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Abstract: A method is developed to integrate the efficiency concepts of technical, allocative,
and scale inefficiencies (TI, AI, SI) into the variable returns to scale (VRS) frontier approximation in
Data Envelopment Analysis (DEA). The proposed weighted DEA (WDEA) approach takes a weighted
average of the profit, constant returns to scale (CRS), and VRS frontiers, so that the technical feasibility
of a VRS frontier is extended toward scale- and allocatively-efficient decisions. A weight selection rule is
constructed based on the empirical performance of the VRS estimator via the local confidence interval
of Kneip, Simar, and Wilson (2008). The resulting WDEA frontier is consistent and more efficient
than the VRS frontier under the maintained properties of a data generating process. The potential
estimation efficiency gain arises from exploiting sample correlations among TI, AI, and SI. Application
to Maryland dairy production data finds that technical efficiency is on average 5.2% to 7.8% lower
under the WDEA results than under the VRS counterparts.

1 Introduction

The concept of optimality and the subsequent definition of inefficiency depend on the focus

of benchmarking by a relevant “frontier” of decision possibilities. In the tradition of production

economics, three concepts of optimality stand out. Technical inefficiency (TI) assesses the extent

of feasible output expansions for given inputs (or input reductions for given outputs) relative

to the technological frontier of input-output decisions. Allocative and scale inefficiencies (AI

and SI) represent the extents of forgone opportunities by the misallocation of resources and the

suboptimal scales of operations respectively, relative to the frontier of revenue maximization

(or cost minimization) and the frontier of linear-homogeneous production process (i.e. constant

returns to scale; CRS). Numerous empirical studies have analyzed TI while paying little attention

to AI or SI.

∗This study is a chapter of the author’s dissertation at University of Maryland, College Park. I thank professor Robert
Chambers for overseeing the project as well as professor Erik Lichtenberg and Dr. Jim Hanson for helpful comments.
I am grateful to Mr. Dale Johnson for sharing his data for this study. All remaining errors are my own. Contact:
kota0403@umd.edu
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However, the interconnections among the concepts of TI, AI, and SI suggest an opportunity to

improve technological frontier estimations. Conceptually, TI is a gap between an input-output

decision and a technological frontier, and AI and SI are the gaps between the technological

frontier and its outer frontiers of different benchmarking focuses. Empirically, the pivotal role

of a technological frontier implies that the most efficient estimation strategy entails a joint

specification of the frontier and these inefficiency concepts. In the parametric frontier literature,

such simultaneous estimations have been developed mainly by incorporating AI into the optimal

factor demands from cost minimization (e.g., Yotopoulos and Lau, 1973; Schmidt and Lovell,

1979, 1980; Kumbhakar, 1989, 1997; Kumbhakar and Wang, 2006; Kumbhakar and Tsionas,

2011). For nonparametric frontier models like Data Envelopment Analysis (DEA), on the other

hand, there is no coherent estimation technique that integrates these efficiency concepts. This

gap in knowledge is partially filled in this article.

Inefficient DEA estimations manifest themselves in the form of a limited ability to discrimi-

nate individual TI measurements. Efficiency analysis with a small sample size tends to find an

unexpectedly large number of observations being fully technically-efficient, a pervasive concern

in the nonparametric frontier literature (e.g., Dyson et al., 2001; Podinovski and Thanassoulis,

2007). One strand of literature tackles this issue by applying direct value judgments (i.e. shadow

price restrictions) based on perceived importance of inputs and outputs (e.g., Allen et al., 1997;

Thanassoulis, Portela, and Allen, 2004) or so-called assurance regions (e.g., Dyson and Thanas-

soulis, 1988; Thompson et al., 1990; Sarrico and Dyson, 2004; Podinovski, 2004a; Tracy and

Chen, 2004; Khalili et al., 2010). Other lines of research incorporate additional knowledge on

production processes or constrain the range of technological parameters so as to increase estima-

tion efficiency. Examples include weak disposability of inputs or undesirable outputs (Chung,

Fre, and Grosskopf, 1997; Scheel, 2001; Seiford and Zhu, 2002; Kuosmanen, 2005; Podinovski and

Kuosmanen, 2011), non-discretionary factors (Ruggiero, 1998), unobserved decisions (Thanas-

soulis and Allen, 1998; Allen and Thanassoulis, 2004), selective linear homogeneity (Podinovski,

2004b; Podinovski and Thanassoulis, 2007), and prescribed producer trade-offs (Podinovski,

2004c). Following the second strand of literature, this article refines a variable returns to scale

(VRS) frontier estimation by calibrating the degrees of technical substitution and linear homo-

geneity, based on sample-level properties of AI and SI respectively. The method is a variant

of the DEA frontier bounds of Chambers, Chung, and Färe (1998) and closely related to the

allocative inefficiency bounds of Kuosmanen and Post (2001).

Namely, this study proposes a weighted DEA (WDEA) approach that estimates a techno-

logical frontier as a weighted average of the profit, CRS, and VRS frontiers. By integrating the
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concepts of TI, AI, and SI, it enhances the discriminatory power of DEA. An optimal weight

selection rule is devised based on the empirical performance of the VRS estimator via the local

confidence interval proposed by Kneip, Simar, and Wilson (2008). The resulting WDEA fron-

tier is consistent and more efficient than the VRS frontier under the maintained properties of a

data generating process. The potential estimation efficiency gain arises from exploiting sample

correlations among TI, AI, and SI.

In a single-input single-output (x-y) space, figure 1 illustrates the concept of WDEA for the

relationships among the CRS, VRS and postulated technological frontiers (depicted as a solid-

curve). The optimal projections of the decision at point A to the VRS and CRS frontiers are

shown at points B and C, yielding the conventional measures of TI and SI as distances AB and

BC respectively. WDEA postulates a technological frontier through a weighted average of the

VRS and CRS frontiers (i.e., somewhere between the inner and outer frontier-approximations).

The new TI and SI measurements under WDEA are distances AD(> AB) and DC(< BC)

where point D denotes the projection of point A onto the WDEA technological frontier. A

parallel refinement of the frontier approximation can be obtained using similar relationships

among the profit, VRS, and postulated frontiers. Together, these refinements are formalized

under a weighted-average of the profit, CRS, and VRS frontiers.

In the following, section 2 presents the WDEA approach, and section 3 applies the method

to Maryland dairy production data, followed by conclusions in section 4.

2 Method

In below, technical, allocative, and scale inefficiency (TI, AI, and SI) measurements are de-

noted by the directional distance function of Chambers, Chung, and Färe (1998). Its additive

nature is notationally well-suited for describing the weighted average of these inefficiency con-

cepts. The section consists of the descriptions of preliminary concepts, a weighted DEA (WDEA)

approach, and a weight selection for WDEA.

2.1 Preliminaries

Notations and preliminary concepts are defined as follows. Technology T is a set of feasible

input-output bundles, or T = {(x,y) ∈ RL
+ ×RM

+ : x can produce y} where

A.1 T is closed.

A.2 T satisfies free-disposability: (x,y) ∈ T and (−x,y) ≥ (−x′,y′) ⇒ (x′,y′) ∈ T .

