

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

630
 TB ${ }^{2} 3$
 (1949)

Investigations In Erosion Control and the Reclamation of Eroded Land at the Upper Mississippi Valley Conservation Experiment Station Near La Crosse, Wis. 1933-43

By
O. E. HAYS

Project Supervisor
A. G. McCaLL

Senior Soil Conservationist
and
F. G. BELL

> United Stapes Department of Agriculture, Son Conservation Service, Washington, D. C.
> in Cooperation with the Wisconsin College of Agricultural

For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 45 cents

FOREWORO

The Nation's seil conservation program, begun little more than a dozen years ago, was dedicated to the permanent security and welfare of all our citizens. In war it demonstrated its capacity for service to the country as a powefful weapon in the hands of thousands of American farmers. On the home front it belped them wage the year-round battle for the necessarily monumental production of foods, fibers, fats, and oils.

The modern methods of land use, soil protection, and water conservation are designed to maintain and improve the vital natural resources on which our agriculture is tounded. These same measures hold our soil and conserve our water for today and for tomorrow. As an average across the country, they have also increased the yields of all the principal crops by 20 percent or more per acre. This is being accomplished on thousands of farms with savings of time, labor, fuel, power, and other production facilities.

However, we still do not have enough good land left under cultivation in the United States to meet our present needs, unless we use every means at our disposal to increase yieids and to protect the soil while we tro doing so. Even then, we may have to bring some new land into cultivation by irrigation or by drainage.

These considerations put a premium on knowledge-that special kind of knowledge that will enable farmers to increase production without so impoverishing their land that it cannot produce the even greater crops that the postwar needs of hungry peoples require.

This knowledge, supplementing the training and experience of American farmers as a group, points the way to a successful agriculture upon which America and a great deal of the world depend, today and tomorrow.

This bulletin contains much especially significant knowledge, as it has been developed through study and research int the important agricultural region served by the conservation experiment station at La Crosse, Wis. Crop yields are being notably increased in this region by conservation farming methods. This bulletin describes the methods farmers may use to increase crop production without abusing their land.

Briefly, it is a report of technical advances in conservation farming during 10 years, showing not only the methods used, but siso the basic factors involved. They are here set down, and they are authenticated by figures, plates, tables, and other data.

Any soil and water conservation technician working in the Upper Mississippi Valley region has in his copy of this bulletin a handy guide for determining degrees of slope for terrace channels, the expectancy of protection to be derived from various kinds of cover crops, the amount of water likely to be conserved from the average rains for crop use under various tillage treatments, and similar factors. Other reports provide like data for the guidance of technicians in other important farming regions.

These reports in the hands of soil technicians who work with farmers will be the means of putting into effect on the land more rapidly and more effectively than ever before the essential measures to increase production and to maintain a permanently prosperous agriculture.
H. H. Bennett,

Chief, Soil Conservation Service.

UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C.

Investigations in Erosion Control and Reclamation of Eroded Land at the Upper Mississippi Valley Conservation Experiment Station, Near La Crosse, Wis., 1933-43 ${ }^{1}$

By O. E. Hass, project stprervisor, A. (A. Micinh, serior soil conscrvationist, and F .

The [Thited States Department of Agriculture, Soil Conservation Service, in Cooperation with the Wisconsin College of Agriculture

CONTENTS

Sum	$\begin{array}{r} P u f c_{1} \\ \underset{2}{ }! \end{array}$	lerent of slope..
'The area	4	Contoramg-........
Meleorolorimal records.	6	Watersherl studies
Preeipitation	6	Terrace sludies
Runof and erosion laters	7	'Terrace grate.
'Cemperature	S:	'Termee spucizig-
The som and water conservation exprri-		Divemsion terrtees. Trarace mantenance
ment stationn---- . -	$\begin{gathered} \mathrm{S} \\ \mathbf{S} \end{gathered}$	Frame nantename. Termee outcts and wat
Soils	0	Strip sropping -
Agricultural history of the station	10	Lusimeters.
Winter erosion.--	10	Applieation of statio
Wrators affeeting frost penatration		control in the protbern
and thawimg	12	Seedbed prequat
Control plots	151	Contoncing
Degree of erosion.	20	Strip eropining.
Organic matier	응	'rermees..
Subsurface tillage	24	lasture and wouthind...
Crop rotation...	4:	Apprmdix
Length oi slope. -		litemtare cited

Submited for publication Alay 1996.
andemhers of the Station stath wio contributed to the phaming and develupment of the research program are: R. If. Davis, (. E. Ryerson, F. L. Hardisty, V. J. Pulmer, II. B. Alkenson, C. E. Bay, V. J. Kibmer, S. J. Meeh, (. J. Krumm, I. C. Trieiof, B. A. Ayers, asd A. R. Gruncwald. Noble ('ark, R. S. Muekembirn, H. I. Ahagen, and others of the Tmiversity of Wisconsin lave contributed generously to the development of fatas for the studies herein reported.

SUMMARY

The Upper Mississippi Valley Soil Conservation Experiment Station, near La Crosse, Wis., was established in 193 as a cooperative research project between the United States Department of Agriculture and The Wisconsin College of Agriculture. Studies are conducted to obtain information on the basic factors affecting soil and water losses and their control in this important agricultural area. The area includes the unglaciated soils in southwestern Wisconsin, southeastern Minnesota, northeastern Iowa, and northwestern Illinois. Dairying is the dominant type of agriculture in most of the area.

The average amual precipitation at La Crosse is 31 inches. The winter precipitation is largely in the form of snow, the thawing of which does not usually result in high soil loss unless aceompanicd by rain. Intunse thunder showers are experienced during the growing season. Four or five intense storms a year may result in as much as 90 pereent of the total annual soil loss.

Surveys show that nearly 50 percent of the cropland has 'ost more than one-half of its surface soil. Not much land has been abandoned, but areas have been retired from, cultivation and seeded down to pasture as a result of erosion. Present high losses emphasize the importance of establishing control measures rapidly on all sloping farms in the area. Otherwise, all of the surface soil will be lost in a relatively short preriod.

The yield of crops is greatly influenced by the depth of surface soil. This has been shown by plot and field studics at the station. Areas under uniform treatment show that the yield of com is about 70 percent as much on a severely eroded as on a moderately eroded soil, of grain 60 percent and of hay 90 pereent. The severely croded soil lost 1.7 times as much of the precipitation in rumoff as the moderately eroded soil. The soil loss was 1.5 tirnes as much on a severely eroded area. The plots were planted to a 5 -ycar rotation of corn, grain, and 3 years of hay, and received good fertilizer treatments. These results were obtained on moderately deep and umiform Faycte silt loam. On the more shallow soils such as the Dumaque silt loam, the loss of surface soil would probably be even more critical.

The control plot studies show that cover is one of the most important factors affecting soil and water losses. A dense growth of buegrass or timber protected from fire and grazing will prevent crosion. It will also produce a soil condition capable of absorbing most of the precipitation, even during the most intense stoms. In general, the soil and water loss will vary according to the density of crop. The less dense the cover, the higher the losses.

A 3 -year rotation of com, grain, and hay reduced soil losses to less than one-third of the losses from land planted amually to corn. But

Figure 1 FOUND AT END of Bulletin.
it did not give adequate control on a 16 -pereent slope of Fayctte silt loam. The loss from corn in rotation was about one-hall that from corn following corn.

Organic matter added to the soil in the form of green manure and barnyard manure will greatly reduce soil losses, depending on the amount added and on the length of time required for the material to decompose. In general, carbonaceous material has been found to have more lasting effects than nitrogenous material. Corn following alfulfatimothy sod, which was rather grassy, resulted in mueh lower soil losses than corn following 1 -year clover-timothy hay.

Strip cropping with 2 or more years of hay has been found to control erosion effectively if the slope is not too long. A 17 -percent slope of 270 -foot length was cropped to a 6 -year rotation of corm, grain, and 4 years of hay, with strips about 50 feet in width. Strip cropping in this instance reduced soil losses to one-half of that measured from a similar watershed that was contoured with a filter strip and planted to the same rotation. The average loss from the strip-cropped area was about 2.5 tons per acre for the growing season. On fields that are strip cropped, it has been found that if the drainage length is greater than 300 feet the soil losses from the lower strips are execssive. The width of strip required to obtain adequate erosion control will depend upon steepness of slope, length of slope, crop rotation, soil type, and method of cultivation.

Terraces with 7 -foot vertical spacing and a maxinam 3 -inch grade per 100 feet in chanmel have not given adequate control of erosion on $10-$ percent slopes where the rotation included only 1 year of hay. A rotation with 2 years of hay would be necessary under these conditions. In a 6 -year rotation of corn, grain, and 4 years of hay, the soil loss from a terrace with a maximum 6 -inch grade per 100 fect has been one-fourth that from a contoured watershed in the same rotation. Sufficient channel capacity can be maintained by leaving a dead furrow in the channel and by back furrowing on the ridge once in the rotation that includes 2 or more years of hay.

Soil and water losses are low from pasture land that is productive and well managed. Soil losses have been found to be low from all pasture lands exeept those that are overgrazed or on which runoff from cropland concentrated and caused gallies. In the latter case, terraces should be used to divert runoff water.

Runoff from a timbered area, even in the most intense storms, was prevented by protecting the area from grazing. Soil and water losses from timber land have been found to be low. Grazed timber had less than half the carrying capacity of a similar cleared area.

Lysimeter studies show that the loss of water and mutrients by percolation from a Fayette silt loum is low. The amount of loss decreases with the density of cover.

THE AREA

The unglaciated area of the Upper Mississippi Yalley Region includes some 12 million acres in southwestern Wisconsin, southeastern Minnesota, northeastem Iowa, and northwestem llinois (fig. 1 , in envelope, p. 3, cover). The topography ranges from steep, short slopes with narrow ridges and valleys in the blutf portion (fig. 2), to the more gently rolling long slopes with broad ridges and valleys on the lands extending beyond the bluff portion. The bluffs frequently have slopes of 50 to 00 pereent with ridges extending from 300 to 500 feet above the floor of the valley. Slopes of 30 pereent are not uncommonly cultivated.

The soils of the Upper Mississippi Valley area belong to the general Gray-Brown Podzolic group. The underlying roek is largely limestone and sandstone. Most of the area has been covered with a mantle of loess. The thickness of the mantle varies, having a tendeney to be

Figuae 2.-Air view showiag topography of Chper Mississippi Valley Area.
thicker nearer the Mississippi River. The dominant vegetation has been the oak-hickory association. This type of vegetation has tended to return more of the humus to the soil resulting in a less aced surface soil than in the true Podzols. Under rimgin conditions, the soils in the area are nentral or only slightly acid. The Fayette series is the major series in the problem area.

The Fayette silt loam is very high in silt content. A mechanieal amalysis of a profile located near the control plots on the Station shows that there is over 70 perent silt to a depth of 8 inehes and over 65 percent silt to a depth of 44 inches. This soil, which is low in colloidal content and high in silt, has a low degree of aggregation; therefore, the soil is easily dispersed by rain. As a result, high soil losses ocrur when the soil is not protected by dense vegetation.

There was little land eultivated until about 1850. Farming at first consisted principally of the production of spring wherat. The practice was to crop an area of hand successively to spring grain until the erop yield became too low to pay for cultivation. The only aim was to secure the largest crop for the smallest outhy of eapital without regard for the future. At first the soil was so productive that it was not considered economieal to apply bamyard mamure or to rotate crops. Yields declined rather rapidly under this system of contimous grain. By 1880 there was a trend toward a more diversified type of agriculture with dairy farming definitely on the increase. With the change to dairy farming came the need for hay. Red elover became a popuar crop in the areas.

It is apparent that during the 20 to 30 years of wheat farming the soil was rapidly depleted in fertilily and mudoubtedy the losses by crosion were high. Washing away of loose soil by spring rains, years of short crops, low prices, and the ills that follow oncerop farming led to a change from wheat farming to darying.

Fortunately for the agriculture of the aten, fairy farming was adopted along with the use of barnyad manare and rotations. At the present time dairying is the predominant type of faming exerpt in the southem part. In that section corn and hogs make up a greater part of the farm income.

Although erosion has not resulted in the abaudoment of large areas, there are fields or portions of fields which, due to severe erosion, have been removed from cultivation and seeded down for pasture. Muckenhimand Zeasmans foum in 1040 that about 33 perent of the cropland in Wisconsin had lost an average furrow slice or more of soil, that 25 perent of the pasture land had lost a similar amount of soil. This amounts to more than 7 million acres of Wiseonsin farm land that have lost approximately one plow depth of topsoil. They report that the loss was much higher in the southwestern part of the State. There they found that over 60 pereent of the eropland has lost one plow depth or more of soil. In Winona (ounty (2)'i in southeastem Mimesota, a detailed erosion survey showed that of the cropland 21 pereent has lost more than 50 perent of the surface soil. In Iowa, a similat survey (6) conducted in the Farmersburg area, in the northeastem part of the State, showed that 30 percent of the cropland has lost 50 pereent or more of the surface soil.

[^0]The results of these studies should apply fairly well to the gencral problem area. Although erosion has not progressed to the extent that it has in some sections of the United States, it has removed tad is contimuing to remove surface soil at a mapid rate. Control measures, if applied in the near future, will save these soils from further rapid loss and avoid the cost of a genemal relamation program.

METEOROLOCICAL RECORDS

Daily metcorological records of precipitation and temperature have been obtained. Most of the erosion in this area is caused by water. Occurrence and intensitics of precipitation are, therefore, important to the study of the conservation problem. Temperature is important in that the gromel is frozen for about 4 month cach year, during which lime soil losses are extremely low.

PRECIPATATION

Precipitation was measured by means of recoring saow and rain gages and standard Weather Burean gages. The thre factors of rainfall that have been found to be most important in affeeting crosion control are anount of precipitation, intensity of precipitation, and season of occurence. The average anmal precipitation for the 11 -year period was 32.01 inches. This is 1.65 inches above the 70 -year average measured by the United States Weather Burean at La Crosse, Wis. Daring the 11 -year period covered by this report the ammal precipitation varied from a minimum of 23.17 inches in 1943 to a maximum anotnt of 44.10 inches in 1938.

Fucua 3.-Churl showng li-year aterage ranfall by months at Upper Mississippi Valley Conservation Experincmat station, Lat Croses, Wis.

Figure 4
FOUND AT END OF Bulletin.

The average monthly rainfall at the Station is shown in figure 3. It will be noted that the distribution of rainfall by months through the growing season is good. In some seasons the yield of one or two crojes may be greatly reduced by a short dry period oceuring at a critical time in the development of that crop, but generally good srop yieks ofeur every year.

RENOFF ANO BROSTON EACTORS

The amount of runoff and erosion that is caused by at given min will depend on the total amome of rainfill and the intensity of the ramfall. In order to determine the relative importance of intensity and amome of precipitation, data by stoms from fallow and corn plots were analyoed. Pactors were developed that include the total amount of precipitation, the $\overline{0}$-minute intensity in inches per hour, and the $30-\mathrm{min}$ ate intensity in inches per huur. In figure 4 (in envelope, p. 3, cover) the average intensities for 5 -, 15 -, and 30 -mimute periods of precipitation are shown for cyery month of the growing season. By use of these factors, stoms can be grouped or classified aceording to the amounts of remoff and erosion that would be expected.

The formula for the crosion lactor is as follows: 2 $\frac{1}{2}$ times the total amome of precipitation in inches plus $8 \frac{1}{2}$ times the 30 -minute intensity in inches per hour mimus the 5 -minute intensity in inelhes per hour.

The formala for the runof factor is as follows: 7 times the total amount of precipitation plas a times the $30-\mathrm{min}$ ate intensity in inches per heur mimus the \bar{i}-minute intensity in inches per hour.
Dr. Henry Hopp, Soil C.Onservationist at the Washington offer, delemmer the correlation of these factors with soil and water losses. His data are shown in table 1, A very satisfactory correlation with soil and water losses was obtained by the use of these factors.
Tabie i. Efficiency of predicting crosion and runoff from storms by means of meteorological measurements

${ }^{1} \mathrm{~A}=$ Amount of preciphation; $\mathrm{B}=$ maximem 30 -mintete intensily; $C^{\prime}=$ maximum 5 -minute intensity.

In this report most of the data are divided into three gromps by use of the erosion and rumoff factors as follows:

Wor the period 1940-43 there was an average of 4 storms a year in the high group, 7 storms a year in the moderate group, and 63 stoms a year in the low group. This classifieation of stoms resulted in the distribution of soil and water losses shown in table 2. Four storms a year re-
sult in 95 percent of the soil loss and 84 perent of the runofif from comland. Conservation practices to be effective must be designed to control runoff and erosion during these storms if effective eonservation is to be accomplished.

Table 2.-Soil and water loss by storm groups

Crop	Total soil loss			Total runot		
	High	Moderate	I.ow	High	Moderate	Low
Corn	Percent 05 05	Perent	Perceat	${ }^{\text {Percent }}$	Percent	Percent
Gruin	74	12	14	64	24	12
Hay	S8	7	-	\$1	15	4

TEMPERATCTRE
Daily readings were made of maximum and minimum air temperatures. Temperature has an effect on soil and water losses, primarily due to type of precipitation and condition of soil. Most of the winter precipitation is in the form of snow. Occasionally a rain of low intensity is experienced. The soil is usually frozen for most of the period from December 1 to April 1. During this period soil losses have been low, with the exception of one storm when rain fell on soil that was thawed on the surface to a depth of 3 to 4 inches.

Maximum, minimum, and mean air temperatures are shown in table 3. More detailed data are given in table 19, Appendix.

Table 3.-Moximum, minimum, and mean air temperatures by months at La Crosse, 1983-43

Nomat	Menn	Highest	l.owest	Average	
				Maxituto	Minimum
	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	$\%$.
Janumry.	is	0	-32	40	-20
Februnry . .	19	47	-24	41	-15
March.	32	$\overline{7}$	-17	64	3
April.	4 K	(5)	8	76	$1!$
Mos..	fil	104	28	86	33
Junc.-	69	94	40	89	44
July.-	75	105	49	\%	:2
Auphest.	72	98	40	\%	47
September.	173	04	\cdots	Si	34
October-	51	83	14	7	23
November	35	74	-2	(i2	7
December.	23	55	-19	40	-11

${ }^{1}$ Wealber Burem, La Crosse, Wis.

THE SOIL AND WATER CONSERYATION EXPERIMENT STATION

Location and Deschiption

The Upper Mississippi Valley Soil Conservation Experiment, Station is located near La Crosec, Wis., about 5 miles east of the Minnesota-

Wiseonsin line (fig. i). The farm of 160 acres was purchased by the State of Wiseonsin in 1931. It constituted one of the group of 10 exproment stations established on forms representative of large probiem areas of eroding soils in various parts of the country. Its establishment was authorized by the Buehaman amendment to the Agricultural Appropriation Bill (7) for the fiscal year 1930, appropriating 8160,000 for soil-erosion investigations. The topography is typical of ridge farms located in the bluff portion of the Upper Mississippi Valley unglaciated area. The ridges are marow, breaking of rather abruptly to steep) slopes. Slopes as steep as 25 perent were under cultivation. Open and wooded pasture slopes as step as 40 pereent were being grazed. Abont 70 of the 160 acres of land were at one time under cultivation.

 Stalio.: [lhoto by James N. Meyer.]

Solls

The prineipal soil types on the Station are Fiycte silt loam and Dubuque silt loam. The Fayete silt loam was lormorly classified as Knox silt loam and Chinton silt loam. It has been developed from loessial material deposited at various depths. The maximum depth is about 6 feet, the average $41 / 2$ feet. The Dubuque silt ham has only a thin mantle of lonssiat material over soil residual from limestone. The depth of loessial material may be as much as 24 inches. The two soils have surface soils that are high in sill content and crode very easily. Both the Fayette and the Dubuque soils are low in orgunic-matter con-
tent and require the addition of 2 to 3 tons of lime to the acre for legume production. A soil and erosion map, shown in figure 6 (in envelope, p. 3, cover), was made of the Station in 1934. It will be noted that much of the cultivated land is severely croded.

Agricultural History of the Station

It has been difficult to obtain a very accurate record of the agricultural history of the Starion farm. The farmer from whom it was purchased stated that, in general, he had followed a rotation of corn, gram, and hay on the cuitivated fields. Tillage and planting operations were done parallel to roads and fences; as a result, much of the cultivation was not on the contour. A nap of the Station and the experimentar areas are shown in figure 7 (in envelope, $p .3$, cover).

The ficlds on which experiments were set up had probably been under cultivation 70 to 75 years at the time the Station was established. The farm was first cropped to grain and potatoes. In the late eighties there was a change to dairy farming. In 1932, at the time the Station began to function, the land was umproductive. Indications were that the farmer had not used good cultural practices and that as a result the soil was run-down and in low productive condition. The hay on the fieds was composed largely of quack grass. Soil tests showed that the cultivated fields were acid, requiring 2 to 3 tons of lime per acre, and were low in phosphorus and potassium.

In 1940 additional land was rented from Mr . Hubert Hundt near Coon Valley, Wis. (fig. 8). Filteen acres of Tayette silt loam soil are included in this tract. This farm is located outside of the steep bluff portion in the more gently rolling section of the area. The leased tract is moderately eroded and has uniform slopes that average 1 I percent in grade and 300 feet in length.

Winjer Erosion

During the winter period, November 1 to April 15, the ground is normally frozen. Most of the precipitation during the winter is in the form of snow. However, there may be some light rains in November and the first part of April. Usually, these a ains do not cause high soil losses unless they fall on a soil that is thawed only for a lew inches. Under these conditions there is nen!ly 100 -perent rumoff and the umfrozen soil, if umprotected by crop cover, is easily carried by the funof even though the intensity of the storm is not high.

