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On the Relationship between Financial Instability and Economic
Performance: Stressing the Business of Nonlinear Modelling

Abstract

The recent global financial crisis and the subsequent economic recession have revitalized the
discussion on the causal relationship between financial and economic sectors. This study ex-
amines financial and economic indices developed by the Federal Reserve Banks of Kansas City
and Chicago, respectively, to identify the impact of financial uncertainty on the overall eco-
nomic performance. Using smooth transition and vector smooth transition autoregressions, this
research assesses nonlinear dynamics of these indices, and tests the Granger non-causality hy-
pothesis between the financial stress and economic activity in an out-of-sample setting. Results
of this study confirm the causal relationship between financial and economic indices. Moreover,
the improved in-sample fit of nonlinear models translates into better forecast performance, in
comparison with the linear models, in an out-of-sample setting as well.

Keywords: business cycles; financial stress; forecast evaluation; Granger causality; smooth
transition modelling.

1 Introduction

The recent global financial crisis and the subsequent economic recession have fortified the discussion
regarding the scope and extent of the interrelationship between financial and economic sectors (e.g.
Gertler and Kiyotaki, 2010; Jermann and Quadrini, 2012; Brunnermeier and Sannikov, 2014). The
topic is not new, however. Almost a century ago, Schumpeter (1934) has argued about the benefits
of financial services on the economic growth, while Fisher (1933) and Keynes (1936) have attributed
economic recessions to the financial market failures (e.g. King and Levine, 1993; Brunnermeier
and Sannikov, 2014). Since then, questions of whether financial development results in economic
growth, or, by corollary, financial crises cause economic recessions, have been broadly discussed and
analyzed in the economics literature (e.g. King and Levine, 1993; De Gregorio and Guidotti, 1995;
Levine, 1997; Arestis et al., 2001; Calderón and Liu, 2003). The economic rationale behind the
considered relationship has hardly been a reason of skepticism. The general ambiguity around the
predictability, or out-of-sample causality in Granger (1969) sense, remains to be an issue, however.
This was famously summarized by Samuelson (1966) in his quote, stating: “Wall Street indexes
predicted nine out of the last five recessions!”

Business cycles, as defined by Burns and Mitchell (1946), reflect the co-movement of multiple
individual economic series (Diebold and Rudebusch, 1996). Thus, a logical way to assess business
cycles would be examining the dynamics of a composite index of economic variables (e.g. Stock
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and Watson, 1989, 1999a). Similarly, factor methods can be applied to financial variables to
obtain the so called financial stress index (e.g. Hakkio and Keeton, 2009). Composite indices
have long been used as leading indicators for economic growth and recessions (e.g. Stock and
Watson, 1993; Granger et al., 1993; Lahiri and Wang, 1994; Stock and Watson, 2003; Camacho,
2004; Marcellino, 2006; Anderson et al., 2007), with a varying degree of success (e.g. Diebold
and Rudebusch, 1991; Giacomini and Rossi, 2013). The main focus of this study, however, is to
investigate if the composite financial index leads the composite economic index. Put differently,
this research examines dynamics of the financial and the economic indicators, and assesses the
out-of-sample Granger causality between the two variables.

This study, moreover, argues that regime-dependent nonlinear models, designed to identify
multiple regimes in time series dynamics, may be better suited to analyze causal relationship
between financial stress and economic health, and possibly contribute to improved predictability
of the composite index of economic variables. It has been well documented that contractions
and expansions of business cycles do not happen at the same rate (e.g. Diebold and Rudebusch,
1996). More recently, studies have also emphasized the nonlinear nature of the relationship between
the financial and economic sectors (e.g. Davig and Hakkio, 2010; Liu et al., 2011; Hubrich and
Tetlow, 2012; Mittnik and Semmler, 2013; Brunnermeier and Sannikov, 2014), implying that linear
models may not be ideal in identifying the causal links between financial instability and economic
recessions, and emphasizing potential advantages of regime-dependent nonlinear modelling. For
example, Hubrich and Tetlow (2012) argue that the “episodic” nature of the relationship is one
reason researchers have failed to find sufficient evidence of financial frictions affecting economic
activity. In particular, economic agents tend to behave differently in times of higher financial
uncertainty, as compared to a relatively stable environment. As such, the effect of financial stress
on economic activity can vary, depending on the state of nature of the financial sector. Davig
and Hakkio (2010) rationalize such discrepancy using the real options and the financial accelerator
theories.

