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Introduction Methods

Conclusion

Objectives

Firstly, a more flexible and semi-parametric imputation approach-fully 

conditional specification (FCS) method [3] is applied to estimate the 

sales revenue in the U.S. national nursery industry, which assumes a 

joint distribution existed for all variables to impute the missing data 

for both continuous and discrete variables (i.e. binary, nominal 

categorical, and ordered categorical variables) in the complex 

national nursery survey data. Secondly, by comparing with the 

MCMC method based on rounding approximation, we will show that 

the FCS method performs better in terms of overall performance and 

efficiency measure.

FCS Predictive Mean Matching Method (Continues Variable) [4]

 Fit a linear model for each continuous missing variable (𝑥𝑖) given 

other variables as covariates, and obtain  𝛽 and corresponding 

covariance matrix  𝑉𝑖=  𝜎𝑖
2𝑆𝑖 =  𝜎𝑖

2(𝑋′𝑋)−1

 Simulate new parameters  𝛽∗ and  𝜎𝑖
2∗

from the posterior distribution 

of the parameters  𝛽 and   𝑉𝑖:  𝜎𝑖
2∗

=  𝜎𝑖
2(𝑛𝑖-k-1) /m, where 𝑛𝑖 is the 

number of observed subjects for 𝑥𝑖, and m is a Chi-squared 

random variable with d. f. of  𝑛𝑖-k-1.  𝛽∗ =  𝛽 +  𝜎𝑖
∗ 𝑈𝑖

′𝑍, where 𝑈𝑖 is 

the upper triangular matrix in the Cholesky decomposition (𝑆𝑖 =
𝑈𝑖

′𝑈𝑖), and Z is the vector of (k+1) i.i.d. normal variables.

 Compute the predicted value for the continuous missing variable 

by: 𝑥𝑖
∗ =  𝛽0

∗ +  𝛽1
∗𝑥1 +  𝛽2

∗𝑥2 + ⋯ +  𝛽𝑖−1
∗ 𝑥𝑖−1 +  𝛽𝑖+1

∗ 𝑥𝑖+1 + ⋯ +  𝛽𝑘
∗𝑥𝑘

 Generate a set of d observed subjects whose predicted values are 

nearly matching to 𝑥𝑖
∗, and then fill-in the missing variables by 

random draw from  d observed values.

FCS Logistic Regression Method (Discrete Variable) [1] 

 Fit a logistic regression model for each binary missing variable 

given other variables as covariates, obtain  𝛽 and corresponding 

covariance matrix  𝑉𝑖.

 Simulate new parameters  𝛽∗ from the posterior distribution of the 

parameters  𝛽 and   𝑉𝑖 ,  𝛽∗ =  𝛽 + 𝑈𝑖
′𝑍

 Calculate the expected probability of missing values: 𝑝𝑖 =
𝑒𝜇

1+𝑒𝜇, 

 Simulate µ from Uniform (0,1) distribution and set 𝑝𝑖 as the cutoff

 Ordered logistic regression can be extended to impute the ordinal 

categorical missing variables. 

We applied a semi-parametric FCS multiple imputation method to 

address for missing data problems in the national nursery survey, and 

analyzed the sales revenue in the U.S. national nursery industry In 

comparison of the MCMC method with the strict normality assumption. 

We showed that the FCS method is more robust and superior than the 

MCMC method. However, the further performance of the FCS method 

should still be thoroughly investigated by simulations. Since the FCS 

method is more flexible, different conditional distributions can be 

tailored for different types of covariates with missing information. An 

extension of exploring the performance of the FCS method under 

different conditional distributions would be useful and valuable.

Missing data problems are always prevalent and inevitable in survey 

data such as national nursery survey when we investigate the 

primary factors influencing sales revenue. It often bias the statistical 

results and result in invalid inferences due to significant missing 

information in the observations. Instead of imputing each missing 

value with a single known, multiple imputation (MI) is a useful and 

popular method in handling missing data by filling-in a set of 

simulating values to account for uncertainty in the missing data [1] . 

MI has three steps including filling, analyzing and pooling. Different 

methods are used for different patterns of missing data [1]. Although 

the binary variable could be imputed by the Markov Chain Monte 

Carlo (MCMC) method with rounding approximation, some 

literatures have stated that it violated the normality assumption and 

such rounding method can even cause bias in the estimates [2].

Results

Table 1:  Regression Result and Variance Information for FCS MI

Table 2:  Comparison of MI Efficiency: FCS vs MCMC 

Note: r: Relative Increase in Variance,  λ: Fraction of Missing Information, 

RE: Relative Efficiency 

Parameter r λ RE r λ RE

Intercept 0.017 0.017 0.998 43.026 0.981 0.911

Opreate_Other 0.056 0.054 0.995 2.868 0.768 0.929

Forward Contracting 0.003 0.003 1.000 0.023 0.023 0.998

Firm Age 0.014 0.014 0.999 0.423 0.311 0.970

Computer Tech. Usage 0.012 0.012 0.999 3.764 0.814 0.925

Employee 0.081 0.076 0.992 1.622 0.647 0.939

Trade Show 0.275 0.224 0.978 0.561 0.377 0.964

Product Uniqueness 0.002 0.002 1.000 0.426 0.312 0.970

Region_Southeast 0.001 0.001 1.000 0.164 0.144 0.986

Region_Northeast 0.009 0.009 0.999 1.312 0.596 0.944

Region_Pacific 0.008 0.007 0.999 2.927 0.772 0.928

Region_Midwest 0.005 0.005 1.000 0.310 0.246 0.976

IPM Practice 0.013 0.013 0.999 0.885 0.494 0.953

FCS MCMC
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Parameter

Dep. var: log (sales) Estimate Std Error Pr > |t| Between Within Total

Intercept 12.882 0.110 <.0001 1.8E-04 1.2E-02 1.2E-02

Opreate_Other 0.670 0.199 0.001 1.9E-03 3.7E-02 4.0E-02

Forward Contracting -0.005 0.323 0.989 3.2E-04 1.0E-01 1.0E-01

Firm Age 0.005 0.002 0.004 3.7E-08 2.9E-06 3.0E-06

Computer Tech. Usage 0.617 0.078 <.0001 6.8E-05 6.1E-03 6.1E-03

Employee 0.005 0.001 <.0001 2.0E-08 2.7E-07 2.9E-07

Trade Show 0.017 0.008 0.033 1.2E-05 4.8E-05 6.1E-05

Product Uniqueness -0.044 0.079 0.579 1.2E-05 6.3E-03 6.3E-03

Region_Southeast 0.018 0.068 0.788 5.8E-06 4.7E-03 4.7E-03

Region_Northeast -0.182 0.077 0.018 4.8E-05 5.9E-03 5.9E-03

Region_Pacific 0.271 0.078 0.001 4.2E-05 6.1E-03 6.1E-03

Region_Midwest -0.035 0.086 0.684 3.2E-05 7.4E-03 7.4E-03

IPM Practice 0.027 0.009 0.004 1.0E-06 8.6E-05 8.7E-05

Regression Variance
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