Detailed data for the control plots and watersheds are given in tables 20 and 30 , Appendix, showing the soil and water losses by winter and growing seacon. Figure 9 shows the losses by scasons from the 3 -year rotation on the control plots. The losses from com for the entire year averoged 53 tons per acre, of wheh less than 2 tons were lost during the winter period. On land planted to grain, about one-third of the year's total loss of 30 tons took place during the winter period and two-thirds during the growing season. The winter soil loss averaged only 3 tous per aete of the total annual loss of 52 tons per acere on the cultivated watershed for a 5 -year period.

The soil loss during the winter is low and the difficulties of obtaining accurate data are many. Unequal distribution of snowdrifts, resulting in more precipitation on some areas than others, catuses more than the

Figure 6
FOUND AT END OF BULLETIN.

Figure 7.-Map of the Upper Mississippi Valley Conservation Experiment Station showing fields and experimental arens.

Figute 9.-Effcet of season on soil and water losses.
usual variation between replicates and treatments. The runofi also changes to ice in the metal flumes and divisors, resulting in an inaccurate measurement of losses. This has made it extremely difficult to obtain reliable records.

In this report soil and water data are given for the growing season only, except in a few tables where both winter and growing season losses are shown.

Factors Affecting Frost Penethation and Thawing

Studies were made in pasture, plowed land, hay land, and protected timber to determine the effect of cover and depth of snow on frost penetration. A summary of results of these studies (1) shows that soil covered.with a good growth of timber, protected from grazing and fire so that there is a good covering of leal litter on the ground, will not frecze deeply. In such a timbered area the snow depth is fairly uniform. The snow and the leaf litter afford good insulation to the soil. The maximum frost penetration in timber was 5 inches as compared with 10 inches in a good pasture having a similar slope and exposure.

Vegetation wilt protect the soil to an extent depending upon its height and density. Under general field and pasture conditions the effect of vegetation on frost penetration is more dependent upon its ability to trap and hold the snow cover than on the insulation afforded by the vegetation. Normally, the depth of snow is less variable in vegetated fields than in plowed fields. It has been observed in the fall that an area covered with a fair amount of vegetation will not freeze as soon under moderately cold temperatures as a plowed field when there is no snow on either. Maximum frost penctration on hay during some years has been as much as on plowed land.

Snow cover seems to be the most important factor affecting frost penetration during low temperatures. Measurements were made on a terraced field to determine the effect of snow depth on frost penetration. On the terrace ridge the snow cover was the thinnest and frost penetration the greatest (fig. 10). During the winter of 1937 the maximum depth of snow measured on the ridge was 5.5 inches and the maximum frost penetration 24.8 inches.

 thophe of show there wis th sow reducton in the depth of host. In 1040, the sear in wheh there medsurment= wre mate, the miniman

 What winar were absul average.

The thating of the wil in the spang is inflemed hy exposine and

 until fite temperatumes are math hipher. This will ember mome of the
 facing slopes.

so that more of the snow is lost as runoty than from plowed ficlds. The plowed soil thaws rapidly when free of snow and is capable of storing and absorbing water in imount dependent tapon the roughess of the surface and the moisture content of the soil.

GENERAL INVESTIGATIONAL PROCEDERE

Experiments were conducted to obtain information on the basic factors affeeting soil and water conservation. These factors are: Type and density of vegetation, pereent slope, length of slope, characteristies of precipitation, and soil type and condition of soil. In addition to these studies, measurements were made on terraced and strip-eropped land to determine the best design of these control practices for cenditions common to this problem area. Data ohtained consisted of measurements of soil and water losses, yield of crop, and general observations. Water losses are reported in surface inches and as pereent of precipitation. Soil losses are reported in tons per arre.
Measuring equipment varied, depending upon the size of plot. On the control plots and lysimetere, metal tanks of sufficient capacity to hoki all of the runoff expected from one rain were used. These tanks had a capacity of 3.5 surface inehes of runoff which is about 50 pereent of 7.23 inches, the maximum amount of rainfall ever recorded during a 24-hour period by the Weather Bureat at La Crosse.

Plots larger than 1 100th aere and less than $1 / 2$ aere are equipped with a silt tank, multislot divisors, and aliguot tanks (fig. 11). As the runoff suspension passes through the silt tams, a portion of the silt is cleposited

and the trash is screened. When the eapacity of the silt tank is execeded, the screened suspension flows through a multislot divisor in which one slot is.connected to an aliquot tank. Thercfore, most of the rumoff is wasted and only a relatively small portion collected in the aliquot tank for soil and water determinations.

Watersheds and terraces have measuring cquipment arranged so that the runoff suspension passes througi a ealibrated thme to which is attached a water-stage recorder with which a hydrograph of the rumoff is obtained. The runoff is then collected in a large silt box where some of the soil is deposited. The silt box is constructed so that, the end of the box is a weir, over which most of the runoff flows when the capacity of the silt box is exceeded. A Ramser silt sampler is attached to the side of the box by means of which an aliquot of the runof is obtained.

Runof was measured or weighed after each thew and rain which produced a measurable amount of rumoff. The sampling procedure varied with the type of measuring equipment and the size of the area. The runoff in the silt box was measured, the suspension thoroughly agitated, and an aliquot obtained for sampling as the box was drained. The runoff in the aliquot tanks was stirred, pumped through a divisor by which a continuous sample was obtaned, and collected in a large tank momted on a scale. Each tank was measured or weighed, and sampled separately. Triplicate quart samples were obtaned from each tank for dry-soil content determination.

Contrice Feots

A series of 11 plots known as "control plote", was established in 1932 and measurements were begun in 1933 (fig. 12, A and B). These plots are located on a 16 -pereent slope of Fiyette silt loam soil with northern exposure. All the plots were 6 feet wide and 72.6 feet long exeept plots 1 and 2. Plot 1 was 36.3 feet long, and plot 2, 145.2 feet. The site on which this experiment was located had been cropped for 70 or more years at the time the study was started. It, however, was not as severely eroded as the rest of the farm. There were about 8 inches of surface soil on the plots at the time the experiment was established.

In 1933, plots 12, 13, and 14 were established on a 30 -prerent slope. Measurements were discontinued in 1939. Plots 15 and 16 were established in 1936 on a 16 -percent slope. Plots 17 and 18 were established in 1939 on a 16 -pereent slope in connection with the study of degree of erosion. During the same year, plots $19,20,21$, and 22 were established on a 6 -percent slope. All the piots established after 1932 were 6 feet wide and 72.6 feet long. Data from these plots are given in table 20 , Appendix.

Plot treatments during 1932-38 were as follows: Plots 1, 2, 3, and 11 were planted to corn each year. Plot 11 was desurfaced by removing the 8 inches of surface soil manually. Plot 4 was planted to gran anmually. Plots 5, 6, and 7 were planted to a 3 -year rotation of com, grain, and clover-timothy hay. Plots 8 and 9 were fallowed, being cultivated with a hoe sufficiently to control weeds. Plot 9 received an amual applieation of 5 tons per acre of barnyard manure. Plot 10 was covered with bluegrass sod and not mowed or grazed during the ycars 1932-38.

Bluegrass sod gave very good control; only 5.5 pereent of the precipitation was lost as runof. This removed only 0.1 ton of coil per acre
per year. Most of this loss occurred during the winter period. Table 20 gives detailed data from this experiment by plots. It will be noted that of the average anmual rmoff of 1.87 inehes from bluegrass only 0.03 inch was lost during the growing season. It was found that more

Figuna 12.-Contol phots: A, Com on right in a 3-year rolation of eoma, braiz, anel hay: It has producest it much better prowth of eora than the pot on the laft that
 slope of Payette sill.
runoff oceurs from grass land in the winter than from plowed land. This is due to the fact that the soil when frozen under a good dense growth of grass haws one slowly. Thus, very little of the melting snow is absorbed, whereas plowed hand when free of show will thaw rather rapidly and absorb a considerable amount of preepitation. In the summer this condition is reversed. The grass plot then allows practically no runoff, whereas plowed ineas allow high amounts of runofi.

Ftarere 13.-Anamal soil and water losses from eontrol plots, 1933-3s.
Figure 13 shows the ammal soil and water loss by cropping system for the period 1933-38 inclasive. The highest soil loss occurred on plot 8, which was fallow throughone the 6 -ycar period. The average ammat soil loss was 191 tons per tere, which is equivalent to about $11 / 3$ inches of soil. The applifation of 5 tons of mamure per aere ammally on fillow was effective in reducing soil losses by about 30 tons per acre.

The effeet of regetation on soil loss depends upon the density of the vegetation, the length of tine the soil is protected, and whether or not protection is available when the intense storms oceur. Crop rotation is an important factor in controlling erosion, beeause losses are not only low when the area is growing hay but losses from the eleath-tilled crop following bay are reduced by the ineorporation of raw organic matter into the soil.

Com in rotation lost an average of 53 tons of soil per acre following elover-tmothy hay. This was less than one-hati the loss from rontimeous rom of ahout 112 tons par arre. This difference in loss can be largely attributed to the better strueture of the soil following hay and to the raw orgatie mather ineorporated moto the soil.

The soil loss from grain in rotation with corn hats been just about double that of contmous grem. More organic matier is incorporated into the soil grown to continuous gram than in soil in gratn following corn.

The average amual soil loss from a 3 -year rotation of corn, grain, and clover-timothy hay without the application of barnyard mamure was 27.8 tons per aure. This loss is considered to be excessive, imasmuch as one inch of soil would be removed in about 5 yetus. Table 21 shows soil and water losses by crops for the growing season, April 16 to Oetober 31. The rains are divided into three groups-high-factor, moderatefactor, and low-factor rains. It has been found that on the atreage 5 out of 59 storms resulted in aboat 90 percent of the soil lost from corn in rotation.
Figures 14 and 15 show total soil and water losses for com, grain, and hay for each month during the period, April to October. The runof from corn following hay is low during April and May. During this period the soil is rough and of good structure; it is capable of storing considerable water on the surface and the intake of water is high. As the scason progresses the land is worked and com is planted by the latter part of May. At this time much of the rough eloddy structure is

Figune 14.-Soil loss by months for com, geain, and hay, $1933-38$, in a 3 -year rotation.
destroyed or greatly reduced. The largest amounts of runoff ocera' in July, August, and September with the runoff park in August.

For grain following com the land is also fall spaded, but there is in-. suffirient raw orgmic matter in the soil. The clods are, therefore, broken dowa to a considenable extent by alternate frecaing and thawing in ently spring. Jeven bofore the grain land is tilled, runoff is more than from cormband. Grain is tesually planted during the last two weoks in

Fecoure 15.-Total runolf by monthe for com, gratu, and hay, 1933-3s, in a 3 -yeat mation.

April. At that time a fine, firm seedbed is prepared for the legume seeds. This produces a condition that is conducive to high amounts of runoff. Runoff is high from grain throughout the season or until the legumes begin to reduce runoff, which does not nommally oceur until carly fall.
Runof from hay is relatively low throughout the scason; hewever, the curve for hay land follows a somewhat similar pattem to that of com and grain.
In general, the soil loss curve for com follows a pattern simiar to that of runoff from corn, except that the soil loss reaches a prak in July instead of August. Soil loss from corn reaches a peak in July because a large number of intense storms oceur in July when the com is being cultivated and is too short to give good canopy interception. In August the corn has been laid by, runoff chameis have been established, and weeds start to protect the soil, all of which tends to reduce soil loss.

Soil loss from grain is high during April and May. Any storms of moderate or high intensity will cause ligh soil losses from grain until it is 8 or 10 inches tall. Thereafter, soil losses can be expected to be relatively low.

The soil loss from hay has been low each month. Rains oceurring immerdately after the erop has been removed have not resuited in high losses.

Deghee of Erosion

C'ontrol plots 3 and 11 are used to compare soil and water losses from surface and subsoil plots. In 1932, plot number 11 was desurlaced by the removal of 8 inches of surface soil. Plot number 3 was not given special treatment. Each plot was planted to corn on the contour each year during the period 1932-38. Detailed data are given in table 24. The desurfaced plot lost on the average 117 tons per aere per year and the surface soil plot 99 tons. Throughout the experiment both plots lost soil very rapidly; however, during the first 2 years the desurfaced plot lost 45 percent more soil than the surface-soil plot. During the last 4 years, the subsoil plot lost only 2 percent more soil than the sur-face-soil plot. At the cud of 2 years of corn the raw organic matter had become deromposed and the surfice plot had become badly croded so that there was not much difference in the erodibility of the 2 plots.

By 1038 the fallow and the continuous corn control plots had become severely rroded, having lost all but 2 to 3 inehes of the surface soil. Howeyer, the plots in rotation and continuous grain during the same period of treatment had lost one-half as much soil or had about 5 to 6 inches of surface soil remaining, which was considered as moderately eroded. By including 2 plots from the moisture series, which were in the same treatment as the control plots, a degree-of-erosion experiment was established in 1939 which incleded 10 plots. There are 5 plots on severely eroded soil and 5 on moderately eroded soil. The plots have received phosphorus and potash on grain in amounts based on soil tests to maintain a level of fertility of 50 pounds of available phosphorus per acre and of 150 pounds of available potassium per acre. Lime was applied on corn to maintain a soil pH of 6.5 . Eight tons per acre of barnyard manure was applied on corn. All crops were planted on the contour and cultural treatments were as similar to field operations as is possible with small plots.

With the phosphorus, potassium, and pHe hed unifom the prineipal difference between the two degrees of erosion is in orgminematter and nitrogen content of the soil. The moderately croced plots in 1039 had an arerage nitrogen eontent of 0.108 pereent for the $0-6$-inel depth fund the sceerely croded plots 0.053 percent. The organir-matter rontent of the moderately croded soil of 0 - 7 -inelh depth was 1.7 percent, whereas that of the severely eroded soil was 0.82 pereent.

Four yetus of data are reported for this experiment. These data are shown in table 22 and figure 16 . Regardess of erop, the severeiy eroded plots lost more runoff than the moderately eroded plots. The croded soil beceme more compact resulting in lower infiltration and highere romoff. The severely croded areas averatged 3.1 inctios of runoff for corn, grain, and hay, wheras the moderately eroded averaged 1.8 inches for the same crops. The soil loss on severely eroded soil was only slightly more than trom moderately eroded soit when planted to com, even though ranoff was alout 0.f inches more per year. The soil loss from land planted to grain was higher than the loss from the

Figute 1di.-A verage anmal suil and water lass from moderntely und severely ernded plots, 1944-43.
land planted to corn, regardless of degree of erosion. This reduction of erosion on corniand is due to the conditioning of the soil in the longer rotation; that is, the soil structure is better and there is much more raw organic matter incorporated into the soil when hay is plowed under than when corn stubble is plowed under. Grain on severcly eroded soil allowed about 1.8 times as much soil loss as grain on a moderately eroded soil. This is due to the fact that when grain follows com the raw organic matter incorporated from the hay has been decomposed so that degree of erosion can then exert its maximum influence on soil and watcr losses. The soil loss from hay was low regardless of degree of erosion.

Yield of crop was lower on the severely eroded areas for all crops. Corn yielded 70 percent, grain 55 percent, and hay 92 pereent as much on severely eroded as on moderately eroded soil. Yield of hay was not as much influenced as the yield of corn and grain by the loss of surface soil.

In field trials conducted in 1943 on farms in Mimesota and Wisconsin yield of crop was determined on various degrees of crosion within a field. ${ }^{56}$ Data recorded in these trials (table 4) are in good agreement with those obtained from the small plots at the station. In the studies conducted under farm conditions there was a wide variation in cropping and fertilizing practices between farms. Degree of crosion, however, was found to be a primary factor affecting yield of crop. Yield of crop is less on the eroded soil because the eroded soil contains less organic matter, less nitrogen, and therefore has more runoff.
Table 4.-Effect of degree of crosion on yield of crop, as shown by bushels per acre in field trials of 1943

Crop	3 arte	Farms	Slightly eroded fields	Moderately eroded helds	Severely croded fieds
		Number	Bushels	Bushets	Bushels
Corn	Wisconsi	8	80	67	
Grain.	..do.	11	65	50	43
Grain_	Minnesota	5	36	30	23

Organic Matter

Maintaining a soil in high organic matter content is important not only for maximum yicids of crop but for controlling soil and water losses. Too frequently, the farmer follows a practice of removing all crop growth that can be utilized for feed. By removing two or three crops of hay and by pasturing the aftermath, full advantage is not taken of the benefits to be gained from a hay crop in adding soil fertility and controlling erosion. Part of the advantage of rotation of crops is the effect that the organic matter has on soil structure and its binding effect on the soil when plowed under.

Within the original control plot experiment there were two fallowed plots. These plots were worked with a hoe to simulate disking and with such frequency as to keep the weeds under control. Barnyard

[^1]manure was applied to one plot each spring at a rate equivalent to 5 tons per acre. The other plot, received no treatment other than cultivation.

The soil losses from these plots ware extremely high, over 1 ineh a yetr. The plot which received the anmual dressing of barnyard manure lost 28 tons per acre per year less soil or about 85 pereent as much as the plot which received no manure. Detailed data on this experiment are given in table 25, Appendix. The effect of manure on fahowed soil is mostly mechanical. The organic matter keeps the soll open and partly covers it, thus reducing runoff and decreasing the erosive action of moving water.

Bamyard mamure applied to com on severely croded soil with 3 inches of surface soil remaining resulted in a slightly greater increase in protection against erosion than when applied to a fallowed soil. One year's data show that bamyard manure plowed under reduced soil losses from 80 to 63 tons per acre and that barnyard manure, surfaceapplied, reduced soil losses to about the same extent as barmyard manure plowed under, or 65 tons per atere. Thus, the application of 8 tons per acre of barnyard manure resulted in a reduetion in loss of 21 percent. Barnyard manare plowed under in the lall reduced the fall and spring losses below those from plots on which manure was not applied. Spring surface-applied barmyard manure reduced the losses after application below those from the plots on which it was applied in the fall. However, for the year there was not much difference in the loss reduction resulting from time or type of application. The effect of time of application of barnyard manure on soil loss will depend upon when intense storms are experienced. Fall application will give more protection from fall and carly spring rains and thaws, whereas spring applications will give most protection during the early summer months.

Green manure, which consisted of the alfalfa-timothy hay produced
Table 5.-Soil and water losses and crop yields on eroded soil receiving various organic-matter treatments ${ }^{1}$

T'rantment	Runofi from-		Soil loss per acre from-		Yield per acre from-	
	Corn	Grain	Corn	Grain	Corn	Grain
No treatment	Inches 7.23	Inches 0.78	Tons 80.10	Tons 3.26	Bushels 66.1	Bushels 28.0
Barnyard manure fall applied before corn........	5.97	. 76	63.68	1.08	75.1	33.4
Green manare plowed under fall before corn...	5.64	. 94	53.62	2.12	69.6	27.6
Barnyad manure applied al corn planting- \qquad	6.37	1.12	65.44	4.83	72.2	31.4
(ireen matare plowed under in fall plus barnyard manure applied at corn phating.................	5.64	40	57.80	1.56	72.1	24.4
Gireen manure fall-applied tilied with sweeps..... -	4.23	.40	20.22	. 69	53.7	18.1

[^2]after the first crop of hay was removed, effected a greater reduetion of soil loss when plowed under than the application of 8 tons of barmyard manure. Soil loss from plots receving both barnyard manume and green manure was higher than from green manure alone but less than from bamyard manure alone. It would be expected that the conbination of the two manures would result in the greatest reduction of soil loss. This occurred on one plot but on its duplicate the soil loss was much higher than from either tratment alone. The lowest losses occurred on plots worked with the sweeps wheh left all or most of the green manure on the surface. The losses by treatment and crop are shown in table 5 and table 26, Appendix.

The com stubble was plowed on all plots except mumbers 7 and 12 . These two plots were worked with the sweeps. Seceling of grain was uniform within this experiment. Plots on which bamyard manure was surface-applied on com had the highest soil loss when phated to gram. Barnyard manure plowed under and green manure applied on comband reduced the soil losses from grain land the lollowing year.

Yields of the crop wore highest on plots receiving barnyard manure. Where the barnyard manure was plowed undes, the yield was slighty higher than where it was surface-applied, The bowest yield ocenered on plots worked with the sweeps.

Subsumpace Trllage

In the diseussion on organie matere it was pointed ont that the lowest soil and water losses un command orcurred on plots on which sweeps were used for subsurfare tillage. It was also shown that yield of erop was loss than for other trentmonts. For the last 4 years strips in fields have been worked with sweeps in seedbed preparation for com in place of plowing. It hats proved very difficult to reduce the stand of grass in the second- or third-year hay enough to keep it from competing too severe'g with corn for moisture and plant nutrients. In lifting the sod only slightly, as is done with the sweeps, it has been found that, under favorable moisture conditions, the grass kecps right on growing.

It is believed that them is little place for subsumace tillage for corn in this problem area, especialiy where hay is left down more than 1 year and quack grass is a problem. On soils not infested with puack grass good yields of grain can be obtained by disking. This will leave all or most of the corn residue on the surface. This residue is fairly effective in reducing soil and water losses. Studies made at the station have shown that where the old pasture sod is talled with a feld cultivator in such a way that most of the organie residue is left on or hear the surface, soil loses will be very low. This is the case even though intense storms oceur before the sceding is suffeciently well established to give adequate protection.

Cinor Romation

The practioc of erop rotation, inchoding I your or more of hay, is base to a good soil conservation program. The protection given by a rotation will depend on the type and density of the bay erop grown and the amount of the growth retumed to the soil when the hay crop; is plowed under.

Most of the experiments during the first 6 years of the Lat (rosse station's existence were on crops in a 3 -yenr rotation or in eonthuous
cropping. The effect of a 3 -year rotation as compared with continuous corn and grain is shown in figure 17. Corn in rotation caused a loss of one-half as much soil as contimuous corn. Grain in rotation followiog corn caused a loss of twice as much soil as contimuous graib. The loss for the 6 -year period, $1933-38$, averaged 28 tons per acre for the three crops in rotation.

