

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Technical Bulletin No. 970 - December, 1948

UNITED STATES

DERARTMENT OF AGRICULTUREE WASHINETON, B. C.

Fiber and Spinning Properties of Cotton: A Correlation Study of the Effect of Variety and Environment ${ }^{\text {' }}$

By Henar D. Barker, principal mathologist, and Otis A. Pore, formerly toronomist, Division of Compon and Other Piber Crops and Discases, buran of Plant Indestry, Solls, and Aigricaltaral Engincering, Agriadthral Reseereh Administrahion

CONTENTS

Skefy strexth in relation to
Crued eprent
donertill spinning \qquad \longrightarrow Singe correlations
l'nge
2
Skein strength in relation to
fiber properties-Continued
Combed yatrns Simple corredations 25 24 Multipe correbations26
 catrled and combed yamma..... 3.1
Simple correlations 32
Multiple correlations :32
Literalure cited 35
Apprendix (tables 12 to 29) 37

During the past several years, extensive data have been accumalated on fiber and spinning properties representing upland, sea-island, and American-Egyptian cotton produced under a wide

[^0]range of environmental conditions. Annual cooperative studies have been made by the agricultural experiment stations of the cotton-growing States and the United States Department of Agricultare. The detailed reports of the fiber and spinning results have been published annually. From time to time, certain summary reports have been made. These, for the most part, have been limited in scope or have not separately treated environmental and varietal influences. The present report is concerned primarily with the fiber and spinning data accumulated since the advent of the more rapid techniques for fiber testing and is concerned principally with relating environmental and varietal influences on fiber properties to spinning performance as measured by skein strength and yarn-appearance grade of single, carded, and combed yarns. It is summarized below.

SUMMARY

The fiber and spinning data relating to environmental and varietal influences on fiber properties were obtained from three. groups of samples.

Group A cortists of 447 samples from the 1945 and 1946 crops, spun into carded yarns by the long-draft roving and spinning process. The fiber measurements used in the study, with the exception of the X-ray determinations, were made in the University of Tennessee fiber research laboratory and are limited to fiber measurements that may be made with considerable rapidity on the Fibrograph, Arealometer, and Pressley breaker.

Group B consists of 408 samples spun by the regular-draft process from the 1941-44 crops; 227 of these went into carded counts of $22 \mathrm{~s}, 36 \mathrm{~s}$, and 50 s , and 181 into carded counts of $22 \mathrm{~s}, 36 \mathrm{~s}$, and 60s. Fibrograph, Arealometer, and Pressley indexes were made in the two fiber laboratories at Knoxville, Tenn. Analyses for this group included also the more laborious fiber measurements for weight per inch and percentage of thick-walled fibers furnished by the laboratories of the Cotton Branch, Production and Marketing Administration.

Group C consists of 190 samples from the 1941-45 crops, spun into combed yarns. The fiber clata included array measurements for upper quartile length and mean length, Pressley index, weight per inch, and percentage of thick-walled (mature) fibers furnished by the laboratories of the Cotton Branch, Production and Marketing Administration.

For the above three' major groups of samples, simple and multiple correlation coefficients and regression equations are given for relating fiber properties to skein strength. For two of the groups, the analyses include yarm-appearance grades.
The importance of distinguishing between varietal, i.e., genetic, differences and environmental influences is clearly demonstrated by the marked differences in the regression equations. The results confirm previous observations that environmentally induced differences in fiber properties tend to be compensatory in nature. Growth conditions that result in fiber length exceeding normal for the variety tend to produce weaker and coarser fiber, and vice
versa. This tendency results, as would be expected, in lower simple and multiple correlation coefficients than those obtained for varietal clifferences.

Individual fiber properties that characterize different varieties vary in relative importance in contributing to the skein strength or yarn appearance, depending on the yarn count, or size, and upon whether any one property is approaching the optimum or the minimum requirement for good spinnability. For example, fiber strength is generally the most important single contributor to skein strength, usually accounting for as much as length and fineness combined. The relative importance of fiber strength decreases, and, conversely, the importance of length and fineness increases as smaller yams are spun from a given sample and as fiber length approaches the minimum requirement for good spimnability. Differences i varieties for upper-half mean length are more closely associated with differences in skein strength than those for mean length. In fact, for varietal differences in skein strength, approximately equal weighting for upper-half mean and Pressley index provides nearly as good prediction as may be obtained by including other properties, such as mean length and surface area measurements, especially for the coarser yarn counts. This apparently is due to the fact that fineness for different varieties is rather closely associated with upper-hali mean length.

Difterences in upper-half mean length and in fineness contribute about equally to varietal differences in yarn-appearance grade.

In determining environmentally induced differences in fiber properties and skein strength, mean length is more important than upper-half mean, superseding Pressley index as the principal contributor to skein strength. Fineness is also of grent, relative importance than in the case of varietal differences.

For environmental differences in yarn-appearance grade, fineness becomes the principal contributor, about equaling the combined contribution of mean length and Pressley index. Apparently Pressley index, which is of little or no contribution to yarn-appearance grade differences for varieties, becomes important as an index of weather exposure or deterioration caused by biological and physical agencies.

Several tables in the Appendix show the fiber properties and their relationship te spinning performance in several groups of samples other than those discussed in detail in the text. Some of these groups are too small to be of particular interest or the methods used in obtaining the data are no longer those of current interest. Also included in the appendix tables are subgroupings of some of the data treated in the text. Some of these tables may be of especial interest to those concerned with particular length groups. It is apparent from these studies that where accuracy of prediction is desired for a group of varieties having a narrow range in length, a specific regression equation should be used. A few such equations are shown. The writer will be glad to furnish those especially interested in varieties or growths having a narrow remge of fiber properties additional formulas for special application.

SOURCE OF DATA AND STATISTICAL PROCEDURE

The data treated here were derived from the more recent of the annual series of cooperative plantings begun in 1935. From 1935 through 1937, a regional variety study was made in which 16 varieties were grown from the same seed lots for 3 years at 8 locations in the main Cotton Belt. Various agronomic, fiber, and spinning studies were made. Parts of the data are still unpublished. The results of the fiber and spinning tests were published in several reports issued by the Cotton Branch, Production and Marketing Administration. Based on these results, Webb and Richardson (14) analyzed the relationships between fiber properties and carded yarn strength, but did not separate varietal and environmental infuences. Pope and Ware (9) and Pearson (7) summarized the fiber properties characterizing the 16 varieties and as modified by season and place of growth.

Following the regional variety study, a plan was worked out for cooperative annolal varietal and environmental studies on fiber and spinning properties. In this plan an attempt was made to serve more adequately the needs of the cotton breeders in various regions by including varieties and strains of local interest. As a consequence much of the symmetry with respect to varieties and locations necessarily was sacrificed but was compensated for by broadening the scope of study on both varietal differences and environmental effects.

By 1941 new and more rapid methods of fiber testing had been developed that permitted measuring a much larger number of samples between harvest and planting time. Hertel (6) had developed the Fibrograph for determining fiber length; Sullivan and Hertel (12) had developed the Arealometer for estimating the fineness, i. e., the surface area, of the fibers; and Pressley (10) develoved an instrument that bears his name, the Piessley breaker, which replaced the more laborious Chandler bundle method for determining fiber strength. Keeping pace with these fiber-testing develomments, the cooperatively run spinning laboratories at Clemson, S. C., and College Station, Tex., had developed procedures for handing a greater volume of spiming tests.

The present study on fiber and spiming data was set up to determine the usefuincss to the cotton breeder and to the cotton improvement program of these more rapid methods for measuring fiber properties, using fiber and spinning data from the cooperative annual varietal and environmental studies conducted from 1941 through 1946. These studies include data on all of the principal varieties and strains of cotton that have been grown in this country during this period. The environmental conditions sampled each year are those that obtain in all of the States in which cotton growing, either under irrigation or rainfall conditions, is an important induntry. About 30 State and Federal experiment stations and substations amually cooperate in providing the samples.

The fiber tests here reported were made on subsamples taken at giming time from the spiming samples. For the crop years

[^1]1945-46, the fiber tests were made at the University of Tennessee fiber research laboratory at Knoxville, Tenn., except for the X-ray angle determinations, which have been made at the Beltsville, Md., laboratory since 1941. For the crop years 1941-44, inclusive, the surface area or the Arealometer determinations were made in the University of Tennessee fiber laboratory; and the upper-half mean length and the mean-length masurements of the Fibrograph were made in the State-Federal laboratory at Knoxville, as were the Pressley indexes, except for the combed yarn tests for 1941-45, in which all of the fiber data were furnished by the Cotton Branch, Production and Marketing Administration. Data on weight per inch and percentare of thick-walled fibers were furnished by the Cotton Branch, PMA, as were all of the yarn data on skein strength and yarn-appearance grades.

The spinning data for 1941-44 represent the regular-draft process; those for 1945-46 represent the long-draft roving and spinning process.

The dotailed fiber and spimning data have been published in processed reports issued annually by the Cotton Branch, PMA, or by the Bureau of Plant Industry, Soils, and Agricultural Engineering.

The procedure used in analyzing the data is the conventional method outlined by Snedecor (i1) and Wallace and Snedecor (13). The 19-17-44 data were put on punch cards and handled in the usual manner. Data on the combed-yarn group and the 1945-46 carded-yarn group were calculated directly from the data sheets. Data prior to 1941 were not included in these studies, inasmuch as the methods of making fiber meas rrements were not strictly comparable.

Simple correlation coeflicients were calculated for total, amongstations, among-varicties, within-stations, and within-varieties groups. Those for total effect. of course, represent the over-all or combined influences of heredity and environnent, no clue being available as to the part attributable to either. Those for amongstation and among-variety main effects represent primarily station and varietal influences, respectively. Since cach station grew different varieties and each variety was grown at one or more but not at all stations, neither the among-station nor among-variety coefficients are free from bias. The within-station coefficients, however, do represent differences that safely can be attributed to varietal effects. Likewise, the within-variety cocflicients represent soil, locational, climatic, seasonal, or other environmental effects from which sarietal influences have been removed.

Since the primary purpose of these studies was to isolate and study differences that could be attributed to either varietal or environmental influences, the variances for total and main effects for stations and rarieties were of little interest. The coeflicients for within stations (varietal effects) and for within varietios (environmental eflects) were, however, of especial interest and were used to obtain multiple correlation coeflicients and regression equations. Inasmuch as it is awkward to refer continuously to within station as indieating varjetal effects, and to within
variety as indicating environmental effects, the adjectives varietal and environmental will be used to denote within-station and within-variety eflects, respectively.

Further details of the statistical methods used may be found in the processed report by Barker (1), which treats of fiber and spinning property relationships of the 1945 crop.

SKEIN STRENGTH IN RELATION TO FIBER PROPERTIES

Instead of attempting to present and discuss all of the data that were studied and analyzed for skein strength and fiber-property relationships, it seemed preferable to relegate some of the smaller groups to the Appendix and to confine the main discussion to three major groups of samples.

Carded Yarns
 LONG-DRAFT SIINNING

Samples from the 1945 and 1946 cooperative studies were spun into carded and combed yarns on long-dratt roving and spinning eruipment. The 1945 samples had two counts common to the singles carded yarns. All were spun into 22 s and 36 s; the third count was variable, depending upon the upper-half mean length of the sample. For 71 of the samples, the third count was 50 s except for 9 samples that were spun into 44 s . These 9 samples represented varieties that were usually spun into 50s. They were, therefore, included even though this limited the amalysis to the 2 counts, 22 s and 36 s , common to the 71 samples. This group was separately analyod, and the results are presented in appendix tables 18 to 20 . The group in which the third count was spun into G0s represented 157 samples. The results of the analysis of this group are shown in appendix tables 24 to 26 . The rest of the group that was spun into 44s was so small that it was not analyzed.

For the 1946 crop, no 60 or 44 s were spun. This resulted in a large group, 228 samples, in which three counts- $22 \mathrm{~s}, 36 \mathrm{~s}$, and 50 s -were common. The results of the amalyses of this group are shown in appendix tables 21 to 23 . Another small group of 45 samples, representing the combed yarns spun into $60 \mathrm{~s}, 80 \mathrm{~s}$, and 100s on the long-draft roving and spiming equipment during $10-15-46$, is shown in appendix tables 27 to 29 .

In order to obtain a larger and more representative sample upon which to base relationships for fiber properties and carded yarus spun on long-draft equipment, it seemed logical to combine the 2.8 samples from the 1946 crop in which the 3 yarn counts of 22 , 36 , and 50 were common with the comparable samples from the 19 do crop. This necessitated converting the 60 s of the 157 samples from the 1945 crop to 50 s, which wats done by using regressions established by the Cotton Branch, PMA. For the purposes of this study, it was felt that little violence to the data would result. This combination resulted in 4.47 samples reprosenting 53 among-station-year observations, learing 304 within-station-year observations for estimating varietal influences-a sufficienty diverse and sizable number of observations to inspire considerable confidence in interpreting varietal effects.

