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Abstract

The recent priority given to Federal Crop Insurance as an agricultural policy instrument has increased

the importance of rate making procedures. Actuarial soundness requires rates that are actuarially fair: the

premium is set equal to expected loss. Formation of this expectation depends, in the case of group or area

yield insurance, on precise estimation of the probability density of the crop yield in question. This paper

applies kernel density estimation via diffusion to the estimation of crop yield probability densities and

determines ensuing premium rates. The diffusion estimator improves on existing methods by providing a

cogent answer to some of the issues that plague both parametric and nonparametric techniques. Application

shows that premium rates can vary significantly depending on underlying distributional assumptions;

from a practical point of view there is value to be had in proper specification.

I. Introduction

Growth of the Federal Crop Insurance pro-
gram has continued unabated for the past two
decades. Created with the intent of protecting
producers from a variety of risks, the program
has also become a powerful tool for subsidy.
With the passage of the Agricultural Act of
2014, crop insurance is poised to further solid-
ify its position as the second largest spending
item considered in the Farm Bill. The grow-
ing importance of crop insurance as an agri-
cultural policy instrument has amplified the
consequence of the rate setting policies and
procedures of the Federal Crop Insurance Cor-
poration (FCIC).

Actuarial soundness of the crop insurance
program is one of the primary goals of the
FCIC. A key component of any actuarially
sound insurance program is an accurate pre-
mium rate. Actuarially fair insurance sets the
policy premium equal to expected loss. The
true probability of loss is often not known and
is inferred from a given set of data and infor-
mation. Error arises in estimation and must
be constrained if ideal premium rates are to be

approached.

The number of policy types available from
the FCIC is considerable. This assortment is
slated to grow even larger with the introduc-
tion of additional policies for peanuts and spe-
cialty crops. Stacked Income Protection (STAX)
for cotton producers will replace other subsidy
measures with revenue insurance. Determin-
ing premium rates for these policies usually
requires estimation of the population mean of
one or more random variables and a distri-
bution about this mean. In the case of yield
insurance the random variable is some mea-
sure of crop yield; revenue insurance considers
the randomness of yield and price jointly.

When modeling risk there are a number of
statistical issues to take into account. Yield in-
surance is one of the simpler paradigms. Given
the nature of observed yield data, there are two
main concerns: elimination of the trend and
estimation of the probability density function.
With respect to the first, trends and autore-
gressive effects must be eliminated prior to the
modeling of yield distributions. Direct use of
observed yields is clearly inappropriate. As to
the latter, premium rates are constructed us-
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ing conditional yield distributions and mean
yields. It is crucial that these distributions are
estimated accurately.

This paper is largely concerned with the
second of these two points of interest. Meth-
ods proposed for the estimation of conditional
yield distributions have typically tracked ad-
vances in theoretical statistics. As in the statis-
tics literature, density estimation procedures
may be broadly grouped as either parametric
or nonparametric. The suitability of either class
of techniques to a given inferential problem de-
pends on the nature of the problem itself. Nat-
urally, certain approaches are to be preferred
depending on the situation.

Appeal to parametric specification as a solu-
tion to the yield density problem is not uncom-
mon and there is a long history of research in
this vein. Botts and Boles, Just and Weninger,
and Ozaki et al. utilized a normal distribution.
Gallagher used a gamma distribution, Chen
and Miranda a weibull distribution, and Sher-
rick et al. a logistic distribution. As with any
parametric approach, these methods require
prior specification of the distribution function.
If the distribution is improperly specified it
is likely that biased inference will result. It is
disconcerting, given this possibility of specifica-
tion bias, that goodness of fit tests typically do
not validate any one underlying distributional
form for all crops and aggregation levels.

Visual inspection of yield data, and experi-
ence with crop insurance over the past eighty
years or so, has led to two conclusions about
the nature of yields. If both of these conclu-
sions are believed to be true, then a number
of popular models for yield densities are al-
most surely misspecified. Acceptance of these
results allows certain estimation techniques to
be eliminated from consideration.

