

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

## START




# Variability of Certain Seed, Seedling, and Young-Plant Characters of Guayule ${ }^{1}$ 

By Walter T. Federer?<br>Formerly associale geneticist, Special Guayule Research Project, Bureau of Plan Indusiry, Soils, and Agricultural Engineering, Agricullural Research Administration

## CONTENTS

| Materials and methods | Page |
| :---: | :---: |
| Commercial-strain tes | 2 |
| Strain test | 3 |
| Data from commercial-strain test. | 4 |
| Yicld data for all phenotypes_ | 4 |
| Yield data for different phenotypes. | 5 |
| Relation between plant characters | 7 |
| Frequency distributions of plant eharacters | 10 |
| Emergence and uniformity-oftype data for open-pollinated, individual-plant selec- |  |
| tions.-- | 12 |

Data from strain test
Page
Percentage of aberrants ..... 14 ..... 14
Height and spread of all
Means and variances of heightfor aberrants and nonaber-rants.18
Time of flowering ..... 19
Emergence as related to seed treatments ..... 20
Conclusions ..... 23
Summary ..... 24
Literature cited ..... 23

Essential to a pure-seed program and to the improvement of rubber yield in guayule (Parthenium argentatum A. Gray) is the knowledge of the genetic variability within and among strains. Several seed, seedling, and young-plant characters of guayule were studied to obtain information about (1) the relative interstrain and intrastrain variability of a group of plant characters pertinent to the yield of ruober, (2) the relation between plant characters, (3) the relative merits of strains as parents in a breeding program, and (4) the possi-

[^0]bilities for improvement by selection. Furthermore, a study of irrigated field plantings of the commercinl strains at Salinns, Calif., yielded data on the production of rubber and the growth of 1 -year-old guryule under similar conditions.

## materials and mhthods

## Commerchal-Stran Test

In 1942 the guayule nurseries were seeded to 7 guayule strains ( 109 , $130,405,406,407,416$, and 593) which were being grown for commercial field plantings. Young plants were obtained from the nurseries and culled; the resulting progenies were transplanted to the experimental area in April 1943. The design of the experiment was a raudomized split-plot design composed of 7 strains and 3 yenrs of harvest in 9 replicates. The strain plots were employed as a split-plot feature of the year of harvest. Thus, there were 27 replicates for strains. The spacing was 28 inches botween rows and 20 inches within rows. The split-plot size was approximately $1 / 40$ of an acre.

As plamed, the whole plots were to be harvested in the winters of 1944-45, 1945-46, and 1946-47. To obtain information about difictent plant characters on 1 -yenr-old guayule (winter of 1943-44), 2 plants were harvested from each plot. The plants to be harvested were selected at random exeept for the restriction that they be surrounded by a full stand, as the stand over the entire experiment was 79 percent of a full one. This restriction was employed to avoid the influence that extra area, caused by missing plants, might have on the characters stadied. This gave a sample of 54 plants for each entry, or a total of 378 for the 7 commercina strains.

Thirteen characters were recorded for most ol the plants. In some cases the character was recorded on less than 54 phants because fewer plants were considered sufficient to give the information desired. The characters are (1) type of plant, (2) plant height, (3) phant spread, (4) circumference of the crown below the lowest branch, (5) green weight of plants, (6) oven-dry weight of plants without leaves, ( 7 ) oven-dry weight of leares, (S) rubber content (percent on a dry-weight basis), (9) resin content (percent on a dry-weight basis), (10) diameter of branch sample, (11) diameter of wood in branch, (12) rubber content of branch (percent on a dry-weight basis), and (1.3) resin content of branch (pereent on a dry-weight basis). Weight of rubber per plant equals the product of the percentage of rubber in the plant and the diry weight of shrub. The oven-dry weight of the plant minus the leaves is refered to as shrub weight. The proportion of wood in the branch is the quotient of the diameter of the wood divided by the diameter of the branch.
In order to determine how the various phant characters are relatect, correlation and regression coeflicients (see table 4) were culculated as possible bases for predicting rubber yields and for possible genetic interpertations in inheritance.

As the first step in eliminating undesirable types 1,479 openpollinated, individual-plant selections of the largest plants from the 7 conmercial strains were made. Mosi of 'hese were from 093 and 407, re they survived the best after transplanting and had the best
general appearance at the end of the first growing season. Time and percratage of emergence and uniformity of type were determined for these selections. The selections of each of the 7 strains were grouped together in 7 individual experiments insotar as possible in 3 randomized complete blocks with 100 seeds per plot. An eighth experiment in the same design consisted of miscellaneous selections of which there were 8 aberrants, 21 ofitypes, 51 normals, and strain $4263 .{ }^{3}$
Beginning the fourth day after planting conats on emorgence were made every second day until the eighteenth day for the experiments on the 109, 130, 405, 400, 416, and miscellancous selections and until the twentieth day on the selections of 593 ; a final count was made 1 week later. Daily counts were made on the selections of 407, beginning the fith day and continuing until the cighteenth; a final coint was made 1 week later. The chasififation of aberrants and oftypes was made when the plants were 3 to $t$ months old.

## Strais Test

The strain test represents the progeny of the seed collected in 1942 from the 7 entries in the commercial-strain test and from 35 of the more promising other strains of guayule developed by $\Pi$. B. Aiccallum. In this experiment no plants were discarded or culled as done in commercial plantings and in the commercind-strain test. Secds of the strains were planted in the Capitola, Calif., greenbouse in Februny 1943, and the seedlings were transplanted to the experimental area at Salinas, Calif. in June 1943 in a randomized completeblock design. The randomization was the same in the greenhouse and the field. Two of the strains, 42441 and 42468 , were included twice. This gare 44 entries, which were planted in 20 randomized complete blocks. However, strain 49476 was included in only the first 10 replicates and strain 42477 in only the first 8 . Strain 42478 was substituted for 42476 in the last 10 replicates and 42471 for 42477 in the last 12. The individual-plot size was 2 rows by 6 plants. The spacing was 3 fect between plants and 4 feet between rows. The designations used by W. B. MeCallum (see toble S) are included, but the strains are discussed under strain, or accession, numbers. Strains marked "commercial" were obtained from the supply of seed used for large-scale nursery plantings. Eyen though similarities in previous desiguations existed, seed collections were given difierent accession numbers in the test.
Bergner ${ }^{*}$ and Stebhins ${ }^{5}$ determined the ebromosome number for some plants of each of the strains and classified them into 2 chromosome groups, $\overline{3} \pm$ and $72 \pm$. Bergne ${ }^{-1}$ and Stebbins and Kodani $(S)^{6}$ counted $108 \pm$ chromosomes in some plants classified as aberrants in $72 \pm$-chromosome strains.

The chararters recorded on the entries in the strain test weec plant height and spread, perentage of aberrants, and time of flowering.

[^1]In addition emergence data for four seed treatments were obtained on a mass selection of the better normal plants of each strain. The percentage of aberrants was computed on the basis of a full stand, although the final stand was 98 percent.

## DATA FROM COMMERCIAL-STRAIN TEST

## Yield Data for All Phenotypes

Yicid of rubber per plant depends on the rubber content and the shrub weight, and yield per acre on the stand and the yield per plant. The results of Kelley, Huntex, and Hobbs (4) showed that transplanting losses can be largely eliminated by proper nursery care of the seedlings. Differences in stand among strains may also be due to genetic make-up. In light of the results of Kelley, Hunter, and Hobbs and the fact that nursery care of the secdlings was confounded with strain differences, acre yield of rubber computed for a full stand gave the best comparison of strain differences. By use of the amalysis-of-variance technique ( 3,7 ) nonsignificant $F$ values for strain differences were obtained for dry weight of leaves, shrub weight, and resin content per plant; a significant $F$ yalue was obtained for weight of rubber per plant and a highly significant one for rubber content per plant. The means and standard errors of $a$ difference between two means (table 1) were computed for cach of the commercinl strains. Although strains 405 and 407 were significartly lower than 109, 130, 406 , and 593 in rubber content, the larger shrub weight per plant compensated enough to produce about the same yield. In contrast 416 produced the least rubber, as it was low in both rubber content and shrub weight. Of the seven commercial strains 109 and 593 produced the most rubber per ace and 416 the least.

The variation for the different plant characters in table 1 was rather large, as shown by the various coefficients of variation. The com. mercial strains were uniform for contents of rubber and resin. However, leaf, shrub, and rubber weights per plant were guite variable. From this it is evident that shrub weights must be more accurately measured than rubber contents. The number of plants required for a specified degree of precision was studied by Federer (2).
Tablem 1.-Mears, standati errors of a difference, and coefficients of yariation for rubber percenlagc and yield, shrub weight, resin percentage, and leaf weight of 7 commercial strains of guayule (dry-weight basis)
[Lent welghts based on to determinations for each strain; all others based on 54 each]

| Commercial strain | Per plant |  |  |  |  | Per scre |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\text { weinht }}{\substack{\text { Ieni }}}$ | $\begin{gathered} \text { Resin } \\ \text { content } \end{gathered}$ | Rubter content | Shrub welaht | Rubler yick | Rilibber sickl |
|  | $\mathrm{Cramit}_{32}$ | Percent | Percent | Grams ${ }_{\text {91, }}$ | ${ }_{\text {Grams }}^{5.82}$ | Ponndy 14:1. 7 |
| 130. | 23. 63 | 8. is | 4. 34 | S0. 19 | 5.64 | 130.3 |
| 405. | 25.84 | 5.75 | 5.77 | 95. 16 | 5.31 | 131.? |
| 4065 | 19.81 | 5.4 | 18.19 | 93. 58 | ${ }_{5}^{5.72}$ | 11.2 |
| 40 | 24,8i | 5.85 | 5.74 5.4 | 963 | ${ }_{4}{ }_{4} 3$ | 12.1 |
| 416 | 2i. 25 | 5.92 | 6. 50 | $\mathrm{Si}_{5.31}$ | 4.81 | 103.7 $1+3$ |
| Mcan | 25.78 | 5.84 | 6.07 | VO. 94 | 5.49 | 133.6 |
| Standard error of $n$ differenco botween 2 menns. | a, CH |  | . 14 | 8.37 | $3^{-47}$ |  |
| Cofthent of varisiont (percont).... | $41^{1}$ | 6 | 9 | 3 F | 32 |  |

## Yield Data for Different Phenotypes

The plants of each strain were divided into four phenotypically different types, or classifications: Normals, off bypes, slow growers, and aberrants (table 2). The largest group in a strain was classified as normal. These plants were uniform with respect to flower type,

Table 2.-Means and standard errors (dry-weight basis) for rubber percentage and yield, shrub weight, and rezin percentage of the various phenotypes of 7 commercial strains of guayule

leaf characteristics, and growth. The offtypes differed from the normals in flower and leaf characters. Olitypes may arise from mechnnical mixing of seed or as segregates from heterozygous parents. The slow growers started growing late in the growing season or grew rery slowly after trabsplaning. They resembled the normals in leaf shape but were considerably smaller. The aberrants were of about the same sian as the slow growers, but their leaves were thick and irregular, their flower stalks were usually thicker than those of the normals, and their flowers were usually larger and often distorted; these plants were described by Stebbins and Kodani ( $\delta$ ) as autotriploid and by Powers and Rollins ( 5 ) as aberrant.
Significant and highly significant $t$ ralues $(8,7)$ were obtained when the mean differences in. rubber content, slatub weight, nod rubber yield for the lour phenotypes were tested. This was true both within and among strains. The percentage of plants in the four classes did not agree with expectation of homogencity but yieded a highly significant $\chi^{2}$ (table 3 ). The resin content was unilorm for strains and for phenotypes. The normal plants were superior in all cases for shrub weight nad rubber yield. Thus, in order to improve rubber yields, it would be desirable to climinate the ofltypes, aborrants, and slow growers from the commercinl strains.

