
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


1 
 

 

 

 

 

 

Market access and child nutrition in a conflict environment 
 

 

 
 

Amelia Darrouzet-Nardi 

PhD Candidate and U.S. Borlaug Fellow 
Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy 

Tufts University 

150 Harrison Avenue 

Boston, MA 02111 
Phone: (+243) 081-742-759 (Democratic Republic of the Congo) 

Email: amelia.darrouzet-nardi@tufts.edu 

 
 

 

William A. Masters 
Professor 

Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy 

Tufts University 

150 Harrison Avenue 
Boston, MA 02111 

Phone: 617-636-3751 

Email: william.masters@tufts.edu 

 

 

 

Selected Paper prepared for presentation at the Annual Meeting of the  

Agricultural & Applied Economics Association (AAEA),  

Minneapolis, MN, July 27-29, 2014 

 

 

 

 

 

 

 

 

 

Copyright 2014 by Amelia Darrouzet-Nardi and William A. Masters. All rights reserved. Readers may 

make verbatim copies of this document for non‐commercial purposes by any means, provided that this 
copyright notice appears on all such copies. 

  



2 
 

 

Abstract 

 

This paper tests uses nationally representative data from the Democratic Republic of the Congo 

(DRC) to test whether a household’s market access, defined in terms of travel costs to the nearest town, 

facilitates resilience and reduces vulnerability to seasonal influences on child nutrition.  The timing of a 

child’s birth has often been found to correlate with height, weight and other health outcomes, driven by 

exposure to seasonal fluctuations in diets and disease during sensitive periods of physiological 

development. Remoteness could mediate that relationship, leaving geographically isolated households 

especially vulnerable to seasonal fluctuations because they cannot easily buy and sell to smooth 

consumption, or access medical facilities when the health environment deteriorates. To complicate 

matters, the presence of nearby civil insecurity may make it physically unsafe to travel significant 

distances. Using the 2008 DHS survey of children born between 2002 and 2007, we find that birth season 

is closely linked to child weights but not heights, primarily in more remote areas.  This finding contrasts 

sharply with household wealth, which is closely linked to child heights but not weights, and only in less 

remote areas. Conflicts do not appear to mediate the relationship, perhaps because recorded conflicts 

occur primarily near towns.   

 
Key words: child nutrition, child health, civil conflict, seasonality, market access 
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1. INTRODUCTION 
 

Many influences on child health are geographical in nature, and cannot be randomly assigned in a 

traditional experiment. One important example is household access to markets, which could raise 

household incomes and also offer a variety of coping mechanisms to facilitate consumption smoothing 

and resilience. Conversely, isolated rural households may be more vulnerable to shocks, simply because 

they have fewer opportunities to smooth consumption by buying, selling, or migrating in response to 

changing circumstances.  

In this study, we investigate the influence of market access on household resilience, using survey 

data on children exposed to seasonal fluctuations in diet and disease at birth in widely varying locations in 

the Democratic Republic of Congo (DRC). If children in households closer to markets were less 

vulnerable to seasonal variation, then investments in rural infrastructure and institutions to expand those 

markets could confer resilience and improve outcomes. Rural DRC is rich in natural resources and 

agricultural potential, yet nutritional indicators and standards of living are among the worst in the world 

and have been declining over time (Ulimwengu et al. 2012). One factor underlying this paradox could be 

the country’s vast size, limited infrastructure, and weak institutions that leave many rural households 

extremely isolated and vulnerable to local fluctuations in agricultural, environmental and social 

conditions, including violent conflict.  

Our central hypothesis is that birth season has a larger and more significant correlation with child 

health outcomes for more remote households, compared to those who live closer to towns and markets. 

That hypothesis follows from the possibility that market transactions can help a household cope with 

shocks and smooth consumption over time, at least to some degree. Understanding the linkages between 

market access and child nutrition in the challenging setting of DRC could provide a sharp illustration of 

how rural isolation leaves households vulnerable to shocks, and how market access can promote 

resilience. To conduct this study, we merged geocoded datasets for child health, household 

characteristics, land cover, roads, terrain, towns, and civil conflict. Spatially merging the datasets 

provides an unusual opportunity for integrated analysis of the linkages between climate, geography, 

agriculture, and nutrition, as well as contributing to the body of literature on seasonality of health 

outcomes for children and the consequences of geographic isolation for child health. 

To obtain meaningful results, the specific methodological innovations applied here include the 

measurement of market access using a household’s travel-cost weighted distance (the “network distance”) 

to the nearest town, as opposed to Euclidean distance. This approach incorporates roads, land cover and 
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terrain data, offering a key enhancement to the existing body of literature in this area. Another 

methodological innovation is the use of a grid, superimposed over the map of DRC to demarcate spatial 

units of observation, to avoid potential problems with using administrative units of observation. A third is 

to use all three main anthropometric indicators for children: height-for-age Z-score (HAZ), weight-for-

age Z-score (WAZ), and weight-for-height Z-scores (WHZ) as outcomes of interest, so as to compare 

influences on both heights and weights. In the economics literature on health outcomes, most studies 

focus either on HAZ as an indicator of cumulative health investment, or on WHZ as an indicator of recent 

deprivation, but health shocks in early childhood may have long-lasting effects on future weights, and 

even a very recent shock may affect child height during periods of rapid growth. A fourth innovation in 

this study is to define seasonality in ways that are appropriate to an equatorial country, where the length 

and intensity of the dry season depends on distance from the equator.  Finally, we use a flexible 

specification for age control variables which more closely matches biological evidence for how Z-scores 

change with age, in order to prevent bias which may arise when using an inflexible functional form. Each 

of these methodological innovations helps address our central policy question, which is the extent to 

which market access is protective against seasonal fluctuations of diet and disease in an environment of 

extreme rural isolation and protracted civil conflict. 

2. LITERATURE REVIEW 

2a. Background on the Democratic Republic of the Congo 

DRC has some of the world’s highest rates of child stunting (45.8%), wasting (14%), and underweight 

(28.2%) in the world (UNICEF 2011). Approximately 75% of the population is estimated to not consume 

sufficient calories for a healthy and active life (FAOSTAT 2014; Grebmer et al. 2011; WHO 2000), as the 

average per-capita food supply declined from 2595 kcal per person per day in 1994 to 1833 kcal per 

person per day in 2009 (FAOSTAT 2014). Various other nutrition indicators are also worsening over 

time, in contrast to encouraging trends in neighboring countries (Kandala et al. 2011; Tollens 2003), as 

the DRC’s dire health situation is exacerbated by a protracted civil conflict. 

 Conflict in DRC has been endemic for decades, and has deeply shaped the food system through 

disruption of trade routes, looting, displacement of farmers, and land tenure insecurity (Coghlan et al. 

2006; Reuveny 2007). Although the violence is typically concentrated in the Eastern provinces, it drains 

the already limited resources of the government, thus exacerbating food and nutrition security problems 

elsewhere in the country. The 2.9 million internally displaced persons (IDPs) have access to few 

resources or land to support themselves (FAOSTAT 2014). Violence against civilians worsens the already 

low agricultural productivity and stifles agricultural development.  
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 The majority (64.6 %) of the population of DRC is rural (FAOSTAT 2014), and that rural 

population growth has led to sharp declines in arable land per person as well as arable land per 

agricultural worker (FAOSTAT 2014). The value of total agricultural production and total food 

production has been declining since 1997 (FAOSTAT 2014), in a setting where the major crops are 

produced for consumption within rural areas including cassava, maize, other roots and tubers, and 

plantains. The country has good conditions for agriculture, including a tropical climate with rich soils, and 

plentiful rainfall across much of the year. However, due to the reliance on rain-fed agriculture and poor 

access to storage or markets, households may be unable to effectively smooth consumption across the 

year.   