Gallagher and Nelson both explain that
yields are often negatively skewed. Without
weather, pests, and other outside factors affect-
ing yields, it would be expected that yields
always approach a given capacity constraint.
The stochastic factors cause yields to be less
than their ideal. Recognition of skewness in-
validates use of a normal distribution for mod-

eling yields. If this negative skewness was
the only feature of the data that contradicted
normality, practitioners might be content with
utilizing beta or gamma distributions to model
yields. The weibull distribution is also able to
accommodate skewness. However, there is an-
other feature of the data that suggests that such
distributional assumptions are inappropriate.

Ker and Goodwin suggest the idea that
yields may fall under two regimes: catastrophic
or normal. Under normal conditions yields
vary about the capacity constraint as a re-
sult of typical variation in stochastic factors.
Catastrophic conditions, like flooding or severe
drought, severely decrease the yield and in
some cases cause yields to approach the zero
bound. The existence of underlying regimes of
this nature generates bimodal or bitangential
yield distributions.

When the data do not appear to fit any
one parametric distribution, and when there
is very little guidance from theory as to what
distribution to utilize, the problem should be
approached through nonparametric methods.
Such methods are far better equipped to deal
with the presence of multiple modes, skewness,
and bitangentiality. In fact none of the paramet-
ric distributions mentioned thus far can take
multiple modes. As Silverman notes, it is quite
easy to smooth data with the eye. It is difficult
to undo this process. Assuming a parametric
distribution masks key features of the data that
cannot be recovered.

Nonparametric techniques also protect
against specification error. Where the evidence
for any one parametric distribution is tenuous,
as with crop yields, the possibility of intro-
ducing such error in estimation is a foremost
concern. Failure to take this into account in-
variably leads to inaccurate premium rates.

A plethora of approaches to nonparametric
density estimation is detailed in Silverman’s
now ubiquitous monograph. Techniques in-
clude kernel smoothing, orthogonal series esti-
mators, and penalized likelihood approaches.
Kernel smoothing has proven to be the most
popular of the three, perhaps due to its com-
parative simplicity and relatively low compu-
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tational cost. Goodwin and Ker and Ker and
Goodwin utilized kernel density estimators in
their examination of rate making for the Group
Risk Plan.

Nonparametric methods are not without
their drawbacks. Kernel density estimation suf-
fers from a slow rate of convergence, requires
a bandwidth choice, does not deal well with
boundary bias, and oftentimes over inflates the
importance of outliers. Nonetheless, there have
been significant – and largely disparate – ad-
vances in the literature that correct for many of
these problems. Kernel density estimation via
diffusion brings many of these solutions under
a single umbrella. Application of this tech-
nique represents a significant advance in the
proper specification of a statistical approach
to the estimation of conditional yield distribu-
tions.

II. The Group Risk Plan

Federal crop insurance has existed in one form
or another since its implementation under the
Agricultural Adjustment Act of 1938. Area
yield crop insurance, or the Group Risk Plan
(GRP) specifically, was first piloted in 1993.
This policy is significantly different from farm
level yield insurance products. Miranda and
Skees et al. provide excellent reviews of both
the theoretical and practical concerns of of-
fering crop insurance contracts based on area
yields. Their extended examinations of the
benefits of area yield based policies provide
further evidence of the pragmatic importance
of rate making procedures.

Like most insurance products, crop insur-
ance is not immune to problems of adverse
selection and moral hazard. Many authors rec-
ognize that products based on area yields mit-
igate these complications. Additionally, there
is typically more data available at aggregate
levels than at the farm level. Lack of historical
data can seriously impede rate making. The
GRP is available for a large number of crops
and is provided at the county level. It is the
county yield that is used in determining in-
demnity payments and coverage levels.

From the perspective of administrative
agencies there are supplementary benefits to
using area yield policies. Compared to farm
level plans, area yield policies require less pa-
perwork and man hours. Instead of having
to verify losses at each individual farm, the
insurer must only compare a single realized
county yield with its expected average.

If the realized county yield falls below a
percentage of the expected average yield for
the county, a payout is triggered. The percent-
age of expected county yield – more commonly
termed the coverage level – may be 70, 75, 80,
85, or 90 percent of the expected yield. The in-
demnity payment made to farmers is the short-
fall between the realized yield and the coverage
level multiplied by a price protection level. Ex-
pected prices are determined exogenously by
the Federal Crop Insurance Corporation. As
Goodwin and Ker note, price election is not
relevant for the premium rate in this case.