This research answers the questions whether there are causal links between financial and eco-
nomic indices, and if nonlinear models help to better identify such a relationship. In so doing, this
adds to the growing literature examining intricacies in the system of financial and economic indica-
tors. In what follows, we first introduce the smooth transition modelling and testing frameworks.
We then present and interpret the estimated models, and assess their dynamics, using generalized
impulse–response functions. We then turn to the forecasting exercise, and evaluate forecast perfor-
mance of linear and nonlinear models, with a particular emphasis on an out-of-sample test of the
null hypothesis of Granger non-causality. In conclusion, we summarize the main findings of this
research.
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2 Econometric Modelling and Forecasting

This research adopts the smooth transition modelling framework to examine nonlinearities in the
financial stress and the economic activity indicators. Smooth transition regressions were first pro-
posed by Bacon and Watts (1971), and subsequently advocated for the time series analysis by
Chan and Tong (1986). More formally Luukkonen et al. (1988); Teräsvirta (1994) introduced and
developed smooth transition autoregression (STAR) modelling and testing frameworks. The fam-
ily of smooth transition models was later extended to the multivariate framework (e.g. Anderson
and Vahid, 1998; Rothman et al., 2001), resulting in a vector smooth transition autoregression
(VSTAR). The regime-dependent (and piecewise linear) modelling facilitates the analysis of the
relationship between the variables of interest, where causal inferences may vary across the regimes
depending on the transition variable’s state of nature. Moreover, the so-called “smooth” transition
supports the continuum of intermediate steps between the two extreme regimes, which is more
intuitive from an economic standpoint. Since the introduction, the smooth transition models have
gained popularity and have been given consideration in studies modelling asymmetric cyclical vari-
ations of business cycles, and other related economic indicators (e.g. Teräsvirta, 1995; Skalin and
Teräsvirta, 2002; Franses and van Dijk, 2005).

2.1 The Smooth Transition Models

Consider a basic autoregressive model with an additive error term:

yt = f (yt−1, yt−2, . . . ;θ) + εt (1)

where yt is the dependent variable, θ is the parameter set defining the autoregressive structure of
the model, and εt ∼ iid(0, σ2

ε) is a white noise process.
Assuming linearity, equation (1) can be expressed as the AR(p) process, where p is the autore-

gressive order:

yt = α+
p∑
i=1

βiyt−i + εt (2)

One can relax the linearity assumption by introducing the regime-dependency in the autoregressive
process, resulting in:

yt = α0 +
p∑
i=1

β0iyt−i +
(
α1 +

p∑
i=1

β1iyt−i

)
I (st; c) + εt (3)

where I(st; c) is an indicator function, which can take values of zero or one, depending on the
location of the transition variable, st, in relation to the threshold parameter, c. Put differently,
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equation (3) is piecewise linear, conditional on I(·), and is better known as the threshold autore-
gression (TAR) pioneered by Tong and Lim (1980). A somewhat more convoluted version of this
model is the smooth transition autoregression (STAR) of Teräsvirta (1994):

yt = α0 +
p∑
i=1

β0iyt−i +
(
α1 +

p∑
i=1

β1iyt−i

)
G (st; γ, c) + εt (4)

where G(st; γ, c) is the so called transition function that is also bounded between zero and one,
but can take any value in between. The transition function varies with st, the transition variable.
The other factors of the transition function are the parameters γ and c, where γ, the speed–of–
adjustment parameter, determines how rapidly shifts from one regime to another occur, and c, the
centrality parameter, determines the value of st around which regime changes are centered.

There are several choices for the transition functions. The most popular is the logistic function,
a general form of which is:

G (st; γ, c) =

1 + exp

−γ∗ k∏
j=1

(st − cj)


−1

γ∗ > 0, c1 < . . . < ck (5)

where c = (c1, . . . , ck) is a vector of centrality parameters. In practice most analysts choose either
k = 1 or k = 2, respectively resulting in logistic STAR (LSTAR) and quadratic STAR (QSTAR)
models. The former is useful in situations with asymmetries in autoregressive dynamic in relation
to st are suspected; the latter is useful for situations where nonlinearity in dynamics is linked to the
absolute value of st. Finally, in equation (5) the parameter γ is normalized by σkst

, γ∗ = (γ/σkst
),

where σst is the standard deviation of the transition variable. Doing so effectively makes the
smoothness parameter unit free.

