

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S

The Wheat Stem Maggots of the Genus Meromyza ${ }^{1}$ in the Pacific Northwest ${ }^{2}$

By L. P. Rockwoon, Sabati K. Zammamas, and T. R. Chamberein, ${ }^{4}$ entomotogists, Dirision of Cercal and Forthye Insect hovestifutions, haveat of Bntomology and 'lant Qnarmine, Agricultural Resear;h Administration

CONTENTS

Summary Prgn		Papr
		I1
Spereles, wensonnt forms, and symony'my 2	Merombut xtlatria (1.)	11
Pracle toast spedes ${ }^{\text {a }}$	Srashal hixters	12
Mcrombaa pratorthn Mels.	Sferomyza pratortn Melt	13
Distribution mathutria		
Fost mants and did	Cobiten mencuras	
Types of lajury	Ateratura elte	

SUMMARY

Two sprecies of Meromyza occur in the Pacific Northwest, $M E$ Paton Meig. and M. saltatrix (L.). Each has seasomal color fopas. Ifls probable that both species are generally distributed over the eqrea, git M. sultatrix seens to be limited to localities that have an average abuan precipitation of 15 inehes or more. The host phants of both ao the Graminene in genemal, but in this area M. saltatria datages sping-sown wheat in April and May more commonly than doex Mi. Watorum, which intests grasses, more often than grains.
 octurred on whent in Europe and Asia and in the Pacific Northwest. Three types of injury to wheat have been noted. Both species may become factors of importance to growers of grass seed.

Meromyza saltatriz emerges about 3 weeks earlier in the spring than does M. pratorum. 'The fact that both species select the youngest host plants available accounts for the greater damage to spring-sown wheat by M. saltatrix. M. saltatrix has but one complete generation in a year, whereas M. pratorum has two. The average developmental

[^0]period observed for M. saltatria, from egg to adult, was 76.5 days, from late in April into July. The observed mean developmental period for the spring generation of M. pratomum was about 85 days, in May, June, and July, but that of the summer generation may be as short as 30 days, in July and August.

The summer emergence of thes of both species takes place in July. Flies of Meromyza saltatrix estivate 30 days or more before ovipositing, and die early in October: Those of M. pratorum oviposit in July and August on whatever host plants are available, ond the fall emergence occurs in September, but some of the thies are in the fields until about October 15. Since little. if any, wheat is up until after October 15 in the Pacific Northwest, neither species seriously damages fallsown wheat. Self-sown grains and the grasses are usually all the hosts that are available at that time, although in some seasons second growth of grain cut prematurely for hay is an important overwintering host in some areas. The number of evailable winter host plants depends on late-summer precipitation, and every recorded outbreak was preceded by above-normal precipitation in August or early in September. Weather conditions are the principal factors in natural control, and parasites are of negligible importance, especially in semiarid regions, where the most extensive outbreaks have occurred.

The plowing-under of volunteer and second-growth wheat before April, the close past aring or plowing under of nearby grasses, and the seeding of quickly maturing varieties of spring whent are recommended in years when an outbreak is threatened.

INTRODUCTION

Many notes on the wheat stem magrots of the genus Meromyza have been accumulated at the Forest Grove. Oreg., laboratory of the Bureau of Entomology and Plant Quarantine during the last 20 years. These stem margots attack the Gramineae and have occasionally caused considemble loss to grain prowers of the Pacific Northwest. Although but little is known conceming the extent of injury to grasses, these maggots ure a potential threat to the expanding grass-seed industry of that region. The purpose of this bulletin is to make available to other workers the intormation that has been obtained.

SPECIES, SEASONAL FORMS, AND SYNONYMY

The genus Meromyza appears to have few authentic species. These species are dificult to identify by the chamacters heretofore used by taxonomists, and this difficulty has undoubtedly caused considerable contusion in dist ributional records and probably also in records of host plants and damitue.

Material in the genus Meromyza from the Pacific Northwest was originally determined by J. M. Nidrich in 1022-23 as M. americana Fitch, M. punctifer Becker, and M. nigriventris Macf. In a letter dated February 88,1924, Dr. Aldrich stated that a larger lot of specimens from the Pacific Northwest was "nicely dirided among all the N. A. species except that you did not send a typical americana." He included a manuscript key for separating the North American species
known at that time. In this key he indicated that he considered americana Fitch a variety of matorum Meig, as did Malloch (13). ${ }^{\text {a }}$

Dr. Narich also stated that but for the receding fuce, flawipalpis Malloch is "not otherwise distinct from americana and I think not more than a variety of it, as intergrades occur." His key separated Meromyau into two groups-one with pale-yellow palpi, only the tips of which are sometimes a little infuscated, and one with black palpi. These characters served the writers very well for separating their northwestern material into two groups which they now consider to represent two species only. In his letter Dr. Aldrich also said: "It would be most interesting to find out whether any of the 'species' are seasonal forms of others; there are so many color variations that I should not be surprised to leam that this takes piace. *** Color of the abdomen is of very littie account, less than that of the thorax, I think."

Dumin the preparation of this bulletin in 1043, the writers had considerable correspondence with Curtis W. Sabrosky, of Michigan State College, an authority on the Chloropidae. Professor Sabrosky ${ }^{\circ}$ has given the taxonomy of the genus Meromyza considemble study, with special emphasis on morphological characters rather than on color, and has seen a great deal of material from all parts of North Anerica. He considers M. americana Fitch to be a distinct species, basing his opiation on the form of the head, and considers M. flavipalpis Malloch ((13) and M. lineola Curran (8) to be synonyms of ih. pratorum Mpig., of which he had European specimens for comparison. He also expressed the opinion that M. americana does not oceur in the Pacife Northwest.