Table 3.- $x^{2}$ for phenolypic frequencies for 7 commercial strains of guayude

| Comunerylat strain | $\chi^{3}$ for frutieated class |  |  |  | 'Total $x^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Normals | Offlypes | Aberrants | Slow growers |  |
| 109 | 3. 414 | 10.28 | 0. 20 | 1.99 | 15.17 |
| 130. | 9.18 | 4.85 | .11 | 1. $2 \times 8$ | S, 38 |
| 405. | $\stackrel{2}{3}$ | 1. 10 | . 210 | 1.29 | 7.75 |
| 467. | 3. ${ }^{1}$ | 2.id | 1. 16 | 3.5 | 4.75 |
| H15. | 2.14 | - 1 | , | 9.1. | 11.45 |
| S684... | $\underline{2} \mathrm{f} 2$ | (i.) ${ }^{\text {\% }}$ | . 24 | 1. 29 | 11.85 |
| Total $x^{2}$. | 15. 136 | 33.901 | 96 | 19.4 | $71.10{ }^{* *}$ |

$\cdots>0.01$ jevec of prohability.
A comparison of the normal plants of all strains showed the superiority of 109 in rubber yield. This strain ranked first in rubber content and second in shrub weight. Normals of 405 produced the highest shrub weight. A combination of the high rubber content of 109 and the shrub weight of 405 would produce about 218 pounds of rubber per acre; this is a 13-pereent increase over the normals of 109. The normals of 416 produecd the lowest rubber yield; nlthough they ranked fourth in slurub weight, the low rubber content lowered the rubber vicld.
Stelbins and Kodani (8) reported that James Bonner found the rubber content highest in the twigs of 6 -month- to 1 -year-old plants of 74 -chromosome guayule ( $72 \pm$-chromosome group), lowest in the 36 -chromosome plants, and intermediate in the 4 - to 58 -chromosome and the 108 - to 111 -chromosome plants. From this it was inferred that these were proliminary data regarding the relation of rubber content and chromosome number. As no measure of the amount of variability present in Bonare's material was given, it is not known
whether the differences were genetic or were manifestations of sampling variability. Also, the strains used may not have been represcatative samples of the ehromosome groups. In addition, it may be pointed out that only a fair relation ( $r=0.668$; see table 4) was found between rubber contents of the branch sample and the rest of the plant.

The data from this test indicate that the normal 1 -venr-old plants of the $54 \pm$-chromosome gusyule strain (100) are significintly higher in rulbber content than those of the strains from the $72 \pm$-chromosome group ( $130,405,406,407,410$, and 593 ). On the average the aberrants wero slighty but not significmetly higher than the normal plants in subber content. For this experiment no statement can be made regarding rubber content and chromosome number for gruyyule becruse there were not enough strains to be representative of cither chromosome group. The frecpuency distribution tor rubber conteat of the brancl (sec table 5) indicates that it would be risky to draw conclusions from a few samples. Apparent differences under conditions of inadequate sampling may be due to the variability in the strains.

## Relaton Betweem Plant Chahacters

## NATURE OF THE RELATION

Scatter diagrams were prepared for each of the comparisons of the plant characters studied without recrard to strain differences. Upon inspection of the dingroms it was evident that the relations between height, spread, and shrub weight were curvilinenr. A transformation of the data to logarithms was made for these characters. The seater diagrams of the transformed data showed the relations to be linear. The relations of the remainder of the comparisons were linear; hence, no transformation of the data was made. When the data were trented as described, linear regression explained the deviations due to regression and the calculations were simplified.
The incrense in spread for a large plant was greater per unit increase of height than for a small one. This fact accounts for the curvilinearity of the regression for these characters. In a like manner the increase in shrub weight per unit inerease of height or spread was grenter for a large plant than for a small one. Henee, it follows that the relation between shrub weight and height or sprad probably is a function of the total surface area or the volume of the Rerial portion of the plant rather than of the spread or the height alone.

The amount of the variane in plant spread unexplained by the linear regression of sprend on height wats 26 percent for the untransformed data and 19 percent for the transformed. Thus, SI pereent of the raviance in sprend was associated with correlated changes in hejeht when the logarithmie transionmbion was used. The logatithm of the shrub) weight was correlated with the logarithm of height to the extent of 0.911, whereas a lower corredation, 0.827 , was oltaned from the untransformer data. For transformed datas si perent of the variance in dry weight of shrul) wis nssocinted with the correlated changes in plant height. Ninety-one pereent of the rariance in the logarithm of shrub weight was associnted with the correlated changes in the logarithm of plant spread (transformed data), whereas only s\% pereent was associated where the data were not transformed. Por these three
comparisons the logarithmic transformation decreased the amount of the variance unexplained by linear regression from one-fourth to onehalf of that obtained by not employing the transformation.

## CORRELATION AND REGRESSION COEFFIGIENTS

From the data in table 4 it is evident that spread and height were reliable characters for predicting shrub weight. Also, the circumference of the crown, a character used by many workers to give an indication of growth iu 1ruit trees, was a good indicator of shrub weight; but the difficulty in taking this character without digging the plant would make it impractical. A multiple correlation coefficient of 0.912 was found for shmb weight on height and spread, while that for the logarithms of shrub wright and height and spread was 0.961 . After the transformation of the data to logarithms 92 percent of the variance was explained by regression. This was little better than the correlation between the logarithms of shrub weight and spread. Height did not add much to the information about shrub weight, but as an indication of yield of shrub it may be well to record both height and spread.
Rubber content of the branch was the only one of the recorded characters sufficiently related to rubber content of the plant to warrant consideration for selection purposes. Size or diameter is a helpinl indicator for the betterment of sampliag techniques for branch samples. To remove some of the variability for the rubber content of the branch, samples should be of the same or nearly the same diameter. Unpublished dinta of Holmes ${ }^{7}$ indicated that the rubber content of the branch somples from different parts of the plants varied significantly. To obtain a relative comparison among individual plants and strains, it may be well to control these sources of variation by the proper experimental designs. Also, it was possible to remove some of the sampling variation by correlating means of branch samples with menns of the same plants. Furthernore, if the rubber centent was determined for composites of the branch samples and of the plants from which the branch samples came, the amount of the variation explained by the regression of rubber content of the branch on that of the plant would be as large as that obtained or larger. It would be larger whenever there is sampling variation in rubber-content determinations.

The individual $r$ values for strains for rubber content of branch on diameter of wood give an indication of one of the sources of variation in the rubber content of the branch. It is noteworthy that the correlation coeflicient nearest zero was for strain 405 and that the one for rubber contents of the branch and of the plant was the highest for this entry. The latter was lowest for st min 130 for which the correlation for rubleer content of the branch on diameter of the wood was the highest. In view of this it is likely that varying the size of branch affects the rariation in rubber content of the branch and thus the correlation between rubler contents of the branel and of the plant.
'Ibe correlation coefficient for shrub weight on green weight of plant was high; by removing the differences between replicates it

[^2]Table 4-Correlation ( $r$ ) and regression (b) coefficients for various characters of 1-year-old plants of 7 commercial strains of guayule

$>0.05$ level of probability; ${ }^{\bullet \bullet}>0.01$ levcl of probability.
1 Except for 130 for which $n=53$.
${ }^{2}$ Except for 130 for which $n=21$.
could be increased. Such differences were due mainly to the fact that different intervals elapsed between the times of digging and weighing of the plants from the different replicates. This was quite evident from the scatter diagram of these two characters. That is, the plants from some replicates dried out more than those from others before the green weights were taken. Time interval had no effect on shrub weight, since the plants were dried to oven dryniess some time after they had been air-dried. On the average, one-third of the green weight of the plant was shrub weight and the rest was moisture, dirt, and leaves. Green weights are useful in isolating errors in shrub weights and in strain-yicld comparisons.

A highly significaut negative correlation was obtained for rubber content of the plant on shrub weight (table 4). It has little value from a practical standpoint, because it was low and the negative relation may have been caused by the fact that the aberrants and slow growers had average higher rubber contents and lower shrub weights than the offtype plants (table 2). Even in the case of strain 593, for which the correlation was highly significant, the regression of rubber content on shrub weight of the plant was small. For every $100-\mathrm{gm}$. increase in shrub weight the decrease in rubber content was 1.24 percent. A $100-\mathrm{gm}$. plant with 7 percent of rubber would produce 7 gm . of rubber; a $200-\mathrm{gm}$. plant would contain 5.76 percent of rubler, but it would produce $1 . .52 \mathrm{gm}$. of rubber. In view of this and the fact that $r$ was relatively low, there appear to be good possibilities for increasing yield of rubber by selecting larger plants.

The relation between rasin and rubber contents of the plant was highly significant, but only a small percentage of the variation in rubber content was explained by regression. The $r$ values for 109, 405,407 , and 416 were highly significant statistienlly; but they were not significant for 130 , 406, and 503 , which are very much alike phenotypieally. Thus, there appeared to be a difference in groups with respect to the relation of these charncters. In any event the relation was not high enough to prevent selection for each character almost independently.

## Frequency Distributhons of Plant Chabacters

The frequency distributions (table 5) give the experimenter in guayule an indication of the variatility in plant characters. For such characters as shrub weight, weight of rubber, and rubber and resin contents of the branch the frequency distributions indicate that gross crrors in conelusions may result when experiments are based on too few plants. With such heterogeneous populations the probubility of getting plants for diflerent trealments from opposite ends of the distribution is not improbable for small samples. Consequently, because of the confounding of the gerotype and treatment effects, no reliable statement could be made regarding the treatment.

The distributions of plant height and spread were skewed to the left, whereas the distribution of shrub weights was fairly well scattered but approached normality. A comparison of the distributions of rubber contents of the plant and of the branch reveals the greater variability in the branch samples. Therelore, the variability for this character should be reduced in order to obtain reliable estimates of

Table 5.-Frequency distributions of 11 plant characters of 1-year-old plants of 7 commercial strains of guayule