The number of among-variety observations was 149 , leaving 298 within-variety observations for studying environmental influences. Actually, the almost 300 within-variety observations could have been increased conservatively, since it was known that for several of the varieties the seed stocks were the same for 1945 and 1946; but since in some instances it was unknown whether the seed stocks were identical, the safer procedure seemed to be to take only the sum of the within-variety observations for each year. For convenience, this composite group of 447 samples will be referred to as group A.

SIMPLE CORHELATIONS
The simple correlation coellicients (r) are of interest per se as well as in computing the standard regression coefficients referred to as betas (i). The simple correlation coefficients for group A are given in table 1.

Table 1.-Simple correlation coefficients for the warictal (withinstation) and environmental (within-varicty) comparisons for grote A

Variates ${ }^{\text {a }}$	Coeflicients		Variates ${ }^{1}$	Coefficients	
	\| Sarietal difterences	Environmettal differences		Varietal differences	Environmental differences
29s with 'HM	0.64 *	$0.3{ }^{3 *}$	Cfiat with ML	0.69 *	0.91 *
22s with ML	. 45.	.35*	CFin with SA	.32*	-. 08
$22^{\text {s with }} \mathrm{SA}$. 35 *	.20*	LHal wih PI	. $11{ }^{+}$	-3.3 *
22 with PI	. $\mathrm{Sl}^{\text {* }}$.38*	LHM with XR	-.22*	. 55^{*}
ges with XR	-.63 *	$-.07$	MI with Sa		- ${ }^{1+}$
36 s with C.HM	.64*	.33*	ML with PI	-. 266^{*}	-29
36 s with M1L	$4{ }^{\text {a }}$. 36	ALL with XR	-. 12	. 43 *
36 s with SA	.37'	.20*			
36 s with PI.	S1*	.37*	PI with SA	$.31{ }^{*}$. 06
36s with 入R	$-.62{ }^{\circ}$	$-.09$	PI with XR	$-.79$	-.69*
50 s wich ['11M	.65 ${ }^{\circ}$.42*	SA with XR	$-.12$. 05
50 s with 11 L	$4{ }^{*}$.43*			
50s with SA	41^{*}	.27*			
50 s with PI	.78*******	.33*			
50s with XP	-.60*	. 00			

[^2]From table 1 it is evident that for varietal effects all five fiber properties shown are highly correlated with skein strength. Pressley index leads for all counts but is slightly lower for 50 s. X-ray angle is consistently lower than Pressley index at all counts, but is negative in sign. Upper-half mean length has a correlation coellicient of 0.64 or greater for all counts. Mean length is con-
sistently lower for each count. The coefficient for fineness increases slowly but steadily as the yarns become smaller.

Upper-half mean length is significantly associated with each of the other four fiber measurements, especially with mean length. Mean length is significantly and positively associated with Pressley strength. Correlations of mean length with surface area and X-ray are negative but not significant. Pressley index, as expected, shows a high negative relation to X-ray angle; and the positive association with surface area reaches significance at odds of $99: 1$.

For environmental effects, a very different relationship is evident. Individual fiber properties are not very closely correlated with skein strength, although all of them except X-ray angle reach significance. Pressley index, mean length, and upper-half mean length appear to be of approximately equal importance in relation to skein strength of 22 s and 36 s . For 50s, Pressley index recedes in importance and is almost equaled by surface area which gains somewhat as yarn size decreases. Upper-half mean with mean length attains a positive coefficient exceeding 0.90 . Both upper-half mean and mean length have a significant negative coeflicient with Pressley index, but positive with X-ray angle-a sharp contrast to the relationship for varietal properties. Surface area was found to have a negative relationship with both upperhalf mean and mean lengith, the latter reaching signifisance. Pressley index and X-ras-angle relationship remains highly regative but is somewhat less than for varietal effects.

NULTIPLE CORRELATIONS

Regression equations are not presented for all of the combinations of fiber properties that are shown. For those who may feel that some equations not reported would better serve their needs, the pertiment varianees for group A are given in table 2 .

Table 2.-Mean measurements for fiber and yarn properties for 4; observations, and rariances for varietal and emironmental comparisons for groun A

Variate	Means	Variance	
		Varietal comparisons	Environmental comparisons
Skein strength of 22s....	114.79 pounds	38,810.1909	20,467.6096
Skein strength od 36is..	61.96 pounds.	13,847.5023	7,341.9074
Skein strength of 50s.	41.14 pounds	7,585.0316	4,035.8715
Lpper-half mean length	1.069 inches	. 8.0114	1.6172
Mean length	2.5833 cm. ${ }^{\text {a mg. }}$	14.9450	13.4767
Pressley index	$6.6 \% 9$.	104.8145	58.0300
X-ray angle	$35.6{ }^{\circ}$	3,072.32s3	1,448.6855

The relation of fiber properties to skein strength of singles carded yarns spun on long-draft roving and spinning equipment, as determined from multiple correlation studies on group A, is
shown in table 3. Some of the very interesting facts brought out there may be dealt with briefly; others merit careful study.

For all yarn counts for both varietal and environmental effects, the addition of X-ray-angle determinations is without appreciable effect. Previously (4), it has been shown that where Pressley index determinations were questionable, owing to biological deterioration of the fiber, X-ray-angle determinations may be substituted for fiber-strength measurements. It also has been indicated (9) that the inclusion of both Pressley index and X-rayangle determinations is of value for determining strength of plied yarns. For estimating skein strength of singles carded yarns, however, it appears that unless the Pressley indexes are questionable, X-ray-angle determinations add little to the multiple correlation coefficients.

As was true for the simple correlation coefficients, the multiples are much lower for environmental than for varietal effects. The R^{z} values in table 3 indicate that whereas about 80 percent of the ravietal differences in skein strength may be accounted for by four mapidy measured fiber properties obtained from the Fibrograph, Pressley breaker, and the Arealometer, the maximum noted for envirommental differences was 55 percent for 50 s.

One very important fact that stands out in table 3 is that from the standpoint of the practical breeder whose main interest is in penetic differences, R^{u} is nearly as high for two properties, upperhalf mean length and Pressley index, as it is when all four or five fiber measurements are evaluated. Omitting both mean length and surface area, the percentage of skein strength accounted for drops off only 2 percent for 22 s, 3 percent for 36 s, and 4 percent for 50s.

That good predictions for varietal differences in skein strength could be made by considering only differences in upper-half mean length and Pressley index was, so far as the writers are aware, first noted by Pope (umpublished data) and by Barker and Berkley (?). That Arealometer measurements can usually be dispensed with in estimating varietal differences in spinning performance is apparently due to the fact that genetic differences in fiber length are rather closely associated with differences in surface area, as was proviously noted in the discussion of simple correlation coefficients (p. S). A word of caution is in order for those who may use only length and strength in estimating varietal differences in skein strength; occasional dimeulty will be encountered when a varicty is unusually coarse or fine for its length. The writers found that predictions made in this manner were invariably too high for varieties Station C, Station 21, and Rowden, but too low for a few varieties that had finer-than-average fiber for their length group.

For envitonmentally induced differences in fiber and spiming properties, however, a very different condition exists. In the first phace, mean length supersedes upper-half mean length as the important length measurement, and surface area measurements become of greater importance. Secondly, surface area measurements canot be omitted without cansing apprectable reduction in

TABLE 3.-Contribution of fiber properties to skein strength of 29 s, 36 s , and 50 s singles carded yarns, long-draft process, as determined from multiple correlation studies of varietal and environmental effect in group A

Fiber properties, R, and R^{4}	Correlation results with carded yarns: Environmental comparisons								
	22s			36s			50 s		
	Betas		Multiple correlation value	Betas		Multiple correlation value	Betas		Multiple correlation value
	Value	Relative effect		Value	Relative effect		Value	Relative effect	
		Pcrcent 2			Percent 0			Percent 3	
Upper-half mean Mean length	-0.04 .58	$\begin{array}{r} 2 \\ 37 \end{array}$	0.00 $.59 *$	$\begin{array}{r}0 \\ \hdashline\end{array}$		0.06 $.59{ }^{\text {a }}$.	36 36	+1....................
Surface area	- .30*	19	\cdots	. 33^{*}	- 23 38 *	23
Pressley index	. $57 *$	36		.53*	36	…............	. $5 \overline{5}^{*}$	33	\cdots
$\begin{gathered} \text { Xray angle } \\ R \end{gathered}$. 08	5	0.68	. 01	1	0.70	. 08	5	0.75
R^{2}			. 46			. 49	 56
Upper-half mean	. 01	1		. 01.	1		.11*	7	-1........ ***
Mean length	. 56 *	40		.59**	- 4057**	36
Surface area	.30**	22		. 33^{*}	- 23	. .x.	${ }^{.38}{ }^{\text {¹ }}$	24
Pressley index	.52*	37	. 68	.53*	36	. 70	. $51{ }^{*}$	32	$.74$
R			. 68			. 49	*		.55
Upper-half mean	. 26^{*}	24		.28**	25	.	.41**	35
Mean length	.27**	25		.27**	25 21	18	\cdots
Pressley index	. 544^{*}	51		. 55^{*}	50		. $53{ }^{*}$	46	….............. 66
$\frac{R}{R^{2}}$. 62	*		$\begin{array}{r}.63 \\ \hline 40\end{array}$66 .43
Upper-half mean			.38	-	-.................	. 40	\cdots	
Pressley index....						….................
R_{n}		
Mean R^{2}			-1..c...........		
Mean length	.50*	49	.+..............	.52*	5057**	54	,................
Pressley index.	$.52^{*}$	5152*	- 50		.49*	46	64
R^{R}	61 .37	$\begin{array}{r} \\ \therefore \quad .62 \\ \hline\end{array}$ 64

the R^{\prime} values.
In table 3 the columns headed "Relative effect" are of especial interest. The figures given indicate the relative contribution of the several fiber properties to skein strength. In this large group that represents most of the varieties spun in 1945 and 1946, about 55 percent of the variation between varieties is accounted for in 22 s and 36 s by differences in fiber strength expressed as Pressley index and X-ray angle, or as Pressley index alone when X-ray angle is omitted. For 50 s, surface area becomes of increasing importance, largely at the expense of Pressley index, which is credited with only 49 percent of the skein strength.

For environmentally induced differences, mean length leads for relative effect but is closely followed by Pressley index. Differences in surface area assume importance, accounting for nearly one-fourth of the differences in skein strength.

A study of the relative effects in the appendix tables for the different groups shows some very interesting trends for these percentage figures in comparing variety and environment, coarser and finer counts, and longer and shorter length groups. While several pages of discussion might be tised for these trends and their implications, it seems preterable to provide the detailed information in tables in the Appendix for the use of those readers who are interested in special applications.

From tables 2 and 3 , regression equations were derived for making generalized skein strength predictions for singles carded yarns spun on long-draft roving and spinning equipment. It is evident from tables 2 and 3 that different regression equations are required to predict varictal effects at a given location and environmentally induced difforences within a given variety. Probably most breeders are interested in varieties and strains that have a considerable range in fiber length and other properties. For them the following formuas should be useful. For those who may have especial interest in shorter or longer varieties or growths, speciali\%ed equations may be calculated from the data given in the appendix tables 12 to 14 and 21 to 29 .

From group A the following regression equations are recommended for estimating skein strength differences:

1. Among varipties at one location where- -
(a) Arpalometer, Fibrograph, and Prossloy breaker data are avaibable: $22.546 .90 \mathrm{U} \mathrm{HM}+2.72 \mathrm{ML}+7.68 \mathrm{SA}+12.58 \mathrm{PI}-65.54$ $36 \mathrm{~s}=26.03$ UlIM $+16.85 \mathrm{ML}+5 . \overline{5} 7 \mathrm{SA}+7.49 \mathrm{PI}-46.99$ $50 \mathrm{~s}=20.4 \mathrm{U}$ UMM $13.3 \mathrm{~L} \mathrm{ML}+5.28 \mathrm{SA}+5.06 \mathrm{PI}-39.81$.
(b) Pibrouriph and Pussley breaker elata only are available: 29s $-75.76 \mathrm{CHM}+12.78 \mathrm{PI}-53.68$ $36 \mathrm{~s}=45.05 \mathrm{C} \mathrm{H} \mathrm{I}+7.6 \mathrm{P} .4 \mathrm{PI}-38.49$ $50 \mathrm{~s}=36.53 \mathrm{U} \mathrm{HM}+5.20 \mathrm{P}[-31.88$.
2. Among stamples reprementing different growth conditions for a given variety where
(a) Arealumeter, Fibrogriph, and Pressley breaker data are available:
$22 \mathrm{~s}-2.13 \mathrm{C} H \mathrm{MI}+62.96 \mathrm{BL}+11.86 \mathrm{SA}+9.36 \mathrm{PI}-40.28$
3f $1.19 \mathrm{LHA}+39.51 \mathrm{ML}+7.81 \mathrm{SA}+5.91 \mathrm{PI}-34.31$

(b) Piorns wh and Pressley breaker chata only are avalable:
-3*s … $66.81 \mathrm{CHM}+30.70 \mathrm{ML}+10.22 \mathrm{PI}-19.31$
$36 \mathrm{~s} \quad 93.90 \mathrm{~L} 11 \mathrm{M}+18.29 \mathrm{ML}+6.15 \mathrm{PI}-20.44$
$50 \mathrm{~s}-25.9 \mathrm{~L} \mathrm{ll} \mathrm{M} \times 10.56 \mathrm{ML}+4.42 \mathrm{PI}-24.78$.