The smooth transition autoregressive framework can be extended to a multivariate framework
(e.g. Rothman et al., 2001; Camacho, 2004). First, consider a linear vector autoregression of order
p, VAR(p):

xt = µ+
p∑
i=1

Bixt−i + υt (6)

where xt = (x1t, . . . , xnt)′ is a n-dimensional vector of dependent variables; and υt ∼ iid (0,Συ),
where Συ is a positive definite covariance matrix.

A nonlinear version of equation (6), the vector smooth transition autoregression of order p,
VSTAR(p) is specified as follows:

xt = µ0 +
p∑
i=1

B0ixt−i +
(
µ1 +

p∑
i=1

B1ixt−i

)
ιG(st, γ, c) + υt (7)
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where ιG(st, γ, c) is a vector of transition functions, where ι is an unit vector restricting the tran-
sition function to be common across the equations.

2.2 Testing Linearity in the Auxiliary Regression Setting

The question of whether STAR-type nonlinearity is truly an underlying feature of the data-
generating process is a testable hypothesis. However, one cannot directly test the linearity hy-
pothesis, i.e. H0 : γ = 0, in a STAR model due to Davies’ problem associated with unidentified
nuisance parameters (Davies, 1977, 1987). For example, consider equation (4) in conjunction with
equation (5), where K = 1: the nonlinear model will reduce to the linear AR(p) model either by
imposing γ = 0 or by imposing α1 = β11 = . . . = β1p = 0. Therefore, the standard test statistics are
no longer applicable. Luukkonen et al. (1988) proposed a solution to the problem by approximating
the transition function using Taylor series expansion. This results in a testable auxiliary regression:

yt = ϕ+
3∑
j=0

p∑
i=1

φjiyt−is
j
t + ξt (8)

where ξt combines the original error term, εt, and the approximation error resulted from the Taylor
series expansion. Conventional testing methods can now be applied to equation (8) to test for
linearity against the STAR specification. The test is equivalent to testing the null hypothesis of
H ′0: φ11 = . . . = φ1p = φ21 = . . . = φ3p = 0.

Similar approach can be applied to test linearity in a multivariate setting (Camacho, 2004). In
particular, the system of auxiliary regressions can be defined as follows:

xt = π +
3∑
j=0

p∑
i=1

Φjixt−is
j
t + ζt (9)

The test is equivalent to a system-wide test of all elements of the Φji, i = 1, . . . , p, j = 1, 2, 3, being
equal to zero. In small samples the higher order polynomial terms can be ignored (Weise, 1999),
yielding somewhat more “economical” version of the auxiliary regression:

xt = π +
p∑
i=1

Φ0ixt−i +
p∑
i=1

Φ1ixt−ist + ζt (10)

The test being equivalent to a system-wide test of Φ1i = 0, i = 1, . . . , p.
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2.3 Out-of-Sample Forecasting, Forecast Evaluation, and Granger Causality

Continuing with the notation from equation (1), the expected one-step-ahead forecast can then be
written as:

ŷt+1|t = f̂
(
yt, yt−1, . . . ; θ̂t

)
t = R, . . . , T − 1 (11)

where f̂(·) is the estimated functional form of the model, and θ̂t is a set of parameter estimates. R
denotes the estimation window size, i.e. the subset of observations used to obtain a set of parameter
estimates. P − 1 such windows are estimated, where P denotes the subset of observations used for
forecast evaluation, so that R+ P = T . The associated forecast error, then, is:

êt+1 = yt+1 − ŷt+1|t (12)

where yt+1 is the actual one-step-ahead realization of the variable of interest. One can, in principle,
define a loss function, L(êt+1), which can take various different forms. Assuming the most popular
(for good reasons) quadratic loss, i.e. L(êt+1) = ê2

t+1, an appropriate measure for the out-of-sample
forecast evaluation is the mean squared forecast error (MSFE):

σ̂2 = 1
P − 1

T−1∑
t=R

ê2
t+1 (13)

where P is the total number of out-of-sample forecasts. The smaller is the MSFE measure, the
better is a particular forecast. So, in order to compare the forecasts from two competing models,
one should assess a relative difference between two MSFE measures.