A.3 T is convex: (x,y), (x′,y′) ∈ T ⇒ ∀λ ∈ [0, 1], ∀(λx+ (1− λ)x′, λy + (1− λ)y′) ∈ T .
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The boundary of a technology is referred to as technological frontier. T can be completely

characterized by the directional distance function of Chambers, Chung, and Färe (1998)1 in the

sense that (x,y) ∈ T ⇔ DT (x,y; gx, gy) ≥ 0 where

DT (x,y; gx, gy) = max{b ∈ R : (x− bgx,y + bgy) ∈ T}. (1)

Function DT (x,y; gx, gy) measures the distance between point (x,y) and the frontier of technol-

ogy T in direction (−gx, gy), representing technical inefficiency (TI). As a special case, setting

direction (−gx, gy) = (−x0,0) yields an input-oriented, radial TI measurement, which is equiv-

alent to Shephard’s input distance function θV (x0,y0) = max{θ : x0/θ ∈ V (y0)} ≥ 1 for the

input set V (y) associated with technology T . Similarly, setting direction (−gx, gy) = (0,y0)

leads to an output-oriented, radial TI measurement, or the inverse of Farrell’s output efficiency

φY (x0,y0) = max{φ : φy0 ∈ Y (x0)} ≥ 1 for the output set Y (x) associated with T .2

Profit function πT (w,p) attains the highest production value in technology T for given input-

output prices (w,p) ∈ RL+M
+ ;

πT (w,p) = max
x,y
{py −wx : (x,y) ∈ T}

= max
x,y
{py −wx+DT (x,y; gx, gy)(pgy +wgx)} (2)

where the second expression follows from the definition of directional distance function (x −

DT (x,y; gx, gy)gx,y + DT (x,y; gx, gy)gy) ∈ T . The duality between the profit function and

the directional distance function (Chambers, Chung, and Fre, 1998) yields;

DT (x,y; gx, gy) = min
w′,p′

{
πT (p′,w′)− (p′y −w′x)

p′gy +w′gx

}
, (3)

which shows that in the set of supporting hyperplanes for technology T , TI is obtained at the

shadow values that evaluate the decision most favorably. For given market prices (w,p), profit

inefficiency (PI) is defined as

DPF (x,y; gx, gy) =
πT (p,w)− (py −wx)

pgy +wgx
(4)

where the subscript PF refers to profit-function(PF) technology TPF (w,p), which is cast as a

hypothetical technology that envelopes T under linear techical substitutability and takes the form

1The directional distance function is the technology-counterpart to the shortage function of Luenberger (1994).
2θV (x0,y0) = 1/(1−DT (x0,y0;x0,0)) and φY (x0,y0) = 1/(1−DT (x0,y0;0,y0)).
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of a half-space bounded by the profit function, or TPF (w,p) = {(x,y) : py−wx ≤ πT (w,p)}.

Strictly speaking, the PI in (4) and the PF technology should be represented conditionally on

(w,p), yet this notation is omitted by assuming fixed market prices. At direction (−gx, gy) =

(0, gy) or (−gx, gy) = (−gx,0), PF frontier reduces to a revenue or cost frontier for the associated

revenue or cost function respectively. According to additive decomposition PI = TI +AI,3 the

difference between the PI in (4) and the TI in (3) defines allocative inefficiency (AI);

AI(x,y; gx, gy) = DPF (x,y; gx, gy)−DT (x,y; gx, gy). (5)

Any input-output bundle on the frontier of TPF is allocatively-efficient at prices (w,p) and

attains the maximum profit at πT (w,p).

The assumption of constant returns to scale (CRS) considers a hypothetical technology that

envelops T under the linear homogeneity of input-output relationships, or TCRS = ∪λ∈R+λT .4

Denote the profit function associated with TCRS by; πCRS(w,p) = maxx,y{py −wx : (x,y) ∈

TCRS} which equals 0 if πT (w,p) ≤ 0 and ∞ if πT (w,p) > 0.5 Assuming πCRS(w,p) = 0 (e.g.,

equilibrium outcome under perfect competition with free entry and exit), the corresponding

pseudo-TI measurement under CRS, say TI(CRS), is;

DCRS(x,y; gx, gy) = min
p′,w′

{
πCRS(p′,w′)− (p′y −w′x)

p′gy +w′gx

}
, (6)

which is positive and bounded. According to additive decomposition TI(CRS) = TI + SI, the

difference between the TI(CRS) in (6) and the TI in (3) defines scale inefficiency (SI);

SI(x,y; gx, gy) = DCRS(x,y; gx, gy)−DT (x,y; gx, gy). (7)

Any decision on the frontier of TCRS is scale-efficient.

2.2 Weighted DEA (WDEA) Approach

Turning to empirical efficiency measurements, weighted DEA (WDEA) approach is presented

in below for input-output bundles {(xi,yi)}i∈I with observations indexed by I = {1...N}.

3The multiplicative decomposition in the form of PI = TI ∗AI is referred to as Nerlovian profit inefficiency measure-
ment as it first appeared in Nerlove (1965). Its PI measure is given as π(w,p)/(py −wx).

4 For input-output relationships specified in physical quantiles, linear-homogeneity is most suitably defined with respect
to the origin. For those specified in monetary variables or qualitative indices, one may postulate a shifted CRS (SCRS)
technology under a pseudo CRS-assumption around arbitrary point (xo,yo) instead of the origin, or TSCRS = (xo,yo) +
∪λ∈R+λ(T − (xo,yo)). The associated profit function is πSCRS(w,p) = pyo−wxo+ maxx,y{py−wx : (x,y) ∈ TSCRS}
which equals pyo −wxo if πT (w,p) ≤ pyo −wxo or ∞ if πT (w,p) > pyo −wxo.

5Under the CRS assumption, zero-profit is always feasible by the feasible inaction (0,0) ∈ TCRS at λ = 0.
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The DEA approximations under VRS and CRS are respectively the free-disposal convex

hull of data points (i.e., all convex combinations of data points and the points implied by free-

disposabiliity) and the free-disposal conical hull of data points (i.e., every point in T̂V RS and any

scaler multiple of it), or

T̂V RS = {(x′,y′) :
∑
j∈I

λjyj ≥ y′, ,
∑
j∈I

λjxj ≤ x′,
∑
j∈I

λj = 1, λ ∈ RN
+}, (8)

T̂CRS = {(x′,y′) :
∑
j∈I

λjyj ≥ y′, ,
∑
j∈I

λjxj ≤ x′, λ ∈ RN
+}. (9)

T̂V RS corresponds to the smallest producible set satisfying assumptions A.1-A.3, while T̂CRS

envelops T̂V RS under linear homogeneity. The estimates for TI and TI(CRS) by the directional

distance function in (1) are D̂V RS(x0,y0; gx, gy) = max{b : (x0 − bgx,y0 + bgy) ∈ T̂V RS} and

D̂CRS(x0,y0; gx, gy) = max{b : (x0− bgx,y0 + bgy) ∈ T̂CRS} respectively. The dual problem for

D̂V RS(x0,y0; gx, gy), corresponding to the dual representation in (3), is

min{ρ ∈ R : ∀j ∈ I, pyj −wxj ≤ py0 −wx0 + ρ, pgy +wgx = 1, p ∈ RM
+ , w ∈ RL

+},

(10)

which minimizes TI-parameter ρ subject to the optimality of shadow value py0 −wx0 + ρ for

decision (x0,y0), given the feasibility constraints under T̂V RS and price normalization pgy +

wgx = 1. The dual estimation for D̂CRS(x0,y0; gx, gy), corresponding to (6), is obtained by

imposing additional constraint py0 − wx0 + ρ = 0 in problem (10), as implied by condition

πCRS(p,w) = 0.