Figere 17.- Dffec of rolation on soil and water loss, 1933-38.
In addition to these data, measurements had been made by 1941 on various sequences of crops inclacing a year or two of data in cach case. This information was assembled in a bulletin, Cropping Systems That Help Control Erosion (3). It presents and discusses tables that show the effect of crop seguence, pereent of slope, and length of slope on soil and water losses.

The following tabulation from that bulletin shows the effect of enop sequence on soil losses from plots 72.6 feet long located on a 16 -pereent slope. It gives the computed coil loses under rarious cropping aystems.

(rappiom mater	Arernfe soil low- Tons per une per gent
Comannually.	89
Com, barley, (sweetclover)	33
Corn, batley, and hay...	22
Corn, barley, hay, hay	13
Com, bartey, hny, hay, hay..	8
Com, birley, hay, hay, hay, hay....	- .. .i....

It will be seen that the data in fegre 17 for a system in which corn is grown ammally and for the 3 -year rotation system are not the same as the data given in the preceding tabulation. The data in the tabulation are for a longer period, 1932-40, and include 2 years, 1939 and 1940, when the soll losses were low. The data used in figure 17 are for the period 1933-38. These data were used because some of the treatments were changed in 1039. The relative effect of rotation, however, is similar regardless of the period used.

Data obtained since 1940 do not differ materially from those reported by Hays and Clark (8). For example, the computed soil loss from a 5 -year rotation was 8 tons per acre. The soil loss for a 5 -year rotation for the period 1941-43 averaged 7.4 tons per acre.

More studies are needed to determine exactly the relationship of rotation, percent of slope, and length of slope. Information on the relationship of these factors to soil loss is essential to the development of good conservation plans.

Length of Slope

As the length of slope increases, the velocity of the runoff becomes higher. This is caused by the concentration of water in rills and gullies which results in increased carrying power and higher soil losses. The studies at the station on the effect of length of slope are not too conclusive because no uniform slopes are available for such a study. Experiments, therefore, have of neeessity been limited to the shorter lengths of slope.
The effect of length of slope has been studied in three experiments. In one, three control plots- -36.3 feet, 72.6 feet, and 145.2 feet, respectively, in length were planted to corn on the contour. The plots are 6 fect wide which tends to restrict runoff to sheet flow. Data from this study for the period 1933-38 are ineluded in detail in table 23, Appendix. The 36 -ioot length of plot lost two-thirds as much soil per unit area as the 73 -foot length of plot and one-half as much as the 145 -foot length of plot.

Fif:UnE 18.-Average annual soil and water loss from plots with 2 lengt his of slope and various percents of slope, 1939-43.

Figene 19.--Soil and water losses from plots with varions lengths and percents : of stopes during high rain-factor group storms, 1939-43.

Runoff is not greatly affected by length of slope; there is, however, a tendency for the pereent of runoff to be higher on the shorter length of slope. The soil loss is increased with the length of slope.

In the control-plot experiment corn was grown contimuousiy. Under this severe treatment the plots became badly eroded during the course of the experiment. In another experiment two lengths of plot, 73 and 36 feet, were planted to a 3 -ycar rotation of corn, grain, and clovertimothy hay. Detailed data are given in table 37 . The plots were 20 feet wide and were located on a 19 -percent slope. Table 6 summarizes the results of this experiment.

Table 6.-Effect of crops on soil loss caused by length of slope

Crop	Soil loss per acre from slope leagth of -		- Ratio
	72.6 feet	36.3 feet	
Corn	$7 o n s$ 641	Tons 47.1	
Barley	31.8	20.6	1.5
Hay...	2.4	1.2	2.0

It will be seen that the soil loss is higher from each crop when planted on the longer slope. The greatest pereentage increase was on hay. This inerease occured largely during years when hay followed a year of serere soil loss from grain. Rills wonk be washed in the longer grain plots which would result in poorer stands of hay the following year.

In the pereent-slope study two lengtis of plots are loented an ench slope. All plots are in tripliente and are planted to grain with the slope. The two leugths under study are 36.3 and 72.6 fect. In tahle 7 the soil losses ate shown by perent of skope and lengeth of slope for the pertion $1939-43$.

Table $7 . .$. The effec of percent slope on soil lows by length of slope

Percent shope	Soil loss per acte frum slope lenghth of		12atio
	72.6 feel	36.3 feet	
	\%ons	Tons	
3...	5.11	3.41	1.30
8...	10.80	9.98	1.08
13....	22.06	18.81	1.20
18......	28.62	21.97	1.30

There was a higher soil loss from the longer slope than from the shorter slope regardless of pereent of slope. There seems to be no definite relationship between length of slope and pereent of slope.

* The relationship of slope lengths to soil and water loss from various percent shopes is shown in figures 18 and 19.

Percent of Slope

In order to study the effect of percent of stupe on soil ind water losses, plots were established on four slopes located in a 5 -acre field on whid soil is quite uniform. The soil is moderately eroded with 6 to 7 inches of surface soil remaining. Plots were established on the following slopes: $3,8,13$, and 18 pereent. The slopes are fairly miform throughout the experiment with the exereption of slope 13 on which the uppere part is less steep than the lower part. All plots are 14 feet wide. Within each slope group thate are 6 plots, 3 that are 36.3 feet long and 3 that are 72.6 feet long. All plots during the period reported were planted to gram^{2} with the slope, in order to eliminate the variable effect of eontouring, sinee it was assumed that the contour furows wouk be more effective on the less sterep slopes. Detailed datat are included in table 27, Appendix. Figure 18 shows the soil and water losses by slope for the growing season.

As an average for all stoms, it will be seen that the pereent of runoff increases slightly as the slope beomes steeper. lin figure 19 are included data from storms in the high-rain fitetor group. For the 73 -foot lengeth of slope the amount of runoff is thout the same from cich slope except for that of the 18 -pereent. The 3 -perente slope lost 32 pereent of the precipitation, the 8 -perent 32 , the 13 -pereent 36 , and the 18 pereent slope lost 42 pereent. From individuat highly intanse storms,
slope had no effect on amount of runoff. For example, a very hard storm was experienced on Jume 7, 1940, from which the 3-pereent plots lost 1.24 inehes, the 8 -perent plots lost 1.22 inches, the 13 -pereent plots lost 1.18 inches, and the 18 -pereent plots lost 1.20 inches. Surface runoff is precipitation in exeess of infltation and surface stomage. During the most intense stoms surfate stomge is so greatly exeeded that it has very little effeet on resulting rumoff.

Sull losses in eath case are higher from the steeper sopes regardless of intensity of preripitation, although most of the soil hoss oceurs during the high-ran faefor storms. The soil hoss from the B-perecnt slope has averaged 5.1 tons per arre for the growing season: that from the 8 -perrent slepe has areraged 10.8 toms per acter; that from the li3-pereent shope bats areraged 22.0 tons per acre; and the 1 s-perent slope has lost 28.6 tons per are. These losses ame for the 2, , f -loot plots. The berease in soil boss as the slope beromes steremer is the mesult largely of the increase in velority of ranof water. it is not due to an increase in volume of monoff. Tests made of veloedty of fow on the plots immediately following mins that coluse rumof show that for an inevease in slope of 5 perent, there is an inerease in volority of about 8 fere per minute.
 19.1-13.

In the control-plot experiment corn, grain, and hay are grown in rotation on a 6 -pereent and 16 -pereent slope. The plots with 6 -pereent slope are planted to a 4 -year rotation of corn, grain, and 2 years of hay, and the plots with 16 -percent slopes are phanted to a 5 -year rotation of corn, grain, and 3 years of hay. The hay on cach slope is alfalfatimothy. The losses from corn probably are influenced by the variation in length of hay stand, but it can be assumed that the lossea from grain would not be greatly influenced.

The data for the 3 -year period, $1941-43$, are shown in figure 20 . These data support those oltained from the more complete percent slope experiment. Runoff from the 6 -pereent slope planted to corn was 5.4 percent of the precipitation as compared with 7.2 pereent from a $16-$ percent slope. Runoff from spring grain was 0.2 perent from a 6 -pereent slope and 11 perent from a 16 -pereent slope. That is, there was only an increase of 2 perent in runoff from com and grain on the $16-$ percent as compared with the 6 -pereent slope. Soil losses were influenced to a greater extent than rumoff. The loss from land planted to corn was 5.5 tons per acre on the $6-$ pereent and $1+.9$ tons per acre on the 16 -percent slope. The soil loss from land planted to grain was 3.2 tons on the 6 -pereent slope and 19.7 tons on the 16 -pereent slope. For an increass in slope of 10 pereent the runof inereased 2 perent and the soil loss 14 tons per acre from com and grain.

Although the losses from hay were low from both stopes, slope had at greater proportionate effeet on soil and water losses from hay than from corn and grain. An examination of data lrom individual storms shows that the total amount of runoff during the yery intense storms is not greatly affeeted by slope with the exeeption of the plots devoted to hay.

Compouming

Contouring will result in increased yields, Itut under ficld conditions does not give sufficient control of runoff to insure adequate crosion control. In field trials conducted in Mimesota ${ }^{7}$ in 1943 , it was found that on 12 farms contoured corn yiedled an average of 82 bushels per acre; adjacent plots, planted and tilled with the slope, yielded 72 bushels per acre, an increase of 14 preent in favor of contouring. In Wisconsin, ${ }^{3}$ similar studies conducted on 16 liams in 1943 showed that contoured corn yiedded 86.5 bushels per acee and corn planted witls the slope, 82.4 bushels-a 5 -pereent increase in yided clue to contouring. These clata sulsstantiate those obtained at the station over at 4-year period. There it was found that during 3 of the 4 years contoured corn yieded more than com planted with the slope. The contoured plots yielded 4.7 bushels or about 7 pereent more per aere.

Soil losses from contouring on the unterraced, cultivated watershed have been excessive when that area was planted to a 3 -year rotation. The average annual loss was if tons per acre. This watershed is 420 feet long and located on a 15 -perent slope. Three contour lines are used in order that all rows shall be as nearly on the contour as possible. Corn is surface planted so that prior to the first cultivation there is thot much ridging. During the process of cultivation the ridges are effective

[^3]in holding execss precipitation during stoms of moderate and low intensities; but, during storms of high intensity the capacity of these small ridges and furrows is soon exeeded and high runoff oceurs.

Contouring alone gives adefuate protection during the less intense storms, but will be of little benefit during the intense storms. Uader fiedt conditions, diffeculty has been experienced in keeping the rows on the contour, particulary where the topography is umeven. Rows that are off contour usually will eary the rumoff for a short distance, then the small furrows will overtop and allow the manf to flow down to rows that are on the contour. This runoff adders to that held by the contour furrows soon exceeds the capacity of the furrows and they overflow. The concentration of the runoff water on a long slope protected moly by contouring will result in high soil losses.

Grass waterways are needed on contoured fields to prevent gullying where runoff water concentrates. These waterways frecuently have to be placed so closely together that a sizable pertion of the feld is taken up by them.

WATERSHED ST DHES

To study contouring, contour strip eropping, and terracing, three watersheds were established on whicl each practice was used.
The meteraced, cultivated watershed was established in 1932. Before that time, the upper wo-thirds of this area bad been under cultivation for a number of yoars and the lower one-thard bad been in hay. The area of this watershed when established was 1.13 arese In Mareh 1931, it was reduced to 2.33 aters and in April 1938, 0.09 acre was remowd from the watershed. This redueced the dramage area to 2.24 aeres.

The watershed is C -shaped with a show emeentrating trough at the bottom. The drainage of the upper fwothirds of the area is uninterrupted sheet flow; the water eoncentrates inte eight field gullies on the lower one-third of the area. The aremge slope of the watershed is to percent with a maximum of $2 \boldsymbol{j}$ perent. The maximum length of slope is 420 fect.

This watershet is being famed on the eomene without strip eropping or termadng. It was cultivated to at 3 -yar rotation of com, smatl grain, and hay, starting in 1933 with eom. The watershed had become so badly gullied by the fall of 1933 that it was derided to seed the lower one-third to hay. Juring 1938 and 1939 this lower one-third of the area had a dense stand of hay white the rest of the watershed was in corn and grain, respertively. Numerous small sos-hmmp dams and sod-bag dams were eonstreted to help wabilize the fied gallies. Start ing in 1939 this watemped has been in at 6 -yen rotation of corn, grain, and 4 years of hay:

The contour strip-cropped watershed was established in 1937. This watershed is approximately rectangurur in shape, having an average slope of 17 pereent and a length of slope of 270 feet. Drainage is by sheet flow and it is collected by metal-lined concontrating troughs located at the botton of the watersheri.

At first this watershed was divided on the contour into two segments. The upper one was strip cropped to a 3 -year rotation of corn, grain, and hay. The lower segment was in alfalfi-timothy hay.

Starting in 1940, the watershed was divided into 6 strips lepresenting ench year of a (i-year rotation of corn, grain, and + years of hay.

For a terraced watershed the dramage area of one cultimated termee was used, mamely Temater $A-4$. 'The dramage area is 2.21 aeres, the average land slope is 10 pereent and the terrace is l 385 teet in length. Starting in 1932, it was farmed to a 3 -ycar rotation of com, grain, and hay, In 1939, the rotation was changed to a $6-$ ven rotation of corn, grain, and 4 years of hay, to conform to the other two watersheds.

The plan for the strip-cropped watershed was to have the botom striz) in the same rep ats the terraced and the contome watersheds. As this phan called for all crops on strips in the strip-cropped watersheds, it was mossible to change the crop sequence withan lyen without having most of the watershed open. Therefore, there was a divergence in crop secuence on the bottom strip as compared with the other watersheds until all were in haty in 1940 . Tahles 8 and 9 show the eropping system followed on the three watersheds.

> 'T'Ablse S.-Cropping systems for vorious wutcoshods

Year	fonderamed mativatel watershed	Strip-cropped lower strip waibrahed	Turaced A. watersheed
1938..	Corn	Hey	Comat.
1939.	(raitu	corn	(bain
1940	Itay	(irain	Hay.
$19+1$	do	H:y	130
1942.	do	do	13.
1943.	do	do	Du.

S(rip)	1938	1939	10.40	19.4	18.12	19.43
Strip 1.	11 sy	Hny	Com	(irain	Hay	1 lay
2.	(10)	dos	Lfay:	Hay	(6m	Grain.
	(orns	Crain	Ciruin		Hay*	12 yy .
	Grain	Lay.	Itay	do		Coili.
${ }^{1}$	1 lay ,		cido	Corn	(iruin	llay:
(1)		(oms	(batu	1tay	Hay	-Do.

${ }^{1}$ Lower strip of atrip-cropped watershed.
 age pereent of runoff from the thee watersheds for the period $1937 \cdot 43$, figure 2!, shows that the termeed watershed hat 1.5 times more runof than the other two watersheds. The soil loss as mensured at the outlot fld of the terrae is aboul one-fouth as much as From the contonted watershed and about ont-hall that from the strip-reopped watershod. The peak rates of runoff from individati storms for the there watersheds are listed in table 10 .

The average trend of the geak bates of manof for the there watersheds indieates that for the same stom the fermee watershed has the lowest peak, the strip-eropped waterahed mext, and the untermeed, cultivated watershed produces the highest peak rate. 'The apherent inconsisteneies in table 10 are probably due to mavoidable variables, suth as crop

Table 10.-Data from major storms on rainfall, runoff, and peak rates from terraced, strip-cropped, and contoured watersheds

Figure 21 .--Soil and water losses under different Irentments from variouis watershecls, 1937 to 1043.
condition and time of farming operations that would affect the results.
Precipitation, water loss, and soil loss, by winter scason and growing season, on a cultivated watershed, a pasture watershed, and a culti-

Table 11.-Average annual summary of precipitalion, runoff, and erosion by winter scason and growing season on a cultwated watershed, pasture watershed, and culliwated lerrace, 1934-8S

Treatment	Precipitation			Water loss			Soil loss		
							Whier	Growing	
	period	Growing season	Total	period	seasong	Toital	period	season	Totai
	Inches	Inches	/wehes	Iuches	Iuches	Iuches	Toms	Tons	Tous
Unterraced	7.72	20.35	34.07	1.19	4.54	5.72 !	3.37	48.29	51.65
cultivated watershed					,				
Unterraced	7.72	26.35	34.07	. 51	1.67	2.18	. 01	. 11	42
pasture									
watershed -									
Terrace A-5-	7.72	26.35	34.07	1.72	4.90	6.62	46	7.49	7.95

vated terrace are shown in table 11. A more complete record of these watersheds is shown in table 30, Appendix. A detailed compilation of rainfall and runoff data for $1932-38$ was issued in $1939 .{ }^{9}$ It will be noted from table 11 that the average amman soil loss during the winter season from the unterraced, cultivated watershed was only 6.5 percent

[^4]of total average amual soil loss and for the cultivated terrace it was only 5.8 pereent.

On examination of table 36 of the Appendix, it will be noted that lor terrace A-4, on the average, four intense storms per growing season produce 87 percent of the total soil loss.

The unterraced pasture watesshed was established in 1932. The upper two-fifths of the area before 1932 was part of a cultivated field; the remainder had been in pasture for a mumber of years. The area of this watershed when established was 2.71 aeres. At that time there was an old road that divided the upper and lower parts of the areat. This road had a tendency to act as a partial terrace.

During the fall of 1934, a small diversion was constructed across the upper part of this watershed that reduced the dranage area to 2.41 acres. The removal of the old road from the watershed was started in April 1936 and finished in June 1936 . The oid-road loention was fenced for a short period to keep the stock off.
The watershed is V-shaped and has a concrete concentrating trough at the botom. The hand slope manges from 20 to 32 perent. The average is $2+$ pereent. The maximum length of slope is 420 feet.
Table 12 shows the runof and soil loss from the unteraced pasture watershed and a pastured terrace for the period 1933-37. Table 31, Appendix, shows a more eomplete record of these watersheds. There are several hactors afferting these data. Two of the more important are the proximity of the underying rock and the raw back slopes of the terace which existed during the couse of this experiment. A more detailed discussion of the E-3 torrace will be found under the subject of terrace studies.

Table 12.-Runoff and soil loss from an untervaced pasture wolershed and a pastured lervace by classified groups of rains, $1985-57$

[Ramfal] queup	Ranoff as perent of minfail		Soid loss per tare	
	Coleraced pasture watershed	Patstured ternere	Unterrneed pasture whershed	lastured temraes
	lewent	Percem	Toms	Toms
Anmat	1.62	8.09	0.47	0.30
Hightain fatior.	13.16	22.84	. 40	. 21
Moderate-rin factor.,	2.64	7.63	. 06	. 05
Low-rain factor... .-	. 31	01	. 01	. 04

Even though the pastured terrace hat these raw back slopes, table 12 shows the ratio of soil loss from the pastured terrace to that of the unterraced pasture watershed to be 0.64 . The average annual soil loss from the unterriced pastared watershed for the high-min-factor stoms was only 0.40 tons. Terraces in pastures are not 'ecommended unless the pasture lies above cropland or in case a pasture becomes gullied from overgrazing or as as result of being subjected to high amounts of runoff from cultivated fields. Terraces may be used in such cases to divert runoff from the gullies so that they ean be seeded and vegetation established. A good stand of grasses reduces water loss and the soil loss will be negligible.

In order to study some of the effects of cover and character of land use upon runoff and soil loss, the United States Forest Service established 3 small watersheds under various cover and land use conditions in addition to the watersbeds previously mentioned. ${ }^{10}$

Two of the tracts, one timbered (watershed A) and one cleared of timber in 1932 (watershed G), are grazed. The third tract (watershed B) which is well-forested with second-growth hardwoods is maintained in a fully protected condition. In each casc, a diversion diten has been built around the upper margin of the watershed so that only the precipitation which actually falls within its houndaries enters into the runoff calculations. The watersheds A, B, and G have drainage areas of 2.67 acres, 11.5 acres, and 5.85 acres, respectively; the average channel gradients of $\mathrm{A}-17, \mathrm{~B}-27$, and $\mathrm{G}-26$ percent. The maximum gradient of A is $28, B, 50$, and $G, 35$ percent. The common exposure is north in all cases.

At the time these watershed experiments were started in 1032, 24 percent (2.78 acres) of tract B was oceupied by a heavily sodded, nearly treeless strip along the upper rim of the watershed. This open land was seeded with walnut, red oak, and hiekory in 1933, but these young seedlings have had little influence on the runoff. A part (estimated at 35 percent) of watershed A is also poorly timbered. A part of this open area was likewise seeded with oak, hickory, and walnut in 1933.
Table 13 shows the runoff and soil loss from five small watersheds with various cover conditions by classified groups of rains. Table $32, A p-$

Table 13.-Runoff and soil loss from small watersheds with various cower conditions by classified groups of rains, 1985-1,1

Watershed	Runolf as percent of rainfali by storm proups				Soil loss per acre by storm groups					
	Annual	Hiph	$\begin{aligned} & \text { Mad- } \\ & \text { erale } \end{aligned}$	Low	Amual:	High	$\begin{aligned} & \text { Mod- } \\ & \text { erate } \end{aligned}$	Low		
$\begin{array}{l\|l\|} \text { Watershed } A \text {, pas- } & \text { Percent } \\ \text { tured woodland } & 1.16 \end{array}$		Percent ${ }^{3}$	Percend	Percent:	Tons	Tons 0.14	Tons	Tons		
Unterraced pas-ture watershed ${ }^{\text {a }}$						(0)				
	4.65	13.80	1.05							
Strip-cropped watershed ${ }^{2}$ \qquad	7.34	20.55	2.73	0.23	2.66	2,23	0.28	0.15		
Unterraced cultivated watershed ${ }^{2}$							0.28	0.6		
	7.49	19.09	3.75	1.37	5.00	3.76	. 59	. 65		
A-4 ${ }^{2}$---------	10.39	27.33	\%. 88	1.09	1.20	. 91	. 23	. 06		

[^5][^6]pendix, gives a more complete record of these watersheds. From the standpoint of controlling runoff and soil loss, protected woodland is the best land use. No runoff or soil loss has oecurred on this watershed since 1936, and only small amounts from 1932-35. For the cleared-pasture watershed, 0.35 percent of the rainfall was lost as runoff; for the pastured woodland, 1.16 percent; for the unterraced pasture watershed, 4.65 percent; for the unterraced eultivated watershed, 7.49 pereent; for the strip-cropped watershed, $7.3 \pm$ pereent; and for a cultivated terrace, 10.39 pereent.

