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Introduction 

Water quality trading initiatives to foster cost-effective water quality improvements are found in 

the United States, Canada, Australia, and New Zealand, and interest is emerging elsewhere 

(Selman et al. 2008; Fisher-Vanden and Olmstead 2013). Many initiatives encourage trading 

between point and nonpoint sources, which facilitates the integration of pollution control across 

source types to improve efficiency and effectiveness (Shortle and Horan 2013). 

A key question for point-nonpoint trading programs is how to deal with nonpoint source 

emissions uncertainties, which are substantial in comparison to point source emissions 

uncertainties (e.g., US EPA 2003, 2014).  Point source emissions, and abatement of these 

emissions, are considered to be relatively deterministic since point source abatement 

technologies are well-developed and allow substantial control over emissions. These emissions 

are also largely observable since they exit through a pipe or other conveyance. In contrast, 

nonpoint emissions are highly stochastic due to weather processes driving pollution events, and 

are unobservable due to the complex and diffuse pathways of these pollutants (Griffin and 

Bromley 1983; Shortle and Dunn 1986). Stochasticity creates objective uncertainty about the 

effectiveness of nonpoint controls. There is also subjective uncertainty about control 

effectiveness due to limited information about how specific control practices will perform in 

different locations.  Unlike point source controls, the effectiveness of nonpoint controls is highly 

site specific due to the highly heterogeneous site-specific factors (e.g., soils, topography, 

geology, stream networks, weather, land use practices) influencing nonpoint emissions. This 

heterogeneity along with the unobservability of nonpoint emissions combine to create substantial 

subjective uncertainty about nonpoint control effectiveness.  The unobservability and 

uncertainties associated with nonpoint emissions means point-nonpoint trades cannot be based 
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on changes in actual nonpoint emissions.  Programs have instead based trades on estimated 

reductions in nonpoint emissions (U.S. EPA 2003).  

Trading relatively certain point source emissions reductions for highly uncertain 

estimates of nonpoint reductions is a major concern that is addressed with a point-nonpoint 

trading ratio, sometimes referred to as the uncertainty ratio (U.S. EPA 2003, 2014).  The key risk 

management variable in extant programs, the trading ratio is the rate at which estimated nonpoint 

emissions must be reduced for point sources to increase their emissions by one unit. Trade ratios 

correct for imperfect substitution between the traded point and nonpoint commodities in terms of 

achieving environmental goals, and thereby guide the allocation of controls among the sources.1  

Ratios less than one encourage substitution of nonpoint reductions for point source reductions, 

while ratios in excess of one do the opposite.  

Economic research on optimal trade ratio design provides theoretical and some empirical 

support for ratios greater than or less than one depending on how nonpoint emissions 

uncertainties respond to trading (Shortle 1987, 1990; Malik et al. 1993; Horan 2001; Horan and 

Shortle 2005, 2011; Hennessy and Feng 2008). 2  For instance, if reducing mean nonpoint 

emissions also reduces objective uncertainty (i.e., the natural variability of nonpoint emissions 

and of ambient pollution), then risk is reduced and so nonpoint controls should be encouraged 

via a smaller trade ratio. Alternatively, subjective uncertainty may be increasing in the use of 

nonpoint abatement measures, creating risk that is optimally offset via a larger trade ratio.  

Which effects dominate and whether any particular trade ratio should be greater or less than one 

is an empirical question (Malik et al. 1993) that depends on site-specific factors and also on the 
                                                 
1 Trading ratios can also be adjusted to address spatial heterogeneities among different sources, but we keep our 
focus here on the role of uncertainty. 
2 This is a bit of a simplification, as correlations between key environmental and cost relationships also matter, as do 
transactions costs (Horan and Shortle 2011; Malik et al. 1993). 
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design of the trading program.  Program design is important because environmental risks 

endogenously depend on nonpoint polluter behaviors made in response to the program. 

In contrast to the theoretical results from economic research, the received wisdom among 

program developers and the governmental and nongovernmental consulting communities that 

advise them is that trading ratios should be in excess of one to provide an adequate margin of 

safety for nonpoint risk. Indeed, trade ratios in practice universally exceed one, often 

substantially so, with the justification being that this addresses subjective uncertainties (e.g., 

MDEQ, 2000; NWF 1999; Wiedelman and Jones 2000; US EPA 2003, 2014).  These choices are 

not derived from formal economic analyses and appropriate framing of risk (Selman et al. 2008; 

Horan 2001).  Rather, the a priori assumption that subjective risk dominates is akin to treating 

risk as a fixed, exogenous measure rather than as an endogenous one that responds to policy-

induced behavioral changes. 

The implied perspective that risk is exogenous suggests the endogenous nature of risk has 

not been adequately conveyed in the point-nonpoint setting, which should not be surprising.  

Prior analyses only present economically optimal equilibrium outcomes, whereby the optimal 

trade ratio is simply presented as the slope at the tangency of an iso-abatement cost curve and an 

iso-curve measuring either expected damage costs or a physical water quality target.  Such a 

presentation does not clearly illustrate out-of-equilibrium tradeoffs involving abatement costs 

and environmental risks.  As a result, the endogenous nature of risk – particularly the relative 

magnitudes of objective and subjective uncertainty – is obscured.     