Profit-function (PF) technology is estimated as the half space bounded by π̂V RS(w,p);

T̂PF = {(x,y) : py −wx ≤ π̂V RS(w,p)} where

π̂V RS(w,p) = max
x,y
{py −wx : (x,y) ∈ T̂V RS} = max

j∈I
{pyj −wxj}. (11)

The conventional measures of technical, allocative, and scale inefficiencies (T̂ IV RS, ÂIV RS,

and ŜIV RS) are estimated as distances (3), (5), and (7) respectively using frontier approximations

(8), (9), and (11). The standard practice is to utilize technology approximation T̂V RS, from which

TI, AI, and SI are measured. While these estimates are consistent, more efficient estimation can

be devised under a simultaneous estimation of the technology and inefficiency concepts.

To this end, the current study proposes a weighted DEA (WDEA) approach to integrating

the concepts of TI, AI, and SI into a technology approximation. Consider WDEA technology
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T̂W (α,β) defined as the weighted average of T̂V RS, T̂PF , and T̂CRS for given weights {1 − α − β,

α, β} respectively;6

T̂W (α,β) ≡ (1− α− β)T̂V RS + αT̂PF + βT̂CRS

= T̂V RS + α(T̂PF − T̂V RS) + β(T̂CRS − T̂V RS), (12)

which expands the conventional producible set T̂V RS by α-portion of the input-output space con-

ventionally regarded as AI and β-portion of the space conventionally regarded as SI.7 Arbitrary

weights α and β respectively generalize the extents of linear substitution and linear homogeneity

assumptions in DEA. Consequently, T̂W (α,β) includes the conventional DEA frontiers of PF, CRS,

and VRS as special cases; T̂W (0,0) = T̂V RS, T̂W (1,0) = T̂PF , and T̂W (0,1) = T̂CRS. If weights α and

β fall outside of range [0, 1], the technical feasibility can be defined as T̂ ∗W (α,β) ≡ T̂W (α,β) ∪ T̂V RS,

so that the WDEA approximation of a technology is bounded from below by T̂V RS.

For decision (x0,y0), let the TI measured under WDEA technology T̂W (α,β) be

D̂W (α,β)(x0,y0) = (1− α− β)D̂V RS(x0,y0) + αD̂PF (x0,y0) + βD̂CRS(x0,y0)

= T̂ IV RS(x0,y0) + αÂIV RS(x0,y0) + βŜIV RS(x0,y0), (13)

and let the associated AI and SI measures be

ÂIW (α,β)(x0,y0) = D̂PF,W (x0,y0)− D̂W (α,β)(x0,y0), (14)

ŜIW (α,β)(x0,y0) = D̂CRS,W (x0,y0)− D̂W (α,β)(x0,y0) (15)

where D̂CRS,W (x0,y0) and D̂PF,W (x0) are obtained by replacing T̂V RS in (9) and (11) with

T̂W (α,β) respectively. Note that at β = 0, the new AI measurement reduces to;

ÂIW (α,0)(xi,yi) = (1− α)(D̂PF (xi,yi)− D̂V RS(xi,yi)) = (1− α)ÂIV RS(xi,yi). (16)

Similarly, at α = 0, the new SI measurement reduces to;

ŜIW (0,β)(xi,yi) = (1− β)(D̂CRS(xi,yi)− D̂V RS(xi,yi)) = (1− β)ŜIV RS(xi,yi). (17)

The next subsection considers an optimal weight selection for α and β. In below, simplified

6While notation (w,p) is omitted, T̂W (α,β) clearly depends on the market prices through the profit frontier along T̂PF .
7Alternatively, one can define T̂W (α,β) with a convex combination of arbitrary direction (−g̃x, g̃y) instead of the

current, radial orientation.
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notations are used for distance function DT,i ≡ DT (xi,yi) and inefficiencies TIT,i ≡ TIT (xi,yi),

AIT,i ≡ AIT (xi,yi), and SIT,i ≡ SIT (xi,yi).

2.3 Weight Selection

Consider the following weight selection mechanism that proceeds in two steps. The first step

makes some initial estimate D̂T,i at the observation level and the second step predicts sample-

level relationships between this estimate D̂T,i and the conventional measures of TI, AI, and SI.

Namely, the second step estimates optimal weights by minimizing least square errors of the form;

{α̂, β̂} = argmin
α,β

{
1

N

∑
i∈I

(
D̂T,i − (T̂ IV RS,i + αÂIV RS,i + βŜIV RS,i)

)2}
, (18)

which is the moment condition implied by equation (13) when D̂W (α,β)i is substituted with some

estimate D̂T,i from the first step. The remainder of this section describes the first-step estimation

for D̂T,i, discusses some properties of this weight selection, and provides a simple, illustrative

example.

The conceptual underpinning for the first-step estimate D̂T,i draws on the subsample-bootstrap

estimator proposed by Kneip, Simar, and Wilson (2008). The authors showed that for a convex

technology, the behavior of the VRS estimator can be analyzed through the relative frequency

for observations to be located in a small neighborhood around the true frontier. Assuming a

uniform density in the neighborhood, they derived an asymptotic distribution of this estimator.

Given the equivalence between the asymptotic properties of (additive) directional distance func-

tions and those of (multiplicative) radial inefficiency measures (Simar, Vanhems, and Wilson,

2012), the 1− a confidence interval for D̂V RS,i can be written as;

1− a = Pr(Ca ≤ D̂V RS,i −DT ≤ Cb) ≈ Pr(Ca ≤ D̂∗V RS,i − D̂V RS ≤ Cb) (19)

where Ca and Cb represent lower and upper critical values for the deviation, and D̂∗V RS,i is a

bootstrap VRS estimator using K(< N) observations sampled without replacement.8 The criti-

cal values are substituted with estimates Ĉa = ψa/2,K and Ĉb = ψ1−a/2,K where ψx,K ≤ 0 denotes

the x-quantile of the bootstrap distribution {K2/(L+M+1)(D̂∗,bV RS,i−D̂V RS,i)}Bb=1 from B bootstrap

replications. The intuition behind the subsample-bootstrapping is that the distribution of the

difference D̂V RS,i − DT between the VRS estimator (in the sample) and the true value (in the

universe) can be predicted from the distribution of the difference D̂∗V RS,i − D̂V RS between the

8Another approach would be the smooth-bootstrap method of Kneip, Simar, and Wilson (2011).
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bootstrap-VRS estimator (in a subsample) and the VRS estimator (in the full sample), given

the adjustments for the different rates of convergence under different sample sizes. Then, the

confidence interval in (19) can be estimated as

[D̂V RS,i −N−2/(L+M+1)ψ1−a/2,K , D̂V RS,i −N−2/(L+M+1)ψa/2,K ], (20)

which reflects the accuracy of local VRS estimator D̂V RS,i, predicted from the local sample

density in the neighborhood. Let the mean of this confidence interval be referred to as mean

bootstrap (MB) estimator (e.g., Simar, Vanhems, and Wilson, 2012), which makes upward ad-

justments to conventional TI estimate D̂V RS,i;
9

D̂MB,i = D̂V RS,i −
(
K

N

)2/(L+M+1)
1

B

B∑
b=1

(D̂∗,bV RS,i − D̂V RS,i) (21)

where D̂∗,bV RS,i − D̂V RS,i ≤ 0. In effect, MB estimator tends to assume a larger producible set

than T̂V RS everywhere along the frontier.

Two modifications to D̂MB,i are made before arriving at the proposed estimate for D̂T,i. One

modification is to correct for systematic bias in D̂MB,i with respect to the scales of operations.