In the above equations the constants differ slightly from those that would have been obtained by using the mean values for skein strengths and fiber properties shown in table 2. The constants were derived from the meail values given in appendix tables 21 to 23 for the 1946 crop. There appeared to be two valid reasons for using the means from the 1946 crop only: (1) Some of the values for skein strength of 50 s in the 1945 crop represented 60 s converted to 50s, as previously noted; and (2) Pressley indexes for the 1945 crop were low, being adjusted to two standard samples that differ from the set that is at present being widely used. For comparative purposes it is of course of no importance to what standard sample the daily Pressley breaks are adjusted, so long as the correction is constant for a given set of data. The 1946 level for Pressley indexes, however, was preferred in the above equations because many fiber laboratories are now using the same set of standard samples, and the Bureau of Plant Industry, Soils, and Agricultural Engineering has a sufficient quantity to supply interested laboratories for several seasons.

Experience gained from these studies has indicated the need for adjusting the constant to different station levels when spinning results become available for some but not all of the samples in which the breeder is interested. For example, suppose that at station Z lack of funds permitted spinning 10 samples only, and the breeder is very much interested in comparing the spinning results obtained from the 10 samples with estimated performance for the 40 other strains. It is obvious that for this purpose, predictions for the 40 unspun strains should be based on the average performance at that particular station for the season in question instead of on the mean for all stations in the entire Cotton Belt. Such modification may readily be made as follows: Consider that at station Z the 10 strains that were spun gave mean skein strengths and fiber properties as shown in table 2. Then the equation for predicting the 40 unspun samples would become:

$$
\begin{aligned}
& 22 \mathrm{~s}=46.90(\mathrm{UHM}-1.069)+26.72(\mathrm{ML}-0.819)+7.68(\mathrm{SA}-2.883)+12.58 \\
& \quad(\mathrm{PI}-6.679)+114.79 \\
& \text { which reduces to } \\
& 22 \mathrm{~s}=46.90 \mathrm{UHM}+-26.72 \mathrm{ML}+7.68 \mathrm{SA}+12.58 \mathrm{PI}-63.44 .
\end{aligned}
$$

In this example the mean values, for obvious reasons, differ little from those that were used for obtaining the generalized equation; consequently, the constant is changed by only 2.1 pounds, but it serves to illustrate how simple the procedure is. This is important and has been demonstrated to be practical from the standpoint of the breeder, and may be of considerable value in the one-variety community development. For instance, were one interested in spinning many lots representing numerous localities and conditions of growth of cotton from a given variety, it might be desired to spot check occasional samples for fiber properties and perhaps have a few spinning tests made. Such data would provide the means of modifying the constant in the equations for estimating for the variety in guestion what performance could be expected for the lots from different localities.

REGULAR-DRAFT SPINNING

Some readers, no doubt, will be interested in what is here designated as group B for studying the relationship of fiber and spinning properties where the regular-draft spinning process is used. Group B is divided, largely on the basis of fiber length, into two subgroups, designated B_{1} and B_{2}. An additional group is included in appendix table 13 .

Subgroup B_{1} represents the varieties ${ }^{2}$ d growths from the $1041-44$ crops that were spun by the regular-draft process into carded yarns of $22 \mathrm{~s}, 36 \mathrm{~s}$, and 50 s . The lot comprises 227 samples obtained from 111 varieties and strains representing 36 station years, thus giving 191 and 116 observatious for evaluating varietal and environmental differences, respectively.

The subgroup B_{2} represents samples that were processed in the same manner as B_{1}, with the exception that the top count was 60 s instead of 50 s . There is some overlapping of varieties in the two subgroups. For example, a variety that under most environmental conditions produced fiber that was too short to be spun into 60 s would, under exceptional conditions, produce fiber sufficiently long to be spun into 60s. Conversely, some varieties that usually were spun into top counts of 60s would occasionally produce staple that was judged to be too short for 60 s . The subgroups therefore represent both varietal and environmentally induced differences in fiber properties.

gimple CORRELATIONS

Simple correlation coefficients obtained for subgroups B_{1} and B_{2} are given in table 4. It is very interesting to note that within B_{2} there is a very close association of heritable fiber and spinning properties. Several measurements for fiber length, strength, and fineness correlated with skein strength have coefficients ranging from about 0.60 to 0.80 for subgroup B_{2} but rarely exceeding 0.40 for subgroup B_{1}. The rather close relationship between fineness, expressed as either surface area or weight per inch, and skein strength increases markedly as yarn size decreases in \mathbf{B}_{1}. Pressley index and skein strengths for all three yarn counts give very high coefficients within subgroup B_{2}.

TABLE 4.-Simple correlation coefficients for varietal (withinstation) and environmental (within-variety) comparisons for group B

Variates ${ }^{\text {2 }}$	Subgroup B_{t}		Subgroup B_{*}	
	Varietal	Enviranmental	Varietal	Environmental
22s with UHM	0.41^{*}	0.05	0.63**	0.18
22s with ML......	.42*	. 05	. $60{ }^{*}$. 22
22s with SA	.33*	. 19	. 16	. 06
22s with PI........	.44*	.38*	.82*	.32*
22s with XR......	-. 10	-. 21	-.63*	-. 25 *
22 s with WI.	-.45*	--. 23	-.57*	-. 22
22 s with TW	-. 10	-. 16	. 15	-. 02

Table 4.-Simple correlation soefficients for varietal (withinstation) and environmental (within-variety) comparisons for group B-Continued

Variates 1	Subgroup B_{1}		Subgroup B_{2}	
	Varietal	Environmental	Varietal	Environmental
36 s with UHM..46**	. 09	.65*	. 24
36s with ML...40*	. 06	. 61 *	.29*
36 with SA.......41*	.25*	. 20	. 21
36s with PI........43*	. $38{ }^{*}$.81*	.32*
36s with XR..................	-. 13	-. 22	-. 63^{*}	-. 22
36 s with WI..	-.54*	-.30*	-.60*	-. 33^{*}
36s with T'W...................	$-.13$	-. 22	. 14	-. 07
50s with UHM..................	. 5 5**	. 00		
50s with ML...................	.45**	-. 01
50 s with SA55*	.34*	
50s with PI......................	.30*	. $32{ }^{*}$	
50 s with XR. \ldots................	-. 06	-. 12
50 s with WI.............. ..	-.68**	-.42**	
50 s with TW...........	-.24*	$-.34 *$...	
60 s with UHM.................	67*	. 19
60 with ML..................	-	-...........	. 60 *	.25*
60 s with SA.25*	.31*
60 s with PI.....................79**	. 24
60 s with XR...................			-.60*	-. 14
60 s with WI.	-	-.63*	-. 38^{*}
60 s with TW.			. 11	-. 07
UHM with ML	.75*	.86*	.73*	.74*
UHM with SA46*	-. 12	.29*	. 05
UHM with PI	-. 07	-.39*	.29*	-. 26 *
UHM with XR 13	. $40{ }^{*}$	-.21*	. 14
UHM with WI..............	-. 53^{*}	. 10	-. $49{ }^{*}$	-. 25^{*}
UHM with TW.....	-.23*	. 11	. 10	-.34*
ML with SA.....	. 13	-.34*	-. 02	-. 05
ML with PI....	$-.05$	-.34*	. $30 *$	-. 23
ML with XR.	.18*	.35*	-. 20	-. 07
ML with WI......	-.24*	.29*	$-.32^{*}$	-. 22
ML with TW..	. 01	.28*	.22*	-. 17
SA with PI.	-. 04	-. 05	. 20	-. 15
SA with XR	. 07	. 05	-. 11	.42*
SA with WI........	-.77*	-.79**	-. 61 *	-.70*
SA with TW....................	-. 60 *	-.74*	-.51*	$-.50{ }^{*}$
PI with XR.	--.68*	-.76*	-.86*	-.71*
PI with WI...	-. 01	-. 13	-. 54^{*}	. 06
PI with TW.......... 00	. 06	-. 02	.31*
XR with WI.	-. 14	-. 04	. 40 *	-.32*
XR with TW...................	. 11	-. 05	. 16	-.39*
WI with TW....58*	.80*	.36*	.63*

[^3]For environmentally induced differences in skein strength in 22 s, one coefficient only, Pressley index with skein strength, reaches significance at odds of $99: 1$ for both subgroups. For 36 s and 50 s (or 60 s), weight per inch also attains significance in both subgroups, and mean length becomes significant in subgroup B_{3}. In seneral, for environmental differences the two subgroups differ from each other much less than they do for association of varietal differences. The negative relation for percentage of thick-walled fibers attains significance for 50 s in B_{1} but is very low for 60 s in B_{2}.

In considering the interrelationships of the fiber properties, it is interesting to note that upper-half mean length and surface area are significantly associated for varietal but not for environmental differences. In B, a significant positive association for upper-half mean length and Pressley index was found for varietal influences, but a significant negative celation for environmental effects. The invariably high coeflicients for interrelation of surface area, weight per inch, and percentage of thick-walled fibers are of interest. It may be remarked, however, that they do not appear to be sufficiently high that one could with confidence consider establishing regressions for expressing one measurement in ternis of the other, as has been suggested by Pfeiffenberger (S) and others.

MLLTIPLE CORRELATIONS

For those who may be interested in solving equations other than those shown here, the mean measurements for skein strength and fiber properties of group B and the variances are given in table 5 . Skein strength for subgroup B_{1} is 9 pounds lower for 22s and 6 pounds lower for 36 s than those of subgroup B_{2}. With respect to tiber properties subgroup B_{1} averages 0.12 (or $1 / 8$) inch shorter than $B_{\text {a }}$ for upper-half mean length and almost as much for mean length. B_{1} is considerably coarser as judged by surface area measurements. Pressley index is approximately the same for the two subgroups, although B_{1} averages nearly 2° smaller X-ray angle.

The relation of fiber properties to skein strength obtained by regular-draft process is shown in table 6 . From 86 to 88 percent of varietal differences in skein strength is accounted for in B., whereas in B_{1} the same properties account for less than 70 percent. For environmentally induced difterences, however, the two subgroups do not differ appreciably, both having a maximum of 35 percent of the skein strength accounted for by fiber-property measurements. In fact, R^{2} values are slightly higher for environmental comparisons in B_{1} except for $36 s$.

Farietal comparisons in B_{i} show that only three beta values reach significance for $2 \underline{2}$ s: (1) Mean length, which is indicated as accounting for 20 percent of skein strength; (2) Pressley index, accounting for 31 percent; and (3) weight per inch, credited with 20 percent. For 36 s a fourth property, percentage of thick-walled fibers, reaches significance, and for 50 s a fifth property, surface area, becomes significant. From the standpoint of yarn size, mean fiber length and Pressley index make progressively smaller

TABLE 5.-Dean measuremcints for yarn and fiber moperties for group B, and variances for varietal and enviromental comparisons

Variate	Means		Variance			
			Subgroup B,		Subgroup B2	
	Subgroup B_{1}	Subgroup B.	Varietal	Environmental	Varietal	Environmental
Skein strength of 29s	97.07	106.40				
Skein strength of 36s	50.36	- 56.55	$7,341.4164$ $2,997.1320$ 1,993	$2,929.0870$ $1,204.4815$	$14,825.1902$ $5,532.4344$	$4,148.3872$ $1,789.3692$
Skein strength of 50s	31.61		1,993.3060	971.7766		
Upper-half mean length	1.012	27.96 1.131	. 3089		1,944.84G2	840.2294
Mean length	1.827	1.1314	. 25836	.2586 .3033	$\begin{array}{r}.3748 \\ \hline .3186 \\ \hline\end{array}$. 1159
Surface area	$\underline{9} .943$	3.126	11.8086	8.8273	.3186 4.8039	.1779 4.3902
Pressley index	7.501	7.450	29.6280	22.3304		4.3902 19.1429
A-ray angle	32.970	34.750	1,427.7432	837.6767	1,458.4406	548.2177

Table 6.-Contribution of fiber moperties to skein strengtin of singles carded yarns, regular-diaft process, as determined from multiple correlation studies for group B Subgroup B_{1}