We develop a new approach that illustrates the optimal design of trade ratios in response 

to tradeoffs between abatement costs and endogenous environmental risks.  The approach 

utilizes two new concepts – the relative marginal benefit curve and the relative marginal 
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environmental cost curve.  The relative marginal benefit curve measures the relative marginal 

cost savings, or benefits, from reallocating abatement from point sources to nonpoint sources. 

This curve exhibits the properties of a downward-sloping demand curve for nonpoint abatement.  

Moreover, assuming the permit market clears regardless of whether the trade ratio is optimally 

set, the height of this curve relates to the magnitude of the trade ratio.  This allows us to examine 

economic tradeoffs and abatement outcomes associated with different trade ratios (not just the 

unique, optimal equilibrium ratio), unlike prior studies. 

The relative marginal environmental cost curve measures the relative increase in 

expected marginal damage costs from reallocating abatement from point sources to nonpoint 

sources. This curve exhibits the properties of an upward-sloping marginal environmental cost 

curve for nonpoint abatement that relates to the marginal variance of nonpoint abatement – a 

measure of nonpoint risk.  Moreover, the curve exhibits an important relation with objective and 

subjective risk that helps us to identify which type of risk effect dominates in different outcomes.  

Together, the relative marginal benefit and cost curves allow us to examine economic and 

environmental tradeoffs involving trading ratios, nonpoint abatement, and the various types of 

risk.  Specifically, we illustrate how abatement costs and environmental variability endogenously 

determine the optimal level and dominate type (objective vs. subjective) of risk and hence the 

optimal trading ratio.  Our results show that an optimally designed trading program reallocates 

abatement to nonpoint sources to reduce abatement costs or to reduce environmental risks from 

nonpoint sources, but not both.  This outcome is in direct contrast to the stated goals of the 

EPA’s national trading rules (US EPA 2003). 

Our methodology is also shown to be useful for examining second-best program design. 

Unlike the first-best programs typically considered by economic theory, nonpoint source 
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participation in most extant trading programs is not incentivized through regulations on nonpoint 

emissions.  This feature can impact the design of second-best trading ratios (Horan and Shortle 

2005), but the role of uncertainty has not been fully explored.  While prior work has shown that 

second-best considerations tend to increase the trading ratio, other things equal, we find that risk-

effects are not equal relative to the first-best case. Once we account for these endogenously-

changing risk effects, we find the prior recommendations are reversed.  This means that second-

best ratios are more likely to be less than one, in contrast to all extant programs, due to the 

endogenous nature of risk.  

 

Model 

Consider a lake or other water body polluted by deterministic point source emissions, e, and 

stochastic nonpoint source emissions, r.  We simplify the analysis by assuming one point source 

and one nonpoint source (not an uncommon modeling approach; see Malik et al. 1993; Hennessy 

and Feng 2008; Horan and Shortle 2005), and that emissions are uniformly mixed so that actual 

emissions are perfect substitutes in terms of generating economic damages, D(e + r), with D′ , 

D′′ > 0.  These assumptions enable us to focus on the role of uncertainty rather than the role of 

spatial heterogeneity.   

Runoff is stochastic due to random weather events that drive pollutants off fields. 

Because of this stochasticity, which is represented by the random variable α, the nonpoint source 

can only control the distribution of runoff. We assume this control occurs through the scalar 

choice of abatement, z. In addition to being stochastic, actual runoff is unobservable and so it is 

impossible to estimate the true distribution of r.  This means there is subjective uncertainty over 

r, which we model as uncertainty about how r responds to z. Subjective uncertainty is assumed to 
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be increasing in the level of abatement, as greater deviations from the status quo (i.e., no 

abatement, or z = 0) are deemed more uncertain.  These assumptions are consistent with Malik et 

al. (1993), who adopt a general per acre runoff function.  In this analysis we impose some 

structure on the runoff model, trading off generality for new insights. 

Consider the following specific subjective form of r: 

(1) r(z,α,β) = (r0 – z[1+bβ])(1+aα),  

where r0 is mean runoff prior to abatement, a and b are parameters, and β is a random variable 

indicating the subjective uncertainty associated with abatement effort, z.  Assume α and β are 

uncorrelated, with α having a mean of zero and a variance of σα, and with β having a mean of 

zero and a variance of σβ. We restrict abatement effort so that expected runoff, E{r} = r0 – z, is 

strictly positive, i.e., z ∈ [0, r0). Note that E{∂r/∂z} = – 1, implying that abatement effort is 

scaled such that a unit increase in effort cause a unit decrease in expected runoff 

 Shortle (1987, 1990) has shown the effect of pollution effort on the variance of runoff has 

important implications for the design of a point-nonpoint trading program.  The variance of 

runoff in this case is derived from (1) as 

(2)   
)1()(

)()},,(var{
22222

0

2222222
0

αβα
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σσ+σ+σ−=βα
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From (2) we can derive 