The bias arises from the potential inapplicability of TI measurements under random subsamples

(, which may not contain reference observations for sufficiently small- or large-scale operations)

and is systematically related to the direction of TI measurement; small-scale decisions can-

not be assessed for output-oriented TI if comparably-small scale input-decisions are absent in

the subsample, and similarly large-scale decisions cannot be evaluated for input-oriented TI if

comparably-large scale output-decisions are absent. Using only the estimable cases of bootstrap-

TI measurements would underestimate the bias-corrections in (21) for these decisions. By simul-

taneously employing input- and output-oriented MB estimators, denoted by D̂I
MB,i and D̂O

MB,i

respectively, scale-neutral MB technology can be specified as;

T̂NMB = {(x′,y′) :
∑
j∈I

λj(yj + D̂O
MB,i) +

∑
j∈I

ηjyj ≥ y′,∑
j∈I

λjxj +
∑
j∈I

ηj(xj − D̂I
MB,i) ≤ x′,

∑
j∈I

λj +
∑
j∈I

ηj = 1, λ, η ∈ RN
+}, (22)

which yields associated estimator D̂N
MB,i = max{b : (xi − bgx,yi + bgy) ∈ T̂NMB} for direction

(gx, gy).

9The mean can be replaced with the median or mode of distribution {K2/(L+M+1)(D̂∗,bV RS, − D̂V RS,i)}
B
b=1. Simulation

study may be helpful to investigate these alternative estimators.
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The other modification is to reduce the magnitude of upward adjustments in (21), such that

some observed decisions can be regarded fully-technically efficient under the implied technology.

This prevents the model from postulating a strictly larger technical feasibility than T̂V RS. For

constant c̄ = E[D̂N
MB,i − D̂V RS,i − D̂V RS,i|D̂V RS,i = 0], consider shifted-mean bootstrap (SMB)

estimator c̄ = E[D̂N
MB,i − D̂V RS,i|D̂V RS,i = 0]. Thus, constant c̄, the mean difference between

the above MB and VRS estimators conditionally on being technically-efficient under the VRS

frontier, is used to shift back and normalize the upward adjustment D̂N
MB,i − D̂V RS,i. The lower

bound for TI by D̂V RS,i is added to ensure that the associated technical feasibility is bounded

from below by T̂V RS. It may be noted that the magnitude of constant c̄ directly affects the mean

TI under SMB and hence the mean TI under WDEA.10

Hence, the proposed weight selection first estimates D̂T,i by D̂SMB,i and then weights α̂ and

β̂ by equation (18). These weights represent the sample-level relationships between locally-

derived adjustments D̂SMB,i − D̂V RS,i (i.e., predicted bias corrections for the conventional TI

measure D̂V RS,i) and the conventional measures of AI and SI. By accounting for the sample

correlations among these inefficiency concepts, WDEA technology T̂W (α̂,β̂) systematically extends

conventional technology approximation T̂V RS, or the smallest feasible set meeting assumptions

A1-A3.

Some properties of the WDEA estimator are noted with respect to the following relationships

between unobserved DT,i and its estimates by VRS, SMB, and WDEA;

V RS : DT,i = T̂ IV RS,i + εV RS,i, εV RS,i > 0

SMB : DT,i = D̂SMB,i + εSMB,i, E[εSMB,i] = 0

WDEA : DT,i = T̂ IV RS,i + αÂIV RS,i + βŜIV RS,i + εW (α,β),i, E[εW (α,β),i] = 0 (23)

where εV RS,i, εSMB,i, and εW (α,β),i are residual terms that close these identities. In the first

equation, the well-known one-sided bias of the VRS estimator (i.e. εV RS,i > 0) implies mean-

inconsistency E[DT,i−T̂ IV RS,i] = E[εV RS,i] > 0, while it is asymptotically consistent, or E[DT,i−

T̂ IV RS,i] → 0 for a sufficiently large sample (Banker, Gadh, and Gorr, 1993). In the second

equation, the SMB estimator is assumed to be consistent, so that E[DT,i−D̂SMB,i] = E[εSMB,i] =

0. Given this assumption, combining the second and the third equations to eliminate DT,i and

using α̂ and β̂ in (18) yield a consistent WDEA estimator;

Remark 1. In (18) and (23), if E[εSMB,i|D̂SMB,i, T̂ IV RS,i, ÂIV RS,i, ŜIV RS,i] = 0, then the

10An alternative for c̄ is to use the minimum of the difference D̂N
MB,i − D̂V RS,i instead of the mean. Yet, given the

relative inaccuracy in predicting T̂NMB , the use of the mean difference appears more reliable.
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WDEA estimator is consistent, or E[εW (α̂,β̂),i] = 0.

Turning to estimation efficiency, simple comparisons are noted;

Remark 2. In (23), if E[εSMB,i|D̂SMB,i, T̂ IV RS,i] = 0, then the SMB estimator is more efficient

than the VRS estimator in that E[(εSMB,i)
2] ≤ E[(εV RS,i)

2] where εV RS,i = (D̂SMB,i− T̂ IV RS,i)+

εSMB,i.

Remark 3. In (18) and (23), if E[εW (α̂,β̂),i|ÂIV RS,i, ŜIV RS,i] = 0 and α̂, β̂ ≥ 0, then the WDEA

estimator is more efficient than the VRS estimator in that E[(εW (α̂,β̂),i)
2] ≤ E[(εV RS,i)

2] where

εV RS,i = αÂIV RS,i + βŜIV RS,i + εW (α̂,β̂),i.

Remark 4. In (18) and (23), if E[εSMB,i|D̂SMB,i, T̂ IV RS,i, ÂIV RS,i, ŜIV RS,i] = 0 and α̂, β̂ ≤ 0,

then the SMB estimator is more efficient than the WDEA estimator in that E[(εSMB,i)
2] ≤

E[(εW (α̂,β̂),i)
2] where εSMB,i = αÂIV RS,i + βŜIV RS,i + (T̂ IV RS,i − D̂SMB,i) + εW (α,β),i.

Remark 2 follows from D̂SMB,i − T̂ IV RS,i ≥ 0. Remark 3 similarly follows under α, β ≥ 0.

Remark 4 states that under α, β ≤ 0, incorporating AI and SI into a technology estimation

would be counterproductive. Meanwhile, there seems no simple condition that ensures higher

efficiency of the WDEA estimator than the SMB counterpart.

The following example illustrates a process of constructing (simplified versions of) SMB

and WDEA estimators. Consider a case of one-input, one-output production with a sample

of 6 observations (xi, yi), i = 1, .., 6. Figure 3 depicts relative geometric locations of these

observations, labeled A1-A6. Points A1,A2, and A3 are technically-efficient under VRS but

only point A2 is technically-efficient under CRS. Points A4, A5, and A6 are all technically-

inefficient under VRS and are less efficient versions of points A1,A2, and A3 respectively, such

that x1 = x4 < x2 = x5 < x3 = x6 and y1 > y4, y2 > y5, y3 > y6. For the ease of illustration,

consider the SMB estimator based solely on the output-oriented TI by D̂O
MB,i (without using the

output-oriented TI by D̂I
MB,i) and single WDEA weight β̂ > 0 (with α̂ = 0). In relation to the

total number of observations N = 6, the number of subsample is set at K = 1 for simplicity. At

K = 1, bootstrap VRS frontier reduced to a free disposable hull (FDH), so that D̂O
MB,i can be

described as the difference in outputs of two decisions. With a sufficient number of bootstrap

replications b = 1, .., B, each data point is drawn at probability pi = 1/6, and the mean bootstrap

estimate D̂MB,i (1/B)
∑

b(D̂
∗,b
V RS,i − D̂V RS,i) converges to its expected value. Then, without loss

of generality, by treating observation index i interchangeably with bootstrap index b = 1, .., 6,
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the MB estimator for point A1 can be described as