To be more concise, consider the area yield
as a random variable Y. The Group Risk Plan
pays an indemnity if the realized area yield
falls below some percentage γ, of the popula-
tion mean of such yields µ. The trigger yield
that actually causes the insurance policy to pay
out is then given by γµ. It should be clear that
the probability of loss is calculated from the
probability distribution of Y. Estimation of this
distribution is of primary concern.

III. Some Considerations

Crop yields trend upwards over time. Changes
in technology, from new types of plants to
more efficient machinery, can significantly alter
the distribution of yields. Institutional change
can also affect the distribution. To link this
to previous notions of the processes affecting
yields, the relevant capacity constraint can be
viewed as gradually shifting over time. Before
any direct estimation of the yield distribution
can be attempted it is necessary to first remove
the trend from the time series. It is usually the
case that the residuals from the trend line will
show evidence of heteroskedasticity.

A common approach to detrending is to
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specify the overall problem as one of two stages.
The trend model may be viewed as

Yt = h(Xt) + ǫt (1)

where Y is the aggregate yield, h(·) is an un-
specified regression function, and X is a time
index to capture trend. ǫ is a simple error term
that is independently distributed with mean
zero. Estimation of the function h(·) is the goal
of the first stage and this process can be com-
pleted in a number of different ways. Examples
of different approaches are given in Miranda
and Glauber and Atwood et al. Zhu, Goodwin,
and Ghosh also review common applications
of the two stage framework.

Residuals from the first stage are given as
ǫ̂t = Yt − ĥ(Xt). As shown in Goodwin and
Ker, the residuals tend to be proportional to the
level of yields. An admittedly ad-hoc approach
to correct for this heteroskedasticity is to use a
rescaled version of the residuals. Each error is
divided by its yield forecast and residuals are
scaled to the equivalent predicted yield of the
last year in the series. It should be noted that
there is estimation error inherent in the two
stage approach. Such error arises in the initial
estimation of yield forecasts.

Provided the first stage is properly dealt
with, the result is a series of observations that
are independent and identically distributed.
Nearly the full gamut of density estimation
methods is then available for the second stage
problem: estimation of the conditional yield
density.

As already mentioned, parametric methods
are not as flexible in accommodating skewness
and bimodality. Both of these features have
been observed empirically. Ker and Goodwin
note that Central Limit Theorems for depen-
dent processes provide theoretical justification
for bimodal behavior. Given that these features
should be accommodated, and that the first
stage estimation is specified correctly, the class
of suitable estimation methods for the second
stage has been considerably reduced. Nonpara-
metric methods are certainly applicable and
kernel density estimation possesses a number
of advantages within this reduced group.

IV. Kernel Density Estimation

and Concerns

Kernel density estimators can typically be used
in situations where the data is independent
and identically distributed. Fixed bandwidth
kernel density estimators are given by

ĝ(Y) =
1

Nh

N

∑
i=1

K(
y − Yi

h
) (2)

where K is a kernel function satisfying a num-
ber of conditions that essentially ensure that
the kernel is a valid probability density func-
tion. h is the bandwidth or window width and
Y now represents the yield data conditional
on temporal effects having been removed. The
basic idea is to place a weighted kernel on top
of each observation. These individual kernels
are summed vertically to obtain an estimate of
the density.

An immediate concern with any kernel den-
sity estimation is both the nature (fixed or vari-
able) and size of the bandwidth chosen. Fixed
bandwidth methods smooth each observation
equally. Larger bandwidths increase smooth-
ing while smaller bandwidths decrease smooth-
ing. Intuitively it makes sense for observations
in the tails of the density to be smoothed more
while observations near the mode of the den-
sity are smoothed less. This notion cannot be
entertained within the fixed bandwidth frame-
work. The bandwidth will be either too large
for observations in the tails or too small for
those near the mode. Premium rates for yield
insurance are heavily dependent on tail esti-
mates and the inadequacy of fixed bandwidth
estimators in this area is cause for concern.

Variable bandwidth methods adjust the de-
gree of smoothing in a way that gives observa-
tions in sparse areas of the data less emphasis.
Instead of having a single bandwidth param-
eter h, each observation is assigned its own
bandwidth which is inversely proportional to
the density of the data about the point. If the
data are dense around observation i then hi

will be small and less smoothing will occur.
For the purpose of estimating yield densities,
this variable bandwidth approach is preferable
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because it ignores spurious features in the tails
of the densities.