(3) )1(2)(2)},,(var{ 222
0 αβα σ+σ+σ−−=

∂
βα∂ azbazr

z
zr  

The first right-hand-side (RHS) term in (3) is negative, as abatement reduces the natural 

variability of nonpoint emissions.  The second RHS term in (3) is positive, as the effectiveness of 

abatement is uncertain.  The relative magnitudes of these two terms depend on the level of 
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abatement.  For instance, the first RHS term goes to zero as z → r0. The second RHS term goes 

to zero as z → 0, but it increases as z → r0. Define ẑ  as the critical value of z such that 

expression (3) vanishes for z = ẑ . Hence, expression (3) will be positive for z > ẑ , and it will be 

negative for z < ẑ . While not a general result, this does suggest the risk effects of abatement may 

change depending on how much regulation occurs. In contrast, prior theoretical work generally 

discusses ∂var(r)/∂z as if it has a constant (although ambiguous) sign, whereas numerical 

analyses often make modeling assumptions that effectively require ∂var(r)/∂z to take on a 

particular sign. A key contribution of the current analysis is to explore the more general case of a 

non-constant marginal variance and how this feature may affect the design of trading programs.  

 

The permit market 

We model trading program that caps point source emissions plus expected nonpoint emissions. 

Point source permits are denoted ê , and nonpoint source permits r̂ .  The former are 

denominated in terms of emissions while the latter are denominated in terms of expected runoff.  

With cross-type trading allowed, firms must have a combination of both types at least equal to 

their emissions, in the case of point sources, or expected runoff in the case of nonpoint sources.  

Emissions and expected runoff are imperfect substitutes, and so they are not necessarily traded 

on a one-for-one basis. Point source permits are traded at a price of q, and nonpoint source 

permits are traded at a price of p. The cross-category trading ratio is denoted t. Specifically, 

|ˆ/ˆ| edrdt =  represents the required reduction in expected runoff in order for the point source to 

increase emissions by one unit.  Prior work (e.g., Horan and Shortle 2005) has shown t = q/p in a 

market equilibrium.  As noted previously, the received wisdom and practice in extant markets is 
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to set t > 1, but we do not require this.  Rather, we explore the optimal choice of t, given the two 

types of uncertainty. 

 Denote point source abatement costs by c(e), with c′(e) < 0 and c″(z) > 0.  Nonpoint 

source abatement costs are denoted g(z), with g(0) = g′(0) = 0, g′(z) > 0, and g″(z) > 0. Let 0ê  

and 0r̂  be the initial point and nonpoint source permits available, respectively, and assume 0ê  is 

held by point sources and 0r̂  is held by nonpoint sources.   

Given its initial permit holding, the point source will choose emissions levels, e, point 

source permit holdings, psê , and nonpoint source permit holdings, psr̂ , to minimize net costs, 

psps rpeeqecC ˆ]ˆˆ[)( 0 +−+= , given that its total emissions cannot be greater than its permit 

holdings, psps rtee ˆ)/1(ˆ +≤ .  The term psrt ˆ)/1(  represents the emissions the firm can generate 

based on its expected runoff permits.  Assuming the emissions constraint is satisfied as an 

equality, and using the market equilibrium result that t = q/p, we can eliminate psê  as a choice 

variable so that ]ˆ[)( 0
pseeqecC −+= .  Similarly, we can derive net costs facing nonpoint sources 

as ]ˆ)},,({[)( 0rzrEpzgG −βα+= .   Necessary conditions for emissions and abatement are 

(4) )(0)(/ qeqeceC ⇒=+′=∂∂  

(5) )(0)(}/{)(/ pzpzgzrpEzgzG ⇒=−′=∂∂+′=∂∂  

where e(q) is the point source’s derived demand for emissions and z(p) is the nonpoint source’s 

supply of abatement.  Given these relations, the market solution is determined by the relation t = 

q/p along with the market clearing condition 

(6)  )},),(({)/1()(ˆ)/1(ˆ 00 βα+≥+= pzrEtqerteQ , 

where Q is the aggregate number of permits (denominated in terms of point source emissions). 
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Market design choices 

We assume the regulatory authority seeks to design a point-nonpoint permit market to minimize 

the expected social costs of pollution and its control, SC = c(e) + g(z) + E{D(e + r)}, subject to 

polluters’ market behavior.  The authority’s ability to minimize SC will depend on the degree to 

which it has control over the relevant policy variables: the trading ratio, t, and initial permit 

levels, 0ê  and 0r̂ .  A first-best optimum would involve no binding constraints on these variables, 

whereas a second-best outcome results from binding constraints on one or more variables.  For 

instance, extant programs generally operate with constraints on the initial permit levels. The 

initial number of point source permits, 0ê , are often already regulated through the National 

Pollutant Discharge Elimination System (NPDES). Nonpoint sources are generally not regulated 

initially, and so their initial permit allocation corresponds to their expected runoff levels when 

they do not abate, i.e., )},,0({ˆ0 βα= rEr .3  Trades therefore involve the nonpoint source selling 

credits that it generates through the program.   