Consider two competing forecasts. One as defined in equation (11), and the other as follows:

ŷc,t+1|t = f
(
yt, yt−1, . . . , zt, zt−1, . . . ; θ̂c,t

)
(14)

with the associated forecast error:

êc,t+1 = yt+1 − ŷc,t+1|t (15)

and the quadratic loss function, L(êc,t+1), and the associated MSFE:

σ̂2
c = 1

P − 1

T−1∑
t=R

ê2
c,t+1 (16)

Causality in Granger sense (and its original spirit) implies improved out-of-sample predictive
ability of the model that incorporates the potentially causal variable, as compared to the model
that omits such variable (e.g. Ashley et al., 1980). In the current context, σ̂2

c < σ̂2 would imply
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that {zt} Granger causes {yt}.
A number of methods have been proposed to assess forecast accuracies. One of the most

frequently applied methods is the Diebold and Mariano (1995) (DM) measure, which tests predictive
accuracy of two (non-nested) competing models. However, when one of the competing models
nests another (which is certainly the case in Granger causality testing), then the original DM
measure is no longer applicable (e.g. Clark and McCracken, 2001). For such cases, alternative
measures have been proposed in lieu of the DM measure. In this study, we will use one such
measure proposed by Clark and West (2007). Consider forecast errors from two competing models:
êt+1 and êc,t+1, where the latter model nests the former. Further, define an “adjustment error”,
ea,t+1 = (ŷt+1|t − ŷct+1|t). Then, the null hypothesis of equal mean squared (forecast) errors, or
currently Granger non-causality, is rejected if the difference given by σ̂2 − (σ̂2

c − σ̂2
a) is sufficiently

positive (for more details see Clark and West, 2007), where:

σ̂2
a = 1

P − 1

T−1∑
t=R

ê2
a,t+1 (17)

Then the test of equal forecast ability is equivalent of the null hypothesis H0 : µ = 0 in the following
regression:

L′ = µ+ υt+1 (18)

where, in the case of non-nested models, L′ = ê2
t+1 − ê2

c,t+1, and, in the case of nested models,
L′ = ê2

t+1− [ê2
c,t+1− (ŷt+1|t− ŷc,t+1|t)2]. Heteroskedasticity and autocorrelation consistent standard

errors are used to test the null hypotheses.

3 Empirical Framework

This research uses financial and economic indicators, obtained from the Federal Reserve Banks
of Chicago and Kansas City. In particular, the study applies the monthly series of the financial
stress index (FSI) of the Federal Reserve Bank of Kansas City, and the national activity index
(NAI) of the Federal Reserve Bank of Chicago as proxies for financial instability and economic
performance, respectively. The indices (see Figure 1) are constructed based on principal components
methodology, and incorporate an array of major financial and economic indicators. In particular,
the FSI is based on 11 financial variables (Hakkio and Keeton, 2009); and the NAI is based on 85
economic variables, and corresponds to the economic activity index of Stock and Watson (1999b).
Figure 1 reveals several features of interest. Firstly, the two indices are highly correlated – the
financial stress episodes coincide with the decreased economic activity. Moreover, both indices well
depict the most recent financial crisis and the economic recession.
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3.1 Model Selection and Estimation

Initially, we assessed the null hypothesis of a unit root in the considered series. Based on augmented
Dickey-Fuller test results, both indices appear to be integrated of order zero. We therefore proceed
by modelling the variables in levels. We set the lag length, p, equal to four, both in univariate and
multivariate cases, and thus, estimated linear AR(4) and VAR(4) models.1 The Akaike Information
Criteria (AIC) of the estimated models are −1.27 and −3.92, respectively.