| Plant character | Class heading and frequency in each class |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Height................. | $\left(\begin{array}{l} \text { Closs (cmi.) } \\ \text { Frequency } \end{array}\right.$ | 1-5 0 | 6-10 | $\begin{array}{r}1115 \\ -23 \\ \hline 115\end{array}$ | $16-20$ 33 | $\begin{array}{r} 21-25 \\ 110 \end{array}$ | $\begin{array}{r} 26-30 \\ 163 \end{array}$ | $\begin{array}{r} 31-35 \\ 42 \end{array}$ |  |  |  |  |  |  |  |  | 378 |
| Spreal . .i.c.e.... | Class (cin.) | $1-5$ 0 | $\begin{array}{r}6-10 \\ 2 \\ \hline\end{array}$ | $11-15$ -7 | $16-20$ 15 | $\begin{array}{r}21-25 \\ \hline 28 \\ \hline\end{array}$ | $\begin{array}{r}26-30 \\ 20 \\ \hline\end{array}$ | $\begin{array}{r}31-35 \\ 86 \\ \hline\end{array}$ | $36-40$ 112 | $\begin{array}{r}41-45 \\ 87 \\ \hline\end{array}$ | $46-50$ 15 |  |  |  |  |  | 378 |
| Green weight of plant. | $\left\lvert\, \begin{aligned} & \text { Class (gm.) } \\ & \text { Frequency } \end{aligned}\right.$ | $\begin{array}{r} 1-50 \\ 19 \end{array}$ | $\begin{array}{r} 51-100 \\ 24 \\ \hline \end{array}$ | $\begin{array}{r} 101-150 \\ 20 \end{array}$ | $\begin{array}{r}151-200 \\ -36 \\ \hline-150\end{array}$ | $\begin{array}{r} 201-250 \\ \hline \end{array}$ | $\left.\left\lvert\, \begin{array}{r} 251-300 \\ -\quad 64 \end{array}\right.\right]$ | $\begin{array}{r} 301-350 \\ 41 \end{array}$ | $\begin{array}{r} 351-400 \\ 38 \end{array}$ | $\begin{array}{r} 401-450 \\ 16 \end{array}$ | 451-500 | [501-559 | 551-600 1 | $\left\lvert\, \begin{gathered} 601-650 \\ 1 \end{gathered}\right.$ |  |  | 350 |
| Shrub weight | (Class (pm.). | $1-\frac{20}{20}$ | $21-10$ 26 | $41-80$ 300 | $61-80$ 47 | $81+100$ 86 | $\begin{array}{r} 101-120 \\ 78 \end{array}$ | $121-140$ 45 | [ $\begin{array}{r}141160 \\ 23\end{array}$ | $\begin{array}{r}161-180 \\ 14 \\ \hline\end{array}$ | 181-200 3 | …… |  |  |  |  | 378 |
| Circumference of crown | $\left\{\begin{array}{l} \text { Class (em.) } \\ \text { Frequeney } \end{array}\right.$ | \|r-0-3.0 | $3.1-3.5$ 7 | (6-10 | $4.1-4.5$ 17 | $4.6-5.0$ <br> 22 | $\begin{array}{r}5.1-5.5 \\ -42 \\ \hline\end{array}$ | $\left\lvert\, \begin{array}{r} 5.6-6 . \overline{0} \\ 75 \end{array}\right.$ | 6. $\begin{array}{r}1-6.5 \\ 8.5\end{array}$ | $6.6-7.0$ 38 | $7.1-7.5$ <br>  <br> 25 | \|r.6-8.0 | 8.1-8.5 | 8.6-9.0 | $\begin{aligned} & 0.1- \\ & 10.0 \\ & 0 \end{aligned}$ | $\begin{gathered} 10.1-1-5 \\ 10.5 \\ 1 \end{gathered}$ | 350 |
| Weight of rubber | $\left\{\begin{array}{l} \text { Cluss (gm.) } \\ \text { Frequency. } \end{array}\right.$ | $\left\|\begin{array}{r} 0.1-1.0 \\ 17 \end{array}\right\|$ | $\begin{array}{r} 1.1-2.0 \\ 23 \end{array}$ | \|r $\begin{array}{r}\text { 2 } 1-3.0 \\ 21\end{array}$ | $3.1-4.0$ 31 | 4.1-5.0 ${ }^{4} \times$ | $\begin{array}{r} 5.1-6.0 \\ 67 \end{array}$ | \|6.1-7.0 | $7.1-8.0$ 37 | 8.1-9.0 ${ }^{26}$ | $\begin{aligned} & 9.1-1 \\ & 10.0 \\ & 15 \end{aligned}$ | $\begin{array}{r} 10.1- \\ 11.0 \\ 0 \end{array}$ | $\begin{array}{r} 11.1- \\ 12.0 \\ 0 \end{array}$ | $\begin{array}{r}12.1- \\ 13.0 \\ 1 \\ \hline\end{array}$ |  |  | 378 |
| Rubber content of plant | $\left\lvert\, \begin{aligned} & \text { Class (percent) } \\ & \text { Frequency..... } \end{aligned}\right.$ | $\begin{array}{r} 1.6-2,0 \\ 1 \end{array}$ | \|r $\begin{array}{r}\text { 2-2.5 } \\ 0\end{array}$ | 2.6-3.0 | \| $\begin{array}{r}3.1-3.5 \\ 0\end{array}$ | \|r $\begin{array}{r}3.6-4.0 \\ 2\end{array}$ | 4. 1-4.5 | $\left\|\begin{array}{r} 4.6-5.0 \\ 20 \end{array}\right\|$ | $\left\lvert\, \begin{array}{r} 5.1-5.5 \\ 54 \\ \hline \end{array}\right.$ | $\left\|\begin{array}{r} 5.6-6.0 \\ 85 \end{array}\right\|$ | $\begin{array}{r} 6.1-6.5 \\ \hline 92 \\ \hline \end{array}$ | $\begin{array}{r} 6.6-7.0 \\ \hline \end{array}$ | $\begin{array}{r} 7.1-7.5 \\ 20 \end{array}$ | $\left\lvert\, \begin{array}{r} 7.6-8.0 \\ 14 \\ \hline \end{array}\right.$ | $\left\|\begin{array}{r} 8.1-8.5 \\ 3 \end{array}\right\|$ | $\left\lvert\, \begin{array}{r} 8.6-9.0 \\ 2 \end{array}\right.$ | 378 |
| Rubber content of branich $\qquad$ | $\left\lvert\, \begin{aligned} & \text { Class (perant) } \\ & \text { Frequency...... } \end{aligned}\right.$ | $\begin{array}{\|c} 2.1-2.5 \\ 5 \\ \hline \end{array}$ | $\begin{array}{r} 2.6-3.0 \\ 8 \end{array}$ | $\begin{array}{r} 3.1-3.5 \\ 14 \end{array}$ | $\begin{array}{r} 3.6-4.0 \\ 38 \end{array}$ | $\begin{array}{r} 41-4.5 \\ 36 \end{array}$ | $\begin{array}{r} 4.6-5.0 \\ \hline \quad 40 \\ \hline \end{array}$ | $\begin{array}{r} 5.1-5.5 \\ \hline 62 \\ \hline \end{array}$ | $\left\lvert\, \begin{array}{r} 5.6-6.0 \\ -\quad 4 \\ \hline \end{array}\right.$ | $\begin{array}{r} 0.1-6.5 \\ 51 \\ \hline \end{array}$ | $\left\|\begin{array}{r} 6.6-7.0 \\ 41 \end{array}\right\|$ | $\begin{array}{r} 7.1-7.5 \\ 17 \\ \hline \end{array}$ | $\begin{array}{r} 7.6-8.0 \\ 13 \end{array}$ | $\begin{array}{r} 8.1-8.5 \\ 6 \end{array}$ | $\left\|\begin{array}{rr} 8.0-90 \\ & 1 \end{array}\right\|$ | $9.1-9.5$ | 377 |
| Resin contrnt of plant. | $\left\{\begin{array}{l} \text { Criss (percent) } \\ \text { Fruency } \end{array}\right.$ | $\left\|\begin{array}{r} 2.1-2.5 \\ 1 \\ \end{array}\right\|$ | 2. $6-3.0$ | (3.13.5. | $\begin{array}{\|r} 3.6-4.0 \\ 2 \end{array}$ | $\left\|\begin{array}{r} 4.1-4.5 \\ 3 \end{array}\right\|$ | $\begin{array}{r} 4.6-5.0 \\ \quad 12 \\ \hline \end{array}$ | $\begin{array}{r} 5.1-5.5 \\ 55 \\ \hline \end{array}$ | $\left\|\begin{array}{r} 5.6-6.0 \\ -172 \end{array}\right\|$ | $\left\|\begin{array}{r} 6.1-6.5 \\ 103 \end{array}\right\|$ | $\left\|\begin{array}{r} 6.6-7.0 \\ 23 \end{array}\right\|$ | $\left\|\begin{array}{r} 7.1-7.5 \\ 5 \end{array}\right\|$ | $\left\lvert\, \begin{gathered} 7.6-8.0 \\ 0 \end{gathered}\right.$ | ${ }_{0}^{8.1-8.5}$ | $\left\|\begin{array}{r} 8.6-9.0 \\ \\ 1 \end{array}\right\|$ |  | 378 |
| Resincontentofbrameh | $\left\{\left.\begin{array}{l} \text { Class (percent) } \\ \text { Freciuency } . . . . . \end{array} \right\rvert\,\right.$ | $\begin{array}{r}4.1-5.0 \\ \\ \hline\end{array}$ | $\begin{array}{r}5.1-5.5 \\ \\ \hline\end{array}$ | [ $\begin{array}{r}\text { 5.6-f. } \\ 13 \\ \hline\end{array}$ | 6.1-6.5 $\begin{array}{r}17 \\ \hline\end{array}$ | $\begin{array}{r}6.6-7.0 \\ 33 \\ \hline 0\end{array}$ | $\begin{array}{r}7.1-7.5 \\ 67 \\ \hline\end{array}$ | $\begin{array}{r} 7.6-8.0 \\ \quad 39 \\ \hline \end{array}$ | $\text { 8. } \begin{array}{r} 8-8.5 \\ 51 \end{array}$ | S. 6-9.0 34 | \|r|r| $\begin{array}{r}1-9.5 \\ 34\end{array}$ | $\begin{array}{r} 9,6- \\ 10.0 \\ 24 \end{array}$ | $\begin{array}{r} 10.1- \\ 10.5 \\ 21 \end{array}$ | $\begin{array}{r} 10.6- \\ 11.0 \\ 11 \end{array}$ | $\begin{array}{r} 11.1-1 \\ 11.5 \\ 9 \end{array}$ | $\begin{array}{r} 11.6- \\ 12.0 \\ 3 \end{array}$ | 364 |
| Proportion of wood in branch | $\left\{\begin{array}{l} \text { Class (percent). } \\ \text { Frequency. } \end{array}\right.$ | $\begin{array}{r} 0.51- \\ 0.55 \\ 1 \end{array}$ | $\begin{array}{r} 0.56- \\ 0.60 \\ 6 \end{array}$ | $\begin{array}{r} 0.01- \\ 0.615 \\ 38 \\ 3 \end{array}$ | $\begin{aligned} & 0.66- \\ & 0,70 \\ & 47 \end{aligned}$ | $\begin{array}{r} 0.71- \\ 0.75 \\ 27 \end{array}$ | $\begin{array}{r} 0.76- \\ 0.80 \\ 10 \end{array}$ | $\begin{array}{r} 0.51- \\ 0.85 \\ 21 \end{array}$ | $\begin{gathered} 0.86 \\ 0.90 \\ 9 \end{gathered}$ | $\begin{array}{r} 0.91- \\ 0.05 \\ 3 \end{array}$ |  |  |  |  |  |  | 163 |

rubber content of the plant. The distribution of rubber content of the plant was normal or nearly normal, whereas that of rubber content of branch had fewer individuals in the classes around the mean than a normal distribution should have. This was also true for resin content of the branch. The resin content of the plant was very uniform, and the distribution was normal.
Since these plants were selected at random, they are a good estimate of the amount of varinbility in 1 -year-old plants of the seven commercial strains of guayule as grown from nurscry stock. It is the practice of the nursery to cull and discard the smaller plants; it seems quite likely, then, that some of the plant types may have been discarded in culling operations. Hence, some of the ganetic variation may have been discarded and, therefore, the variability of these varieties may be greater than the estimates presented.

## Emergence and Uniformity-of-Type Data for Open-Pollinated, Individual-Plant Selections

For a more successful crop, guayule strains which are relatively high in percentage of emergence, require $\Omega$ short period for emergence, and are uniform with respect to type and growth characteristics are needed. In an attempt to improve the seven commercial strains of gunyule with respect to these three characters, a large number of open-pollinated, individual-plant selections (table 6) were made.