While variable bandwidth methods are pre-
ferred to fixed bandwidth as far as tail probabil-
ities are concerned, nothing has been said thus
far about the methods actually used to select
the bandwidth. The bandwidth is typically se-
lected to minimize either the mean integrated
squared error of the density estimator or the
asymptotic approximation to this error. Details
of the form of the mean integrated squared
error (MISE) and minimization procedures can
be found in Silverman, Marron and Wand, and
Li and Racine. Without reproducing these cal-
culations, it should be noted that the optimal
bandwidth in terms of the AMISE depends on
a functional of the true density f (Y). (Specifi-
cally it depends on

∫
f ′′(Y)2dY)

Of course the true density is unknown –
else there would not be a density estimation
problem at all. Popular methods of bandwidth
selection deal with this obstacle in a variety of
ways. Silverman’s Rule of Thumb uses a nor-
mal reference rule where the underlying true
density is assumed to be normal for bandwidth
calculation. Least squares cross validation and
likelihood cross validation have also received
attention as the former possesses appealing
asymptotic properties. Sheather and Jones sug-
gest a plug-in method that assumes normality
in a way, but the assumption is so deeply em-
bedded that it is of very little consequence.

A sterling survey of the drawbacks and ad-
vantages of various bandwidth selection rules
can be found in Jones, Marron, and Sheather.
Silverman’s Rule of Thumb has been shown to
oversmooth the data. Least squares cross vali-
dations does perform well, but only when the
sample size is large and there are few outliers.
The Sheather Jones method is shown to be op-
timal based on a number of criterion and de-
tails of this approach can be found predictably
in Sheather and Jones. Of all the bandwidth
methods considered, Sheather Jones performs
optimally in the Marron and Wand test suite.

One aspect of kernel density estimation that
has not been addressed in the estimation of
yield densities is boundary bias. Standard ker-

nel methods take as given that the support of
the distribution is the whole real line. A prob-
lem presents itself whenever the density must
be estimated on some subspace of the real line.
Physical reality prevents crop yields from be-
ing negative so there is a natural boundary
for the support at zero. Solutions to this prob-
lem have taken a number of forms including
boundary kernels, reflection methods, and data
transformations. While such techniques are ca-
pable of dealing with the issue, they typically
are not able to accommodate variable band-
width kernels or do not lead to true probability
densities.

Ostensibly, one might think that boundary
bias is of no consequence as the majority of
the time yields lie away from the boundary.
Indeed if a variable bandwidth kernel estima-
tor is used the problem is further alleviated.
While it may be comforting to assume that the
error from boundary bias is negligible, there
is some evidence that the bias may affect yield
distributions. Analysis of state level yields by
Goodwin and Ker, using a fixed bandwidth
kernel estimator, seems to imply that bound-
ary bias can come into play. Results of this
paper indicate a similar possibility.

The degree to which boundary bias is
present will vary with both crop and location.
Non-irrigated crops are in general more suscep-
tible to catastrophic yield behavior. The same
may be said of crops grown in developing na-
tions or areas where modern farming practices
are not employed. The trend in American agri-
cultural policy toward new insurance policies
for specialty crops, cotton, and peanuts could
mean an increase in the consequence of this
type of bias.

Goodwin and Ker, Ker and Goodwin, and
Ker and Coble all note the slow rate of con-
vergence of kernel density estimators. It is
perhaps the main drawback of many nonpara-
metric methods. The standard fixed bandwidth
kernel estimator has a best possible mean in-
tegrated squared error order of magnitude of
N−4/5. Convergence rates are quite slow when
compared with a properly specified parametric
model and are calculated assuming that the
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bandwidth is chosen optimally.
National Agricultural Statistics Service

(NASS) data on county level yields is gen-
erally available for the past fifty years or so.
The choice then is between using a parametric
method that is misspecified or a nonparametric
method with a slow rate of convergence. The
latter should be favored as, at the very least, it
is theoretically consistent. There have been sev-
eral techniques proposed to artificially increase
the sample size. Goodwin and Ker utilized in-
formation from neighboring counties. Ker and
Goodwin considered an estimator that used
Bayesian routines to increase efficiency. This
issue may also present an opportunity for the
use of semiparametric methods should a trade
off for efficiency be desired.

