) 0.806 
3 -1.45 ( -9.61,    8.81) 0.737 
4 -2.14 (-12.32, 11.09) 0.690 
5 -2.86 (-15.33, 13.46) 0.674 

Soybean Meal    

1 -2.40 (-1.80, 1.79) 0.009 
2 -4.68 (-3.56, 3.40) 0.010 
3 -7.03 (-5.06, 4.93) 0.008 
4 -9.04 (-6.77, 6.34) 0.009 
5 -10.82 (-8.70, 7.44) 0.010 
6 N/A N/A N/A 
7 N/A N/A N/A 
8 N/A N/A N/A 
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Table C.3. Parametric Bootstrap Tests for Unbiasedness of Implied Volatilities using Nearby Data 

Commodity / 
LGM-Dairy 

Insurable 
Month 

Root Mean 
Square 

Standardized 
Prediction 

Error 
 

Root Mean 
Square 

Standardized 
Prediction Error 

(Futures Bias 
Adjusted) 

Bootstrapped Root 
Mean Square 
Standardized 

Prediction Error 
Confidence Interval 

Bootstrap test 
for 

Unbiasedness 
of Implied 
Volatilities 

Bootstrap test for 
Unbiasedness of 

Implied 
Volatilities 

(Futures Bias 
Adjusted) 

    (p-values) (p-values) 

Class III Milk      

1 0.74 0.70 (0.89, 1.11) <0.001 <0.001 
2 1.17 1.16 (0.88, 1.12)   0.005   0.009 
3 1.28 1.28 (0.86, 1.14) <0.001 <0.001 
4 1.37 1.37 (0.84, 1.16) <0.001 <0.001 
5 1.39 1.39 (0.82, 1.18) <0.001 <0.001 
6 1.42 1.42 (0.81, 1.20) <0.001 <0.001 
7 1.39 1.39 (0.80, 1.21) <0.001 <0.001 
8 1.36 1.36 (0.79, 1.22)   0.003   0.004 
9 1.35 1.33 (0.78, 1.24)   0.005   0.006 

10 1.33 1.30 (0.77, 1.25)   0.014   0.024 
11 N/A N/A N/A   N/A N/A 
12 N/A N/A N/A   N/A N/A 

Corn      

1 1.08 1.08 (0.83, 1.17) 0.307 0.306 
2 1.15 1.15 (0.80, 1.20) 0.132 0.133 
3 1.11 1.11 (0.76, 1.25) 0.329 0.329 
4 1.06 1.06 (0.75, 1.27) 0.591 0.593 
5 1.03 1.02 (0.72, 1.31) 0.739 0.767 

Soybean Meal      

1 1.09 1.04 (0.87, 1.13) 0.176 0.509 
2 1.15 1.06 (0.84, 1.16) 0.064 0.424 
3 1.26 1.13 (0.81, 1.19) 0.011 0.178 
4 1.28 1.11 (0.79, 1.22) 0.012 0.292 
5 1.26 1.05 (0.78, 1.24) 0.034 0.614 
6 N/A N/A N/A   N/A N/A 
7 N/A N/A N/A   N/A N/A 
8 N/A N/A N/A   N/A N/A 
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Parametric Bootstrap Tests for Futures Price and Implied Volatility Biases  
With Application to Rating Dairy Margin Insurance 

 
ONLINE APPENDIX D. – Straddle Analysis of Biases in Class III Milk Options 

 

From the magnitude of Class III Milk RMSSPEs in Table 4 it is not clear as to whether these 

results are also economically important. To examine the issue further we create a trading strategy 

that would generate zero profits if implied volatilities are unbiased, but would yield positive 

profits if implied volatilities are too low relative to realized volatility. The trading program is 

executed for each jth nearby contract separately and is based on creating a long straddle position, 

i.e., buying one at-the-money put and one call option at the time when a contract first gains jth 

nearby status, and keeping both options until expiration.  

To make the trading exercise more realistic, we examine how returns to trading vary with 

different magnitudes of slippage, defined as the difference between the option premiums actually 

paid and the reported daily settlement premium. We assume that slippage can be expressed as 

proportional to implied volatility. In particular, we examine four levels of slippage, defined as 

surcharge over settlement option premiums equivalent to increase in implied volatility from one 

to four percentage points. In personal communication with dairy traders at the CME we have 

established that the average difference between option ask and settlement prices corresponds to 

approximately two percentage points increase in implied volatility.  