The average ammal soil lass tor the growing season has been very low for those watersheds that are not in enttivation. The terrace had an average amulal soil loss of 1.2 tons per acre, the strip-eropped watershed, 2.66 tons per aere, and the untermeed coltivated watershed, 5 tons per acre. These watersheds are in a 6 -year rotation ol corn, grain, and 4 years of hay.

Following the clear cutting of wateshed G in 1932, the organie debris left on the watershed gradually disappeared and the condition of the sod improved steadily. During this same period, however, there was not a paralled improvement of the grass rover on watershed A and the continued grazing reduced the density and quality further. Pasture records are avalable for the 7 -year period $1933-39$. These show that watershed G produced on the ayerage 128 cow pasture days; watershed A, 62 eow pasture days; and the untermed pasture watershed, 82 cow pasture days per acre.

These data would inclicate that one canot have both woodland and good pasture on the same area of land. If additional pasture is needed, a sufticient amount of the woods should be cleared to meet this need and the remaining woodland protected. If the soil is productive, a properly managed open pasture will allow only low soil and water losses even on the very stecp slopes.

As pointed ont previously, the upper part ol the unterated pastured watershed prior to 1932 was in cultimented crops and severely aroded, while the lower part was sererely grazo. These previous conditions of land uee reflect themselves in the runoff figures. For the unterraced pastured watershed, 4.65 pereent of the rainfall resulted in runoff (table 13) as compared with 0.35 perent for the eleared pasture watershed. Soil losses for these same watersheds were low, amost negligible, in both cases.

TERRACE STCDIES

The terrace studies can be divided into three major experiments. First, termes with difierent variable grades on cultivated land, designated as terrace $A-4, A-5$, and $A-6 ;$ scond, variable-grade termecs with different vertical spacing on cultivated land, designated as C-2, C-3, and C-4; and third, variable-grade terrace with diftorent vertien! spacing on pasture land, designated as $\mathrm{E}-2, \mathrm{~b}-3$, and $\mathrm{E}-\mathrm{t}$.

Terrace $A-4$ has grades as lollows: 250 fret with grades of 6 inches, 5 inches, 4 inches, 3 inches, 2 inches, and the last 135 feet with 1 inch grade per 100 fect. Terrace A-5 has intervals of 500 feet with grades of 3 inches, and 2 inches, and 385 feet of 1-inch grades per 100 fect. Terrace A-6 is a level terrace with one end open.

Terrace Grade

Table 33, Appendix, shows that there is not much difference in total runoff between terrace $A-4$, with a maximum grade of 6 inches fall per 100 feet and terrace A-5, with a maximum grade of 3 inches fall per 100 feet. Terrace A-6, the level terrace, conserves a much greater proportion of soil and water; however, level terraces cannot be recommended on Fayette silt loam and soils of similar infiltration rate. Some difficulty was encountered in maintaining sufficient channel capacities. Numerous ponds were formed in the channel caused by silt fans and this tended to drown out some of the vegetation. These wet spots also caused some delay and hindranee to the operation of farm machinery.

Soil losses from the terraces are correlated with the steepness of grade of the channel. Terrace A-4 with a maximun 6-ineh fall had an average annual soil loss of 5.35 tons per aere; A-5, with a maximum $3-$ inch fall had 4.85 tons per acre soil loss; and $A-6$, the level terrace with one end open had 1.42 tons per acre soil loss. The runoff from the 3 terraces ranged as follows: $A-4$ had 3.79 inches, $A-5,3.81$ inches, and A-6, 2.42 inches. Soil losses are higher where the grade of the terrace is steeper as a result of the higher velocities in the terrace channels.

Table 15 gives the peak rates of discharge, the total volume of runof, and soil losses for 3 selected storms for eath yar of the rotation. Ferrace $A-4$, which has the stecpest grade, produced the highest peaks and when the watershed was in corn or grain produeed the highest soil loss. From the data presented it appears that terrace grades on cultivated Fayette silt loam and similar soils should not exeecd 3 to 4 inehes fall per 100 feet if maximum amounts of soil and water are to be retained and if the terraces are to be satisfactory from the standpoint of maintenance, workability, and crop growth.

Termace Spacing

Two terrace-spacing experiments, one on the cultivated C' lemaces and the other on the \mathbf{E} pasture terraces, were established in 1932.

Tabie 14, and tables 33, 34, and 35, Appendix, show the results of these experiments.

The results, as shown in table 14 , for cultivated terraes cropped to a 3-year rotation, indicate that there is still need for more information on vertical interval. Terrace C-2 with a vertical interval of 5 feet on a 10 percent slope had an average ammual water loss of 19.38 percent and a soil loss of 8.67 tons per acre. Terrace C-3 with a 7 -foot vertical interval on a 15 -percent slope had a water loss of 17.90 pereent and 8.62 tons per acre soil loss. Terrace C-4, with a 9 -foot vertical interval on a 17 -percent slope had 15.65 percent water loss and 5.16 tons per aere soil loss.

The average ammal summary, table 14, for the vertical-interval experiment for pasture terraces shows the same trends. Terrace $\mathrm{E}-2$ with the smallest vertical interval on a 15 -percent slope had the greatest percent of runoff, 10.18 percent; terrace $E-3$ with a 9 -foot vertical interval on a 19 -percent slope had 8.99 pereent runoff and terrace $E-4$ with an 11-foot vertical interva! on a 21 -percent slope had 7.76 percent runoff.

Table 14.-Average annual soil and water losses from terraces with different

Experiment and terrace No.	Grade (fall per 100 feet)	Vertical interval	Length	Average land slope	Average length slope	Average ammual rainfal	Runoff	Runoff in percent of rainfall	Soil loss per acre
Variable grade, cultivated terraces in a 3-year rotation, $1933-40$:$\frac{A}{A}-4 \ldots \ldots$	Inches	Feet	Fect	Percemt	Feet	Inches	Inches	Percent	Tons
	1 to 6	7	1,385	10	70.0	24.24	3.79	15.64	5.35
$A-5$	1 to 3	7	1,385 1,385	12 13	58.5 54.0	$\stackrel{24.24}{24.24}$	3.81 2.42	15.72 9.98	4.85 1.42
Vertical spacing, cultivated terraces in a 3-year rotation, 1933-37: $\mathrm{C}-2$ C-3									
	1 to 3	5	850 850	10	50.0	23.58	4.57	19.38	8.67 8.62
$\stackrel{C}{\mathrm{C}-3} \mathrm{C}-4$	1 to 3 1 to 3	7 9	850 850	17	46.5 53.0	23.58 23.58	4.22 3.69	17.90	8.62 5.16
Vertical spacing, for pasture terraces, 1933-37:									
$\frac{\mathrm{E}-2}{\mathrm{E}-3}$	1 1 1 to 3	7	850 850	15 19	46.5 47.5	23.58 23.58	2.40 2.12	10.18 8.99	. 38
E-4	1 to 3	11	850	21	52.5	23.58	1.83 J	7.76	. 41

These terraces are loented on land which has a convex slope, The terraces with the greatest vertien interval are located below and on steeper slopes than those with the lesser vertical interval. Therefore, the inerease in vertieal interval of 4 feet did not restit in much difference in horizontal interval. With two factors, perent of slope and rertical interval, influencing the data, it is impossible to determine the influence of either. Thepefore, moasurments on the two vertien interval studies were discontinued in 1937.

As stated previously, the D terraces were built on a soil that was very shallow. There is considerabie variation in the actual grades of the terrace chamels and these grades also varied considerably from the correct theoretieal grades as specified at the time of the installation of the experiment. The proximity of the underiyine rock and the raw back slopes and channel slopes are factors that have affected the data. Deven mader these conditions, the low soil losses from the pastume iemaes bring out an important point; namoly, spacings for pasture terraces should be governed by the amount of runoff, avalable channel capaeities, and grades of the termee chamels and not by the amount of soil loss. The soil loss from all pasture experiments has been small.

The data from the C terace show quite conelusively that sheet erosion must be reduced to minimum il the terace system is to be most effective. Soil losses from terraces as shown under the cobditions of this experiment are too large. To obtain adeguate control of erosion under these soil and slope conditions, a rotation including two or more years of hay would be needed.

The effeets on the teraces of three major stoms that occured in 5935-37, are shown in table 15.

Table 10.-Efket of threc major storms whe theraces in 193:-3\%

Date of storm	$\begin{aligned} & \text { Terrare } \\ & \mathrm{No} . \end{aligned}$	Rainfall	Patk rate of runoif	Total remor	Soil hoss per itere	(rop
Aug. $\overline{\text { - }}$ (3, 1085		Inches	In howr	harhes	Tons	Come
	(A-4	2.0)	2446	1.703	3.16	
	$2 \mathrm{~A} \mathbf{S}^{2}$	2.65	2.014	1.77 .4	2.93	
	- 8 -	2.25	1.286	. 739	1.00	(irnis.
May 1, 1936..	($\mathrm{A}-4$	1.73	1.268	. 737	3.08	
	A-5	1.73	.978	. 30	4.8 .4	Do.
	! A -6	1.73	. 328	489	1.13	130
	(t-4	$\frac{2}{2} .19$	1.186	1.224	. 17	liay ${ }_{\text {pan }}$
Sune 10-20, 1937.		2.12	1.178	1. 1613	. 25	
	: ${ }^{\text {A }}$	2.12	.537	.71\%	. 10	Do.

Dhepsic Therpaces

Two diversion teraces were eenstrueted at the station in 1932 . One was built above watershed B, the protected woodland aren, in order to divert the runff from $\overline{0}$. a aces of cropland. The of her was built above watershed G , the cleared pasture area, and it diverts runoff from 7.85 acres of eropland.

Diversion temee B has a grade of 1.2 peremt and diversion terate G has a grade of 0.83 percent. After construetion, the diversion termess were seded down and a 10 -foot filter strip was left above the torme and the bottom of the lower cultivated strip.

The area above the diversion terrace has been cropped to a 5 -year rotation. Both terraces have remained satisfactory under these conditions. Diversion terrace B has scoured to some extent near the outlet, but this was due to the lack of vegetation in the channel. No appreciable amount of silting in the channels has been noticed.

Terrace Maintenance

The terraces were built in 1932 by a terracing grader with an 8 -foot blade. All maintenance necessary since construction has been accomplished with the plow, No regrading was done.

When the capacity of the terraces beame reduced to such an extent as to require an increase in eapacity to avoid overtopping, the dead furrow was left in the chamel and the back furrow on the ridge. When it was not necessary to increase the capacity of the terrace a back furrow was left at the top of the slope and a dead furrow at the bottom of the watershed. This practice works best with the use of the two-way plow. The plowing and other farm operations were made parallel to the ridges. The results obtained from surveys and observations indicate that termees have to be maintained if they are to remain effective as silt is deposited in the chamel and the effective height of the ridge is gradually jecluced by tillage.

Corn has been planted with the row on the crest of the ridge. It was thought that lyy this procedure cultivation would tend to maintain or increase the height of the ridge. That is, the normal procedure in cultivation is to adjust the shovels so that during the second and third cultivation, soil is thrown toward the row. In order to determine the effert of this practice on height of ridge, 2 profiles were run in 1935. The first one was made soon alter the corn was planted and the second one soon after the corn was removed in the fall. A comparison of these profiles was desired to show the effect of cultivation and erosion during the scason on the height of the ridge. Aeasurements were made at 50 -Coot intervals, carefully measured from the flume with a steel tape. The average difference between the 27 locations on the 2 dates was only 0.02 of a foot, the elevation being slightly lower in the fail.

When the two channel profiles were compared, the average difference showed an increase in elevation of better than 0.10 foot. In combining the two changes, the average effective height was lowered by almost 2 inches in one growing seasoll. The maximum loss of effective height at one station was 0.40 foot. Similar profiles were rum in 1938 when this area was again in corn. This year the average effective height was lowered by 0.21 foct.

In 1936, when the area was in grain, profiles were run after the grain was sected and again in the fall. The average difference of the two chamel profiles showed an incrase of 0.17 loot and the average differenee of the two ridge profiles showed a decrease of 0.03 loot. The combined loss in effective height was 0.20 foot. No farming operations entered into this reduction in cffective height when the area was in grain. This reduction was primarily caused by siltation of the chamnel.

The general practice used in terrace maintenance at the station was to backfurrow on the terrace ridge and at the same time leave the dead furrow in the channel. This was done at the time the corn ground was being plowed for grain, for a deeper furrow could then be used. By

[^7]doing this once during a rotation, enough height can be added to carry sufficient chamel capacities through the rotation.

The number of intense rains occurring, soil type, rotations used, and type of farming equipment used are factors which will affeet the amount and kind of maintenance required to keep terraces in a good working condition.

Terbace Outlets and Waterways

The data presented for the temace studies conducted at the station show that outlets or waterwiys properly designed to handle a large volume of runoff water are an essential part of a terace system in this area.

From a storm oceurring August 5-6, 1935, maximum rates of rumoff for terraces A-4 and A-5 were 5. 44 and 3.91 cubic feet per second respectively. Another storm on July 21, 1038 produced maximum rates of runoff of $12.9,15.0$, and 4.50 eabic feet per second from the contoured watershed, strip-cropped watershed, and a pastured watershed, respectively. These high rates of discharge from terraces, contouring, strip cropping, and pastures indicate very conelusively the need lor a good water disposal system regardless of the practice or land use.

Sod waterways are the most suitable type of terrace outtet. They are the most economical to construct and can be casily maintained by the farmer. In exceptional cases where large volumes of water with high velocities must be handled, some type of hard surfaced chamel or series of drop structures must be used.
To stady further the use of bluegrass as a protective lining, a sod outlet was established below the flume of the strip-cropped watershed. Part of this outlet was used as a test section. This section was 25 feet long and had a slope of 18.27 perent. It hat a 3 -foot bottom width and 2 to I side slopes. The chanel was fertilized and sodded, and a good dense sod was established. The chamel was elipped with a mower in order to maintain a uniform height of grass throughout the experiment.

From two observations during runoff periods, velocities of 8.32 and 8.78 feet per second were obtained when the pazk flows were 3.41 and 5.86 cubic feet per second, respeetively. Although the sod outlet was in place in 1938, when the July 21 storm produced a maximum peak flow of 15.0 cubic feet per second from the strip-cropped watershed, no record is available of the velocity or depth of flow for this discharge. The bluegrass has withstood these flows without damage. A sod waterway built and mantained under these conditions could be designed to carry velocities from 10 to 12 feet per second.

In 1941, R. J. Muckenhirn and V. J. hilmer tried various methods of protecting 25 -foot sections of chamels on a 20 -perent slope during the time the new sceding in the chamels were being established. Runoff from a terrace was allowed to flow down the chamels throughout the season after seeding. There was no damage where the channels were protected by straw muleh and woven wite, by a burlap cover, or by sodding. The straw mulch proved most pratical because it allowed the grass to grow better than burlap and involved much less work than sodding. Where the chanmels were merely seeded without giving them protection of any kind, they were badly washed out and converted into ditches.

Table 16.-Details and cost data of hard-surfaced oullet channels buill in 1935

$\begin{gathered} \text { Chamnel } \\ \text { No. } \end{gathered}$	Type	Slope	$\begin{gathered} \text { Capac- } \\ \text { ity } \end{gathered}$	Length	Surface area	Materials used	Total $\cos \mathrm{n}$	Cost per finear	$\begin{array}{\|c} \text { Cost } \\ \text { per } \\ \text { square } \\ \text { foot } \\ \text { area } \end{array}$	Proportion of total cost		
										Labor	Mate	$\begin{aligned} & \text { Design } \\ & \text { and } \\ & \text { super- } \\ & \text { vision } \end{aligned}$
		Per- cent	$\begin{gathered} \text { Cubir } \\ \text { fooer } \\ \text { er } \end{gathered}$	Fcel	Square		Dollars	Dollars	Dollars	Per- cant	Percent	Percent
1	Tar and crushed	19.0	stcond 18.0	76.9	342	Type E highway tar, ${ }^{2} / \mathrm{No} .2$ erushed limestone, chips, cenent, sand, and gravel. ${ }^{3}$	47.00	0.62	0.137	35.1	50.0	14.9
2	$\begin{aligned} & \text { rock.-n } \\ & \text { Sheet-metal } \\ & \text { flume. } \end{aligned}$	22.2	20.0	96.0		20 -gage qalvanized sheet iron, 2×4 's, wood posts, cement, sand gravel, and reinforcing iron. ${ }^{3}$	115.46	1.20 1.50		42.2	50.8 74.1	7.0 4.5
3.	Creosoted wood flume	29.0	21.0	100.0	+	Pressure creosoted 2-inch lumber, mathine bolts, and lag serews.	112.30	1.50		21.4	74.1	4.5

${ }^{1}$ No. 1 finished, Sept. 14; No. 2, Sept. 13; No. 3, Oet. 21.
${ }^{2} 0.366$ yallons of tar per square foot used.
${ }^{3}$ Cost data include cost of reinforced-concrete header at entrance. Cost of header $\$ 30$, of which 51 percent was for labor, 39 percent for material, and 10 percent for supervision.

When the quantity and velocity of water is higher than sod allows, some type of hated surface channel or a series of drop structures is reguired. In this region of severe elimatic conditions, rubble-matsonry ftumes, and thin-shelled conarete flumes without reinforement are not durable Reinfored concerte, if property eonstructed, provides a satisfactory permarent chamel, bat the high cost and the techmieal construction details involved, prohibit its use.
Three different types of linings other than reinfored denerete were constructed at the station: One of tar and rock, one of gatamized shed iron, and the third of erpensoted hamere. Table id fists the design and cost figures for the different materials.
 sideration of the comparative cost of each, show chat chamels lined with bituminots materials and erushed rock or grawel are the most satisfactory, prinecipally bectuse they are relatively simple to eonstruct. They requite materials that are not inaresesible io the farmor and not too expensive. They are emsily mantaned by the addition of smatl amounts of bitumern and rock.

Kilup choplota

Strip cropping hats been under observation at the station siner late. Measurement of losses from a strip-cropping system have been made simee 1933 . The degree of rontrol ohtainet by this practice will depend to a large extent upon ability to ohtain and matiatain good stands of legumes and grasses. With alternate strips of erops, such as com and grain, and control crops such as alfalfi-grats hay, the rumofif water pieks un soil from the grain and com strips in amounts depending upon relocity of flow and will deposit a part or most of the soil load in the haty strip depenting upon the effectivengs of the hay in reducing the velocity of flow of rumofi.
Among the factors influencing the ultimate loss from a field are the length of slope, the width of strip, lengeth of rotation, position of the crodible strips, soil type, degree of erosion, and type of cultivation. Difer a feld has been worked for a momber of yams in a contour strip)ropping system, rund is me ce cireetly down the stope. This results in less concentration of water and a reduction in the need for waterways. However, his mems that as the system beromes older, more water is flowing arross the lower parts of the slope. Thus, if the shope is ower 300 to 100 teet heng, the lower strips will have exeresive soil joss during intense stomes.

The wider the strip the higher the soil losses. However, it has not been fomd pratetien to redue. the widh of striy blow sol feet. The exact width of strip needed to obdain adequate control of erosion will depend not only upon the pereent of slope hat the lenglh of stope and the rotation. Onserrations wond indieate that with the general practiere of increasing the munbers of years of hay the the sope heremes stepper, the following with of strips will give adecuate control on a moderately eroled Fayelte sill loan with surfarembinted corn on shopes up to 300 fee long on which there is no runoff from other arens: 3 t perent slope, 100 fret width; $6 \cdot 10$ pereent stope, 78 feet width; and 10 -16 percent slope, 30 feet width.

The lengith of rotation is important in a strip-cropping program. A 3 -year rotation with only t year of hay is ineffective because two-third;
of the area is open a part of the time each year. A d-year rotation with 2 years of hay works well on a 2 -crop system in which alternate strips are in com and hay or grain and hay. However, if all arops are represented in a fold once in 4 years, com and grain will be in adjacent strips. This will make a wather wide trea opea to erosion. The $\overline{6}$ - and 6 -year rotations with 3 and 1 years of hay are necessary on long slopes of more than 10 pereent. The exad rotation to be ased wild depend upon the erosion hazard and the abitity of the farmer to mantan the haty cop. It has been observed that, in genemal, better crosion controd has been obtained on farms on which both of these factors were taken into consideration than where just the erosion hatard was considered.

The position of (rop) is something about which not mach fan be done. Fevertheless it mast heregnized that the famer down the slope the location of the cultivated crop, the higher will be the soil less. The runof from the erodible strip and the ranof from hay, wom, or wain strips above will fow areos the lower stribs. If com and grain are grown in the same fodd, grain sheuld lx leated bolow eom, Grain land allows high amounts ol monof thrownent most of the season. If this romof fows down teross umprotected romband rery high soil lowses can bo sexpected.

If filer strip the botom of the fied will redure the amount of soll being romovel from the feld. . Wetully, howerer, this woults largely in a change in locetion of area of deposition. "The efteet of a filter strip on soil loses is shown in table 17 , which contans data from the unterraced, cultivated watershed for a period during which the entive area was planted to one crop and for a provod during which the lower 130 feet was in hay serving as a filter strip.