V. Kernel Density Estimation via

Diffusion

Botev et al. offer kernel density estimation via
diffusion as a comprehensive solution to what
are some of the leading drawbacks of the ker-
nel density approach. Proof of the following
results and further analysis can be found in
Botev and Botev et al.

The underlying model is based on the in-
formation mixing properties of the linear diffu-
sion process governed by

∂

∂t
f̂ (Y, t) = L[ f̂ (Y, t)] (3)

where t > 0 and x ∈ ψ. For this partial differ-
ential equation, the linear differential operator
is of the form L[·] = 1

2
d

dY (a(Y) d
dY (

·
p(Y)

)). The

function a(Y) is arbitrary but positive on ψ.
The only initial condition required for a solu-
tion is that g(Y, 0) = △(Y) where the term on
the right is the empirical density of the data.
Note that mixing occurs between the observed
data Y and the, until now, unknown function
p(Y).

The solution to this diffusion process f̂ (Y, t)
is a type of kernel density estimator sharing
many of the properties of other estimators in
this class. t – the mixing time for the partial dif-
ferential equation – takes the role of the band-

width parameter. At time 0, the solution is
exactly equal to the empirical density △(Y) as
specified in the initial condition. This is analo-
gous to the convergence of the standard kernel
density estimator to a sum of dirac delta func-
tions as the bandwidth tends to zero. If p(Y)
is a probability density function on ψ, then the
limit of the solution as t goes to infinity is the
specified probability density. Thus p(Y) can
be viewed as the limiting distribution of the
process.

Botev shows that the solution to this pro-
cess can be written in the form

f̂ (Y, t) =
1

N

N

∑
i=1

K(y, Yi, t) (4)

where the kernel is a diffusion kernel satisfying
certain conditions. Though there is no analyti-
cal form for the diffusion kernel, it can be writ-
ten as a Fourier series when ψ is bounded. The
expression of the diffusion estimator as a sum
of individual kernels makes the relationship
with the kernel density estimator evident.

If the set ψ has boundaries, then the Neu-

mann conditions given by ∂
∂Y (

f̂ (Y,t)
p(Y)

) = 0 for ∂ψ

may also be added. These conditions are suffi-
cient to ensure that the density estimate always
integrates to one and account for boundary
bias in a way that is similar to the reflection
method. All that is required is to solve the
partial differential equation over the specified
domain with the Neumann conditions. Un-
like standard kernel estimators, the diffusion
estimator is consistent at these boundaries.

The asymptotic mean integrated squared er-
ror of the diffusion estimator and the standard
fixed bandwidth kernel estimator are given as:

AMISE( f̂ ) =
1

4
t2||(a( f /p)′)′||2 + E[σ[Y]]−1

2N
√

πt
(5a)

AMISE(ĝ) =
1

4
t2|| f ′′||2 + 1

2N
√

πt
(5b)

where σ2(Y) = a(Y)
p(Y)

Careful inspection of this form reveals fur-
ther information about the model. In both

6



cases, choice of bandwidth is crucial and it is
possible to find the optimal bandwidth under
AMISE criterion. The rate of convergence is
the same provided that p(Y) is not chosen as
the true f – i.e. O(N4/5). Suitable manipula-
tion also shows consistency as the AMISE of
the diffusion estimator approaches zero in the
limit as N goes to infinity.

In fact the diffusion estimator is capable
of nesting the fixed bandwidth kernel esti-
mator and variable bandwidth estimators. If
a(Y) = p(Y) and if these are proportional to
one, then the differential equation of interest
is the Fourier heat equation. In this particular
case the solution to the heat equation happens
to be the fixed bandwidth gaussian kernel es-
timator. If a(Y) is proportional to one, but
p(Y) is a pilot estimate of the density, the re-
sult is the variable bandwidth kernel estimator
of Abramson. Optimal bandwidths for these
nested estimators are given by their respective
literature.

To depart briefly from technical aspects,
Botev gives the following broad interpretation
of the mechanics of this method:

If we think of each empirical ob-
servation as a point source of heat,
then △(x) is an initial heat pro-
file and the pde models the dissi-
pation of this heat into a medium
with nonuniform diffusivity. The
nonuniform diffusivity depends on
the prior p(x) in such a way that in
regions where we expect a lot of ob-
servations (i.e. high prior density),
the empirical data is diffused (is
smoothed away) at a slow rate. In
regions where we expect few obser-
vations (low prior density) or fea-
tures, the empirical data is diffused
at a fast rate.