 Results of the long straddle trading strategies in Class III milk options are presented in 

Table D.1. For the 3nd and higher nearby index trading strategies generate positive returns at 

slippage level equivalent to two percentage point over settlement implied volatility. The highest 

returns are obtained for trading program for the 6th and 7th nearby contracts, i.e., 183-213 
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calendar days to maturity. In particular, for the 6th nearby contract, even after accounting for 

typical slippage, returns over the past 13 years average 27%.  

Given the LGM-Dairy ratemaking rules, the 1st insurable month in Table 4 corresponds to 

the 3rd nearby index, 2nd insurable month corresponds to the 4th nearby index, etc. The results 

from our trading exercise not only corroborate parametric bootstrap results, but suggest that 

returns on strategies exploiting apparent volatility bias in Class III options are considerably high.   
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Table D.1. Profitability of Long Straddle Strategies in Class III Options Markets: 2000-2012 

 

  Nearby Index 
 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th  12th 

Average Long Straddle Cost /  
Slippage 

            

No Slippage $0.32 $0.87 $1.17 $1.35 $1.51 $1.63 $1.73 $1.81 $1.89 $1.97 $2.08 $2.17 
1% over settlement IV  $0.36 $0.92 $1.22 $1.42 $1.58 $1.70 $1.81 $1.90 $1.99 $2.07 $2.18 $2.28 
2% over settlement IV  $0.39 $0.96 $1.28 $1.48 $1.65 $1.78 $1.90 $1.99 $2.08 $2.17 $2.28 $2.39 
3% over settlement IV  $0.42 $1.01 $1.33 $1.55 $1.72 $1.86 $1.98 $2.08 $2.17 $2.26 $2.39 $2.50 
4% over settlement IV  $0.45 $1.05 $1.39 $1.61 $1.79 $1.94 $2.06 $2.17 $2.27 $2.36 $2.49 $2.61 

             

Average Long Straddle Payoff $0.17 $0.83 $1.25 $1.59 $1.88 $2.11 $2.23 $2.31 $2.34 $2.42 $2.57 $2.79 
             

Long Straddle Return On 
Investment / Slippage 

            

No slippage -41% 3% 16% 27% 34% 40% 38% 35% 31% 29% 34% 41% 
1% over settlement IV -48% -3% 10% 21% 27% 33% 31% 29% 24% 23% 27% 34% 
2% over settlement IV -53% -9% 5% 15% 21% 27% 25% 23% 19% 17% 21% 27% 
3% over settlement IV -58% -14% 0% 10% 16% 21% 19% 17% 13% 12% 15% 21% 
4% over settlement IV -61% -18% -5% 5% 11% 16% 14% 12% 8% 7% 10% 15% 
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Parametric Bootstrap Tests for Futures Price and Implied Volatility Biases  
With Application to Rating Dairy Margin Insurance 

 
ONLINE APPENDIX E. – Can Rare Events explain Apparent Downward Bias in Class III 

Milk Implied Volatilities? 
 

One explanation for the apparent bias in Class III options could be that our relatively 

short sample contains events that occur much less frequently than once in 13 years. One such 

extreme event occurred in the spring of 2004 when rapid unanticipated increase in milk prices 

reflected a sudden 50% cutback in supply of Posilac, an artificial bovine growth hormone used to 

boost milk yields.1 Yet another obvious candidate is the Great Recession of 2008-2009. At that 

time, Class III milk prices collapsed from an average of $15.95/cwt in the last quarter of 2008 to 

$10.19 in the first half of 2009.  