Table 6.-Range in means for percentage and time of emergence and proportion of aberrants and offlypes in $S$ tests on individual-plant selections from commercial strains of guaywle

| Commercial straln from which solections wero mado | Selec. tlons in test | Range of character |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Plants emergiog |  | Time of emergence after planting |  | Yroportion ofoiftype sad aberrant plants |  |
|  |  | \#igh | Low | Earliest | Latest | Low | Eigh |
|  | Numbutr | Percent 6.0 | Percent 0 | Days 0.0 | Days | Percent | Percent 33 |
|  | 19 | 6.7 | , 7 | 6.7 | 10.4 | 0 | 80 |
| 405 | $12]$ | 12.0 | . 3 | 6. 6 | 12.0 | 0 | 43 |
| 406. | 49 | 5 | . 7 | 5.7 | 0.4 | 0 | 100 |
| 407 | 343 | 9.7 | . 3 | 6.0 | 13.0 | 0 | 75 |
| 416. | 48 | 6.7 | . 3 | 5.0 | 11.3 | 0 | 100 |
|  | 727 | 19.7 | $0^{.3}$ | 5. 7 | 12.8 21.5 | 0 0 | 100 |
|  | 80 | 13.3 | 0 | 6.8 | 21.5 | 0 | 100 |

The percentage of emergence and the fracuency of occurrence of aberrant and ofltype plants may or may not have been influenced if the parent selection had been isolated (5). ${ }^{8}$ The phenomena of fertilization and incompatibility may alter the expression of these two characters. Powers and Rollins (5) showed that the frequency of occurrence of aberrants and offtypes from selfed material was usually lower than from open-pollinated material. On the basis that reproduction in the chromosome groups containing the seven commercial strains was found to be largely pseudogamous ( 5$)^{\mathrm{s}}$, the progeny from open-

[^3]polliuated material will resemble the maternal plant to a large degree. Because of this fact and the impracticnibility of selfing such a large number of selections, open-pollinated maicrial was used. The effect that Lygus spp. (6), nutrients (9), and climate ${ }^{9}$ may have had on this low emargence percentage was not known definitely. Lygus spp. have been shown to have some effect. Powers ${ }^{10}$ and Powers and Rollins ( 5 ) have shown that the major cause of low percentages of emergence is genetic. Such factors as male stexility and incompntibility complicate the problem of obtaining selections which are high in emergence.

From a practical standpoint the best sclections as grown in this lest are much lower in emergence than desired. Therefore, the only hope for obtaining strains high in emergence is to obtain a wider base for selection than these seven commercial strains offer. Despite this fact, however, the seven commercial strains can be improved by selection.

By use of the $\chi^{2}$ test the differences among the selections for percentage of emergence were found to be statistically significant. Thercfore, individual plants can be selected from these heterogencous strains for a higher percentage of emergence. Selections from 593 appeared to offer the best possibilities for higher emergence pereentages.

Significant differences were found to exist among the selections within an experiment for entliness of emergence. Selection for this character appears equally good in all the strains. The selections within a strain were fouid to difler significantly with respect to the frequency of aberrant and ofltype plants. A large proportion of the progeny of the selections of 109 were free from aberrant and offtype plants. This was an indication that a large percentage of the nonnormal plants of 100 come from a mechanical mixture. This strain offors considerable promise in selecting plants whose progeny produce few or no aberrant and offtype plants.
In the miscellaneous experiment aberrants and offtypes were included to determine their breeding behavior. In all cases the offtype plants produced progeny similar to the parent plant; that is, an offtype plant from strain 109 produced offtype plants rather than normal plants of 109 . The aberrant plants produced mostly aberrants. However, some normal plants occurred in the progeny of the aberrant plants. The explanation for this pheuomenon is not known.

In addition to the variability previously shown (tables 1 to 5) for the seven commercial guayule varieties, these data (tables 6 and 7 ) make it evident that considerable work is required before a uniform varienty of guayule can be produced. A strain that is heterogeneous and heterozygous for the time and percentage of emergence and for the type of plant is very likely not homogeneous and homozygous for other characters. In support of this contention some selections were uniform for growth in each of the three replicates wherens others were extremely varinble. No measurements for uniformity of growth were recorded, and the heterogeneity for this charncter is from observation only.

[^4]Tamee 7.-Time-of-emergence results for individual-plant selections from commercial strains of guayute

| Commercial stenla from which selectlons were made : | Proportion of plants emerged by specifled time ofter plantiog |  |  |  |  |  |  |  |  | $\begin{gathered} \text { Total } \\ \text { plants } \\ \text { cimerged } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\stackrel{4}{\text { dsys }}$ | $\underset{\text { days }}{f}$ | $\underset{\text { deys }}{8}$ | $\frac{10}{\text { days }}$ | $\frac{12}{\text { days }}$ | $\xrightarrow{\mathrm{H}} \mathrm{~d}$ | $\frac{10}{\text { days }}$ | $\underset{\text { days }}{18}$ | days |  |
| 1007 | Percent | Petcent 21.: | Percent 54.2 | Percent | $\begin{gathered} \text { Percent } \\ \hline 92.0 \end{gathered}$ | $\begin{array}{\|} \text { Percent } \\ 97.3 \end{array}$ | Percent 02.2 | Percent | Percent 100 | Number 529 |
| 330 | 1.4 | 31.8 | 67.2 | 80.2 | 93.1 | 98.4 | 0.0 | 100 | 100 | 401 |
| 405 | 2.0 | 33.7 | 67.0 | 88.5 | 05.7 | 98.6 | 99.5 | 99.0 | 100 | 2,060 |
| 406 | 2.6 | 47.1 | $7 \mathrm{7r} .2$ | 91.5 | 95.5 | 97.6 | 98.9 | 100 | 100 | 621 |
| 410 | 8.3 | 47.8 | 73.7 | \%0. 1 | 915.1 | 98. ${ }^{\text {a }}$ | 88.9 | 30.8 | 100 | 133 |
| Miscellancous | $\begin{array}{r}1.8 \\ .2 \\ \hline\end{array}$ | 10.9 | 59.4. | 52.7 82.5 | 93.0 | 89.5 | 98.1 98.2 | 95.8 99.3 | 100 | 11.2209 1,157 |
| All strains.... | 2.1 | 23.5 | 61.6 | 84.2 | 33.7 | 97.0 | 08.4 | 6, 1 | 100 | 16,511 |

- Test on selections of if7 not included, as the counts sfre mado on a different sequence of doys.

In the formation of an improved strain selfed progeny from the better selections in these tests should be isolated and tested for the desired characteristics. Then the better selections from this test would be bulked, and an improved variety would result. The first step in the improvement of existing strains is the elimination of undesirable types; these are sclections which are low or slow in emergence, which contain a high percentage of aberrants and offtypes, or which are not uniform for growth.

The proportion of the plants emerging on a specified day after planting is presented in table 7. Slight differences existed among the commercial stroins in the percentages emerging on the different days, but in all cases about 97 percent of the plants had emerged within 2 weeks after planting.

## DATA FROM STRAIN TEST

## Percentage of Aberrants

As the aberrant plants were smaller than the nonaberrants (normals, offtypes, and slow growers), the yield of shrub would be affected inversely by the percentage of aberrants in a strain. Hence, the superior strains would be those which produce few or no abertants. The magnitude of the size difference is estimated in table 2 for the seven commercial strains and in table 11 (p.19) for the entries in the strain test.

The percentage of aberrants was recorded for each of the 44 entries in the strain test. Although none of the strnins were free from aberrants, some were nearly so. Strain 42478 produced 2 and 3 percent of this plant type, and strains 42475 and 42435 each produced 4 percent. These 3 selections were superior to all the other strains in this test. At the other end of the raage 424.51 and 42469 produced 58 percent of aberrant plants. Thus, there was considerable variation among the strains. The amount of variation within each of these strains was not known, but in light of evidence presented earlice in this paper (table 6) it appeared possible to select from some strains individual plants which do not produce aberrant plants. The 8 strains designated as commercial (table 8) were quite different with respect to the number of aberrants produced. Among these strains,

42475 produced the lowest percentage of aberrants and 42474 and 42440 the highest．Thus 1 in 25 plants of 42475 was aberrant，while more than 1 in 4 of 42474 and 42440 was aberrant．Such a high frequency of abervant plants as occurred in the last 2 seriously affects the yield of shrub per acre，which necessarily affects the yield of rubber per acre．
Table 8．－Percentage of aberrant plants of 42 strains of guayule in the strain test

| Strain | W．B．MeCallum＇s designation | Aberrants in 240 plants | Strain | W，B，McCallum＇s desigmation | Aberrants in 240 plants |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 42.178 |  | Percnit |  |  | Percent |
| 42478 | Mexican plant | $13 \pm 0.9$ | 42480 | 404. | $20 \pm 2.6$ |
| 42475 | 109 （commercial） | $4 \pm 1.3$ | 42483. | 430. | 90 +2.0 |
| 424352 | 100．．．－．．．．．－－ | $4 \pm 1.3$ | 42467 | 405 （connmercial） | $20 \pm 2.6$ |
| $42445^{3}$ | 111 | $8 \pm 1.8$ | 421493 | 255 | $25 \pm 2.8$ |
| $42448{ }^{2}$ | 210 | $8 \pm 1.6$ | 42474 | 406 （comwercial） |  |
| 42460. | 418. | $8 \pm 1.8$ | 42410 | 130 （comnmercial） | $28 \pm 2.9$ |
| $42473{ }^{3}$ | 111 （commercial） | $8 \pm 1.8$ | 43147. | 1430．．－ | $0 \pm 3.0$ |
| 42458. | $411.0 .-$ ．．．．．．． | $9+1.0$ | 12．150 ${ }^{2}$ | 258 | $32 \pm 3.0$ |
| 42477. | 416 （commercial） | $310 \pm 3$ ． 1 | 42438．．． | 444. | $3.5 \pm 3.1$ |
| 42468 | $453-\ldots-\ldots-$ | $10 \pm 1.9$ | 42440 | 130－32 | 10土3．2 |
| 42468. | 453 | $11 \pm 2.0$ | 42471 | 459－A．．． | $4.11 \pm 4$ |
| 42452 | 404 | $12 \pm 2.1$ | 4240. | 40.0 | 4 $12 \pm 4.1$ $42 \pm 3.2$ |
| 42465 | $405-2$ | $12 \pm 2.1$ | 42157．－ | $400-\mathrm{F}$ | 42土3．2 |
| 42476 | 407 （commercia） | $115 \pm 3.3$ | d2471．． | $450-\mathrm{A}$ | －13土 4.2 |
| 42454. | 405．．－－．．．．．． | 15士2， | 42437. | $409-\mathrm{A}$ | $4 \pm 3.2$ |
| 42.153 | 404－A | 15 土n ${ }^{\text {a }} 3$ | 42472. | $735-2$ | $\begin{aligned} & 7 \pm 3.2 \\ & d 4 \pm 3.2 \end{aligned}$ |
| 42.155 | 405 | $16 \pm 2.4$ | 42466 | 440．． | $50 \pm 3.2$ |
| 42462 | 420. | 1012．${ }^{1}$ | 42463．．． | 428 | $50 \pm 2$ |
| 42459. | 413 | 17 | 42 －16．L－．．． |  | $55 \pm 3.2$ |
| 42441 ． | 593 （commercial） | $15 \times 2.5$ | $42+4$. | 49 | $55+3.2$ |
| 42461 | 419. | 18土22．5 | 42451． | 402 | $55 \pm 3.2$ |
| 42441．－－－ | 503（commercin） | 19土2．5 | 42160 | 150 | $58 \pm 3,2$ |

1120 plants．
$251 \pm$－chromosonng group；the remalnder in the $72 \pm$－chromosome group．
${ }^{3} 06$ plants．
${ }^{+1} 14$ plants．
The range in frequancy of aberrants for the $54 \pm$－chromosome group was from 4 to 32 percent．This range was not as great as that for the $72 \pm$－chromosome group．This does not mean that the range in the population for the strains with fewer chromosomes is smaller but probably reflects the difference in the number in each group， 7 strains in the $54 \pm$－chromosome group and 35 in the $72 \pm$－chromosome group．

As stated under Materials and Methods，the plants in the strain test represent the progeny from the 7 strains in the commercial－strain test and from 35 othcrs．There is no disagreement between the per－ centages of aberrants in this experiment and in the commercial－strain test．The difierence was due to the fact that the material in the latter was culled at the nursery before transplanting．This lowered the freguency of occurrence of the aberrant plants．The same factor explains the differences between comparable strains in this test and the material reported by Stebbins and Kodani（8，table 1）．It was known that some of the strains were culied before Stebbins received them．Hence，these deviations represent the intensity of culling operations．Other phenomena，such as time of seed set and fertiliza－ tion as affected by environmental changes，insect populations，or foreign pollon，may result in a change in the frequency of expression of this phenotype．Discarding certain type plants was known to be one of the causes of，if not the cause of，the differences reported in these three instances for frequency of a berrants．

A honogeneity test on the 42 entries which appeared in all 20 replicates for the frequency of abermants in ench plot of 12 plants gave a value of 27.24 for $\sqrt{2 \chi^{2}}-\sqrt{2 n-1}$. Since 27.24 was materially greatier than 2, it was assmmed that the value of $\chi^{2}$, c62.94, was not in accordance with the expectation blast the strain variances were homogereous. Also the frequency distribution was skewed to the right. There were 122 plots which had no aberrants; 152 with 1 ; 136 with $2 ; 102$ wilh $3 ; 95$ with $4 ; 73$ with $5 ; 66$ with $6 ; 48$ with 7 ; 31 with $8 ; 10$ with $9 ; 5$ with $10 ;$ and 0 with 11 or 12 . In light of this evidence $x^{2}$ instead of the analysis of variance was employed to find the probability of differences between sirains with respect to the frequency of aberant plants.