Fiber properties, n, and R^{2}	Correlation results with carded yarns: Varietal comparisons										
	22s			36 s			50 s				
	BetasRelative effectMultiple varrelion value			BetasValueRelative effect		Multiple correlation value	Betas		Multiple correlation value		
				Value	Relative effect						
		Percent					Pcrcenl. 0		-0.01	Pcrcent 0	
Upper-half mean length	-0.06 .36	$\begin{aligned} & 3 \\ & \$_{2} \end{aligned}$	${ }^{0.00}{ }^{\text {a }}$	17		-0.01********	$\begin{array}{r} 19 \\ 18 \end{array}$			
Mean length Pressley index	$.36{ }^{*}$.56	$\begin{array}{r}20 \\ \hdashline \quad 31\end{array}$. 466^{*}	28		$.30^{*}$ -02	$\begin{array}{r} 18 \\ 1 \end{array}$			
$\underset{X}{\text { Pressley inglex }}$. 16	9	4. \cdot...	. 03	10		$-\frac{.02}{23}$	14			
Surface area	.13*	7		- 16	10		$-.56^{*}$	34			
Weight per inch	$-\frac{.36}{}{ }^{*}$	20		$-.48^{+}$	14		22*	14			
Thick-walled fibers	. 16	9	0.75	. 24		0.78			0.83 .68		
R^{2}			. 56		9	. 60	. 13	11			
Upper-half mean length		33		.30	24		. 31^{*}	25	***		
Mean length	. $38{ }^{*}$	42		$.46{ }^{*}$		\ldots	. $34{ }^{*}$	28			
Pressley index Surface area.	. 288^{*}	24		. $34 *$	28		. $46{ }^{*}$	37			
$R \ldots . .$.69 .48			. 71		-1............	. 57		
Upper-half mean length			. 48	. $38{ }^{*}$	39		. $51{ }^{*}$	54	.		
Upper-half mean length	25**	25 2713	14		. 09	10		
Mean length..... Pressley index	.26********	27 48		$.46{ }^{*}$	47		34*	36	65		
Pressley index	47	48	. 65			65 42			. 65		
Upper-hilf mean length			. 42				\cdots. $58{ }^{*}$	63		
Upper-half mean length	.44*******	48 52		.49**			.34*	37		
Pressley index	.47*	62	. 62			. 65	\ldots	$.65$		
R^{2}		? \quad....	.39		-	2					

Sungroup B2

Upper-half mean length	$0.33 *$	21		$0.31 *$	20		0.35*	23	
Mean length.,...........	11.	7		.13**	8 09	6	
Pressley index	.75*	48		.70*	47		.70*	46	
X-ray angle.	. 12	8		. 09	6 13	8	-....
Surface area	-. 10	6		-. 05	3	-. 02		
Weight per inch	-. 10	7		-. 13	8		$-.15 *$	10
Thick-walled fibers	. 08	5		. 10	7		.10	6	*
R.			0.93			0.94			0.93
R^{2}			. 86			. 88			. 86
Upper-half mean length	.36**	28		. 35^{*}	29		.40**	34	
Mean length	.13*	10		.15*	12				
Pressley index	.69*	55		. $67{ }^{*}$	56		.64*	55	
Surface area	-. 08	6		-. 04	3		. 01	1	
			. 92			. 93			. 92
R^{2} aid			. 85			. 86			. 84
Upper-half mean length Mean length	. 31^{*}	27		.33**			.40*		
Mean length17**	15 58		.17**	15 57			10	
Pressley index R_{R}	. 67^{*}	58		. $67 *$	57		.64*	55	
$R^{2} \ldots \ldots \ldots \ldots$. 85			. 86			. 84
Upper-half mean length	. $42{ }^{*}$	38		.45*	40			42	
Pressley index	.69*	62		.68*	60		.65*	58	
$R_{R^{2}} \ldots \ldots \ldots$			91			. 92			. 92
Mean length \boldsymbol{R}^{2} -			. 83			. 85			. 84
Mean length....................... Pressley index..................	.$^{39}{ }^{*}$	36		.40**	37		${ }^{*} .39^{*}$	${ }^{37}$
Pressley index R	$.70^{*}$	64		.69*	63		.67*	63	
		…	$.90$	-	$\begin{aligned} & .90 \\ & .81 \end{aligned}$ 87

Table 6.-Contribution of fiber properties to skein strength of singles carded yarms, regular-draft process, as determined from multiple correlation studies for group B-Continued

Subcroup B_{1}

Fiber properties, n, and h^{2}	Correlation results with carded yarns: Environmental comparisons								
	22s			365			50s		
	Betas		Multiple correlation value	Betas		$\begin{gathered} \text { Multiple } \\ \text { correlation } \\ \text { value } \end{gathered}$	Betas		Multiple currelation value
	Value	Relative effect		Value	Relative effect		Value	Relative effect	
		Percent			Percent			$\mathrm{Percent}_{8}$	
Upper-half mean length Mean length	0.02 .33	17		0.08 .32	19	${ }^{0.43}$	
Pressley index	.$^{.38}{ }^{*}$	36		. 644^{*}	37	.	.60*	31
X-ray angle.	17.	9		. 10	${ }^{6}$.	.22	11	…
Surface area	. 32	17		. 33	19 5		$\begin{array}{r}\text {-30 } \\ -\quad 01 \\ \hline\end{array}$		
Weight per inch	+18	10		- 08	10		-. 01	12	
Thick-walled fibers R	. 19	10	0.54	-. 17		0.59	-. 2		0.59
- R^{2}			. 30	. 0.	6	. 35			. 35
Qper-half mean length	${ }^{.01}$.	. 08	$\begin{array}{r}6 \\ \hline\end{array}$	-.12 -.41	28	\cdots
Mean length.... Pressley index.	. $33{ }^{\text {+ }}$	48	…............	. $32 \times$	4 44^{*}	30	
$\begin{aligned} & \text { Pressley index } \\ & \text { Surface area... } \end{aligned}$.$^{.38}{ }^{*}$	27		. $39{ }^{*}$	29		.49*	34	
R_{1}^{2}		.	$\begin{aligned} & .53 \\ & .28 \end{aligned}$		$.58$	\cdots	${ }^{.55}$
Upper-half mean length..............	-21 21		. 28	. 32			. 18	30	
Mram length............................	. 04.		$-.04$	4 58	$-.03{ }^{*}$	65	……
	.48*	66		. 50 *	58	.	. 88	${ }^{6}$.	.35
- ${ }^{L^{2}}$		34	. 20	29*		. 22			12
Tpper-half mean length.............	$.24^{*}$			$\xrightarrow{29} 5$				71
17 R^{2},					47		
R^{2}	.		20	 22			. 12

Subgroup B:

[^4]contributions, whereas surface area, weight per inch, and percentage of thick-walled fibers make progressively greater contributions as yarn size decreases. The four properties that are rapidly measured by the Fibrograph, Pressley breaker, and Arealometer result in R^{*} values that are appreciably lower than those derived from all seven properties shown. A still further reduction in R^{4} values results where only Fibrograph and Pressley index measurements are inchuded. Such, it will be recalled, is not the case for group A, or, as will be seen, for subgroup B.

For environmental comparisons in B_{1}, only the beta value for Pressley index reaches significance where seven measurements are included in the multiple correlation. Where only the four rapidh: measured fiber properties are included, both Pressley index and surface area become significant; Fibrograph mean length barely fails to reach significance; and upper-half mean length contributes almost nothing and even has a negative beta for 50 s . It is interesting to note that where fineness measurements are omitted and only Fibrograph and Pressley breaker measurements are included, upper-half mean length becomes more important than mean length. For environmental as well as for yarietal comparisons, surface area measurements in B_{2} become of increasing importance as yarn size is reduced.
In B_{y}, surprisingly high R^{2} values were obtained for varietal comparisons. For 365 only two measurements, Pressley index and upper-half mean length, account for 85 percent of the skein strength. Arealometer and other types of fineness measurements seem to be of litlle value. Where all seven fiber-property measurements are included, only 3 percent increase is obtamed for R^{2}. The unusually high h values in this group are atimbuted to adequate fiber length for good procesing and to most of the varieties having rather fine lint, and thus to differences in skein strength being largely controlled by differences in fiber strength. Where the four rapidly measured fiber properties are used alone, upperhalf mean length has a greater relative effect than mean length. Where only one Fibrograph measurement is used with Pressley breaker measurements, upper-half mean length is superior to mean length.

For environmental comparisons in subgroup B_{n}, the R^{2} values are not high. In only one instance is more than a third of the observed differences in skein strength accounted for. This is not surprising in viow of the compensating effects that environmental influences exerted on fiber properties as indicated by the simple correlation coellicients shown in table 4 (p. 14). Increased fiber length was significantly associated with decreased fiber strength. A higher percentage of thick-walled giber was associated with a shorter upher-half mean length but a longer mean length. Other emmensatory trends are indicated, although they fail to reach signifieance. Pressley index is the only property that makes a signifeant contribution to skein strength for all thre counts. Surface area becomes an important centributor as yarn size becomes smaller. For envirommental afterences, mean length
appears to be superior to upper-half mean length, in contrast to the condition tor varietal effects.

Using the four rapidly measured fiber properties, the regression equations recommended for estimating skein strength of carded yams spun on regular-duaft equipment are:

Amonk samples averaging atout an inch or less for upper-hat mean lengh and from which the finest practicable yarn count is 50s -

1. Among varieties at a given location where Arealometer, Fibrograph, and Pressley breaker data are avaibubte:

$$
\begin{aligned}
& 20 \mathrm{~s}=5.7 \mathrm{SCHM}+64.07 \mathrm{ML+7.03} \mathrm{SA}+7.59 \mathrm{PI}-39.3 \mathrm{~S} \\
& 36 \mathrm{~s}=10.74 \mathrm{CHM}+32.16 \mathrm{ML}+5.16 \mathrm{SA}+4.65 \mathrm{PI} 38.06 \\
& 50 \mathrm{~s}=10.66 \mathrm{C}^{\prime} \mathrm{HM}+27.37 \mathrm{ML}+6.05 \mathrm{SA}+2.32 \mathrm{P}-40.74 .
\end{aligned}
$$

2. Among samples representiag different growth conditions for a given variety where Arembeter, Fibrograth, and Iressley breaker data are asailable:

$$
\begin{aligned}
& 2.2 \mathrm{~s}=1.26 \mathrm{CHM}+32.69 \mathrm{ML}+5.93 \mathrm{SA} \div 5.96 \mathrm{PI}+6.61 \\
& 36 s=\quad 5.49 \mathrm{CFM}+19.51 \mathrm{ML}+4.59 \mathrm{SA}+4.00 \mathrm{P} 1-15.21 \\
& 50 \mathrm{~s}-\mathrm{-} .09 \mathrm{UHM}+23.24 \mathrm{ML}-5.14 \mathrm{SA}+2.91 \mathrm{Y} 1-1 \mathrm{~T} .41 .
\end{aligned}
$$

Among samples averaging more than I inch for upper-half mean length and from which a yarn eount of 60 s is praticable

1. Amontr varieties at a given lowation where -
(a) Arealometer, Fibrowraph, and tressley breaker data are avaluble: $22 \mathrm{~s}-71.16[\mathrm{HM}+2 \mathrm{~S} .50 \mathrm{ML}-4.39 \mathrm{SA}+12.16 \mathrm{PI}-76.59$ $36 \mathrm{~s}-42.60 \mathrm{CHM}+20.02 \mathrm{ML}-1.26 \mathrm{SA}+7.29 \mathrm{Pl}-60.26$ $60 \mathrm{~s}-2 \mathrm{~N} .63 \mathrm{~S} \mathrm{HM}+9.0 .1 \mathrm{ML}+0.21 \mathrm{SA}+4.10 \mathrm{PI}-43.85$.
(b) Fibrograph and Pressley breaker data only are available: 23s-s5.4 :HM +10.22 PI -81.28 $36 \mathrm{~s}=5.432(\mathrm{HM}+7.40 \mathrm{PI}-60.00$ $60 \mathrm{~s}=34.65 \mathrm{H}$ H1 $+4.18 \mathrm{PI}-40.34$.
2. Among samptes representing dilferent growth conditions for a given variety where ${ }^{4}$
(a) Areabmeter, Fibrograph, and Pressley breaker data are awaiable: $23 \mathrm{~S}: 19.00 \mathrm{LHM}+37.61 \mathrm{ML}+3.95 \mathrm{SA}+6.16 \mathrm{PL}-7.68$ $36 \mathrm{~s}=12.26 \mathrm{CHM}+33.32 \mathrm{ML}+5 . \mathrm{S}^{2} \mathrm{SA}+4.52 \mathrm{PI}-39.62$ $60 \mathrm{~s}=1.31 \mathrm{CHM}+23.63 \mathrm{ML}+5.32 \mathrm{SA}+2.51 \mathrm{PI}-30.47$.
(b) Fibrograph and Pressley breaker data only are available:

29 s -202.ss CHM $+33.62 \mathrm{ML}+5.57 \mathrm{PI}+6.10$ $36 \mathrm{~s}-18.0 \mathrm{~S}$ L $14 \mathrm{M}+27.39 \mathrm{ML}+4.09 \mathrm{PI}-19.3 \mathrm{~s}$ $60 \mathrm{~s}:=6.6 \mathrm{l}$ CHAI $+15.20 \mathrm{ML}+2.12 \mathrm{PI}-11.96$.
Before leaving group B , attention might be called to the differances in the equations for corresponding yarn cotnts, either varietal or envirommental comparisons, of subgroups B_{1} and B_{2}. Appendix tables show similar subgroups, distinguished chiefy by grouping of varieties differing in ther length and associated fiber characters. These and other data shown here or available in the bureau files emphasize that while for general purposes equations sufficiently comprehensive to include the majority of the common upland varieties are very much needed, individuals or organizations that are interested in a limited group of varieties-for example, very short, moderately short, moderately long, or long-staple raricties-might well be justified in establishing special equations based on variations within the group of especial interest instead of relying upon more generalized equations. It is obvious that the relative weightings for fiber length and fiber strength, for example, would change for groups in which either property was limiting. In a group where fiber length was at or near the minimum for the yarn in question, skein-strength differences would not be closely related to fiber-strength differences. If, by contrast, a group was composed of sarieties in which fiber length was such
that slippage of fibers rarely occurred when the yarn ruptured, fiber-strength differences would be of especial importance.