PACIFIC COAST SPECIES

For separating the two species of Meromyza referred to in this paper the following key may be used for freshty caught specimens:

1. Itasie color syeen (somettames buft in summey forms); maxiling polpi

 . Frutorum Meig., 5. 3.

For sketches of the site riew of the heads and the maxilfary palpi see firure 1 (p in A and $/ \beta$). Seasonal color variations in both species will be discussed later. It is the opinion of the tuthors that the size, amd perhaps also the colonation, of deromyza pratorum were affected by the host phats on which the sperimens we produced. These host plants ranged from slonder- to coarse-stemmed Gramineac.

Meromyza phaporem Meig.

Specimens collected in the Pacific Northwest are of the form described ats ALeromyza flucipalpix by Malloch (13). This form has greenish-white, rodike manillaty palpi (ig. $1, l, p$) and when ative is predominanty green, exept on the dorsum. In the spring the flies

[^1]

Frours $1 .-A$, Head of Lerompza saltatrix, side vlew; A, hend of M, pratornm, slde riew; C, dorsal aspect of head and thorax of M. xalfatrix; D, darsal aspect of bend anal thoras of af. pratorum; n, maxibary palpus; r, vertical triangle.

This corrected page is to be inserted in Technical Bulletin 928, The Wheat Stem Maggots of the Gents Meromyza in the Pacific Northwest, as a substitute for page 4 to show the maxillary palpus (p) in figure 1, A.

that rmerge earliest are much darker than the typical ones, and have wide black stripes on the dorsum of the thorax, whale the dorsal sclerites of the abdomen are mostly dark brown, except for the posterior margins. The writers have a very few specimens that barely show fuscous spots on the tips of the palpi and some that show the vertical triangle (fig. 1, D, \mathfrak{z}) faintly outlimed with brown. Flies that emerge in Jaly and Augnst are often of a light-buft color (colonial buft, Ridgway, ${ }^{7}$ after trying), and the dorsum of the abdonen is mostly light-colored, except that at median dark stripe is usually well defined. The green coloration fades rapidly in collections, and some specimens become brown.
On the Klamath Marsh in south-central Oregon, at an elevation of about 4 ,00 feet, specmens that were recornized in the living state as green Meromyza pratorum averaged smaller and mach darker than those found elsewhere. Nearly all these specimens had distinctly Fuscous or black tips on the rodilike palpi, but in two specimens these patpi were entirely pale, while the vertical triangle ranged from being outlined with brown to all brown, except for a pale spot in the anterior angle, us in M. saltatrix form nigriventris Macq. Aiso as in that form, the dorsum of the thomex is sometimes so intuscated as to obscure completely the pale interstitial areas between the black stripes: and the entige dorsum of the abdomen, except the posterior margins of the sclerites. is blackish brown. These color variations are similar to those observed in M. saltatriar; therefore, it is believed that these specimens from the Khamath Marsh are \boldsymbol{M}. pratorum. This series of specimens shows much more variation than any other collection. All these forms-melanic, green, and buit-probably are 1. pratorum.

Memomyza saitatrix (L.)

In the Pacific Northwest this brown species, in which the clavate maxillary palpus is always black (fig, $1, A, p$) and the pleural spots are stronerly marked, hats three color forms. Meromyza saltatria fomm wightentris Mact. is the typical fomemerging in April both cast and west of the (aseade Moumbins. In westem Oregon this form asually bas the brown interstitial areas between the black stripes on the dionsum of the thoma completely obscured by fuscous black (Ritgway), thal the vertical tringile is mostly brown (fuscous, Ridyway. exept for a pale spot in the apical ingle.

East of the Casende Nomatains the light-brown interstitial areas on the thoms are often more evident, though narow, approaching the next form, murfinuta Becker (4). Dark forms are the hirst flies to emerge in the spring near Forest (irove, Oreg., and forms approaching marginata tand abont like castern Oregon specimens are maty wollected there near the end of the spang-flight period, as they were on May and thene t, 1923. M. saltatrix form maryinata has the rertial triangle pale yellow brown (honey yellow. Ridicwa) with a black orellur spot and the vertical triangle is outhed by a distinct date streak, white the black thomacie stripes are well separted from each other by the yelow-brown interstital

[^2]areas. This is the most common shmmer-generation form emerging in July west of the Cascade Domatams, although there is some intergrading to the next form, punctife, Becker (4).
II. saltatrix form punctifer (fig. $1,()$) has the vertical triangle bull (dieep colonial buft. Ridgway) with a black ocelar spot; while the dak stripes of the thorax are red, batak only at front and narowly on each side near the notopleman sutures. In many specimens of this form most of the dorsum of the alklomen is lightcolored. This is the most common form emerging in July east of the Cascade Mountains and is occasionally found in Suly or early in August west of these mountains.
M. saltatrix is predominantly brow, never green, and averages smatle than the preen or buft M. pratorum.