D̂MB,1 = D̂V RS,1 − (K/N)2/(L+M+1)[p̃1(D̂
∗,b=1
V RS,1 − D̂V RS,1) + p̃4(D̂

∗,b=4
V RS,1 − D̂V RS,1)]

= 0− C0[
1

2
(y1 − y1 − 0) +

1

2
(y4 − y1 − 0)] = C0 Eb[y1 − yb |b = 1, 4] (24)

where C0 = (K/N)2/L+M+1 is a constant ((1/6)2/3 in this example), and p̃1 = p̃4 = 1/2 is a

pseudo-probability defined conditionally on the feasible TI estimation under bootstrap replica-

tions b = 1, 4. 11 Similarly, those for points A2 to A6 are D̂MB,2 = C0 Eb[y2 − yb |b = 1, 2, 4, 5],

D̂MB,3 = C0Eb[y3−yb], D̂MB,4 = (y1−y4)+C0Eb[y1−yb |b = 1, 4], D̂MB,5 = (y2−y5)+C0Eb[y2−

yb |b = 1, 2, 4, 5], and D̂MB,6 = (y3−y6)+C0Eb[y1−yb]. Thus, the local frontier levels are adjusted

by C0 times expected bootstrap deviation Eb[yi − yb]. By setting c̄ = (1/3)
∑

j=1,2,3[D̂MB,j −

D̂V RS,j|D̂V RS,j = 0] and D̂SMB,i = max{(D̂MB,j−D̂V RS,j− c̄)/(1+ c̄), D̂V RS,i} for i = 1, .., 6, opti-

mal weight is estimated by β̂ = Cov(D̂SMB,i−D̂V RS,i, D̂CRS,i−D̂V RS,i)/V ar(D̂CRS,i−D̂V RS,i) =

Cov(D̂SMB,i − T̂ IV RS,i, ŜIV RS,i)/V ar(ŜIV RS,i) where Cov(.) and V ar(.) denote the covariance

and variance operators respectively.

Figure 4 sketches the SMB estimates (at points C1, C2, and C3) and WDEA estimates (at

points D1, D2, and D3) in the above example. The SMB estimator yields no adjustment at

A1, a small expansion of technical feasibility at A2, and a large expansion at A3, according to

the local performance of VRS estimators assessed by the bootstrapping process. The WDEA

estimator consolidates these local adjustments into systematic frontier expansions from the VRS

frontier toward the CRS frontier at weight β̂, resulting in moderate expansions of technical

feasibility at A1 and A3 with no expansion at scale-efficient point A2. Weight β̂ depends on the

covariance between SMB’s adjustments to TI (i.e., distances C1A1, C2A2, and C3A3 in figure 4)

and conventional SI measures (i.e., distances B1A1, B2A2, and B3A3 in figure 3).

Hence, the proposed two-step weight selection is summarized as follows. The subsample

bootstrapping in the first step links the performance of the VRS estimator to its local proba-

bility density. This yields a presumably-consistent adjustment at the observation level, yet its

estimation efficiency depends on the nature of the data and the choice of subsample size that

specifies the level of “locality.”12 The second-step regression summarizes this local adjustment

into the sample correlations among TI, AI, and SI, all of which producers strive to minimize.

11The number of comparable points for calculating D̂MB,i increases in subsample size, making the issue of non-estimable
TI situations less important.

12The confidence interval in (21) is rather sensitive to the choice of K (Kneip, Simar, and Wilson, 2008). The current
application follows Simar and Wilson (2011)’s subsample-size selection that minimizes the volatility of the estimator.
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3 Application

3.1 Data and Efficiency Measurements

Proposed WDEA approach is used to examine technical efficiencies and producer-specific

input shadow values for Maryland dairy operations during 1995-2009. The dataset, previ-

ously analyzed in Hanson et al. (2013), contains unbalanced panel entries of production in-

puts and outputs. Each operation is categorized as either a conventional confinement dairy or

management-intensive grazing dairy. The producer-year level observations represent 314 con-

finement operation-years and 164 grazing operation-years.

Dairy production is modeled with seven inputs; herd size (cows), hired labor, crop, ani-

mal, machinery, crop acreage, pasture acreage, where the four items from “labor” to “machin-

ery” are quasi-quantity inputs measured as the corresponding categorical expenses divided by

observation-specific price indices.13 Table 1 provides summary statistics of milk output and

these inputs. In the sample, a typical confinement operation produces about twice as much milk

as a typical grazing operation and utilizes a 40% bigger herd, 486% more labor, 160% more

crop-production inputs, 93% more animal-care inputs, 76% more machinery, 119% more crop

acreage, and 67% less pasture acreage. In the current application, the two dairy systems are

separately analyzed for their efficiency measurements.

Table 2 reports a summary of input-oriented radial efficiency scores ranging from 0 to 1 with

1 being fully-efficient.14 Listed items TE(VRS), SMB, and WDEA report technical efficiency es-

timates against a VRS technology, a shifted mean bootstrap (SMB) technology, and a weighted

DEA (WDEA) technology respectively. Items SE(VRS) and AE(VRS) are the scale and alloca-

tive efficiency estimates under the VRS technology. The mean scores of TE, SE, and AE under

VRS are 0.896, 0.965, and 0.787 for confinement and 0.931, 0.914, and 0.717 for grazers respec-

tively. The rather high SE scores are likely explained by the limited range of operational scales

in the sample, ranging up to 468 cows for confinement and 195 cows for grazers; the inclusion

of large-scale operations with over 1000 cows would lower these SE scores. The relatively low

AE scores, on the other hand, suggest that in a short run these input mixes, often linked to

long-term assets, are unlikely to be optimally allocated with respect to market prices.

13For example, the aggregate crop-related expenses for observation i is calculated as pcropi = (seedi/cropi) p
seed +

(fertilizeri/cropi) p
fertilizer + (chemi/cropi) p

chem where cropi = seedi + fertilizeri + chemi for its total categorical
expense for seeds, fertilizer, and chemicals. Price indices are obtained from Agricultural Statistical Service of USDA.

14Appendix A describes the market price estimation based on Kuosmanen, Cherchye, and Sipilinen (2006) with some
additional constraints. The estimated prices in table 4 are used for obtaining allocative efficiency (AE) and WDEA.
The primarily interest is the annual rental rates of dairy cows for confinement and grazers, estimated at $575/cow and
$464/cow respectively. Under the expected 1.5 and 2.5 remaining-years of economically-viable milking for confinement
and grazing cows, the culling value of $500, and a 5% interest rate, these rental rates imply the present values of
$575 + ($575/2 + $500)/1.05 ≈ $1325, $464 + $464/1.05 + ($464/2 + $500)/1.052 = $1570 respectively.
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The mean TE scores under SMB and WDEA are 0.819 and 0.826 for confinement and 0.877

and 0.883 for grazers respectively.15 The optimal weights for WDEA are estimated at (α, β) =

(0.349, -0.209) for confinement and (0.138, -0.020) for grazers. The negative estimate for β for

confinement is explained by a positive correlation (0.283) between AI and SI, indicating that

among confinement operations, 34.9% of the apparent allocative inefficiency and minus 20.9% of

the apparent scale inefficiency under the VRS technology is attributed to the underestimation in

technical inefficiency. The increased discriminatory power under WDEA leads to the decreased

mean TE scores by 0.070 (i.e. 7.8%) and 0.048 (5.2%) for confinement and grazers respectively,

compared to the VRS results. This is similar to the finding in Brissimis, Delis, and Tsionas (2010)

that their SFA frontier estimation with incorporating AE reduced TE by approximately 9%. The

same intuition holds in both approaches; accounting for AE increases a linear substitutability of

the predicted technological frontier and tends to lower the predicted TE for observed decisions.