The relative importance of different fiber properties varies when varieties are grouped according to fiber length or the highest count that is considered practicable for the variety, as shown in figure 1.

COUNTS
Figure 1.-The relation of fiber properties to skein strength in samples that differ in fiber length, based on the finest count of carded yarns considered practicable.
This graph shows that the differences in skein strength accounted for by differences in fiber properties are based chiefly on subgroups B_{1} and $\mathrm{B}_{\text {. }}$. To some extent the graph is modified by taking into consideration some of the smaller groups that are included in the Appendix.

This figure shows that where one is especially interested in a group of varieties that differ little in fiber length, more precise predictions may be obtained by using specially adapted formulas, as, for example, those derived from B, for short-staple varieties or growths or those from $B_{\text {. for }}$ longer staple varieties and growths, instead of the more generalized formulas that cover a wide range of varieties, as those given for group A.

Combed Yarns

The combed-yarn samples here dealt with represented crops in the years 1941 to 1946, inclusive. Samples from crops for 1941 to 19.4 were processed on regular-draft spinning equipment, by using a self-weighted middle spinning roll. The 1945-46 samples were processed on long-draft spimning equipment.

Standard-draft roving equipment was used in the processing of the $19.41-44$ samples, four processes being included as follows:

Slubber, intermediate, fine, and jack. With the 1945-46 samples, however, only two processes of roving were used. One of these is the slubber, which is now long dratt, and the other is the jack, which still is standard draft. Combed yarn data have been accumulated more slowly than cardel yarn data. The fiber and spinning results that have so far been analyzed from lots processed into combed yams are, with the exception of those shown in appendix tables 27 to 29 , limited to those listed under group C . The fiver data are not comparable to those that are emphasized for groups A and B in that the fiber measurements, with the exception of the Pressley index, are not those that can be made rapidy. It is expected that within the near future the number of samples on which Fibrograph and Arealometer measurements are arailable will be inereased to such an extent that regression equations similar in relability to those presented for groups A and B may be established. Meanwhile, it may be of interest to examine the somewhat meager data that have been accumulated.

Group C includes sea-island, American-Egyptian, and longstaple upland varieties that were spun from 1941 to 1945, inelusive. The 190 samples represent 44 station years and 146 withinstation observations for judging varietal effects, and 68 varieties and 122 within-variety observations for estimating environmental inthences. The skeinstrength measurements and the fiber-property measurements were made in the laboratories of the Cotton Branch, Production and Marketing Administration. Some of the samples have one or more of the X-ray angle, Fibrograph, or Arealometer measurements, bat the data seem too fragmentary to justify making several subgroupings. especially in view of the fact that Fibrograph, Arealometer, an! X-ray data are curently being systematically obtained en samples going into combed yams. The estimated round bunde or Chander bumfle strength was ased as reported, whereas the unconverted Pressley indexes wore used for all of the other groups analyzed in this report.

In view of the fact that the seatistand samples and many of the long-staple uphand samples were grown in the Coastal Plain of the Southeast, attention is called to the possibility that group C as a whole may have suffered from biological deterioration to a somewhat greater extent than groups A and B, although the fiber samples were usuady harvested as promptly as weather would pemit.

SfMPLE CORRELATIONS

The simple correlation cocficients for group C are shown in table 7 . All of the fiber properties, with the exception of percentage of thick-walled fibers, were found to be highly correlated with skein strength for all three yam counts for varietal comparisons. For envirommental differences, however, only weight per theh gave a signifeant coefficient with skein strength for all three counts. For 100) the mean tength coefficient reached significance and for 60 s and Sos closely approached significance. Upper quartile length gave a significant coefficient, with each of the other fiber properties for varictal comparisons. For environmental
comparisons the coefficient for upper quartile and mean length was the highest coefficient obtained in group C. Upper quartile length and estimated Chandler bundle strength association changed from a significant positive to a significant negative relation in comparing varietal and environmentally induced differences. The same trend is apparent for mean length and fiber strength. The significant negative relations for weight per inch and mean length and for weight per inch and fiber strength for varjetal comparisons almost disappear for environmental differences. There are two significant coefficients involving percentage of thick-walled fibers-a very high positive value for relation to weight per inch in both varietal and environmental comparisons and a significant negative value for relation to upper quartile length as affected by varietal influences.

Table 7.-Simple comrelation coefficients for varietal (withinstation) and environmental (within-variety) comparisons for group C

${ }^{1}$ The identity of the symbols used for the variates is as follows: $60 \mathrm{~s}, 80 \mathrm{~s}$, and $100 \mathrm{~s}=$ skein strength of $60 \mathrm{~s}, 30 \mathrm{~s}$, and 100 s combed yarns, respectively; $\mathrm{UQL}=$ upper quartite length; $\mathrm{M}=$ mean length; $\mathrm{CBS}=$ Chandler bundle strength converted from Pressley index; WI = weight per inch; and TW = percentage of thick-walled fibers.

* $=$ Correlation coefficient significant at odds of $99: 1$.

multiple correlations

For those who may wish to solve additional regression equations for group C, the mean values for the various properties and the variances are given in table 8.

The contribution of fiber properties to the skein strength of combed yarns as determined by multiple correlation studies for group C is shown in table 9.

Table 8.-Mean values for skein strengths and fiber properties of the 190 samples in group C, and the variances for varietal (within-station) and environmental (within-variety) effects

Varinte	Means	Variance	
		Varjetal comparisons	Environmental comparisons
Skein strength of 60s..	47.15 pounds......	2,354.1758	1,824.3668
Skein strength of 80s............	31.91 pounds,..........	1,443.3927	1,047,1995
Skein strength of 100s...........	23.32 pounds..... ...	953.5044	564.50 s 1
Upper quartile length...........	$1.53 \overline{5}$ inches.........	. 9333	. 3613
Memm length..............	1.222 inches.........	.6.402	. 3909
Estimated tensile strength...	$85.761,000 \mathrm{lb} .$	5,810.0081	4,139,4266
Weight per inch...................	3.048 micrograms	12.4399	5.4731
Thick-walled fibers................	72.95 percent	2,994.4771	2,176.6382

For varietal comparisons, 80s gave the highest R^{1} values slightly more than 85 percent of skein strength being accounted for by four fiber properties-mean length, fiber strength, weight per inch, and upper quartile length-which are credited with 36 , 26, 21, and 16 percent, respectively. Fiber tensile strength becomes of decreasing importance, whereas fiber weight per unit length becomes of increasing importance as yarn size decreases. It is interesting to note that upper quartile length is indicated as an tumportant fiber measurement for evaluating spinning performance. Actually it has a negative beta that attains significance for cos and 80s, but if it is omitted from the equation R^{2} is little aftected.

Particular attention is directed to the comparatively high R^{2} values obtained by the use of only two fiber properties - mean fiber length and fiber strength characterizing different varieties. These values are very similar to the results shown in table 6 for subgroup B_{2}, except that in the latter instance upper-half mean length of the Fibrograph was used. Apparently for estimating approximate varietal differences in skein strength, the mean length fiber sorter method from the array or the more rapidly obtained upper-half mean length of the Fibrograph may be used in conjunction with the Pressley index. Adding a third fiber property, fineness as measured by weight per inch, increases R^{2} by 4,6 , and 8 percent for $60 \mathrm{~s}, 80 \mathrm{~s}$, and 100 s , respectively. While this increase is not large, it does indicate that among long-staple strains, varieties, and species, fiber length and weight-per-unit length are by no means perfectly correlated. It will be recalled that in table 7 the coefficients for mean and upper quartile length with weight per inch were -0.44 and -0.66 , respectively.

For environmental comparisons, group C differs greatly from groups A and B. Environmentally induced differences in fiber strength and fiber length have little or no association with differences in skein strength. Of the five properties included, only two, weight per inch and percentage of thick-walled fibers, make sig-

TABLE 9.-Contributions of fiber properties to skein strength of combed yarns as determined by multiple correlation studies, group C

Fiber properties, R, and R^{2}	Correlation results with carded yarns: Varietal comparisons								
	60s			80 s			100 s		
	Betas		Multiple correlationvalue(Betas		Multiple correlation value	Betas		Multiple correlation value
	Value	Relative effect		Value	Relative effect		Value	Relative effect	
		Percent 12			Percent, 11			Percent 9	
Upper quartile length. Mean length	${ }^{-0.23}$	12	$-0.20 *$ $.54 *$	11 28 28		${ }^{0.17}{ }^{\text {. }}$		
Chandler bundle strength	. $51{ }^{*}$	26	+................	. 48^{*}	25		.40**	22	
Weight per inch....	-.47*	25	…...	$.52^{*}$.18	27 10		. 588^{*}	31 13	-
Thick-walled fibers. R.	.20*	10	0.88	.18*	10	0.94	.24*	13	
R^{2}			. 78			. 88			. 80
Upper quartile length	-.32**	18	$-.29 * *$	16	-	$-.28 * *$	16	
Mean length.........n.	${ }^{.65 *}$	35 28	…..............	.67**			. 644^{*}	36 24	……...........
Weight per inch...........................	$-.35^{*}$	19		-.40*	21		-. 43^{*}	24	88
$\stackrel{R}{R^{2}}$			$\begin{aligned} & 87 \\ & 76 \end{aligned}$	…..............	…................	$\begin{aligned} & .93 \\ & .86 \end{aligned}$	$\begin{aligned} & .88 \\ & .77 \end{aligned}$
Mean length	.44**			. 48^{*}			. 45^{*}	- $\quad 38$	
Chandler bundle strength...............	. $50{ }^{*}$	42	…….........	. 47^{*}	38 24	$.40 *$ -33^{*}		\cdots
Weight per inch. R	-.23*	20	. 86	-.30*	24		-.33*	28	87
			74			. 84			. 75
Upper quartile length Chandler bundle strength	$\begin{aligned} & .45^{*} \\ & .51^{*} \end{aligned}$	$\begin{aligned} & 46 \\ & 54 \end{aligned}$...	$\begin{aligned} & .53 * \\ & .31^{*} \end{aligned}$...	$.42^{*}$	$\begin{aligned} & 45 \\ & 55 \end{aligned}$	77
- \sim_{R}			. 78			. 75			$\begin{array}{r} 77 \\ .59 \end{array}$
Mean length	.53*		. 60	.60*		. 56	.58*		$.59$
Chandler bundle strength.....	. 55^{*}	51		. $54 *$	47		. 47^{*}	45	
	 88			. 62

Correlation results with carded yarns: Environmental comparisons

Fiber properties, R, and R^{2}	60s			80 s			100s		
	Betas		$\left\lvert\, \begin{gathered} \text { Multiple } \\ \text { correlation } \\ \text { value } \end{gathered}\right.$	Betas		Multiple correlation value	Betas		Multiple correlation value
	Value	Relative effect		Value	Relative effect		Value	Relative effect	
		Percent 10		-0.06	Percent 4		-0.20	Percent 12	
Mean length	-. 24	15	…...............	. 15	10		. 32		
Chandler bundle strength	. 07.	4	$\cdots \cdots \cdots$.	-. 06	4 49	-. $71{ }^{*}$	$\begin{array}{r}3 \\ 42 \\ \hline\end{array}$	
Weight per inch....	$-.67^{*}$	42 29	\cdots	$-.72^{*}$.48	49 39		$-.44^{*}$	26	
Thick-walled fibers.........	.47*	29	0.64	. 48	33	0.65			0.67
R^{2}			. 41	-	…...........	. 42			45
Upper quartile length	$-.50 *$	29	…	-. 42^{*}	${ }_{26}^{26}$		*		
Mean length..........	. 67^{*}	38 9 ${ }^{\text {9** }}$		${ }^{13}$		
Chandler bundle strength............	-. 46	9 2415 $-.45^{*}$		${ }_{-.47^{*}}$	26	
Weight per inch. R	-.42*	24		-. 45^{*}	28		-.47*	26	
R^{2}..			. 31			. 32			. 37
Mean length...	24*	$^{23 *}$		\cdots	$.27^{*}$.14		-.............
Chandler bundle strength............	-. $39 \times$		-. ${ }^{.46}$	$\begin{aligned} & 20 \\ & 52 \end{aligned}$	…..............	$-.44^{*}$		
Weight per inch. $R_{R} .$	-.39*	49	49 24	-. 43^{*}	52	. 52		52	.54 .29
Upper quartile length	. 12		24	. 14			14		
Chandler bundle strength......	. 17	59		.17	55		. 14	50	
			$\begin{aligned} & .18 \\ & .03 \end{aligned}$ 04			. 03
Mean length	28*			.28*			.$^{.31 *}$		
Chandler bundle strength....	. 21	43	. 30	.21		. 30	. 19		. 32
			 10

[^5]nificant contributions to skein strength, as shown graphically in figure 2.