This interpretation may help in understanding
the following approach to estimating densities
where there is no prior information assumed.
In such situations, as in the case of yields, p(Y)
is initially assumed proportional to one.

Botev et al. call this Algorithm 2 and it is

an extension of what is termed the Improved
Sheather Jones Method. In the first step a pilot
density is constructed by taking t∗ as given
by the Sheather Jones method. As no prior in-
formation is assumed in constructing the pilot
density, both a(Y) and p(Y) are proportional to
one and the estimator reduces to the standard
fixed bandwidth kernel density estimator. In
the second stage, p(Y) is replaced by the pilot
estimate with a(Y) ∝ 1. Estimation is accom-
plished using the diffusion estimator f̂ (Y, t̂)
where t̂ = t∗ × E[σ−1Y]. The bandwidth t̂ is
chosen such that the asymptotic variance of
the pilot is equal to the asymptotic variance in
the second stage. Computational details can be
found in Botev et al.

The algorithm might then be described in
the following way. The first stage of the process
models the dissipation of the heat into a space
with uniform diffusivity. Uniformity is a result
of a lack of prior information about the density
and a(Y) = p(Y) ∝ 1. The second stage mod-
els dissipation into the same space, but now
the diffusivity is nonuniform. It depends on
the nature of the density estimate from the first
stage. Where the pilot estimate has little mass,
the heat is diffused quickly. This quickened dif-
fusion leads to more smoothing in these areas.
In this way the amount of smoothing adapts to
local features of the data.

VI. Results

For this application, historical yield data was
obtained from the NASS database. Data was
generally available from 1962 until 2013. Ex-
ceptions are Castro, TX where data was avail-
able from 1968 and Coahoma, MS where data
was available from 1972. In the first stage a
quadratic trend was estimated and a correc-
tion for conditional heteroskedasticity was im-
plemented using techniques mentioned previ-
ously. Conditional yields were generated about
the yield forecast for 2013.

In the second stage, maximum likelihood
was used to fit both normal and weibull dis-
tributions to the conditional yields. Nonpara-
metric estimation was conducted using a fixed
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bandwidth kernel estimator and the diffusion
estimator of Botev et al. In the former case,
the bandwidth was selected using Silverman’s
Rule of Thumb and in the latter the bandwidth
was selected using Botev’s Algorithm 2. A nor-
mal kernel was assumed.

Given a trigger yield of γµ, the probabil-
ity of loss is given by

∫ γµ
0 m̂(Y) where m̂(Y)

is some estimate of the probability density
of the yield. Expected loss is then given by
E[LOSS] = Prob(Y < γµ)[γµ − E(Y|Y < γµ)].
It is often not possible to calculate these in-
tegrals analytically. Loss probabilities for the
parametric distributions were calculated using
Monte Carlo simulation. Probabilities from the
kernel estimators were approximated using the
trapezoid rule.

While the GRP is a policy available at the
county level, several state level distributions
are included. This allows comparison with the
state level distributions estimated in Goodwin
and Ker and it also facilitates scrutiny of the
possibly differing nature of state and county
yields. The panels of figure 1 contain graphs
of density estimates for Georgia peanuts, Indi-
ana corn, Iowa corn, Kansas sorghum, Kansas
wheat, Mississippi cotton, Mississippi wheat,
and Texas cotton. All crops are all-practice.

Many of the state level crops exhibit neg-
ative skewness, but Texas cotton and Georgia
peanuts show positive skew. This feature may
be significant when designing new policies for
these crops. There is also evidence of bitan-
gentiality and bimodality in some crops, such
as Indiana and Iowa corn. The densities are
usually quite smooth which is a reflection of
the area of aggregation. To sum up, even at a
high level of aggregation, parametric methods
are incapable of capturing significant features
of the data.

Figure 2 displays graphs of density esti-
mates for eight different combinations of coun-
ties and crops. Table 1 gives premium rates
at the 75 and 90 percent coverage levels for
these counties and crops which include Adair,
IA corn, Adams, IN corn, Atchison, KS wheat,
Barton, KS sorghum, Bolivar, MS wheat, Boone,
NE corn, Castro, TX cotton, and Coahoma, MS

cotton. Again, all crops are all-practice except
Coahoma cotton which is non-irrigated only.