 We begin by presenting the second-best trading ratio, as this form of the trading ratio is 

quite general and subsumes the first-best form as a special case.  The second-best ratio 

minimizes SC, subject to market behavior and also subject to the market clearing condition (6) 

being constrained by the initial permit allocation. A shadow value of λ > 0 is associated with the 

constraint (6) in the most likely case where too few permits are allocated and the constraint is 

binding. The first-best outcome arises with λ = 0 in the special (but unlikely) case where the 
                                                 
3 The only exception to this is when the nonpoint source has previously enrolled in a program requiring abatement.  
Denoting such an abatement level by z0, initial permits in this case are defined by 0r̂  = E{r(z0,α,β)} < E{r(0,α,β)}.  
This is the principle of additionality, which requires credits be generated in addition to those already promised 
through other programs.  Regardless of whether the nonpoint source has sold credits via other programs, the fact that 
initial permit levels are not chosen optimally prevents the trading outcome from being first-best. 
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allocation equals the first-best allocation.  Horan and Shortle (2005) derive the second-best 

trading ratio, which using our notation is 

(7) 
}/,cov{}{

}{

}/{
}/,cov{}{

}{
******

**************

**

****
**

**************
**

zrDDE
ssDE

zrE
zrDDE

ssDE
t prrqeeprrqee

∂′−′
ελ−ελ−′

=

∂∂
∂′

+′

ελ−ελ−′
=  

where **
qeε <0 is the point source’s inverse elasticity of demand for emissions, **

prε <0 is the 

nonpoint source’s inverse elasticity of demand for expected pollution loads, **0** /)ˆ( eeese −=  is 

the point source’s proportional excess demand for point source permits, sr = ( 0r̂  – E{r**})/ 

E{r**} is the nonpoint source’s proportional excess supply of nonpoint permits, and the 

superscript ** indicates that all variables are set at their second-best optimal values. 

 Departing now from Horan and Shortle (2005), we rewrite relation (7) and also use (4) 

and (5) to yield 

(8)  
}{

}/,cov{
)(

)()(11 **

****
**

**

****

** DE
zrD

ec
zgec

t ′
∂′

+Λ=
′−

′−′−
=−  

where 0}]{/[][ ****************** >′ελ+ελ−=Λ DEtss prrqee .  The first equality always holds in market 

equilibrium (even for suboptimal values of t, e, and z).  The second equality holds only when t is 

chosen optimally. As noted above, in the special case where 0ê  and 0r̂  are also chosen 

optimally, then (8) holds with λ = Λ = 0 (i.e., all variables are evaluated at their first-best levels, 

indicated below with a superscript *).  For each case, expression (8) shows that the trading ratio 

(in relation to unity) depends on the relative marginal costs and benefits of control between the 

two sources.  We explore the possibilities in subsequent sections, starting with the first-best case 

as a benchmark to facilitate our understanding of the second-best case.   
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First-best design 

Disentangling the tradeoffs implicit in (8) is complicated by the large number of variables in the 

model.  We simplify by switching from our use of the ordinary permit demand relations z(p) and 

e(q) (from (4) and (5), respectively), to inverse relations that depend on z.  This allows us to 

explore tradeoffs in the nonpoint source abatement dimension.   

To proceed with z as our independent variable, first set e according to the market-clearing 

relation )ˆ)(/1(ˆ),ˆ,ˆ,( 0
0000 zrrtetreze +−+= .  Next, use the ratio of the polluters’ first order 

conditions (4) and (5) to obtain 

 (9) 
)(

)),ˆ,ˆ,(( 00

zg
trezect

′
′−

=  

Equation (9) implicitly defines )ˆ,ˆ,( 00 rezt , which is the real price of emissions permits (since t = 

p/q), conditional on the choice of z. This yields the conditional residual demand for emissions as 

))ˆ,ˆ,(,ˆ,ˆ,()ˆ,ˆ,( 000000 reztrezereze = .  Using the relations )ˆ,ˆ,( 00 rezt  and )ˆ,ˆ,( 00 reze  in what 

follows ensures the emissions market clears when nonpoint sources choose z, given the initial 

permit levels 0ê  and 0r̂ .  

  Next, define the relation MCsav(
00 ˆ,ˆ, rez ) = [–c′( )ˆ,ˆ,( 00 reze ) – g′(z)]/[–c′( )ˆ,ˆ,( 00 reze )].  