COUNTS
Figuze 2.-Percentage of skein strength for combed yarns accounted for by the various fiber properties for long-staple upland, sea-island, and Ameri-can-Egyptian varieties. Compare with figure 1 for relative effects of fiber fineness, length, and strength.

The futility of attempting to understand the relationships of fiber and yarn properties without separating varietal and environmental influences is even more clearly evident from table 9 than it is from tables 3 and 6. Correlation studies based on over-all effects, a blend of varietal and environmental influences, in group C would lead to the erroneous conclusion that fiber fineness is the all-important fiber property in determining the skein strength of combed yarns and that fiber length and strength are relatively unimportant. This may be readily visualized from figure 2. If the lot being studied represented largely environmental differences, varietal relationships would be even further obscured. By separating the two, the relationships take on real meaning-the breeder of long-stapled cottons may be informed that the most important properties with which he need be concerned are fiber length and strength and that if he is unable to obtain weight-perinch determinations his progress in breeding should not be too much affected.

The spinner interested in different growths of a particular variety, however, might find it advantageous to spot check his samples for weight per inch and percentage of thick-walled fibers, or, from the standpsint of speed and economy, to obtain Arealom-
eter determinations. It is rather surprising, in view of the fact that many of these samples came from the Coastal Plain where weather damage prior to harvest sometimes occurs, that environmental differences in fiber strength was an unimportant-actually a negative-contributor to skein strength. In commercial lots where it is impractical to harvest the cotton as promptly as was done for these studies, fiber deterioration might assume greater importance than the studies indicated.

If Fibrograph and A realometer data are unavailable, the following regression equations may be of interest for estimating skein strength of combed yarns.

1. Among varieties at a given location -
(a) Array, estimated Chandler strength, weight per inch, and pereentage of maturity data are available:
$60 \mathrm{~s}=-12.73 \mathrm{UQL}+33.85 \mathrm{M}+0.36 \mathrm{CBS}-7.14 \mathrm{WI}+0.19 \mathrm{TW}+2.65$ $80 \mathrm{~s}=-8.01 \mathrm{UQL}+25.41 \mathrm{M}+.24 \mathrm{CBS}-5.37 \mathrm{WI}+.13 \mathrm{TW}+.21$
$100 \mathrm{~s}=-6.35 \mathrm{UQL}+17.64 \mathrm{M}+.16 \mathrm{CBS}-5.06 \mathrm{WI}+.13 \mathrm{TW}+1.56$.
(b) Array and estimated Chandler strength only are available:
$60 \mathrm{~s}=35.68 \mathrm{M}+6.38$ CBS -29.38
$80 \mathrm{~s}=28.52 \mathrm{M}+.27 \mathrm{CBS}-25.94$
$100 \mathrm{~s}=21.68 \mathrm{M}+.19 \mathrm{CBS}-19.67$.
\therefore Among samples representing different locations or places of growths for a given variety--
(a) Array, estimated Chander strength, weight per inch, and percentage of maturity data are available:
$60 \mathrm{~s}=-11.16 \mathrm{UQL}+16.73 \mathrm{M}+0.05 \mathrm{CBS}-12.30 \mathrm{WI}+0.43 \mathrm{TW}+46.18$ $30 \mathrm{~s}=-3.21 \mathrm{UQL}+7.94 \mathrm{M}+.03 \mathrm{CBS}-9.89 \mathrm{WI}+.33 \mathrm{TW}+30.38$ $100 \mathrm{~s}=-7.83 \mathrm{UQL}+12.00 \mathrm{M}+.02 \mathrm{CBS}-7.25 \mathrm{WI}+.22 \mathrm{TW}+25.03$.
(b) Array und estimated Chandler strength only (regression equations for the (b) set were not computed for the reason that the l^{2} values were too low to be of predictive interest).
In appendix tables 27 to 29, an indication is given as to the relation of Fibrograph, Arealometer, and Pressley breaker measurements to combed yarn skein strength, although the group studied is too small to give a satisfactory regression equation. Additional data for enlarging the group are now being obtained from the 1947 crop. By the time this bulletin appears in print, the reader interested in combed yarns may be able to obtain from the writer a more reliable regression equation based on rapidly measured fiber properties.

YARN-APPEARANCE GRADE FOR CARDED AND COMBED YARNS

The writers have devoted less attention to yarn-appearance grade than to skein strength. Enough has been done, however, to establish the fact that varietal differences in fiber length and fineness are significantly associated with differenees in yarn-appearance grade. Differences in fiber properties induced by environmental factors also exert an influence on yarn-appearance grade. In general, however, the multiple correlation coefficients that have been obtained in these studies tend to be low. This is attributed to several possibilities, chief of which are (1) the determination of yarn-appearance grade by visual comparisons with check standards, which affords nore opportunity for operator bias or error in grading than does reading from a mechanical instrument, and (2) the influence of seed-coat fragments and other foreign matter on
nep formation, as shown by Pearson (7). Harrison (5) also showed that seed-fuzz fragments, very immature fibers, tapering fibers, and other fiber irregularities that are difficult to evaluate except by detailed microscopic studies are involved in nep formation. Neither the kind nor the quantity of impurities were taken into consideration in the present study, which is primarily concerned with the role of heredity and environment in determining or modifying the readily measured fiber properties.

Yarn-appearance studies discussed here were made on group A as representing carded yarns and group C for combed yarns. The reader may find it helpful to refer back to the descriptions of these groups (p. 7 and p. 25) and the fiber-property relationships (p. 8 and p. 26) in attempting to evaluate the relation of fiber properties and yarn-appearance grade.

SIMPLE CORRELATIONS

The simple correlation coeflicients for yarn-appearance grade and fiber properties are shown in table 10.

For group A (carded yarns), it will be noted that varietal differences in surface area, in upper-half mean length, and in Pressley index are directly and significantly associated with varietal differences in yarn-appearance grade. The direct association with mean length faileci to reach significance. For environmental differences, however, there is a significant reversal in relationship of yarn-appearance grade to Pressley index and both mean length and upper-half mean length. Surface area remains positive and is about equally high for both varietal and environmental effects.

In group C, combed yarns, tour out of five of the fiber measurements shown are indicated in table 10 as having a significant association at odds of $99: 1$, with varietal differences in yarn-appearance grade. Both weight per inch and percentage of thickwalled fibers show a very high negative association, while upper fuartie length shows an almost equally high direct relation to yam-appearance grade. The positive coeflicient for mean length is considerably lower but easily reaches significance. For environmental eflects, fiber-length differences are not associated with yarn-appearance grade. The coefficients for weight per inch and percentage of thick-walled fibers are significant, although of much lower value than those for varietal influences. The tendency for a higher Pressley index to be directly associated with a larger, that is, a poorer, yarn-appearance grade among varietics in both groups A and C is apparently due to some indirect relationship, since the betas (table 11) show little tendency for heritable fiber strength to affect yarn appearance. For ensironment the negative coefficient in group A is supported by a significant beta. Conceivably this would be an index of weathering or biological deterioration, factors which would lead to fiber breakage in processing and poor yarn appearance.

MULTIPLE CORRELATIONS

Table 11 shows that in group A, upper-half mean length and surface area differences tor varieties are significantly associated with yarn appearance, the two properties accounting for about 85

Table 10.-Simple correlation coeffcients for varietal (withinstation) and environmental (within-variety) comparisons inrolving yarn-appetrance grade and fiber properties for group A, carded yarns, and group C, combed yarms

Group A, carded yarns

Variate ${ }^{\text {d }}$	Varieta!	Environ- mental	Variate ${ }^{\text {a }}$	Variecal	Environmental
YA with UHM	0.36*	-0.16*	YA with UQL	$0.57 *$	0.10
YA with ML...	. 12	-.24*	YA with M...	.26*	-. 01
Ya with SA....	.41*	.42*	YA with CBS	. 17	. 20
YA with PI......	.18*	-.17*	YA with WI.	$-.67^{*}$	-.32**
YA with XR..,...	. 05	-. 05	YA with TW.	-.67*	$-.29^{*}$

$1 \mathrm{YA}=y a r a-a p p a r a n c e$ grades, converted to numerical values: $1=\mathrm{A}+, 2=\mathrm{A}$, $3=\mathrm{A}-, 4=\mathrm{B}+, 5=\mathrm{B}, 6=\mathrm{B}-, 7=\mathrm{C}+, 8=\mathrm{C}, 9=\mathrm{C}-, 10=\mathrm{D}+, 11=\mathrm{D}, 12=\mathrm{D}-$; for group A, the code for yarn-appearance grade represents the average for 22 s and 36 sarded yarns; for group C , where all counts were common to all sumples, the code represents the average grade for 60 s , SOs , and 100 s .

The identity of other symbols used for the cariates is as follows: UHM = Fibrograph apper-half mean length, ML = Fibrograph mean length, SA =surface area or Arealoneter measurement, PI \Rightarrow Pressley index, $\mathrm{ZR}=\mathrm{X}$-fay angle, UQL $=$ upper gurtile length (array), $\mathrm{M}=$ mean length (array), $\mathrm{CBS}=$ estimated Chandler bundle strengh, $\mathrm{VI}=$ weight per inch, TW $=$ percentage of thich-walled (mature) fibers.

* $=$ Correlation coefficient signiffant at udds of $99: 1$.
percent of the differences that were attributed to length, fineness, and l'ressley index. An R^{2} value of 0.23 percent admittedly is not great, but from the breeder's standpoint it is of considerable importance to be able to pin down two properties upon which he can work for improving yarn appearance of varieties that are used for making carded yarns. These results should also be interpeted as a challenge to the fiber technician to provide further improvements in measuring fineness. In group C , an R^{2} value of 0.64 percent has rery real significance, leaving a little more than one-third of the varictal variability unaccounted for. Here, as in group A, most of the variability accounted for is attributed to upper quartile liber length and fineness, upper quartile being considered as roughIs equivalent to upper-half mean length and weight per inch and pereentage of thick-walled fibers as analogons to sarface area.

For envirumental differences, the R^{-}value indicates that about onc-third of the total rariability in yarn-appearance grade for group A was accounted for by five fiber-property measurements. Pressley index ranked first but was closely followed by surface area and X-ray angle. No very good exphamation is apparent for the significance of the X-ray angle reationship. Possibly growth condifions that resulted in the large X-ray angle also resulted in a well-developed fiber wall and a condition that was not eompletelymeasured by the Arealometer. Certamly the beta for surface area assumes greater relative importance when X -tay angle determinations are omitied, although the h^{\prime} value itsolf is reduced by abont 6 percent. It is also possible, as pointed out by Berkley and Barker (a), for the larger angle of orientation to be associated with better flexibility of the fibers and less britteness during processing. The need for further study on this point is clearly

Table 11.-Contribution of fiber properties to yarm-appearance grade for group A, carded yarns (22s and S6s), and for group C, combed yarms (60s, 80s, and 100s)

Group A
Correlation results

Fiber $\underset{R, \text { and } R^{2}}{\text { propertes }}$ \square Environmental comparisons

R, and ${ }^{2}$	Betas		Multiple correlation value	Betas		Multiple correlation value
	Value	Relative effect		Value	$\begin{gathered} \text { Relative } \\ \text { eifect } \end{gathered}$	
	$0.30 *$	Percent			Percent	
ML	-. 08	3		-.24	${ }_{14}^{8}$	
SA .o..29*	31		.43*	25	-...............
	. 13	14		-.49**	29
XR_{R}	14	15		-.38*	23	
R^{R}			$\begin{array}{r} 0.48 \\ .23 \end{array}$			0.57 .32
LHM		45		-. 10	11	
	-.08 .	11		-.14.	15
SA PI	$.30{ }^{*}$	42		-40**	44	
P1 ${ }_{R}^{R}$. 01	2		-.27*	30	
$R^{2} \ldots \ldots$ 23			. 26

Grour C

UQL	0.54*	38		0.26	26	
M.	-. 23	16		-. 17	18	
CBS	-. 06	4		. 21	21	
WI	-. 20	14		$-.21$	21	
TW_{R}	$-.40^{*}$	2 S		-. 13	13	
$\underset{R^{2}}{R}$			0.80			0.42 .18
UQL	. $51{ }^{*}$	39	. 64			
M.	$-.21$	16	...			
WI	-. 18	14				
TW	-.41*	31				
$\stackrel{R}{R}$. 80			
$R^{\mathbf{2}}$. 64			

[^6]indicated. In group C, environmental influences in yarn appearance are not closely, or perhaps consistently, associated with the observed differences in fiber-property measurements. The R^{2} value is very low, and none of the betas reached significance. Since R^{2} was only 0.18 , it seems scarcely worth while to speculate on interpretations other than to conclude that for combed yarns environmentally induced differences in yarn appearance and specific fiber property are not closely related.