The $x^{2}$ value for strains eguals $1,502.75$ (table 9 ). The probability that this large value was due to chance is extremely smail. Hence, it was assumed that there were real differences between strains with regard to the frequency of aberrants. The low value of $\chi^{2}$ for replieates fulfills expectation. There shoukd be no difference between replicates with regard to the frequency of aberrants. The interaction $\chi^{2}$, strains $X$ replicates, represents sampling variation of the number of aberrants in each plot. It has no biological significance. The interaction $\chi^{2}$ is 792.66. The value for $\sqrt{2 \chi^{2}}-\sqrt{2 n-1}$ is 0.35 , which agrees with expectation. That is, the differences in distribution of aberrants for the different strains over the different replicates did not vary any more than may be attributed to chance.

A check on the nccuracy of chassifying aberrants was afforded in 4 instances. The 2 entries of strain 42441 ngreed very well; in one 18 percent of the plants were aberrant and in the other 19 percent. The 2 entries of 42468 produced 10 and 11 percent of aberrant plants. The entry of 42478 used in all 20 replicntes produced 2 percent of aberrants and that used in only the last 10 replicates produced 3 pereent. The entry of 42471 used in all 20 replicates produced 44 pereent of aberants and that used in only the last 12 replicates prorluced 41 percent of aberrant plants. This close agreement of the 2 separate and independent samples for these 4 strains reflected the accurncy of classification and distribution of the aberant plants in the different strains. This confirmed the high $\chi^{2}$ value for strains and the low one for replientes.
Table 9.- $\chi^{2}$ values for the different components for accurrence of aberrants in strains of guayule

| Solurge of rarintion | Derrees ot frectom | $x^{3}$ | $\sqrt{2 x^{2}}-\sqrt{2 n-1}$ |
| :---: | :---: | :---: | :---: |
| Etrains | 41 | 1, 502. 75 | 45.82 |
| Replientos.. | 19 | 17.67 |  |
| Stralos $\times$ replicates | 779 | 702 65 | . 35 |
| Total | 839 | $\stackrel{\square}{4} 165,31$ |  |

## Meight and Sphead of All Plants

Growth measurements (height and sprend) for the strains in the strain test were recorded (table 10) on 2 different dates, the first duxing the latter pari of May in the greenhouse and the second duting
the midelle of dugust in the ficld．The agreement between the plant heights in May and in August was not very close，the correlation being 0.534 for all the plants in the first 10 replicates．Thus，about 2 2 percent of the variance of the plant heights in August can be accounted for by that in May．In other words，the agreement between the phat height in the greenhouse and field was too low to be of use in predicting plant heights in the field．

The comelation between the logarithms of the plant height and spread in August for all plants in the first 10 replientes was 0.003 ． Therefore，about $\$ 2$ percent of the rationce in height was accounted for by the rariation spered．The correlations lor the individual strains ranged from 0.808 to 0.971 ．Since both spered and beight are important in dedermining the total weight of a plant，they are useful in determing which strains are superior in yield of shrub．
Tabie 10．－Means and standard crrors for plant height and spreat of te strains of
guayule in 20 replicates at 2 stagcs of growth in the strain lest

| Strata 1 | Plat height |  |  |  | Plant sprend |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | May 193 | Rent | August 1913 | Rank | Many 1943 | Rank | August 1043 | Ramk |
| 43728 | Cm. | \％ |  | 1 | Cm ． <br> $5.14 \geq 0.62$ | ${ }_{5}{ }_{5}$ | $\begin{gathered} C m . \\ 20.90 \pm 1.33 \end{gathered}$ |  |
| 4348 | 6． 3 杜．30： |  | 15．35 3 ． 45. | 5 | $5.60=-35$ |  | 20.15 |  |
| 42471 | 7．63土 6 － 52. | $\frac{1}{3}$ | $16.58=$. | 3 | 8.13 |  | 20．0S土1，07 |  |
| 424 | 6． 575 | 7 | $10.45 \pm 50$ | 5 | 6． $26=$ | 9 | 15．60． 69 | 19 |
| 424 | 6．54土 ． 3 s | 9 | $26.45 \pm .53$ | － | 5，㑣工 ． 40 | 17 | 15．80士．80 | $\stackrel{+}{4}$ |
| 4245 | 6． 0 N 33 | 231 | 16．35 5.551 | 7 | 5．52 | 21 | 15．90土．95 | 12 |
| 42450 | 5． $72 \pm$ ． 36 | 361 | 15．00土 ． 51 | S | 5，051 ． 4 I | $3{ }^{3}$ | 16．05土 24 | 46 |
| 4236 | 5．063 |  | 15． $65 \pm$－ 42 | 9 | 5．15）．47 | 31 ！ | 190．15天．77 |  |
| 4246 | 6． 16 土－ 27 | 20 | 15．65土．45 | 10 | 6． $0^{3}$ 土 35 | 5 | 19．10土．83 | 8 |
| $\begin{aligned} & 42+11 \\ & 42465 \end{aligned}$ | 5．4．7 | 34 | 15． $50 \pm$ ． 53 | 11 | 4．6S三． 27 | 43 | 10．45．501 | 41 |
| 42470 | 6．5f土 ． 35 | S | ${ }^{15.45}$ | 13 |  | $\frac{1}{3}$ | 15．75土 75.02 | 17 |
| 42172 | 6．3s 5.24 | 11 | 10．15 10.43 | 14 | 6． $20 \pm$－ 32 | 10 | 15．50土． 53 | 15 |
| 42453 | 6．06土 ． 31 ！ | 24. | 15．40̇ 4.48 | 15 | 6． $12 \pm$＋ 10 | 33 | 19．03 ． 88 | 5 |
| 42720 | 6． 23 主 30 ， | 15 i | 15．35． | it | 6．18t＝－ 11 | 16 | $15.05 \pm .67$ | 25 |
| 4218 | 5，标安 39 | 33 | 15．30 | 17 | 4．57 5 － 39 | 313 | $13.55 \pm .84$ | 31 |
| 42415 | 6． 14 ¢ | 4 | 15．3利生－ 43 | IS | 6.96 ¢ 5.53 | 2 | 15．55 | m |
| 4240 | a． $21 \pm .35$ |  | 15．25 2 ＋ 51 | 19 | 5．93 | 15 | 15． 85 | 14 |
| 424.15 | 5．84土－31 | 26 |  | 20 | 5．04土 ，39 | 34 | 17．40 | 32 |
| 4245 | 6． $20 \pm$ ． 26 | 15 | 15． | 21 | 6． 45 \％ 47 | S | 15．85二 ． 80 | 11 |
| 42440 | 5．05士－ 31 | 25 | 15．15土 ． 39 | 22 | 5． $32 \pm$－ 26 | 30 |  | 37 |
| 42481 | 5．90土 ． 31 | 30 | 35．10 | 23 | $4.84 \pm .31$ | 40 | $16.15 \pm .81$ | 42 |
| 4246 | 5． $80 \pm$ ． 30 | 32 |  |  | 4．54才 3.24 | $3{ }^{39}$ |  | 40 |
| 424 | 5．36士 ． 32 | 31 ； | 15．05土 ． 52 | $2{ }^{4}$ | 5．14土 | ${ }_{27}^{2}$ |  |  |
| 424，${ }^{5}$ | $6.13 \pm$ ， 2 ？ | 22 i | $15.05 \pm$ | 27 | 5．172．31 | 32. |  | 29 |
| 42369 | 6． $34 \pm .30$ ？ | 5 ！ | 15．05士－ 43 | \％ | $6.16 \pm .43$ |  | 15．102 ． 72 | 21 |
| 1245．1 | 6． 317 | 12 | $25.05 \pm$ ， 40 | 29 | 6． 4 （t） | 6 | 19．60） | 10 |
| 4254 | 5． $55 \pm .30$ | 42 | 14．83 | 30 |  | 37 ； | 165． $010 \pm .75$ ， | 30 |
| 424 Cb | 6． $32 \pm .30$ | 14 | 14．90） | 31 | 6． $11 \pm$－ 39 | 14 | 15， 20 主， 85 | 21 |
| 1244 | 5． $63 \pm$－ 31 | 40 | 14．00ㄷ．42 | 32 | 4． $65 \pm .38$ | 4.1 |  | 3 |
| 4 4 | 6． $15 \pm \pm .31$ | 21 ！ | 14．00土 ． 313 | 33 | 5． 84.14 ！ | 19 | 18．00］． 20 ！ | 96 |
| 4245 | ${ }^{6} .35=37$ | 10 － | 14． 5 5 | 31 | 6．4녿．43 | 15 | 34．10x |  |
| $42+50$ | 6． 17 生．301 | 19 |  | 35 | 6， $2 \times \pm .49$ | $7{ }^{1}$ | 18．15 5 | 22 |
| 4271 |  | 14 |  | ${ }_{3}^{37}$ | 6． $8=0$ | $9{ }^{2}$ |  | 30 |
| 42457 | 5． $03 \pm$－${ }_{3}$ | $2{ }^{2}$ | 14，65 5－ 45 | 37 | － 5 \％ 2 | 3 | 14． 15 土－ 72 ？ | 4 |
| $44^{4 \pi}$ | 6． $20 \pm .21$ | 15 ： | 14． $62=$－ 100 ； | $3{ }^{3}$ | 6． $1 \geq$＝ 30 i | 12 |  |  |
| 424 | 5.37 － 3 号 | 45. | 12．60土 ． 515 | 29 | 4． $70 \pm .33$ | $4!$ | 17．35＝ 52 | 33 |
|  | $5.4 \pm .35$ | 33 | 14． 08.2 － 46 | 40 | 5． 555 | $3{ }^{2}$ | 15－6土．75 | 16 |
| 42440 | $5.92 \div$－${ }^{2}$ | 23 | 14，30土 ． 43 | 41 | 4．65： 2.21 | 12 |  | 45 |
| d2437 | ${ }_{5}^{5} 50$ | ＋1： | 14． 35 年， 41 | 43 | 5． $015 \pm .39 \%$ | 35 | 19．15\％ 60 | ${ }_{5}^{6}$ |
| 42438． | 3．67－ 24 ； | 37 | 14．35 3 ． 46 | H | f．ibers | 45 | 21．05＝ 63 | 4 |
| 42183 | 5．1杖 32 － | 431 | 14．10土．53！ | 45 | 5． 5 N － 53 － | 241 | 17，价士 1.03 | ${ }_{3}$ |
| 4245 | 4．41立．29： | 40 | 13．05土－ 48. | ＋1 | $3.52 \pm .2$ | 46 |  | 34 |

[^5]It is not known at present whether there is an interaction between the yiold of shrub fand age for these gunyule stains. There was an interaction belween the greenhouse and field measurements for firstyear material. This may haye been caused party ly differences in time of seed germination, which spread out over at 2-week or lenger period. These ently differences may have ben removed by the time the second measurement was reeorded. Future data naty charify this point.