In April 1924 Niss Keen observed the emergence and subsequent matarity of a fly in the laboratory. When it emerged, at 9) a.m., the head was tenmon yellow, with red-brown eyes, the outline of the vertical triangle and part of the antenna and palpi were black or nearly so, the thoma was light yellowish brown with three darkbrown stripes, the abdomen wats brilliant green, and the leps were yellowish at base and grayish beyond. 'the thonax and abolomen gradtuly darkened: by $11: 20$ a ma, the vertical tringre began filling with fuscous, and by $\%$:30 po.m. the dorsum of the thorax and the verticnl triangle were orercast with fuscons, as is typical for Meromyza sallatris form nigripentris. These changes indicate the sepuence of colo development and may surgest an explatation for the different color forms found in this species.

In curges on young what in the laboratory it was proved that Meromyza sallatrix forms marginata and panehfer are color forms of nigriventris. All the cages were started late in April or early in May with the dark, spring-emerring form, nigureentris, and in Tuly olfspring were produced as follows: marginata, 27 ; intermediate. 10; punctijer, 8. Mesnil (14) considered migriwentrix to be the melanic, winter form of M. saltatrixe and stated that M. erealiam Rent., deseribed from Fintand, was identical with the summer fom of d. sutherir in Vrame. Balachowski and Mesnil (5 , pl. t) illastrated three color forms, none of which appear to be as dark as the spring forms from western Oregon. Apparently temperature or lumidity, or both, affect the pigmentation in this species, and also in M. Mrutorum, as Aldrich (i) sugsesteri is the case in (crodonta dorsabis (Low). It sems exident that the name for all the above-mentioned brown forms with black clavate palpi should be M. saltatrid.

DISTRIBLTTON

Meromyza pratorum has heen recorded from Europe and western Siberia. Sabrosky stated in cortepmotere that he had specimens from Washington, Oreqon, ('alifomia, and liah, and from as far east as northem Michigan and westem Kinsas. M. Tineola Curan (S), which sabrosky considers to be this :pecties, was described from "Fort Simpson, Northwest Territorins. (bulata."
The writers have sperimens from the Following localities: Oregon - Absany, Corvallis. Drewseg. Ehein. Forest (irove (Gaston. Imbler.

Klamath Marsh (a melanic form). La Grande, McMinnville, aud Tillanook: Wiastington-Molson, Oroville. Waterville, and Yakima; Idaho-(irmureville.

In the Europem literature Meromyza saltatrix has been recorded from burowe and 1 sia at far enst ats the Lmar region. In North America, where the records have been contused by misidentitication, this species has been recorded as tollows: Beaver River, Albertit (11, p. 2h ${ }^{9}$), M. maryinata; Montann (7), M. nigriventris, Essigr (9, p. 610) recorled M. punctifer from the Yakimi Valley (in 1919) on the authority of Cole and Lovett, but the latter authors ($6, p, 336$) mention only al. americana as present in the Yakima Valley in 1010, and the present writers have a specimen (Riker mount of an injured wheat cuha and a dy) which was collected and mounted by (ole at that time and hineled "Meromyzo americuna Fiteh. Nhinnum Vhey, Yakim, F. R. Cole." This specimen is the butf form of M. prutorum. It is probable that the form comanoly found on buegrass lawns in (alifornin (0, p. 010) was this species also. The
 d/. mareinata hand yellow palpi and wis probably not M. satatris. becker (4) gase the following localities for ,M. punctijer: Moscow, Idaho. Pullman, Wash., and hattle ('reek, Mich, ; for d/. migriventrix: Moscow, Mahon, and Pulmmn. Wash.; for M. marqimata: Moscow. Ithan, and Corvallis. Oreq. Beckers reoord from Battle Creek appens to be in error, and the present writers have been unable to lind any and henid recond of the ownrense of 3 . saltatria east of Montann or Alberta.

The writers hase specimens of Maromyza saltatrix, listed according to form, from the following lomalities: nigrieentris, Oregon-

 Oregon-Albany, Comby, Flgin. Forest (irow, (iaston, Imbler, and La (imade: Ldiho-dimureville: panctifen. Oregon-Elgin. Forest Grove Imbler, and Lal (fiande.

In a survey in !! 2 1 injury by deromyza to spring wheat (with little doubt (eansed by M. sultaini, was observed in fields of the great Whent Belf of eastern Wabhagton wherer the average anmal precipitation approximated 20 inches or more, espectally near limber. No sige is of it were observed in whattields where the

 the precipitation in dugust is above nomat.

HOST PLANTS AND DAMAGE

d/cromyza valturdi, and .1/. profotum have raried host phants
 11. protorum from . Immophilh (1'samma) whatria L. in Fimee. The preent writers have reared I . pratorn liom wheat, barleg,

sis L., species of Poa and Dactylis, and timothy. We have reared M. saltatrix from wheat and Lolium perenne L .

The following host plants have been observed to be damared by Mfromyza larvae or have had Meromyza eggs on them, but in many cases the species was not determined: Barley, rye, timothy (rarely), Loliens perenne, Lgropyron repens, oats (rarely), Poa nercosa (Flook.) Vasey (inchuding olneyae Piper) (Gramde Ronde Valley, Oreg., determined by F. W. (iail), Muhtenbergia ayperifolia (Nees and Mey.) Parodi (!) (Forest Grove), Hordeum nodosum L. (Grande sonde Valley, determined by F. W'. (xail), Poa pratemsis L. (Klamath Marsh and near Klamath Falls).