Regression equations which may be of interest are-

1. For yarn-appearance grade, average of 22 s and 36 s , of singles carded yarns-
(a) Among varielies at a given location:
$\mathbf{Y} \mathbf{A}=4.74 \mathrm{~L} \mathrm{HM}-1.08 \mathrm{ML}+1.09 \mathrm{SA}+0.02 \mathrm{PI}-2.09$.
(b) Among samples representing different growth conditions for a given variety:
$\mathrm{YA}=-1.38 \mathrm{UHM}-1.52 \mathrm{ML}+1.54 \mathrm{SA}-0.51 \mathrm{PI}+7.98$.
2. For yarn-appearance grade, average of $60 \mathrm{~s}, 80 \mathrm{~s}$, and 100 s , of singles combed yarns-
(a) Among varieties at a given location:

YA $=9.05 \mathrm{UQL}-4.53 \mathrm{M}-0.90 \mathrm{WI}-0.13 \mathrm{TW}+10.97$.
(b) Among simples representing ditierent growth conditions tor a given variety:
$\mathrm{YA}=4.5 \mathrm{~L} \mathrm{~L}(\mathrm{Q} 1-2.8 \mathrm{M}-0.92 \mathrm{WI}-0.03 \mathrm{TW}+8.77$.

LI'l'ERATURE CITED

(1) Barkfir, H. D.
1946. ('OTHON FHER AND SPINNING FIOHERTIES AS INFLUENCED $15 Y$ VARIETY AND GRONTIL CONDITIONS, 19-15 COOPERATIYE STUDIES. U. S. Bur. Plant Indus., Soils, and Agr. Engin. 20 pj. [Processed.]
(2) - and Berkley, E. E.
1946. FIBER AND SPMNSLNG PROPERTLES OF CORTON, WTHL SDECIAL REFERENCE TO VARIETAL AND ENVIRONMENTAL EFFECTS. U, S, Dept, Agr. 'Jeci. Bul. 931, 36 pp., Hlus,
(3) Berkley, E. E., and Barker, H. D.
1947. What llakes corron Goon? In Scionce in Farming, U, S. Dept. Agr. Yearbook 1943-1947: 369-372. Washington.
(4) Wondvard, O. C. Bakker, H. D., and others.
1948. Sthucture, betermined im X-ray, and strength of cotton fiber. L. S. Dept. Agr. Tech. Bul. 949, 64 pp., ilius.
(5) Harrison, G. J., and Craig, E. E.

19at. cotton fieer imperrections and their probable zelation to yand qualty. Teatile Res. Jour. 15: 247 - 256 , illus.
(6) Hertrl., K. L.
19.40. a hethod of fibbe-length analysis using the fibrograpit. T'extile Res. Jour. 10: $10-525$, illus.
(7) Pearson, N. L.
1944. Neps in cotton yarns as related to variety, location, and seasor of growtil. U. S. Dept. Agr. Tech. Bul. 87S, 18 pp., illus.
(8) Pfelffenbebcir, G. W.
1046. determining fiber finfenfss by means uf tile ar permeameter. Textile Res. Jour, 16: $308-3 d\}$, illus.
(9) Pope, O. A., and Waze, J. 0.
1045. Efrect of varbety, location, and season on osl, protern,
 C. S. Dept. Agr. Tech. Bul. 903 , 41 pp., illus.
(10) I messlex, E. H.
1942. A cotron fiber stikengrit tester. Amer. Soc. Testing Mater. Bul. 118: 13-17, illus.
(11) SNedecor, G. W.

19:fi. Statistical methods. Ed. 4, 485 pp., illus. Ames, Iowa.
(12) Sullivan, R. R., and Hertel, K. L.
1040. strpace per gram of cotyon mbres as a measure of fibre fineness. Textile Res. Jour. 11: 30-38, illus.
(13) Wallace, H. A., and Snedecor, G. W.

19al. <obleflation and machine calculation. Iowa State Col. Off. Pub. 30 (4), 71 pp .
$W_{\text {ebs, }}$ R. W., and Rtclandson, II. B.
1945. RELATLONSHIPS BETWEEN PROPERTIES of cotton fimers and strength of carded yabns. preldminary report. U. S. Dept. Agr. OIf. Market. Services, War Food Admin. 58 pp., illus. [Processed.]

APPENDIX
 (TABLES 12 TO 29)

The appendix tables, which are briefly described on page 6 and elsewhere in the text, are arranged in order of fiber-length groups, or rather in order of the smallest yam count into which the samples were spun. The sequence of the text references to the appendix tables, therefore, may not be consistent with the order of their listing.

Table 12,-Simple corveletion cocflicients for rarictal effects of fiber and yarn data on 30 samples' from the 10.46 crop spun by the loug-dratt rocing and spiming proeess into carted yarns of $14 \mathrm{~s}, 22 \mathrm{~s}, \mathrm{and} 36 \mathrm{~s}$

Fituer ins yarn propertles	Cipper hall meran	Mrat lewith	Surfine area	t'ressley index	$\begin{aligned} & \text { X-ruy } \\ & \text { utgele } \end{aligned}$
Skein strength of 1.4t......	$0.55{ }^{\circ}$	0.45	0.16	0.20	-0.19
Skein strumptio of the57*	. 46	-1!	$\therefore 7$	- 2.21
Skein streugth of tix. .inu.	6\%*	. $48{ }^{\circ}$. 36	-09	$-.04$
[1amerthat mean leakth...		. $88{ }^{\circ}$	-49)	-. 30	. 26
Mapan lemeth12	-	.20
Serface atera				-5.5*	. 53^{*}
E'resuley fidex..					$-.7)^{*}$

[^7]Table 13.-Mean cahes for fiber and yarn propertics and variances for rurictal effecta of tiber and yarn data on 36 samples : jrom the 1046 crop span by the tong-diajl rocing and spinming process into carded yarns of L4s, 2iss, and 36 s

Variate	Means	Variance
Skrin 4 (raygh of t-43...	[161.39 prounds	3,203.0823
Skern strenkth of	$9 \cdot 6.37$ prounds . . .	1,204,0,440
Sketri strathith of ifis	49.01 jomamds	482.3357
Ubatur-half taran lestath	.885 meh	.068.
Niesta limsth	. 700 bnth	. 05001
Surfare atre:	2.372 sturare centimetar mer militaran ...	1.0631
	6.708	5.1065
X-ris angli	34.5° -	274, 11.18

${ }^{1}$ Site footnote 1 , table 15.

Table 14.-Contribution of fiber properties to skein strength, as determined by maltiple correlation studies of varietal effets, of fiber and yarm data on sf samples: from the 1946 crop spun by the long-draft roving und spimming process into carded yarus of $14 \mathrm{~s}, 22 \mathrm{~s}$, and 36 s

${ }^{1}$ Ser fortnote f. table 12.
$\bullet=$ Significant at odds of D9: 1 .

Table 15.-Simple correlation coeffcients for uarictal effects of fiber and yarn date on 5 sumples' from the $1901-44$ crops spun by regular-draft process into carted yarms of $248,36 \mathrm{~s}$, an 4 4. 4 s

Fihty tund surn jrojerties	hatif mean	\1七ะท leagth	Surfuce 	Pressley inclex	N-ras arigle
	$0.60{ }^{\circ}$	$0.53{ }^{\circ}$	0.13	0.12	-9.10
Skein atrengit of 36s	. $50{ }^{\circ}$. 31.4	. 34	. 67	$-.07$
Skein stretugth of 4-ls	.17*	- 34	.40*	- .01	-. 01
Uppar-hati thean lewath		+82*	. 18	.05	$-.07$
Meant length..	-.07	.17	-. 08
Surfuce atreas.				-. $54{ }^{\text {e }}$. 14
Pressley index				-..6i3

[^8]Table 16.—Mean values for fiber and yarn properties and variances for varietal effects of fiber and yarn data on 57 samples ${ }^{1}$ from the 1941-44 crops spun by regular-draft process into carted yarns of 22s, 36 s , and 443

Yurhate	Means	Variance
Skein atrenuth of 298.	00.53 prozads..	905.8834
Skein strenuth of 36i,	45.95 pounds..	930.8884
Skein strength of 4ia.		326.2001
Meanternxth...).	C.752 inch6791
Surfuce after...	2.733 suure centimeters per miligram.....	2.7785
Preanley Index	7.7.4 .	7.3668
X-ray angle	31.0°	272.7167

${ }^{4}$ Sen footsote 1 , table 15.

Table 17.-Contribution of fiber properties to shein strength as determined by maltiple correlation studies of varietat effects of fiber and yarn data on 57 stmples ${ }^{3}$ from the $1941-44$ crops spen by regular-dirat process into carded yarns of $22 \mathrm{~s}, 36 \mathrm{~s}$, and 4 s s

[^9]Table 18.-Simple correlation coefficienta for the varietal (within-station) athi environmental (zoithin-varieiy) effects of fiber and yarn data on 71 samples from the 1945 crop span by the long-draft roving and spinuing process into 22s and 368 carded yams. The third count spun was 50s, except for 9 samples that were spua into $44 \mathrm{~s}^{1}$

Vuriutea ${ }^{\text {a }}$	Coeffictenta		Variates ${ }^{\text {] }}$	Coefficients	
	Vurieta! dilferentes	Environmentis differenctsis		Vurieta! difierencos	Enviranmental differencea
228 with UHM.........	0.73 *	0.34	UHM with ML......	$0.76{ }^{\circ}$	0.02 "
22 s with ML,.............	.46"	$.40{ }^{+}$	JHM with SA	${ }^{15} 5^{\circ}$	-. 26.
22n with SA..............	-35\%	.08.	UHM with P! 21	. 44°
$228 \mathrm{with} \mathrm{Pl}^{2} \ldots \ldots$.	. 513^{4}	. 10^{*}	UHM with XP..........	. 01	.44*
22s with XR............	-. 28		ML with SA...............	-. 03	$-.38 \cdot$
S6s with UEIM...........	.71*	. 29	ML with PL,.............	.10	$-.34{ }^{\text {a }}$
3 lis with ML............	. 388°	. 313	ML with XR.14	. $4{ }^{\text {- }}$
	. $45^{*}{ }^{*}$. 07.
36 s with XR	-.16	-.17	PI with XR...............	-.882*	-.76*
50 a with UHM..........	.71**		SA with XR...............	. 33	. 03
50 s with M1L 39^{*}	. 30			
50, with SA.............	. $30{ }^{\circ}$	$\stackrel{22}{31}$			
508 with PL	-.37********	-.07			

1 The duta presented here ia accordingly limited to the two counta that were common to ull aamples. Tut samplea represent 20 stations, thus giving 51 within-station observations for cstimating varictal effasta. There were 22 dilferent atrains and varieties, giving 49 within-variety observationa for tatimating environmental influences.

 graph mean length; SA $=$ surface area or Arenlometer measurgment; PI a Pressley index; und XIR \quad X-ray anke.
${ }^{*}$ Signifizunt at odds of $19: 1$.

Table 19.-Mean mensurements jor fiber and yarn properties and variances for varictal and envivommental comparisons of fiber and yarn data on 71 samples from the 1945 crop spun by the long-draft roving and spining process into 22s and sas carded yaras. The third count span was 50 s , except for 9 stomples that were spun into 44^{\prime}

Variate	Means	Variance	
		Varletal compurisons	Envirotmental comparlsons
Skein strength of 239......	$102.00{ }^{\text {d }}$ pounda	2,651,0046	2,704.2200
Skein stretsth of 368.......	5.1.39 mounds	981.0000 599.7810	- 338.5293
Skein strongth of 50s.....	3.78 plunts	599.785 .1516	. 14.48
(toper-halr mean length....	. 748 inch.	.1115	. 28.19
Surfuce nrea..."....	2.758 sfuare centimeters.per milligram.,	3.0631	2.3396
Prrusley index.	6.272 1	8.6456 325.456	-9.1260
X-ray angle ...	$34.1{ }^{\circ}$... ${ }^{\text {a }}$	325,4656	213.1813

[^10]TABLE 20.-Contribution of fiber properties to skein strength as determined by multiple correlation studies of varietal and environmental effects of fiber and yarm data on 71 samples from the 1945 crop span by the long-draft roving and spinning process into 22s and 36 carded yarns. The thend count spun was 50 s , except for 9 samples that were spun into $44 \mathrm{~s}^{1}$

Table 21.--Simple correlation coeffeients for the varietal (within-station) and environmental (within-variety) effects of fiber and yarm data on 228 samples ${ }^{1}$ from the 1946 crop spun by the long-draft roving and spinning process into 22s, 36s, and 50s singles carded yarms

${ }^{1}$ The samples repregent 98 stations, thus giving 200 within-station observations for estimating varietal elfects. There werd 102 strains and varieties, or 127 within-variety observations for estimnting environ-
mental infuences.
:The identity of the symbols used for the variates is as follows: 223,363 , und 50 s a skein ar renuth of

 atght
${ }^{5}=$ Signficant ut odds of $99: 1$.

