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Abstract

A dynamic land use model, more speci�cally a dynamic discrete choice model, is developed

in this paper to model Iowa farmers' crop choice decisions in recent years based on the

newly released �eld-scale cropland data layers by National Agricultural Statistics Service.

We explicitly consider the dynamic e�ects naturally arising in the corn/soybean crop system

and estimate the model using the conditional choice probability method. Compared to static

models, dynamic land use models perform relatively better. The dynamic models produce

signi�cantly di�erent arc elasticities than the static model in a policy scenario when the corn

price increases by 10 percent.
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1 Introduction

Land use changes play critical roles in feeding the increasing population and helping reduce

green house emissions through alternative fuel substitution programs, such as US bio-fuel

programs. As the major ethanol feedstock in US, corn increases in acreage recent years to

meet the ethanol mandate cross US corn belt states either through conversion from other

type of land, i.e. non-corn/soybean cropland to corn/soybean cropland, or expansion of

continuous corn acreage in existing cropland (Wright and Wimberly [32], Associated Press

[1]). With these kinds of land use change, some researches worry that the primary goal of

reducing carbon dioxide emission may be compromised along with other ecosystem services,

such as deterioration of water quality in major rivers (Timothy et al., [29], Fargioner et al.,

[9] and Donner and Kucharik [8]). Thus, to comprehensively evaluate policies which could

result in indirect land use change via market signals like crop prices, farmers' decision on

land use should be at the central stage.

One of the popular land use modeling techniques is to use discrete choice models, especially

multinomial logit models, to model land use decisions at micro level (Wu et al., [31], Lubowski

et al., [16] and [17]). The majority of these studies are based on static models and do not

model the dynamic e�ects naturally embodied in the crop systems, such as the prevailing

corn-soybean crop system in US corn belt states. In most recent years, there are several

studies in which a fully dynamic discrete choice model is considered, such as De Pinto and

Nelson [22] and Scott [25]. The lack of application of dynamic land use models is most likely

due to two constraints: the availability of good quality data and econometric estimation

techniques. With newly released US cropland data layers (CDL) from National Agricultural

Statistic Service (NASS), we build a dynamic land use model to model crop choice by Iowa

farmers in recent years using conditional choice probability (CCP) estimation methods based

on Arcidiacono and Miller [3], along with static models and state dependent models in which

decision makers lack forward looking behavior compared with the fully dynamic land use
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model.

Judged by the estimated log-likelihood values, the dynamic models have the similar per-

formance as the state dependent model and perform much better than the static model.

Dynamic models imply much larger marginal willingness to pay measure of soil attributes.

These di�erence highlights the needs to consider the land use change from the dynamic per-

spective in which the consequence of the current choice have the cumulative e�ects on future

choice.

To further consider the performance of di�erent models, we conduct both within-sample

prediction comparison and out-of-sample comparison with winner-take-all decision rule. In

the prediction comparison, the static model performs the worst and the performance of

dynamic models are in line with the state dependent model. The dynamic models perform

weakly better in the within-sample comparison and the state dependent model performs

slightly better in the out-of-sample comparison.

Finally, we also consider the price elasticities of corn price increase implied by the estimated

preference parameters. For dynamic models, we consider two types of elasticities: elasticities

without price regime change and elasticities with price regime change.1 On average, the

individual elasticities of corn and soybean choice are largest for the static model, followed

by the state dependent model and dynamic models. When it comes to the price elasticities

of combined corn and soybean choice, the state dependent model has the lowest elasticities.

When it comes to the relationship between elasticities and soil quality, the static model

has the most signi�cant negative correlation between soil attributes and elasticities. When

soil quality is poor, the elasticities is larger and vice versa. At the moderate soil quality,

elasticities from the static model are comparable with the ones from dynamic models. The

state dependent model has the smallest elasticities for combined corn and soybean choice

even it has larger individual elasticities when only corn or soybean is considered. The two

1The de�nition of these two elasticities is given in section 2.
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dynamic elasticities do di�er from each other, however, their di�erence is quite small in our

application.

The remaining of this paper is organized as follows: Section 2 describes the econometric

method used to estimate the dynamic discrete choice land use model. The construction of

variables is discussed in Section 3. The estimation results and discussions are presented in

Section 4. We conclude in Section 5.

2 Methodology

2.1 Empirical Dynamic Discrete Choice Model and N-periods-

ahead dependence

As in Lubowski et al., [16] and Scott [25], the decision makers, i.e., farmers in this paper,

make crop decision dt among a choice set of J = fcorn; soybean; otherg to maximize a ow

of utilities de�ned on the expected revenue on the cropland plot given the state variable Xt

at time t.

max
dt

TX
t=0

�t[�(Xt; dtj�1) + �dtt] (1)

where

� �(Xt; dtj�1), the ow utility function at time t if option dt is chosen, where �1 is a

vector of unknown parameters.

� Xt, a vector of state variables at time t, the transition ofXt is governed by f(Xt+1jXt; dt; �2),

where �2 is a vector of unknown parameters.2

2There are three categories of state variables: market level state variables, deterministically evolved
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� dt, an option chosen by the decision maker at time t among J possible options.

� �, the discounting factor

� �s, independent and identical extreme value Type I random variables.

The formalization of a dynamic discrete choice like above �rst appeared in the seminal paper

of Rust [23] about bus engine replacement decisions. Under some regularity conditions, the

above choice problem de�nes the following functions:

� Alternative speci�c value function �(Xt; j).

�(Xt; j) = �(Xt; jj�1) + �E(V (Xt+1j�1; �2)) (2)

where the expectation is takenw:r:t f(Xt+1jXt; dt; �2)

� Unconditional value function, V (Xt)

V (Xtj�1; �2) = max
j2J

[�(Xt; j) + �tj] (3)

� If �s are i.i.d. extreme value Type I random variables, the above unconditional value

function could be rewritten as

V (Xtj�1; �2) = ln[
JX

j=1

exp(�(Xt; j))] +  (4)

where  is Euler coe�cient. Since only the utility di�erences matter, the choice prob-

ability of p(jjXt) could be written without  as following

p(jjXt) =
exp(�(Xt; j))PJ

r=1 exp(�(Xt; r))
(5)

individual crop histories and �xed state variables like soil attributes. The detailed discussion is provided
below.
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where J = 3 in this paper.

Then under conditional independence assumption (See, in Rust [23]), the observation of

fxnt; dntg about individual n de�nes the log-likelihood function for n as

llikn =
TX
t=1

(ln[pt(dntjxnt; �1)] + ln[f(xnt+1jxnt; dnt; �2)])

With N individuals for T periods, the estimates of �s will be the solution to

�̂ = argmax
NX
n=1

TX
t=1

(ln[pt(dntjxnt; �1)] + ln[f(xnt+1jxnt; dnt; �2)]) (6)

Generally there is no closed solution for the value function resulting from solving Bellman

equation for the dynamic discrete choice problems, thus there is no closed form expression

of pt(�). Rust [23] proposed the nested two stages estimation method. In the �rst stage,

the transition processes of state variables,i.e., �2s, are estimated based on the rational ex-

pectation assumption in the sense that the observed distribution of state variables is the

expected distribtion. In the second stage, the value of �1 is searched to maximize the sum

of the log-likelihood function over the �rst terms in the equation (6). The searching process

will include an inner nested process to solve the Bellman function w:r:t the value of �1 at

each step, which will be used to update pt(�) by equation (5) via equation (4) and (2). The

repeated solving of the Bellman equation imposes the great burden on computation. When

the state space is large, the computation cost may be prohibitive to carry out the original es-

timation algorithm although some methods have been proposed in the literature to mitigate

the computation cost by Rust [24] and Keane and Wolpin [15], among others.