Tribse 17. Effect of a filter whil on soil losw

'lrohmment and yene	('rop)	Soid lows per arre	
			- .-..-
		linemaced cultivated walershed	Controd plot
Whtire lengh in the crons:		7 Toms	70\%
[$\begin{aligned} & 1033 \\ & 103\end{aligned}$	(imain	18.2	3.8
19.38 .7	llay	16.0	. ${ }^{\text {a }}$
1930	(ixili	96.8	? 6.2
Arrame	(1)\%	5\%9.	31.0
Lower 130 feot in hay fiterstrip: $\quad 37.5$			
ling	1143	$1 \cdot 1.7$	(
1035	<'rim	10.3	70.8
Avericre		17.0	35.7

The unterated, cultivated watershed and the eontrol phot used in this emmartson were beth rontoured and planted to a 3 -year rotation. The watershed had an average slope of 15 perent and the control phot 16 percent. The watershed had a leagth of 420 feet, and the control plot 73 feet. Before the filter strip was established the watershed lost about 1.5 times as much soil per acre ammally as the small plot. Ater the filter strip was established on the lower part of the watershed, the loss from the small plot was twice as much as from the watershed.

It is probable that the upper part of the watershed was still losing soil at a rate in excess of that from the control plot, but a large part of this soll was deposited in the hay filter strip.

During 1937-43, the unteraced cultivated watershed and the striperopped watershed were in the rotation of corn, gram, and 4 years of hay. Detailed data are contained in table 29, Appendix. The soil loss from the contoured watershed was twice that from the contoured stripcroped watershed even though there was a 130 -foot filter strip on the bottom of the contoured watershed. The major loss for the period occurred in 1938 when the contoured watershed was in corn. Assuning that the same relationship would exist between the small plot and the watershed in 1935 as in 1935 one would have expected a soil loss of 68 tons from the contoured watershed or appoximately 50 tons per acre more than was actarlly measured with the filter strip at the bottom. This calculated 68 tons of loss for com in 1038 would result in an average less of 12 tons per acre from the contoured watershed, whish woudd be abeut 4 times that from the strip-eropped watershed.

In a large strip-eroping experiment located on the flund farm theye are 32 strip-cropped plots and 8 contoured plots in a 4 -year rotation or corn, grain, and 2 years of hay. These plots are located on an 13 -pereent slope. The plots are 20 feet wide and vary in lengh from 200 to 300 feet, depending upon the width of the bottom strip. All contoured plots are 250 feet in lengeth. The desigu of the experiment is such that within each block of phots the same erop is planted on the fifth or bottom strip and on the contour plol. The crop on the fitth strip varies by blocks and each crop is represented in duplicate. The position of the crop on the upper four strips is uniform for all strip-cropped plots. Within each block there are three widths of strip on the botom strip50,75 , and 100 fect. In table 18 are summarized the data showing the soil and water losses from contouring and from strip cropping. Detailed data are conained in fable 28, Appendix. Data from the two most intense stoms are not included as the measuring equipmont failed beeause of the exeess amount of trash washed from the cern plots.
Table 18.-Soil and water losses from contowed and strip-ropped phots

Contoriced

Crop	Water loss	Soil Toss per sere
	luches	T'0и:
Corn.	1.2	6.4
Grain_-	1.8	1.2
First-jear hay.	1.4	. 1
Second-yenr huy	.	. 1
Avernge......	1.3	2.0

Strip eroperi

Water loss	Soillows per ate
thehes	Tons
1.2	3.4
1.4	. ${ }^{\text {a }}$
1.\%)	. 2
1.0	. 2
1.3	1.1

It will be seen that strip eropping during the establishment period roduced the soil losses by 50 perem and that runon was about the same for the two practies. These first 3 years of data indiente the control that could be expected soon after a field was changed from contouring to strip eropping. It would be expected from an examination of the data by stom intensities that if the two intense storms had been prop-
erly measured there would have been more advantage to strip cropping than is shown in table 18. The data indieate that even during the most intense storms a good crop of hay 50 feet in width will filter out 80 percent of the soil washed from a com or grain sirip.

In a strip-cropping system, soil is picked up by momof water in the corn or grain strip. The amount of erosion then depends upon the width of open strip. A portion of the soil load is deposited in the hay strip, depeading upon the density of the hay and the width of the hay strip. Preliminary indications from this experment would show that the soil loss is less as the strip width is decreased from 100 to 50 feet when corn or grain is grown on the lower stap; that the loss from the area is less as the width of hay strip inerenses from 50 to 100 Fect when hay is on the lower strip. a 50 to 7 - 5 -foot width of strip conde lee expected to give satisfactory control on a $250-$ foot lengh of Tayete sill hom on an it perent slope when eropped to a 4 -year rotation of eom, grain, and 2 years of alfalfa-limothy hay.

ALEAMETERS

Lysimeters were nsed to detemine : imounts of water tud nutrients lost under various crops grown on the Fayette silt loam. The lysimeters consist of 6 metal sylinders containing Fayete sill lom profile monoliths 36 inches in diameter and 44 inches deep. The monoliths were encased by foreing the cylinters downward into the soil, atter which they were lifted and set upen pans partiatly filled with gravel. The method of construction of this type of lysimetar has been fully described by Masgrave (ī). Losses were mosured from com, fallow, thad elovertimothy hay. When there is a growing erop on the land there is normally very little percolate. The precipitation is lost bargely by runoff or taken up by the roots of plants. The results from corn and fallow have been publishod (6).

The amonat of water lost by percolation on a 10 -pereent slope is less than a pereent of the ammal precipitation on fallowed lysimeter plots, and less than 1 perent on lysimeter plots cropped to com. When the surface was maintaned at approximately a zero slope, the loss of water by percolate from fallowed lysimeter plots was ! percent of the precipitation when rumof was pemited and 20 grerent whell rumof was prevented.

The plant mutrients determined in the pereolate, when arraged in order of decreasing amome of loss by leaching, were as follows: Calcium, magnesium, sulphor, potassium, and phosphorons. The amomat of nutrients lost by leaching was low when the soil was eropped. The highest lasses were measured on plots that were fallowed and from which no ronoff was pemitted. The losses of ealowm and magnesium under these conditions cond be rephared with the application of $1!2$ tons of dolomitic limestone onee in 10 yetrs. Potassium and phosphorous losses were negligible. Losses of nitrogen were not detemined on percolate from lysimeter plots eropped to corn, but it is assumed that they would not be high, inasmuch as the total amount of pereolate from Fayette silt loam is low.

In 1943, all six lysimeter plots were seeded to a red dover-timothy bay mixture. The surfaces of the lysmeters were mantamed at approximately a zero slope as during 1941 and 1942 when all lysimeters
were fallowed. Approximately 2 percent of the precipitation was lost as percolate when the lysimeter plots were growing hay as compared with 9 pereent of the precipitation when fallowed. Measurement made on-percolate obtained during 1943 with the lysimeters eropped to clovertimothy hay showed that the amomet of solubie nitrogen removed from the soil by leaching was 2.75 pounds per acre. It would be assumed that the loss of nitrogen from erops like com and grain would be considerably higher due to the fact that they have much shorter growing seasons and lor a part of the year the land is fallow.

APPLICATION OF STATLON DATA TO BROSION CONTROL IN THE PROBLEX ARISA

No control measure has been developed for this prohiem area that will prevent the loss of soil from at cultivated sloping ficld. As long as the soil is not protected by dense-growing vegetation, there is soil movement whenever a rain or thaw results in runoff. Soil losses are greatly reduced by the application of mechanieal and vegetative control mensures, but even with these controls on the land the loss of soil from sloping fickls is continuing. To reduce soil losses to an extent necessary for a permanent agriculture, ficlds on slopes in excess of 15 pereent will have to be seeded down to hay or pasture and not planted to grain or com. The hay can be reestablished by renovation in such a way that the organic residue is left on the surface. This will largely prevent runoff until the vegetation has been reestablished. This means that some farms in the problem area will have to change to a grassland type of agrieulture. This will require changes in livestock so as to consume large amounts of forage.

Most of the soil loss oecurs during a few very intense storms during a year. In the development of an erosion-control program in the Upper Mississippi Valley area, the farm planner should take into consideration precipitation records. Data are available over long periods of time at nearby Weather Burean stations. These show periods of excessive precipitation. Crop and cultural practices a an be adjusted to protect the soil better during intense storms. As much as 90 percent of the annual soil loss may occur during 4 or 5 intense storms. These storms may be experienced at any time during the growing season within any single year. Study of the data recorded for several years, however, reveals th definite tread toward concentration during eertain months. At Lat Crosse there is a concentration of moderate-intensity storms during May and June when spring grain land is vulnerable. There is also a concentration of high-intensity storms during the period Jtune 15 to September 15 which eauses high losses from eorn land.

A control practice to be effective must be eapable of maintaining soil loss at a minimum during intense stoms. Fortanately, during these critical periods, alfalfa-brome grass, alfalla-timothy, and red elovertimothy hay give exeellent protection. A good dense hay crop not only protects the soil from erosion but greatly iucreases the atmount of water that ean be absorbed by the soil.

Seedbed Prepabation

Most recommendations for seedbed preparation prior to the establishment of soil conservation research work were based on studies made on evel or nearly level land where crosion was not an important problem.

Therefore, the need for lewing the soil in as cloddy a condition as is consistent with good erop yields was not recognized. On sloping land it is important that the soil be tilled with machines that will eontrol weeds and yet leave the soil in a rough, eloddy condition. The disk fand the eultipacker should not be used, at least on the heary sloping soils. Observations at the station would indieate that good yields can be obtained by the use of the fied eultivator or spring-tooth in place of the disk. The spring-tooth or field eultivator lifts the soil and, if properly operated, will ?eme the roots of weeds on the striftee where they will dry out and also produce a trashy surfice condition that will increase infiltration and decrease runoff. Lifteng the roots to the surface is a very effertive method of controlling weeds, such as quade grass, thete spread by means of rhizomes. The disk has been found to cut these underground stems off but not materially to reduee their ability to produee aew phants exept for those few which may be tumed over on top of the soil and therely be exposel to drying. The cultipacker, when used fonlowing the seeding on grain, will result in a better stand of legumes only if there is a dry seredbed and if no rains are experienceat in the 2 -weck period immediately following seeding. During the past 10 years legumes have been seeded with and withont the packer.

The experienee of the Station has been that as good a stand of legeme is ubtaned without the rultipacker as with it. It has also been observed ihat il it rain oceurs before the grain has made sufficient growth to proteet the soil, lamel on which the cultipacker has been used will crode more severely than hand on which it has not been used.

In serelbed preparation for cornland, the stame general principles apply. That is, the more rough the seedbed that is consistent with the production on a grod crop, the lower will be the soil loss and the longer will high yields be mantaned. Unkess manure high in straw content is used as at top dressing, the field cultivator will work very satislactorily in preparing a seedbed for the com. This will leave much of the organie analter on the surface and maintain the desired rough, cloddy strueture.

Plowing should be done as late in the fall as possible in order to have the soil mrotected by regetation during the early fall mains. Early plowed land is conpacted by the fall rains; as a result high fall and spring losses result even thengh a good growth of hay is plowed under. Alter plowing, the land shoud not be tilled in the fall. The practiee of disking or spring-toothing land immediately after plowing greatly reduces the surface stomge capacity, allows the soil to become compacted by main, and results in high runoff.

The two-way plow, when used to turn soil uphill, has been found to be the best type of plow for hillside plowing. Furrows turned uphill have been found capable of holding much more water than linrows tarned downhill. The land is left more open and rough so that bolb surface storage and infiltration are higher on land turned uphill. Dead furrows, which are frectuently the ceuse of scrious gully crosion, are loented at the botiom of the plowed firld instead of at the middle or top, as is the case where the conventional plow is used. Turang soil uphill actually moves a furrow sliee agninst the diretion of erosion, whereas all soil turned downhill actually sperds the movement of topsoil from the field.

The use of the two-way plow works very well in both strip cropping and terracing. In strip cropping the dead furrow is left at the bottom of the plowed strip. If the furrow is slightly off contour, as is frequently the case under field conditions, any coneentration of runoff water by the dead furrow will flow onto a hay strip where little damage will result. In plowing terraced land with the two-way plow, the dead furrow can be left in the channel and the backfurrow on the ridge at such times as it is desired to increase the capacity of the terrace, or the backfurrow can be left at the sop of the field and the dead furrow at the bottom if there is sufficient capacity in the terraces.

Crop Rotations

Rotation of crops including 2 or more years of hay is essential to the control of erosion on sloping ficlds. The higher the percentage of hay in the rotation, the lower the soil losses. The number of years that the land is protected by a dense growing crop is important. Not only are losses low during the time that the soil is protected by that crop, but losses are also reduced from a clean-tilled crop following the plowing under of a hay crop. The amount of reduction in losses resulting from plowing down a hay crop will depend upon the type of crop and amount of surface growth plowed under. It has been olserved that soil losses are less from corn following an old alfalfa-timothy or alfalfa-brome field than from clover-timothy. This is thought to be due to the fact that the grass makes up a higher proportion of the mixture in an old alfalfa-grass field than in a clover-timothy field. This is especially evident if the clover-timothy stand is left for only 1 year as in the usual practice.

The soil loss from corn in a 3 -year rotation has been about one-half of that from corn grown continuously. The soil loss from a 3 -year rotation of corn, grain, and clover-timothy hay on a 16 -percent slope has averaged 28 tons per acre. Although this is a marked reduction from the loss from continuous corn, it is still much too high. Rotations with 4 or more years of hay will be required to maintain losses at the desired minimum.

Where the longer rotations are used, and barnyard manure is applied to corn, it has been found that soil losses are as high and in some cases higher from grain than from comland. The relative loss from cornland and grainland will depend upon when the intense storms occur within a year. Hard spring rains will cause high soil losses from grain and usuaily will not result in much soil loss from fall-plowed hay land. Hard rains oceurring in mid summer will result in high soil losses from corn. At that time grainland, on the other hand, will usually be sufficiently well protected that the soil losses will be low. The runoff fromgrain during these intense summer rains frequently execeds the amount of runoff from com.

Contouring

Contouring, even with a good rotation including 3 or 4 years of hay, cannot be expected to give adequate control on the Fayette silt loam where slopes are steep and fairly long. The amount of storage capacity furnished by rows that are on the exact contour is not sufficient to hold all of the rain that is falling during the intense storms. When the
capacity is exceeded, the furrows break over, the stored water drains out and exceedingly high soil losses will result on the longer slopes. It has also been found almost impossible to plant all of the rows on the exact contour in a field. The general practice has been to establish new contour lines at points where it was felt that the rows varied too much from the contour. It has been observed that the point rows and other off-contour rows carry the runoff water for a short distance until it reaches a place where the eapacity of the small furrows is exceeded. This runoff then flows down to the contour rows, making them overtop and become ineffective.

Sthip Caopping

Contour strip cropping with a good rotation, including 2 to 4 years of hay, is probably one of the best control measures that can be adapted to the cultivated fiedds of this area. For strip cropping to work properly and accomplish an adequate degee of control, its limitations should be recognized. Strip eropping does not reduce the effective length of slope. Duing the most intense stoms, runoff can be expected from hay ass well as corn and grain strips. Therefore, in fields in this area with slopes that average 10 to 12 pereent, strips that are receiving runoff from watersheds more than 250 to 300 feet long will have high soil losses when the lower strips are in corn or grain. Terraces must be used to reduce the length of long slopes.
The control given land against crosion loy strip cropping is dependent upon the success of obtaining and maintaining good stands of grass and legumes. It is as important to teach the farmer how to increase his chances of obtaining a good sceding and how to safeguard against having most of the field open in ease of a seeding failure as it is to lay out the contour strip-cropping program on his land. In case a secding is poor and it is questionable whether it should be left, plowing should be delayed until spring. At that time, choice can be made between plowing the old hay and planting it to com or leaving the old hay, plowing up the new seeding, and reseeding to grain and legume. In some cases, the land ean be worked up thoroughly after the grain is removed, if it can be determined at that time that the stand of legume will not be sufficiently good to leave. The ficld cultivator has been used with good suceess for seedbed preparation following grain. It is best to work the land sufficiently to kill all vegetation; otherwise, that which is Ieft will severely compete with the new seedlings.
Summer seedings of legume and grass should be made before the middle of August so that the new plants will become well enough established to withstand the winter. Not much success has been obtained in attempts to thicken stands of old hay where thin patches have been worked up and resceded, nor have spring sectings on frozen ground shown much promise. The most reliable method is to work the land thoroughly enough to kill all existing vegetation, then reseed.

A strip-cropping system properly designed and followed with good success in obtaining and maintaiming stands of legumes will give good erosion control if the slope length is not excessive. On a strip-cropped watershed located on a 17 -percent slope with a slope length of 270 feet, the amual soil loss has averaged less than 3 tons per acre for a 7 year period. This is considered as good eontrol for these conditions.

Terraces

Terraces cropped to a rotation, ineluding 2 or more years of hay, will provide the best control for crosion on cultivated land. Terraces definitely reduce the length of slope. They remove surplus water from the fied, thereby protecting the aren below the terpace. A d-year rotation of corn, grain, and 2 years of hay will give adequate control when used with terraces on a 10 - to 12 -perent slope.

Terraces located on a 15 -perectut slope have been mantained at sufficient capacity by backlurrowing on the ridge and leaving the dead furrow in the elannol onec in the rotation. A terrace of about 1400 feet in length with a maximum 3 -inch grade per 100 fere and reetifal interval of 7 feet was found to have enough rapacity to handle the rumoff if the ridge height was maintained at a minimum of 12 inches. In general, terraces in pasture land have not been of suffirient benefit to justify the cost of construction. On the shallow soils frecpuently fomd in pastures, it is very diffiente to establish a stand of grass in the chanmol and on the inslope. Il there is sufficient field water flowing across a pasture to canse gullies, a terrace should lee built at the top of the pasture area to divert this water to an established outlet, or, if locnted above cultivated fiedes, a terrace can be used to adsantage to divert runoff in order to protect the fiedd. .

Some diffeuly has becn experieneed with terraces overtopping during thaw periods. If the terraess are not protected by vegetation, serious damage may result, as the runfl water will often that the soil, causing a gully on the ridge which will greatly reduce the capacity of the terme. An ordinary plow may be used to open up a chanel so that the water can flow to the outlet end. Usually this furrow is mough to toke care of the rumoff unless the thawing is very rapid.

Pasture and Woodmad

For maximum pasture produetion, an arem should not be in both timber and pasture. For maximum runoff protection, a wooded area should lo proteted from grazing. So, in general, pasture and woods should not be mixed. Very good pasture produrtion has been oltained on slopes up to 30 pereent as long as there is good productive soil and the pastures are not overgrazed. Under these conditions the runoff will also be lairly low. From a production and a conservation standpoint, it sems best to have open pasture of sufficient acreate and ruality available to meet the forage requirements of the livestock that will be carried on the farm. The main thing to consider is that the soil should be productive-slope is not thought to be too important a factor.

APPENDIX

In order to avoid an exeess of tabular material throughout the fext, the data of the individual tables neesssary for deriving the summary tables and figures used in the text have been plated in the Appendix as tables 10 to 36.
The data presented in the Appendix give specific reeords of the results of experimentation for the period of this report that have practical value and interest for techuicians engaged in the development of conservation programs and practices.