There have been indications that in the Pacific Northwest Meromyze prutorum breeds more commonly on grasses than on grain in May and Sune, and on voluteer and early fall-sown gram, as well as on grasses, in the summer and fall. M. saltatria commonly breeds on wheat in April and May and on grasses and early volunteer and second-growth mrain late in the summer. The discovery of the host relationships of the respective species is complicated by the fact that specific characters for the larval stages have not yet been found; hence there is mum confusion as to the identification of the species and their hosts at different periods. These obscurities might be cleared up by extensive rearings from identified host phats.
Serions damage to wheat ocoured in the Grande Ronde Valley. Gnion Connty, Oreg, in 1921. The hate Λ. L. Lovet and the semior writer found infestations ramping tron 10 to 7 a percent of the tillers in individual fields of spring-sown wheat on hame 30, 1521. It the same time fall-sown whent showed only 2 to 3 percent of infested culms with white heads. The a verage danage to spring-sown wheat was estimated (by Comey Arrieultmal Agent II. (i. Avery) at 25 percent reduction in the crop for the county. The worst infested fields yiedied $1: 2$ to $1:$ busheis per acre, whont onedalf of a nommal crop, uelwithstanding otherwise faromble conditions. Of 116 Meromyza flies reared hrom infested wheat tillers collected during this onborak and phaed in entergenee cases without soil, only one was 3/, prutarm. the rest being M. vallutria. In addition to the Meromyza, the following Dipteme were reared: Oxrinella frit (L.) var. mitidisximat (Meir.) 7- Modiza cinerta (Loew) (determined by (. W. Sabrosky) 4.

- On June 22.1923 , considerable damage by Meromyza harvae to wheat tillers and to keruets in the heads of topriar-sown wheat was observed in 2 hedds in scorrins Valley west of (iatom. Oreg. From
 torum, and 1 (switnella frit vilr. aitidiksimu were reared. . 1 ll those reared trom danaged wheat heads were M. valtation. On fune i. 1927. 31 percent of the tilless on a wheat phot seeted on March 29 at Forest Grow were infested with Meromyza larvae and M. saltatriar adults were peared from this material. Meromyza damage to late fall-sown whent was conspicuons in a small field in Hood River
 cent of the (illers infested) near White Samom, Wrash, Some damage to spring-sown wheat also occurred in Crion Comeny. Oreg., in Jhe

infested. On May 25, 1028 , Don C. Mote, of the Oregon Agricultural Experiment Station, reported (in correspondence) damage to springsown whent near Drewsey, Harney County, Oren. His correspondent. stated that 50 percent of the whent had been destroyed. Specimens of Iies sent in for determination from this outbreak were 16 M . saltatrix, 2 M. pratorum, and 1 ''haumatomyia glabra (Meig.); hence it seems probable that most of the damage in this case was caused by the firstmamed species.

Damage to whent in the Warner Yalley of Lake County, Oreg., was reported on July 10, 1040, through Dr. Mote, and that Meromyza was the cause was confirmed by specimens of wheat with white heads, showing typien M Cromyza injury to headed culms. The owner stated that from 3 to 4 percent of the wheat was so damaged. L. (I. Smith reported to the United States Extersion Service that an onthreak of whent stem matrot oectured in Grant ('onnty in Jme 19+1. He stated ihat R. L. Webster sans sperimens of the insect that cansed the damage and inlentified it as aleromyza.

Bconomic damare to grain by Mpromyza saltatria has been reported frequently in Europe and in Siberia, mostly by Russian workers. Rakhmaninov (15) stated that, owing to dry conditions, M. nigrivertris is not usually a serions pest, although it was unsually abmandint in [!23. Rakhumanimo ind Induichenko (16) reported that about 50 percent of the ents of winter what were damaged in the Smolensk area in 192 i , and that the resulting loss was from 30 (1) 40 percent of the grain. Vereschagin (19) reported that from 28 to 30 percent of the wheat phants in the Aame area, in the Russian Far East, were often dataged by this species.
The writers" observations indicate that aremyza saltatrix: is by fiar the most important species calusing dannage to wheat, especially spring-sown wheat, in the Pacilic Northwest but that serious outbreaks are not common. The pancity of references to M. pratorum in the Enropean litenature, in comparison with those to M. saltatria, indicates that this is also true for Europe and Asia.

Meromyza pratorum thay cathe appreciabie damage to unsensomably late spring-sown whet in the Pacilic Northwest, as it did in experimental wheat plots at C'orrallis, Oreg., in August 1920. It may also chamge early fall-sown wheat in the fall. (ole and Lovett (6) reported 1 percent of "white heat" damage to wheat in the Ahtamm Yalley, near Yakima, Washo. in 1910 by this species, and the whiteheat injury to wheut in Lake County. Orer.. in 1940. in central Washington in i:-4 (reported by L . (i . Suith), and in Deschutes County, Oref. in 19\% (reported by Dr. Mote in correspondence) may have bem cansed loy this species. Bartey may be damaged by one or both species of M/eromyza.

On May 26,1937 . large mumbers of a datk form of Meromyza pratorum were swept from Poa pratenxix on the Klamath Marsh in Oreron at an elevation of 4,50 fiet, and there were many white heads on the bluegrass in Hane. A frower at Klamath Falls, Oreg., who had extensive seed meatows of bluerrass, stated that about 10 percent of the headed culns in his mealows showed white heads. As factors other than Meromyza maty cause white head in bluegrass, it should be determined whether this condition is predomimantly due to Mero-
myza infestation. On the other hand, no investigation las ever been made of the infestation of umbaded culms of bhagrass or other grasses, and, by analogy with Meromyza infestation of wheat. this might cause much inore serious damage that white head. L. (i. Smith hats stated (ia correspondeuce) that County Agricultural Agent George M. Delany, of (irant Comaty. Wash., reported that Meromyza infestations (presumbly white hemds) were olserved in nearly every stand of crested wheatgrass from Wikson ('reek to Conlee Dam in 1941. The extent of damage to grasses by Meromyea and other genera of Diptera should be determined. 'The growing of various grasses for seed is a rapidly expanding industry in Oregon and Washington and d/eromyza already may be, or may becone, an important factor in grass-seed probluction.