To examine the robustness of our results with respect to outliers, we conducted the 

parametric bootstrap test after removing contracts from March through June of 2004 and the first 

six months of 2009. The results are presented in Table E.1. We find that the null hypothesis of 

unbiased implied volatilities is no longer rejected for the 2nd nor 3rd nearby contract. While the 

null is still rejected at 95% confidence for 4th through 8th nearby contracts, it is rejected only at 

90% for 9th nearby, and it is not rejected for 10th nearby contracts. Table E.2. presents the return 

to the long straddle trading program. After excluding both spring 2004 and the first half of 2009 

from our sample we find that the average return for the remaining trades in the sample was 11% 

for the 6th nearby contract (at 2% slippage), though average returns were -9% and 1% 

respectively for 3rd and the 4th nearby. Looking further for short periods with exceedingly high 

                                                            
1 Other factors contributing to spring 2004 price spike include the severe western drought, impacting reproduction 
during the summer of 2003, and closing of the border with Canada to the importation of replacement heifers as a 
result of a BSE scare. The full import of these factors was not realized until the spring of 2004.  
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returns, we find that for the 6th nearby contract, 74% of the cumulative profit over 164 trades of 

our trading program is attributable to only 8 trades: April-June 2004, June-July 2007 and 

January-March 2009, and excluding all these periods would reduce average return to 9%.  

Results of statistical tests and trading programs conducted with the truncated sample 

indicate that while presence of rare events may have contributed to high observed returns to long 

straddle positions, the potential overrepresentation of rare events does not fully explain the 

downward bias in Class III milk implied volatilities, especially for prediction horizons from 120 

to 220 calendar days to maturity. Neither it is clear that high returns in stated periods can indeed 

be attributed to events that are extremely infrequent. In particular, the run-up in milk prices in 

2007 was fueled by the strong export demand for U.S. dairy products. Similarly, the milk price 

collapse in the first half of 2009 is at least partially attributable to mild U.S. winter weather 

resulting in increased milk yield, the strengthening of the U.S. dollar that made dairy exports less 

competitive, and strong recovery in milk production in Oceania after two years of depressed 

productivity due to droughts.  

Given highly inelastic short-run demand for milk, even moderate changes in supply can 

induce severe price corrections. Historically, large unpredictable oscillations in milk production 

in Oceania have been a rule, rather than the exception. El Nino/La Nina-Southern Oscillation has 

traditionally impacted pasture-based dairy systems in New Zealand quite substantially. In 12 of 

the past 40 years, New Zealand’s annual milk yield growth deviated from the average growth 

rate by more than 7%. Such movements are enough to induce major shocks to world dairy 

product prices given the importance New Zealand is with respect to world dairy trade. 

Traditionally, U.S. milk prices have been decoupled from world prices due to high support prices 

and import tariffs. Over the last ten years, the U.S. has become a major world player with more 
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than 13% of total U.S. milk solids being exported in 2012 (USDEC 2013). As such, large price 

swings of 2007 and 2009 could be harbingers of new and more volatile price regime, rather than 

over-represented rare events. 
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Table E.1. Parametric Bootstrap Tests for Unbiasedness of Implied Volatilities – Rare Events Excluded 

Commodity / 
LGM-Dairy 

Insurable 
Month 

Root Mean 
Square 

Standardized 
Prediction 

Error 

Bootstrapped Root 
Mean Square 
Standardized 

Prediction Error 
Confidence Interval 

Bootstrap test 
for 

Unbiasedness 
of Implied 
Volatilities 

(Rare Events 

   (p-values) 

Class III Milk    
1 0.70 (0.89, 1.11) <0.001 
2 0.94 (0.88, 1.12)   0.346 
3 1.12 (0.86, 1.14)   0.092 
4 1.26 (0.84, 1.16)   0.002 
5 1.28 (0.82, 1.18)   0.003 
6 1.32 (0.81, 1.19)   0.002 
7 1.27 (0.80, 1.21)   0.011 
8 1.24 (0.79, 1.22)   0.036 
9 1.22 (0.78, 1.24)   0.063 

10 1.20 (0.77, 1.25)   0.112 
11 N/A N/A   N/A 
12 N/A N/A   N/A 
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Table E.2. Profitability of Long Straddle Strategies in Class III Options Markets: 2000-2013. Rare Events Excluded. 

 

 

 

 

 

 

 

 

Note: March-June 2004 and January-June 2009 contracts excluded from the trading analysis. 