Table 19.-Maximum and minimum temperatures by months and by years at soil conservation experiment station La Crosse, Wis., 1984-48

Yent	Tamanry				Febramer					March						
	High	10w	219n		High			Mean Jigh low		Higla	luw	Nean				
			High	Low					igl			Low				
	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$ '	${ }^{\prime}$	$\stackrel{\circ}{ }$.	${ }^{\circ} \mathrm{F}$.		${ }^{\circ} \mathrm{F}$.			${ }^{\circ} \mathrm{F}$ '	${ }^{\circ} \mathrm{P}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.		$F \cdot$	${ }^{8} \cdot$
	$\cdots{ }^{3}-\cdots$		20	${ }^{1}$	35		-	$2{ }^{2}$	$1 i^{-1}$	60			46	2		
	$\begin{aligned} & 36 \\ & 36 \\ & 35 \end{aligned}$	-31-31-17	111	-2	4		-24	12	-S	67			318	22		
			24	-3	4		-17	23	- 10	51			34	20		
1938		$=17$	213	8	4		-13,	31.	16	75	a		4	21		
1939	50 30	-14	1.4	- ${ }^{\text {I }}$	4		${ }_{-13}^{16}$	- ${ }^{\text {S }}$	12	75	-9			18		
1941	39)		21	10	38		-20	25	6	\%	-12		3.	7		
1942	90		$\underline{29}$		31		-1/4			64	19		42	26		
1943	42	-25			$\begin{array}{r}47 \\ 4 \\ \hline 1 \\ \hline\end{array}$	- 114		30	58	7.	-17		3.5	10		
Avers	40	-						64				3 S	20			
Year	April				May					Jane						
	High	Low	Mean		Mean Hight Low Hith Low					Jligh	M1ent					
			1figh	$\mathrm{J}_{10 \mathrm{O}}$						J.ow		ixl	Low			
	$\stackrel{\square}{8 \cdot}$	120	${ }^{\circ} \mathrm{F}$. ${ }^{\circ} \mathrm{F}$.		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$.				${ }^{\text {a }}$ F	${ }^{\circ} \mathrm{F}$.				
1985	75		31	31	7		2S	fio	43	84	40		70	-4		
1036	71	18		30	87		34	72.	53	8 BH	45		75	35		
10177	71	28	51	37	8		33	158	19	0	10		7.4	59		
1938	77	26	的	37	78		33	id	18	91	46		74	57		
1939	85	15		32	86		31	72	- 1	87	47		78	fic		
1940	\%			+32	S		28	18.1	4.4	85	47		77	57		
10.1	78	159,		42	8		33	72	50	89	42		76	. 58		
1092	81	2981	(3)	39	8		32	1i.	4.4	84	42		77	54		
1943	5^{2}	$\stackrel{29}{15}$		30			32	18.3	40	92	45		80	58		
Avera	76	19154 : 35			St		33	is	47	8! 1	4.1		18	$\underline{17}$		
year		July			August.					Sepatemiser						
	Histit	I.ow	Mears		High	Low		Mean		1[ish	Low	Mear				
			High	Low				$\mathrm{High}^{\text {d }}$	Low				[igh	L.ow		
	${ }^{\circ} \mathrm{F} \mathrm{P}^{100}$				${ }^{\circ} P$,		${ }^{P}$. ${ }^{\circ} \mathrm{F}$.									
1035	64	52	${ }_{5}^{85}$	${ }_{68}$			40 42 4	79	60	85	34	66		5		
1036	105	0.5	90	(6)	98		50	85	63	87	33	78		515050		
11137	87			62162	87					8						
1938		33	80				5		12		4			52		
1939	05	92 49 9	888	${ }_{6}^{16.4}$	87		$\overline{31}$	77	81	9	33		72			
$19+0$	96				9		1.4			85	3.4		72	53		
$19+1$	95		79	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	93		46	78	59				$\square 1$	52		
19.12	01	49			0		4.3	79	58	84	34			50451		
19,13	02	418	$8: 1$	${ }^{1} \mathrm{i} 0$	8		48	80	58	$8 \overline{15}$			$\frac{169}{70}$			
Aver	0.5	52	$8: 1$	62	92		47	80	H0	86	34					
Yenr	Octoler				Noventrer				December				Antuas			
	High	t.ow	Mean		ligh	fow	Mean		13igh	Low	Han					
			Hight	Low			11 igh	Low			High	aw	High Low			
10,4		${ }^{\circ} \mathrm{P}$	${ }_{\text {\% }}{ }_{\text {(i) }}$	${ }^{\circ} \mathrm{P}$	${ }^{\circ} \mathrm{F} \cdot \underline{\text { i }}$	$\stackrel{9}{20}$	${ }^{5} \mathrm{P}$	${ }^{\circ} \mathrm{P}$	${ }^{\circ} \mathrm{P}$	- ${ }^{\circ} \mathrm{F}$	- 2	8	${ }^{108}$	${ }^{\circ} \mathrm{F}$		
1933 .	78	22	58	39	54	7	36	21		-14	26	10	M	-31		
1936	71	17	5.4	36	60	7	18	21		-15	31	15	105	-32		
1937	78	21	33	37	62	0	37	23		-2	26	10	97	-17		
1038	81	28	0.4	$4 \overline{4}$	74	1	43	23	39	-12	27	13	91	-14		
1839	83	24	50	42	6.5	10	28	44	52	-7	35	22	95	-15		
190	70	33	6.	4.	63	-2	31.	19	47	- 19	30	15	96	-23		
1941	70	20	58	41	${ }_{68}$	4	411	28	53	-1	36	19	95	-20		
1942	78	1.4	50	34	43	4	12	23	33	-9	23	7	91	-25		
1913	77	25	51	48	50	3	37	21	49	-11	35	12	价	-23		
Averake.	77	23 ,	5.9	3.9	02	7	89	06	4 G	-11	29	13	\cdots	-		

Table 20.-Annual summary of rainfall, runoff, and soil loss by uvinter period and growing season on the control plots
CONTROL PLOT 1, 16-PERCENT SLOFE, 36.3-FOOT LENGTH

Year	Winter cover	Precipitation				Water loss			Soil loss per acre		
			Winter period	Growity season	Total	Winter period	Growing season	Total	Winter period	Growing season	Total
1033	Fall-spaded corn stubb	Corn	Inches 11.26	Inctur ${ }^{\text {a }}$	Inchut 32.40	Inclies 4.46	Inches 1.90	Inches 6. 36	7'ons S. 35	Tons 17,32	Tons 25.67
1034	--.do...- -	-...do	3.88	24,96	28.84	. 72		6,61	.387 . .37	42.42	42.79
1935	do	do	13.71	29.74	43.45	.36	9.07	9.43	07	10S.44	108.51
1936	-	do.	6.17	20.77	$\underline{06.04}$	5.21	4.90	10.11	12.90	56.84	69.74
1937	do	,	6.53	21.20	27.73	2.81	275	5. 56	12.24	55.72	55.96
1938			8.31	35.09	43.40	3.98	14.20	18.24	1.32	10682	108.14
Averate			8.31	25.50	33.81	2.92	6.40	9.38	3.88	64.69	68.47
1939		Sprime grain-line, phosphorous, and potash.	7.08	18.87	2595	3.95	4.35	8.30	3.47	6.01	9.48
	Alfulfa-timothy seeding.	First-year hay	6. 25	21.09	25.34	3.24	1.84	5.08	2.39	. 79	3.18
1041.	Affila-timothy hay	Second-year hay*	S. 19	32.70	4095	2.75	1.29	3.44	- 0.4	, 26	. .30
1942	-.-do.-.- +.......	Thirdtyear lay	5.82	+31.03	36.85	. 59	$\cdots 4$	103	. 03	. 0.4	${ }^{-107}$
1943.	do	Fourth-year hay	S. 06	- 15.36	2042	1.01	. 01	1.92	.05		. 05
Averame			7.05	24.60	31.65	9.45	1.59	4, 0.4	1.20	1.42	2.62

CONIKOL PLOT 2, 10-PERCENT SLOPE, 1H2-FOOT LENGTH1

1933 - - - Fatl-spaded corn stub	Corn	11.26	21.93	32.49	3.25	1.69	497	24.53	43.73	65.20
1934-.. - - do.	-.a. . do	3.85	24.90	25.54	. 5.5	3.07	6.22	1.91	S3.06	54.97
1935.... - - - - ${ }^{\text {do }}$	do.	13.71	94.74	43.45	15	\$. 13	8.25	08	117.04	147.12
1836-.- ${ }^{\text {- }}$ - - do	do.	6.17	20.77	20.94	485	493	9.5.5	35.39	12683	132.29
1937--.-...-do	do.	6.53 ?	21.20	27.73	3.16	3.30	6.46	14.89	135.75	100.64
103S........d	do	S.31	35.09	43.40	4.66	14.42	19.08	6.07	205.15	211.22
Avernge.		5.31	25.50	33.81	2.74	6.36	9.10	13.81	123.50	137.40
19	Spring grain-lime, phosphorous. and potash.	7.08	1S. 57	2505	2.11	476	6.57	1.31	7.85	9.16
1940.- Alfalfi-timothy seeding.	First-year lay .	(6. 25	21.09	35.24	2.35	3.81	6.16	3.77	1.50	5.27
1941.... Aralfa-timothy hay - .	Second-year has.	8.19	32.76	40.95	3.97	220	6.17	0.0	24	. 24
1942-..- Fall-bpaded hiy.-...	Corn-mantre and lime	5.89	31.03	36.85	- 20	1.15	1.35	16	346	3.62
1943-2- Fall-sptided corn stubble	Spring yrain-phosphorous and potash.	8.06	15.36	26.42	64	. 12	106	06	85	1.11
Average		708	24.60	31.65	1.85	2.47	4.32	1.17	2.72	3.89

CONTROL PLOT 3, 10-PERCENT SLOPE, 72.6-FOOT LENGTH

CONTROL PLOT A, 16-PERCENT SLOPE, 72.6-FOOT LENGTH

See footnotes at end of table.

CONTIROL，Pl．OT a，16－1PERCENT SIOPE， 72.6 FOOT TENGTH

	Soil losa per neres		
Total	Winter periot	Growing sumson	Total
Anctes 3.17		$70 n \mathrm{~s}$ 3.81 .47	Toris 28.83 47
F 7.94		96.18	96.8
11.31 103	31．61	31.01 .57	
1381	20	70.85	71，11
7 ¢0．1	10.014	3710	＋7．21
6．75，	215	4.39	B．in
－ 4	01	16	． 77
${ }^{4} 9$	04	t9	． 23
273 ${ }^{2}$	17	${ }^{15} 9$	${ }^{19}$
3.17	41	1.00	1.61

葹卒	
，	
	或こ与永
	容安
$\rightarrow \quad{ }^{\text {a }}$	\because

CONTROL PLOT 7, HPPERCENT SLOPE, 72.1 FOOT LENGTI

1933. -1 Clover-timothy se	Hay	11.26	21.28	32.40	3.90	0.13	4.03	0.41	0.15	0.61
$1034+\cdots$ Fall-spaded hay.	Corn	3.58	24.06	2 S .54	. 43	1.39	4.52	. 02	29.76	29.78
1935 - Fall-spaded corn	Spring grain-lime	13.71	29.7	43.45	10	4.59	4.69		12.61	12.61
1930. Clover-timothy seedimg	Hay	6.17	20.77	20.94	3.67	. 27	3.814	10	113	. 23
1037-x.- Fall-spuded hity	Corn	6.83	21.20	27.73	1.55	$\underline{2} 10$	3.65	. 10	41,71	41.80
1038-- Full-spaterl corn stub	Sprint erain	8.31	3509	43.40	2.53	5.35	7.88	292	23.08	26.00
Average		S.31	25.00	38.81	203	2 SO	4.83	61	17.91	18.52
1939. .. Clover-timothy seeding	Spring graill lime	7.08	18.87	2.5 .115	1.75	73	2.48	07	13	. 20
$1940 .-\cdots$ Alfalf-timothy seedins	Tirsi-year hay.	6.25	21.99	2584	1.12	04	1.16	97	+1.	. 27
1041-* Alfalfatimothy hat - .	Second-year bay	S. 19	32.76	10.95	1.53	$\bigcirc 25$	1.75		$0 \cdot 16$	-1179
$19+2$. . Fall-spaded hay.....	Corn.	5. 52	31.03 15.36	36085	. 68	1.55 0.5	2.23 .38	217	9.62	11.79 .27
1943 \ldots Fall-sputet corn stubble	Spring grin.	S. 06	15.36	20.42	29	0.4	. 33	14		. 27
Average		7.05	24.60	31.01	1.07	.52	1.69	63	2.00	2.53

Table 20-A manal summary of rainfall, monoff, and soil loss by uinter period and grouing season on the control plots-Continued CONTROL, PLOT 9, 1G-PERCENT SLOPE, 72.6-FOOT LENGTH

CONTROL PLOT 11 , 16 -1ERCENT SLOPR, 72.6 FOOT JENGTI

CONTROL PLOT 12, 30-PERCENT SLOPE, 72.6 FOOT LENGTH

CONTROL, PLO' $13,30-P E R C E A T$ SLOPE, 72.6 FOOT LENGTI

CONTIUOL PIOT 14, 30-PERCENT SLOPE, TQ, 6 FOOT L.ENGTH

Table 20.-Anmual summary of rainfall, runoff, and soil loss by winter period and grouing season on the control phots-Continued CONTROL PLOT 15, 16-PERCENT SLOPE, 72.6-FOOT LeNGTLI

		Precipitation				Water loss			Soil loss per acre		
Year	Winter cover	Cropand treatmont	Winter period	Growing scason	Total	Winter period	Growing senson	Total	Winter period	Growing season	Total
1937.	Fall-spaded soybeans	Soybeans.	Inches 6.53	Inches ~ 1.20	Inehes 27.73	Inches 3.81	Inches 3.34	Inches 7.15	7ond	T02 68	Tons 03.19
1935	calspaded 10	Coris.		32.09	- 43.40		S.28	10.73	1.71	110.03	111.74
1939.	Fall-spaded corn stubble	Winter-yran m-phosphorons and potash.	7.08	18.87	25.95	4.12	2.96	7.08	. 62	237	2.09
1940...	Clover-timothy seeding	potash. First-ygur hay	6.25	21.89	28.9	2, 20	2.33	4.53	5.65	1.43	7.09
1941	Fall-spaded hity	Corn-lime and namure	8.10	32.70	40.85	${ }_{5}^{2} 53$	6.25	S.78	+ 207	70.84	71,13
1042.	Fall-spaded corn stubble.	Winter-grain-phosphorous and potash.	5.52	31.03	30.85	2.89	3.00	5.98	3.07	2.2	5.31
1043.	Clover-timothy seeding	First-yenr hay.-3......	S.06	1536	20.42	1.18	.07	1.25	. 02		- 02
Average $1039-13$			7.08	2.4 .60	31.65	2.55	$\underline{20.4}$	75	1.93	15.35	17.31

CONTROL PLOT 16, 16-PERCENT SLOPE, 72.6 FOOT LENGTH

1937. .n Alfalfu-timothy hay	Old hay	6. 33	21.20	27.73	2, 57	0.18	275	0.00	003	0.04
1938... Frall-spaded hay.	Corn=	8.31	35.09	43.40	5.91	0.02	S. 93	$\bigcirc 17$	4716	47.33
1939 - Fall-spaded corn stabl	Spring-grain-phosphorous amd notasli.	7.05:	1S.S7	25.95	2.18	221	4.39	9.	1.45	2.39
$1940, \ldots$ Clover-timothy seeding	First-year hay.......	0.25)	21.98	2 S 2.4	3.13	+36	2.49	1.33	14	1.47
1941.-.- Fall-spuded hay...	Corn.	S. 19	32.76	40.95	1.74	5. 10	6.84	. 14	366.65	36.79
$1042 \cdots$ Fall-spaded corn stabble	Spring-grain.	5.82	31.03	36.85	1.70	435	0.0 .5	14.05	29 IS	43.26
1993., - Clover-timothy seeding	First-year hay	S. 06	15.36	96.42	104	01	1.05	02		02
A verage		7.05	94.60	31.65	1.94	2.41	435	3.30	1348	1675

CONTROL PLOT 17, 16-PERCENT SIOPE, 72.0-FOOT LEENGTH

1940.-m-1	Fall-spaded grain stuble
$19.11 \ldots$	Fall-spaded eorn stubble.
1942.	Alfalfa-timothy seedins
$1943 \ldots$	Alfalfa-timothy hay.
Average	
Averner	

6.25	21.99	2 S 24	0.42	1, 13	1.95
S. 19	3270	40.95	2.75	6, 07	582
5.82	31.03	36.55	1.62	(62	22.
8.00	1S.30	20.42	2.07	0 O	215
7.08	26.04	33.12	1.72	20 S	3.50

29	12.13	14.68
103	43.92	4495
32	11	43
06	-. 02	0 S
92	$1 / 12$	15.04

CONTROL PLOT 18, 16-PERCENT SLOPE, 72.6-FOOT LENGTH

CONTROL PLOT 19, 6-PERCENT SLOPE, 72.6-FOOT LENGTH

CONTROL PLOT 20, 6-PERCENT SLOPE, 72.6-HOOT 1,ENGTH

CONTROL PLOT 21, G-PERCENT SLOPE, 726 HOOT LENGTH

Table 20.-Anuual summary of rainfall, runof, and soil loss by uinter period and grouing season on the control plots-Continued
CONTROL PLOT 22, 6-PERCENT SLOPE, 72.G-FOOT LENGTH

${ }^{1}$ Slope length of 72.6 feet from 1939 on.
${ }^{2} 5$ tons per acre.

- Hoed to control weeds.

48 inches of surface soil were removed from this plot in 1932.

Table 21-Rainfall and soil and water losses from control plots under various kinds of vegetation and from a cultivated fallow plot, by classified groups of rains ${ }^{1}, 1933-38^{2}$

Rainfall group and plot No.	Vegetative cover	Rains				Amount of rainfall		Water loss				Soil loss peracre	
		$1938{ }^{3}$		Average		1938	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	Amount		Percent of rainfall		1938	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$
		Total	Causing runoff	Total	Causing runoff			1938	$\begin{gathered} \text { Aver- } \\ \text { age } \end{gathered}$	1938	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$		
		Number	Number	Number	Number		Inches	Inches	Inches	Percent	Perceat	Tons	Tons
Annual: 10	Blue grass, unclipped	98 98	27 ${ }^{3}$	59 59	15	35.09	25.50	0.03 12.72 12.37	0.02	0.08 36.25	0.08 25.38		$\begin{array}{r}0.01 \\ 177.82 \\ \hline 0.88\end{array}$
8		98 98	27 30 30	59 59 9	16			13.37	6.43	38.10	25.22 2.59	155.22 21.44	99.38 14.80
	Grain annually	98	32	$\begin{array}{r}59 \\ 59 \\ \hline\end{array}$				10.83 10.40	$\begin{array}{r}5.25 \\ 4.97 \\ \hline\end{array}$	30.86 29.64	20.59 19.49	721.44	14.80 51.20
5,6,7...	Corn in rotation	98 98	23 26	59 59				15.30	${ }_{3}^{4.93}$	15.25	15.02	23.08	19.11
5, 6, 7 ,	Barley in rotation Clover-timothy ha		20	59	${ }_{9}$			2.63	1.40	7.50	5.49	1.11	-43

1 Runoff-storns are divided into 3 groups by use of the runoff factor as follows:
The high group includes storms with factors of 11 oo more, the moderate group in-
chedes storms with factors of fromi 5 to 11, and the low group includes storms with
factors of less than 5 Erosion-
erate group includes storms with factors of from 7 to 11 , and the low group includes storms with factors of less than 7 .

Data are for the period, Apr. IG to Ort. B1, only
Tear of highest soil loss for period covered by this tuble.

Tabies 22.-Rainfall and sail and water losses from setcrely croded and moderately croded control plots by classified groups of rains, $19,10-45^{2}$

Rainfall group, degrec of erosion, and crop	Rains				Amount of rainfall		Water loss				Soil loss per acre													
	19413		Average		19.1	Average	Amount		Percent of minfall		1941	Average												
	Total	Causing runoft	Total	Causing runof	Total	Total	1941	Average	1041	Average														
	Number	Number	Numbicr	Number	Inches	aches	Inches	Inches	Percent	Percent	Tons	Tons												
	$\because 75$	15	7.1	9	32.76	26.04	5.50	2.43	16.97	9.33	36.01	15.70												
Soveraly erodeds sjoring grain		12 26	7	\% 8	$\begin{array}{r}32.76 \\ 32.76 \\ \hline\end{array}$	26.04 26.04	4.2S	1.86	13.06 $\mathbf{3 5 . 3 8}$ 1	27.14	35,12 73,10	1.1 .27 99.95												
aloderately eroded, sprims gra	75	21	3	15	32.76	26.04	6.07	3.02	18.50	11.60	43.02	16.24												
Severely croled, hay.	$\begin{aligned} & 75 \\ & 75 \\ & 75 \end{aligned}$	11	74	11	32.76	26.04	1.72	1.37	5.25	5.26	85	. 57												
Migh-factortely rans:	75	10	74	7	32.76	26.04	1.28	. 61	3.91	2.34	. 61	. 20												
Severely eroded, comi.	7	7	4	4	15.10	8.58	4.90	2.04	32.45	23,7s	34.95	14.94												
Moderately eroded, corn		7	4	4	15.10	S.08	3.93	1.65	$26 . \mathrm{ez}$	18.35	34.40	13.41												
Severly eroled, spring grain	777		4	1	15.10	8.58	7.85	3.49	51.99 30	40.68	60. 14	$\underline{29.21}$												
Severely eroded, hay		7 7	4	4	15.10 15.10	${ }_{8.58}^{8.58}$	4.58	2.12			41.is	11.87 .50												
Moderately croded, 1	7	7	4	4	15.10	8.8	1.22	-,56	10.08	0.73	$\xrightarrow{.00}$.19												
Moderate-fuctor rains:																								
Severely eroded, corn.		4	7	4	${ }^{6.05}$	5.10	. 62	. 38	10.25	7.45	. 39	. 35												
Severely eroded, sprins jo	9		7	9	6.05	5.10	2.09	1.34	34.55	26.27	s. 10	4.57												
Moderately croded, spinit	9 9 9 0	7	7	${ }^{\text {i }}$	6.05	5.10	. 77	. 59	12.73	11.57	1.23	2.88												
Severely croded, hay ${ }^{\text {Moderately eroded }}$	9		7	$\stackrel{1}{2}$	6.05 6.05	5.10 5	-12	.21	1.08	4.12	-----	. 01												
Low-factor mins:			. 7	2	6.05	5.10	. 05	. 04	. 33	. 78														
Severely ereded, com,	99	2	63		11.61		$\begin{array}{r} .06 \\ 1065 \\ 1.77 \\ .02 \\ .01 \end{array}$	$\begin{array}{r} .02 \\ .64 \\ .31 \\ .05 \\ .01 \end{array}$	$\begin{array}{r} .34 \\ 14.21 \\ 6.63 \\ .17 \\ .09 \end{array}$	$\begin{array}{r} .08 \\ 5.16 \\ 2.18 \\ 2.51 \\ .41 \\ .08 \end{array}$	$\begin{array}{r} .70 \\ .38 \\ 4.80 \\ 1.12 \\ .02 \\ .01 \end{array}$	$\begin{array}{r} 41 \\ +\quad 70 \\ +17 \\ 1.49 \\ .03 \end{array}$												
Moderately eroded, corn	89	$\bigcirc 10$	18	1	$\begin{aligned} & 11.01 \\ & 11.01 \\ & 11.61 \\ & 11.61 \\ & 11.61 \end{aligned}$	$\begin{aligned} & 12.36 \\ & 12.36 \\ & 12.36 \\ & 12.36 \end{aligned}$																		
Severely eroded, spring , brain.				$\begin{array}{r}5 \\ 5 \\ \hline 3\end{array}$																				
Moderately croded, spring g	$\begin{array}{r} 89 \\ 69 \\ 50 \end{array}$		63 63																					
Moderately croded, hiy.			63																					
1 Runoff-stome are divided into 3 groups by use of the rumof factor as follows: The high group includes storms with fators of 11 or more, the moderate group includes storms with factors of from 5 to 11 , and the low group includes storns with factors of less than 5 . Brosion-storns are divided into 3 groups by use of the ero- moderate group includes stormes with faters of from 7 to 11, and the low groun includes storms with factors of less than 7. z Data are for the period, Apr. 16 to Oct. 31, only. Year of highest soil loss for period covered by this table.																								