2b. Environmental shocks and child health 

There is a rich body of literature investigating the ability of households to smooth consumption across the 

year (Morduch 1995), and protect investments in child health (Jensen 2000). Using environmental 

conditions to identify children exposed to particular factors at particular times has opened countless 

opportunities for studying how households smooth consumption, and how this behavior affects children 

(Angrist et al. 2001; DiNardo 2008). The growing literature in this area uses severe environmental shocks 

such as a drought, famine, or war to identify exposed children (Akresh et al. 2011; Akresh et al. 2012; 

Almond 2006; Banerjee et al. 2007; Bundervoet et al. 2009; Chay and Greenstone 2003; Ferreira and 

Schady 2009; Godoy et al. 2008; Hoddinot and Kinsey 2001; Maccini and Yang 2009; Minoiu and 

Shemyakina 2012; Skoufias and Vinha 2012; Yamano et al. 2005; Strauss and Thomas 2008). The impact 

of environmental shocks on child health is especially of interest because of the potential long-term 

consequences affecting an individual’s risk of disease, attained height, and labor productivity (Alderman 

et al. 2006; Almond and Currie 2011; Barker 2008; Barker 1990; Black et al. 2008; Deaton 2007; Dewey 

and Begum 2011; Martorell 1999). Some studies focus on more immediate outcomes in infancy and 

childhood, while others extend to assess outcomes in adulthood.   

 Child nutrition is particularly sensitive to environmental shocks if they occur during critical 

developmental periods (Shrimpton et al. 2001; Victora et al. 2010; Aguero and Deolalikar 2012). In 

general, younger children may be more severely affected than those who are older when exposed to a 

nutritional insult (Aguero and Deolalikar 2012). A study of Ethiopian children found that those between 6 

months and 24 months of age during a negative nutritional shock are most vulnerable (Yamano et al. 

2005). A study in Zimbabwe found that children exposed between the ages of 12 months and 24 months 

lose 1.5-2 cm of growth after exposure to a drought at an early age (Hoddinot and Kinsey 2001). Child 

development is such a sensitive process, that season of birth can sometimes be used to identify exposed 

children even if seasonal fluctuations are not severe.  
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2c. Seasonality and child health 

Using seasonal variation for econometric identification is weaker than using a more specific shock such 

as drought, in part because seasons are predictable so people will adjust their behavior to adapt, and in 

part because many environmental and biological factors fluctuate seasonally so it becomes difficult to 

distinguish between them. There may even be seasonality in the incidence of conflict (O’Loughlin et al. 

2012; Hendrix and Glaser 2007). Despite these constraints, significant insight can be gained by matching 

the timing of exposure to the “less healthy” seasons with the timing of critical developmental periods. 

Birth season has been found to affect health and socioeconomic outcomes throughout life and across 

many diverse populations, due to the child’s vulnerability at the time of conception and pregnancy, 

introduction of complementary foods, cessation of breastfeeding, and other developmental periods.  

Households which rely on agriculture for their livelihood may be particularly susceptible to 

seasonal fluctuations, especially if they lack market access. For example, in Malawi, household 

consumption diversity was found to be positively associated with production diversity, suggesting that 

production fluctuations might cause consumption fluctuations (Jones et al. 2014). The less healthy period 

may be the rainiest, due to water-borne disease and proliferation of disease vectors. This period may also 

correspond to just before harvest when food supplies from the previous year dwindle, day labor may be 

more difficult to find, and maternal labor time and calorie expenditure increase (Buckles and Hungerman 

2013; Chodick et al. 2009; Panter-Brick 1997). Similar to the random environmental shocks discussed 

above, seasonal variations may be especially important for health if the child’s birth timing exposes them 

to more risk factors during critical phases of child development, such as the period of complementary 

feeding, or during the third trimester of pregnancy (Chodick et al. 2009).  

For example, in Gambia, children born during the dry season have systematically lower weight-

for-age and height-for-age than children born during the rainy season (Gajigo and Schwab 2012), and 

birth outcomes may also be affected by season (Rayco-Solon et al. 2005). Another study of Gambian 

individuals demonstrated the increased risk of mortality for young adults who were born during the less 

healthy season (Moore et al. 2004). Child health outcomes can be affected not only by extreme changes 

discussed above, but also by typical variation in weather patterns, and these impacts may differ by gender 

or age (Maccini and Yang 2009; Tetens et al. 2003). Birth outcomes may be influenced by seasonal 

variations in maternal dietary patterns (Watson and McDonald 2007). Even after controlling for within-

mother characteristics by comparing siblings, seasonal patterns are still seen in health outcomes (Gajigo 

and Schwab 2012; Currie and Schwandt 2013).  
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Seasonal shocks influence both diets and disease, in ways that vary widely by location. In urban 

areas of Bangladesh, for example, both food security and child weight-for-age vary between the monsoon 

season and the dry season (Hillbruner and Egan 2008). In some settings, positive rainfall shocks can 

worsen the health environment but improve agricultural conditions, with opposing effects on child health 

(Skoufias and Vinha 2012). More uniform and consistent rains may enable a lengthening of the growing 

season. However, the lack of a dry season may allow disease vectors such as the malarial mosquito to 

keep reproducing throughout the whole year (WHO 2013). Therefore, exposure to environmental dryness 

may have different effects on child health, depending on whether the household is urban or rural.  

2d. Seasonality and market access 

Recent evidence suggests that seasonality matters more for isolated households than for households in 

more densely populated areas (Pomeroy et al. 2014). However, being isolated in the DRC may actually be 

a benefit to households and children, as isolation and rugged terrain may protect them from violence 

which may concentrate in populated or wealthy areas (Nunn and Puga 2012; Le Billon 2001), or may give 

them access to enough land to meet nutritional needs. It’s also possible that the geographic remoteness of 

a household or their exposure to conflict affects the level of assistance they receive from humanitarian 

organizations. A variety of papers address these differences between remotely located and non-remotely 

located children, often by focusing only on a specific region.  

For example, the authors of a study examining the impact of weather shocks on child health in 

Nigeria exclude urban children because they expect rainfall variability to affect rural children more 

strongly (Rabassa et al. 2012). A study which performed the analysis for both urban and rural groups in 

Peru found significant birth month associations for various anthropometric measurements for rural 

children but not for urban children (Pomeroy et al. 2014). A study of Gambian children found that 

households which were not as reliant on agriculture didn’t have seasonality in their nutrition outcomes 

(Gajigo and Schwab 2012). A study of the expansion of railroads in India found that reducing 

transportation costs had a protective effect for maintaining real incomes, and reduced the sensitivity of 

mortality rates to environmental shocks (Burgess and Donaldson 2010). In conjunction, these findings 

lend support to the hypothesis that proximity to markets may provide protection against seasonal 

fluctuations in food availability. Excluding groups of children based on geography may generally be 

useful for analysis, but testing the hypothesis that market access provides protection against seasonal 

fluctuations in environmental conditions calls for data spanning a wide range of household locations.  