In a parametric model, moment conditions on AE can be used to augment a frontier estimation

through distributional assumptions. In WDEA, the weight for linear substitution can be used to

account for the correlation between the conventional AE and TE measures under a VRS frontier.

Both approaches incorporate the concept of AE to enhance estimation efficiency.

3.2 Producer-Specific Shadow Values

Following Chambers and Färe (2008), the willingness to accept (WTA) and willingness to

pay (WTP) for a change in input mixes are inferred by tracing the curvature along an estimated

technological frontier. In theory, at an equilibrium in a frictionless economy, the WTA must

be equal to or higher than the corresponding market price, and the WTP must be equal to or

lower than the market price. The non-conformity of estimated shadow values to these theoretical

predictions can provide insights into the state of factor markets or non-technological constraints

for producers.

Figures 5 and 6 present the distributions of estimated WTA and WTP for confinement, plot-

ted against the sample-proportion scaled from 0 to 1, and figures 7 and 8 those for grazers.16 The

WTA and WTP estimates vary substantially across observations. Under the VRS technology,

the mean WTP for cow (per year rental rate) is $652 for confinement and $344 for grazers, and

the mean WTA $4082 and $3562 respectively. Similarly, under the WDEA technology, the mean

15For SMB, the optimum sample sizes of input-oriented and output-oriented TE were found 157 and 267 for confine-
ment and 121 and 129 for grazers. These values were searched from 10 equally-spaced values within the 40-90% (i.e.
40%,45%,...90%) of their sample sizes.

16The bottom figures in tables 6 and 8 contain the distributions of the estimated WTA and WTP for the bundle of a
dairy cow and a crop acre. The WTA for the bundle is higher than the sum of WTA for individual inputs, and the WTP
for the bundle is lower than the sum of WTP for individual inputs by the superadditivity of the directional derivative.
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WTP for cow is $323 for confinement and $917 for grazers, and the mean WTA $3348 and $3575

respectively. Since the distributions of these shadow values are fat-tailed and contain extreme

values, the averages are not be very informative. The distributions are alternatively are studied

in relation to their market rates in below.

Somewhat surprisingly, no systematic patterns are discerned in the difference between the

VRS and WDEA results for WTA and WTP estimates. This may strike some readers odd

since the linear substitutability (as well as linear scalability) of a predicted technology would be

systematically higher under WDEA than under VRS. In figures 1 and 2, for example, one may

expect that WDEA yield a narrower range for the ratio of admissible shadow values, smaller

gaps between WTA and WTP (e.g., the gap is infinite along a Leontief frontier and zero along

a linear frontier), and generally smaller deviations of WTA and WTP from the market rates,

compared to the VRS estimates. However, the relationships for the shadow values under VRS

and WDEA frontiers in a simple two-dimensional diagram (e.g., see Appendix B) are generally

inapplicable for higher dimensional input-output decisions.

The over-utilization and under-utilization of inputs are studied through the existence of un-

met supply or demand for given market rate wMl for each input l, or latent marginal supply or

demand (LMS or LMD) proportions defined as the sample proportions of observations i ∈ I sat-

isfying [WTAi,l ≤ wMl ] or [WTPi,l ≥ wMl ] respectively. Under the VRS-technology specification,

confinement operations exhibit high LMS proportions (say, 0.300 or above) for crop, animal, and

machinery. Similarly, grazing operations show high LMS proportions for labor, animal, and crop

acreage. The results under WDEA are generally similar, suggesting high LMS proportions for

confinement’s animal and grazer’s labor and animal inputs. Some of the over-utilization may be

caused by the medium to long term investments in production assets and contractual agreements

or the upward bias from subsidized dairy or crop production. Turning to under-utilization of

inputs, the VRS results find high LMD proportions for cow and crop acreage among confine-

ment operations and no high LMD proportions among grazing operations. The WDEA results

suggest high LMD proportions for labor and pasture acreage among confinement and a high

LMD proportion for cow among grazers. Thus, the results indicate some under-utilization of

dairy cows under both dairy systems. The producer may not expand his herd when operational

capacity is nearly full, cows of desired characteristics are scarce in the market, or operation

expansions are put on hold for idiosyncratic reasons (e.g., uncertainty for family labor supply).

Crop acreage appears over-utilized by grazers and under-utilized by confinement perhaps due to

the inefficiency in land markets.

Additionally, the sensitivity of LMS and LMD proportions are summarized as unit-free elas-
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ticity measures with respect to market prices, or |(dq/dp)/(qM/pM)| for LMS or LMD proportion

qM , market price pM , and local slope dq/dp.17 In contrast to the ideal factor market character-

ized with zero-LMS and zero-LMD with arbitrarily large elasticities, a poorly functioning factor

market would exhibit a high LMS or LMD proportion with a very small elasticity. Panels B1

and B2 in table 3 report the calculated price elasticities of LMS and LMD across inputs and

technology specifications. Among the inputs with high LMS proportions, highly-inelastic LMS

(i.e. less than 0.300) are found in machinery (under VRS) for confinement and labor (under

both VRS and WDEA) and crop acreage (under VRS) for grazers. These inputs appear sys-

tematically over-utilized since the extents of over-utilization depend little on their market rates.

Capital-intensive confinement operations may face the difficulty in reversing their investments

into machinery. Meanwhile, the apparent (and inexpensive) use of excess labor among grazers

may rather increase profits if it is related to organic milk production for sufficiently high price

premiums. Among the inputs with high LMD proportions, highly-inelastic LMD are identi-

fied for cows (under VRS) and crop acreage (under VRS and WDEA) among confinement and

for cows (under WDEA) among grazers. It may be worthwhile to investigate potential mar-

ket failures or input distortions that prevent these dairies from expanding their herds and/or

systematically hinder transfers of crop acreage from grazers to confinement operators.

4 Conclusion

This article has developed a simple methodology that integrates the concepts of technical,

scale, and allocative efficiencies into a nonparametric, technological-frontier estimation. The

proposed Weighted DEA (WDEA) extends the standard VRS technological feasibility by es-

timating an optimal weighted average of the VRS, CRS, and profit frontiers. The proposed

optimal weights minimize the sum of residual squares by regressing some initial adjustments for

the VRS estimator on the conventional measures of scale and allocative inefficiencies. In the

application to Maryland dairy data, the technical efficiency is on average 5.2% to 7.8% lower

under WDEA, compared to the standard VRS estimates. Estimated producer-specific shadow

values along the VRS and WDEA frontiers are generally similar with no obvious patterns of sys-

tematic differences. Considerations for alternative weight selection rules and rigorous statistical

inferences are left for future research.

17The slope is estimated by a linear regression with observations restricted to those of non-zero shadow values falling
within the ±5 percentile margins around the market price.
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Table 1: Summary Statistics of Variables By Dairy System

Distribution

Mean S.D. Min. 25th 50th 75th Max.