Di�erent from the nested estimation method mentioned, we utilize the two stage estimation

method based on conditional choice probability (CCP) along the literature line of Hotz

and Miller [12], Aguirregabiral and Mira [2] and Arcidiacono and Miller [3] in this paper.

Hotz and Miller [12] prove that under certain conditions the di�erence in conditional value
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functions can be written in choice probabilities alone.

Given the formula of the unconditional value function V (�) in equation (3), we could rewrit-

ten V (�) with respect to an arbitrary choice, d�t , as follows:
3

V (Xt) = ln[exp(�(Xt; d
�
t ))f

P
dt2J

exp(�(Xt; dt))

exp(�(Xt; d�t ))
g] + 

= �(Xt; d
�
t ) + lnf

P
dt2J

exp(�(Xt; dt))

exp(�(Xt; d�t ))
g+ 

= �(Xt; d
�
t )� ln[p(d�t jXt)] +  (7)

The intuition behind the equation (7) is not di�cult to understand. If you use the alternative

speci�c value function, �(Xt; d
�
t ) in this case, to represent the unconditional value function,

the nonnegative term of �ln[p(d�t jXt)] measures the possible penalty when d�t is not the

optimal choice given Xt.
4

With this new representation of V (�), we could rewrite the alternative speci�c value function

�(Xt; dt) in equation (2)with respect to the arbitrary reference choice,d�t+1.

�(Xt; j) = �(Xt; j) + �E(V (Xt+1))

= �(Xt; j) + �

Z
(�(Xt+1; d

�
t+1)� ln[p(d�t+1jXt+1)])dF (Xt+1jXt; dt) + � (8)

In Arcidiacono and Ellickson [4], they summarize two types of scenarios in which the exten-

sion of conditional value function into one period ahead is su�cient to take the computational

advantages of CCP. One type of scenarios is that there is a terminal option which will termi-

nate the choice process and the value associating with this option is a ow of �xed utility or

utility functions with parametric forms. A recent application of this approach to the housing

market could be found in Murphy [19] in which the decision to build houses on a plot of

3To keep mathematics equations concise, we drop the unknown parameters in the representation.
4When d�

t
is more likely to be optimal choice, the choice probability goes to 1 which results in a zero

penalty. Due to the errors usually assumed in the dynamic discrete choice models, the penalty, however, can
never be zero.
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cropland terminates the land use decision. Another type of scenarios is that when there is a

renewal option which once chosen will reset the decision process and wash away the e�ects

of previous decisions.

Arcidiacono and Miller [3] generalize this one-period-ahead dependence idea into multiple

periods-ahead dependence case. In this paper, the decision process we speci�ed has the

property of two-periods-ahead dependence. The following is a simpli�ed representation of

multiple periods-ahead dependence, the interested readers should refer to Arcidiacono and

Miller [3] for more details in the more general settings.

To see what it is and how the two-periods-ahead dependence could help us simplify the

estimation di�culty, we could extend equation (8) into two more periods ahead. Let d�t+2 be

the reference option in period t+ 2, we could have

�(Xt; j) = �(Xt; j) + �E(V (Xt+1))

= �(Xt; j) + �

Z
(�(Xt+1; d

�
t+1)� ln[p(d�t+1jXt+1)])dF (Xt+1jXt; dt) + �

one period ahead = �(Xt; j) + �

Z
(�(Xt+1; d

�
t+1)� ln[p(d�t+1jXt+1)])dF (Xt+1jXt; dt)

+ �2
Z Z

[�(Xt+2; d
�
t+2)� ln[p(d�t+2jXt+2)]| {z }

V (Xt+2)

]dF (Xt+2jXt+1; d
�
t+1)dF (Xt+1jXt; j)

+ � + �2

two periods ahead = �(Xt; j) + �

Z
(�(Xt+1; d

�
t+1)� ln[p(d�t+1jXt+1)])dF (Xt+1jXt; dt)

+ �2
Z Z

[�(Xt+2; d
�
t+2)� ln[p(d�t+2jXt+2)]]dF (Xt+2jXt+1; d

�
t+1)dF (Xt+1jXt; j)

+ �3
Z Z Z

[V (Xt+3)]dF (Xt+3jXt+2; d
�
t+2)dF (Xt+2jXt+1; d

�
t+1)dF (Xt+1jXt; j)| {z }

V t+3((dt=j;d�t+1;d
�

t+2)jXt)

(9)

+ � + �2 + �3
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Let V t+3((dt = j; d�t+1; d
�
t+2)jXt) represent the expected value function at the period of t+ 3

if the current period choice is dt and the choice pair in next two periods is (d�t+1; d
�
t+2), the

two-periods-ahead dependence requires that no matter what you choose at current period

(j), this expected value will be the same if you follow this choice pair in the future. If

this is the case, the V t+3(�) term in the above equation (9) will be the same for all the

choice you made at the current period. In random utility maximization framework, only

utility di�erence matters. Thus in the estimation stage, researchers could drop this term in

the estimation along with Euler coe�cients terms. The computation advantage to invoking

two-periods-ahead dependence is that it is no longer required to solve the Bellman equation

in the estimation. The choice probabilities and the transition processes could be estimated

in the �rst stage and substitute the estimated terms into equation (9) and equation (6) to

estimate a standard multinomial logistic model.5

In this paper, the ow utility �(Xt; dt) for plot i at period t is speci�ed as following:

�(Xt; dt) =

8>>>>><
>>>>>:

�c + �rRict + �c1S1it + �c2S2it + �c3G1it + �ijt if j=1(Corn)

�s + �rRist + �s1S1it + �s2S2it + �s3G1it + �ijt if j=2(Soybean)

�Soili + �ijt if j=3(Other crops)

(10)

where Rijt = Pijt � Y ieldijt � Cijt; j = 1; 2 is the net revenue of growing corn or soybean

in plot i at period t.6 S1 is a dummy variable whose value equals one if the crop grown in

period t� 1 at plot i is soybean. S2 is a dummy variable whose value equals one if the crop

grown in period t� 2 is soybean. G1 is also a dummy variable if other crops were chosen in

the period t � 1. Since grassland and idle cropland constitutes the majority of the acreage

in addition to corn and soybean, there may be some clearing and preparation cost if the

farmer wants to switch from them to corn/soybean so we introduce this dummy variable to

control for that. Soili is a vector of soil attributes of plot i which serves as land quality

5The �nal estimated logistic model is not exactly a standard model. The discount factor, �, is usually
set into a known value.

6The revenue of growing other crops is normalized to zero.
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controls. The speci�c soil attributes used in this analysis are the slope of the plot (Slope),

land capability class(LCC) and corn suitability rating(CSR).7 If a plot has a larger slope,

it is di�cult to keep soil moisture and nutrients thus leads to a low productivity. LCC is a

general measure of the soil productivity. There are eight categories in LCC (I-VIII) and low

classes mean higher productivity (USDA [33]). CSR is an index that rates soil types based

on their productivity for row-crop production (Miller [20]). CSR values can range from a

high of 100 to a low of 5 points.