8 
 

3. RESEARCH METHODS 

3a. Measuring exposure to the dry season  

We exploited the quasi-randomness of birth month to identify children exposed to the dry season in DRC 

in various degrees. To accurately capture seasonality in DRC, we used the absolute value of latitude of 

each DHS cluster’s location as a proxy for rainfall and temperature, and dummy variables indicating 

which half of the year the child was born during to capture the timing of the dry season in each 

hemisphere. DRC lies between approximately 6 degrees North and 14 degrees South of the Equator. 

Locations closer to the equator have more uniform temperature and rainfall throughout the year, with dry 

seasons becoming more pronounced the further you get from the equator (World Bank CRU 2014). This 

pattern can be seen across the country from west to east, making the absolute value of latitude a simple 

indicator of how pronounced the dry season is at a particular location. Using latitude as a proxy for the 

degree of seasonality, as opposed to using a climate model, is appealing because of the dearth of weather 

stations in DRC and the limited empirical basis for estimating actual rainfall or temperature at any given 

place.  

In the areas of DRC located in northern hemisphere (approximately 1/3 of the country’s area), the 

dry season may last from approximately December- February, depending on the distance from the 

equator. In the areas of DRC located in the Southern hemisphere (approximately 2/3 of the country’s 

area), the timing of the dry season is reversed, and lasts from June-August, again depending on distance 

from the equator (World Bank CRU 2014). We did not categorize months as “dry” and “rainy”, but 

instead took an empirical approach to identify which birth months are associated with better or worse 

future health outcomes. There is too much variation in climate across the country to be able to 

characterize each month for each location ex ante. To capture the timing of the dry season across the 

whole country, RainMonths are defined as the calendar months in the Southern hemisphere, and defined 

as the calendar month shifted 6 months forward in the Northern hemisphere. RainMonths are then 

aggregated into RainHalf, which enters as a “half-year of birth” explanatory dummy variable in the 

regression models. The interaction term between RainHalf and the absolute value of latitude is included in 

the regressions, because we expect the birth season effect to be less pronounced the closer a household is 

to the equator. Statistically significant estimated coefficients on the RainHalf variable indicate that 

children are vulnerable to a seasonal fluctuation in their nutritional outcomes.  

3b. Measuring nutritional outcomes  

The main outcomes of interest are height-for-age Z-scores (HAZ), weight-for-age Z-scores (WAZ) and 

weight-for-height Z-scores (WHZ) for children under the age of 5 years. Weight-for-height is likely more 
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sensitive to seasonal variation across the year than height-for-age. But, the DHS dataset is cross-sectional, 

and so one might wonder where we expect to find seasonal variation in WHZ when the data were 

collected over a relatively short period of time. A nutritional insult which occurred at a time to disrupt 

normal immune system development may lead to persistent wasting (low WHZ), due to recurring or 

persistent morbidities (Raqib et al. 2007). The potential causal pathway between season of birth and 

future risk of wasting may originate from the characteristics of the health environment at birth, or the 

mother’s nutritional status during the preconception period or during fetal development (Fernandez et al. 

2002). Even a short-lived period of undernutrition may affect the microbiome of the intestines such that it 

increases risk of infectious diseases throughout the lifespan (Gordon et al. 2012; Kau et al. 2011). 

There is mounting evidence that stunting and wasting share common causes (Martorell and 

Young 2012). Yet, height-for-age is typically in used just as an indicator of cumulative health investment 

over time, whereas weight-for-height is used just as an indicator of current nutrition status. In fact, 

stunting (low HAZ) can be the result of an acute nutritional insult if it occurs during a key developmental 

period and is severe enough, and wasting (low WHZ) can be a persistent result of past nutritional insults. 

Characterizing WHZ as solely an indicator of current nutritional status and HAZ as solely an indicator of 

cumulative health investment may fail to recognize important epigenetic, disease, and immune factors 

involved in determining child health, and focus too narrowly on food availability as the sole explanation 

for poor anthropometric outcomes. Food availability alone cannot explain variation in anthropometric 

indicators (Raqib et al. 2007). Due to the uncertainties surrounding human growth in different and 

complex environments, we prefer to take a broader view of the causes and the subsequent anthropometric 

manifestation of undernutrition. To this end, we allow for the potential of seasonal variation at birth to 

affect HAZ and WHZ, as well as WAZ because weight-for-age is the combined indicator for height and 

weight.  

3c. Data 

To conduct this study, we constructed a dataset for DRC which spatially and temporally merged child 

health information, household characteristics, roads, terrain, land cover, towns, and civil conflict 

incidents. We superimposed a 1 degree by 1 degree grid over DRC to demarcate the spatial units of 

observation, in order to avoid endogeneity problems that can arise from using administrative boundaries 

as spatial units of observation (Harari and La Ferarra 2013). Each grid-cell is approximately 69 square 

miles in size.  

For child health data and household characteristics, we utilized the DRC’s Demographic and 

Health Survey (DHS), a nationally representative survey conducted among 8,886 households with a 

subsample of 3,782 children between the ages of 0-59 months of age surveyed for the anthropometry 
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questionnaire in 2007 (Measure DHS 2008). The children in the subsample were born between 2002 and 

2007, and they were each surveyed in one of 300 geocoded DHS clusters. Observations where the 

families had moved in the previous 6 years were dropped (n=293), to ensure that household market access 

and child exposure to conflict were measured as accurately as possible, including during the mother’s 

pregnancy with the child. Observations flagged by DHS for biologically implausible measurements 

(where the absolute value of calculated HAZ or WHZ was greater than six) were also dropped (n=397). 

Observations where the child was not present, or where the parent refused measurement, or the child was 

not measured for some other reason were also dropped (n=286). This left 2,806 children with biologically 

plausible measurements in the anthropometry sub-sample to conduct our study.  

 

The conflict data are from the Armed Conflict Location and Event Dataset (ACLED), which 

details specific incidents of civil insecurity between 1997 and the present day for DRC and other 

countries (Raleigh et al. 2010). Events which occurred between 2001 and 2007 were retained for this 

project to correspond with children who were between the ages of -9 months and 59 months old when 

surveyed for the anthropometry sub-sample during the 2007 DHS round. The ACLED data are geocoded 

daily incident reports. Therefore, each day that an incident (such as a battle) continues will be counted as 

an additional event. We aggregated the incident reports into fatalities and number of events by month in 

each 1-degree square grid-cell. Each incident is categorized as one of eight different types of conflict 

events, including violent and non-violent activities (Raleigh et al. 2010). The dataset is designed to 

provide an accurate picture of overall conflict activity in a country, but it does consist of incident reports 

and therefore may omit events which aren’t reported. Events in non-remote areas may be more likely to 

be observed than events in remote areas, which could bias the spatial pattern of violence reports.  