 Nearby Index 
 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th  12th 

Average Long Straddle Cost /  
Slippage 

            

No Slippage $0.32 $0.87 $1.17 $1.37 $1.51 $1.63 $1.72 $1.79 $1.87 $1.94 $2.05 $2.16 
1% over settlement IV  $0.35 $0.92 $1.23 $1.43 $1.59 $1.71 $1.80 $1.88 $1.96 $2.04 $2.15 $2.26 
2% over settlement IV  $0.39 $0.96 $1.28 $1.50 $1.66 $1.78 $1.89 $1.97 $2.05 $2.13 $2.25 $2.37 
3% over settlement IV  $0.42 $1.01 $1.34 $1.56 $1.73 $1.86 $1.97 $2.06 $2.15 $2.23 $2.36 $2.48 
4% over settlement IV  $0.45 $1.06 $1.40 $1.62 $1.80 $1.94 $2.05 $2.14 $2.24 $2.33 $2.46 $2.59 

             

Average Long Straddle Payoff $0.13 $0.74 $1.11 $1.41 $1.65 $1.84 $1.91 $1.95 $1.96 $2.01 $2.12 $2.30 
             

Long Straddle Return On 
Investment / Slippage 

            

No slippage -57% -11% 1% 11% 17% 22% 20% 18% 14% 12% 14% 15% 

1% over settlement IV -62% -16% -4% 5% 11% 16% 14% 12% 8% 6% 8% 9% 

2% over settlement IV -65% -20% -9% 1% 6% 11% 9% 7% 3% 1% 3% 4% 

3% over settlement IV -68% -24% -13% -4% 1% 6% 4% 2% -1% -3% -2% -1% 

4% over settlement IV -71% -28% -17% -8% -3% 1% 0% -2% -6% -8% -6% -5% 
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Parametric Bootstrap Tests for Futures Price and Implied Volatility Biases  
With Application to Rating Dairy Margin Insurance 

 
ONLINE APPENDIX F. – Impact of Biases on LGM-Dairy Premiums 

 

In this Appendix we review the results of Monte Carlo experiments designed to quantify the 

consequences of uncovered futures price and implied volatility biases for LGM-Dairy premiums. 

In particular, downward biased soybean meal futures prices, as well as downward biased Class 

III milk option premiums would be expected to result in downward biased LGM-Dairy 

premiums. To facilitate our analysis of the impact of price and volatility biases on LGM-

Premium calculations, we define 24 representative contract configurations. Each contract is 

based on monthly milk marketings of 9,000 cwt, an amount expected from a farm with 500 

milking cows with 21,600 lbs annual per cow milk yield. These contracts differ in three 

dimensions:  

(i) Amount of feed declared per cwt. of milk. We consider three feeding regimes: 

Minimum allowable feed use and Maximum feed use are representative of two 

distinct production systems: farms that grow all their feed versus dry-lot farming 

systems where all feed are purchased on the market. In addition, we examine the 

scenario where the LGM-Dairy default feed amounts per cwt of milk are utilized 

(RMA 2005)  

(ii) Chosen deductible level. We consider an insurance under high risk aversion 

($0.00/cwt deductible) and usage of LGM-Dairy as a catastrophe insurance that 

does not cover shallow losses ($1.10 deductible).  

(iii) Risk management strategy. Four different risk management strategies are 

considered in our analysis. In each strategy, we assume the representative farm 
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operator purchases an LGM-Dairy contract regularly every month.  The four 

alternative contract designs are:  

1) Flat-10: 1/10 of expected milk marketings are insured for each of 

the ten insurable months.  

2) Up Front: 1/3 of expected milk marketings are insured for the 1st, 

2nd and 3rd insurable months. 

3) Middle of the Road: 1/3 of expected milk marketings are insured 

for the 4th, 5th and 6th insurable months.  

4) Looking Ahead:  1/3 of expected milk marketings are insured for 

the 8th, 9th, and 10th insurable months. 

 We assume that LGM-Dairy contracts were purchased monthly from January 2010 

through December 2012. Regardless of the strategy adopted, eventually 100% of the expected 

milk marketings will be insured under LGM-Dairy contracts.  

To examine the impact of soybean meal futures price bias, we assume that the true 

relationship between futures and expected terminal prices is:  

  

  , ,1
100

i
t i t T i

PPE
f E p

 
  

 
 (F.1) 

where 1, ...,10i   represents the LGM-Dairy insurable month index. In the scenario examined 

here, downward biases for soybean meal prices are set at an observed sample average PPEs, 

calculated separately for each insurable month index, as shown in the second column in Table 

D.1. Futures prices used in LGM-Dairy premium determination are adjusted using the following 

calibration coefficients  
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 1
100

iSBM
i

PPE
c    (F.2) 

There are two ways to re-design the LGM-Dairy rating method to account for futures prices 

biases. First, the gross margin guarantee (GMG) can be altered to be based on bias-adjusted 

expected prices. Alternatively, GMG can be based on observed futures prices, as is currently the 

case. If GMG is not altered, then we must add to the premium the full difference between the 

GMG calculated using the futures prices, and GMG calculated using the bias-adjusted expected 

prices. We examine the effect on premiums under both approaches.  