These two state variables about whether soybean were grown in previous years are used

to represent the possible revenue shifters associated with the rotational e�ects in the corn-

soybean crop system. Hennessy [11] �nds out that there could be up to two years of rotation

e�ects within the corn-soybean crop system by analyzing a panel data set of Iowa experi-

mental �eld data. Subsequently, Cai et al. [6] and Livingston et al. [18] incorporate these

two-year rotation e�ects in their models to analyze the possible rotational pattern changes

under di�erent uncertainties, such as uncertainties of the price of corn, soybean or inputs.

Scott [25] also allows the dynamic e�ects of state variables to exist up to two years, however

he does not speci�cally relate the e�ects to the corn-soybean rotation. Di�erent from Cai

et al. [6] and Livingston et al. [18], we do not solve the Bellman equation with speci�c

assumptions about the magnitude of rotational e�ects. Instead, we estimate the observed

crop choice econometrically. These crop state dummies serve as the revenue shifters and

should not be thought as truly capturing the physical yield e�ects or cost-saving e�ects

since we do not have the �eld-level information about yields, prices and costs and we only

have county-level information. So these crop history variables will not only capture the rota-

tional e�ects but also capture some of the di�erence between revenues calculated with county

level information and the real revenues due to the lack of farm level information. Scott [25]

proposed a reduced form method to recover all the relevant preference parameters under a

dynamic discrete choice setting with one assumption that the individual state variables, the

7Only utility di�erences matter in the random utility maximization framework, thus we intersect the soil
attributes with the outside option.
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crop history in our case, are independent of the market state variables, prices and costs in

our case. Di�erent from that paper, we allow the growing cost of continuous corn to be

di�erent from the growing cost of corn after soybean.8

The two-periods-ahead dependence could be seen from the speci�cation of ow utility func-

tions and the assumption that market level state variables like prices and costs is independent

from individual farmers' crop decision on a small plot.9 Using growing corn in the future

two periods as an example of renewal action, no matter what the farmer decides to grow in

this period, the individual state variables, S1; S2; G1 will be set to the same values after two

years of corn in the future (See, Table 5). Combining with the independence assumption of

individual and market state variables, the term V t+3(�jXt) in equation (9) will be the same

for whatever choice of dt made at period t. Thus, we could use the two stages CCP method

to estimate this dynamic discrete choice model.

Once we specify the ow utility forms, we can use the two stages CCP method to recover

the preference parameters �. We consider three types of models:

� A static model

We de�ne the static model is the one in which farmers neglect the any rotation e�ects

within in corn/soybean crop system, i.e., S1; S2 and G1 are not included in the ow

utility function and the farmers only maximize the current utility, i.e., � = 0.

� A state dependent model

A state dependent model is de�ned as the one in which farmers do consider the possible

rotation e�ects, i.e., S1; S2 and G1 are included in the ow utility function, but there

is no forward-looking behavior,i.e., � = 0.

� Two dynamic models with � = 0:95 and � = 0:99.

8We are not absolutely sure about the inapplicability of the method proposed in Scott [25]. The di�erence
in the cost assumption is of importance in determining to choose the current modeling method.

9This independence assumption between market state variables and individual state variables is one of
the key assumptions used in Scott [25] to derive the reduced form regression equations.
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A dynamic model is de�ned as the one in which farmers consider both rotation e�ects

and are forward-looking decision makers. Magnac and Thesmar [21] points out that

the discounting factor � is usually not identi�ed. Like many other applications, we

estimate the model with some pre-speci�ed values of �, 0.95 and 0.99.10

2.2 Elasticities

The elasticity of own price change or cross price change is well de�ned with the static model

and state-dependent model (See, Train [28]). The arc elasticity for a given price change

from P1 to P2 could be calculated by the di�erence in choice probabilities before and after

the price change. With the dynamic model, a price change of P1 to P2 from period t to

period t+1 could have di�erent interpretations which are crucial to construct corresponding

elasticities. In the dynamic model, the primitives in the preference are �(Xt; dtj�1); � and

F (Xt+1jXt; dt; �2). Knowing the change of Xt to Xt+1 only tells one about the change in

the ow utility, �(�). However, the choice probability of equation (5) is de�ned on the

alternative speci�c value function of �(�) which depends on the movement of state variable

Xt. A price change could happen for a state variable with or without underlying changes

in the movement process and there are two types of elasticities associated with this price

change.

The �rst type of elasticity we consider is the one without changes in the movement process of

(a) state variable(s), Elasticity without a regime change. In this case, the movement process

of Xt is the same as estimated in the �rst stage. For example, if we use an AR(1) process to

mimic the movement process, F (Xt+1jXt; dt), then we could use the estimated conditional

choice probabilities p̂(dtjXt) to construct the alternative speci�c value function in equation

(9) and then the choice probability in equation (5).

We call the second type of elasticity as Elasticity with a regime change in which the movement

10These two values of discounting factor amount to 0.05 and 0.01 annual interest rate, respectively.
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process itself changes. In the AR(1) process ofXt+1 = �(1��)+�Xt+�t, the possible changes

are numerous by changing the value of � and �. In this paper, for a change of 10% for one

state variable, we will limit our focus to scenarios in which other state variables are in their

long-run means and we translate the 10% to a 10% change in �.11 Since the conditional

choice probabilities are associating with a particular movement process of state variables,

we could no longer use the estimated choice probabilities in the �rst stage to help construct

the alternative speci�c value function. To calculate choice probabilities, we could use the

estimated parameters, �s, to solve the Bellman value function and then construct relative

probabilities. When we �x other state variables at the long run means, it is quick to solve

the Bellman equation with only one state variable in the value function.12

3 Data Summary

The data used in this paper comes from several public data bases. The crop history infor-

mation is derived from the Cropland Data Layers (CDL), provided by National Agricultural

Statistics Service(NASS). The future prices of corn and soybean are obtained via R pack-

age "Quandl" provided by Quandl.13 The crop cost information comes from the annual

report of Estimated Costs of Crop Production prepared by Professor Du�y in Department

of Economics,Iowa State University.14 The county yield information on corn and soybean

is obtained from NASS web site. Monthly average temperature and precipitation data is

downloaded from National Climatic Data Center.15 The soil attributes information is de-

11When we limit the elasticity in this way, it is similar as the elasticity de�ned in Scott [25]. However,
Scott [25] do not consider whether the movement process has been changed.

12Focusing on this narrowly constrained elasticity do give us computational advantages, however, we should
keep in mind that this is only one of in�nity possible elasticities. When we conduct any policy analysis in
which the elasticity is important, we should know under which set of assumptions the elasticity is discussed.

13To know how to get assess more than 10 million data sets, interested readers could visit the company's
web site via the link.

14One special feature of these state wide crop budget reports is that it provides two types of crop costs
for corn: continuous corn and rotational corn (soybean as the precedent crop). The cost information used
in Scott [25] is at regional level or state level, it does not consider the rotational e�ects.

15The original data downloaded from the NOAA has not been aggregate into one weather variable per
county. It simply includes the weather variable from all the associating weather station for that county, the

13
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rived from county level Soil Survey Geographic database (SSURGO) maps downloaded via

USDA's Geospatial Data Gateway. The following subsections will discuss briey how we

construct variables used in this paper. A more detailed description is included in the ap-

pendix

3.1 Crop History Data

The cropland data layers (CDL) are geo-spatial raster �les which have the land use infor-

mation derived from satellite images produced by National Agricultural Statistics Service.

Starting from 2008, nation-wide CDLs have been provided at resolution levels of 30 meters

or 56 meters. State level CDLs are also available for previous years for a subset of states.