 

Euclidean distance is a useful but incomplete proxy for travel time in the DRC context, because 

road quality, terrain, infrastructure, and land cover may greatly impact a person’s ability to travel to 

market. To develop the travel cost-weighted distance measures, we utilized geocoded data on 160 major 

towns, roads, and land cover (including bodies of water) from the Multipurpose Africover Database on 

Environmental Resources (FAO MADE 2014). The DHS data were spatially merged with these layers. To 

obtain the distances to town, first the Euclidean distances from the centers of each DHS grid-cell to the 

“major town” point locations were calculated using ArcGIS 10.0 (ESRI 2013). Then, cost values for 

different land covers were assigned based on a modified Beaufort scale (Lindau 1995). With this scale, 

cells with roads and open land take on lower travel costs than cells with thick forest and open water, for 

example. Details on the values assigned to different land cover classes are included in the Appendix.  
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Data on terrain from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

Global Digital Elevation Model: Version 2 (ASTER-GDEM) was merged with the land cover data to 

assign the total travel-cost values for each cell (NASA LP DAAC 2014). Cells with steeply sloped terrain 

have higher assigned travel costs. The resolution of the final travel cost grid is 100 meters square, and it is 

the sum of the terrain travel-cost and the land cover travel-cost of the cell. The full travel cost grid was 

then superimposed on the existing merged dataset used to generate the network distances (the travel-cost 

weighted distances) from the center of each DHS grid-cell to the nearest major town. If a travel-cost 

weighted distance was found to be less than the Euclidean distance, the network distance is set equal to 

the Euclidean distance. ‘Proximity’ enters the regressions as an explanatory variable, and is defined as the 

inverse of network distance to the nearest town in kilometers.  

3d. Hypothesis tests 

Due to the timing of the DHS survey implementation, children born in the later months of the year are 

systematically younger, and therefore height-for-age Z-scores are systematically higher, as HAZ declines 

with age in low income contexts. This “timing artifact,” as described by Cummins (2013), prevents 

unbiased and consistent parameter estimation when identification relies on season (Cummins 2013). To 

control for age appropriately, we use a linear spline regression in each model. The age variable is 

piecewise linear with two knots placed at 6 months of age and 22 months of age when HAZ is the 

dependent variable, and one knot placed at 12 months of age when WAZ and WHZ are the dependent 

variables. Therefore, there are three age splines which enter as controls when HAZ is the dependent 

variable, and two age splines which enter as controls when WAZ and WHZ are the dependent variables. 

The knot placement is based on the observed nonparametric relationships between child age and each of 

the indicators in the DRC-DHS data. 

 

We used kernel-weighted local polynomial smoothing and ordinary least squares (OLS) 

regression to conduct the analysis. There are three dependent variables of interest, one for each of the 

major child anthropometric indicators as dependent variables: height-for-age Z-score (HAZ), weight-for-

age Z-score (WAZ), and weight-for-height Z-score (WHZ). Age in months enters with a piecewise linear 

functional form and knot placement depending on the dependent variable. Child sex enters as a dummy 

variable. Birth season (as RainHalf) enters as a dummy variable. The absolute value of latitude in degrees 

enters linearly, and also as a component of interaction terms to characterize the severity of the dry season 

at the household’s location. Household proximity to nearby markets, weighted by the travel cost, enters 

linearly and as a component of interaction terms. Household wealth enters as a categorical variable 

indicating wealth quintiles. Conflict enters as a continuous variable measured as the number of conflict 
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incidents recorded for the grid-cell of the child’s residence between 2001 and 2007. This time frame 

captures potential exposure for the children in the sample, including time during their mother’s 

pregnancy.  

 

The econometric model development is outlined below in Equations 1-3. The subscript i indexes 

children, k indexes the linear age splines, and j indexes DHS clusters (household locations). Age enters as 

a piecewise linear term with knots in the function placed depending on the anthropometric outcome in 

question. Sex is a dummy variable indicating the child is male. H is a vector of household characteristics, 

including household wealth and proximity to nearby markets. E is a vector of environmental 

characteristics, including the absolute value of latitude and exposure to conflict. RH indicates RainHalf, 

which is a dummy variable indicating whether the child was born during the first half of the year. If the 

child was born in the Southern hemisphere of the country, RH equals 1 for January through June. If the 

child was born in the Northern hemisphere of the country, RH equals 1 for July-December. The two- and 

three-way interaction terms between the RH dummy variable, proximity, and the absolute value of 

latitude are indicated by Int. In Equation 3, H represents household wealth and Int represents the two-way 

interaction terms between the absolute value of latitude and the birth season variable, as the estimation is 

stratified by household remoteness in this specification. i  is an error term with the usual properties.  

 

The first model, Equation 1, is a diagnostic regression with all terms entering linearly and no 

interaction terms included. The second model, Equation 2, incorporates the full set of two- and three-way 

interaction terms between birth RainHalf, proximity, and latitude. The third model, Equation 3, stratifies 

the estimation by household remoteness. Areas are classified as remote if the network distance to travel to 

the nearest major town is greater than 45km. This cutoff was chosen based on the median of estimated 

distance to the nearest town which was 44.8km. Other terms remain the same once the model is stratified 

for estimation, and the proximity term is dropped. All three models are estimated by Ordinary Least 

Squares (OLS) regression, and standard errors are clustered by grid-cell to account for correlations among 

respondents who reside in the same areas. Analysis was performed in StataMP 12 (StataCorp 2011).  
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3f. Limitations 

Time variant factors which are not controlled for could impact results.  We found no evidence of 

seasonality in the timing of conception or the incidence of civil insecurity, but several other sources of 

bias could intervene, such as systematic differences in fetal or child survival. The econometric models do 

not yet account for the endogeneity of household wealth in determining child nutrition, nor the spatial 

correlations between conflict, wealth, and population. Also, the conflict data are incident reports and 

therefore may be biased towards increased reporting in areas that are easier to observe, such as non-

remote areas.  

4. RESULTS 

Descriptive statistics are presented in Table 1. The mean and standard deviations for selected variables are 

given for the whole sample, and then split into the sub-samples used in our hypothesis tests. To make the 

cut-off for “remote” households, we rounded up from the median network distance to the nearest major 

town, which is 44.8 km. There are 1375 children who live in households located more than 45km from a 

major town, and 1431 children who live in households less than 45km from a major town. Children were 

identified as being born during the “less healthy season” if they were born during the first RainHalf ” 

which is January to June in the Southern hemisphere and July to December in the Northern hemisphere. 

The “less healthy” and “healthier” classifications are based on the regression analysis outlined below, and 

were not decided upon ex ante. There are 1553 children in the sample who were born during the “less 

healthy” season, and 1253 children born during the “healthier” season. Whether these key variables differ 

significantly across groups was first assessed with preliminary t-tests.  

The results of the exploratory t-tests are presented in Table 2, split by gender, household 

remoteness, and birth season. Boy children (N=1386) have consistently lower HAZ, WAZ, and WHZ 

than girl children (N=1420) across the age spectrum (p=0.031, p=0.001, and p=0.003, respectively).  This 

difference in means is statistically significant and it increases in rural areas compared with urban areas. 

Mean HAZ and mean WAZ are lower in remote areas compared with non-remote areas (p=0.012 and 

p=0.014, respectively). There is not a statistically significant difference between mean WHZ in remote 

areas and mean WHZ in non-remote areas. Mean HAZ and mean WAZ are lower for children born during 

the less healthy season (p=0.095 and p=0.039, respectively) compared with children born during the 

healthier season.  