From the standpoint of hoth height and spread, 42478,42460 , $42435,42458,42467$, and 43462 were imong the superior statins in the test. The inferior simins in the experiment were 42438,42440 , 42437 . aud 42468 . In the $54 \pm$-chromosome group 42.435 was the !allest and widest, wherens 42450 was the narowest and 42445 the shortest. The strains from both chromosome groups apparenty grew equally well in this experiment. The stains listed as commercial were inferior in growth to the best strains in the test.

## Mears and Vablaxges of ILeigh fon Abehbants and Nonaberbants

Heights for aberrant and nonaberant plants (normals, offtypes, and slow growers) in the first 10 replicates were computed (table 11). In every case the nonaberrant plants of atrain were taller than the aberrants. As anincreased pereentage of aberrant plants in at strain affects the yiede. it woukd be desirable to select strains in which few or no aberrant plants oceur. The rankings of the strains ace different from those in table 10, in which aberrants and nonaberrants are not separated. If it is possible to select individual phants which do not produce aberrants, , able 11 gives an estimate of the probable rankings of these strains for plant heght. sitrain 42478 remaned in first position, but the removal of aberrant phants changed the rankingof strain 42444 from thirticth to secoul place. 'The rankings of some straius were changed materially while ofliers, such as 42468 and 42455 , remained in about the same position; these are among the shortest strains in the test. Strain 42435 produced the tallest aberrants and strains $424 \overline{7} 8$ and 42450 the next tallest. Strains 42468 and 42441 produced the shortest aberant plants on the average. The range betwen the means of the aberrant plants was greater than that between the means of the nonaberrans. The strains averaging the tallest nonaberrant plants diel not necessarily average the dallest aberrants. Strain 42450 ranked wenty-fourth in plane height ot the nonaberrant plants and third in plant height of the aberrants. Strain 42441 ranked twenty-first and twenty-second in plant height for nonaberrant plants and forte-first and forty-second for the aberrants.

In addition to thestran means for aberrant and nounberat plants the variances for the total, the nonaberrant, and the aberrant plants in the first 10 replicates were computed (table 11). In mosti cases the removal of the aberrant plants decreased the variance; in only 3 out of the 44 cases was the variane of the nonaberrants higher than that of the tol als, which included the alserants. In 2 of these the aberrants were uniform and the menns of the 2 chasses were not widely diflerent. In the third exeption, 42451 , the nomaberant plants were exceedingly variable for plant height, while the aberrants were relatively uniform.

Taple 17．－Means，standard errors，and eariances for plant height of aberrants and nonaberrants of 42 strains of guayde in 10 replicates in the atrain test

| Strala 1 | Thialvarlance | Noanberranta |  | Aberrunts |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean helght | $\begin{array}{\|l\|} \text { Variance } \\ \text { or hetght } \end{array}$ | Mein height | Variance of height |
|  |  |  |  | ${ }^{\text {Cm }}$ \％ |  |
| 424ti． | 19．45： | 18．12， 5 | 8． 3.4 |  | 234 |
| 42.463 | 11．361 | 10t．0） | 8.31 | 12．20－ | 4．94 |
| ＋24ct | ¢ 20 ！ |  | 5．if ${ }^{\text {a }}$ |  | 4． 73 |
| 42406 | \％ |  | （1． 69 ） | $12.30=.31$ | 6.53 |
| ＋1930 | 418.63 \％ |  | 9 9， | 13． $42 \pm .32$ | 6． 3 S |
| 4349 | 11.62 ； | ${ }_{16} 16.3 \pm$ | 11.02 ， |  | 14．60 |
| 4214 | 11．${ }_{\text {a }}$ ： | 3n， $24 \pm .35$ |  |  | 3． 43 |
| \｛ 4 4， 51 | 13．15 | 10．36土 ． 35 | 9．f4： | 11．44才． 35 | 6．00 |
| 42 |  | 5rsters | 11．${ }^{13}$ | 12．14． 30 | 6． 56 |
| $4{ }^{4}$ | \％ 76 | 15， $610 \pm .37$ ， | 1．1． 0 ； | $11.6 \pm \pm .36$ | 17．29 |
| 4240 | Jus！！ |  | ¢24： | $11.90=0$ | 6.50 |
| 42335 | （tis） | 15．50土 ． 513 | fis ${ }^{\text {ch }}$ | 11． $2 \times=20$ |  |
| 42451 | Stion： | 2it 66 | Kutis | 13． $21 \pm 1.619$ | 10． 35 |
| 4244. |  |  | 9.21 ： | 11．12x－55 | 4.83 |
| 42551 |  |  | 4， 6 \％ | 12，心－ 6 | ${ }_{0}$ |
| 4243 | 163）， | 15．43 | 0.5 | 1．7f＝${ }_{\text {d }}$ | 5.04 |
| f 414 | 1i．）in： | 15．43碞．${ }^{2}$ | 6.00 |  | 10． 50 |
| 42 t ． | 11．fis |  | 515 | 30．103 ${ }^{10} 5$ | 4． 55 |
| ＋3， | 120 | ＋3．35 | 17．0t 1 | 11． $217 \pm$ ． 42 | 5．41 |
| $4{ }^{2} 150.3$ | If 碰： | 1－21边 33 | 429， | 13．标士事 | 13.19 |
|  | 12－ | 15．23－6．35 |  | 10．83－－ 12 | 6.21 |
| $4{ }^{2} 453$ | ¢14， | 18．${ }_{\text {1 }}$ | Sth | 11．0） 3 2 2 － 3 | 6．32 |
| t2179 | 4.65 |  | 保穻： | 12100 | 4.54 |
| ＋2145 | 9.3 |  | S．${ }^{1 / 15}$ |  | 15． 55 |
| 12454 | 7．98： | 14．99\％．${ }^{\text {a }}$ ， | bi． 17 | 11．10＝6S | 7.38 |
| 42173 | 7.2 | 14．950， 4 | f． 815 | 12－2土1．59 | 14.35 |
| 12465 | 3． 49 | 14.0 m 3 | 9.80 | $13 \times 1 \pm$ | 4.54 |
| S2TSO | s．3 | 1498． 29 | T． 5 ： | 1262 ． 30 | 6.57 |
| tit 245 | 9.11 |  | ＊ 3 3； |  | 8． |
| 42165 | ${ }_{10.12}^{9.15}$ |  | 年热 |  | 7.23 |
| 42450 | 11．41 | 34．1．j， | 以枋 |  | \％ |
|  | S． $0^{\text {d }}$ ！ | 14 （4） | s， 31 ： | 11． $615 \pm .43$ | 4.71 |
| 49266． | 19.70 | 14．53土 ． 31 | 11． 74 | 11． $15 \pm .19$ | 4.9 |
| ＋2473．． |  | 14．30 ${ }^{\text {a }}$ | 0.6 | $12.22 \pm 1.17$ | 19．44 |
| ＋2440 | $\pi{ }^{13}$ ： | 15，20］ | 6． 640 | ！10x－ 75 | 6.04 |
| 43465 | 1114 | 14．16．${ }^{3}$ | 5．${ }^{5}$ | － $93 \pm .181$ | 5．45 |
| T245S． | 8，程 |  | $8.00^{3}$ | 6．35－1．20 | 10.84 6.01 |

${ }_{2}$ Sep tahle 8 for W．B．MeCallum＇s uesigrations．
2 Steplicates．
The variances of the uonaberrants for the different strains difered significantly in spite of the fact that the class aberrant plants had been removed．

## The of Flowerivg

First bloom on an individual－plant basis was recorded once a week beginning April 3，1944，and is presented as number of days after April 1．It was required that one or more flowers be fully opened． The plot menas，their coefheient of variation，and the standard error of a difierence between？strain means were calculated from the plot means from the first 10 replicates．The plot mean was computed from the individual－plant dates of first blom（table 12）．The raria－ tion within the plot was large for some strams，but the plot was large enough to give a good estimate of the strain mean．This was illus－ trated by the relatively low coeflifient of varation， 10 percent．Since

Table 12.-Mean number of days to first bloom afler April 1, 1944, for 42 strains of guayule in 10 replicates in the strain test

| Strsin | $\underset{\substack{\text { Mean } \\ \text { perfod } \\ \hline}}{ }$ pertod | Strala | Menn period |  | Strals ${ }^{1}$ | $\underset{\text { pertod }}{\substack{\text { Seats } \\ \text { per }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{\text {Days }}$ | 42473 | ${ }^{\text {Days }} 3$ |  |  | ${ }^{\text {Days }} 36$ |
| 42432. | 22.2 | 42447 | 3.4 | 4278 |  | 23, ${ }^{23}$ |
| ${ }^{2} 24495$ | $\frac{29.3}{2,6}$ | - | 24.6 | ${ }^{42446}$ |  | 27.6 27.3 |
| 12456 | 22.6 | 12418 | 24.6 | 44251 |  | ${ }^{27.5}$ |
| 42485 | ${ }_{22}^{22}$ | ${ }_{\text {d }}+2488$ | 24.7 | +2364 |  | 27, |
| 224.18 | 20. 1 | 424, ${ }^{4}$ | 21.8 | 4242 |  | 22.8 |
| +2354. | ${ }^{23.0}$ | 52176 ${ }^{3}$ | ${ }_{5}^{35}$ | $4{ }^{23148}$ |  | 38, |
| 42453 | 23.1 | +2445 | 29.6 | ${ }_{4}$ |  | ${ }_{20} 9$ |
| ${ }^{42485}$ |  | +2453 | 25:\% | 12444 |  | 33.9 |
| 42133 | 23, 2 | +2471 | 25.0 |  | (tatas. | 25.2 |
| f2470 | 33.3 | ${ }^{123} 37$ | 20.1 |  |  |  |
|  | 23.4 | 4244 | 26,4 |  |  |  |

: See tuble $S$ tor W. B. MeC'allum's tesigmations.
4 Standard error of in differnce beween 2 phot neans cquals 1.14 days; cocheriont of variation of plot means equnks 10 percent.
the strains differed widely with respect to growth characteristies, the variance within a plot was not calculated for first bloom. Individualplant selections should be made in an attrmpt to obtain more uniform growth characteristies; then genctic variation of first bloom could be determined. For the present, the relative positions of the means for first bloom offered the information required for strain diferences.

Highly signifient diferenes were obtained among both the replicate and the strain means. First-bloom data were affected by location in the field; the replicates from the sandier portion of the experiment bloomed later than did those from the heavier soil lypes.

The strains varied in average number of days to first bloom from 21.4 for strain 42467 to 37.9 for stran 42444 . This mange was considerable when the standard error of a difference between 2 plot means, 1.14 days, was so small. There appeared to be no difference in this character between the $54 \pm$-and the $72 \pm$-6hromosome groups. The strains designated as commercials (table 8) were grouped around the experiment average, 25.2 days. None of these were significantly difierent from the experiment mean, but they were from each other. However, the difference was so small that the selection of one of these strains over another for earliness would be of doubtifl value in a breeding program.