For Iowa, state level CDLs start from year 2000. In this paper, we will use Iowa CDLs from

2001 to 2011.16

We constructed a panel of crop history at thousands plus randomly selected points (�elds) in

Iowa. Due to the way land use information is categorized in CDLs, there are some accuracy

issues with crop speci�cation. For example, one plot of corn may be misclassi�ed to other

crops, such as soybean. Stern et al. [30] reports the overall accuracy of Iowa CDLs between

2001 and 2010 has improved from around 80% to 95% and the reporting accuracy of corn

and soybean is relatively higher and stable at more than 95%. Hendricks et al. [13] mitigate

the possible misclassi�cation by limiting the points to be the centroid of Common Land Unit

(CLU) boundaries. In this paper, we randomly select points whose neighbouring eight cells

in a three by three cell area have the same land use value as the chosen point in the starting

year of 2001.17 Figure 1 shows the spatial distribution of points. The sample points are

concentrated in the upper-northwestern part of Iowa because of the constraints we imposed

averages are obtained by taken the mean of the all the available values for that county in a particular month.
16The Iowa 2000 CDL does not cover the whole state and is excluded in the analysis. 2012 and 2013 CDLs

are only used in the out-of-sample prediction part and not used in the estimation.
17We acknowledge that neither methods can guarantee absolute correctness, by imposing this constraint,

we believe it mitigates the severity of possible misclassi�cation.
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in the data generating process.

[Figure Here]

There are more than a dozen land use types with the category of crop de�ned in the NASS

CropScape. Figure 2 shows the percentage shares of all the land use types summarized by

Iowa CDL 2001 in the category of crop. The combined percentage of four leading land use

types, ie., corn, soybean, grassland, idle cropland, account for more than 95% of area. The

other types account for around the left 5%. In this study, corn and soybean will be singled

out as two types of crop, the other types of crops are grouped into as the outside option.

[Figure Here]

Table 1 and 2 summarize the acreage changes of corn, soybean and other crops in the

research period.18 The summary for the whole state of Iowa from CDLs is in Table 1 and

the summary for samples points is in Table 2. For the whole state, the total acreage of

corn and soybean in 2011 increases almost 16% from 2001. The once sizeable share of idle

cropland disappeared entirely.19 Within the corn-soybean group, the annual share of corn

acreage also varies signi�cantly between range of 109% to 162%. These percentage changes

are indication of possible changing rotation patterns, such as more continuous corns as the

response to the changes of relative payo� between corn and soybean. Table 2 shows a slightly

di�erent picture from Table 1 because of the constraint we imposed when we select random

points. The share of corn within corn-soybean group generally follows the same pattern as

the one shown in Table 1.20

18In the tables, the acreage of corn and soybean is separately reported, all the other land use types in the
category of crop in CDLs are combined into the other category.

19The are more land use types identi�ed in most recent years. For example, there are only 8 identi�ed
land use types in 2001 within the category of crop. The number becomes 33 in 2011. It is possible that some
part of the idle cropland have been reassigned to new land use types, which also could lead to disappearance
of idle land. However, we think it is the changing economic incentives that caused the transition instead of
the technique rede�nition.

20The share of corn acreage is a coarse measure of choice probability at the given year which is crucial
in CCP methods. The recovery of unconditional value function depends on these choice probabilities. To
estimate the econometrical models, the di�erence between the whole state summary and sample summary
will not a�ect the implementation of the method. When we need to postulate the results from the model to
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[Tables Here]

3.2 Expected Revenues

3.2.1 Expected Prices

Similar to Hendricsk [13], the expected price of corn faced by farmers in planting season is

assumed to be the sum of the mean futures price in March of December corn at Chicago

Mercantile Exchange and the expected county base which was calculated as the di�erence

between the mean of spot prices of corn and futures price of May corn in March. The

expected price of soybean is calculated similarly except that the futures prices of November

soybean is used in the place of December corn.

The location spot prices of corn and soybean is download from Agricultural Marketing Service

(AMS), USDA. The prices are report for several regions in Iowa starting from 1992. To �gure

out the base for all the counties in Iowa, we �rst locate the most likely county for each region

in AMS reports and calculate bases at these counties. For other counties, we use the inverse

distance weighting scheme to interpolate bases for these counties.

Assume we have observed values of bases, (b1; b2; : : : ; bR), at locations, (l1; l2; : : : ; lR), the

bases at other location like location lk will be calculated as

bk =
RX
r=1

wrkbr (11)

where wrk =
1

distance2rk
=[

RX
i=1

1

distanceik
]

. The distances between county centroid are calculated in ArcGis 10.1.

the whole state, we need to notice the di�erence and take the right adjusting weights.
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3.2.2 Expected Costs

The annual report of Estimated Costs of Crop Production includes the cost information of

corn and soybean by expected yield levels and previous crops. There are three levels of cost

to grow corn in each year corresponding to three levels of expected yields for two types of

corn: the continuous corn and the rotational corn (the previous crop is soybean).21 There

is only one type of soybean cost with three levels.22 To �gure out the county level growing

costs, we �rst rank counties by historical average yields of corn and soybean for the last

three decades from 1980, then group them into three groups based on their position in the

yield distribution: high, middle, low. For example, if county A's average yield of corn is in

the lowest 33.3% percentile, county A will be in the low group and assigned the cost with

lowest expected yields in a given year.

3.3 Expected Yield

We use a modi�ed version of yield weather function as in USDA [34] to calculate the expected

yield in each county.

Y ieldijt = �i + �tt+ �wWit + �ijt (12)

where Y ieldijt is the yield of crop j; j = (Corn; Soybean) in county i in year t. The vector of

weather variables,W , includes mean temperature and square term at July, mean precipitation

and square term at July and the June precipitation shortfall in the corn yield function.23 In

the soybean yield function, the mean temperature and precipitation in July and August are

used. �s are the error terms.

21The main di�erence in cost between continuous corn and rotational corn is the cost of nitrogen fertilizer.
22The soybean cost in the report is associated with the rotational soybean, i.e., the previous crop is corn.

We assume the cost for continuous corn is the same.
23In USDA [34], the variable of June precipitation shortfall is de�ned as the di�erence of average precip-

itation in June and the actual precipitation if the actual precipitation is bellow the lowest 10 percentile of
historical statistic distribution.
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Table 3 shows the yield function regression results. It generally shows the nonlinear yield

response to monthly average temperature and precipitation in growing seasons and in line

with �ndings in the literature (Such as Schlenker and Roberts [26]). On average, corn yield

are expected to increase by 1.9 bushels per acre per year and soybean yield is expected to

increase by 0.46 bushels per acre per year in Iowa. To calculate the expected yield at a given

year t at a given county, we will evaluate the yield function with historical average weather

variables at that county.

[Table Here]

3.4 Soil Attributes

County SSURGO map is a polygon shape �le with spatial information. To �nd out soil

attributes at random selected points, we �rst build a point shape �le of selected points.

Then we use built-in functions in Arcgis 10.1 to match each point to a speci�c soil polygon

in the corresponding county SSURGO map to get the map unit key,MUKEY, which uniquely

identi�es a soil type in the database. From them, we can �nd out those soil attributes we

are interested in. Table 4 shows the summary of the three soil attributes. Figure 3 and 4

and 5 show the spatial distribution of these soil attributes. Clearly, the middle and north

part of the state has relatively good productivity lands.

[Table Here]

[Figures Here]
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4 Results and Discussion

4.1 Estimation Results

The CCP method is carried out in two stages. In the �rst stage, we shall estimate the

movement process of state variables and conditional choice probabilities. In the second stage,

we will estimate a multinomial logit model with estimated conditional choice probabilities

and movement process of state variables substituted in equation (5) via equation (9).