TYPES OF INJURY

Injury to whent by Meromyza pratorum and M. saltatria is of two common types. When yomg tillers are attacked belore the culm is well formed. the central shoot is cut off by the feeding of the harva inside the tiller. The shont withers and turns yellow, then brown. precluding the possibility of head formation. and eventally the tiller dies. This type of injury becane evident in cares 25 days after 1/. protorm erges wete laid (Suly 18 to Aharist 13, 1933), although wilting of the terminal leaf' was noted within 13 days, when the larrae mast have been rather small. This is the type of damare that Forbes ($/ 0$) and Webster ($20.1 \%, 43-7$) reported for M. anericana as occurring in the fall in the Middle West, and is the type found in May on spring-sown wheat in the Pacific Northwest. When headed culms are attacken, the entire head is killed and remains nearly white (actually bulf) and empty of kemels beranse the larme have severed the vessels of the stem near the last node betore or shortly after the wheat head mapered from tha boot and before it blossomed; while the rest of the culm, below the node, is green. In hearded wheat the awns are stiff and dry and hase a chancterist ic sperading appenance instead of being held in thomal upright pwition. lanth these types of injury are described and welf illustated by Alion \& Patinter (3) in their paper on the wheat stem marrent in Kansas. Similar injury oceurs on rye balley, and the grasses.

In addition to the two comuon types of injory to wheat whied have been described, Max M. Reeher one observed liarae on whent heads that land emerged trom the bron. blossomed, and began to form seed. Many flowers, ghmes and all, hat been destroyed, and the heads had a very maged appamace. On some hends about half the head, from the tip down, had been destroyed; on others companatively few flowers near the tip were damared. This type of injury was noted on early spring-sown wheat in Scogrin's Valley, west of (aaston, Orer., on June 22, 192:3, and was caused by lavene of Meromyza saltatrix. Mesnil (14) mentioned injury by hif. saltatrio to what ears of a type similar to that noted by the present writers, and Badachowsky and Mesnil ($5, p, 0, j$) illast hated it and stated that sum injury is frequent
in France. Adrich (2) noted somewhat similar injury to whent kernels by larvae of (oscinella (Oscinis) frit (L.).

LIFE HISTORY

Mehomyza praronem Meig.

It was observed that in wesiem Oreqon L/eromyza pratorum remaned in the paparime as fong as 20 to 32 days in the spring (Apri) 11 to May !3n. but only 9 to 11 days in July. The period for incobation of the egres was to 7 days betwem Augrast 20 and September 2. and is matonbtedly longer in May. The total periol from eqgy to adult was 81 to 88 thas on when in cares between A pril 26 and fraly
 to 49 days between digusk I and heptember 20.1923.

Thiganker (88) gave the ineubation perion for the equs as 3 to 10 days mind stated that the spring- mith summer-queration females laid
 fion lived $1+$ to 60 dhys and those of the summer gemeration shathty longur. that the pupal period of the summer gemeation hasted en days. and the complete life cyede of this geneation requived about aod days.

In 102: the overwinterod larve spent from 10 to 28 days in the puparim in the laboratory in april and May. In ages over young whent at Forest (irove \geq females of this species. which emerged om
 hatehed in about 10 dass. The complete life cyele lasted from 60 to
 Th. B dhys. Thats. the life eycte in Oregon is more prolonged than in Rassia. pobably heranse of lowe mean temperatures in summer.
The eqges of Ithemyza saltatrix are usmally haid on the sheaths that cover the stems, near the gromod, but sometimes on the leares near the ligules or under the sheathe against the stoms. The equrs appear to be indistimutishable from those of M. amerirama and M. pratorum. Ordinarily only 1 to t eggs are foume on a single tiller. bat in the 1921 oubreak in the cramde Ronde Valley in Chion Comen. Oreg. 20 or more eqges were present on a single wheat tiller, extending from aromed level to 2 inches or more above the ground, and sometimes overlapping like shingles. The egres of M. pratorum are laid in simiha locations, but it has been the writers' impression that this xpecies hays its exprs on the leaves more of ten than does alf. saltatria.

The larra on hatehing makes its way to the point where the last leaf emerges from the sheaf, and then crawls down to the node, where it feeds inside the shoot, severing the vessels to the shont just above the node. The writers have observed indications that an individal harya may move from one tiller to mother, destroying both. as . Allon and Painter (.3) noted in the case of Meromyza americana. The pupariam is fomed between the shoathing leaf and the shoot. usually not far from where the shoot emerges trom the sheathing leaf.

SEASONAL HISTORY

Meromyza pratorum Meig.