This function, when positive (negative), represents the relative marginal cost savings (increase) 

of reallocating abatement from point sources to nonpoint sources.  In other words, MCsav 

represents the relative marginal benefits of nonpoint abatement. This function is illustrated in 

Fig. 1 for the case where *00 ˆˆ ee =  and *00 ˆˆ rr =  (where *0ê  and *0r̂ could be any combination of 

0ê  and 0r̂  that satisfy the relation ***0*0 )/1(ˆ)/1(ˆ zterte +=+ ).  MCsav(
*0*0 ˆ,ˆ, rez ) is declining in 

z since ∂MCsav/∂z = [c′(e(z))g″(z) – g′(z)c″(e(z))(1/t)]/[c′(e(z))]2 < 0. In particular, for any given t 
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and Q, MCsav = 1 when z = 0 and MCsav < 0 when z is sufficiently large.  This means nonpoint 

sources have a cost advantage prior to trading, which is usually assumed to be the case, but this 

advantage disappears once nonpoint sources take on a sufficient share of abatement.  Note that 

market clearing ensures MCsav(
00 ˆ,ˆ, rez ) always equals 1 – 1/ )ˆ,ˆ,( 00 rezt , and so the height of 

MCsav(
*0*0 ˆ,ˆ, rez ) is positively correlated with )ˆ,ˆ,( *0*0 rezt . Also recall that MCsav is an inverse 

relation. In reality, the regulatory authority chooses t, which will produce a market response for z 

such that MCsav(
*0*0 ˆ,ˆ, rez ) = 1 – 1/t. 

 Finally, define MEC( 00 ˆ,ˆ, rez ) = cov{D′( )ˆ,ˆ,( 00 reze + z), ∂r(z)/∂z}/E{D′( )ˆ,ˆ,( 00 reze  + z)}. 

The function MEC( 00 ˆ,ˆ, rez ) is of the same sign as cov{D′(e( 00 ˆ,ˆ, rez ) +z), ∂r(z)/∂z}, which 

reflects the environmental risk impacts of nonpoint abatement.  In turn, this covariance term is of 

the same sign as zzr ∂βα∂ /)},,(var{  (Shortle 1990): risk is greater (lesser) when z increases 

(decreases) the variability of nonpoint runoff.  Accordingly, when MEC( 00 ˆ,ˆ, rez ) is positive 

(negative), this relation represents the relative marginal environmental costs (benefits) of 

reallocating abatement to nonpoint sources, in terms of increasing (reducing) environmental 

risk.4  The curve MEC is illustrated in Fig. 1 for the case where *00 ˆˆ ee =  and *00 ˆˆ rr = . 

MEC( *0*0 ˆ,ˆ, rez ) is an upward sloping marginal environmental cost curve with a horizontal 

intercept of ẑ , since we know from equation (3) that ∂var{r(z,α,β)}/∂z and hence }/,cov{ zrD ∂∂′  

are negative for zz ˆ< , zero for zz ˆ= , and positive otherwise. The negative portion of MEC 

means nonpoint source abatement is initially risk-reducing, i.e., an environmental benefit. 

 It is easily verified that the intersection of MCsav(
*0*0 ˆ,ˆ, rez ) and MEC( *0*0 ˆ,ˆ, rez ) yields the 

                                                 
4 Recall that emissions by point and nonpoint sources have the same marginal impacts on expected damages, i.e., the 
denominator of this term. Hence, the only difference these sources have on expected damages, at the margin, is in 
the risk effects of nonpoint runoff. 
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first-best outcome, as z* solves the following first-best equivalent of (8):  

(10) )ˆ,ˆ,()ˆ,ˆ,( 
)ˆ,ˆ,(

11 *0*0*0*0
*0*0 rezMECrezMC

rezt sav ==− . 

By construction, the first-best value of z also yields the first-best values e* = e( *0*0* ˆ,ˆ, rez ) and t* 

= t( *0*0* ˆ,ˆ, rez ). Equation (10) indicates the first-best trading ratio: (i) is less than one when 

society benefits from less environmental risk at the margin, at the expense of relatively more 

expensive nonpoint controls (i.e., t* < 1 when MC*
sav = MEC* < 0 with zz ˆ* < ; Fig. 1a); (ii) 

exceeds one when society benefits from relatively cheaper nonpoint controls at the margin, but at 

the expense of greater environmental risk (i.e., t* > 1 when MC*
sav = MEC* > 0 with zz ˆ* > ; Fig. 

1b). Either case is possible.  These relations between the trading ratio and environmental risk are 

consistent with prior work (e.g., Shortle 1987; Malik et al. 1993).  However, considering both the 

MCsav and MEC terms together illustrates more clearly than prior work that the social gains from 

point sources trading for more nonpoint abatement come from either a reduction in 

environmental risks or reduced overall abatement costs, but not both.  Additionally, Fig. 1 serves 

as a graphical benchmark for our analysis of the second-best case below. 

 

Second-best design 

Now consider the second-best case in which initial permit levels for one or more sources is too 

large, so that ***0*0 )/1(ˆ)/1(ˆ zterte +>+  and condition (8) holds with λ, Λ > 0.  Without loss, 

we focus on the case where *0ˆ ee =  and *00 ˆˆ rr > , as nonpoint sources typically go unregulated 

(or, under-regulated) prior to their participation in the permit market.  With 0r̂  being exogenous, 

*0ˆ ee = is unlikely to be optimal and could therefore be considered exogenous as well.  Horan 
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and Shortle (2005) describe that this situation results in t having two roles: determining the real 

emissions price and the number of permits Q. Unfortunately, t cannot perform both tasks very 

efficiently, implying there are social adjustment costs associated with changes in t.  These 

additional marginal costs are represented by the term Λ in equation (8), so that MEC + Λ is now 

the marginal social cost. 