4.1.1 First Stage Estimation

The individual state variables will evolve deterministically. For example, if you choose to

grow soybean this period, the S1 in next period will be one and S2 will be one if you grew

soybean in last period and the G1 will be zero. Table 5 shows the individual state variables

transition after two years of corn. It is clear that after two years of continuous corn, the

individual state variables are reset to be the same no matter the choice made currently.

Another set of deterministic state variables are expected yields. The next year's yield will

increase by a �xed amount found out in Table 3.

For market state variables like prices and costs, we use AR(1) process to mimic their move-

ment. Using AR(1) process in dynamic discrete choice models in the �rst stage estimation

could be found in Bishop [5] and Cullen and Shcherbakov [7]. Table 6 show the estimation

results of market state variables. For expected county prices, we pool all the price data

together and regress the current price of corn or soybean on the lagged price with county

�xed e�ects.

[Table Here]

In the �rst stage, we also need estimate the conditional choice probabilities. In an ideal world,

we could use the bin counting method to estimate these probabilities nonparametrically.
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In a state space with moderate dimensions like our model, it is not e�cient to use bin

estimators because the sample observations is so sparse compared with the potential number

of bins.24 Instead, we use a exible logit model with interaction of state variables to smoothly

approximate these choice probabilities.25

4.1.2 Second Stage Estimation

With the �rst stage estimates, the transition of state variables and conditional choice prob-

abilities, we can use equation (5) to form a simple multinomial logit model.26 We consider

several model speci�cations di�ering in the set of soil attributes and individual state vari-

ables entering in the ow utility functions. For each speci�cation, we estimate four models:

a static model, a state dependent model and two fully dynamic models with � = 0:9 and

� = 0:99. Table 7 lists all the model speci�cations.

[Table Here]

The second stage results with model speci�cation VIII is reported in Table 8. The �rst ob-

servation is that the static model have the poorest model �tting performance. Considering

crop histories and forward looking behavior greatly improves the model �t. From the state

dependent model to fully dynamic models, the log-likelihood value slightly decreased. This

could be caused by the accumulated numerical approximation errors built in the estimation

methods of CCP. The possible contributors could be the smoothing approach we take in

approximate the conditional choice probabilities, the number of random draws used to cal-

culate the conditional choice probabilities and the transition process we used to mimic the

movement of random state variables.

24The number of bins increases exponentially in dimensions of state variables.
25This smoothing technique is also used by Bishop [5] and Cullen and Shcherbakov [7]. In this application,

we use the linear terms of all the state variables, such as market prices and growing costs, soil attributes,
expected yields and individual crop history , and the cross interact terms of these variables.

26The model is not a standard multinomial logit model since the value of discount factor � is actually
constricted to be a certain value like 0.95 or 0.99 here.
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The second observation is that the direction of coe�cients in these models is quite stable.

For example, all the models suggest the farmer is more likely to choose to grow other crops

on a plot if the soil quality is not good. Higher CSR values lead to a lower chance to

grow other crops. However, the magnitude of coe�cients di�er greatly. Due to the scaling

issue, it is better to look at the ratio of the coe�cients of soil attributes, like CSR, over

the price coe�cient, Revenue,to evaluate the di�erence. This ratio could serve as a coarse

measure of marginal willingness to pay for option attributes. Table 9 shows these ratios

for three soil attributes considered in the model. The magnitudes of these ratios increase

from the static model to dynamic models. Taking CSR as example, the value of -2.38 dollars

per unit means that to keep the choice at other crops, a farmer would like to accept the

marginal compensation at 2.38 dollars per unit. A plot with the moderate value of CSR at

60, the compensation needed for farmers to choose other crops is around 138 dollars. The

compensation requirement for the same plot increases to 187 dollars in the state dependent

model, to 252 dollars in the dynamic model I and to 266 dollars in the dynamic model II.27

The possible reason behind this is that when you want to limit the choice to a speci�c option,

the decision makers lose the real option value. In the static world, you only compare the

tradeo� between current options. In the dynamic world, the tradeo� you need to consider

increases because every choice made today also have cumulative e�ects on discounted future

values through changing state variables. In that sense, more limits are associated with

the losing option in the current periods. In a recent paper, Song et al., [27] �nd out the

reversibility cost of between switch grass and the corn-soybean system a�ects the cuto�

value for the conversion under the real option framework. Speci�cally, if the reversibility

cost is larger, the revenue cuto� for conversion from the corn-soybean system to switch grass

is also larger. Though the methods used in that paper is di�erent from ours, the common

�nding that when there are more constraints put on the option in a dynamic world, the

compensation needed for farmers to foregone that option becomes larger. The di�erence

27The value of discount factor, �, is 0.95 and 0.99 in the dynamic model I and II, respectively.
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in these ratios also suggests that when you design an incentive compatible compensation

program to promote certain practices, it is better to consider the compensation scheme from

a dynamic perspective. The compensation level from a static perspective may be much lower

than the optimal levels to achieve the targeted participation rate.

[Table Here]

4.2 Model Prediction Comparison

To decide the crop choice at each sample point, we take the decision rule of Winner-take-

all.28 Under this rule, we will �rst calculate the predicted choice probabilities for each crop

and choose the crop with the highest predicted probability as the �nal choice. We have eight

di�erent model speci�cations di�ering in ways the crop history was introduced into the ow

utility function and which set of soil attribute is controlled in the model (See, Table 7). For

illustration purpose, we only discuss the results with model speci�cation VIII here. Similar

results from other model speci�cations are included in the appendix.

4.2.1 Within Sample Prediction Comparison

Table 10 shows the within sample predictions cross four models: static model, state dependent

model and two dynamic models with � = 0:95 and � = 0:99. We not only report the overall

prediction about how many corn or soybean are chosen in a given year, also breakdown the

prediction according to the actual crop chosen in that year. For example, the state dependent

model predicts, in total, corn will be chosen to grown in 3,731 plots. That includes 2,975

plots with corn as the actual choice, 640 plots of which the actual crop is soybean and 116

plots of which the actual crop is other crop.

[Table Here]

28 Pinto and Nelson [22] also takes this rule in their analysis.
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The �rst observation is that if the winner-take-all decision rule is correct, the overall pre-

diction performance of the static model is the worst. It pays too much weight on growing

corn and too few weight on growing soybean. In some years, the model predicts no soybean

will be grown which is obviously not consistent with observations at all. Since there is no

adjustment terms in the ow utility function of growing corn in the static model, i.e., the

crop history variables, there is no any cost saving or yield enhancing e�ect with growing

soybean. Thus it is highly possible that corn is the dominant choice under certain situations

like high corn price.

When crop history is considered, the prediction performance is greatly improved either in the

state dependent model or in the dynamic model. There is no obvious evidence that suggest

which type of model is better in overall performance. In general, the state dependent model

has more correct predictions in corn, i.e., the predicted choice of corn is also the actual

choice in that year. The dynamic models have a relatively better performance in prediction

of soybean. However, we could not translate this relativity into the total prediction. For

example, in 2005, the state dependent model have more correct prediction of corn than

dynamic models do. While dynamic models have a closer total prediction of corn than the

state dependent model. In 2004, the situation is opposite for soybean prediction.

With year by year predictions, we also could compare the prediction of crop history from

2003 to 2009 which is reported in the last row of Table 10. No doubt, the static model

has the least correct prediction. Dynamic models have predicted slightly more correct crop

histories, 2101(2099) vs 2055.