Next step is to test for STAR-type nonlinearities using the procedure described in the previous
section. We consider lagged levels of both indices (i.e. yt−d and zt−d, where 1 ≤ d ≤ p) as candidate
transition variables. Results present overwhelming evidence against the linearity assumption (see
Table 1). We therefore proceeded to estimate STAR models using each of the two indices as
transition variables. Parameter estimates, and estimated transition functions of each of the two
models are as follows:

yt =− 0.14
(0.16)

+ 0.64
(0.12)

yt−1 + 0.40
(0.12)

yt−2 − 0.11
(0.15)

yt−3 − 0.08
(0.12)

yt−4 (19)

+
(

0.14
(0.17)

− 0.63
(0.14)

yt−1 − 0.07
(0.15)

yt−2 + 0.44
(0.17)

yt−3 + 0.13
(0.14)

yt−4

)
G (st; γ̂, ĉ) + ε̂t

where

G (st; γ̂, ĉ) =
{

1 + exp
[
− 9.41

(11.94)
/σst

(
yt−3 + 0.72

(0.13)

)]}−1

(20)

and where σst is the standard deviation of the transition variable, st = yt−3. The AIC of the
estimated model is −1.32.

We also estimate the STAR model with the lagged level of the financial stress index as a
transition variable:

yt =0.08
(0.04)

+ 0.01
(0.08)

yt−1 + 0.30
(0.08)

yt−2 + 0.23
(0.07)

yt−3 + 0.01
(0.07)

yt−4 (21)

+
(
−0.59

(0.24)
+ 0.49

(0.15)
yt−1 + 0.08

(0.16)
yt−2 − 0.18

(0.15)
yt−3 − 0.19

(0.15)
yt−4

)
G (st; γ̂, ĉ) + ε̂t

where

G (st; γ̂, ĉ) =
{

1 + exp
[
−5.02

(2.68)
/σst

(
zt−1 − 0.75

(0.16)

)]}−1

(22)

The AIC of the estimated model is −1.37.
Interestingly, there was evidence of remaining nonlinearities in each of the two estimated STAR

models. So, we also estimated the multiple-regime additive STAR model (MRSTAR), i.e. the
1Results are not reported here, but are available upon request.
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STAR with two distinct transition functions, using both indices together as transition variables:

yt =− 1.11
(0.48)

+ 0.70
(0.34)

yt−1 + 0.22
(0.28)

yt−2 − 1.32
(0.46)

yt−3 − 0.53
(0.38)

yt−4 (23)

+
(

1.46
(0.37)

− 0.57
(0.23)

yt−1 + 0.10
(0.22)

yt−2 + 1.26
(0.31)

yt−3 + 0.38
(0.24)

yt−4

)
G (st; γ̂1, ĉ1)

+
(
−1.24

(0.40)
− 0.50

(0.40)
yt−1 − 0.08

(0.34)
yt−2 + 1.19

(0.50)
yt−3 + 0.63

(0.44)
yt−4

)
G (st; γ̂2, ĉ2) + ε̂t

where

G (st; γ̂1, ĉ1) =
{

1 + exp
[
−100

(—)
σs1t

(
yt−3 + 0.99

(0.39)

)]}−1

(24)

and

G (st; γ̂2, ĉ2) =
{

1 + exp
[
−1.00

(0.41)
σs2t

(
zt−1 − 0.87

(0.66)

)]}−1

(25)

The AIC of the estimated model is −1.42.
We next moved on to estimate the vector smooth transition autoregression with zt−1 as the

transition variable. Below we only present the first estimated equation of the system:

yt =0.03
(0.05)

+ 0.02
(0.07)

yt−1 + 0.27
(0.07)

yt−2 + 0.20
(0.07)

yt−3 − 0.01
(0.07)

yt−4 (26)

− 0.27
(0.19)

zt−1 + 0.31
(0.25)

zt−2 − 0.10
(0.24)

zt−3 − 0.07
(0.18)

zt−4

+
(
−0.63

(0.24)
+ 0.13

(0.17)
yt−1 + 0.44

(0.20)
yt−2 + 0.19

(0.18)
yt−3 + 0.05

(0.16)
yt−4

+0.31
(0.25)

zt−1 − 0.63
(0.34)

zt−2 + 0.02
(0.35)

zt−3 + 0.91
(0.27)

zt−4

)
G (st; γ̂, ĉ) + ν̂t

where

G (st; γ̂, ĉ) =
{

1 + exp
[
−5.21

(2.10)
/σst

(
zt−1 − 0.87

(—)

)]}−1

(27)

The AIC of the estimated model is −4.08.
These functions are better illustrated in figures 2 – 5. As seen, the time series dynamics appear

to switch between the regimes when the economy and the financial sector move from the less volatile
to the more volatile conditions. While the regime shifts tend to coincide whether the financial stress
index or the national activity index is used as a transition variable, notably, there is considerable
additional information, when both variables are used, as suggested by the AIC measures.