Figures 1-3 show the kernel-weighted (Epanechnikov kernel) local polynomial smoothing for 

each of the anthropometric indicators against child age in months, and separated between remote and non-
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remote households. There is a steep decline in HAZ before 24 months of age, and then the slope becomes 

less steep afterwards but is still negative. Children living in remote households have consistently lower 

HAZ than children living in non-remote households, but this difference is not very large in magnitude. 

There is a similar pattern for WAZ, except that weights appear to more closely match-up between remote 

and non-remote households until 12 months of age, when children in remote households become 

consistently worse off. As indicated by the exploratory t-tests, there are not consistent differences in the 

relationship of WHZ to age between children in remote and non-remote households. Both group 

experience a steep decline in WHZ until about 12 months of age, when a slow catch-up begins.  

 Figures 4-6 show the kernel-weighted (Epanechnikov kernel) local polynomial smoothing for 

each of the anthropometric indicators against child “rain-month” of birth. Rain-months are defined as the 

calendar months for locations in the Southern hemisphere and defined as the calendar months shifted 

forward 6 months for locations in the Northern hemisphere. Rain-months are defined in this way so that 

the timing of the dry season can be identified across the whole country using one variable. Figure 4 shows 

that there is no relationship between rain-month of birth and HAZ for remote households, and that 

children in non-remote households born in the second half of the year appear to achieve higher HAZ 

scores. Figure 5 shows that, except for rain-months 7-10, WAZ is consistently higher for children in the 

non-remote households. Figure 6 shows that WHZ is higher for children born in non-remote locations 

during the first half of the year, and higher for children born in remote locations in the second half of the 

year.  

Table 3 presents the results of an exploratory Ordinary Least Squares (OLS) regression. In this 

model, child anthropometric Z-scores are estimated as a function of age, sex, conflict exposure, household 

wealth, proximity to the nearest major town, and rain-month of birth. The reference group for birth half 

dummy variables is the second half of the year, which is July-December in the Southern hemisphere and 

January-June in the Northern hemisphere. HAZ, WAZ, and WHZ decline with age, although for HAZ the 

decline is not seen until 6 months of age. WHZ recovers slightly for children over 12 months of age. Male 

children have consistently lower Z-scores, ranging from a penalty of about 11% of one standard deviation 

for WAZ to 8% of one standard deviation for WHZ. Conflict incidents in the grid-cell of residence have 

statistically significant associations with nutritional outcomes: a negative association with HAZ and a 

positive association with WHZ, but these associations are quite small in magnitude. Household wealth is 

positively associated with HAZ and WAZ, but not WHZ. In this model, distance from the equator and 

proximity to nearby markets do not have statistically significant associations with child Z-scores. Being 

born during the first half of the year (the less healthy season) has a negative association with WAZ. The 
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estimated coefficient on the birth season variable is statistically significant, indicating that there is 

seasonality present in determining WAZ.   

Table 4 incorporates interaction terms into the econometric model. The full set of two- and three-

way interaction terms between the birth RainHalf dummy variable and latitude and proximity are 

included. The relationships between child age and Z-scores is the same as with the diagnostic model, with 

declines seen in the first two years of age, followed by a slow recovery for WHZ after 12 months of age. 

Male children are consistently worse off for all three indicators. The number of conflict incidents in the 

grid-cell of residence is negatively associated with HAZ and positively associated with WHZ, and both 

estimated coefficients are statistically significant. Household wealth has a statistically significant and 

positive association with HAZ and with WAZ. In this regression, increasing distance from the equator 

(increasing dryness) and proximity to markets are negatively associated with WAZ and WHZ, but the 

overall marginal effects for these variables (Table 4a) are not statistically significant. The estimated 

marginal effects also show that being born during the less healthy season is negatively associated with 

WAZ, just as seen in the diagnostic regression model.  

The estimated coefficients on the interaction terms in this model tell an interesting story. The 

effects of distance from the equator and proximity to nearby markets reinforce one another for WAZ and 

WHZ. The more pronounced the dry season is for a child, the more it matters how close he or she lives to 

the market. Similarly, the closer a child lives to the market, the more it matters how dry the environment 

is. The estimated coefficient on the interaction term between birth season and proximity are strongly 

positive and statistically significant for WAZ and WHZ, indicating that the effects of proximity to 

markets and birth season also reinforce one another. The effects of proximity and birth season also appear 

to reinforce one another in determining weights, but not in determining heights. The estimated coefficient 

on the three-way interaction between birth season, proximity, and the absolute value of latitude is 

negative and statistically significant for WHZ.  

The following two tables (Table 5 and Table 5a) split the regression analysis into two groups by 

household remoteness. Households are classified as remote if they are located 45km or more away from a 

major town, measured in the travel-cost weighted distance. Table 5 shows the results for the whole model, 

and Table 5a shows the estimated marginal effects for the individual variables. The age to Z-score 

profiles remain similar after stratification. Child heights don’t start to decline until the 6 to 22 month age 

period when there is a relatively steep decline, and they continue declining after 22 months of age at a 

slower rate. WAZ and WHZ declines for the first 12 months, and then WHZ recovers slightly afterwards. 

Boys are systematically worse off, especially in the remote areas. Being male is not negatively associated 
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with HAZ in non-remote areas. The proximity variable is now stratifying the sample and therefore no 

longer enters as an explanatory variable. The estimated marginal effects show that increasing distance 

from the equator (increasing dryness) is negatively associated with weights in the remote groups, and 

positively associated with weights in the non-remote groups. These associations are statistically 

significant. The estimated marginal effect of household wealth is statistically significant and positive, as 

expected, for HAZ and WAZ in non-remote areas, and also positive for WAZ in remote areas. Wealth is 

not significantly associated with HAZ in remote areas, or with WHZ in remote or non-remote areas. 

Conflict exposure is negatively associated with HAZ in non-remote areas, negatively associated with 

WAZ in remote areas, and positively associated with WAZ and WHZ in non-remote areas.  

There are statistically significant, negative birth season effects for WAZ and WHZ in remote 

areas, as shown in the marginal effects Table 5a. In remote areas, being born during the first half of the 

year is associated with a penalty of 11% of one standard deviation of WAZ and a penalty of about 17% of 

one standard deviation of WHZ. Birth season is positively associated with WHZ in non-remote areas, 

albeit with a shallower slope. The estimated coefficients on the interaction terms between birth season and 

the absolute value of latitude are negative in non-remote areas for WAZ and WHZ. This indicates that the 

effects of being born during the less healthy season are counteracted by the effects of environmental 

dryness. Season is a significant determinant of WAZ and WHZ in remote areas, and of WHZ in non-

remote areas. Season is not a significant determinant of HAZ in either remote or non-remote areas.  

In summary, child nutritional status in DRC varies by birth season, geographic isolation, and 

conflict exposure. The Z-score-age profiles seen here follow expected patterns that are well established in 

the literature. In general, boy children have lower Z-scores in DRC, especially in remote areas. Birth 

season does not appear to be a determinant of child heights in the DRC. Birth season is a significant 

determinant of child weights in remote areas. A more prolonged and intense dry season is negatively 

associated with WAZ and WHZ, but only in remote areas. In contrast, a more prolonged and intense dry 

season is positively associated with WHZ in non-remote areas. Conflict incidents are positively associated 

with child WAZ and WHZ in non-remote areas, and negatively associated with HAZ in non-remote areas, 

but these effects are small.  