4.2.2 Out of Sample Prediction Comparison

Since we have a panel data set from 2001 to 2013 and only use the data from 2001-2011 in

the estimation, we could use the data from 2012 to 2013 for the purpose of out-of-sample
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prediction.29 Table 11 shows the out-of-sample prediction results for the model speci�cation

VIII.30

[Table Here]

Similar as the within sample prediction, the static model performs the worst with zero

prediction of soybean in 2012 and 2013. Among state dependent and dynamic models, they

generally produce very similar prediction for all the three crop options. Though the state

dependent model still slightly has more correct corn prediction and dynamic models have

more correct soybean prediction, the di�erence is not so signi�cant as the case in within

sample prediction. The overall prediction for the crop choice sequence in 2012 and 2013 also

reveal the similarity with a slightly higher number of correct prediction (5294 vs 5291(5289))

in the state dependent model. The static model falls far behind with only 1,444 correct

predictions.

4.3 Elasticity Comparison

As argued in Arcidiacono and Ellickson [4], to evaluate a possible policy change which could

a�ect the transition processes of state variables is not easy. The di�culty comes from the

fact conditional choice probabilities only capture the information available at that time

for decision makers. If a policy has the potential to change the course of state variables,

researchers should have observations covering that period and invoke the assumption that

decision makers have already incorporated the information into their decisions and reveal

that to researchers through conditional choice probabilities. However, if we would like to give

up the convenience of representing value function with conditional choice probabilities. We

still could use numerical methods to solve Bellman value function with estimated preference

29Since we include two years of crop history as state variables and the two periods ahead dependence will
consume another two years observation. A panel data from 2003 to 2009 can be used in the �nal stage of
estimation.

30Results with other model speci�cation are included in the appendix.
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and transition parameters to conduct certain type of scenario analysis, a hybrid method.

In this part, we use the method discussed in section 2 to evaluate farmers' crop choice change

in a scenario where prices and costs are �xed at the long-run mean except that corn price is

assumed to increase by 10% from the long-run mean. We also distinguish two cases in this

scenario di�ering in whether the underlying transition process of corn price has changed.

Though our assumptions simpli�ed the numerical algorithm solving of value function, it is

still impractical to consider all the sample points and instead, we will limit our focus to

evaluate crop choice changes with model speci�cation VIII at one pseudo-point per county

with average soil attributes in that county in six di�erent crop history scenarios (See, Table

5).31 The time needed to solving Bellman value function increases dramatically when the

discounting factor (�) is 0.99. It takes signi�cantly more time to solve the value function

with � = 0:99 compared with � = 0:95. Thus we only solve the value function in the case of

� = 0:95.32

Table 12 summarizes average soil attributes in each county in Iowa. On average, Iowa soil is

highly productive with the average land capability class index between 2 and 3.33 A spatial

map could be found in Figure 4.

[Table Here]

Table 13 shows price elasticities of the corn, soybean acreage with respect to 10% corn

price change when the crop history is growing corn in the last two years. The static model

has the biggest acreage response among all models either for corn or for soybean. Since,

by assumption, the farmers represented by the static model will not take into account the

rotation e�ects and the future e�ects of the current decision, they will interpret the temporal

price change as a permanent change and thus respond to price changes more dramatically.

31This arrangement greatly reduces the total number of solving Bellman value function from more than
7000 to less than 600 (99� 6).

32For a typical point, it takes less than 8 minutes in the case of � = 0:95. The counterpart time in the
case of � = 0:99 is more than 1 hour.

33The summary statistics is the raw summary over soil attributes in the random sample points.
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The state dependent model generates second largest response. Since when the crop history

considered here is growing two years of corn in the past, the di�erent response from the static

model should only reect the di�erence in parameters estimation. The rotational e�ects will

be found with other crop histories. The dynamic model produces the smallest response. The

two dynamic elasticities are quite similar with or without price regime changes.

The combined response of corn and soybean tells a slightly di�erent story. In this case, the

average response of the state dependent model is the smallest and the other three models

produce very similar results. The combined response from the static model have a relatively

larger variation. Between two dynamic elasticities, once farmers believe the higher price

implies a possible price regime change in which the long-run corn price is higher, their

responses are relatively stronger as expected since the price regime change implies the overall

revenue from growing corn and soybean will be bigger thus growing them becomes more

appealing. While given the set of values we consider here, the di�erence is quite small.

[Table Here]

Figure 6, 7 and 8 shows the relationship between soil quality, represented by corn suitability

ratings (CSR), and the price elasticities: corn, soybean and combined. The own price

elasticities of corn choice from all the models show a positive relation on CSR. Since CSR

measures the productivity of soil to growing corn, it is natural to see more productive the

land is, more choice of corn there will be given an increase in corn price. The relation goes

opposite when we considered the cross price elasticity of soybean choice (See, Figure 7).

When it comes to the elasticity of combined corn and soybean choice, elasticities seem to be

negatively correlated with soil quality. The negative relation is revealed more dramatically

in the static model. When the land plot has a poor quality, i.e., CSR is around 40, the

elasticity is more than 0.1 and while it becomes less than 0.05 if the land quality is good

(CSR > 80). The logic is straightforward. When the land quality is good, the chance to

growing corn or soybean is already high at original price levels, thus it can not respond as
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big as in a case when you start with a poor quality land.

[Figures Here]

The elasticities with other crop histories are showed in the appendix tables. The patterns

of elasticities from di�erent models is similar as the one found in Table 13. However, the

magnitude of elasticities vary cross di�erent crop histories. If other crops were chosen last

year, the elasticity is the smallest. Instead, if soybean was chosen last year, the elasticity

is the biggest. These variations imply that the historical land use matters when we try to

predict future land use change induced by price changes or policy changes.

With some assumptions, we could �nd out the overall elasticity of combined corn and soybean

choice.34 Figure 9 shows the relation between elasticities and soil quality. The elasticities

are generally negatively correlated with soil quality with smaller elasticities for good quality

lands. The state dependent model suggest the smallest overall elasticity. The elasticity

generated by the static model is biggest when soil quality is poor, then starts to decline.

When the soil quality is moderate, dynamic models imply similar elasticities as does the

static model. When the soil quality is good, dynamic models suggest a higher elasticity.

5 Conclusion

Based on the literature on the CCP estimation of the dynamic discrete choice models, we

estimate dynamic land use models along with previous prevailing static and status depen-

dence models with recent land use data in Iowa through NASS cropland data layers. The

estimation results show that dynamic models perform better than the static model and

achieve the similar performance as state dependent model judged by the within-sample and

out-of-sample prediction under the Winner-take-all decision rule. The dynamic models also

34We could assign weights to each crop history, thus we could �nd the overall elasticity. In this
practice, weights are assumed to be (0:225; 0:225; 0:05; 0:225; 0:225; 0:05) corresponding to crop histories
[(0; 0; 0); (1; 0; 0); (0; 0; 1); (0; 1; 0); (1; 1; 0); (0; 1; 0)].
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produce di�erent estimates on the marginal willingness to pay of soil attributes. We di�er-

entiate two types of elasticities associated with dynamic model in a pseudo scenario di�ering

in whether the underlying transition processes of state variable changes. The results show

that the major di�erence happen between static and dynamic models. Within the dynamic

modeling framework, the two types of elasticities di�er in a relatively smaller scale compared

with the cross model di�erence in the application.

One of the caveats of this paper is that we do not consider farmers' heterogeneous preference.