Strain 42444 bloomed orer 2 weeks later than a number of the other strains. For lateness in blooming stmin 42444 appenred to be useful in a breeding prorram. Stmins 42468 and 42469 bloomed about 1 week later than strain 42467. The last-named strain and several others ( $42462,42449,42450,42456$, and 42461 ) are the most promising as breeding matcrin for earliness of first bloom. Of course there is genetic variability within each strain, but the individual-plant selections from the strains with the empliest strain mean will be the earliest for date of first bloom in the majority of eases.

## Emergenee as Related to Seed Theatments

Mass seed selections of the better typical plants from the 42 strains and seed of 7 nonselected collertions ( $42436 ; 42440,42441$ (in twice),

42474, 42475 , and 4263 ) were tested in a 7 by 7 triple lattice design with 6 replicates. The 4 seed treatments applied to each strain were employed as a split-plot feature of the strain, or whole, plot. The splitplot size was 100 seeds. Hence, the menns for number of plants emerged are given in percentage (table 13). The standard errors

Table 13.-Emergence data for 42 selected strains and 7 nonselected collections of guayule given various seed freatments

| Strain 1 | All seed trentments |  | 10+7 seed |  |  |  |  |  | 10.12 sturd (tuntlireshed. (reated) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Threshed, untrealed |  | G"nthreshey, mintreated |  | Colhrested, treated |  |  |  |
|  | ErmerBence | Mcan <br> peritud of omerB42 | Emer-上erser | Meary <br> Lurtiant of PIntr5 Erise | Entergence | Mean perionl of mater wate | Fimer Hetce | Mcill gerlon! of (minergence | senee | Meall berlod of Patergertes |
|  | Pct. | Daya | Prt. | 17ay |  | flays | $f$ fr. | Jouyt |  | fnys |
| 12944 (scl | 310.813 | 6.84 | 71, 67 | (6. 098 | 12.33 | 8.30 | 11.67 | 8.97 | $\cdots$ | 7, 21 |
| $4216 S$ (selected) | 30.17 | (6. 83 | 01.83 | 5.18 | 10, 33 | 7.35 | 20.40) | 85 | 2849 | 7. 318 |
| 42478 (selfected) | 25.14 | G. 14 | Sh, 00 | 5.14 -160 | 19.50 | 6. 60 | 10. 00 | 7.42 | 37. ${ }^{3} 17$ | 7.10 |
| $42+15$ (selected) | 25, 25 | C. 43 | 34. ${ }^{17}$ | 6, 43 | 16.17 | -. 80 | 5.6 | 10. 02 | 18. 77 | 9. (0) |
| 4246) (satected) | 21. 85 | 6. 95 | 6.4. 00 | d. 05 | 11.83 | S.32 | \%,00 | 9.33 | 16.64 | 7.96 |
| $4{ }^{2}$ Fil (sklected) | 21.12 | 7.13 | 33. 511 | 6.30 | 13.33 | 3. 10 | 10. 17 | 0.67 |  | 11.42 |
| 42157 (sclpeted) | 33. 3 : | 7. 19 | 33, 334 | fi, 38 | 17, 10 | F. $\mathrm{Hf}^{\text {d }}$ | 11. 83 | D. 40 | 13.17 | 97, 73 |
| 42383 (selcted) | 23. 25 | 7. 2 | 61, 67 | 0. 34 | 11.33 | \% 85 | 0.83 | 0, 68 | 10.17 | 11.02 |
| $424 \overline{+}$ (sticcted) | 2915 | 7.33 | 5 2. 53 | th. 12 | 15, 37 | 7.95 | 883 | 8 SN | 11.07 | 11.11 |
| 42 H 0 (stlecteri) | 23.08 ! | 7.12 | 6i 10 | 6, JS | 1231 | 4. 32 | 5.16 | 10. IA | S. $0^{2}$ | 10. 29 |
| 42:12 (selpeled) | อ1. ${ }^{\text {a }}$ | 0.9 | +4. 50 | ¢. 70 | 5.50 | 16.65 | $46^{-1}$ | 11.93 | 20.17 | 9. 10 |
| 4215cs (salecteri) | 21.12 | T. 615 | H2, dis | ti, th | 10.68 | ¢ 5 | 3.00 | 9. $0^{17}$ | D. 33 | 10.35 |
| 42167 (selecterd) | 21.35 . | 7.03 | 15. 83 | 5.64 | 12.00 | 8.39 | 517 | $10.0)$ | 29, 50 | 8.30 |
| 42163 (5clected) | 21. 88 | 0 | 30, 33 | S. 46 | 7.50 | 9, 01 | 10.83 | 10. th $^{\text {a }}$ | 29, 33 | 10. 20 |
| 42470 (stlerted) | 에, ¢9, | 8.63 | 43.17 | 7.5 | 10, 10 | 9.78 | fr.15) | 11.32 | 21.17 | 0.61 |
| $42 \pm 54$ (selseled) | 20, 50 | 15. 63 | 89, 0 - | 5.95 | S. 10 | 7. 60 | 4. 00 | ¢ 50 | 11.00 | 8.91 |
| 42ti] (nonsclected) | 2). 21 | 89 | 48.3 | F. 81 | 7.85 | 11.107 | 11.17 | S. $\mathrm{id}_{4}$ | 313.50 | 8.36 |
| 4213/3 (selected) | 20 06 | fi. 76 | 50. 00 | 6.15 | 1. 80 | 8. If | +1.33 | 10.0S | 13.50 | 7.88 |
| 42573 (selecum) | 21. 04 | 8.31 | 85. 3 B | 7.73 | 10.00 | 10. 25 | 3. 00 | 9.9 | 11.33 | 9.07 |
| 42150 (selected | 19.14 | 6.78 | $5{ }_{5} 5.67$ | 6. 60 - | 10.87 | 7. ${ }^{\text {S }}$ | 4. 31 | 9.42 | 0.17 | 9.1. 14 |
| 42737 (selected) | 19.82 | 5.7 | 53. 20 | 6. 01 ! | 11, 67 | 8.71 |  | \% 0 \% | 5.17 | 10. 73 |
| 42447 [splected) | 19.92 | \% 5 | +S. 617 | f. fui | 10. $n 3$ | 8.75 | 0. 15 | 6.07 | 11.33 | 8.99 |
| $42 \pm 62$ (selected). | 19.75 | 6.0 | 57.33 |  | 7.33 | 7.02 | 4.83 | 4, 31 | 10.00 | 0.85 |
| 42460 (selected) | 19.43 ? | 9.10 | 43. $\mathrm{Fin}^{7}$ | S. 411 | f. 00 | 12 n | 300 | 111.28 | 33. 10 | 10, 05 |
| 42451 (5blerted) | 10. 12 | 412 | 42171 | 8. 16 | 7.67 | 16. 11 | 8 67 | 11.25 | 19.17 | 0.62 |
|  | 19.25 | 7.30 | 48.83 | 689 | 9.00 | 7.94 | in. $\mathrm{Ca}_{3}$ | S.82 | 12.50 | 0.75 |
| 42985 (Siluctml) . | IS. 29 | -1, 4 |  | 6. 52 ! | T, 50 | 9.41 | 2.33 | 11.21 | 10.010 | 10.30 |
| 42704 (50lected) | 15.51 | 9.6 | 43. 33 | 8. 710 | 5.81 | 9.6 | ti. 13 | D.fis | 13.53 | 12. 41 |
| 42530 (selected) | 18. 21 | 6. 71 | 48. 60 | 0.31) | 11. 31 | $\bigcirc 00$ | \% 67 | S. 4 | 6.33 i | 9.51 |
| 42tis (nelected) | 17, 50 | 12.36 | 新 17 | 5 S | 11.50 + | 7.13 | 3. 61 | S. 515 | 2 fiz | 0.31 |
| 42450 (selected) | 17.42 | [, 3n) | \$fi. 00 | fli. 3 a | 9.80) | 8. ${ }^{\text {as }}$ | 5.38 | S. 51 | 8.33 | 9. 92 |
| 42476 (selrcted) | 17.33: | 12.34 | 53.17 | 5. 8 ; | \$. 33 | - 39 | 3.10 | 9.22 | 4, | 0. 6 |
| tillt (selected) | 17. 3 | ¢0, 05 | 50.00 | 6. 13 : | J, 50 | 0.197 | 3.17 | 8.85 | 6. 33 | 10.24 |
| 42140 (monselactec | 16.09 | 7.95 | 45.81 |  | 3. 67 | 7.71 | 537 ! | 9. $\mathrm{i}_{4}{ }^{4}$ | g. 50 | 9.59 |
| 43155 (selected) | 16.75 | fi. 96 | 47, 50 | f. 30 ) | 4i. 67 | \& 5 | 3.00 | 10. 61 | 0.51 | 8.63 |
| 42459 (solected) | 16.1. 17 | 6.95 | 43.83 | (2. 215 | ti. 83 | 9.34 | I. 53 |  | 12.17 | g. 15 |
| 42453 (selrcter) | 15. US | 8.36 | 46.17 | Q 00 | 8.00 | 10.25 | 3.33 | 2.5 | 0.23 | 800 |
| 42750 (smeeteed) | 10.04 | 7.10 | 41, 00 | G, 3 ] | 3.30 | 8. 09 | 2.67 | 0.85 | 4.10 | 11.96 |
| 42d 00 (sutectem) | ]15. 04 | <0 | +7.50 | 7, \% | 5. 00 | 5.4 | 3.33 | 0.15 | 8.33 | 9.18 |
| 42+if (nonstlected) | 15.70 ! | 830 | 43. 81 | \%.60 ${ }_{6}$ | 617 | 10. 14 | 4.101 | 11.5s | 8.17 | 0.01 |
| 42411 (nonselected) | 15.75 | S. 11 | 51.15 | 7.17 | I. 23 | 9. $\mathrm{n}^{14}$ | C. 51 | S. $\mathrm{S}_{2}$ | 0. 50 | 11.28 |
| 42448 (selmeted).. | 15.58 | 8.74 | 48, 3 m | 8.25 | 7.0 | 10. 55 | 2. 00 = | 9.3 | 5.00 | 10.00 |
| 42469 (selected) | 15.39 | 0.17 | 35. 617 | S 52 | li 17 | 0. 62 : | 6.93 ; | 11.17 | 13.07 | 5.37 |
| 42435 (nonselected) | 1+. 27 | 7.12 | 43. 17 ! | 637 | 4.(0) | 9.21 | 4.17 | 8.32 | 7.93 | 9.45 |
| 42458 (selected) | 11. 17 | 7. 73 | 33, 10 | 1311 | 6. 43 | $11.6)$ | 3.17 | 13.42 | 13.001 | 9.15 |
| 42435 (sclected) | 12.33 | 7.37 | 33. 17 | 0.48 | 7. fj | 880 | 5, 17 | S. 85 | $\underline{2}$ 83 | 10.71 |
| 12tis (nonstimeted) | $12 \pm$ | 6.44 | 34.33 | 5. 62 | 8.33 | 7.0. | 5. 17 | 8. | 1.33 | 12.58 |
| 42 i -5 (sulected) | 10. 12 | f. $\overline{3}$ | 31. 67 | 0.05 | 7.501 | 8.31 | 3.17 | 7. 185 | 1,33 | 11.12 |
| Experiment mpan $\qquad$ Standatit ertor of a dilierence between? menas. | 10.53 1.32 | 4 | 16. 70 | $\begin{array}{r} 6.75 \\ .54 \end{array}$ | 9.62 2.08 | 8. 64 .81 | 1.67 | $\begin{array}{r} 0.16 \\ .83 \end{array}$ | $\begin{aligned} & 12.50 \\ & 2.45 \end{aligned}$ | 9.29 .69 |

[^6]were computed on the same basis as the means. The triple latitice design yielded an increase in precision over the randomized complete block of 8 percent for number of phants emerged and of 17 perent for time of emergence. This small inerease in precision showed that very little would be gnined by using adjusted menns; hence, they were not computed. The menas for the time of emergenes for the wholeplot, or stain, total and the thresbed, untreabed seed are the average of 6 -plot mean dates of emergene. There were sufliciont phats in each to furnish a pedialde plot mean. The mean dates of emergence for the 3 other seed treaments (unthreshed, untrented 1943 seed; unthreshef, (reated 1943 soed; nud unthewhed, treated 1012 seed) are weighted averates for the plants mopered in eath plot. This procedure was followed beconse no phats emetred in some plots and in others the number of phats per phot was teo small to give at relable plot-mean date of energemes.