5. ROBUSTNESS CHECKS 

Results do not change whether including or excluding households which have lived in their interview 

location for fewer than 6 years at the time of the interview (N=293). Results also do not change when 

including or excluding respondents who took a trip lasting more than 1 month during the 12 months 
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preceding the interview date, which could include households that were internally displaced for a time 

due to conflict (N=307). These observations were originally excluded to ensure that exposure to conflict 

and remoteness was accurately measured. With the large number of internally displaced persons in DRC, 

surveys may be skewed against this at-risk group due to measurement challenges.  

Any seasonality in births, deaths or in the incidence of civil conflict could impact the results of 

this study. However, this does not appear to be the case. For example, we performed nonparametric tests 

to assess whether there is seasonality in the incidence of conflict in DRC, and found no evidence of any 

differences in means across the year in aggregate, or for any of the individual provinces.  

6. DISCUSSION 

In the DRC context, these results need to be considered in terms of the potential spatial associations 

between humanitarian assistance projects, civil unrest, and natural resources. As expected, child HAZ and 

WAZ are generally lower in more remote households, as seen in the nonparametric graphs. The 

econometric analysis reveals that there is seasonality in child weights in remote areas, and that a more 

pronounced dry season is associated with poorer child weight outcomes, but again only in remote areas. 

These findings support the hypothesis that household market access is protective against seasonal 

fluctuations in food availability and disease transmission. The vulnerability of remote households is 

extreme enough to be reflected in seasonal fluctuations of their children’s future weight-for-age Z-scores, 

relative to households with easier market access whose children’s future Z-scores are not as affected by 

birth season.  

Interestingly, while being born during the dry season in remote areas is associated with lower 

future child weights, being born at during that season in less remote areas is linked to higher future child 

weights. This contrast provides some suggestive evidence that dry seasons are healthier in more populated 

areas, in ways that cannot be smoothed by market access and market transactions. Children with better 

market access may have better protection against seasonal fluctuations in food availability, but they are 

not necessarily as well protected against seasonality in infectious disease cycles. Infectious diseases such 

as malaria may stop transmitting for periods of time if the dry season is long and intense enough, because 

the reproductive cycle of the malarial mosquito is halted (Trape et al. 1993). The shorter the dry season, 

the less of a respite the children have from mosquitoes and other disease vectors which rely on rains for 

their reproduction. Disease transmission may be facilitated by higher population density in non-remote 

areas. Sanitation could also prove to be a key factor which links season to WHZ in non-remote areas 

(Korpe et al. 2012). Sanitation is arguably more of a challenge in non-remote areas due to higher 



18 
 

population density. The child health data of the DHS and other surveys should be used to investigate this 

hypothesis further.  

These patterns between dryness at birth and future WHZ can be seen in the local polynomial 

smoothing of WHZ against rain-month of birth in Figure 6. In the first rain-half of the year, which is 

arguably the drier season across both hemispheres in DRC, child WHZ is systematically lower for remote 

areas, and systematically higher for non-remote areas. This pattern reverses for the wetter half of the year. 

These observed patterns are consistent with the hypothesis that dryness is bad for children in remote areas 

because of the impact on food availability, and good for children in non-remote areas because of the 

impact on disease prevalence. These graphs also suggest that rain-month of birth has a stronger impact 

overall on child WHZ in remote areas, given the larger amplitude of the cycle across the year for remotely 

located children compared with non-remotely located children.  

The strong observed patterns between birth season and WHZ suggests that there are important 

environmental factors which determine future WHZ beyond present food availability. This finding 

contradicts the conventional wisdom that WHZ can only be used as an indicator of current health or 

nutritional status. Instead, it appears that the food availability at birth and then 6 months later when the 

complementary feeding period begins are important determinants of WHZ in the future. This could be due 

to chronic malabsorption issues (environmental enteropathy) developed due to recurrent episodes of 

undernutrition (van der Merwe et al. 2013). Low WHZ may begin as a seasonal episodic problem, but if 

severe enough, it may become chronic due to the reinforcing mechanisms of undernutrition and disease 

(Korpe et al. 2012). The health and nutritional status of the mother during the neonatal period could also 

be a factor determining WHZ because of sensitive immune system development during that period. The 

etiology of specific types of wasting should be investigated further by scrutinizing health data in the DHS 

and other surveys. 

Conflict incidents have a negative association with heights, which is what we would expect. 

Children who have been exposed to more civil conflict have had reduced health investments over their 

lifespan, potentially leading to lower HAZ. However, conflict incidents have a positive association with 

weights, which is counter-intuitive. There are two potential explanations for this finding. The first 

potential explanation is the spatial associations between wealth and conflict. If conflict is more 

concentrated in wealthier, natural-resource rich areas because armed groups are fighting for control of 

said resources, children may be better off in those wealthier areas just because they are wealthier on 

average, regardless of any nearby fighting. Children who live in the natural resource poor areas will be 
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more susceptible to seasonal fluctuations because they are poorer overall. If conflict is spatially correlated 

with wealth, then these results can be explained in part by wealth disparities across the country.  

This hypothesis is supported by the fact that the mean household wealth index is significantly 

higher for conflict affected (mean=3.33) households than non-conflict affected (mean= 2.49) households 

(two-sample t-test p<0.001). We can test this hypothesis further by examining the nonparametric 

relationship between conflict incidence and household wealth. Figures 7 and 8 show the kernel-weighted 

local polynomial smoothing regressions for the total number of conflicts and for the total number of 

fatalities that each household experienced over 2001-2007, by household wealth quintile. These graphs 

show a clear positive relationship between household wealth and both the number of conflicts and the 

number of fatalities experienced by a household.  

Another potential explanation for the positive association between conflict and child weights is 

the attention the conflict brings for humanitarian assistance projects. It’s possible that humanitarian 

assistance efforts have succeeded in part to improve child weights in conflict-affected areas. The conflict 

affected areas are more likely to receive attention from humanitarian organizations because it is an acute 

crisis that is relatively more easily observed.  Given that HAZ can be used as an indicator of more long-

term nutritional status, the negative association between the number of conflicts and HAZ is consistent 

with the hypothesis that successful humanitarian assistance is the cause of the disparity. Humanitarian 

assistance is more likely to be able to improve weights in the short term for acute crises, but they are not 

necessarily as well equipped to improve heights over the long term, or over successive generations. 

Children who are not exposed to conflict are not necessarily as effectively targeted for humanitarian 

assistance, and therefore are not protected against seasonal fluctuations in food availability like the 

children who are exposed to conflict. Unfortunately, this hypothesis will be difficult to test because there 

is no geocoded dataset which estimates the level and targeting for the many humanitarian assistance 

projects in DRC. Overall, the correlations between conflict and Z-scores are small in magnitude and 

therefore should be interpreted with caution.  