There are several methods proposed in the literature to incorporate heterogenous preference

in the dynamic discrete choice models, such as Hartman [10],Imai et al., [14] and Arcidiacono

and Miller [3]. Another caveat is that the data used in this paper is highly aggregate in the

sense except for the crop history data and soil attributes, other price and cost information is

at county-level or even regional level. If more micro level data sets are obtained, we believe,

the performance of dynamic models will be improved substantially.
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Appendix

Data Preparation

Extract Land Use Values to Points

Once the spatial locations are decided for the set of random points, we use built-in function

in the spatial analyst tool of ArcGis 10.1 to extract land use values to these points in a series

of national or Iowa CDLs. The speci�c function we used is Extract Multi Values to Points

or Extract Values to Points depending on how many raster �les we feed into the function. If

we want to extract land use information from a set of raster �les like several CDL maps at

once, the �rst function can do the work. Otherwise, the second function is used. The syntax

to use these powerful functions, please check online help or ArcGis manuals.

Match Soil Attributes to Points

This work is carried out in two stages. The �rst stage is to use ArcGis built-in function to

match each point to a speci�c map unit in county-level SSURGO map. With the points'

spatial location data, such as longitudes and latitudes, it is convenient to generate a point

shape �le in ArcGis. Once this step is done, we can use built-in functions like intersect in

the analysis tools to locate the speci�c map unit in the county-level soil map. With the

matched map unit identi�er, it is straightforward to �nd out interested soil attributes like

slope, LCC.

Appendix Tables and Figures

These tables and �gures can be found at the online appendix.
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Tables and Figures

Tables

Table 1: Summary of Land Use in Iowa (2001-2011) from CDLs (in 106 acre)

Year Corn Soybean C/S(n%) Corn+Soybean Other Other: Idle

2001 11.8 10.8 109.3 22.6 9.2 2.2
2002 11.7 9.4 124.5 21.1 10 1.8
2003 12.2 10.5 116.2 22.7 10.3 1.5
2004 11.9 10.3 115.5 22.2 7.9 1.3
2005 11.4 10.1 112.9 21.5 6.9 1.4
2006 11.9 10.3 115.5 22.2 6.5 1
2007 12.7 7.8 162.8 20.5 8.4 0
2008 12.3 9.2 133.7 21.5 7.7 0
2009 12.5 9.3 134.4 21.8 7.4 0
2010 13.2 9.6 137.5 22.8 7.1 0
2011 13.7 9.2 148.9 22.9 6.3 0
Mean 12.3 9.7 126.8 22 8 0.8

Note: 1. Acreage information is extracted and compiled from CropScape service by NASS.

Table 2: Summary of Land Use in Iowa at sample points (2001-2011)

Year Corn Soybean C/S(n%) Corn+Soybean Other

2001 4258 4314 98.7 8572 1076
2002 4395 3665 119.9 8060 1283
2003 4337 4052 107 8389 1220
2004 4569 3724 122.7 8293 837
2005 4299 3928 109.4 8227 828
2006 4125 3397 121.4 7522 1281
2007 4205 3013 139.6 7218 1417
2008 4298 3118 137.8 7416 1249
2009 4075 3367 121 7442 1231
2010 4398 3610 121.8 8008 1138
2011 4996 3569 140 8565 526
Mean 4360 3614 120.6 7974 1099
Note: 1.The land use type at sample points is extracted from Iowa CDLs.

2.These points are not the �nal points used in the modeling, the points which have land
use type outside the category of crop de�ned in CDLs in any given year are excluded.
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Table 3: Estimation Results of Yield Functions
Corn Soybean

Time 1:905��� 0:465���

(0:016) (0:005)
Temp.Jul 26:493���

(3:103)
Temp.Jul sq �0:652���

(0:067)
Prec.Jul 0:257���

(0:010)
Prec.Jul sq �0:001���

(0:000)
DPrec.Jun �0:076��� �0:012���

(0:011) (0:003)
Temp.Jul-Aug 6:599���

(0:958)
Temp.Jul-Aug sq �0:160���

(0:021)
Prec.Jul-Aug 0:122���

(0:005)
Prec.Jul-Aug sq 0:000���

(0:000)
R2 0.982 0.987
Adj. R2 0.981 0.986
Num. obs. 4983 4987
Note: 1. ���p < 0:001, ��p < 0:01, �p < 0:05.

2. Standard deviations are shown in parenthesises.
3. County �xed e�ects are controled.

Table 4: Summary of Soil Attributes

Variable Mean Std. Dev. Min Max

Slope 3.87 3.55 0.5 29
LCC 2.17 0.77 1 8
CSR 72.15 16.62 5 100

35



Table 5: Transition of Individual State Variables, (S1; S2; G1)
Current State Crop Choice at t Corn at t+ 1 Corn at t+ 2 State at t+ 3

(0,0,0)
Corn (0,0,0) (0,0,0)

(0,0,0)Soybean (1,0,0) (0,1,0)
Other (0,0,1) (0,0,0)

(1,0,0)
Corn (0,1,0) (0,0,0)

(0,0,0)Soybean (1,1,0) (0,1,0)
Other (0,1,1) (0,0,0)

(0,0,1)
Corn (0,0,0) (0,0,0)

(0,0,0)Soybean (1,0,0) (0,1,0)
Other (0,0,1) (0,0,0)

(0,1,0)
Corn (0,0,0) (0,0,0)

(0,0,0)Soybean (1,0,0) (0,1,0)
Other (0,0,1) (0,0,0)

(1,1,0)
Corn (0,1,0) (0,0,0)

(0,0,0)Soybean (1,1,0) (0,1,0)
Other (0,1,1) (0,0,0)

(0,1,1)
Corn (0,0,0) (0,0,0)

(0,0,0)Soybean (1,0,0) (0,1,0)
Other (0,0,1) (0,0,0)

Table 6: Estimation Results of AR(1): Yt = �(1� �) + �Yt�1 + �t
CC1a CC2a CC3a SC1a SC2a SC3a CS1a CS2a CS3a Price Cb Price Sb

� 295.3 316.1 338.5 265.7 286.6 308.2 165.0 170.0 175.3 0.83 3.29
[55.4] [59.3] [59.8] [50.2] [53.9] [55.9] [15.8] [16.1] [16.8] [0.19] [0.60]

� 0.88 0.88 0.86 0.88 0.88 0.87 0.71 0.68 0.67 0.76 0.58
[0.12] [0.12] [0.12] [0.11] [0.12] [0.12] [0.18] [0.19] [0.19] [0.02] [0.02]

�� 36.1 38.9 42.7 31.7 34.7 38.4 20 21.7 23.4 0.69 2.09
Llik -70.81 -71.85 -73.1 -69.1 -70.3 -71.7 -62.2 -63.3 -64.33 -1301.5 -2726.2
Note: a. These state variables are estimated by ARIMA in Stata.

b. These state variables are estimated with regression in State, thus �(1� �) is reported in stead of �.