As expected, many of the densities are neg-
atively skewed. A majority of the kernel esti-
mates also reveal bitangential features or multi-
ple modes. Rates constructed using the normal
distribution and the weibull distribution were
surprisingly similar. Rates under the weibull
should be larger than those calculated under
the normal if negative skewness was present,
but this is not the case. This similarity sug-
gests that the weibull distribution may not suf-
ficiently capture skewness in practice.

In all of the cases, rates obtained through
nonparametric methods are larger than those
given by the two parametric distributions. The
difference in these approaches is especially
clear in the case of Castro, TX cotton. West
Texas cotton is subject to particularly volatile
growing conditions. At the 75% coverage level,
nonparametric rates are almost double those
obtained under the normal.

The rates from the diffusion estimator ex-
ceed those of the standard kernel estimator in
every case. This is most likely a result of the
adaptive smoothing of the diffusion estimator.
Consider again the case of Castro, TX cotton.
The diffusion estimator, which is consistent
at the lower bound, properly captures the in-
creased risk associated with exceptionally low
yields for this crop. The standard kernel es-
timator suffers from boundary bias and does
not capture this feature.

In sum, results show that the method used
in modeling yield distributions can have a sig-
nificant effect on policy parameters (premium
rates in this case). With new insurance policies
being proposed for peanuts and cotton, the
impact of these parameters will be significant.
Based on Goodwin and Ker, it can be conjec-
tured that existing rates are likely less than
those estimated using nonparametric methods.
Be that as it may, no attempt is made to com-
pare these estimates with existing rates as of
yet.
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VII. Conclusion

Varying the specification of yield distributions
can have a large effect on premium rates. The
problem that rate makers must address is in
some ways different from – but in many ways
similar to – classic cases where a density esti-
mate is desired. As in those classic cases, prior
information and a clear understanding of the
problem allows the range of tolerable estima-
tion methods to be tightened. The desire for
flexibility in capturing skewness and bimodal-
ity forces the exclusion of parametric methods
from the range of tolerable choices. There is
no theoretical basis for many of the parametric
methods commonly used.

Further tightening of the tolerable set,
based on considerations of computational ease,
the bounded domain of yield densities, and the
importance of tail behavior, establishes kernel
density estimation via diffusion as a preferred
method. By taking advantage of the unique
properties of this estimator, rate makers may
be able to adjust Group Risk Plan premium
rates to bring them in line with rates that are
actuarially fair.

Further research on this topic will address
a number of issues. Noting concerns regarding
slow rates of convergence, it would be agree-
able to incorporate methods that increase the
sample size and utilize spatial information in
some way. Detrending procedures should also
be more closely examined to try and correct
for error in first stage estimation. By bringing
the estimation techniques employed here in
line with current GRP rating procedures, and
by considering a larger number of counties, it
will also be possible to pursue policy simula-
tion. The monetary impact of varying policy
parameters could then be considered.
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Figure 1: State Level Yield Distributions
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Figure 2: County Level Yield Distributions
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Table 1: County Level Premium Rates

County and Coverage Level Normal Weibull Kernel Diffusion

Adair, IA Corn
75% 1.00 0.92 2.29 2.35
90% 3.80 3.32 4.80 4.95

Adams, IN Corn
75% 0.41 0.55 0.94 1.06
90% 2.59 2.45 3.68 3.82

Atchison, KS Wheat
75% 3.50 3.31 4.88 5.34
90% 7.18 7.01 8.05 8.71

Barton, KS Sorghum
75% 2.58 2.54 3.66 4.54
90% 6.15 5.83 7.43 8.41

Bolivar, MS Wheat
75% 0.57 0.70 1.26 1.55
90% 2.94 2.84 3.48 4.06

Boone, NE Corn
75% 0.49 0.93 0.86 1.00
90% 2.68 3.25 3.15 3.45

Castro, TX Cotton
75% 4.14 5.36 6.78 8.47
90% 8.10 9.51 11.34 12.80

Coahoma, MS Cotton
75% 1.65 1.69 2.67 3.22
90% 4.92 4.51 6.22 6.82
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