Consider how the marginal benefit and marginal social cost curves are likely to change in 

response to a larger 0r̂ , starting with MCsav(
00 ˆ,ˆ, rez ).  As t( 00 ˆ,ˆ, rez ) ensures that MCsav(

00 ˆ,ˆ, rez ) 

= 1 – 1/t( 00 ˆ,ˆ, rez ) always holds (even in the second-best case), we can derive  

(11) 020 ˆ
1

ˆ r
t

tr
MCsav

∂
∂

=
∂

∂ . 

Condition (11) means the change in MCsav(
00 ˆ,ˆ, rez ) is of the same sign as 0ˆ/ rt ∂∂ . This 

derivative is derived from (9).  To simplify the exposition, we rewrite (9) as 

(12) 
)(

]))[/1(( 0

zg
zrtQct

′
−−′−

= , 

where Q is the total number of emissions permits, derived in (6) as 00 ˆ)/1(ˆ rteQ += . Note that Q 

depends on 0r̂  directly and also via its impacts on t. Using (12), we can derive 

(13) 0

1

020 ˆ
][1

)(
)(1

)(
)(

ˆ rd
dQzr

tzg
ec

zg
ec

rd
dt

−



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
−

′
′′

+
′
′′−

=  

The coefficient on 0ˆ/ rddQ  is negative, and so the sign of 0ˆ/ rddt  is opposite the sign of 

0ˆ/ rddQ .  The sign of 0ˆ/ rddQ  is technically ambiguous.  However, the sign of 0ˆ/ rddQ  will 

realistically be positive (i.e., under-regulation of the overall market, relative to the first-best) 

when initial nonpoint permit levels exceed their first-best values. The alternative, that decreasing 

in nonpoint permit stringency would lead to over-regulation, does not make sense.  Assuming 
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0ˆ/ rddQ > 0, a larger 0r̂  rotates the curve MCsav clockwise, with the vertical intercept remaining 

at unity.   

Now consider how a larger 0r̂  affects the marginal social cost curve, which was MEC in 

the first-best case.  There are two effects.  First, the change in 0r̂  causes MEC to rotate around 

the fixed point ẑ  (but remain upward sloping), since MEC always crosses through this point 

which is unaffected by changes in 0r̂ . As our primary interest is in whether the change in 0r̂  will 

move the system across the horizontal axis (so that t changes from greater than one to less than 

one, or vice versa), this rotation in MEC has no qualitative impact on the results.  We therefore 

do not rotate MEC in our graphical analysis.   

The second effect is that MEC + Λ is now the marginal social cost, as described above.  

In principle, we can write Λ as a function of z and the model parameters such as initial permit 

levels, i.e., Λ = Λ( 00 ˆ,ˆ, rez ).  However, the relation between Λ and z cannot be easily 

characterized.  We describe how Λ is graphed in the next section. 

 

Changes relative to the equilibrium in Fig. 1a 

We first examine how Fig. 1a is likely to change in response to a larger 0r̂ , denoted *00
1 ˆˆ rr > . 

Fig. 2a illustrates the resulting rotation of MCsav from the first-best marginal benefit curve, 

MCsav(
*0*0 ˆ,ˆ, rez ) (with associated outcomes z* and t*), to MCsav(

0
1

*0 ˆ,ˆ, rez ). For the social marginal 

cost curve, MEC + Λ, we simplify matters by graphing the relation MEC( 0
1

*0 ˆ,ˆ, rez ) as if it were 

the same as the first-best curve MEC( *0*0 ˆ,ˆ, rez ). As described above, this is of no consequence 

since the two curves share essentially the same properties.  
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Graphing the relation Λ( 0
1

*0 ˆ,ˆ, rez ) is more problematic because we do not know how this 

expression varies in relation to z. We simplify matters and graph Λ as a fixed value, in 

accordance with the following conceptual exercise.  As Λ( 0
1

*0 ˆ,ˆ, rez ) can only be fixed if this 

expression is evaluated at a fixed value of z, we first choose a candidate value for the second-best 

optimum, say z = z#. If the resulting marginal social cost curve, MEC( 0
1

*0 ˆ,ˆ, rez ) + Λ( 0
1

*0# ˆ,ˆ, rez ), 

happens to intersect MCsav(
0

1
*0 ˆ,ˆ, rez ) at z#, then we know our candidate solution was correct, i.e., 

z# = z**. Otherwise, we must choose an alternative value of z. This exercise only helps us to 

visualize the result; it does not actually help us to compute z**. However, this visualization is 

valuable because it does help us to rule out certain types of solutions, thereby shedding light on 

the set of viable candidates for z**.  