Table 7: Model Speci�cations
ID (S1; S2; G1) Soil Attributes
I

w/ corn

Slope
II LCC
III CSR
IV Slope,LCC,CSR
V

w/ corn + soybean

Slope
VI LCC
VII CSR
VIII Slope,LCC,CSR
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Table 8: Estimation Result of Model Speci�cation VIII
Static State Dependent Dynamic I Dynamic II

Variable Est Std.Dev Est Std.Dev Est Std.Dev Est Std.Dev
Corn 1.8727 0.1245 2.2169 0.1653 -0.3100 0.1656 -0.4145 0.1661
Soybean 1.6317 0.1247 2.0192 0.1657 -0.6580 0.1875 -0.7604 0.1897
SLOPE 0.0326 0.0054 0.0195 0.0073 0.0161 0.0074 0.0159 0.0074
LCC 0.3969 0.0297 0.1748 0.0387 0.0603 0.0388 0.0552 0.0388
CSR -0.0074 0.0011 -0.0047 0.0015 -0.0034 0.0015 -0.0033 0.0015
Revenue 0.0031 0.0001 0.0015 0.0001 0.0008 0.0001 0.0007 0.0001
S1:Corn 0.8060 0.0549 0.2631 0.0551 0.2399 0.0552
S2:Corn -0.3000 0.0491 -0.3223 0.0493 -0.3233 0.0493
G1:Corn -3.3945 0.0568 -3.4079 0.0572 -3.4103 0.0572
S1:Soybean -1.2699 0.0575 -1.5527 0.0578 -1.5712 0.0578
S2:Soybean 1.3447 0.0484 1.3257 0.0488 1.3261 0.0489
G1:Soybean -0.4723 0.0556 -0.4217 0.0563 -0.4242 0.0563
Log-llike -47091 -31650 -32049 -32099

Note: a. Dynamic model I with � = 0:95, Dynamic model II with � = 0:99.
b.All the coe�cients are signi�cant at 1% except the coe�cient of LCC in two dynamics models.

Table 9: Marginal Willingness to Pay of Soil Attributes ($ per unit)

Variable Static Model State Dependent Model Dynamic Model I Dynamic Model II
SLOPE 10.57 12.96 20.21 21.32
LCC 128.52 116.10 75.46 73.86
CSR -2.38 -3.12 -4.21 -4.44

Note: a.The ratios are calculated at the means of estimated coe�cients.
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Table 10: Within Sample Prediction Comparison

Year Crop Actual
Static Model State Dependant Model Dynamic Model with � = 0:95 Dynamic Model with � = 0:99

Corn Soybean Other Total Corn Soybean Other Total Corn Soybean Other Total Corn Soybean Other Total

2003
Corn 3633 3626 3338 414 7378 2975 640 116 3731 2732 448 97 3277 2717 441 94 3252

Soybean 3354 0 0 0 0 446 2528 62 3036 705 2760 88 3553 720 2768 92 3580
Other 438 7 16 24 47 212 186 260 658 196 146 253 595 196 145 252 593

2004
Corn 3839 315 85 10 410 3217 661 142 4020 2934 416 118 3468 2928 415 118 3461

Soybean 3155 3507 3066 395 6968 513 2400 63 2976 804 2673 90 3567 810 2677 90 3577
Other 431 17 4 26 47 109 94 226 429 101 66 223 390 101 63 223 387

2005
Corn 3681 3033 1601 272 4906 3195 785 138 4118 3007 602 121 3730 3006 597 121 3724

Soybean 3282 640 1645 155 2440 407 2382 87 2876 597 2576 108 3281 598 2582 108 3288
Other 462 8 36 35 79 79 115 237 431 77 104 233 414 77 103 233 413

2006
Corn 3646 3621 2966 753 7340 2628 1173 369 4170 2364 995 338 3697 2354 983 336 3673

Soybean 2987 0 0 0 0 862 1711 220 2793 1128 1894 253 3275 1139 1906 255 3300
Other 792 25 21 39 85 156 103 203 462 154 98 201 453 153 98 201 452

2007
Corn 3788 3779 2684 915 7378 3209 1068 207 4484 3072 937 196 4205 3053 924 194 4171

Soybean 2697 0 0 0 0 510 1584 55 2149 652 1720 111 2483 671 1733 114 2518
Other 940 9 13 25 47 69 45 678 792 64 40 633 737 64 40 632 736

2008
Corn 3838 3833 2788 790 7411 3195 694 75 3964 3187 691 75 3953 3186 689 75 3950

Soybean 2791 0 0 0 0 518 1993 37 2548 533 1997 38 2568 533 1999 38 2570
Other 796 5 3 6 14 125 104 684 913 118 103 683 904 119 103 683 905

2009
Corn 3672 3661 2973 744 7378 3309 724 88 4121 3309 723 88 4120 3309 723 88 4120

Soybean 2985 0 0 0 0 267 2210 31 2508 267 2210 31 2508 267 2210 31 2508
Other 768 11 12 24 47 96 51 649 796 96 52 649 797 96 52 649 797

Crop History 89 2055 2101 2099

Table 11: Out-of-Sample Prediction Comparison

Year Crop Actual
Static Model State Dependant Model Dynamic Model with � = 0:95 Dynamic Model with � = 0:99

Corn Soybean Other Total Corn Soybean Other Total Corn Soybean Other Total Corn Soybean Other Total

2012
Corn 4337 4,327 2,758 312 7397 3,731 387 72 4190 3,697 377 72 4146 3,676 368 72 4116

Soybean 2763 0 0 0 0 606 2,376 253 3235 640 2,386 240 3266 661 2,395 240 3296
Other 325 10 5 13 28 0 0 0 0 0 0 13 13 0 0 13 13

2013
Corn 4070 4,065 3,000 339 7404 3,585 615 78 4278 3,585 615 78 4278 3,582 613 77 4272

Soybean 3006 0 0 0 0 485 2,391 271 3147 485 2,391 260 3136 488 2,393 261 3142
Other 349 5 6 10 21 0 0 0 0 0 0 11 11 0 0 11 11

Crop History 1444 5294 5289 5281
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Table 12: Summary Statistics of Average County Soil Attributes in Iowa

Variable Obs Mean Std.Dev Min Max

SLOPE 99 5.13 2.76 1.63 15.72
LCC 99 2.51 0.61 1.66 4.32
CSR 99 66.73 10.63 37.03 85.72

Table 13: Price Elasticity of Crop Acreage I

Crop Model Mean Std.Dev Min Max

Corn

Static 0.44 0.03 0.37 0.48
State Dependent 0.22 0.01 0.19 0.23
Dynamic w/o Regime Chg 0.11 0.01 0.09 0.12
Dynamic w/ Regime Chg 0.11 0.01 0.1 0.12

Soybean

Static -0.38 0.05 -0.44 -0.23
State Dependent -0.20 0.02 -0.22 -0.16
Dynamic w/o Regime Chg -0.05 0.01 -0.06 -0.03
Dynamic w/ Regime Chg -0.04 0.01 -0.05 -0.02

C+S

Static 0.06 0.02 0.04 0.14
State Dependent 0.02 0.01 0.01 0.04
Dynamic w/o Regime Chg 0.06 0.01 0.06 0.08
Dynamic w/ Regime Chg 0.07 0.01 0.06 0.09
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Figures

Figure 1: Selected Points in Iowa

Figure 2: Land Use Status in Iowa (2001)
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Figure 3: Spatial Distribution of Soil Attribute: Slope

Note: 1.Light blue means low slope values, dark blue means high slope values.

Figure 4: Spatial Distribution of Soil Attribute: LCC

Note: 1.Light blue means low LCC values, dark blue means high LCC values.

Figure 5: Spatial Distribution of Soil Attribute: CSR

Note: 1.Light blue means low CSR values, dark blue means high CSR values.
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Figure 6: Price Elasticity of Corn with Crop History (0,0,0)

Figure 7: Price Elasticity of Soybean with Crop History (0,0,0)
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Figure 8: Price Elasticity of Combined Corn and Soybean with Crop History (0,0,0)

Figure 9: Price Elasticity of Combined Corn and Soybean
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