 In the next exercise, we examine the effect of potential volatility biases in Class III milk 

prices on LGM-Dairy premiums. Sample-based root mean SSPE is a function of futures prices 

,t if , terminal prices ,T ip , and implied volatility coefficients , ,t i  as given in the equation (11). 

We modify each observed implied volatility by a calibrating coefficient c so that , ,
c
t i t ic  . 

Holding ,t if , ,T ip and ,t i constant, RMSSPE can be construed as a function of c  only, with  

 0
RMSSPE

c





 (F.3) 

We develop an algorithm that finds the smallest c  still sufficiently high that parametric 

bootstrap test no longer rejects the null hypothesis of no volatility biases:  

   *
,1 /2iRMSSPE c RMSSPE   (F.4) 

In words, the calibrated sample-based RMSSPE matches the 97.5th percentile of the bootstrapped 

distribution of RMSSPEs. When calculating LGM-Dairy premiums, we replace each Class III 

milk implied volatility ,t i with its calibrated counterpart ,t ic .  

Given that a portion of the volatility bias may be explained by overrepresentation of rare 

events, we examine how sensitive are LGM-Dairy premium corrections to excluding the rare 
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events from the sample. We find the calibrating coefficient in the same fashion as in equation 

(F.4). To be conservative, in this scenario we find c that matches calibrated RMSSPE from the 

truncated sample to 95th, rather than 97.5th percentile of the bootstrapped distribution. As such, 

this scenario would be employed if LGM-Dairy contract designers judged the observed historic 

milk volatility biases as emanating predominantly from market anomalies that are not expected 

to be repeated.  Table F.1. contains the calibration coefficients. 

[Insert Table F.1 about Here] 

Table F.2. is used to summarize the results of the above simulations. Columns (1) 

through (3) identify the insurance policy profiles in terms of risk management strategy chosen, 

level of deductible, and amount of declared feed. In column (4) we provide average monthly 

insurance premiums using the current LGM-Dairy rating methodology. Columns (5) and (7) 

present the premiums under the assumption of downward bias in soybean meal futures prices. 

The method used in column (5) utilizes gross margin guarantee (GMG) based on bias-adjusted 

expected prices. In contrast, column (7) continues the current practice of basing GMG on three-

day averages of futures prices. We find that even for the policies that use maximum feed 

amounts and buy insurance for the distant months in which bias is most pronounced, fully 

accounting for the bias in the rating method would render insurance policy premiums less than 

3% higher, as the brunt of the impact is born by the reduction in GMG. In contrast, partial 

accounting for soybean meal futures bias whereby GMG being based on unadjusted futures 

prices would significantly increase policy premiums. 

[Insert Table F.2 About Here] 

Results of the simulation in which Class III milk implied volatility biases are accounted 

for in the rating method are presented in columns (9) and (11). Column (9) presents results based 
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on full sample data. However, if we subscribe to the rare-events hypothesis described in the 

previous section, we should adjust implied volatilities according to method described in equation 

(F.4), but excluding the periods March-June 2004 and January-June 2009. Those results are 

presented in column (11). Results from method with full sample data, presented in column (9), 

reveal that LGM-Dairy premiums are very sensitive to volatility biases, and inflating the 

volatility coefficients to account for these biases increased premiums up to 34%.  The largest 

increases were obtained for contracts utilizing high deductible, and up-front and middle-of-the-

road risk management strategies. Excluding rare events from the calibration exercise reduces the 

LGM-Dairy premium increases considerably. The highest increase in this method is 7.7% for 

middle-of-the-road strategy with minimum declared feed and $1.10 deductible level.  
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Table F.1. Calibration Coefficients Used in LGM-Dairy Rating Method Sensitivity Analysis 

  

Insurable 
Month 

Class III Milk  
Implied Volatility 

Soybean Meal 
Futures Prices 

 Full Data No Rare 
Events 

 