Table 23.-Rainfall and soil and water losses from control plots of various lengths, by classified groups of rains, 1938-35: [Corn grown amually]

$\begin{aligned} & \text { Rainfall } \\ & \text { group and } \\ & \text { plot No. } \end{aligned}$	Length of slope	Rains				Amount of rainfall		Water loss				Soil loss per acre	
		$1938{ }^{3}$		Average		1938	$\begin{gathered} \text { Aver- } \\ \text { age } \end{gathered}$	Amount		Percent of rainfall		1938	Average
		Total	Causing runofi	Total	Causing runoff	Total	Total	1935	Arer- age	1938	Average		
Annual:		Number	Number	Number	Nrumber			Inches	Inches.	Percent	Percent	Tons	Tons
- $\quad \frac{1}{3} \cdots$	36.3 feet	98	31	59	16	35.09	25.50	14.26	6.46	40.64	25.33	106.52	64.59
3-1.-2-	72.6 feet	88	30 31	59 59	16			13.37 14.42	6.43 6.36	38.10 41.09	$\xrightarrow{25.22}$	${ }^{155.22}$	129.38
High-factor	145.2 feet									41.09	24.94	205.15	123.58
rains:	30.3 fect	S	8	5	5	14.95	8.00	9.75	4.29	65.22	53.63		
3---	72.6 fect	8	8	5	5			9.94	4.41	66.49	55.13	125.88	85.87
Moderate-fac-	145, 2 feet	8	S	5	5.			9.81	4.18	6 6 .62	52.25	155.71	106.26
tor rains:	36.3 fect-					6.01	6.94						
3--....-	72.6 feet	8	8	$\cdots 6$	5			1.70	1.53	28.29	${ }_{22.05}^{23.63}$	17.42	7.69 10.91
	145.2 feet	8	8	6	5			2.68	1.61	44.59	23.20	21.78	11.04
Low-factor rains:													
$\frac{1}{3}$						14.13	10.56	2.05	. 53	14.51	. 5.02	9.29	2.06
\| 3	72.6 feet.	82	14	48	6 6			1.73 1.93	. 49	12.24 13.66	- $\begin{array}{r}4.64 \\ 5.40\end{array}$	9.86 27.66	2.60 6.28

The high group includes storms with factors of 11 or of there, runoff factor as follows: moderate group ineiudes storms with factors of from 7 to 11 , and the low group inThe high group includes storms with factors of 11 or more, the moderate group inchades stor of wess than 5 . Erosion-storms are divided into 3 groups by use of the crosion factor as follows: The high group includes storms with factors of 11 or more, the
$=$ Data are for the period, Apr. 16 to Oct. 31, only. 3 Year of highest soil loss for period covered by this table.

Table 24.-Rainfall and soil and water losses from surface-soit and subsoil control plots planted to corn, by classified groups of rains, $1983-88^{2}$

Rainfall group and plot No.	Crop and surface	Rains				Amount of rainfall		Water loss				Soil loss per acre	
		1938		Average		1938	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	Amount		Percent of rainfall		1938	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$
		Total	Causing runoff	Total	Causing ranoft	Total	Total	1935	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	1038	$\begin{aligned} & \text { Aver- } \\ & \text { uge } \end{aligned}$		
Annunl:3$11 . . .$.	Corn unnually-surface soil Corn unnually-subsoil	Number 98	Number	Number	Number 1616	Tuches3509	(Incher	Inches 13.37 $14.4 \overline{5}$	Inches$\begin{aligned} & 6.43 \\ & 7.07 \end{aligned}$	Percent 35.1041.18	Percent$\begin{aligned} & 25.22 \\ & 27.72 \end{aligned}$	Tons 155.22 185.48	$\begin{aligned} & \text { Tons } \\ & \begin{array}{c} 99.38 \\ 116.69 \end{array} \end{aligned}$
			30	59									
			31	59									
Hidh-factor rans:		8	8	55		14.95							
3	Corn annually-surface soil Corn annually-subsoil						8.00	9,94 10.42	4.41 4.56	60.49 69.70	55.12	$\begin{aligned} & 125.88 \\ & 153.36 \end{aligned}$	85.87 96.60
Moderate-factor rains:			8		55								
3.	Corn annually-surface soil Corn annually-subsoil	8		66		6.01	6.94	1.79 2.15	1.53 1.84	$\frac{28.29}{35.77}$	$\underline{22.05}$	19.48	10.91
Lou-factor													
	Corn annually-surface soil Corn annually-subsoil	8282	14	4848	6 6	14,13	10.56	1.731.88	. 49	12.24	4.646.34	${ }_{1}^{9} \mathrm{~S}$ S6	$\frac{2.60}{5.92}$
11......													5.92

moderate group includes storms with factors of from 7 to 11, and the low group in cludes storms with factors of less than 7 .

2 Dita are for the period, Apr, 16 to Oct. 31, only.
3 Year of highest soil loss for period covered by this table.

1 Runoff-storms are divided into 3 groups by use of the runoff factor as follows: The high group includes storms with factors of 11 or more, the moderate group includes storms with factors of from 5 to 11 , and the low group includes storms with factors of less than 5 . Erosion-storms are divided into 3 groups by use of the ero-
sion factor to follows The bigh group includes storms with factors of 11 or more, the

Table 25.-Rainfall and soil and water losses from a fallow plot which rcceived barmyard manure and a fallow plot uithout manure, by classified groups of rains, ${ }^{1}$ 1983-35 ${ }^{2}$

[^8]Tabin 20.-Rainfall and soil and water lo. s and crop yields from various organic-matter tratnents on seterely eroded soil, by classiffed groups

Tabin 20.-Ruinfall and soil and water losses and crop yields from varions organic-matter treatments on severely croded soil, by classited grouis of ruins, $1941-49^{4}$-Continued

\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{Rainfall groupand treatment \({ }^{3}\)} \& \multirow{3}{*}{\[
\begin{aligned}
\& \text { Plot } \\
\& \text { No. }
\end{aligned}
\]} \& \multicolumn{6}{|c|}{Mains} \& \multicolumn{3}{|l|}{Amount of rainfall} \& \multicolumn{6}{|c|}{Water loss} \& \multicolumn{3}{|l|}{Soil loss per acre} \& \multicolumn{2}{|l|}{Yield per acre} \\
\hline \& \& \multicolumn{2}{|l|}{Hay 19403} \& \multicolumn{2}{|l|}{Corn 1942} \& \multicolumn{2}{|l|}{Sprimp-urain 1043} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Hay } \\
\& 1941
\end{aligned}
\]} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Corn } \\
1942
\end{gathered}
\]} \& \multirow[b]{2}{*}{Sprim prain 1943} \& \multicolumn{3}{|c|}{Amount} \& \multicolumn{3}{|l|}{Percent of rainfall} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Hay } \\
\& 1941
\end{aligned}
\]} \& \multirow[b]{2}{*}{Corn} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Spring } \\
\& \text { graut } \\
\& 1043
\end{aligned}
\]} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Corn } \\
1942
\end{gathered}
\]} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Spring } \\
\text { grain } \\
1943
\end{gathered}
\]} \\
\hline \& \& Total \& \& Total \& \& Total \& \[
\begin{gathered}
\text { Caus- } \\
\text { rug } \\
\text { rusoff }
\end{gathered}
\] \& \& \& \& Hay \& \({ }_{\text {Corn }}\) \& \[
\begin{gathered}
\text { Spring } \\
\text { grain } \\
1943
\end{gathered}
\] \& \({ }_{\text {Hay }}\) \& Corin \& Spring grain 1943 \& \& \& \& \& \\
\hline Green manure workel with sweeps in fall preculing corn- cultivated with sweeps. \& 12 \& \[
\begin{aligned}
\& \text { No } \\
\& 25 \\
\& 25
\end{aligned}
\] \& No. \& \begin{tabular}{c}
No. \\
0.5 \\
0.5 \\
\hline 6
\end{tabular} \& \& \& No. \& Inches \& Inches \& Inches \& Inches \& \& Inches \& Percent \& \begin{tabular}{c}
Percent \\
\hline 4.86 \\
\hline 2.74 \\
\hline
\end{tabular} \& Percent \& Tons \& Tont

0.52
1.54 \& T'ous \& Busherlx \& Bushefs

\hline
\end{tabular}

$3,5,7,5,11$, and 12 had manaverage of 1.36 ions per acre of dry organie residue on the surface as compared with 0. 70 tons per are on plots 1,2 , 4 , 9, und 10 . All plots were plowed in the fall of 1942 , for prain, exeept a atid 12 , wheh were worked whe swedins. with commercial fertilizer to a uniform fertility level.
 $1,2,4,6,9$, and 10 on Aus. 2 .

1 Hipi-ran factor group includes all rains with ar rain factor of 10 or more; moderntepodes ul raine with in rain factor of less than 5
${ }^{2}$ Data are for the period, Apr. 16 to 0 ct . 31 , only,
Green manure consisted of the growth of hay produced after the first erop of hay was removed from plots $3,5,7,8,11$, and 12 . On Oct. 2S, 104t, when all plots were plowed with the exception of plota 7 , and 12, which were worked with swepts, plots

Tande 27.-Rainfall an! soil and water losses from phots with two lengths of slope located on tarions percents of slope, plamted to spring grain, by classificd groups of rains, ${ }^{1} 1939-48^{2}$ 3-PERCEN'T SIOPE

TAme 27.-Rainfall and soil and water losses from plots with twa lengths of slope locuted on various percents of slope, phonted in spring grain, by classified groups of rains, $1939-45^{2}$-Continued

8 -PERCENT SLOPA

Table 27-Rainfall amd soil and water losses from plots uith two lengths of slope localcd on various percents of slope, phanted to spring grain, by classified groups of rains, ${ }^{1}$ 1939-432-Continued

Hioh-factor rains: $18-1 . .$. $18-2-2$. $18-\mathrm{S}-3$	36.3 36.3 36.3	7	7 7	4 4 4 4	4 4 4	13.67	6.95	$\begin{aligned} & 6.42 \\ & 6.04 \\ & 5.45 \end{aligned}$	3.19 3.02 2.74	$\begin{aligned} & 46.96 \\ & 44.18 \\ & 39.87 \end{aligned}$	45.90 43.45 39.42	$\begin{aligned} & 79.55 \\ & 64.72 \\ & 61.14 \end{aligned}$	$\begin{aligned} & 19.96 \\ & 15.32 \\ & 14.62 \end{aligned}$
Average		7	7	4	4	----....	-......-	5.97	2.95	43.67	42.88	68.57	16.63
$\begin{aligned} & 18-\mathrm{L}-1 \\ & 18-\mathrm{L} \\ & 18-2 \end{aligned}$	72.6 72.6 72.6	$\begin{aligned} & 7 \\ & 7 \\ & \hline \end{aligned}$	7 7	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	4 4 4	--- ---		$\begin{aligned} & 6.25 \\ & 5.99 \\ & 6.00 \end{aligned}$	$\begin{aligned} & 2.08 \\ & 2.85 \\ & 2.85 \end{aligned}$	$\begin{aligned} & 45.72 \\ & 43.82 \\ & 43.89 \end{aligned}$	$\begin{aligned} & 42.88 \\ & +1.01 \\ & 41.01 \end{aligned}$	$\begin{aligned} & 76.28 \\ & 71.75 \\ & 72.46 \end{aligned}$	$\begin{aligned} & 20.48 \\ & 19.09 \\ & 18.89 \end{aligned}$
Average.		7	7	4	4	-...----	----.-.	0.08	2.89	44.48	41.58	73.48	19.43
Moderale-factor ra 18-S-1 $18-\mathrm{S}-2=$ $18-\mathrm{S}-3$ 18-S-3......	36.3 36.3 36.3	$\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$	8 8 8	$\begin{aligned} & 7 \\ & 7 \\ & \hline \end{aligned}$	(${ }^{7}$	7.75	6.21	$\begin{aligned} & 1.68 \\ & 1.45 \\ & 1.36 \end{aligned}$	$\begin{aligned} & 1.68 \\ & 1.42 \\ & 1.29 \end{aligned}$	$\begin{aligned} & 21.68 \\ & 18.71 \\ & 17.55 \end{aligned}$	$\begin{aligned} & 27.05 \\ & 22.87 \\ & 20.77 \end{aligned}$	$\begin{aligned} & 5.03 \\ & 2.73 \\ & 2.89 \end{aligned}$	4.61 2.45 1.94
Average		9	8	7	6	----..--	---.---	1.50	1.47	19,35	23.67	3.55	3.00
$\begin{aligned} & 18-\mathrm{I}-1 \\ & 18-\mathrm{L} \\ & 18-\mathrm{L}-3 \end{aligned}$	72.6 72.6 72.6	$\begin{aligned} & \mathbf{9} \\ & \mathbf{9} \\ & \mathbf{9} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	6			$\begin{aligned} & 1.68 \\ & 1.48 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 1.34 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 21.68 \\ & 19.10 \\ & 17.81 \end{aligned}$	$\begin{aligned} & 23.03 \\ & 21.58 \\ & 2.93 \end{aligned}$	$\begin{aligned} & 6.77 \\ & 5.15 \\ & 4.58 \end{aligned}$	$\begin{aligned} & 6.34 \\ & 5.78 \\ & 5.98 \end{aligned}$
Average		9	8	7	6			1.51	1.35	19.48	21.74	5.50	6. 03
Low-factor rains: $\begin{aligned} & 18-1 \\ & 18--1 \\ & 18-5-3 \end{aligned}$	36.3 36.3 36.3	$\begin{array}{r} 59 \\ 59 \\ 59 \end{array}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \end{aligned}$	7 6 6	11.34	11.44	$\begin{aligned} & 1.65 \\ & 1.36 \\ & 1.35 \end{aligned}$	$\begin{array}{r} .71 \\ .54 \\ .52 \end{array}$	$\begin{aligned} & 14.55 \\ & 11.99 \\ & 1.90 \end{aligned}$	$\begin{aligned} & 6.21 \\ & 4.72 \\ & 4.54 \end{aligned}$	6.72 4.42 4.22	2.96 1.91 2.15
Average.		59	9	60	b	-------	--1.-.-	1.45	. 59	12.79	5.16	5.12	2.34
$\begin{aligned} & 18-\mathrm{L}-1 \\ & 18-\mathrm{L}-2 \\ & 18-\mathrm{L}-3 \end{aligned}$	$\begin{array}{r} 72.6 \\ 72.6 \\ 72.6 \end{array}$	$\begin{aligned} & 59 \\ & 59 \\ & 59 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{9} \\ & \mathbf{9} \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \end{aligned}$	7 7 6			$\begin{aligned} & 1.45 \\ & 1.36 \\ & 1.29 \end{aligned}$	$\begin{aligned} & .63 \\ & .56 \\ & .58 \end{aligned}$	$\begin{aligned} & 12.79 \\ & 11.99 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 5.51 \\ & 4.90 \\ & 5.07 \end{aligned}$	$\begin{aligned} & 7.43 \\ & 6.00 \\ & 5.000 \end{aligned}$	3.51 3.10 2.75
Average		59	9	60	7			1.37	. 59	12.08	5.16	6.14	3.12

${ }^{2}$ Runoff-storms are divided into 3 groups by use of the runoff factor as follows: The high group includes storms with factors of 11 or more, the moderate group includes storms with factors of from 5 to 11 , and the low group includes storms with tactors of less than 5. Erosion-storms are divided into 3 groups by use of the erosion factor as ollows: The high group includesstorms with factors of 11 or more, the moderate group
includes storms with factors of from 7 to 11 , and the low group includes storms with factors of less than 7
Year of highest soil loss for period covered by this table.

Table 28.-Rainfall and soil and water losses from contomred and strip-cropped plots on the Hundt farm ${ }^{1}$

[^9]${ }^{2}$ All plots planted to a 4 -year rotation. Crop shown for strip cropping is the crop on the bottom strip.
3194 -hay was actually fall-seeded grain, spring-eeeded legume.
1942-hay was all first-year hay.

Table 29-Rainfall and runoff and soil loss from contoured, ${ }^{12}$ terraced, ${ }^{3}$ and strip-cropped ${ }^{4}$ watersheds, 1983-485

Year	Rains on land-						Amount of rainfall on land	Water loss						Soil loss per acre on land-		
	Contoured		Terraced		Strip cronped			Amount			Percent of rainfall			Contoured	Terraced	$\begin{aligned} & \text { Strip } \\ & \text { cropped } \end{aligned}$
	Total	Causing runof	Total	$\begin{aligned} & \text { Causing } \\ & \text { runnff } \end{aligned}$	Total	$\begin{gathered} \text { Causing } \\ \text { runoff } \end{gathered}$		$\left\lvert\, \begin{gathered} \text { Con- } \\ \text { toured } \end{gathered}\right.$	Ter- raced	Strip cropped	Contoured	Terraced	$\begin{gathered} \text { Strip } \\ \text { cropped } \end{gathered}$			
1933	Number	Number 14	$\begin{array}{r} \text { Nrimber } \\ 49 \end{array}$	Nunber 12	Number	Number	Inches 21.23	Inches	Inchex	Inches	Percent 7.30	Percent	Percent			Tons
	41 418	$\begin{array}{r} 14 \\ 15 \\ 10 \end{array}$	$\begin{array}{r}49 \\ 41 \\ \hline\end{array}$	- 12			$\begin{aligned} & 21.23 \\ & 24.90 \end{aligned}$	1.55 3.86	1.59 3.41		7.30 15.46	7.49 13.66	-ry	18.18	1.07	
$\begin{aligned} & 1935 \ldots \\ & 1936 \ldots \end{aligned}$	$\begin{array}{r}63 \\ +9 \\ \hline\end{array}$	19	183 49	17			2974	5.58	3.31 7.30		18.76	$\underset{\substack{13.75}}{\substack{\text { 2 } \\ \hline}}$		15.99 91.69	16.70	
Average 1933-36.	49	13	49	13			20.77 24.18	+60 3.60	+ 4.50		22.15	21.66		99.78	13.08	
Average 1083 -	30	15	\%0	13			24.18	3.90	4.22		16.13	19.03		56.41	S. 64	
1937.	52	13	58	13	52	3	21.20	2.96	2.65	. 99	13.96	12.50	4.67	14.67	19	2.39
1939	9	19	85	20. 3	9	20	18.87	5.68 1.10	$\stackrel{6.10}{8}$	6.41	16.19	17.38	18.27	19.31	7.84	9.18
1940...	75	5	75	7	77	$\frac{1}{5}$	21.99	1.88	1.24	. 75	${ }_{3} 5.91$	14.47 8.82	3.55	$\stackrel{.21}{22}$. 25	. 35
1941	75	10	75	10	75	15	32.76	1.51	3.10	2.63	4.61	9.46	8.03	$\stackrel{36}{ }$		5.78
1942	${ }_{60} 8$	\%	S0	9	80	13	31.03	1.30	2.12	1.70	4.19	6.83	5.45	20	-05	
Average 103\% 40	72	s	72	1	72	s	18.36 -5.61	1.92	2.01 2.66	1.58	7.49	${ }_{10.39}$	7.34	5.00	1.20	2.66

Contoured watershed, Area-2.24 acres; slope 15 percent; crops were grown as follows 1933-sprims grain: 1934 -eclover-timothy hay; 1935-corn; 1936 -spring grain; 1937-clover-timothy hay (the lower one-third of watershed was so badly gullied that sod-hunp dams were constructed) ; 1938-upper two-thirds, corn, lower one-third, hay; 1939-upper two-thirds, spring grain, lower one-third, hay; 1940-41-42-43-entire area 3 Filter strip added 1937
TTerraced watershed A-4: Area-2.21 acres; slope-10 percent; crops were grown as
follows: 1933-spring grain; 1934-clover-timothy hay; 1935-corn; 1936-soring grain 1937 -clover-timothy hay; 1938-corn; 1930-spring grain; 1940-11-42-43-alfalfa-tinothy hay.
Strip-cropped watershed: Area-2.76acres; slope-17 percent; cropped to a G-year rotation; crons were grown as follows on the bottom strip: 103 -alfalfa-timothy hay; 1938-ulfalfa-timothy; 1939-corn; 1940-prain; 1941-42-43-alfalfa-timothy lay. ${ }^{3}$ Dita are for the perion, Apr. 16 to Oet. 31.