 Suppose the candidate solution z# produces the dashed-dotted marginal social cost curve 

in Fig. 2a.  This curve suggests a second-best solution at the point z1, but this will only be the 

true second-best outcome if z1 = z#, with MCsav > 0 and MEC < 0.  We demonstrate in the 

Appendix that such an outcome cannot be optimal. The intuition is straightforward: prior to 

accounting for social adjustment costs (i.e., Λ), there are only benefits from reducing t, and 

thereby increasing z, in this case since increased nonpoint abatement yields both cost savings 

(since MCsav > 0) and environmental benefits in the form of reduced environmental risks (since 

MEC < 0). An outcome at z1 actually implies a negative shadow value, i.e., λ, Λ < 0, as there are 

additional gains to be made before the constraint on the permit allocation becomes binding. This 

means MEC( 0
1

*0 ˆ,ˆ, rez ) + Λ( 0
1

*0# ˆ,ˆ, rez ) cannot intersect MCsav(
0

1
*0 ˆ,ˆ, rez ) at z#, and so we must 

choose another candidate for z. 

As noted in the Appendix, the true solution for values of zz ˆ<  (for which MEC < 0) 
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must occur where MCsav < 0.  A possible solution is indicated at point z**, with t** < t*.  But it is 

also possible that the solution could involve a slightly larger Λ** and a slightly lower z** with t** 

∈ (t*,1); greater model specification is required to know which outcome is more likely. The result 

that t** < t* is possible adds insight to Horan and Shortle’s (2005) results.  They found the 

addition of the term Λ in the second-best case causes t to increase, holding MEC fixed.  Here, we 

demonstrate that t may actually fall relative to the first-best case, owing to the fact that all else is 

not equal: marginal cost savings shift (as do MEC, although this is not depicted) as 0r̂  increases, 

reducing the equilibrium value of MEC.  A sufficient reduction in this value, relative to the first-

best case, could support a smaller t**. 

Although the relation between t** and t* is ambiguous, we can say for certain that t** < 1 

whenever t* < 1. This makes intuitive sense. If the first-best case results in a societal willingness 

to incur relatively greater nonpoint abatement costs in return for reduced environmental risks, 

then a second-best case involving fewer overall controls must yield even greater marginal 

benefits to controlling environmental risks.  The trading ratio optimally penalizes environmental 

risks by making it inexpensive to remove the riskier source of pollution, which is that produced 

by nonpoint sources. 

 

Changes relative to the equilibrium in Fig. 1b 

Now consider how the outcome in Fig. 1b is likely to change in response to a larger 0r̂ . The 

increase in 0r̂  from *0r̂  to 0
âr  is depicted as a clockwise rotation in the curve MCsav, from 

MCsav(
*0*0 ˆ,ˆ, rez )  to MCsav(

0*0 ˆ,ˆ, arez ).  The new equilibrium is depicted to occur at z** and to yield 

t** < t*.  This is only one possibility.  More generally, the relative values of z and t depend on the 
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extent of rotation in MCsav and on the magnitude of Λ**.  For instance, suppose the horizontal 

intercept of MCsav(
0*0 ˆ,ˆ, arez ) lies to the right of ẑ .  Then a second-best solution (if it exists) must 

involve z** > ẑ  and t** ∈ (1,t#), where t# solves 1 – 1/t = MCsav(
0*0 ˆ,ˆ,ˆ arez ).  The upper bound on t 

arises because MEC must be positive when MCsav > 0 (see the Appendix), and so MEC + Λ** 

cannot intersect MCsav(
0*0 ˆ,ˆ, arez ) to the left of ẑ .  These results imply t** < t* is possible, 

provided t# < t*. However, such an outcome becomes more unlikely the larger is the rotation in 

MCsav (either due to a larger difference *0r̂ – 0
âr  and/or a greater responsiveness of MCsav to 

changes in 0r̂ ). Finally, z** < ẑ  and t** < 1 is the only possible outcome when the horizontal 

intercept of MCsav(
0*0 ˆ,ˆ, arez ) lies to the left of ẑ , as MEC < 0 in this case and so MCsav must be 

negative as well (see the Appendix).   

Overall, our results suggest that inefficient regulation, via a sub-optimally large 0r̂ , 

makes it more likely that second-best trading ratios will be less than one.  Such an outcome at 

least seems plausible for current point-nonpoint trading programs, given that nonpoint sources 

have historically gone unregulated and account for a significant amount of nutrient loadings (see 

Shortle et al. 2012). The intuition for the small ratio is that the relative lack on enforceable 

nonpoint controls, prior to trading, has the effect of limiting incentives for nonpoint abatement to 

the extent that concerns over environmental risk dominate subjective concerns over abatement 

risks. The resulting marginal benefits of controlling environmental risks leads to a comparatively 

greater allocation of nonpoint controls, facilitated by a trading ratio less than unity.  

 

Conclusion 
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Point-nonpoint trading can be a useful approach for cost-effectively improving water quality, but 

only if the programs are designed to realize the gains.  Extant programs have universally adopted 

large uncertainty trade ratios as a way of addressing risks associated with nonpoint sources, but 

these choices are not based on formal economic analysis.  Rather, they appear rooted in the 

assumption that subjective uncertainties associated with nonpoint controls dominates objective 

uncertainties, regardless of program design.  This exogenous take on risk is potentially 

problematic.  While some programs may be (accidentally) correct in their choice of ratio, we 

suspect the ratios are too large in many extant programs, for the reasons outlined in this analysis.   