Confinement
Milk (cwt) 24,150 17,577 3,761 13,680 19,890 28,550 110,700
Cow (animal) 122 76 22 70 108 145 468
Labor† 35,020 50,010 0 2,064 18,500 45,540 281,300
Crop† 47,400 40,954 0 19,860 35,870 58,910 231,000
Animal† 181,200 129,666 32,390 97,320 137,900 210,100 746,900
Machinery† 148,900 101,620 22,060 87,530 129,700 182,100 806,300
Crop Acre (acre) 289 155 60 175 210 350 704
Pasture Acre (acre) 50 39 0 20 40 80 141

Grazer
Milk (cwt) 12,440 5,573 2,670 9,467 11,550 14,550 42,950
Cow (animal) 87 29 37 70 81 97 195
Labor† 6,229 10,383 0 0 1,109 8,608 75,320
Crop† 18,250 17,932 0 6,188 12,240 24,770 107,200
Animal† 94,290 48,034 7,882 59,780 86,470 127,300 255,800
Machinery† 84,460 45,587 26,720 54,540 73,230 96,900 327,000
Crop Acre (acre) 132 108 0 30 150 180 600
Pasture Acre (acre) 152 60 53 96 130 207 280

1. Unbalanced panel data set on 1995-2009 contains 17 grazers and 29 confinement dairies with 5 dairies
switching from confinement to grazing during the period, totaling 475 operation-year observations.

2. † Categorical expenses comprise the following: machinery ≡ custom hire + depreciation + fuel + rent
+ maintenance + utility, labor ≡ labor + employment benefit + pension, crop ≡ seed + chemicals +
fertilizer, animal ≡ feed + veterinary services.

Table 2: Summary of Efficiency Scores

Distribution

Mean S.D. Min 25th 50th 75th Max

Confinement
TE (VRS) 0.896 0.095 0.589 0.821 0.905 0.996 1.000
SE (VRS) 0.965 0.058 0.677 0.962 0.989 0.999 1.000
AE (VRS) 0.787 0.095 0.525 0.729 0.788 0.853 1.000
SMB 0.819 0.120 0.562 0.730 0.800 0.925 1.000
WDEA 0.826 0.085 0.570 0.769 0.820 0.885 1.000

Grazers
TE (VRS) 0.931 0.097 0.640 0.871 0.987 1.000 1.000
SE (VRS) 0.914 0.117 0.440 0.880 0.960 1.000 1.000
AE (VRS) 0.717 0.120 0.485 0.629 0.696 0.801 1.000
SMB 0.877 0.111 0.640 0.782 0.903 0.983 1.000
WDEA 0.883 0.090 0.629 0.840 0.913 0.948 1.000

1. TE (VRS), SMB, and WDEA are technical efficiency estimates. SE and AE
are scale and allocative efficiency estimates respectively.

2. Weights (α, β) for WDEA, obtained in linear regressions, are (0.349, -0.209)
for confinement and (0.138, -0.020) for grazers.
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Table 3: Latent Marginal Supply and Demand (LMS and LMD) Proportions and Their Elasticities

Group Technology Cow Labor Crop Animal Machi. Crop A. Past. A.

A1. LMS Proportion
Confinement VRS 0.035 0.248 0.331 0.462 0.525 0.086 0.162
Confinement WDEA 0.064 0.236 0.252 0.366 0.264 0.086 0.143

Grazers VRS 0.075 0.472 0.130 0.323 0.242 0.311 0.248
Grazers WDEA 0.081 0.466 0.205 0.360 0.261 0.280 0.137

A2. LMD Proportion
Confinement VRS 0.303 0.268 0.019 0.029 0.032 0.328 0.162
Confinement WDEA 0.201 0.360 0.096 0.096 0.057 0.357 0.334

Grazers VRS 0.180 0.043 0.093 0.037 0.043 0.062 0.180
Grazers WDEA 0.354 0.106 0.149 0.068 0.099 0.106 0.255

B1. Elasticity of LMS
Confinement VRS 0.892 0.267 0.740 1.012 0.279 0.122 0.041
Confinement WDEA 0.658 0.199 0.889 1.273 2.173 0.437 0.019

Grazers VRS 0.396 0.071 0.449 0.674 0.771 0.075 0.063
Grazers WDEA 0.317 0.089 0.648 1.060 1.180 0.104 0.186

B2. Elasticity of LMD
Confinement VRS 0.097 0.194 0.270 2.013 0.747 0.044 0.014
Confinement WDEA 0.415 0.261 0.477 2.078 1.478 0.091 0.011

Grazers VRS 0.154 0.005 0.098 1.080 0.952 0.047 0.020
Grazers WDEA 0.083 0.300 0.196 0.850 1.152 0.082 0.027

1. Elasticity measures around the market prices are calculated through |(dq/dp)/(qM/pM )| where pM , qM are the
market price and the LMS or MUP proportion associated with WTP and WTA curves respectively, and dq/dp is the
local slope estimate of those curves near the market valuation. The slops are estimated by linear regressions with
observations restricted to those within the ± 5 percentile margins around the market price.
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Figure 1: CRS, VRS, and Postulated Frontiers Figure 2: Cost, VRS, and Postulated Frontiers

Figure 3: Example: SMB and WDEA (1/2) Figure 4: Example: SMB and WDEA (2/2)
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Figure 5: Shadow Values along VRS and WDEA Technological Frontiers (Confinement 1/2)
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Figure 6: Shadow Values along VRS and WDEA Technological Frontiers (Confinement 2/2)
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Figure 7: Shadow Values along VRS and WDEA Technological Frontiers (Grazers 1/2)
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Figure 8: Shadow Values along VRS and WDEA Technological Frontiers (Grazers 2/2)
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A Estimations of Market-level and Producer-level Shadow Prices

This supplementary section describes two procedures employed in the application section;

one for estimating unknown market-level prices of inputs (which are used to calculate AI and

constructing WDEA frontiers) and the other for estimating producer-level shadow values (which

are used to characterize VRS and WDEA frontiers).

Market-level input prices are estimated as shared shadow-values in a DEA setting. The linear

programming problem proposed by Kuosmanen, Cherchye, and Sipilinen (2006) combines (oth-

erwise separately-estimated) DEA specifications of multiple producers into a single estimation

problem for a common set of input prices that maximize the joint objective function subject to

the (standard) DEA technological constraints;18

max{
∑
j∈I

γj :∀j ∈ I, γj ≤ pjyj + fj, ∀j, k ∈ I, pkyj −wxj + fk ≤ 0,

w

(∑
j∈I

xj

)
≥ 1, p ∈ RMN

+ , w ∈ RL
+, f ∈ RN

+} (25)

where pj is producer-specific shadow output values, fj producer-specific scale parameter, and

w the common input values across producers that are interpreted as market rates. To make the

large scale linear programming problem manageable, this study estimates problem (25) as the

average result of 100 subsample estimations, where each estimation uses 20 random observations

in the sample.19

The current application additionally constraints the range of shadow values through incor-

porating market price information. Dairy production decision is modeled with milk output and

the total of seven inputs including herd size, four categorical expenses (in labor, crop, animal,

and machinery) divided by share-weighted price indices, and two types of land areas (for crop

production and pasture). The common shadow-values of inputs are estimated by equation (25)

with the following constraints;

C1. wlabor = wcrop = wanimal = wmachine

C2. ∀i ∈ I, 0.90 (pmilk,i/p
M
milk) ≤ wlabor ≤ 1.10 (pmilk,i/p

M
milk)

C3. wpasture acre/w
M
pasture acre = wlabor, wcrop acre/w

M
crop acre = wlabor

C4. 0.5 wcow(conf.) ≤ wcow(graz.) ≤ 1.5 wcow(conf.)

C5. 0.90(
∑

i πi/Ci)/N ≤ (
∑

i−fi)/N ≤ 1.10 (
∑

i πi/Ci)/N .