9



3.2 Interpretation: Generalized Impulse–Response Analysis

To better illustrate the model dynamics, figures 2 – 5 also feature the generalized impulse–response
(GIR) functions. The approach, proposed by Koop et al. (1996), is imperative when analyzing the
nonlinear model dynamics, which, unlike linear models, are not invariant to the information set
prior the shocks, the sign and magnitude of the shocks, as well as, the idiosyncratic disturbances
that occur throughout the forecast horizon. The method implements bootstrap resampling, and
thus generates an empirical distribution around the expected GIRs at each point in the horizon,
which allows for additional information about the impulse response functions beyond their first
moments.

A GIR at a horizon h, for a given shock ν, and a subset of histories H, is defined as:

GIR (h, ν,H) = E (yt+h|ν, ωt ∈ H)− E (yt+h|ωt ∈ H) (28)

where ωt denotes a point in time with initial conditions from the considered subset of histories.
The method is executed in a manner similar to Skalin and Teräsvirta (2002), wherein all available
starting points are used as histories. Within each history, a total of 100 bootstrap vectors equal
in length to 24 months are computed. This way, a sufficiently large number of forecast sequences
are obtained to approximate the densities at each horizon. The bootstrap vectors are extrapolated
both with and without the initial shock, by incorporating randomly sampled innovations from the
pool of residuals of the estimated model. Additionally, GIRs are computed for the initial shocks
measured as ±2σε, and are referred as “statistically significant” shocks, where σε is the standard
deviation of the residuals in the estimated model. The aforementioned steps are reiterated for all
combinations of histories and initial shocks. Mean responses are obtained by averaging the realized
GIRs across the bootstrap iterations and selected histories.

Additionally, we obtain regime-specific GIRs. In particular, GIRs are calculated for histories
when the financial stress index is greater than one and the national activity index is less than one.
This referred as the “volatile” regime. A total of 16 such histories are identified (see Figure 6).
On the contrary, the “normal” regime is defined when the absolute values of the indices are less
than 0.5, and 16 histories are randomly selected from this pool. A total of 500 bootstrap vectors
are obtained per each history. The rest of the procedure is similar to the one described above.
The results of this exercise are presented in Figure 7. Regime-specific asymmetries are apparent.
Moreover, the graphs also illustrate sign-specific asymmetries, i.e. responses to positive shocks are
not mirror images of those to negative shocks.

3.3 Out-of-Sample Forecast Evaluation

This paper uses a rolling window approach to obtain P − 1 one-step-ahead forecasts. The first
window starts in January 1991 and ends in December of 2009. Every successive window is rolled
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over by one month. As such, 47 out-of-sample forecasts are obtained from each considered model.
The forecasting exercise, thus, is designed so that every estimation window contains the high-
financial-stress/low-economic-activity period of 2008-2009. The selected transition variables and
the functional form of the transition functions are maintained across the estimation windows.
However, the autoregressive and the transition parameters are re-estimated in each window. The
out-of-sample forecasts are then based on the estimated parameters.

Results of this forecasting exercise are presented in Table 2. The table reports AIC measures
averaged across all rolling windows. As seen, the nonlinear models perform better than their linear
counterparts, and the multivariate models perform better than their univariate counterparts, thus,
the VSTAR model offering the best data fit.

Forecast errors are evaluated for possible bias and inefficiency. The error unbiasedness is equiv-
alent of testing the null hypothesis of H0 : α = 0 in: ei,t+1 = α + υt+1, and the error efficiency is
equivalent of testing H0 : β = 0 in: ei,t+1 = α+βŷi,t+1|t+υt+1. Results of these tests are presented
in Table 2. Forecast errors across all models appear to be unbiased, but we failed to reject the
efficiency hypothesis of forecast errors from all models except for the VSTAR model.