Meromyza pratomm passes the winter in the larval stage in the stems of the host plants. Records kept by the authors show that pupation took place from April 7 to May 9 . In the insectary adults from overwintered larvat emerged from April 27 to May 31. According to records of systematic sweepings, adults first appeared in the tields near Forest Grove, Oreg., on the following dates: June 15, 192: (a late season) ; April 26, 1923; April 28, 1024; April 27, 1026; April 2T, 1927. In 1023 adults were not swept in numbers until May 16 , and the fight was nearly over by June 15 . Flies emerging at this time congregated on the fatest spring-sown grain they could find, and also on grusses. They showed a decided preference for the younger plants; thus, on May $16,1023,16$ were swept from a small plot of late spring. sown wheat, but only 1 was swept from fall-sown whent nearby. The erges, usually laid on the leaves, hatched in nbout 10 days. In 1023, in the laboratory, the larvae of the spring genemation began to pupate about July 4 and begm to emerge on July 16 . In the field this emergence reached a peak about August 1 , when the flies were abundiant on volunteer barley on creek-bottom hand. In cages started on Suly $21, ~ 102($, with $\&$ - to (6 -inch wheat transplanted from outdoors and owiposited on about 10 days before, the first adult of the second generation energed on August 15) and emergence continued to Augist 26 ; but other adults, from lavae dissected from this material, emerged as early as August F in cells in the labonatory. In 1023 cages started with adults on young wheat seedlings on August 1 produced aduats from September 11 to 23 . These records afford definite proof of a second generation of M. pratorum in this area; however, flies emerging in July would find no grain on which to breed, and even grasses in a suitable condition for breeding would usually be scarce because the summers in the lateific Northwest are normally dry. Probatity the only available host phants at this time would be on irriguted land, in swanpy areas. or on land that hat been under water until late in the spring. Adults were swept in considerable numbers from Bromas curinatus (9) on creek-bottom land on August 20, 1925. The sensonal history of M. pratorum in the Pacilic North. west is practically the same as that whith Forbes (10) found for M. americana in Illinois.

Flies of the fall flight frequent the volunteer gratin and grasses that have sprong up following the first tall mins, which normally oceur in September in the Pacilic Northwest. These flies are at the peak of their abundance in September (September 11-13 in 1922), and can be taken with an insect net until well into October (Odober 17 for the last flies in 1922). The progeny of these flies pass the winter as larvae. Larvae that hatched from ergs laid as eatly as august on, 1025, in a cage over Bromur carinatus did not produce flies until Mray Lij. 1920. Overwintering on wheat was also observed, and larvae probnbly overwinter on barley and various grasses.

Mbromyza saijeatrix (L.)

Like Meromya pratorum, M. saltatria passes the winter in the larval stage in the stems of the host plants. These larvae begin to pupate in March and eatriy in April. The writers have pupation records of overwintered larvae as tollows: A well-colored pupa taken from volunteer wheat on April t, 102. 4 , emerged as an adult on April 9 and probably pupated as early as March 26 ; prepupae taken from volunteer wheat on Marel '6 and April 7, 1927, emerged as adults on April 19; from three prepupae taken from Lolizm perenne un March 20. 1927, the first adults were out on April 12. According to records of frequent sweepings, the first adults appeared in the fields near Forest Grove on the following dates: Miny 23,1922 (a backward season) ; April 1-4, 1023: April 0. 102t; March 29, 1026 (an early season): Apmil 12. 1927: April 23. 1929; April 11, 1980; April 23 , 1031 ; and Mawh 19. thet (an exeptionally early season).

A comparison of these secords with those for M. pratomum shows that the first appearame of $d /$. saltatrix in the fields was from 12 to 32 days (with a mean of 3 weeks) earlier than that of M. pratorum.

Adiats of the spring emersence of Meromyza saltatrix were most abbudant on April 25 in 1923. April 24 in 192t. April 29 in 1926, April 14 in 1927. and April 26 in 1929. In 1923.3 . matorum adults outmumbered those of M. sultatria for the first time on May 16. M. saltatrix dectined rapidy therealter. the last flies of this species being taken on hame 8 . Fenale flies of the spring grmemtion are often longlived. In 1923 one of five females in a cage lived 63 days. Flies emerging in March and April congregate on spring-sown wheat, seeded it the nomal time both enst and west of the Cascade Mountains. They show a preference for the younger wheat, but are sometimes swe git in some numbers in April from wheat seeded in November or later, and the latest tillers of fall-sown whent are sometimes inFosted with farvae.
There is liftle doult that the activity of adults of Meromyza saltatriz in spring. approximately 3 weeks earlier than that of M. pratorm. is responsible for the fact that this species is more damaring to spring-sown wheat, sected at the nomal time, than is M. pratorum. In the Pacific Northwest by the time the latter species emerges in mambers such wheat is too far along to be attractive to them.

The eggs batched in nbout 10 days in April. In 1923 larvae of the spring geneation began to papate in cages about The 24 and contimued pupating notil thly 10 . In cages over wheat adults were prodaced as follows: in 1922 fom July 3 to July 16 , in 1923 from Juty 12 to. fuly 2π. in 1926 from July 3 to July 20 and in 1027 from July 1 to dugist 3. In the field. or from field-collected material, adults of this gremeration were first found as follows: In 1021. Tune 30 (La ((rande) : in 1922. July 3 ; in 1923. July 19 ; and in 1924. Jme 30.