Table 22.-Mean measwcments for fiber and yarm moperties and varianees for varietal and environmental comparisons of fiber and yarn data on 228 samples ${ }^{2}$ from the 1946 crop spun by the long-draft roving und spinning process imto $22 \mathrm{~s}, 36 \mathrm{~s}$, and 50 s single carded yarns

Variate	Menns	Variance	
		Varictal comparisons	Envirommenin! comparisons
	117.71 pounds..		
Skein strength of 36s..........	63.72 pounds	$25,358.6465$ $8,907.9493$	$8,419.1484$
Skein strength of 509...........	43.29 pounds.4.	$8,907.1493$ $4,970.6829$	3,311.2280
Lpurr-latif mean length......?	1.077 inches.......	4,970.6829	1,736.5292
Mratnlenth -		. 5381	. 4923
${ }^{\text {Promsley index.... }}$ in	$\frac{7}{7.0} 88.8$ stuare centimaters fer milhigram.	7.8453	7.4414
x゙-ray tugha	35.85..............	61.7604 $1,683.0458$	$\begin{array}{r} 24.9818 \\ 564.4289 \end{array}$

[^11]Table 23.-Contribution of fiber properties to skein strength as determined by multiple correlation studies of varietal and environmental effects of fiber and yarn data on $22 S$ samples ${ }^{1}$ from the 1946 crop spun by the long-draft roving and spinning process into $29 \mathrm{~s}, 56 \mathrm{~s}$, and 50 s singles carded yams

[^12]Table 24.-Simple corvelation coefficients for the varietal (within-station) and environmental (within-variety) effects of fiber and yarin data on 157 samples: from the 1945 crop spun by the loug-draft roving and spinning process into 22s, 56 s , and 608 singles carded yarns

Variates ${ }^{\text {2 }}$	Coefficients		Variates ${ }^{\text {J }}$	Coeticients	
	Varietal dilferences	$\begin{aligned} & \text { Environ- } \\ & \text { mental } \\ & \text { differenees } \end{aligned}$		Vnrietal differencen	$\begin{gathered} \text { Environ- } \\ \text { mental } \\ \text { differencea } \end{gathered}$
2g with Ukidi...	$0.51{ }^{\circ}$.	0.32 *	UHM with ML.........	$0.68{ }^{*}$	0.93 *
	. 38°	${ }^{3} \times{ }^{3} 0^{*}$	UHM with SA..........	. 12.	-. 12
29s with Sd.. .. .i. $83^{\circ}{ }^{\circ}$	-	UHM with XR	-33	$-.40{ }^{\circ}$
22 wilh X18..	-.63*	06	UHM with XR........	-22	.60
			ML with SA..........	$-.23 *$	$-.23^{\circ}$
3 ss with UHM	. $49{ }^{*}$.37**	ML wilh Pl	$-.17$	-35**
369 with ML. 399°		ML with XR...	-. 09	. 51 *
368 with SA...	320	${ }^{17}{ }^{\text {a }}$			
	.830.	.364*	Pr with SA38**	. 06.
364 with XR	-.64*	. 04	PI with XR.............	-.82*	-.74*
60s with UHM.........	.54*	.46**	SA with XR...............	-.31*	.06
600 with ML..............	45°	${ }_{18}{ }^{4}$			
${ }^{60} 0$ with SA.....35 80°	${ }^{18}{ }^{18}$			
604 with PI. fily with	-.81****	. 110			

1 The samplea represent 24 atations, thus giving 133 within-station comparisona for eatimating varietal elfects. There were 29 strains and varieties or 128 within-variety observations for evaluating environmental influences.
${ }^{1}$ The identity of the aymbols used for the variates is us follows: 229, 36a, and $60 \mathrm{~s}=$ gkein gtremeth of
 graph mean length: $\mathrm{S} \lambda=$ yurfice areas or Arcalometer meugurement; PI $=$ Pressley index; und $\mathrm{XR}=\mathrm{X}$-ray ungle.
${ }^{-}=$Significant at odds of $99: 1$.

Table 25.-Mean measurements for fiber and yarm properties and variances for varietal and environmental comparisons of fiber and yarn data on 157 samples' from the 1945 crop spun by the long-traft roving and spinning process into

Variate	Means	$V_{\text {ariance }}$	
		Varjetul compurisons	Envitonmental compurisons
Skwin strength of 239.	11-1.98 prounds.	9,0657.6958	9,424.4079
Skein strength of $368 \mathrm{~s}$.	${ }^{62} .07$ prunds	3,215.0238	3,138,2165
Skein strength of B0s..c.....	31.13 pounds..........	1,180.7247	1, 1332.4604
Upper-halr mean length.....-	1.090 inches., -.-.... w....	.1411	. 5836
Mean iength.....	2.94 .1 square centimeters puer militirum.	${ }_{3.2091}$	4.8879
Pressley index......	6.350....................................	29.2374	24.5959
X-ray nugte....	35.6 ${ }^{6}$..	1,004.1045	691.2390

[^13]Table 26.-Contribution of fiber properties to skein strength as determined by multiple correlation studias of varietal and environmental eifects of fiber and yarn data on 157 samples' from the 1945 crop spun by the long-draft roving and spinning process into ${ }_{2}^{22 s}, 86 \mathrm{~s}$, and 60 s singles carded yarns

Table 27.-Simple correlation coefficients jor the varietal (within-station) (and environmental (within-laricty) effects of fiber and yern data on 57 stamples' from the $1945-46$ crops, spun by the loug-dratt roving and spinniny process into bos, sos, and 100 s singles combed yarns

Varlates ${ }^{\text {a }}$	Coelleients		Variates *	Coetticients	
	Yarietal ditferemtes	$\begin{gathered} \text { Environ- } \\ \text { mental } \\ \text { difforences } \end{gathered}$		Varietal dillerences	Environmental differences
bios with UHM,.........	$0.6 \pm{ }^{*}$	0.07	EHM with ME	$0.71{ }^{\circ}$	
608 with ML............	. 55°	. 05.	gela with SA.	. 11	$-.30$
6fs with SA	.29.	駇,	Etam with Eh.	.25	-.88
			ML with SA.	-. 21	-. 39
804 with UHM $67{ }^{\circ}$		112, with P1...	.28	-. 21
\%hy with M1L..............	.57*				
808 with Sit.............. 800 with P1..........	. 3 30	+48***	E'I with SA...	. 14	. 25
100s with tutas........	. 63 *				
	. $59{ }^{\circ}$. 32.			
tow with St. 30.	. $50 \times$ +			
200x with l'il ${ }^{\text {a }}$.44*	41°			

[^14]Table 2S.-1/etn measurements for fiber and yarn properties and variances for varicial and encironmental comparisons of fiber und yarn data on 57 samples ${ }^{1}$ from the $1045-16$ crops, spun by the tong-drajt roving and spinning process into $60 \mathrm{~s}, \mathrm{~s} 0$ s, and tous siagles combed yarms

Variate	Meant	Variance	
		Variezal comparigons	Environmental
Skefn strengets of 6ther	48.18 Irounds	4.11.5102	502.0527
Sketr strength of Sils	33.75 prounds	O23.4409	255.0278
Skeit strength of 1bts.		144.7619	192.2887
Lipur-half mean leagits	1,351 inchess	. 1612	.1221
Mean leneth	1.036 inches	. 3054	\$3373
Surface urea	${ }_{7,326}^{3,260}$ spuare centimezers per milligram.	$\frac{1.7212}{0.3802}$	1.1.10
Pressiey index..............	7.926	9.0891	8.7588

[^15]Table 29.-Contribution of fiber properties to skein strength as determined by multiple correlation studies of varietal and enviromental effects of fiber and yarn data on 57 samples ${ }^{2}$ from the $1945-46$ crops, spun by the long-draft roving and spinning process into 60s, s0s, and 100 singles combed yams

[^16]

[^0]: the many agencies and workers who have contributed to these studies. The Gotton Branch, reoduction and Marketing Administration, U. S. Department of Agriculture, conducted the spinning tests and provided the sikein strength data, the yarn-appeatane data, and some of the fiber dita. Various State ind Federal agrieultural experiment stations coperated in growing ank providing the samples. frivate and institutional cotlon breeders provided pure sed lots of the many varieties and strains of enton tester. The Uaiversity of Tennese fiber researeh laboratory, unter the direction of Dr. K. L, Fertel, and the State-Federal fiber habutatory, at Knoxville, under the direction of Ma. 12. M. Simpsum, furnished ath of the fiber-tength, surfacearea, and fiber-strength data used in this bulbetion, exeept is specifienthy noted that the fiber data were formished by the Cotton Fimen, Path. The X-by angle deteminations were made in the bollswille (add.) file laderatary under the direetion of De, R. W. Berkley. Dr. N. O. Ware handed the many tetats involved in arraming the cooperative plantings, giming, staple taking, and othor studies. Phe statistieal eomputations were made by Mrs. Josephyne D. Gima, Miss Martha A. Dodk, and Mrs. Mary fe. Holmead.

 Died september es, 1965.

[^1]: Italic numbers in parentheses refer to Literature Cited, p. 35 .

[^2]: 'The identity of the symbols used for the mariates is as follows: $29 \mathrm{~s}, 36 \mathrm{~s}$, and $50 \mathrm{~s}:=$ skein strength of $24 \mathrm{~s}, 365$, and 50 s earded yarns, respectively; $\mathrm{CHM}=$ Fibrograph upper-half mean length; ML = Fils rograph mean lengh; SA $=$ surlate area, or Arealometer measurement; Pl - I'ressley index; and $X R=X$-ray angle.

 * $=$ Correlation coeflicient significant at odds of $99: 1$.

[^3]: 'The identity of the symbols used for the variates is as follows: 22s, $36 \mathrm{~s}, 50 \mathrm{~s}$, and $60 \mathrm{~s}=$ skein strength of $22 \mathrm{~s}, 36 \mathrm{~s}, 50 \mathrm{~s}$, and 60 s carded yarns, respectively; $\mathrm{UHM}=\mathrm{Fib}-$ rograph upper-half mean length; ML = Fibrograph mean length; SA = surface area or Arealometer measurement; $\mathbf{P I}=$ Yressley index; $\mathrm{XR}=\mathrm{X}$-ray angle; $\mathrm{WI}=$ weight per inch; and $T W=$ percentage of thick-walled fibers.

 * = Significant at odds of $99: 1$.

[^4]: * = Beta values significant at odds of $99: 1$

[^5]: * $=$ Beta values significant at odds of $99: 1$.

[^6]: ${ }^{1}$ Symbols: L'HM $=$ Fibrograph upper-half mean length; $\mathrm{ML}=$ Fibrograph mean length; SA =surface area or Arealometer measurement; PI = Pressley index; $\mathrm{XR}=\mathrm{X}-\mathrm{ray}$ angle; $\mathrm{UQL}=$ upper quartile length (array); $\mathrm{M}=$ mean length (array); CBS =estinated Chandler bundle strength; WI = weight per inch; TW = percentage of thick-walled (mature) fibers.

 * $=$ Beta values significant at odds of $99: 1$.

[^7]:

 - Stanifucat at odds of y!

[^8]:
 sutimating environmental inhuetres, data for environmental pefects are omithed.

 - ox Siknificame at ouds of 90:5.

[^9]: ?See footnote 1, table 15.

 - $=$ Stgnifieunt at udds of $99: 3$.

[^10]: ${ }^{1}$ Ser foustnota 1 , thble 18.

[^11]: ${ }^{1}$ See footnote 1 , table 21.

[^12]: ${ }^{1}$ Sec footnote 1 , table 21.

 - $=$ Siguificant at odde of $99: 1$.

[^13]: 'Set footnote 1, table el.

[^14]: The yambles represent 19 stations, thus giving 38 within-station obsermitions for estimating varietal effects. There were ${ }^{\prime \prime}$ viripties, leaving eti within-variety observations for evaluating environmental intiuencer.

 $=$ Siknifiestat at odds of $93: 1$.

[^15]: [Seefootnote : table 27.

[^16]: 4 See foot note 1, table $27 . \quad \bullet=$ Significant at odds of $99: 1$.