As a check, no sodium hypochlorite (reatment or thershing was performed on one of the fow sed samples for each enty. The second ireatment eonsisted in theshing the seed 3 to 4 months prior to planting. No sodium hypochlonte or any other treatment whs used on this sample. The theshing, which was perfomed by a seed-thershing machine involving the abrasive action of samdpaper, fanning, and a flotation process in acefone, resulted in the removal of bracts and sterile florets and most of the empty seds (I). The thive trentment was the usual sodium hyporhlorite treatment (1) on unthreshed seed at about the same time as the date of thershing. These three treatments were applied to seed harvested in the fall of 1043 . The emergence data on these strains were directly comparable for the seed treatments, beeause the seed collections were made from the replieated ficd test. Henec, nay environmental influence due to location in the replicate on strains was controlled by replieation. The fourh seed treatment involved nonselected seed harvested in 1042 from a nomreplicated planting. This seed was treated in Februnry 1043 with sodium hypochlorite and stored at room temperature until the time of planiting. Varintions from the specific conditions for these seed treatments were studied by Benedict amd Robinson (1) aud will not be discussed here.
Emeryence counts were made $4,10,13,20$, and 34 days after planting. The time of emergenee is the average number of days to emergence alter phating. Strains 42444,4246 , and 42475 were highest For percentage of cmergence on the whole-plot basis. Strain 42475, bolh nonselected and selected, was at the bottom of the rankings with regard to perentage of emergenee. The terament, or splitplot. menns are given opposite the whole-plot menns. Ilighry sigpilicmat diferences existed among these strabias within any of the trentments for peremtitge of emergence and for average number of days to emergence after planting.
Real differences existed between treatment merns for perematage and time of emergence. The mean for emergene of threshed seed, 40.70 perecth was considerably higher than the mean percentage of emergenec obtained for the other there sed treatments. The theshing poress removed the unflled sed, which neessarily rmaned in the unthreshed seed samples. This mems that only the filled seed was planted for the threshed sample; emsergumty, a higher emergence
resulted. Regardless of the cruse, the pereentage of emergence per amount of seed planted was greatly inerensed by using threshed seed. The 1942 unthreshed, trented seed treammeni ranked sisond, the unthreshed, untreated seed treatment thixd, and the unthereshed, treated 1943 seed treatment last for pereentage of emergenese. [inder the conditions of this test better results were obtained by not treating the 1943 sed than by trenting with sodium hypochlorite. This particular sodium hypoctlorite sed trentment had a deleterious efleet in gencral on the percentage of emergene of the 1945 seed. In addition, the threshed serd emerged entier than did the seed from the other treatmonts. The unthreshed, untreated seed was second for earliness of emergenee and the trented seed was last. Apparently these sodium hypochlorite treatments retmeded emergetuce in some manmer.

Despite these diflereneres, one of the most interesting results of this experiment was the significunt strain $\times$ trentment interaction for both percentage and time of emerpence. These gunyule strains reacted differently to the four treatments applied. Theicfore, no generalizations about the seed treftments, other than threshing, can be made for these guayule strains. Some strains emerged earlier and with a higher perentage under one trentment, whereas the reverse was true for other strains.

At the end of a wedks after planting there were no apparent differences in size of the seedlings from any of the four seed treatments. Naturally the plants emerging carliest would be the largost, but any differene between treatments was not apparent from an observational study of the material.

## CONCLUSIONS

In light of the evidenee presented, it is evilent that a considerable amount of work in selection and hybridiantion must be doue before a superior and unform varicty can be obtainerd from these strains. W. B. Mc.Callum worked on them for a period of yens to bring them up to their present standard, but now the work must be continued in orter to produce a uniform waredy with superior agronomic chanderteristies. From the evidene presented in the literature died, isolatimn. either be baggiag or distaner, must be pardiced in order to provent contamination by foregn pollen. The selfed progeny of the superior individual-plant selections should be tested for the desired characteristies. The survious of this test would be bulked, and the resulting promeny would bo the new watidy.

The colling operation as practiocel by the musseries growing guayale reduces the freguener of oceurene of the abremb-type plants. This is not a permanent dererase, however, and the frequener of abertants in the nursery plantings will he as high in the sureeceding vats as it was the previous year. (culting is a rostly operation which am be eliminated by growitur varicties that produce no aberrant or offyepe plants. In addition. the vidd of rubber per afere ean be inerensed considerably bs growing only nomal planks. These facts nee of eonsiderable ecomomie importane to the commere in gravale grower. Since the culling operation eliminates only part of the aberrate ame is expensive besides, the only method of solving this problem is brecd-
ing. The guayule strains studied need to be improved before they should be grown commercially.

Reliable estimates of the relative yicld of rubber from guayule strains can be obtained from plant spread and height measurements and rubber content of the branch samples. In this manner data on yield of rubber per plant may be obtained without destroying the plants. Plant spread alone gives a good estimate of the shrul) weight, but it may be well to record height also as some strains have relatively large spread measurements but low height ones. These measurements are reliable for the time at which they were recorded. This was brought out by the relatively low relation belween the plant-height mensurements recorded in the greenhouse and in the field. Therefore, it would be inadvisable to record groenhouse measurements for the purpose of predicting fiell ones.

As an indication of the true relation between the logarithms of height and spread for strains of 1 -yenr-old guayule, corrolations of 0.903 from the 42 strains in the strain test and 0.898 from the 7 entries in the commercini-strain test were obtained. This close agrecment from the 2 independent tesis considerably strengthens the dependability of the relation obtained for height and spread.

## SUMMARY

Data obtained on seed, seedling, and young-plant characters proved that considerable variability was present both within and among the 7 commercial strains and 35 of the more promising other strains of gunyule developed by W. B. McCallum.

The seven commereinl strains in the commereial-strain test diflered significantly with respect to rubber content, shrub weight, and percentage of plants in each of the phenotypic classes: Normals, ofitypes, slow growers, and aberrants. There were no signilicant differences among the totals of these strains for shrub weight, dry weight of leaves, and resin content. Strain 393 was recommended in preference to the other six commercial strains. It would be highly desirable to produce strains composed of normals, as this class was significantly higher in slarub weight and weight of rubber than were the offtypes, slow growers, and aberrants. Smatl differences among the phenotypic classes were obtained for rubber and resin contents.

Several plant chatracters were highly related. Height and spread were the best characters for the predictions of shrub weight; the relations were not linear but could be made so by a transformation to jogarithms. Rubber content of the branch samples and of the plants was correlated to a fnirly high degree, 0.668 . The correlation between these two characters would huve been higher if the size of the branch sample had been kept constant. It was higher when plot means rather than individual-plant data were used to determine the relation.

Sigaificant differences existed among the individual-plant selections of the seven commercial strains for percentage of emergence, time of emergenec, and frequency of occurrence of aberrant and offtype plants. Thus, the strains offer possibilities for improvement with regard to these three characters.

There were small differenees in the percentages of plants emerging on a specified day after planting among the commercial strains. The
progeny of an offtype phant was similar to the offtype parent selection. The progeny of aberrants was mostly aberrant, but occasionally some normal plants occurred among their progeny.

Significant differences existed among the 42 strains (the 7 commercial strains and 35 of the other more promising of W. B. MeCallum's strains) in the strain test for height, spread, the percentage of aberrant plants, date of first bloom, and percentage and time of emergence of seedlings grown from the 4 seed trentments and among the mems and varinaces of height for aberrants and nonabermants. The interaction of strains and seed treatments was significant statistically for both percontage and time of emergence. Apparently there were no significant differences with regard to the characters studied between the $54 \pm-$ and the $72 \pm$-chromosome groups. The strains with the tallest nomabermant plants on the average fere not always associated with the tallest aberrant plants.

## LITERATURE CITED

(1) Bensdict, Hi, M., and Robinson, 3 .
1946. spymes on the amminamon of geaylub hebd. U.S. Dept. Agr. Teeh. Bul. 921. [In press.]
(2) Fuperbh, W. T.
1940. stidies on sample shze and nimater of replicates for cuayule investigations. Amer. Soc. Agron. Jour. 37: 469-478.
(3) F1sier, R. A.
 illus. Edinimurgh and London.
(4) Nelfey, O. J., Hexter, A. S., abd Ioons, C. H.

 nesponse on thansphastang. Aher. Soce. Agron. Jour. 37: 194216, illas.
(5) Powers, L., and Romans, R. ('.
1945. haproncerion asd bohivation smedees on givatele, paryhe-
 Ayron. Jour. 37: 96-112.
(6) Romney, V. E., Yobk, G. T., and Casside, T, P.
1045. Fepber of hyers ship on seed prodection and growth of grapthe in cabforita. Jour. Beon. Eat. 38: 45-50, illus.
(7) Sinnecor, G. W.
1940. Statistical methods appheid to expeninents in agricubtere AND biology, Ed. 3,422 pe, illus. Ames, Iowa.
(8) Spebmens, G, L., Jr, and Kopasi, M.
1944. chmomosomal vablation in gravele and mamola. four. Hered. 35: 1 (33-172, illus.
(9) Whimembad, A. R. and Mitchema. J. W.

 illus.



[^0]:    ${ }^{1}$ Submitted for publication March 28, 1946.
    ${ }^{2}$ For their helpful suggestions and criticiams, the writer extends his thanks to G. W. Snedecor and P. G. Homeyer, Statistical Laboratory, Fowa State College, Ames, Iowa; to members of the plant-breeding and genetics section of the Special Guayule Research Project; and to the others who reviewed this bulletin. The commercial strains (varieties) and the other strains used in these studies were developed by W. B. McCallum, formerly employed by the Intercontinental Rubber Co. and now with the Emergency Rubber Project (U'S. Forest Serviee).

[^1]:    ${ }^{3}$ A $\overline{\text { at }} \pm$-chromosome selection thetle by Lereor Powers in Duranmo, Mevico.
    It was useri as a chece leceanse of its umiformity it Powers' experments. (Thpublished alata or Speciai finayule Iferetreh Project.)
    
    3 Stembsts, G. T., In. (orrespmadence.

    - Italic numbers in parentheres refor ta interature (ited, p. $2 \overline{0}$.

[^2]:    ${ }^{7}$ Holames, R. L. Whpuhlished data of Special (inayule Rescareh Project.

[^3]:    ${ }^{1}$ Powers, L. Unpublished data of Special Guayule Research Project.

[^4]:    - Benedict, H. M. Unpublished data of Special Guyule Research Project.
    ${ }^{10}$ See footnote 8, p. 12.

[^5]:    ISea tablo 5 for W．B．MeCallum＇s designations．
    10 replichtes．
    ： 12 repicates．
    － 8 replicates．

[^6]:    ISec table S for W. H, McCallum's desirations,
    All 194\% sued was nonselecterd.
    1 1943 secd; mone ayalinble for 1942.