The newly emerged adults of Meromyza saltatria did not lay eqges on proffeged wheat seedlings at once, as did the flies of M. pratorum, but estivated for in considemble period. In cages over spring wheat in 1921, flies that emerged about July 17 were fed diluted honey and remained alive but showed no signs of reproductive activity up 10 August 11, when the what seedtinger had died. On September:
mating and oviposition were observed in this cage, and the first flies (probably males) died. This indicated an estivation period of about 45 to 50 days. 101922 , in a cage over late spring-sown wheat of a true winter habit of growth, adnlts emerring up to July 8 began to lay egrs before August 15, when some ergs lad just hatched. Assuming that 7 days were spent in the erge sture, the estivation period was about 31 days. In 192:3, in cages over sectling wheat of a spring habit of growth, seeded in July. flies that had emerged up to July 16 (bergiming July 3) laid eygg by August 2 , atter an estivation period of 30 days, but in this case the host plants were entirely suitable. In 1926, female flies were offered cut wheat stems in vials at regulat intervals, and those from a cage where mating had been observed on July 16 estivated 38 days (from July 19 to Augnst 26) before they begran oripositing. In the sume year flies placed in a age over seedling whent under a lantern globe on July 12 haid their first egges on August 13, an estivation period of 32 days under ideal host-plant conditions. In 1929 flies that emerged between July 17 and J uly 20 laid their first engs on September 30 , an estivation period of 66 days or more, but September was a very dry month. One of the Female fies in this cage lived 88 days. One female, probably ummated, emerged on July $18,192 \pi$, and was kept alive in a vial until Jamary 13, 1928, a period of 179 days.

It seems evident that there is a matural estivation period of at least at month, and usually more, in the adult stage of Meromyza saltatrix. in the Pacific Northwest, as was noted in Russia (15). Adults camot be collected in the lields after about August 1, but in case of precipitation late in the summer they again become abundant about September1. Where the flies pass this estivation period is unknown. The peak of the fall flight at Forest Grove came about September 7 in 1922, on September $2 \hat{3}$ in 19:3) (a very dry August and September, when this species was scarce), on September 11 in 1925, on August 27 in 1926 (precipitation was much ibove nomal in August, berinning on the 17th), atod on S'ptember: in 1927. The fall flight of this species, as indicated by periodic sweepings, was inished on October 3 in 1922. on October 12 in 1023, on October 1 in 1925, on October 2 in 1926. and on Oetober 1 in 1927. Our cage experiments also showed that there is but one complete generation in a year, even though adults can be swept in mumbers in three well-sepazated periods, namely, trom Maxeh to Mtay, in July, and in September.

The peak of the fall flight and the ent of the flight period of Meromyza pratorum, which has two complete qenerations per year. are about two weeks later than those of M. waltatrix. which has but one complete generation per year. Ifence ans fall wheat is ravely seeded before October in the Willamette Valley, Oreg., there is no chance for M. saltatria to breed on fall-sown wheat in the fall. It must be restricted, therefore, to volunteer grains, second growth on prematurely cut grain. and the grasses. Culess there are rains in August or early in september, there is very litile if any, volunteer wheat before the last of september or early pate of October, and even grasses in a suitable condition for breeding of the insects may be scarce and local. On the other had, there is some chance of M. pratorum getting into fall-sown grain if this is seeded before October 15.

Tzuigankov (18) stated that in Poltava, in the Ukraine, the overwintered generation of Meromyza saltatrix emerges during the first 3 weeks in May and the summer generation ennerges early in July. He noted that flies of the summer generation lived longer than those of the overwintered generation, and stated that the oviposition period of the summer generation lasted 2 months. Rakhmaninov (15) stated that the larvae of MI. nigriventris hibernated in self-sown plants. Adults appeared at the beginning of May, and toward the end of the month eggs were found, mainly on the leaves of autunnsown wheat, though n few were also found on spring-sown wheat and barley. A second flight of adults took place near the end of June. These individuals laid eggrs in August and continued to oviposit throughout most of September.

NATURAL CONTROL

Coelinidea meromyzae Forbes (determined by A. B. Gahan) has been reared by the writers several times from overwintering Meromyza haryae in puparia in March and April. This is a parasite of both species. An external parasite. Microbracon meromyza Gahan, was reared in Aurust from Meromyza pratorum lavae taken from barley at Forest (frove on July 26, 192:3. The writers faliled to rear aither of these species from hearily infesterd whent collected in the Grande Ronde Valley on June 30. 1921. This collection produced a few miscellaneous parasites, some of which, notably several Eupteromalus sp. and a few Eupelmus allynii French, may hnve come from the spring reneration of M. sultatrix. It is very doubtful whether parasites are factors of much importance in natural control of Meromyza, at least in the area east of the (ascade Monntains. The fungus Empuxa muscae (Fr.) Cohn. sometimes killed adaIts in cages, and under humid conditions probably kills some in the fields.

The principal factors influencing the abundance of Meromyza saltatrix, and probably also of M. pratorum, are doubtless climatic. This is particulaty true in the semiarid area of the Pacific Northwest east of the Cascade Mountains, where the most serions outbreats of Meromyza have occurred. Taseasonably early rains in August bring up an abundance of volunteer grain, second-growth grain in areas cut prematurely for hay, and an abundint new growth of grasses. These host plants afford opportmities for the production, late in the summer, of large numbers of Meromyza larvale. which will give rise to a heavy flight of flies in the spring.