Thple 30.-Anarul stmmary of rainfall, runof, and snil loss, by winter period and grouing season, on a cullivated watershed, a pastured watershed, and a cullivated terrace, 1034-SS

Watershed and year	Winter cover	Crup	Precipitation			Water loss			Soil loss per acre				
			winter period	$\begin{aligned} & \text { Grow- } \\ & \text { ing } \\ & \text { sellson } \end{aligned}$	Totals	Winter	$\begin{gathered} \text { Grow- } \\ \text { ing } \\ \text { season } \end{gathered}$	Totals	Winter period	$\begin{gathered} \text { Grow- } \\ \text { Hens } \\ \text { season } \end{gathered}$	Totals		
watershed: 1934.	Clover-tirsthy seeding					0.26	3.86	4.12	0.26	15.09	16.25		
1935	Fall -plowed hay--	Corn.....	${ }_{1}^{13.71}$	${ }_{20}^{29.74}$	43.45 26.4 2.4		5.58 4.60 4.60	6. 22 6.55 6.5	${ }_{15}{ }^{-22}$	${ }^{91.69}$	- 115.91		
+1933....	Toll-plowed corn stuble	Siring-grain	${ }_{6}^{6.17}$	20.77 21.20	${ }_{27.73}^{26.94}$	- ${ }_{2}^{2 \cdot 2.4}$	${ }_{2}^{4.96}$	6.55 5.10	$\begin{array}{r}15.74 \\ \\ \hline .14\end{array}$	-99.78	${ }_{14.81}$		
1938.	Upper two-thirds fall-plowed haylower one-third hay	Upper two-thirds corn-lower one-third hay	S. 31	35.09		${ }^{6} 19$		¢ ${ }^{6.33}$		19.31 48.29	1994		
Unterrued pasture watershed:													
- 19353	Grass	Pasture	${ }_{13.71}^{3.58}$	29.74,	${ }_{43.45}^{28.84}$	${ }_{\text {- }}^{01}$	${ }_{1}^{2.13}$	2.18 1.31	. 02	1.03 14 14	${ }^{1.65}$		
19360.0.	- do.		${ }_{6}^{6.17}$	20.77	${ }^{26} 2.94$	$\begin{array}{r}2.16 \\ \hline 10 \\ \hline\end{array}$	- 68	3.09 77	01	15 03 0	-168		
1938.-7	d	-	S. 31	$3{ }^{35.09}$	43.40	22	3.34	3.56		11	11		
Terracerage- 1934			7.72	26.35	34,07	51	1.67	2.15	.0i	41			
		Hay-	$\begin{aligned} & 3.85 \\ & 13.71 \\ & 6.71 \end{aligned}$	${ }_{2}^{2+.96}$	28.84				- 0				
						1.39							
1936 1937 1			$\begin{aligned} & 6.17 \\ & 6.53 \\ & 5.31 \\ & 7.72 \end{aligned}$		$\begin{aligned} & 26.94 \\ & 27.73 \\ & .43 .40 \\ & 34.07 \end{aligned}$	$\begin{aligned} & 1.92 \\ & 1.97 \\ & 1.97 \end{aligned}$	$\begin{aligned} & 4.64 \\ & \begin{array}{l} 2.41 \\ 7.51 \\ 4.50 \end{array} \end{aligned}$		$\begin{array}{r}1.56 \\ 0.4 \\ .21 \\ .46 \\ \hline\end{array}$	8. 8.71	$\begin{array}{r}13.78 \\ \hline 8 \\ \hline 8\end{array}$		
1338,								4.39 8.48 6.68			S. ${ }^{43}$7.957.95		
Average								6.6.62		7.49			

Table 31-Rainfall and rumoff and soil loss from unterraced pastured watershed and pastured terrace by classified groups of rains, ${ }^{1} 1933-3 \gamma^{2}$

Rainfall group, ${ }^{1}$ watershed, or terrace No.	Size of area	Land	Mains				Amount of		Water loss				Soil loss per acre															
			1935		Average		1035	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	Amount		Percent of rainfall		1935	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$														
			Total	Causing runoff	Total	$\begin{gathered} \text { Causing } \\ \text { runoff } \end{gathered}$			1935	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	1935	Average																
Annual: Unterraced pasture watershed... Pasture terrace E-3	Acres	Percent	Number	Number	Number	Number	Inches	Inches	Inches	Inclics	Percent	Percent	Tons	Tons														
	$\begin{aligned} & 2.412 \\ & 1.011 \end{aligned}$	19	63 63	$\stackrel{8}{18}$	51		29.74	23.58	1.30	1.09	4.37	4.62	0.14	0.47														
Unterraced pasture watcsied.-	2.4121.011	24 19	4 4 4	3		4	8.01	6.61 6.61	$\frac{1}{2.22}$	1.51	15.23	13.46 22.84	12	.40														
							8.01	6.61	2.23	1.51	27.84	22.84	. 14	.21														
Moderate-factor rains: Unterraced pasture waterslied.--	2.412 1.011	19	$\frac{12}{12}$	8		3	12.37	7.21	. 88	.89	8.65	2.647.63	. 02	. 06														
Luw-factor rains: Unterraced pasture watershed Pasture terrace E-3.	${ }^{2.412}$		12	8		4	12.37	7.21																				
		24	$\begin{array}{r}47 \\ 47 \\ \hline\end{array}$			1	$\mathbf{9 . 3 6}$$\mathbf{9 . 3 6}$	9.769.76	. 03		---.-.----	. 31	--.ōi-	. 01														
						1																						
TRunoff-storms are divided into 3 groups by use of the runoff factor as follows: ine high group includes storms with factors of 11 or more, the moderate group includes storms with factors of from 5 to 11 , and the low group includes storms with factors ofless than $\overline{5}$. Erosion-storms are divided into 3 groups by use of the erosion factor as																												

high group includes storms with factors of 11 or more, the moderate group includes
storms with factors of from 5 to 11 and the low group includes storms with factors of less than 5. Erosion-storms are divided into 3 groups by use of the erosion factor as
follow: The high group includes storms with factors of 11 or more, the moderate grour
includes storms with factors of from 7 to 11, and the low group includes storms with - Data are for the period, April 16 to Oct. 31, only. : Year of highest soil loss for period covered by this table.

Table 32-Rainfall and runoff and soil loss from small watersheds with various cover conditions by classified groups of rains, $1935-41^{12}$

Rainfall group and watershed	Size of area	Land slope	Rains				Amount of rainfall		Water loss				Soil loss ${ }^{3}$ per acre	
			1935^{4} Average				1935	Averuge	Amount		Percent of rainfall		1935	AverHye
			Total	Causing runofi	Total	Causing runoff			1935	Average	1935	Average		
Annual: Watershed A, pastured woodlands. Watershed B, protected woodland ${ }^{5}$	Acres	Percent	Number	Number	Number	Number	Inches	Inches	Inches	Inches	Percerit	Percent	Tons	Tons
	2,67	17	63		67	3	29.74	25.77	1.06	0,30	3.56	1.16	0.79	0.14
	11.50	27	63	1	67.				. 02		. 07		. 01	
Watershed $\mathrm{G}, \mathrm{cleared}$ pasture ${ }^{\text {a }}$---	1, 5.85	26	13	- 6	07				. 38	. 09	1.28	. 35	. 30	05
Unterraced pasture watershed--**	2.412	24	-63	\%	47	7			1.30	1. 18	1.38 +18.76	4.58	. 14	-. 10
Unterraced cultivated watershed	2.245	15	63	- 19	67	11			5.58	3.03	18.76	11.76	91.69	32.28
High-fuctor rains: Watershed A, pastured woodland	2.67	17	4		5	3	S. 01	: 8. 60	1.01	. 29	12.61	3.37	. 78	. 14
Watershed 13, protected wood-	2.67 1150	17 27	4	4	0	$\cdots 3$	s.01	- 8.00	1.01 .02	-2	12.61 .25	3.37	.78 .01	
Watershed G, eleared pasture-.	11.80	$\stackrel{27}{26}$	4		5				. 34	. 08	4.24	-. 93	. 28	05
Unterraced pasture watershed	2.412	24	$\therefore 4$	4	$\overline{5}$	2			1.22	1.10	15.23	12.79	.12	. 10
Unterraced cultivated watershed	2.245	15	4	4	5	5			3.17	2.02	39.58	23.49	7 S .75	27,96
Moderate-factor rains: Watershed A, pastured woodland ${ }^{5}$	2.67	17	12	2	7		12.37	6.60	. 05	. 01	. 40	. 15	. 01	
Watershed B, protected woodland ${ }^{5}$	211.50	27	12		7		12.37			.01		. 15		
Watershed G, cleared pastures	11.80	26	12		7				. 04	. 01	. 32	. 15	. 02	
Unterraced pasture watershed	2.412	24	12	4	7				. 08	. 07	. 65	1.05	. 02	
Unterraced cultivated watershed	2.245	15	12	11	7	3			2.09	.79	16.90	11.86	11,35	3.44
Low-factor rains:														
Watershed A, pastured woodland Watershed 13, protected wood-	2.67	17	47	-	55		9.36	10.51						
Watershed B, protected woodland	11.50	27	47		55									
Watershed G, cleared pasture--	5.85	26	47		55									
Unterraced pasture watershed--	2.412	24	47		- 55									
Unterraced cultivated watershed	2,245	15	47		- 55				. 32	. 22	3.42	2.09	1.59	. 85

[^10]group includes storms with factors of from 7 to 11 , and the low group includes storins with factors of less than 7 .
${ }_{2}$ Data are for the period of Apr. 16 to Oct. 31, only.
3Soil loss measurements discontinued in 1938 ,
4 Year of highest soil loss for period covered by this table.

[^11]Table 33-Rainfall and runoff and soil lass from terraces of variable grade by classified groups of rains' for the S-year period, 1989-40:

Rainfall group, terrace No., and vertical interval	Size of area	Land slope	Rains				Amount of rainfall		Water loss				Soil loss per acre	
			1935		Average		1935	Average	Amount		Percent of rainfall		1035	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$
			Total	$\begin{aligned} & \text { Cuusing } \\ & \text { runoff } \end{aligned}$	Total	Causing runoff			1933	Aver- age	1035	$\begin{aligned} & \text { Aver- } \\ & \text { agge } \end{aligned}$		
Ammal:	Acres	Percent	Number	Number	Number	Number	Incirs	Inches	Inches	Inches	Percent	Pereent	Tons	Tons
	4.206	10	63		60 60	110	20.74	24.24	7.36	3.79	24.75	15.64	16.70	5.35
A A-5, ${ }^{\text {a }}$ tovel 3 inches	1.885 1.632	13	63 63 8	17	${ }_{60}^{60}$	13	29.74	24.24	6.84	3.81	23,00	15.72	14.00	4.85
High-factor rains:-->				17		11	20.74	24.24	3.67	2.42	12.34	9.98	3.60	1.42
A-4, 1 to to 6 inelres.	2, 206	10	4	4	4	4	8.01	7.47	5.09	2.77	63.54	37.08	15.61	4.62
A-5, 1 to 3 niches	1.8S5	13	4	4		4	5.01 $S .01$	7.47	4.94	$\stackrel{9}{2} .76$	61.67	36.95	13.29	4.16
Moderate-factor rains:					4	4	8.01	7.47	2.65	1.89	33.08	25.30	3.44	1.25
A-4, 1 to 6 inches.	2.206	10	12	11	(i)	4	12.37	6.51	2.04	. 81	16.49	12.44	. 87	. 57
	1.885	12	12		${ }_{6}^{1}$		12.37	6.51	1.73	. 84	is. 98	12.00	: 56	.57
Low-factor rains:				11			1237	6.01	. 94	. 39	7.60	5.99	. 13	. 13
A-4, 1 to 6 inches.	2.206	10	47	$\stackrel{2}{2}$	00	2								
A-5, 1 to 3 inclues.	1,885	12	47	2	50		0.36	10.26	. 17	.21	1.82	2.05	.25	$\stackrel{16}{12}$
A-6, level.......	1.632	13	47	2	60	3	9.36	10.26	. 08	.14	1.85	1.36	. 03	. 12.
nio														

Table 34.-Ranfall and runoff from terraces with the same variable grade but different vertical intonals on pasture land by classificd groups of rains ${ }^{1}$ for the 5 -year periol, $1935-42^{2}$

Rail	Size of areu	$\begin{aligned} & \text { Land } \\ & \text { slope } \end{aligned}$	Rains				Amount of rainfall		Water loss							
			19415		Average		1941	Averuge	Amount		Peruent of rainfall					
			Total	Caubing runof	Total	Cuusing runoff			1941	Average	$19+1$	Average				
	Aeres	Percent	Number	Number.	Number	Number	Inches	Inches	Inches	Inches	Pereom	Percent				
	$\begin{aligned} & 0.499 \\ & 1.011 \end{aligned}$	$\begin{aligned} & 1 \pi \\ & 19 \\ & 15 \\ & 17 \end{aligned}$				9	32.76		323		12886					
			75	11	718	$\xrightarrow{10} 8$	39.76 32.76	27.05	4.06 2.90	378 3.14	12.391	13.52				
			75	11	771	8	30,76	27.95	2.08	8.4	0.10	10.91				
. $\mathrm{E}-2,7$-foot.	$\begin{array}{r} .929 \\ 1.011 \\ 1.101 \end{array}$	19	7	7	5	5	13.67	9.93	3.44	3.20	20.16	32.29				
C-3, 7 -foot		15	7	7	F	5	13.67	9.93	2.71	2.85	10. 19.17	25.70 27.39				
E-2, 7-foot E-3, 9-foot C- 7 -	$\begin{aligned} & 1.9291 \\ & 1.101 \\ & 1.075 \end{aligned}$	15191515	9	3	7	3	7.75	6. 43	\%	4	7.48	6. 64				
			9	3	7	2	7.75	6.43 6.43	. 37	-28	3.48 4.20					
C-3, 7-foot....................................		17	9	3	7	2	7.75	6.43	. 33	. 28	4.26					
Low-factor raims:																
	$\begin{array}{r} .929 \\ 1.011 \\ 1.101 \\ 1.075 \end{array}$	15191917	59	1	64		11.34	11.59	0.4	.14	35	1.21				
			09	1	64		11.44	11.69	. 01	. 07	09	. 00				
			59	1	(6.)	1	11.34	11.59	. 03	.05	. 26	. 13				

[^12][Table 35.-Rainfall and runof and soil loss from terraces with the same variable grade but different nertical intervals on croplemel by classified " groups of rains ${ }^{1}$ for the 5-year period, $1983-87^{2}$

Ruinfall group, terrace No., and vertieal interval	Size of urea	Landslope	* Rains				Amount of rainfall		Water loss				Soil loss per acre															
			$1935{ }^{3}$		Average		1035	$\begin{aligned} & \text { Aver- } \\ & \text { rige } \end{aligned}$	Amount		Percent of rainful		1935	$\begin{gathered} \text { Aver- } \\ \text { age } \end{gathered}$														
			Total	Causing runoft	Totul	Cuusing runof			1935	Average	1035	Average																
	Acres	Percat	Number	Number	Number	Number	Inches	Inches	Inches	Tuches	Percent	Persent	Tons	Tons														
	1.007	10	63	18	51	19	29.74	33.38	9.26	4.57	31.14	19.38	17.67	S. 67														
	1.101	10 17	${ }_{6}^{63}$	17	51.	19	29.74	23.58	9.13 6.87	4.22	30.70	17.00	23.38	S. 62														
C-2, 5 -foot	1.007	101517	4	444	4	4.	8.018.01	6.61 6.61	5.876.27	$\frac{2}{2.85}$	73.25	43.1942.96	15.0921.0911.65	7.704.38														
$\mathrm{C}-3,7$-foot	1.101 1.075																											
C-f, 9-foot	1.075	10 15 17	12	11 10	7 7		12.37	7.721	$\frac{2.72}{2.00}$	1.18	${ }^{216.99}$	15.67 15.95 15.98	$\underline{2.08}$.82														
Lowfactor rains ${ }_{\text {C- }}$																												
C-3, ${ }^{\text {- }}$-foot	1.007	101517	4747	$\stackrel{2}{2}$	4040	8	9.36 9.36	9.76 9.76.	. 14.6	-27	3.10 1.20	- 2.56	.19.21.14	10														
C-4, 8 -foot	1.075						9.30	0.76			2.78																	
1 liunoff-storms are divided into 3 groups by use of the runoff factor as follows: The high group includes storms with factors of 11 or more, the moderate group includes storms with factors of from 5 to 11 , and the low group includes storms with factors of less than 5. Erosion-storms are divided into 3 groups by use of the erosion factor as follows: The high group includes storms with factors of 11 or more, the moderate group includes storms with factors of from 7 to 11, and the low group includes stomas with fuctors of less than 7. 2 Data are for the period, Apr. 16 to Oet. 31, only. 3 Trar of highest soil loss for period covered hy this table.																												

Anble 36.-Ramfall wid ranoff and soil loss from terraces wilh the same dariable grade bud different vertical intervals on pasture land by classificed grouts of rains for the 5-year period, 1983-9 $\hat{7}^{2}$

${ }^{1}$ Runoff-storms are divided into 3 groups by use of the runoff factor as follows: The high group ineludes storms with factors of t1 or more the moderate proup include storms with factors of froms to 11 , und the low group ineludes storms with factors of lean thatis. Erusion-storms are divided iuto 3 grours by use of the erosion factor a follows: The high group includes storms with factors of 11 or more, the moderate
vith fuctors of less thin 7
= Datiare for the period, Apr. 16 to Oct. 31, only.
Y Year of highest soil loss for period covered by this table

Table 37.-Rainfall and soil and water losses from plots of various lengths with and uithout berm, ${ }^{1}$ 1985-382 CLOVER-TIMOTHY HAY IN ROTATION
[Rainfall amounts: 1938, 35.09 inches; average, 26.70 inches]

Plot length and treaiment	Rains				Water loss				Soil lass per acre	
	1938		Average		Amount		Percent of rainfall		1938	Average
	Total	Causing runof	Total	Causing runoft	1038	Average	1938	Average		
		Number	Number	Number	Inches	Inches	Percent	Percent	Tons	Tons
		15	60	10	3.23	1.90	9.20	7.12	2.07	1.05
With berm- Without bern	98	18	66 66	15	6.75 2.70	3.84 2.48	19.24 7.69	14.38	2.45	${ }_{1} 2.60$
Without berm	98	21	66	15	10.66	5.48	30.38	19.59	${ }^{7} .06$	4.81
Average-	98	17	66	12	5.83	3.36	16.61	12.58	3.34	2.43
36,3-fot plot:										
With berm.	98	17	${ }_{66}^{66}$	9 12	${ }_{7.38}$	2.08 4.06	8.06 21.03	7.79 15.20	.78 3.61	1.47
Without berm	98	13	66	11	4.06	2.55	11.57	9.55	1.82	. 99
Without berm	98	17	66	14	4.69	3.31	13.36	12.40	1.37	1.64
Average -	08	15	66	12	4.75	3.00	13.54	11.24	1.89	1.24

barliey in rotation

Table 37.-Rainfall and soil and water losses from plots of various lengths with and without berm,,$^{1} 1985-38^{2}$-Continue: CORN IN ROTATION

[^13]Data are for the period, Apr. 16 to Oct. 31, only
Year of highest soil loss for the period covered by this table.

LITERATURE CITED

(1) Atkinson, H. B., and Bay, (i. E.
1940. some factors affecting frost-penetration. Amer. Geophys. Union Trans. 1940: 935-951.
(2) Brown, M. H., and Nygard, I. J.
1941. erosion and related land use conditions in winona county, minnesotta. U. S. Dept. Agr. Erosion Survey 17,33 pp., illus.
(3) Hays, O. E. and Clark, N.
1941. cropping systeme that help control erosion. Wis. Agr. Expt. Sta. Bul. 452, 23 pp., illus.
(4) Kilmer, V. J., Hays, O. E., and Muckenhirn, R. J.
1944. Plant nutrient and water losses from fayette shlt loam as mbabured by monolith lysimeters. Amer. Soc. Agron. Jour. 36: 249-263, illus.
(5) Musgrave, G. W.
1935. a device for measuring precipitation waters lost from the soll as surface runoff, percolation, evaporation, and transpiration. Soil Sci. 40: 391-401, illus.
(6) Perfect, D. E., and Sheetz, D. A.
1942. physical land conditions on the farmersayrgmogregor project, clayton county, iowa. U. S. Dept. Agr. Physical Land Survey 28, 25 pp., illus.
(7) United States Congress, House Committee on Appropriations, Subcommittee of.
1928. hearing on the agricultural appropriations bill For 1930. U. S. (70th) Congress, 2nd sess., pp. 310330.

有w

US"3-1 30 MiN PERTIOD
heches per hour

4915

30 MIN PERIOD

Figure 1.-Location map of the Upper Mississippi Valley area, showing location of the Soil Conservation Experin

Upper Mississippi Valley area, showing locstion of the Soil Conservation Experiment Station near La Crosse, Wis.

30 MIN PERIOD
inches pet hout

Figure 4.-Average intensities for $5-15-$, and $30-$ minute periods of precipitation for each manth of the growing season, is

SEPTEMBER

 Be $+$
 r

[^0]:
 Bul, 2it ph., illus. IProerssed.?

 - Sulie mathers in marentheses refer io Literature Cited, p. ist.

[^1]: on chop YiElidh, 7 plo. 1943. !1'rocessed. 1
 ¿Hayh, O. E., and Rogf, C. O. the bfpegt of heitti of murface sold ano contouming on chor

[^2]: ${ }^{1}$ Plots 72 feet in length are located on a 16 -percent slope of Fayette silt loam.

[^3]:

[^4]:

[^5]: ${ }^{1} 0.02$ inches of runoff ill 1935.
 ${ }^{2}$ Period 1937-43.
 ${ }^{3}$ Filter strip at bottom of walershed, 1937-41.

[^6]:

[^7]: S04582-49-0

[^8]: 1 Runofi-storms are divided into 3 groups by use of the runoff factor as follows: The high group ineludes storms with factors of 11 or more, the moderate group inThe high group includes storms with factors of 11 or more, the moderate group in-
 factors of less than a.
 The high group includes storms with factors of 11 or more, the noderate group incluctors of less that 7
 ${ }_{2}$ Data are for the period, Apr. 16 to Oet. 31 , only.

 - Fear of highest soll loss for periorl covered by this tuble.

[^9]: ${ }^{1}$ Data are for the period, Apr. 16 to Oct. 31.

[^10]: 1Runof-storms are dividedinto 3 groups by use of the runof factor as follows: The high group includes stoms with faetors of 11 or more, the moderate group includes storms with factors of from 5 to 11 , and the low group includes storms with factors of as folowe The hich proup includer storme with factors of 11 or more the modurite

[^11]: Sata from watershed A, B , and G obtained by the Forest Servier.

[^12]: 1 Runoffestorms are divided into 3 groups by use of the runoff factor as follows: The high group includes storms with factors of 11 or more, the moderate group includes storms with factors of from 5 to 11 , and the low group, includes storms with factors of less than 5 . Erosion-storms are divided intu 3 groups by use of the erosion factor as follows: The high or froup
 with factore of less than 7 .
 ${ }^{2}$ Data are for the period, Apr. 16 to Oct 31, only.
 ${ }^{3}$ Year of highest soil loss for period covered by this table.

[^13]: 1 The berm was a terrace ridge constructed so that the crest of the ridige defined the upper plot boundary.