1 1.076 1.000 1.031 
2 1.162 1.000 1.046 
3 1.175 1.012 1.063 
4 1.179 1.026 1.079 
5 1.183 1.050 1.099 
6 1.152 1.031 1.102 
7 1.127 1.012 1.126 
8 1.097 1.000 1.134 
9 1.063 1.000 1.150 

10 1.061 1.000 1.154 

 

Note: Class III Milk calibration coefficients are calculated using equation (F.4) and modify 

implied volatility coefficients via , ,
c
t i t ic  . Soybean meal calibration coefficients are 

calculated using equation (F.1) and modify futures prices via , ,
c SBM

t i i t if c f
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Table F.2. Sensitivity Analysis of Changes in 2010-2012 LGM-Dairy Premiums under Biased Futures Prices and 
Implied Volatilities 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
    Biased Soybean Meal Futures Prices Biased Class III Milk Implied Volatilities 

Strategy 
Deductible 

Level ($/cwt) 
Feed 

Declared 

RMA 
Rating 
Method 

Gross Margin 
Guarantee Altered 

Gross Margin 
Guarantee 

Not Altered 

Bias Estimated 
Using 

Full Sample 

Bias Estimated 
Excluding 

Rare Events 
 ($/cwt)  ($) ($) (%) ($) (%) ($) (%) ($) (%) 

Flat-10 

$0.00 

Minimum 7,120 7,122 0.0% 7,324 2.9% 7,990 12.2% 7,216 1.4% 
Default 7,459 7,481 0.3% 8,435 13.1% 8,294 11.2% 7,551 1.2% 

Maximum 9,944 10,099 1.6% 13,243 33.2% 10,572 6.3% 10,011 0.7% 

$1.10 

Minimum 2,975 2,977 0.1% 3,180 6.9% 3,687 23.9% 3,053 2.6% 
Default 3,315 3,335 0.6% 4,292 29.4% 4,004 20.8% 3,390 2.3% 

Maximum 5,749 5,893 2.5% 9,048 57.4% 6,285 9.3% 5,807 1.0% 

Up Front 

$0.00 

Minimum 5,890 5,891 0.0% 5,984 1.6% 6,738 14.4% 5,918 0.5% 
Default 6,106 6,118 0.2% 6,557 7.4% 6,928 13.5% 6,134 0.4% 

Maximum 7,755 7,819 0.8% 9,277 19.6% 8,414 8.5% 7,776 0.3% 

$1.10 

Minimum 2,028 2,029 0.0% 2,123 4.6% 2,676 31.9% 2,049 1.0% 
Default 2,224 2,231 0.3% 2,674 20.2% 2,854 28.3% 2,244 0.9% 

Maximum 3,743 3,794 1.4% 5,265 40.7% 4,271 14.1% 3,760 0.4% 

Middle of 
the Road 

$0.00 

Minimum 8,437 8,439 0.0% 8,639 2.4% 9,847 16.7% 8,732 3.5% 
Default 8,800 8,822 0.2% 9,765 11.0% 10,156 15.4% 9,083 3.2% 

Maximum 11,485 11,634 1.3% 14,747 28.4% 12,554 9.3% 11,703 1.9% 

$1.10 

Minimum 4,071 4,072 0.0% 4,273 5.0% 5,294 30.1% 4,323 6.2% 
Default 4,457 4,477 0.4% 5,422 21.6% 5,636 26.4% 4,700 5.4% 

Maximum 7,158 7,299 2.0% 10,419 45.6% 8,086 13.0% 7,346 2.6% 

Looking 
Ahead 

$0.00 

Minimum 10,493 10,495 0.0% 10,792 2.9% 11,232 7.0% 10,493 0.0% 
Default 10,927 10,959 0.3% 12,357 13.1% 11,638 6.5% 10,927 0.0% 

Maximum 14,167 14,415 1.7% 19,001 34.1% 14,718 3.9% 14,167 0.0% 

$1.10 

Minimum 5,887 5,889 0.0% 6,186 5.1% 6,550 11.3% 5,887 0.0% 
Default 6,347 6,380 0.5% 7,777 22.5% 6,982 10.0% 6,347 0.0% 

Maximum 9,695 9,942 2.5% 14,529 49.9% 10,188 5.1% 9,695 0.0% 
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