Inefficiently large ratios generate two problems, which can be gleaned from considering 

allocations to the left of the equilibrium in Fig. 1.  First, an excessive ratio increases the 

differences in marginal abatement costs between point and nonpoint sources, reducing the cost 

savings that come from trade.  Indeed, large ratios tend to discourage trading in extant programs 

where point sources are the only ones to face enforceable abatement requirements prior to 

trading.  Second, an inefficiently large trade ratio does not adequately manage environmental 

risks, resulting in excessive risks.  These risks arise due to a lack of trade, as the natural 

variability of nonpoint emissions creates risk even when trades do not occur.  Some amount of 

trade can actually reduce these risks under realistic conditions.   It is, perhaps, ironic that there 

continues to be so much interest in using point-nonpoint trading to improve water quality, when 

the economic science that underpins this concept is not formally applied to individual programs 

and when the chosen program designs features limit the size of the market and cost-reducing 

trading activity. 
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Appendix: Deriving the second-best outcome using residual demand relations 

We can use the residual demand relations )ˆ,ˆ,( 00 rezt  and )ˆ,ˆ,( 00 reze  to construct a measure of 

social costs as a function of nonpoint abatement: 

(A1) ))}()ˆ,ˆ,(({)())ˆ,ˆ,(( 0000 zrrezeDEzgrezecSC +++=  

As we are focusing on the second-best case, in which 0ê  and 0r̂  are treated as fixed parameters, 

we subsequently drop these terms from our notation. SC is minimized by choosing z to ensure 

that dSC/dz = 0, or  

(A2) 
( )( )]1)([}{))((

]1)(}][{))(([},cov{))](()([

)]}()())[()(({)()())((

MECMCzeMECMCDEzec
zeDEzecrDzeczg

zrzezrzeDEzgzezec
dz

dSC

savsav ++−′Φ++−′+′−=
−′′+′+′′+′+′=

′+′+′+′+′′=

 

where }]{))((/[}]{))(([ DEzecDEzec ′+′−′+′=Φ .  Considering }{))(( DEzec ′=′−  in the first-

best outcome, then with too few permits in the second-best case we might expect 

}{))(( DEzec ′<′− . Accordingly, in the second best case, Φ ∈ (0,1) and also dSC/dz will be of 

the same sign as 

(A3) ]1)([ MECMCzeMECMC savsav ++−′Φ++− . 

The second-best solution is determined by setting (A3) to zero.  Hence, comparison of (A3) with 

expression (8) indicates the following relation holds 

(A4)  ]1)([ MECMCze sav ++−′Φ=Λ  

where Λ > 0 when evaluated at the second-best optimum. 

 We can simplify matters by recalling that ]ˆ))[(/1(ˆ)( 0
00 zrrzteze +−+= .  With 0

0ˆ rr =  in 

extant programs where nonpoint sources have not yet abated, then ]1))[(/1()( tzztze ε−=′ , where 
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)(/)( ztzzttz ′=ε  is the elasticity of t with respect to abatement.  Further, recall that savMC  

always equals 1 – 1/t(z) in a market equilibrium, so that 0/)( 2 <∂∂=′ zMCtzt sav .  We can use 

this relation to derive  

(A5) )1)(/(, −ε=ε zttzzMC ,  

where  zMC ,ε  is the elasticity of savMC  with respect to z. Note that zMC ,ε > 0 when t > 1 (and 

hence savMC  > 0), and zMC ,ε < 0 when t < 1 (and hence savMC  < 0).  

Using relation (A5), we can rewrite expression (A4) as 

(A6) ][])1([ ,, MECMCMECMCMC zMCsavsavzMCsav +ε−Φ=++ε+−Φ=Λ  

An optimal outcome requires Λ > 0 when (A3) vanishes, i.e., 

(A7) 0, >+ε−=Λ MECMC zMCsav , when 0=Λ++− MECMCsav . 

The first part of condition (A7) is clearly violated (so that Λ < 0) when MEC < 0 and savMC  > 0 

(and hence zMC ,ε > 0), and hence such an outcome cannot be an optimal solution.  The intuition is 

that there are only benefits from reducing t, and thereby increasing z, in this case since increased 

nonpoint abatement yields both cost savings and environmental benefits (via a reduction in risk). 

Using the notation of equation (8) in the main text, such an outcome implies a negative shadow 

value, i.e., λ < 0: there are additional gains to be made before the constraint on the permit 

allocation becomes binding.  Finally, we cannot rule out condition (A7) being satisfied when 

MEC and savMC  (and hence zMC ,ε ) are of the same sign and MEC < savMC .  
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MCsav( 0
1

*0 ˆ,ˆ, rez ) 

z** 0 

1 – 1/t** 

z# 

MEC + Λ( 0
1

*0** ˆ,ˆ, rez ) 

 

MEC + Λ( 0
1

*0# ˆ,ˆ, rez ) 

 

$ 
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