7. CONCLUSIONS 

This study exploits seasonal changes in children’s environment to test whether market access promotes 

resilience, helping households shield their children from fluctuations in food availability and disease 

transmission. Our methodological innovations include measuring market access in terms of travel cost 

based on detailed land cover and terrain data, and measuring seasonality in terms of the dry season that 

arises further from the equator.  We also incorporate flexible age controls into each regression, to capture 

the influence of survey timing on children’s heights and weights. Our findings suggest that children living 
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in more remote locations are more vulnerable to seasonal fluctuations than otherwise similar children 

living in less remote areas, as evidenced by the effect of birth season on future weights (but not heights). 

Controlling for season and other factors, household wealth is associated with child height (but not 

weight), and only in less remote areas. This contrast indicates systematic differences in households’ 

ability to nourish and protect children, leaving more remote rural households more vulnerable to shocks 

while those closer to towns are more able to use household wealth to improve children’s growth.  

In summary, we find that households’ access to towns and markets is closely linked to resilience, 

protecting children from seasonal fluctuations in ways that differ from a household’s own level of wealth. 

Further examination of the health, climatic and other data is needed to confirm this result, with robustness 

tests to address the roles of spatial correlation and coincident cycles, selective morbidity and mortality, 

and other confounders. However, these results suggest an important role for market integration, 

transportation infrastructure and rural services of all kinds as protective against health shocks, in addition 

to their many other influences on household well-being.  Interventions to improve households’ access to 

towns and markets could reduce vulnerability, independently of their effects on household wealth, in 

addition to investments that target causes of malnutrition more directly such as improved diets and health 

care, or reduced disease transmission and civil conflict.  
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Table 1: Descriptive Statistics by birth season and household remoteness 

 All Children 
 

N=2806 

Less healthy 
Not remote 

N=793 

Healthier 
Not remote 

N=638 

Less healthy 
Remote 
N=760 

Healthier 
Remote 
N=615 

Child variables      

HAZ -1.47 (1.87) -1.49 (1.85) -1.26 (1.88) -1.52 (1.88) -1.58 (1.83) 

WAZ -1.20 (1.38) -1.17 (1.38) -1.11 (1.36) -1.31 (1.35) -1.18 (1.43) 

WHZ -0.38 (1.33) -0.31 (1.32) -0.44 (1.31) -0.49 (1.27) -0.27 (1.40) 

Age 29.16 (16.53) 29.01 (16.25) 30.19 (17.09) 28.27 (16.21) 29.39 (16.65) 

Percentage of Boys 49.4% 48.2% 50.3% 49.8% 49.4% 

Household Variables      

Wealth Quintile 2.9 (1.42) 3.29 (1.45) 3.53 (1.40) 2.39 (1.19) 2.37 (1.20) 

Distance to town 64.77 (52.06) 34.49 (7.66) 34.00 (7.38) 97.72 (57.09) 100.65 (61.09) 

Environment Variables      

Conflicts 31.28 (66.9) 49.63 (75.96) 44.38 (69.51) 16.15 (60.59) 12.72 (47.02) 

Abs(Latitude) 4.31 (2.64) 4.40 (2.62) 4.37 (2.44) 4.40 (2.71) 4.00 (2.77) 

Mean (standard deviation). Conflicts are total number of incidents in the 2001-2007 period in the respondent’s grid-cell of 

residence. 
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Table 2: Two-sample T-tests with equal variances 

 HAZ WAZ WHZ 

Gender    

     Girls  -1.406 -1.126 -0.311 

     Boys -1.537 -1.278 -0.449 

     Difference 0.131 0.152 0.138 
     Pr(T>t) 0.031** 0.001*** 0.003*** 

    

Household Location    

     Not Remote -1.393 -1.145 -0.368 
     Remote -1.552 -1.260 -0.392 

     Difference 0.159 0.115 0.023 

     Pr(T>t) 0.012** 0.014** 0.321 

    

Birth season    

     Born less healthy season -1.513 -1.243 -0.400 

     Born healthier season -1.419 -1.150 -0.353 
     Difference 0.093 0.092 0.047 

     Pr(T>t) 0.095* 0.039** 0.175 
Note: Significance levels are shown by *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3: Diagnostic Regression 

  (1) (2) (3) 

VARIABLES Units/type HAZ WAZ WHZ 

     

Age spline 1 Linear spline -0.080 -0.202*** -0.122*** 

  (0.163) (0.000) (0.000) 

     

Age spline 2 Linear spline -0.092*** -0.002 0.013*** 

  (0.000) (0.531) (0.000) 
     

Age spline 3 Linear spline -0.013***   

  (0.002)   

     

Child is male Dummy -0.191** -0.164*** -0.112** 

  (0.014) (0.003) (0.048) 

     

Number of conflicts Count -0.002*** 0.000 0.002*** 

  (0.000) (0.569) (0.000) 

     

Wealth quintile Categorical 0.225*** 0.135*** 0.006 

  (0.000) (0.000) (0.884) 
     

Absolute value(latitude) Degrees -0.013 -0.009 0.003 

  (0.414) (0.589) (0.879) 

     

Proximity km-1 1.389 0.576 -0.336 

  (0.612) (0.780) (0.913) 

     

Born during half 1 Dummy -0.113 -0.113** -0.049 

  (0.181) (0.045) (0.375) 

     

Constant Constant -0.129 0.814*** 0.718*** 
  (0.734) (0.000) (0.001) 

     

Observations N 2,704 2,704 2,704 

Adjusted R-squared R2 0.163 0.155 0.049 

F test Prob>F 0.000 0.000 0.000 

Robust pval in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Incorporating interaction terms 

  (1) (2) (3) 

VARIABLES Type/units HAZ WAZ WHZ 

     

Age spline 1 Linear spline -0.084 -0.203*** -0.123*** 

  (0.152) (0.000) (0.000) 

     

Age spline 2 Linear spline -0.091*** -0.002 0.013*** 

  (0.000) (0.553) (0.000) 
     

Age spline 3 Linear spline -0.014***   

  (0.002)   

     

Child is male Dummy -0.192** -0.167*** -0.116** 

  (0.014) (0.003) (0.041) 

     

Number of conflicts Count -0.002*** 0.000 0.002*** 

  (0.000) (0.493) (0.000) 

     

Wealth quintile Categorical 0.218*** 0.121*** -0.007 

  (0.000) (0.000) (0.853) 
     

Abs value(latitude) Degrees -0.018 -0.069* -0.076* 

  (0.757) (0.066) (0.084) 

     

Proximity km-1 -4.201 -16.789*** -19.277** 

  (0.659) (0.000) (0.038) 

     

Born during half 1 Dummy -0.050 -0.323* -0.417** 

  (0.867) (0.073) (0.036) 

     

Abs val(lat)*Proximity Interaction  0.942 3.770*** 4.266** 
  (0.654) (0.005) (0.015) 

     

Born half 1 *abs val(lat) Interaction -0.042 0.017 0.063 

  (0.590) (0.756) (0.117) 

     

Born half 1*proximity Interaction 2.232 16.336** 20.625*** 

  (0.845) (0.011) (0.001) 

     

Born half 1*abs val(lat)*proximity Interaction 0.671 -2.370 -3.730*** 

  (0.814) (0.214) (0.002) 

     
Constant Constant -0.034 1.142*** 1.111*** 

  (0.937) (0.000) (0.000) 

     

Observations N 2,704 2,704 2,704 

Adjusted R-squared R2 0.163 0.160 0.054 

F test Prob>F 0.000 0.000 0.000 

Robust pval in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4a: Incorporating interaction terms 