18 The common input price under a free-disposable hall (FDH) is;

max{
∑
j γj : ∀j, k, γj ≤ pjkyj + fjk, ∀j, k,pjkyj −wxj + fjk ≤ 0,w(

∑
xj) ≥ 1, p ∈ RMN2

+ , w ∈ RL+, f ∈ RN
2

+ }.
19When drawing each random subsample, the ratio of two groups of dairy farms was fixed at that of the sample.
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Item C1 sets an identical shadow value for categorical expenses in labor, crop, animal, and

machinery since these variables are originally in dollar terms that should be valued equally. Item

C2 normalizes the price level with nominal milk price pMmilk=$18.74/cwt, so that the shadow value

for one hundredweight of milk is worth about 18.74 times of the dollar-valued expense within

±10% deviations. Similarly, item C3 normalizes the shadow rental rates for crop and pasture

acreage by nominal rates wMpasture acre =$63.35 and wMcrop acre =$39.02 per acre respectively, or

the average rates in North Central Maryland during years 2008-2012.20 In item C4, the rental

rate for cow, estimated separately for two dairy systems of grazing and confinement, assumes

the rate for grazers to fall within ±50% of the rate for confinemnt. Finally, item C5 confines

the average shadow profit
∑

i(piyi − wxi)/N to ±10% deviations from the sample-average

returns to production costs. Once estimated, the shadow values can be converted back into

dollar terms; for instance, the nominal shadow value for labor expenses is obtained as wNlabor =

wlabor ∗ (pMmilk/p̄milk,i) using the average shadow value p̄milk,i of milk output.

Producer-specific shadow values are estimated as the marginal rate of transformations along

a technological frontier. One difficulty is the non-uniqueness of the shadow values for inputs

and outputs along a piecewise-linear DEA frontier, which admits infinitely many supporting

hyperplanes at its kink points. Following Chambers and Färe (2008), a derivative-like concept

for these hyperplanes are given by the supper differential of D(x,y; gx, gy) for a change of inputs

from x to xc ∈ RL;

∂D(x,y; gx, gy) = {ν ∈ RL
+ : D(x,y; gx, gy) + ν(xc − x) ≥ D(xc,y; gx, gy),∀xc ∈ RL}. (26)

While any member of the super differential could be interpreted as shadow values of inputs and

outputs, its directional derivative is uniquely defined as

D′T (x,y; gx, gy,x
c) = lim

λ→0+

D(x+ λxc,y, gx, gy)−D(x,y, gx, gy)

λ
, (27)

which is positive linear homogeneous and concave in xc and satisfies D′T (x,y; gx, gy,0) = 0.21

The most economically relevant shadow values are those for the willingness to pay (WTP)

and the willingness to accept (WTA) for a marginal change in inputs. The authors show that

under the directional change toward l-th unit vector el = [0..1..0]T (i.e. elw = wl), WTP for

20These rental prices for crop and pasture acres are taken from the mean rents, across counties in North Central
Maryland and years 2008-2012, of the corresponding items in USDA-NASS rental rate estimates.

21It is a support function of the super differential; D′T (x,y; gx, gy,x
c) = inf{νxc : ν ∈ ∂D(x,y; gx, gy)}.
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input l at decision (x0,y0) is calculated as;22

min{wl :∀j ∈ I, pyj −wxj + f ≤ 0, wgx ≥ 1,

py0 −wx0 + f = 0, p ∈ RM
+ , w ∈ RL

+, f ∈ R} (28)

where gx is a bundle of inputs that normalizes shadow values (and gx = x0 for each observation

0 in this study). The estimated values are converted into dollar terms by, for example, wNlabor,i =

wlabor,i ∗ (pMmilk/pmilk,i) where wlabor,i and pmilk,i are the estimates from (28). Similarly, under

directional change −el = [0..− 1..0]T , willingness to accept (WTA) for input l is given by;23

max{wl :∀j ∈ I, pyj −wxj + f ≤ 0, wgx ≤ 1,

py0 −wx0 + f = 0, p ∈ RM
+ , w ∈ RL

+, f ∈ R}. (29)

Table 4: Market Prices Used For Calculating Allocative Efficiency

Cow Labor Crop Animal Machi. Crop A. Past. A. Avg. Profit

Confinement 574.83 0.955 0.955 0.955 0.955 60.52 37.28 79,970
Grazer 463.51 1.000 1.000 1.000 1.000 63.36 39.03 55,335

1. Based on Kuosmanen, Cherchye, and Sipilinen (2006) with additional constraints.

B Relative Shadow Values Between VRS and WDEA: A Simple Case

Figure 9: Shadow Values Along Frontiers

Consider simple geometrical relationships

of shadow values along VRS and WDEA fron-

tiers, as depicted in figure 9. In two-input

space x1-x2, several observations (shown as

circles) are connected by a piecewise-linear

VRS frontier. Observation BAE is also alloca-

tively efficient and supporting a cost frontier.

For two observations B and B′, the intersec-

tions between the radial contractions (toward

the origin) and the cost frontier are denoted

as points C and C ′ respectively. The figure

shows that decisions B and B′ use too much
22Dual problem: max{θ :

∑
j∈I λjyj ≥ µy0,

∑
j∈I λjxj ≤ µx0 − θg0 + el,

∑
j∈I λj = µ, λRN+ , µR+, θR+}.

23Dual problem: min{θ :
∑
j∈I λjyj ≥ µy0,

∑
j∈I λjxj ≤ µx0 + θg0 − el,

∑
j∈I λj = µ, λRN+ , µR+, θR+}.
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input x1 and too little x2, compared to decision BAE. Thus, for example, at decision B the

implied shadow value of input x2 to input x1 is lower than those of market rates, or the slope of

BB′ is smaller than the slope of CC ′. Suppose that decision D between B and C and decision

D′ between B′ and C ′ are the predicted technically-efficient decisions under WDEA with weights

α > 0 and β = 0. The slopes of segments BB′, CC ′, and DD′ correspond to the relative shadow

values of input x2 to input x1 under the frontiers of VRS, cost, and WDEA respectively. The

coordinates of decision D = (xD1 , x
D
2 ) are given by xDl = xBl −α(xBl −xCl ) = (1−α)xBl +αxCl for

input l = 1, 2. By nothing that xDl − xD′l = (1− α)(xBl − xB′l ) + α(xCl − xC′l ) for input l = 1, 2

on segment DD′, it follows that the slope of BB′ is smaller than the slope of DD′;∣∣∣∣xB2 − xB′2xB1 − xB′1

∣∣∣∣ < ∣∣∣∣xC2 − xC′2xC1 − xC′1

∣∣∣∣ ⇒ ∣∣∣∣xB2 − xB′2xB1 − xB′1

∣∣∣∣ < ∣∣∣∣(1− α)(xB2 − xB′2 ) + α(xC2 − xC′2 )

(1− α)(xB1 − xB′1 ) + α(xC1 − xC′1 )

∣∣∣∣ . (30)

Similarly, if the slope of BB′ were greater than the slope of CC ′, then the slope of BB′ would be

greater than the slope of DD′. This implies that the local marginal rate of substitution under

WDEA (the slope of DD′) is closer to the relative market rates (the slope of CC ′), compared

to that of VRS (the slope of BB′). Thus, WDEA’s estimates for WTP or WTA of input x1

at decisions D and D′ are lower, and that of input x2 higher than the VRS counterparts at

decisions B and B′. While these results are fairly straightforward, such relationships become

too complicated to derive simple characterizations in a higher dimensional input-output space.
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