The root mean squared forecast errors (RMSFE) and the forecast accuracy measures suggest
improved predictability of the national activity index, when the financial stress index is incorpo-
rated, i.e. financial stress does Granger cause economic activity. Moreover, nonlinear models, and
VSTAR in particular, tend to improve forecast accuracy. So, nonlinearity matters.

4 Conclusion

Findings of this study support the hypothesis that financial stress Granger causes economic perfor-
mance, in particular when nonlinearity is accounted for. The vector smooth transition autoregres-
sion outperforms its linear and univariate counterparts from the standpoints of both in-sample fit
as well as out-of-sample forecast performance. Moreover, the dynamics vary considerably between
the normal and the volatile regimes.

The out-of-sample forecast comparison is performed for the period after the most recent reces-
sion. This was done for the identification purposes, i.e. to capture the sufficiently large amount
of observations in the volatile regime. The downside of it is that much of the forecast accuracy
measures are assessed in the normal regime. Even so, the advantage of nonlinear modelling is
apparent. That is, a more proper accounting of the underlying nonlinear dynamics has led to more
accurate forecasts.
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Figures

Figure 1: Time series of the FSI (Financial Stress) and the NAI (Economic Health).
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Figure 2: Transition function of the estimated STAR model with yt−3 as the transition variable.
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Figure 3: Transition function of the estimated STAR model with zt−1 as the transition variable.
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Figure 4: Transition function of the estimated STAR model with yt−3 and zt−1 as the transition
variables.

18



Figure 5: Transition function of the estimated VSTAR model with zt−1 as the transition variable.
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Figure 6: Scatter-plot of the financial stress and the national activity indices.

Note: the red dots identify histories of the relatively volatile (i.e. “financially stressed” or
“economically unhealthy”) regime; while the blue dots identify histories of the relatively normal regime.
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Note: the GIRs of negative shocks are reversed (i.e. multiplied by -1) to ease the visualization of asymmetries in
comparison with the GIRs of positive shocks.

Figure 7: Generalized Impulse-Responses during the normal and the stressed regimes.
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Tables

Table 1: Nonlinearity Test Results

st H ′AR H ′STAR H ′MRSTAR H ′VAR H ′VSTAR

yt−1 <0.001 <0.001 0.039 <0.001 <0.001
yt−2 <0.001 0.006 0.240 <0.001 0.023
yt−3 <0.001 0.036 0.010 0.140 0.038
yt−4 <0.001 0.200 0.075 0.032 <0.001

zt−1 <0.001 <0.001 0.003 <0.001 0.030
zt−2 <0.001 <0.001 0.015 <0.001 <0.001
zt−3 <0.001 <0.001 0.005 <0.001 <0.001
zt−4 <0.001 <0.001 0.004 0.005 <0.001

Note: the table entries are probability values associated with the null hypotheses denoted in the column headings.
The values in bold identify the selected transition variable.
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Table 2: Forecast Evaluation

AR STAR(yt−d) STAR(zt−d) MRSTAR VAR VSTAR

AIC -1.220 -1.270 -1.310 -1.360 -1.420 -1.450

Hu 0.540 0.780 0.449 0.578 0.910 0.561
He 0.005 0.003 0.043 0.008 0.018 0.100

σ̂ 0.447 0.455 0.426 0.454 0.423 0.416
σ̂i/σ̂AR 1.018 0.953 1.016 0.946 0.931
σ̂i/σ̂STAR(yt−d) 0.936 0.998 0.930 0.914
σ̂i/σ̂STAR(zt−d) 1.066 0.993 0.977
σ̂i/σ̂MRSTAR 0.932 0.916
σ̂i/σ̂VAR 0.983

Note: AIC is the average AIC across all estimated windows; Hu is the null of forecast error unbiasedness, and He is
the null of forecast error efficiency. σ̂ is root mean squared forecast error; σ̂i/σ̂j ,
j = AR, STAR(yt−d), STAR(zt−d),MRSTAR,VAR, are relative RMSFE measures. Values in italic denote statistical
significance at α = 0.1 level, while values in bold denote statistical significance at α = 0.01 level.
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