Marginal effects 

  (1) (2) (3) 

VARIABLES Type/units HAZ WAZ WHZ 

     

Age spline 1 Linear spline -0.084 -0.203*** -0.123*** 
  (0.149) (0.000) (0.000) 

     

Age spline 2 Linear spline -0.091*** -0.002 0.013*** 

  (0.000) (0.552) (0.000) 

     

Age spline 3 Linear spline -0.014***   

  (0.002)   

     

Child is male Dummy -0.192** -0.167*** -0.116** 

  (0.012) (0.002) (0.039) 

     

Number of conflicts Count -0.002*** 0.000 0.002*** 
  (0.000) (0.492) (0.000) 

     

Wealth quintile Categorical 0.218*** 0.121*** -0.007 

  (0.000) (0.000) (0.853) 

     

Abs value(latitude) Degrees -0.012 -0.004 0.008 

  (0.469) (0.741) (0.647) 

     

Proximity  Km-1 2.695 2.674 1.391 

  (0.294) (0.233) (0.650) 

     
Born during half 1 Dummy -0.115 -0.115** -0.050 

  (0.178) (0.030) (0.300) 

     

Observations N 2,704 2,704 2,704 

pval in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Stratifying by remoteness 

  (1) (2) (3) (4) (5) (6) 
VARIABLES Type/units HAZ 

Remote 

HAZ 

Not Remote 

WAZ 

Remote 

WAZ 

Not Remote 

WHZ 

Remote 

WHZ 

Not Remote 

        

Age spline 1 Linear spline -0.134 -0.022 -0.211*** -0.189*** -0.138*** -0.107*** 

  (0.180) (0.712) (0.000) (0.000) (0.000) (0.000) 

        

Age spline 2 Linear spline -0.085*** -0.095*** 0.000 -0.003 0.016*** 0.010** 

  (0.000) (0.000) (0.931) (0.473) (0.000) (0.039) 

        

Age spline 3 Linear spline -0.016*** -0.010     

  (0.001) (0.135)     

        

Child is male Dummy -0.168* -0.203* -0.194*** -0.169** -0.159** -0.117 
  (0.066) (0.082) (0.007) (0.043) (0.011) (0.212) 

        

Abs val(latitude) Degrees -0.024 0.016 -0.054** 0.086*** -0.050 0.100*** 

  (0.576) (0.699) (0.016) (0.000) (0.108) (0.000) 

        

Wealth quintile Categorical 0.096 0.298*** 0.071** 0.154*** 0.021 -0.023 

  (0.132) (0.000) (0.050) (0.000) (0.637) (0.645) 

        

Number of conflicts Count -0.000 -0.003*** -0.001** 0.001** -0.001 0.003*** 

  (0.965) (0.000) (0.016) (0.047) (0.190) (0.000) 

        

Born during half 1 Dummy 0.045 0.031 -0.182 0.299** -0.307** 0.395*** 
  (0.829) (0.909) (0.140) (0.042) (0.043) (0.000) 

        

Half 1*abs(lat) Interaction -0.006 -0.045 0.006 -0.079*** 0.020 -0.067*** 

  (0.902) (0.381) (0.854) (0.006) (0.518) (0.000) 

        

Constant Constant 0.377 -0.741* 1.307*** 0.145 1.212*** 0.109 

  (0.539) (0.090) (0.000) (0.440) (0.001) (0.589) 

        

Observations N 1,375 1,431 1,375 1,431 1,375 1,431 

Adjusted R-squared R2 0.135 0.180 0.160 0.157 0.065 0.057 

F test Prob>F 0.000 0.000 0.000 0.000 0.000 0.000 

Robust pval in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 5a: Stratifying by remoteness 

Marginal effects 

  (1) (2) (3) (4) (5) (6) 

VARIABLES Type/units HAZ 

Remote 

HAZ 

Not Remote 

WAZ 

Remote 

WAZ 

Not Remote 

WHZ 

Remote 

WHZ 

Not Remote 

        

Age spline 1 Linear spline -0.134 -0.022 -0.211*** -0.189*** -0.138*** -0.107*** 

  (0.176) (0.709) (0.000) (0.000) (0.000) (0.000) 

        

Age spline 2 Linear spline -0.085*** -0.095*** 0.000 -0.003 0.016*** 0.010** 

  (0.000) (0.000) (0.931) (0.467) (0.000) (0.031) 

        

Age spline 3 Linear spline -0.016*** -0.010     

  (0.001) (0.125)     

        
Child is male Dummy -0.168* -0.203* -0.194*** -0.169** -0.159*** -0.117 

  (0.062) (0.072) (0.005) (0.035) (0.009) (0.203) 

        

Abs value(latitude) Degrees -0.028 -0.009 -0.051*** 0.042*** -0.039* 0.063*** 

  (0.321) (0.680) (0.001) (0.003) (0.075) (0.007) 

        

Wealth quintile Categorical 0.096 0.298*** 0.071** 0.154*** 0.021 -0.023 

  (0.128) (0.000) (0.046) (0.000) (0.636) (0.642) 

        

Number of conflicts Count -0.000 -0.003*** -0.001** 0.001** -0.001 0.003*** 

  (0.965) (0.000) (0.014) (0.039) (0.186) (0.000) 

        
Born during half 1 Dummy 0.019 -0.169 -0.157** -0.047 -0.225*** 0.101** 

  (0.839) (0.183) (0.024) (0.504) (0.003) (0.038) 

        

Observations  1,375 1,431 1,375 1,431 1,375 1,431 

pval in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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11. APPENDIX 

A. Cost-surface value assignment by land-cover class 

Land cover classifications 

10: impassable (quarries, open water) 
9: passable but not without considerable effort 

8: difficult to pass through (dense forest) 

7: more difficult to pass through (dense shrub) 
6: moderate-difficult (medium density forest, cropland) 

5: moderate difficulty 

4: moderate-easy difficult (sparse shrub, open forest) 

3: easy-moderate (dense urban) 
2: easy but with some impedance  

1: easy (open land) 

0: very easy (paved open land) 
 

B. Cost-surface map 

This is a depiction of the final travel-cost weighted distance raster. Lighter shades represent higher costs 

of travel, and darker shades represent lower costs of travel. For example, you can see the Congo River 

and various tributaries in light shades in the Northwest of the country, because open water is considered 

“impassable,” and given the highest cost value.  
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C. Addressing the Cummins (2013) critique: timing-artifact chart reproduced for the DRC data 

 

We can see that the timing artifact for these data is present, but is not be as clear/extreme for DRC as in 

the Bangladesh data Cummins presents in his paper, for example. Higher HAZ is apparent in November 

and December, where children were measured at, on average, ages 27.3 and 26.5 months respectively, 

which are the lowest mean ages-at-measurement across all months (highest mean HAZ scores 

corresponds to highest mean ages-at-measurement in November and December). This is happening 

because children born in those months were measured at younger ages due to survey timing, and HAZ is 

systematically higher for younger children. Similarly, for the birth month of July, we can see that the 

highest mean age-in-months-at-measurement (33 months) corresponds to the lowest mean HAZ (-1.66). 
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D. Frequency distribution of Euclidean distances to the nearest major town 

 

 

 

 