The great outbreak of Meromyza saltatria in the Grande Ronde Valley in 1021 was preceded by unusually heavy rains in August and early in September 1920, which inter fered with harvest, ancl the spring of 1921 was cool and rainy. An abundance of early volanteer wheat was scattered throughout the fields, and much seconcl-growth wheat had come up in the margins of the fields that hat been cut for hay in June 1920. All these had been heavily infested by Meromyza in the fall of 1220 and had produced great numbers of flies in the springr of 1921 . In all other observed or reported outbreaks (1923 in Washington County, Oreg.; 1027 in'Washington, Enion. and Food River Comnties, Oreg.; 1928 in Drewsey, Oreg.; $19+1$ in central Washington)
precipitation had been henvy in the preceding August or September. There is therefore some basis for forecasting such outbreaks in the Patific Northwest.

In the more humid area west of the Cascade Mountains these species do not appear to fluctuate so greatly in numbers from year to year as they do in the semiarid area. Serious Meromyza injury west of the Cascades is rare, and there are no records of any widespread outbreaks. It theretore appears that serious outbreaks are most likely to oceur in the marginal areas, which are less favorable as habitats for the species than are the more humid areas. The observations of Rakhmanov (15) in the Union of Soviet Socialist Republics sugrest the sume hypothesis.

The writers observed, in the Grande Ronde Valley and elsewhere, that low, poorly drained, swampy spots and marshes are foci from which Aferomyza spread into nearby fields, and in semiarid areas such places are probably habitats where Meromyza can survive, even where the average annat precipitation is less than 10 inches.

Mcromiyza larve that are well up in the stems are probably killed by severe cold, but those in the crowns of the phants probabiy survive. At Forest Grove on January 16, 193. following a minmun temperature of $4^{\circ} \mathrm{F}$. on Janary 1, Miss Keen found hive dead Meromyza harae in tillers in clamps of volunteer wheat and five living larvae in the lowest part of the stems near the roots, under 1 inch of snow.

CONTROL MEASURES

Other mriters, notably Forbes (10), Webster (20), and Allen and Painter (3), have observed that some varieties of whent are more severely injured by Meromysa'americana than others, early maturing varieties being least infested.
A. L. Lovett and the senior writer observed that in the great ontbreak of Meromyza sultatrix in Cmion Connty, Oreg., in 1921, the early maturing spring-wheat varioty Hacd Fedeation was very little damared by Meromyza larvae, while the midseason variety Goldcoin (Fortyfold) was very severely damaged. Hence in years when an outbreak of $\mathrm{Ma}_{\text {rom }}$ yea threatens, quickly maturing varieties of spring wheat shond be sown. At the same time it was noted that fall-sown Wheat was very little ingneal, and this injury wats almost all of the white-head type, white spring-sown what was badly damaged in the uhbeuded-tiller stage. Both A. sultatrix and $3 /$. pratorum select the youngest what arainbie for breding in April and Miay. In western Oregon wheat is sometimes seeded late in November or in the winter months. Such wheat usually shows more Meromyza injury in June than dors wheat seeded at the nomal time, in October.

In westem Oregon, the fall fight of Heromyza sultatrix: is over betore any wheat is planted. There may be some fall infestation by M. poutortm. but little wheat is up until after October 15. and by that time the tall flight of this species is practically over. Hence fall damage by Iforomyza in the Pacitic Northwest is negrigible.

On the basis of knowletge of Meromyza sultatrix the the Pacifie Northwest. it is recommended that all volunteer wheat and all secondgrowth whent in areas cut early for hay be plowed mader soon after harvest, or, if left, be plowed under in Mareh, before the speing flies
emerge in April. No volunteer wheat should be allowed to come up in fields that are to be seefed, before the normal time for fall seeding: In the 1021 outbreak in Cinion Connty, Oreg.. it was evidenit that the great abundance of M. saltatriza cond be traced directly to the large numbers of early volunteer wheat plants. which were scattered through all the fall-sown fields, and to abuadant second growth that had sprung up after the August 1920 mins in the fiek margins that had been eut for hay.

All grass in the vicinity of grainfields should be plowed or pastured closely in August, and September or turned nader ia March or enty in April, because in some areas grasses may produce enongh Mero. myza flies to damage wheat growing nearby:

It is probable that the above-mentioned precautions need be taken only in years when precipitation is umsually abundant in August. or carly in September. If danage by either or both species of alero$m y z a$ should eyentualy be such as to require control measures on grass-seed meadows, further vesenteh will be necessary to ascertain what measures would be effective.

IITERATURE CITED

(I) Adrregr, B. M.

(3)
 Illis.
(3) Athes, M. W., aud Fanster, 1R, H,

(4) Becker, T.

(i) Babachowsкy, A., minl Mesinit, L.
 linels.
(G) Cons. F. R., anil Lovert, A. L.

(t$)$ (Om, Br, R. A.

(S) remas. C. 11 .

(9) Essic, E. O.

(10) Foturs, S. A.
 Eint. Kpt. 13: 13-29.
(11) (insos, A.
 (1015) : 104-243.
(12) (inibhatson, (i. I.
 thas.
(13) Mnagorn, J. H.
 Camid. Ent. 46: 11 i.
(14) Mesnim, L.

 Fint. (A) 20: 238-230. 1032.
(15) 1kakismanisov, A. N.

 (A) 16: 1.76. 1108. 1
(16)

 ((1) 13: :8S0. 1!31.!

 61: : 27 -
(18) 'Lִumankov, S. K.

(20) Wressmak, r^{2}, D ,

[^0]: - Order IBptem, Enally Choropldae.

 Subnyted tor publication March 15, 10-46.
 3 Xer Keen; reswarel.

 1ationtilsenthat.

[^1]:

[^2]:

